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Is there a link between genetic defects in the complement cascade and
Porphyromonas gingivalis in Alzheimer’s disease?
Ingar Olsena and Sim K Singhraob

aDepartment of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway; bDementia and Neurodegenerative Diseases
Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK

ABSTRACT
Defects, as determined by Genome-Wide Association Studies (GWAS), in the complement
cascade of innate immunity have been suggested to play a key role in Alzheimer’s disease
(AD). These defective genes encode sub-component 1s (C1s), complement receptor 1, com-
plement component 9, and clusterin, a fluid-phase regulatory protein. A dysregulated com-
plement cascade has been shown to relate to cell activation, defective complement mediated
clearance and possible cognitive decline in AD patients. Porphyromonas gingivalis, a putative
keystone pathogen of periodontal disease, has been reported to be associated with
human AD. The inflammatory burden following experimental oral infection in mice and
putative entry of this bacterium into the brain appears to drive the formation of amyloid-
beta plaques and neurofibrillary tangles with loss of cognition. P. gingivalis is a master of
immune subversion in this inflammatory cascade and may establish microbial dysbiosis
where it is located. Here we discuss if P. gingivalis may enhance the detrimental effects of
the defective GWAS complement cascade protein genes.
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Alzheimer’s disease (AD) is a neurodegenerative dis-
ease and the most common form of dementia. It
differs from other forms of dementia by the pre-
sence of two hallmark proteins, amyloid-beta (Aβ)
plaques and hyperphosphorylated tau bound to neu-
rofibrillary tangles (NFTs). The cause of AD remains
largely undefined. It is widely accepted that this
complex neurological condition can co-exist with
other complex diseases such as atherosclerosis and
cerebrovascular/ischemic stroke [1–5]. The link with
complex diseases is the apolipoprotein E gene allele 4
(APOE є4) inheritance [6–8]. The consequence of
the APOE є4 inheritance is defective complement
activity [9,10] because this isoform resists the innate
immune cascade checkpoint control at C1q which is
a subcomponent of the complement C1 complex [8].
Sustained complement activation is a potent driver
of inflammation in the body including the brain
[11–15]. Moreover, the pathological lesions (Aβ pla-
ques and NFTs), microbial pathogens, and physical
injury can activate this innate immune cascade
extracellularly as depicted by Aβ and/or intracellu-
larly as per NFT bearing neurons [11–15]. This
effectively makes it impossible to disregard an unre-
solved complement pathway activity in AD.

Over the years several pathogens of bacterial, viral
and fungal origin have been shown to be associated
with AD brains [16]. However, the etiologic role of
these microbes in AD pathogenesis is still in question.

Recent studies have proposed that the putative keystone
periodontal pathogen Porphyromonas gingivalis can be
a risk factor that contributes to AD development in
some individuals [17]. Periodontitis is a chronic inflam-
matory disease affecting the tooth supporting tissues,
caused by polymicrobial dysbiosis [18,19]. It has been
proposed that imbalance in complement activity may
influence dysbiosis of host microbiomes [20].
Pathogens adopt and adapt to survival and utilization
of longstanding inflammatory environments as demon-
strated by the presence of P. gingivalis in the subgingival
crevice (as commensal and pathogen) and at distant
sites (heart, placenta, and perhaps brain) with inflam-
matory components for the development of systemic
diseases [21].

Aβ plaques andNFTs have been detected in brains of
mice with the sporadic form of AD after infection with
P. gingivalis [22]. Dominy et al. [17] showed that the
enzymes gingipains produced by P. gingivalis can
degrade the Tau protein, which is involved in NFT
formation in AD. In mouse brains, all these lesions,
purported entry of P. gingivalis, complement activation
and APOE gene knock-out can accompany intracereb-
ral inflammation [22,23]. The recognized innate
immune subversion caused by P. gingivalis, the antimi-
crobial protection hypothesis for lesions [24], and
genetic polymorphisms in some complement genes
[25–28] have relevance towards a basis for complement
imbalance in AD. Lamont et al. [29] proposed that
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longstanding inflammatory conditions of the brain,
typically AD, are related to growing old. During the
lifespan of man there are changes both in the architec-
ture such as increased permeability in the blood-brain
barrier (BBB) of the hippocampus [30], and functioning
of the immune system (immunosenescence) [31]. The
term immunosenescence refers to decline in fidelity and
efficiency with age, resulting in an increased suscept-
ibility to infectious diseases and pathological conditions
relating to inflammation (e.g. cardiovascular disease
and AD) or autoreactivity (e.g. rheumatoid arthritis)
as described by Caruso et al. [32].

The complement system

The complement system is comprised of more than 50
proteins, including the component proteins C1-C9,
which are part of the innate immune system. There
are regulatory proteins that serve to inhibit the comple-
ment cascade at various points [29]. The effector mole-
cules (opsonins) illicit ongoing damage and initiate
signaling cross-talk. Examples of membrane bound reg-
ulatory proteins include membrane cofactor protein
(MCP or CD46), decay-accelerating factor (DAF or
CD55), complement receptor 1 (CR1 or CD35), and
CD59. The soluble or fluid phase regulators, which
form the focus of this review, are C4 binding protein
(C4bp) and clusterin. Complement can be activated
through the classical, alternative or lectin pathways
[33]. An antibody bound to antigen or a solid surface
can activate the classical pathway. Spontaneous hydro-
lysis of the complement protein C3 or binding of C3b to
microbes activates the alternative pathway through the
feedback loop, while mannose moieties on bacteria
activate the lectin pathway [33–35]. All these pathways

merge at the C3 convertase (C4b2a) stage, which causes
hydrolysis of C3 into C3a and C3b fragments [33], see
Figures 1 and 2. While C3a is a potent anaphylatoxin
that regulates immune responses such as inflammation
in the fluid phase, C3b opsonizes target cells and pro-
motes activation of the terminal complement pathway,
which ends with the assembly of the membrane attack
complex (MAC) on target cells destined for killing [36].
All nucleated human cells can limit the lytic effect of the
activated complement by expressing complement reg-
ulatory proteins [37]. However, gene polymorphisms
may have major effects on the function of specific gene
defects. Hence with polymorphic complement cascade
genes identified in AD, we know little about their con-
tribution to the overall effect on disease pathogenesis.

Genome-wide association studies link defects
in the complement cascade with Alzheimer’s
disease

Genome-Wide Association Studies (GWAS) [25–28]
reported the four defective genes that potentially link
to AD progression: 1) complement sub-component 1s
(C1s); 2) complement receptor 1; 3) complement com-
ponent 9; and 4) clusterin, a fluid-phase regulatory pro-
tein. This is of concern because the brain, unlike other
organs, is devoid of a traditional lymphatic vasculature
system, meaning that an efficient complement cascade is
critical for clearance of damaged cerebral tissue debris.
Consequently, defective complement genes scattered
within the early, middle and late stages of this cascade
may be responsible for disabling the phagocytic activity of
local microglia, resulting in inefficient removal of waste
proteins such as Aβ and possibly ‘ghost’ NFTs (tangles
without cell surfacemembrane of the neuron) as typically

Figure 1. Illustration showing the effects of P. gingivalis oral infection and its local subversive effect on degradation of opsonins
with IgG, C1q, iC3b and MAC to evade complement mediated death and at the same time amplify inflammation. In the brain,
a nerve cell infected by P. gingivalis itself or internalization of outer membrane vesicles (microbullets) initiate microglial
surveillance. This results in an inflammatory activity when the host cell encounters Aβ (in its capacity as an AMP) opsonized by
IgG, C3b and iC3b opsonins in the paths of the neuronal processes. Due to polymorphic defects in the complement regulating
proteins, and the inability of microglia to clear Aβ, inflammation is thought to be amplified and sustained.
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seen in AD brains. An added complication of the AD
brain is its association with microbes.

Complement proteins of polymorphic genes
relevant to Alzheimer's disease

C1s

C1s complexes with two molecules, C1r and C1q, and
form C1 as the first component of the classical comple-
ment activation. C1 is a serine esterase that activates C4
and C2 thereby driving the classical pathway of com-
plement activation [38]. C1 is not stable as it dissociates
rapidly by the activity of the fluid phase regulator C1
inhibitor [39]. Interestingly, the virulence associated
gene 8 (Vag8) in Bordetella pertussis is a complement
evasion molecule that mediates its effects by binding to
the complement regulator C1 inhibitor (C1-INH),
which is a fluid phase serine protease [40]. The absence
of functional C1s (defected gene) suggests that C1 can-
not be activated in the context of its ability to initiate the
classical complement cascade [41]. In this scenario, the
resident microglial cells that express the phagocytic
C1qR receptor [42] would fail in their function.
However, if the C1s subcomponent is seen as an inac-
tive protein, this could represent a pool of ‘inactivated’
C1. ‘Inactivated’ C1 can complex with C1r and C1q and
activate the classical complement pathway [41].
Literature supports incomplete complement activation
in AD brains [11–15]. This suggests that ‘inactivated’
C1 eventually binds to other ‘activators’ (Aβ, NFTs,
microbial pathogens, physical injury) which propagate
the incomplete complement pathway activity by cleav-
ing the next component in the cascade in demented
brains.

Cr1

The GWAS support a CR1 gene defect in AD. This
finding appears reasonable as AD patients have
reduced resistance to infection by bacteria and viruses
[16]. In the context of bacterial infections for the
pathogenesis of AD, prominence is being given to
P. gingivalis [17,23] that reaches the brain via the
haematogenous route and Chlamydia-associated
infections that are able to reach the brain via infected
monocytes following increased BBB permeability
[43]. The herpes simplex virus (HSV) type 1 [44]
infections are endemic in the host and they become
re-activated in some individuals leading to AD. All
the above listed infections associate with the Aβ hall-
mark lesion of AD [22,45,46], and both P. gingivalis
infection and the HSV type I infection lead to cogni-
tive deficit in mice [22,46].

CR1, also known as the C3b/C4b receptor, is
a transmembrane glycoprotein that functions to inhi-
bit activation of the C3/C5 convertase stage of the
three converging activation pathways. Hence the
location of CR1 in the complement cascade is pivotal
to all subsequent effector pathways. CR1 helps to
regulate activation of the complement cascade and
promotes phagocytosis of cellular debris, as well as
Aβ plaques, and adherence of immune complexes to
erythrocytes. It has been demonstrated that the AD
brain is generally deficient in CR1 [37]. Notably, it
has been reported that P. gingivalis infection mediates
immune subversion in relation to CR1 [47]. Such
observations reinforce regions of genetic weaknesses
(as per CR1 gene defect, see [26]) that are also
exploited in this case by P. gingivalis, albeit in
a fully functional complement system.

Figure 2. A ‘frustrated innate immune system’ in the inflamed Alzheimer’s disease brain. This contribution is from multiple
sources including the polymorphic complement component genes [26–28], the APOE variant [8], blood-brain barrier defects
[30], pathogen entry, and Aβ as a defense peptide released in response to infections [24]. All these contribute to complement
activity, cell activation, defective phagocytosis and chronic inflammation [15]. There would be clinical value in inhibiting all
three main pathways of complement at the C3 stage.
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C9

Complement component protein C9 is part of MAC,
and its insertion into cell surface membranes induces
pores to lyse target cells. Other than the GWAS, little
is known about the deleterious effects of the defective
C9 gene in relation to AD pathogenesis, or indeed in
other complement deficiency related conditions. The
earliest reports linking complement to Aβ plaques
suggest that the activated complement cascade does
not proceed to C9/MAC formation [48,49]. Whether
or not such an observation points to an underlying
genetic defect in the C9 gene or incomplete activation
of the complement cascade in presence of active
genes remains to be clarified. However, if the defec-
tive C9 gene has lost its function, this may be one
factor that can influence dysbiosis of the host’s oral/
gut microbiomes as reported for AD [50]. One pos-
sibility is that the functional loss of complement
activity (unable to kill the pathogen) would support
the spread of microbes such as P. gingivalis in the
body via increased permeability of the BBB in the
elderly and the AD brains. Having established
P. gingivalis colonization, the bacteria would dampen
the proinflammatory activity of C5a by citrullination
(discussed below). Thus, there remains a potential for
a microbial component of AD brains that could pro-
mote rampant complement activation (due to gene
deregulation) and resulting excessive inflammation.

Clusterin

The polymorphism in the clusterin gene has a more con-
vincing role in the pathogenesis of AD, relating to sub-
type (mild cognitive impairment and dementia), and the
rate of progression [51–53]. It is one of the complement
cascade regulatory plasma proteins that significantly
increases during AD as compared with non-AD controls
[54]. Clusterin also stimulates expression and secretion of
various chemotactic cytokines, including tumor necrosis
factor-alpha (TNF-α), which plays a critical role in pro-
motingmacrophage chemotaxis via the phosphoinositide
3-kinase/protein kinase B1 (Pi3K/Akt), mitogen-
activated protein kinase/extracellular signal-regulated
kinase (ERK) and c-Jun N-terminal kinase (JNK) path-
ways [55]. Pathogen-driven signaling pathways with
kinases that phosphorylate proteins may also be involved
in abnormal phosphorylation of Tau proteins, which are
the major constituents of NFTs in AD. This possibility
was illustrated by Ilievski et al. [22] who demonstrated
ser396 phosphorylation following P. gingivalis oral infec-
tion in mice. Alternatively, gingipains can digest the
normal Tau protein into fragments that may be toxic to
neurons [17]. Further research should clarify the conco-
mitant role of P. gingivalis and polymorphic complement
genes in AD pathogenesis.

The role of Aβ plaques and NFTs in the
classical complement pathway activation
in Alzheimer's disease

The inflammatory component of AD was recognized
through the classical complement pathway activation
and receptors for specific (C3a, C5a) opsonins
[11,12,56,57]. Based on these early data, the fibrillary
insoluble Aβ plaques were suggested to act as extracel-
lular triggers of complement activation [58–61]. NFTs
are intracellular triggers of complement activation via
the classical pathway [62]. Building on the Dominy et al.
[17] observation that gingipains degrade Tau protein
could reveal new triggers of intracellular complement
activity in AD brains.

Apolipoprotein E-C1q complexes as inhibitors
of the activated classical complement
pathway

It is becoming clear that theAPOE є4 susceptibility gene
may be linked to deregulating C1q to keep the classical
complement pathway activated [8]. This causes
a dysregulated innate immune inflammatory response
via cytokine liberation by activated monocytes/macro-
phages/microglia [63]. In the brain, the oxidized lipids
also accumulate at the periphery of Aβ plaques [8],
which leads to yet more activation of complement
activity. The APOE є4 susceptibility gene is also linked
with environmental risk factors, including the host’s
dysbiotic oral microbiome [64]. The sustained inflamed
environment of the brain could act as an intrinsic
environmental factor that supports dysbiosis.

Synaptic loss: a potential consequence of
activated complement cascade

The phagocytic role in the brain is well-recognized as
an arm of the complement cascade and generally
regarded as being beneficial to the host. However,
in AD brains activated complement CR1 helps to
regulate and promote phagocytosis, in microglia, of
the cellular debris. With the CR1 activity being sup-
pressed (via the deregulated CR1 gene and immune
evasion strategies of P. gingivalis) this would suggest
accumulation of abnormal proteins. Although this is
the case in AD, an additional outcome appears to be
the excessive loss of synapses. This is supported by
in vivo studies, where the classical complement path-
way was activated via (oligomeric) Aβ and led to
excessive pruning of synapses by microglia [65].

Concept of cognitive deterioration
in Alzheimer's disease

Cognitive deterioration (difficulties in decision mak-
ing and deteriorating mental function with changes
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in mood and behaviors) is an essential component of
the clinical picture of AD. Exactly what causes func-
tional loss in AD remains unknown. However, the
original synaptic loss theory [66,67] is still considered
valid, as it continues to correlate with deteriorating
memory. A question arises as if the mechanism of
overt synaptic loss relates to an overactive comple-
ment cascade [65,68]. Observational studies demon-
strate that some very elderly subjects bypass AD,
whilst harboring equivalent numbers of Aβ plaques
and NFTs in their brains. This suggests that these
lesions, per se, do not necessarily cause functional
deficits. Such individuals have been termed as having
a ‘cognitive reserve’ [69,70]. Another group of elderly
patients’ brains have shown extensive numbers of Aβ
plaques and NFTs without the individual receiving
a diagnosis of clinical AD. These individuals have
been referred to as having ‘resilient’ brains [71]. The
difference between those with cognitive reserve and
resilient brains, over individuals with AD, is the
absence of intracerebral inflammation [71]. This
observation emphasizes the role of chronic inflamma-
tion, in some individuals, for the functional loss.

Microbial component in Alzheimer's disease
pathophysiology

The studies carried out by Vasek et al. [68] supporting
the role of complement activity via an initial infection
causing overt pruning of synapses and giving rise to
clinical symptoms, can be explained through classical
plaques. Research has linked Aβ to a broad-spectrum
antimicrobial peptide (AMP) [72–74]. If Aβ deposition
represents the host’s response to a previous infection,
then its role as an AMP is consistent with triggering
complement activation [24,73]. This forms a common
link with the antimicrobial protection hypothesis [23],
whereby themodality of Aβ’s pathophysiology is shifted
towards a dysregulated innate immune response, and
indirectly, with the microbial infection hypothesis and
the amyloid cascade hypothesis [75]. The only differ-
ence is that that the amyloid hypothesis maintains that
Aβ is toxic, whilst the antimicrobial protection hypoth-
esis suggests AD pathology develops from a pattern of
innate immune responses mounted by an immune
challenge.

P. gingivalis is an oral pathogen that has been used to
develop models for periodontal infection and AD in
mice [22,23]. Most interestingly, the periodontal infec-
tion model of Ilievski et al. [22] has demonstrated Aβ
and NFTs in mouse brains. Therefore, by example of
in vivo bacterial infections, P. gingivalis gives rise to Aβ
in the brain produced by the host with implication for
pathogen entrapment and killing. This confirms that
P. gingivalis can initiate Aβ andNFT formation and that
this, over time, will contribute to the overall burden
of AD lesions (Figure 2). In addition, P. gingivalis

activates complement in the absence of Aβ in the
brain [23]. Complement activation following bacterial
entry into the brain is to be expected, but this observa-
tion may also explain memory impairment possibly
through intercommunication with toll-like receptor
(TLR) activation, lipopolysaccharide (LPS) (a TLR4
agonist) and complement activation [49,76–78].
Collectively, they may also cause loss of synapses
[65,68] if CR1 functionality is suppressed by its poly-
morphism or via immune evasion strategies of bacteria
like P. gingivalis.

P. gingivalis and its complement subversion

P. gingivalis has been shown to be a major manipulator
of the immune system [79–84] and is considered
a keystone pathogen in ‘chronic’ periodontitis [85].
Furthermore, periodontitis has a clear relationship
with late onset AD, which is the most common form
of AD [86–90]. P. gingivalis LPS and gingipains can
suppress the deposition of opsonins (IgG, C3b, C5b-9)
on the bacterial cell surface [81]. Blocking C3, on which
all complement pathways converge, would allow for
infection to take hold. Such an action might be detri-
mental for older peoples’ oral and mental health
because P. gingivalis can remodel the oral microbiota
into a dysbiotic state by exploiting complement
[42,81,84]. Subversive mechanisms are important for
the collective virulence of microbial communities
where P. gingivalis exists. However, P. gingivalis is not
the only microorganism present in its primary location,
subgingival plaque, and not even in the multitude of
bacteria detected in brains from AD cases [91].
Therefore, although P. gingivalis may be important
in AD, its role has yet to be defined and proved.

Gingipains as players in immune subversion

Gingipains are virulence factors of key importance to
the immune subversion activity of P. gingivalis. There
are two main types of cysteine proteases [92] encoded
by three different genes (rgpA, rgpB and kgp). Of these
the lysine specific gingipains is the product of kgp and
the arginine specific gingipains rgpA and rgpB. These
proteases can cleave the complement components C1-
C5, prevent deposition of C3b on the bacterial surface
and capture the C4b binding protein [93–97]. By bind-
ing to the complement regulator C4bp on the bacterial
surface, P. gingivalis prevents assembly of the mem-
brane attack complex and acquires the ability to regu-
late C3 convertase [95]. Thus, gingipains do not only
destroy complement through proteolytic degradation,
they also inhibit complement activation by binding to
the complement inhibitor C4bp [95].

If gingipains are involved in AD, they would likely
enhance the effect of polymorphic complement gene
defects, allowing for a local infection. Recruitment of
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additional bacteria that are resistant to the bactericidal
activity of complement is also feasible [94]. Besides, it is
possible that gingipains, together with defective com-
plement component genes, aggravate and sustain AD
through ineffective clearance of cellular debris, which in
turn, aids the accumulation of Aβ and NFTs. Tau pro-
tein that is associated with NFTs in AD brains is
reported to be a substrate for gingipains [17]. Whether
this is a strategy of P. gingivalis to keep complement
activated or is independent of complement requires
further research.

P. gingivalis and citrullination in Alzheimer's
disease

P. gingivalis can also reduce the antibacterial and proin-
flammatory activity of C5a by deiminating its C-terminal
arginine [98]. Post-translational enzymatic modification
of arginine residues in proteins formed as part of the
complement cascade are some of the subversive physio-
logical processes demonstrated by P. gingivalis. This offers
a plausible and exclusive link to disabling complement
C5a enzymatic conversion of arginine to citrulline.
Protein citrullination causes deregulation of the host’s
inflammatory signaling network by altering the spatial
arrangement of the original 3D-structure and function
of immune proteins [99]. It is likely that degradation of
complement proteins allows colonization and prolifera-
tion of bacteria possessing higher sensitivity towards com-
plement mediated killing than found in P. gingivalis itself
[82]. Accordingly, P. gingivalismay support survival of an
inflammophilic biofilm community by helping bystander
bacteria in the brain to evade complement-mediated kill-
ing. The concept of the brain possessing its own micro-
biome has not been fully explored and future studies will
undoubtedly reveal whether alternative mechanisms exist
for complement activation not proceeding to C9/MAC
formation in AD [48,49].

P. gingivalis and its possible subversion of
CR1 and clusterin

The presence of CR1 on peripheral blood cells, espe-
cially erythrocytes and macrophages, is abundant and
suggestive of an important and significant role of CR1
in AD. For example, as a receptor for the components
C3b and C4b, CR1 helps to regulate activation of the
complement cascade and promotes phagocytosis of cel-
lular debris, as well as Aβ and adherence of immune
complexes to erythrocytes.

Clusterin is a plasma protein that may play an
important role in regulating C5b7-8 stages of the term-
inal complement complex pathway, and in the subse-
quent pathogenesis of AD. The blood plasma analysis of
APP/PS1 AD transgenic mice demonstrated greater
concentration of clusterin, and an age-dependent upre-
gulation in the brain, and its co-localization with Aβ

plaques [48,51,52]. Clusterin also stimulates expression
and secretion of various chemotactic cytokines, includ-
ing TNF-α, which plays a critical role in promoting
macrophage chemotaxis, via the Pi3K/Akt, ERK and
JNK pathways [55].

Data from GWAS suggest an involvement of CR1
and clusterin gene defects in AD [25–28]. Since
P. gingivalis has the capacity to affect CR1 and clus-
terin, this strengthens the possible pathogenic role of
this bacterium in AD, at least through increased
immune subversive activity. For example, outside
the brain, P. gingivalis was found to fix C3 and readily
adhere to erythrocytes via CR1, and this led to a rapid
degradation of C3 into iC3b, and presumably, C3dg
on the erythrocyte cell surface [100].

P. gingivalis and its possible subversion of C9

C9 is the ninth complement component protein, which
is also a part of MAC. Its insertion into cell surface
membranes induces pores, causing lysis. P. gingivalis
gingipains (Kgp, RgpA, and RgpB) degrade the central
complement component C3. This prevents deposition
of both C3b opsonin and MAC on P. gingivalis cells, by
which the bacterium protects itself against complement
[101]. It is known that the complement cascade does
proceed to MAC formation in periodontitis, and this is
due to the membrane bound regulator CD59 being
partially effective. This allows for degradation of col-
lagens and heme, which form essential nutrients for the
bacterium. Generalized gene defects are conducive to
this exploitation, as reported by Kapferer-Seebacher
et al. [102] for the effects of C1S gene mutation in
periodontitis in patients with Ehlers-Danlos syndrome.
Such findings support sustained inflammation in peri-
odontitis and AD brains, and the GWAS finding of the
defective C9 gene causing deficiency in overall C9 pro-
tein synthesis, might primarily affect the brain.

To date, there is only one report that tested com-
plement activation in mouse brains. It confirmed
entry of P. gingivalis [23] and demonstrated MAC
on some neurons. Although the difference from
sham treated animals was not statistically significant,
the data suggested that P. gingivalis may have the
capacity to suppress the activity of C9 and impair
MAC assembly via immune subversion.

P. gingivalis and epigenetic modifications

In the stimulation and maintenance of inflammation epige-
netic pathways have received special attention because of
their upstream regulations. Epigenetic modifications lead to
chemical changes in DNA and associated proteins which
cause remodeling of the chromatin and activation or inacti-
vationof gene transcription.These changes cancontribute to
development and maintenance of cancer, autoimmune and
inflammatory diseases, including periodontitis [103,104].
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Interestingly, knowledge of the modification of epigenetic
mechanisms may provide insight into key regulatory path-
ways of genes involved in the maintenance of chronic
inflammation. Thus, the role of DNA and histonemodifica-
tions, which are major epigenetic regulations, have been
described in periodontitis where gene expression can be
affected byDNAmethylation [105]. It has also been demon-
strated that chronic inflammation in periodontitis may be
linkedwith aberrantDNAmethylation in the gingival tissues
[106,107]. In AD, epigenetic mechanisms have been found
to be dysregulated during disease progression, already in its
early stages [108]. Furthermore, recent methylome-wide
association studies (MWAS) in humans have supported
the concept that aberrant DNA methylation is associated
with AD [109]. Whilst increased methylation in the gene
promoter region is related to reduction in gene expression,
hypomethylation is closely associated with transcriptional
activation [110]. Recently, Diomede et al. [103] investigated
if epigenetic modulations is involved in periodontitis by
using human periodontal ligament stem cells (hPDLSCs)
as an in vitro model. They found that P. gingivalis LPS
significantly reduced DNA methylase DNMT1, while it
markedly upregulated the level of histone acetyltransferase
p300 and NF-kB. This demonstrated that P. gingivalis LPS
markedly regulates genes involved in epigenetic mechan-
isms, which may result in induction of inflammation locally
and systemically.

Molecular inhibitors as possible therapy
in Alzheimer's disease

The role of inflammation in AD is well established.
Interestingly, resolvin E1 and lipoxin A4 resolved the
inflammation in a murine model of AD [111]. This
leads to the question whether complement mediated ther-
apy should also be considered to reduce the inflammatory
load in AD and if so, when and how? Indeed, AD and
periodontitis have complement-TLR intercommunication
mediated inflammation in common. The contribution
from peripheral sources to inflammatory mediators has
an early impact on priming of intracerebral glial cells. An
ideal window to control the impact of peripheral inflam-
mation from periodontitis on AD would therefore appear
to be from the time of diagnosis of the oral disease. The
clinical value of inhibiting all the three main pathways of
complement activation was recently suggested in period-
ontitis [19]. This can be achieved by targeting the central
component C3, which directly inhibits inflammation and
indirectly counteracts dysbiosis.

As for P. gingivalis, Dominy et al. [17] proposed that
potent and selective gingipain inhibitors (Kgp) could be
valuable for treating P. gingivalis colonization of the AD
brain. Using effective molecular inhibitors of gingipains at
later stages of this neurodegenerative diseasemay be tried,
but there are many causes of AD and multiple bacterial
phylotypes discovered in demented brains.

Concluding remarks

There is no generally accepted view on the pathogen-
esis of AD, which is considered a multifactorial disease.
Recent research has shown that an impaired comple-
ment system plays an important role in the AD brain.
Whether nature provided this early immune system to
be protective, as suggested by the Aβ-AMP concept, or
other forms of toxicity in old age is a subject open to
debate. By affecting some of the gene defective pro-
teins, P. gingivalis may amplify complement mediated
inflammatory dysbiosis, but this must be proven.

Now that the GWAS has demonstrated the role of
defective complement activation in AD development,
this supports our working hypothesis that AD in some
patients is mediated by the host’s inflammatory
responses and justifies the rationale for novel interven-
tions to improve lifestyle, behavior and regular dental
care. However, there is no definite proof yet of a link
in AD between defects in the complement cascade of
innate immunity and P. gingivalis. This bacterium could
rather emulate genes involved in epigenetic mechanisms
by its LPS, which may result in induction of inflamma-
tion locally and systemically. Future research should try
to establish a better foundation for the notion that there
could be a genetic basis for P. gingivalis infection in AD.
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