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 59 
Exercise Response Efficiency – A novel way to enhance population health? 60 

 61 
Abstract 62 
 63 

Rates of obesity and its related co-morbidities have increased substantially over the last thirty years, 64 
with approximately 35% of all US adults now classified as obese. Whilst the causes of obesity are both complex 65 
and multifactorial, one contributor is a reduction in leisure time physical activity, with no concurrent reduction 66 
in energy intake. Physical activity interventions have been demonstrated to promote fat loss, and yet more than 67 
50% of US adults undertake no leisure time physical activity at all, with a lack of time and enjoyment often 68 
cited as the main drivers of rising inactivity levels. Furthermore, recent evidence has demonstrated that a sub-69 
group of individuals may experience no improvement in a given fitness or health-related measure following a 70 
specific training programme, suggesting that there may be optimal exercise types for different groups of 71 
individuals. In this paper, we introduce the concept of exercise response efficiency, whereby individuals are 72 
matched to the training type from which they are most likely to derive the greatest improvements for the least 73 
time commitment. We propose that a more precise targeting of exercise interventions is likely to drive more 74 
rapid improvements in health, thereby promoting exercise adherence and enjoyment, whilst simultaneously 75 
reducing obesity and mortality risks. Such an innovation would, we suggest, confer important public health 76 
benefits.  77 
 78 
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1. Authors Note 119 
 120 

At the end of this paper, you’ll notice that there is a conflict of interest disclosure. The purposes of 121 
such a disclosure are to make the reader aware of any potential conflicts of interests relevant to the content of 122 
this article. One of the authors of this article (CP) is a former employee of DNAFit Life Sciences, a genetic 123 
testing company selling direct-to-consumer genetic tests. Whilst he received no payment or direction to prepare 124 
this article from DNAFit, with the article resulting from his doctoral studies, he realises that, given the subject 125 
matter, it is important to make the reader aware of this conflict from the outset. The second author (JK) is CPs 126 
academic supervisor. He has no conflict of interest relevant to this article to declare, and has thoroughly vetted 127 
the arguments contained within.  128 
 129 

2. Introduction 130 
 131 
Obesity, the condition of excess body fat [1], has become increasingly prevalent over the last thirty 132 

years [2,3]. Between 1980 and 2008, mean Body Mass Index (BMI) increased globally by 0.4 kg/m2, resulting 133 
in 1.47 billion adults being categorized as overweight (BMI  25 kg/m2), and 503 million adults classified as 134 
obese (BMI  30 kg/m2) [2]. These increases were most pronounced in Western countries, with the US—where 135 
35% of all adults are classed as obese—leading the way, closely followed by the UK and Australia [2,3]. 136 
Obesity is recognized as a leading cause of a number of co-morbidities, including cardiovascular disease, type-II 137 
diabetes, dyslipidemia, and cancer [4,5]. As such, increasing obesity rates represent a significant global 138 
healthcare burden [6,7], with the costs associated with treating obesity and its related diseases forecast to 139 
increase by up to $66 billion per year in the US and £2 billion per year in the UK by 2030 [7]. As a result, 140 
considerable effort is being expended by public health bodies in the quest to better prevent and treat obesity 141 
[4,6]. 142 
 143 

So far, however, these efforts have done little to arrest the increasing obesity rates. In part, this is due 144 
to the complex, multifactorial nature of obesity; whilst tempting to believe that obesity is merely a relative 145 
overconsumption of energy, the reasons underpinning this can be varied and multi-faceted. These include 146 
increased sugar intake, increased portion sizes, alteration of gut microbiota, and genetic predispositions, along 147 
with societal, cultural, and environmental influences [8-10]. Recent research has further demonstrated the 148 
complex nature of obesity, with aspects such as exposure to environmental toxicants, such as bisphenol-A, 149 
shown to modify obesity risk [11], alongside the effects of early-life nutrition [12]. However, a commonly cited 150 
reason for the recent explosion in obesity rates is that of a lack of physical activity (PA) [13,14]. In the US, the 151 
rise in obesity occurred alongside a significant reduction in leisure time PA, with no change in caloric intake 152 
[15], suggesting that a lack of PA is potentially a major driver of climbing obesity rates, at least in the US, 153 
where just under 50% of adults report no leisure time PA [15]. Furthermore, recent reports suggest that almost 154 
no obese adults meet the currently recommended activity guidelines [16]. Additionally, increasing PA drives 155 
caloric expenditure and promotes fat loss [17-19], suggesting that PA could be important in the prevention and 156 
treatment of obesity and its related co-morbidities.  157 
 158 

Alongside the inverse association between PA and obesity, PA also reduces the risk of a number of 159 
other chronic diseases, including cancer [20] and cardiovascular disease [21], and has demonstrated efficacy as 160 
a treatment for type-II diabetes [22]. As a result, physical exercise has been termed a “polypill” [23-26], with 161 
wide-ranging health benefits; indeed, the positive health benefits of exercise can be greater than comparative 162 
drug treatment, particularly with regards to cardiovascular disease [24,26].  163 
 164 

Accordingly, it’s clear that PA has important, wide-ranging health promoting aspects, serving to reduce 165 
the risk of both chronic disease and obesity [13,14], and acting as a treatment for these issues [27]; as a result, 166 
exercise can be thought of as a beneficial and cost-effective medicine [28]. Nevertheless, adult rates of PA are 167 
low, having declined over the past thirty years [15] in correlation with large increases in obesity and other 168 
chronic disease rates. As such, there a plausible relationship between the demonstrated reduction in PA and the 169 
increase in obesity seen globally. Free-living adults seem aware of this, with many stating their motivations for 170 
partaking in PA stem from their desire to enhance weight management and reduce age-related decline [29]. And 171 
yet, despite this awareness, many adults do not take part in any PA at all, with many more failing to meet the 172 
recommended guidelines [15,30]. Again, the reasons for this are multi-faceted, but include a lack of confidence 173 
[29], time pressures [31,32], and a lack of enjoyment [33]. All of these factors appear to contribute to poor 174 
uptake of, and adherence to, exercise training programmes, thereby contributing to an increased incidence of 175 
obesity and chronic disease. Enhancing exercise adherence is, therefore, a potentially important aspect of 176 
improving population health. 177 

 178 
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With a view to offsetting some of the barriers to exercise adherence, here we propose the concept of 179 
exercise response efficiency, whereby individuals are matched to the exercise modalities most likely to deliver 180 
the greatest improvements in fitness in the shortest amount of time. From this perspective, exercise response 181 
efficiency can be described as the appropriate matching of individuals to exercise modalities to which they are 182 
most likely to positively respond. We believe exploring the concept of exercise response efficiency is important, 183 
and may provide a viable tactic capable of positively contributing to the ongoing fight against obesity and rising 184 
chronic disease rates.  185 
 186 

3. Exercise – Good for everyone, all of the time? 187 
 188 

There are many different forms of exercise. Regardless of modality, however, exercise can be 189 
conceptualized as existing along a continuum, ranging from lower intensity, longer duration exercise at one end, 190 
to higher intensity, shorter duration at the other [34]. These divergent exercise stimuli have demonstrated wide-191 
ranging health promoting effects, including reductions in adipose tissue, enhancement of glucose metabolism, 192 
reductions in blood pressure, and increases in bone mineral density [34]. Increasingly, short but highly intense 193 
exercise efforts are being demonstrated to promote health and weight-management [35,36], although such high-194 
intensity exercise may—but not always—reduce enjoyment and hence adherence [33,37].  195 
 196 

Given the wide-ranging and well-established health benefits of exercise, it is tempting to believe that 197 
exercise is good for everyone, all of the time, and that there is a reasonably standard, predictable adaptive 198 
response to such exercise. However, recent research has called into question some of these long-held beliefs. 199 
There is now a wide body of evidence suggesting there is inter-individual variation in response to any given 200 
exercise training programme. For example, in the seminal HERITAGE Family Study, which explored inter-201 
individual variation in response to a 20-week aerobic training programme, training-induced changes in VO2max 202 
ranged from a decline of approximately 100 mL O2/min to an increase of over 1000 ml O2/min [39]. 203 
Interestingly, whilst the majority of subjects demonstrated a reduction in heart rate (HR) response to a given 204 
workload following the training programme, approximately 100 individuals (~14% of subjects) demonstrated an 205 
increase in HR response, suggesting a reduction in physical fitness. Furthermore, when analyzing pooled data 206 
from six different training interventions, Bouchard and colleagues [39] reported that, following exercise, 8% of 207 
subjects had an adverse change in fasting insulin, 12% an adverse change in systolic blood pressure, 10% an 208 
increase in triglycerides, and 13% a reduction in high density lipoprotein – all undesired responses that 209 
potentially serve to increase the risk of disease. Finally, and of specific interest in the fight against obesity, there 210 
is a well-established variation in the amount of energy expended during exercise [40,41], and the subsequent 211 
effect of exercise on appetite [42].  212 
 213 

Individuals demonstrating an increase in risk factors following exercise have been termed adverse 214 
responders, whilst those demonstrating no measurable improvement in a measured fitness variable have been 215 
termed non-responders. Recently, a number of researchers have explored the use of such terms skeptically [43-216 
47], suggesting that this heterogeneity in response may be (at least partly) due to measurement error and random 217 
daily variation, and may not be clinically relevant. In a recent review [48], we suggested that global non-218 
responders to exercise—i.e. individuals demonstrating no beneficial response to exercise—likely do not exist. 219 
Nevertheless, when it comes to changes in disease-associated measures, such as cardiorespiratory fitness and 220 
fasting insulin, it seems clear that not all exercise exerts the same beneficial effects for all.  221 
 222 

4. The causes of exercise response heterogeneity 223 
 224 

The drivers of this inter-individual exercise responsivity are wide and varied. Exercise response is most 225 
often determined by comparing the pre- and post-intervention scores on a given measure. Inherent within any 226 
measurement, however, are technical error and random within-subject variation; both of which are said to 227 
represent “false” inter-individual variation [43]. Conversely, drivers of “true”—that is, real—inter-individual 228 
variation can best be categorized as either genetic, environmental, or epigenetic in origin [49]. As an example of 229 
the impact of a genetic factor, a single nucleotide polymorphism (SNP) within ACTN3 has been demonstrated to 230 
affect the adaptive response to resistance training in elderly subjects [50]. An example of an environmental 231 
influence on exercise adaptation is that of stress; individuals who have experienced elevated levels of life stress 232 
may exhibit a reduced adaptation to training stimuli [51]. Finally, exemplifying epigenetic modifications and 233 
translational control mechanisms, microRNAs may modulate the adaptive response to exercise [52], either by 234 
making specific points within DNA more accessible to translation, or exerting control over messenger RNA 235 
through either inhibiting translation or causing degradation before translation occurs [53].  236 
 237 

5. A lack of exercise response is both modality and measurement specific 238 
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 239 
The existence of non- or low-responders to exercise is potentially problematic, as it suggests that a sub-240 

group of people may gain little or no benefit from exercise training. However, it appears that such a low 241 
response to exercise is both modality and measurement specific [48], thereby suggesting that changing exercise 242 
training type, intensity, volume, or duration, and/or introducing additional measurements, may serve to reduce 243 
the rate of exercise non-response.  244 
 245 

A limited number of studies have explored exercise response across more than one exercise modality. 246 
Hautala and colleagues [54] had 73 participants undertake separate endurance and resistance training 247 
programmes in a randomized cross-over design, and determined improvements in peak oxygen uptake (VO2peak) 248 
following both interventions. There were individual variations in VO2peak improvements following both aerobic 249 
(range -5 to +22%) and resistance (range -8 to +16%) training, illustrating that some subjects demonstrated no 250 
improvements following a particular training type. However, subjects with the lowest VO2peak improvements 251 
following aerobic training exhibited a greater improvement in this measure following resistance training.  252 
 253 

Furthermore, when increasing the number of measurements taken, exercise non-response appears to 254 
disappear. Karavirta and colleagues [55] illustrated that, whilst a small number of subjects demonstrated a 255 
negative training response in terms of VO2peak or maximum voluntary contraction following a combined aerobic 256 
and strength training programme, no subject exhibited a negative response to both. Similarly, Bonafiglia and 257 
colleagues [56] subjected individuals to both endurance and sprint interval training, determining improvements 258 
in VO2peak, lactate threshold, and heart rate following training. Whilst some subjects exhibited non-response to 259 
one of these measures, very few (5% following endurance training, 24% following sprint interval training, and 260 
0% from both training modalities combined) were non-responders across all three.  261 
 262 

6. Exercise response efficiency 263 
 264 

Given the research discussed previously, it is apparent that not everyone demonstrates favorable 265 
adaptations to every exercise modality, all of the time. Given the clear disease prevention, control, and treatment 266 
benefits of exercise, such a finding is potentially problematic, illustrating, as it does, that not everyone obtains 267 
the same benefits from the recommended exercise guidelines, and that we clearly don’t all gain the same 268 
reductions in, nor protection from, disease risk factors. Instead, it would perhaps be of greater benefit to match 269 
individuals to the type of training from which they are most likely to reap beneficial adaptations. At present, 270 
such an approach typically occurs through trial and error; an individual undertakes a training intervention—271 
often lasting weeks or months—and then discovers whether they have improved or not. If they have, they may 272 
continue the intervention; if they haven’t, they can try a different exercise modality. However, such an approach 273 
is costly in terms of time; given that one of the cited reasons for a lack of exercise adherence are time pressures 274 
[31,32], such an approach may not be viable. Additionally, many people who do not currently meet exercise 275 
guidelines are anxious and unconfident regarding exercise [29]; failure to demonstrate improvements may 276 
further reduce individual confidence, and reduce enjoyment, limiting the potential of that person to undertake 277 
exercise in the future.  278 
 279 

Recent evidence suggests that exercise non- or low-response can be abated through increases in 280 
training volume, intensity, or duration [48]; however, in high-risk populations, increasing exercise intensity may 281 
be poorly tolerated and unpalatable [57], whilst increased volumes and durations are unlikely to be successful 282 
due to a perceived lack of available time to exercise [31,32]. Instead, by matching individuals to the exercise 283 
type in which they demonstrate the greatest adaptive potential, it might be possible to: 284 

1) Reduce disease risk factors in a shorter period of time. This is especially important given the lack of 285 
time—real or perceived—often cited as a reason for non-adherence to exercise guidelines. If we can 286 
drive larger improvements in shorter time-frames through targeted training, this would be hugely 287 
beneficial to many people.  288 

2) Promote greater adherence to exercise. Research from the nutrigenetics field demonstrates that, when 289 
individuals are placed on a personalized dietary intervention, they are more likely to adhere to that 290 
intervention for a greater period of time [58] – we see no reason why that would not be the case with 291 
exercise. Additionally, by increasing the improvements gained from exercise, the fulfilment and 292 
enjoyment experienced by the individual is likely to be increased – further promoting long-term 293 
exercise adherence.  294 

 295 
7. How can we match individuals to their optimal training type? 296 

 297 
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The ability to match individuals to the training type most likely to yield the greatest improvements in 298 
specific outcomes is, at present, hugely under-explored. In part, this is because it remains to be fully elucidated 299 
which variables may predict the most effective training type. From an obesity standpoint, recent work by 300 
Leonska-Duniec and colleagues [58-62] has explored the impact of a number of SNPs on changes in fat mass 301 
and improvements in aerobic fitness in a group of untrained female subjects. Following a 12-week aerobic 302 
training programme, only 75% of subjects lost fat mass, and, notably, subjects with a greater number of obesity-303 
risk alleles tended to lose less fat following training [58]. Other obesity SNPs, such as LEP and LEPR, which 304 
encode for leptin and its receptor, modified the improvements in glucose and LDL cholesterol levels following 305 
this same training intervention [62], results which replicated findings from HERITAGE [63]. Similar results 306 
have been reported by Klimentidis and colleagues [64], who found that the possession of a greater number of 307 
obesity-risk alleles was associated with smaller reductions in fat mass following resistance training. However, at 308 
present, whilst we understand that a variety of SNPs, such as ACTN3 [65] and the obesity related SNPs 309 
discussed previously [62,64], impact the adaptive, fat loss, and health biomarker response to training, at present 310 
very few studies have attempted to utilise this information to inform training programme design. Furthermore, 311 
the relationship between genetic variants and body composition and/or obesity is also potentially affected by 312 
measurement characteristics, with Bordoni and colleagues [66], for example, reporting that hydration status 313 
modified the relationship between ACE genotype and body composition, making accurate quantification of the 314 
effects of these SNPs difficult. 315 
 316 

Jones and colleagues [67] utilised a 15 SNP total genotype score to classify subjects as those expected 317 
to more favorably respond to high-volume, moderate-intensity resistance training, and those expected to more 318 
favorably respond to low-volume, high-intensity resistance training. The subjects were then randomized to 319 
receive either “matched” (i.e. training matched to their genotype score) or “mismatched” training over an eight-320 
week resistance training intervention. Those in the matched training group experienced significantly greater 321 
improvements in a test of power and a test of endurance compared to those in the mismatched group. 322 
Furthermore, 83% of high responders to the training intervention were from the matched group, whilst 82% of 323 
low- and non-responders were from the mismatched training group. Recently, Pickering and colleagues [68] 324 
utilised a 5 SNP genetic test to predict the magnitude of improvements in Yo-Yo test score—a measure of 325 
aerobic capacity—in a group of youth soccer players. Subjects possessing a greater number of SNPs thought to 326 
be associated with larger improvements in aerobic capacity did indeed demonstrate such improvements, whilst 327 
those predicted to demonstrate smaller improvements did so. These findings suggest that genetic information 328 
may hold promise in matching individuals to the training type most likely to instigate the greatest adaptive 329 
response.  330 
 331 

Similar results have been reported in relation to aerobic training. Timmons and colleagues [69] 332 
discovered a specific molecular signature, comprised of 29 RNAs expressed within muscle prior to a training 333 
intervention, which predicted the improvements in VO2max demonstrated following that training intervention. 334 
Similarly, Davidsen et al. [52] uncovered four miRNAs that were differentially expressed between low and high 335 
responders following a twelve-week resistance training programme, adding further to the promise of the 336 
matching of individuals to their most responsive training type in the future.  337 

 338 
At present, tentative research suggests that a combination of genetic and miRNA markers at baseline 339 

may be able to predict the magnitude of training response to a given intervention [52,68,69]. This raises the 340 
potential for those individuals expected to demonstrate a lower response to a specific intervention to undertake a 341 
separate intervention—one in which they are expected to demonstrate a larger improvement, and hence derive 342 
increased health benefits. Early research suggests that genetic information may assist in the matching of optimal 343 
training type to each individual [67], although substantially more research is required to confirm and expand on 344 
these early promising findings.  345 
 346 

8. Conclusion 347 
 348 

In this paper, we introduced the concept of exercise response efficiency, speculating that, by matching 349 
individuals to the type of training they are most likely to see the greatest improvements from, we can increase 350 
the protective effects of exercise against disease and promote long term exercise adherence. Such an outcome, 351 
we propose, represents a time-efficient method to maximise the health of at-risk populations, offsetting the risks 352 
associated with an increasingly sedentary lifestyle. Early research suggests that genotype-matched training [60] 353 
can enhance training adaptations, and that a number of biomarkers, including methylation [70], miRNA [52; 70] 354 
and genetics [67,68], may enhance prediction of the magnitude of training response prior to an intervention 355 
taking place, thereby allowing for the early individualization of training prescription.  356 
 357 
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Clearly, this suggestion requires more substantial investigation before it can be integrated into disease 358 
control and treatment plans, with the early positive findings requiring replication. Similarly, further studies are 359 
needed to explore the efficacy of such an approach on training-induced outcomes and adherence in at-risk 360 
populations, with it being unclear as to whether such an intervention enhances health above the standardized 361 
guidelines. There is also evidence that perceived “negative” genetic information may harm dietary and exercise 362 
outcomes [71]. Additionally, the cost of genetic and miRNA testing may make such an approach cost-363 
prohibitive, at least in the short-term, to publicly funded health bodies, or lower socio-economic status 364 
individuals wishing to pursue such an approach privately. However, any such initial cost may be offset by the 365 
potential positive ramifications to multiple dimensions of public health.  366 

 367 
Consequently, we believe that this approach may prove hugely valuable, especially to at-risk 368 

populations, in the near future. Given the wide-ranging and well-established health benefits of exercise on 369 
obesity and disease risk and treatment, yet the current poor uptake of exercise programmes, this approach may 370 
serve to both increase exercise adherence and outcomes. As PA rates decline, and the number of individuals 371 
with obesity and chronic disease increases, this approach represents a potentially impactful, yet largely 372 
unconsidered and under-investigated, tool to combat these global health threats.  Given the increasing numbers 373 
of individuals with obesity and chronic disease across the globe, along with declining PA rates, such an 374 
approach represents a potentially useful tool to attack such issues.  375 
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