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Abstract

In this thesis, we employ two numerical tools - semi-analytical models and

N-body plus hydrodynamical simulations of large scale structure and individual

galaxies - to explore the underlying physics governing the formation and evolution

of groups of galaxies, and the role of environment in generating polar structures

around disk galaxies.

Using phenomenological models of baryonic physics imposed upon large-scale

dissipationless simulations of the Universe, semi-analytic models (SAMs) are one

of the principal methods used to model large samples of model galaxies. We

sought to examine the properties of groups of galaxies with a range of densities

using SAMs applied specifically to the industry-standard Millennium Run; for

this work, we make use of the well-known Munich and Durham models, and their

descendants.

We are especially interested in how group properties change as we change the

linking length of our Friends-of-Friends group finder. We compare the group pop-

ulations and richness in these models and compare them both with observations

and high-resolution N-body simulations. This leads us to the conclusion that

the Durham models produce a much larger population of compact objects than

the Munich models. We also explore the group dynamics and morphology as a

function of density.

We compare the luminosity distributions of galaxy groups using publicly avail-

able SAMs in order to explore the group environment. We find a characteristic

“wiggle” in the group galaxy luminosity function in the De Lucia et al. (2006)

model that is not present in the Durham models, the former of which is consis-

tent with observations. When we explore the magnitude gap distribution between



first- and second-ranked galaxies, we find a turnover in the De Lucia et al. model

that is not present in either the Durham models or the observations.

We interpret the above observations in terms of the different galaxy lifetimes

in the two models and find that there is a longer-lived galaxy population in the

Durham models than exists in the Munich models.

We next examine the properties of a polar disc galaxy simulated using cos-

mological initial conditions with the gravitational N-body/hydrodynamical code

GASOLINE. We found a noticeable “kink” aligned with the major axis of the dark

matter halo at the radius of the inner galaxy disc, due to the dominance of stars.

This is not visible in the dark matter halos of more traditional galaxies. We also

note that the angle of the minor axis of the dark halo then aligns to the polar

disc and remains tightly correlated out to the virial radius. We also identify the

last major merger as being responsible for the polar disc shape, as the angular

momentum of the interaction is perpendicular to the angular momentum of the

inflowing gas.
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Chapter 1

INTRODUCTION

The universe can be studied through either direct observation, or through simu-

lation. There are distinct advantages and disadvantages in using simulations.

There are several basic tools available to simulate the universe, the simplest

and best understood of which is the N-body dark matter simulation.

These models probe the structure of the dominant mass component of the

universe, and so trace out the shape of the large scale structure. In order to

compare simulations directly to observations, additional physics must be included.

Most of our understanding of the universe comes from observing luminous matter,

in the form of gas and stars. These forms of matter are, however, missing from the

N-body simulations. Ideally, we would be able to follow the gas and stars using

fully hydrodynamical simulations. Unfortunately, we are limited by available

computational resources. In hydrodynamical simulations, which follow the gas

explicitly, we are limited to relativity small volumes of the universe, even to

individual galaxies. In order to explore the large-scale properties of the universe

a “semi-analytic model”, or SAM, is required, e.g. Cole et al. (2000). These

models use simplified physical prescriptions to explore the galaxy distribution.

The techniques commonly used include the assumption of spherical symmetry

when gas cools, and extremely simple models of star formation and feedback
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processes (Baugh, 2006).

We use the results of various semi-analytical models, N-body and hydrody-

namical simulations in this thesis. The results of semi-analytical models are used

to explore the properties of groups of galaxies in a large region of the universe.

We use the SAMs applied to the Millennium Run (Springel et al., 2005). This is

because dense objects are rare objects, and so, in order to study the full range

of galaxy environments, we need large statistical samples. We also use hydro-

dynamical simulations, which simulate individual galaxies, in order to explore

the properties of a particular, exotic, type of galaxy called a “polar disc galaxy”

(Whitmore et al., 1990).

Galaxies are not distributed randomly throughout space, but tend to cluster

along filaments, and in clusters and groups. The early cluster catalogues were

identified by visual inspection of galaxies, e.g. by Abell (1958). Since then, many

more surveys have been produced, using a variety of approaches, and have become

automated, e.g. Eke et al. (2004). The “preferred” environment of the average

galaxy throughout the Universe is not that of the spectacular, rich, and dense,

clusters, nor that of the isolated field; instead, galaxies prefer to be located within

something of an intermediate “group” environment, including our own MilkyWay.

In the simplest sense, groups can be categorised as being either “Loose” (Eke

et al. 2004; Tago et al. 2008, 2010; Tucker et al. 2000; Yang et al. 2007, 2008

etc.) or “Compact” (Shakhbazyan 1973; Shakhbazyan and Petrosyan 1974; Hick-

son 1982; Barton et al. 1996; Focardi and Kelm 2002; Iovino et al. 1999). The

classification of these group environments as being distinct populations from one

another cannot be argued a priori. Instead, the combined use of spatial and

redshift catalogues informed by numerical simulations can be used to explore the

properties of galaxies in groups spanning a range of densities. In this thesis, we
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use the Millennium Run SAMs and an N-body simulation to explore the con-

tinuum of galaxy densities between the two extremes. There is no discontinuity

between loose and compact galaxy associations, despite the literature treating

them as seemingly distinct entities. We will explore the properties of galaxies in

groups over a full range of densities, from compact to loose groups, in order to

try and resolve this false separation of the group population. Due to there being

several different methods available to approximate galaxy formation physics in

semi-analytic models, we will compare and contrast various models.

In the Introduction we will discuss the numerical methods used in the various

simulations we have used. We will introduce the processes involved in generating

dark matter and hydrodynamic simulations, and then discuss in detail the differ-

ent physical approximations utilised in the semi-analytic models. Finally, we will

introduce the observations used to compare our analysis to the real universe.

1.1 Description of content

This thesis is divided into three sections. The main bulk of the work deals with

groups of galaxies in SAMs, mainly the models of De Lucia and Blaizot (2007),

Bertone et al. (2007), Bower et al. (2006) and Font et al. (2008). We compare the

results of our analysis of these models to the observational catalogues of Allam and

Tucker (2000); Tago et al. (2010); Yang et al. (2007). This investigation deals with

the spatial density of groups and richness of groups (Chapter 2), the dynamics

and morphology of groups (Chapter 3), the luminosity profile of groups (Chapter

5) and the merging of galaxies (Chapter 6). These chapters compare the SAMs

described above with one another and with the observational catalogues. Chapter

4 describes our investigation into brightest cluster galaxies. In this chapter we

look for possible correspondences between the most massive subhalo of a cluster

and the brightest cluster galaxy. We also investigate the behaviour of a galaxy
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group as it falls into a cluster. Chapter 7 deals with a more detailed study of a

single polar disc galaxy. This uses a cosmological simulation to investigate the

dark matter, formation and metallicity profile of these very rare objects. Finally

we provide a summary of our main findings and highlight possible future research

directions.

1.2 Structure formation

The universe is composed of 73% dark energy, 23% dark matter and 4% baryons

(Spergel et al., 2007). Dark energy is relevant only on the largest scales, and

causes the Universe to accelerate its expansion. Dark energy only starts to dom-

inate about 5 Gyrs after the Big Bang, before that the mass density is sufficient

to overcome the effect of dark energy. Dark energy is usually parametrised as a

‘cosmological constant’ in the Friedmann equations (Friedman, 1999, 1922) de-

scribing basic cosmology.

The dominant matter component of the universe is dark matter. This form of

matter does not interact with baryonic matter, except through gravity. However,

because there is 5 times as much dark matter as ordinary matter it provides the

gravitational framework on the large scale to which the baryonic matter we can

observe responds. In other words, the baryonic matter traces out the potential

field generated by the dark matter. This approximation only breaks down in the

dense regions such as the baryon dominated centres of dark matter haloes.

On the largest scales, the universe consists of:

1. large filaments of overdense dark matter,

2. very dense, approximately spherical, dark matter haloes,

3. large underdense voids.
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These are described by Gregory and Thompson (1978) among other authors.

This structure is the natural result of the Gaussian initial conditions caused by

minute quantum fluctuations during the inflationary era of the universe (Bardeen

et al., 1986; Bond et al., 1996).

The current model of the formation of structure in the universe is hierarchical.

Small dark matter haloes in the early universe merge over time to assemble large

haloes at later times. This same process builds up large galaxies from smaller

galaxies.

That said, not all mass in a galaxy is accreted from mergers. The gas in a

massive galaxy at high z is now thought to be accreted mainly from filaments

(Birnboim and Dekel, 2003; Weinberg et al., 2002). Gas flows along filaments

and cools inside dark matter halos to form disc shaped structures. These gaseous

discs form stars. It is a combination of these processes and mergers that give us

the rich variety of galaxies we see today.

When several galaxies of significant size co-exist inside the same large dark

matter halo we define the object as a galaxy group or cluster. Thus, it is possible

to define a group or cluster in two ways. In a simulation a group is a halo of a

certain mass which contains substructure. In observations, where the dark matter

cannot be seen directly, a group is an overdensity of galaxies.

Galaxy groups and clusters were originally identified as overdensities of galax-

ies, e.g. Abell (1957). These structures appeared on the sky as dense systems

of galaxies in projection. By assuming large clusters to be gravitationally bound

structures it was possible to calculate, using the virial theorem, the cluster mass

based on the position and velocities of the member galaxies (Zwicky, 1933, 1937).

This was one of the early clues as to the existence of dark matter.

Clusters are thought to consist of large dark matter haloes of mass, M ∼

1014−15 M⊙ with virial radii up to a few Mpc, containing sub-haloes and galaxies.
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These haloes can be seen in both simulations, e.g. Springel et al. (2005), and via

gravitational lensing, e.g. Broadhurst et al. (2005). Groups are thought to be

contained within lower mass dark matter haloes, M ∼ 1013 M⊙, with virial radii

of about 0.5h−1 Mpc, or consist of separate galaxy sized haloes, M < 1012 M⊙

(Dekel and Ostriker, 1999) that are simply close to one another.

Groups of galaxies do not only consist of dark matter and member galaxies.

They possess a rich intergroup medium, composed of hot gas. The space between

galaxies is filled with an energetic gas produced by gas falling into the group

potential from large scale structure such as filaments. Alternatively the inter-

galactic gas in groups can be produced by energetic superwinds and retained by

the group potential. As the gas falls into the halo it is heated during virialisation.

The virial theorum is,

Ep = 2Ek, (1.1)

where, Ep is the potential energy and Ek is the kinetic energy. During virialisa-

tion the additional energy, Ek goes into heating the gas to the virial temperature,

T,

T ∼ GMmp

kR
, (1.2)

where G is the gravitational constant, M is the halo mass, mp is the mass of

the average particles, k is Boltzmann constant and R is the halo radius. The

excess energy is radiated away during the cooling process. This takes the form of

Bremsstrahlung X-ray radiation and X-ray line emission. Ponman et al. (1996)

found similar X-ray emission inside 75 % of Hickson Compact Groups (Hickson,

1982), indicating that these are real objects rather than chance projections. The

dark matter component cannot radiate as it does not interact with light, thus it

heats up and cannot collapse as far as an equivalent amount of gas.This collapsing

gas can form new galaxies or can be added to already existing galaxies. If the
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cooling time of gas is shorter than the dynamical time then the gas is assumed

to cool quickly, while at longer cooling times, in more massive halos (Mhalo >

1× 1011M⊙) cooling occurs more gradually and the halo builds up a hot gas halo

(Croton et al., 2006).

Galaxies can be ordered onto a sequence according to their morphology (Hub-

ble, 1926). This sequence incorporates elliptical galaxies, irregulars, and spiral

galaxies, both barred and unbarred. This split for spirals is why the sequence

is often called the ‘Hubble Tuning Fork’. Galaxies in dense environments, such

as groups, clusters and compact groups, tend to be redder than galaxies in the

field (Oemler, 1974; Dressler, 1980), and this can be directly observed. This is

due to a number of processes. Stars form as gas cools and becomes sufficiently

dense (White and Rees, 1978). As a population of stars ages the bright blue stars

quickly disappear leaving behind cooler, redder, long lived stars. This means

that, in general, the redder a stellar population the older it is, thus, red galaxies

have experienced little or no recent star formation.

Processes which reduce star formation exist in all galaxies, in all environments.

Examples are supernova feedback, which reduces the amount of cold gas in small

galaxies, e.g. (Croton et al., 2006) or AGN feedback, e.g. (Kauffmann and

Haehnelt, 2000), which reduces the amount of gas in large galaxies. However,

there are additional processes that are important in dense group and cluster

environments. The most spectacular process in dense environments, which affects

star formation and galaxy morphology, is galaxy merging (Hickson et al., 1977).

There are two types of galaxy merger, the major merger, where galaxies are of

comparable mass, and the minor merger where one galaxy is significantly smaller

than the other. Major mergers have the effect of converting galaxies from discs

to ellipticals, removing gas and triggering starbursts. In dense environments this

is more effective because there are more galaxies within a given volume.
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Other processes that remove gas include: ram-pressure stripping, e.g Fujita

and Nagashima (1999), where gas is removed from a galaxy by drag from the

intercluster medium; strangulation, e.g. Larson et al. (1980), Balogh et al. (2000),

where the interaction of the galaxy halo with the cluster potential reduces the

amount of hot gas available to cool, depleting the amount of cold gas and thus

star formation down the line; and galaxy harassment, where constant interactions

change the morphology of a galaxy over time (Kawata and Mulchaey, 2008).

1.3 Numerical Methods

Simulations of the time evolution of structure throughout the Universe require

appropriate initial conditions. The positions and velocities of the particles chosen

to represent the density field of the early Universe are then allowed to evolve

through time, with an adopted software package solving for the gravitational

interactions between the particles. Below, we describe how such initial conditions

are defined, as well as the time evolution of the spatio-kinetic properties of the

dark matter particles involved. The final component of this work involves the

analysis of the hydrodynamic properties of a simulated massive disc galaxy; as

such, the relevant hydrodynamical physics is also described below.

1.3.1 Initial Conditions

The initial density perturbation δ(x) can be described, most generally, as,

δ(x) =
ρ(x)− 〈ρ〉

〈ρ〉 , (1.3)

where ρ(x) is the density at position x and 〈ρ〉 is the mean density of the Universe.

The initial density fluctuations in the early Universe are assumed to be Gaussian

(Strauss and Willick, 1995; Doroshkevich, 1970) and can be described by a simple
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power spectrum,

P (k) = AknT 2
k , (1.4)

where Tk is the transmission function, k is the wavenumber, the exponent n

is assumed to be unity with equal power on all scales, and A is a constant, e.g.

Baugh and Murdin (2000). This information is all that is required to generate the

initial conditions for a cosmological simulation. Each particle in the simulation

is placed on a regular grid and given a small displacement and peculiar velocity.

The displacement and velocity are calculated according to the Zel’Dovich (1970)

approximation,

~r(t) = a(t)[~q +D(t)~f(q)], (1.5)

where ~r is the physical coordinate of the particle, ~q is the co-moving position,

a(t) is the scale factor, D(t) is the linear evolution of the perturbation, and ~f(q)

is the time-dependant displacement field,

~f(q) = ▽φ(~q). (1.6)

Here, φ(~q) is the gravitational field due to the density fluctuations, where these

fluctuations are given by

▽2φ =
δ

D
. (1.7)

The corresponding velocity displacement is described as,

~v =
d~r

dt
−H~r = aḊ▽ φ(q) (1.8)

32



CHAPTER 1

The initial conditions depend on the box size used to define the grid, the cosmol-

ogy (Ω0,ΩΛ, σ8, H0), and the total number of particles.

1.3.2 N-body Codes

An “N-body” scheme solves for the equations of motion governing an ensemble

of “N” collisionless particles, using

▽xφ = 4πGρ (1.9)

and the standard equations linking potential and density to acceleration, velocity,

and position via,

dvi
dt

= −▽x φ (1.10)

dxi

dt
= vi (1.11)

where xi and vi are the position and velocity for each particle and φ is the

gravitational potential.

Here, the dark matter is modelled as a collisionless fluid, discretised and rep-

resented as particles. It has long been known that direct summation of the

gravitational forces on a particle-by-particle basis becomes intractable for large

Np, (due to its N2
p scaling, where Np is the number of particles). We adopt stan-

dard approaches which mitigate the problems associated with direct summation

- specifically, we adopt tree codes and grid codes. Tree codes scale as Np log(Np),

while grid codes scale like Ng log(Ng) +Np, where Ng is the number of grid cells.

These techniques are all that are required for modelling the spatio-kinetic prop-

erties of the dark matter.
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Tree code

The time evolution of the dark matter particle positions is handled via the

use of an “hierarchical tree algorithm” in standard N-body tree codes, such as

GADGET-II (Springel et al., 2005) or GASOLINE (Wadsley et al., 2004). In

this technique, contributions to the force exerted on a particle, pi, can come from

individual particles, or from large groups of particles at greater distances from

pi. The simulation volume is decomposed into regions using the Barnes & Hut

algorithm (Barnes and Hut, 1986). In this method the volume is divided into

cubes, starting with the simulation box itself. This node is then split into eight

subcells with half the linear dimensions. This process is carried out recursively

until each particle is contained within its own cube. These cubes form the nodes

of the ‘oct-tree’ structure and are arranged hierarchically. Each of these cells is

henceforth referred to as a ‘node’.

The further a given node is from pi, the less detail is required, and a larger

node is used, to calculate the contribution to the gravitational potential at pi.

Close to pi a smaller node is used. The more distant a node is from pi the

less accurately the force contribution needs to be. This means that when we

wish to calculate the contributions of all particles, we do not need to sum the

contributions of all particles individually.

Using the tree code approach we can lump particles together by only traversing

part of the ‘oct-tree’. The contribution of the larger nodes is based on the average

contribution of all particles in that node, so the further away we go from pi the

more particles are combined to make the average contribution. Whether a node

is opened or not is controlled by an ‘opening angle’ which is the ratio of the node

size to the distance from pi. We recover the local potential of the particle in

such a way that local information is more accurate than more distant parts of

the simulation volume.
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Tree codes also require gravitational softening to reduce two-body relaxation.

This is the process by which the dark matter particles undergo a series of two-body

interactions leading to the transfer of energy between particles. This is unrealistic

as dark matter particles in the real universe are thought to be collisionless. During

two-body relaxation particles come into close proximity with each other, and

interact via gravity. This means that the particle trajectories will change. This

effect is cumulative for each particle in the simulation volume, and a system

undergoing two-body relaxation will see a significant re-distribution of energy.

This process is a problem when modelling dark matter, because we are modelling

a collisionless fluid, using discrete, massive, particles, which, without softening,

are collisional. This means that the behaviour of the simulated dark matter will

not be realistic. The gravitational force is “softened” via the use of a “kernel”,

which in effect, weights the contribution of particle j on particle i based on

j’s distance from i, according to an appropriately chosen function. In practise,

this softening is limited to a certain maximum distance, h, called the ‘softening

length’. This softening length can be adaptive and limits the spatial resolution of

the simulation. The calculation of the gravitational force only becomes Newtonian

at a distance greater than the softening length. This sets the force resolution of

the simulation.

Grid code

The grid code we have used utilises a Particle-Mesh technique to solve for gravity

(Yahagi and Yoshii, 2001). A cloud-in-cell approach is implemented to assign the

particle density to the nodes of the mesh. This means that a fraction of the mass

of any given particle is assigned to the eight surrounding nodes, according to how

close the particle is to a particular node. This produces a much smoother density

field than simply assigning a particle to the nearest grid point. The result of this
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creates a continuous background density field from which the potential is found

via the Poisson equation. This technique utilises the fact that in Fourier space

the Poisson equation is a simple algebraic expression,

Φ̂ = 4πG
ρ̂

k2
(1.12)

where ρ̂ is the density of the mesh points, G is Newton’s gravitational constant,

k is the co-moving wavenumber, and Φ̂ is the potential and “hats” indicate the

associated Fourier transforms.

This equation is then used to calculate the force and hence the equations of

motion for the particles. The spatial resolution is limited by the grid size, which

is a severe short-coming of this method. In modern PM codes an adaptive mesh,

usually based on ART (Adaptive Refinement Tree) (Kravtsov et al., 1997), is used.

The ART code subdivides cells where higher resolution is required. The mesh

cells are refined into eight smaller cells when the particle number is greater than

a pre-set number. This, however, makes calculating the potential more difficult

because the Fourier approach requires a regular grid. Thus, a multigrid approach

(Press et al., 1992) is required for levels lower than the coarse (uppermost) grid.

This ’Adaptive Mesh Refinement’, or AMR, approach has the beneficial effect of

concentrating the computational effort to where it is required.

1.3.3 Hydrodynamics with GASOLINE

In chapter 7 of this thesis, we use GASOLINE (Wadsley et al., 2004) to simulate

the physics of a galaxy using collisionless dark matter, star particles and dissipa-

tive gas particles. GASOLINE uses a Smoothed Particle Hydrodynamical (SPH)

approach to simulate the gas, and a tree N-body code (§1.3.2) to represent dark

matter and stars. In such an approach, the particle number is the fundamental

resolution element, as opposed to the grid cells in a mesh technique - e.g. Teyssier
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(2002).

SPH smoothing is the hydrodynamical analogue of gravitational softening,

where particles are used to sample the smoothly varying properties of a fluid.

The kernel used in GASOLINE sets the resolution of the gas physics depending

on the smoothing length. The particular implementation used in GASOLINE

was defined by Hernquist and Katz (1989), as

Wij =
1

2
w (|~ri − ~rj|/hi) +

1

2
w (|~ri − ~rj|/hj) (1.13)

whereWij is the kernel function, ri and rj are the positions of the particles, w(x) is

the standard spline form (Monaghan, 1992) and hi,hj are the particle smoothing

lengths. To model the gas physics of the simulation, the density, temperature,

angular momentum, viscosity, pressure, energy, and entropy of the gas must be

taken into account. A brief summary of the particular implementation of these

quantities within GASOLINE is outlined below.

The density of the gas, ρi, is calculated from the sum of the local particle

masses mj, weighted by the kernel,

ρi =
n
∑

j=1

mjWij, (1.14)

and the angular momentum is expressed as

M
d~vi
dt

= −
n
∑

j=1

mj

(

Pi

ρ2i
+

Pj

ρ2j
+Πi,j

)

∇iWij (1.15)

where Pj is the pressure, ~vi is the velocity, M is the total mass, and
∏

ij is the

artificial viscosity, which is critical, to avoid the onset of unphysical oscillations.

In the range of ~vij • ~ri,j < 0, Πij is given by,

Πij =
α 1

2
(ci + cj)µij + βµ2

ij

1
2
(ρi + ρj)

(1.16)
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where,

µi,j =
h( ~vij) • ~rij

~ri,j
2 + 0.01(hi + hj)2

(1.17)

and ~rij = ~ri − ~rj, ~vij = ~vi − ~vj, and cj is the speed of sound. By construction,

α = 1 and β = 2 are coefficients chosen to represent shear and Von Neumann-

Richtmyer viscosity, respectively. The Von Neumann-Richtmyer viscosity is a

term modifying material compression. It is important in order to smooth shocks

in the simulation (von Neumann and Richtmyer, 1950).

GASOLINE uses the thermal energy formalism described by Evrard (1988)

and Benz et al. (1989) to derive energy (as the pressure-averaged energy equation

can give rise to negative energy),

dui

dt
=

Pi

ρ2i

n
∑

j=1

mj ~vij • ∇iWij (1.18)

where ui is the internal energy of particle i. This formulation also closely conserves

entropy.

In addition to the simple hydrodynamical quantities listed above, SPH (and

grid-based) codes must take into account feedback, cooling, heating, and star

formation, in order to correctly model galaxy formation.

The star-formation and supernova recipes employed are detailed in Stinson

et al. (2006). For a gas particle to form a star, the local spatial density must be

in excess of 0.1 cm−3, in an overdense region (>55ρ/ρ̄), part of a convergent gas

flow, and Jeans unstable,

hi

ci
=

1√
4πGρi

. (1.19)

Star particles are formed from gas particles in a probabilistic manner, as discussed

further in Ch 7.
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1.3.4 Halo finding

Dark matter haloes and subhaloes are self-bound overdensities of particles in

the simulation volume. In order to identify haloes a halo finder is required, but

subhalo identification is more complex. A halo can be defined as a sphere, centred

on an overdensity peak of average density greater than a given overdensity (Lacey

and Cole, 1994) or a region enclosed by a specific overdensity contour (Davis

et al., 1985). Subhalos, which are halos within halos, are not so easily defined

and require more complex explorations of the particle distribution.

In order to identify self-bound overdensities of particles we make use of the

AMIGA Halo Finder (AHF).1 AMIGA is the successor to MLAPM, and AHF is

an updated version of the MLAPM Halo Finder (MHF: Gill et al 2004). This

finder makes use of the adaptive mesh grids of the MLAPM (Knebe et al., 2001)

N-body code, and is essentially parameter free when used on AMIGA / MLAPM

simulations. We apply AHF to our simulation outputs and set the refinement

criteria such that the resolution of the grids is as close as possible to the resolution

of the original (parent) simulation. Isolated areas of high refinement are used to

identify potential halo centres. The program then constructs a grid tree, by

looking at the hierarchy of adaptive grids, and collects particles together. It

does this by looking for all particles within a certain isodensity contour and then

iteratively checks to see which of those particles are bound to the potential halo

centre. This process continues until no more particles are removed or there are too

few bound particles for the object to be considered a halo. AHF then computes a

host of halo properties, but in doing so rejects particles outside the virial radius.

The virial radius is defined as the radius of a sphere, the mean density of which is

∼ 340 times the background density at z=0. This value of the virial overdensity

is based on the dissipationless spherical top-hat collapse model (Gill et al., 2004;

1AMIGA’s-Halo-Finder; AHF can be downloaded from
http://www.aip.de/People/aknebe/AMIGA.
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Knollmann and Knebe, 2009).

The AHF code is used to process the GASOLINE output, but the differences

between an AMR and Tree code must be taken into account. The maximum

refinement level of AHF must be set to the resolution of the GASOLINE gravita-

tional softening, or the code will refine the grids in an unphysical manner. A Tree

code approach to solving gravity allows the particles to bunch closer together than

an AMR technique. We use a simple formula to specify the maximum refinement

level used in AHF,

Lmax =
log(B/s)

log(2)
(1.20)

where L is the refinement level, B is the size of the simulation volume, and s is

the gravitational softening length.

In comparison, the well-known Millennium Run uses an alternative halo finder,

SUBFIND (Springel et al., 2001), which finds, as with AHF, locally dense self-

bound objects using a two-pass approach. Initially, a Friends-of-Friends (FoF)

algorithm (Geller and Huchra, 1983) is used to find local overdensities. The

SUBFIND algorithm then finds the density of each particle via a smoothing

kernel, and accepts particles with a density above a certain threshold. This

procedure slowly decreases the density threshold for a particle to be accepted as

potentially belonging to a halo. As the threshold falls, halos can blend together,

forming subhalos. The particle velocities are then used to calculate whether the

potential (sub)halo is a bound object.

There are subtleties to the halo finding procedures which are useful to outline

here, starting with the three definitions of “halo” used in what follows (dubbed the

Munich approach, the Durham approach, and the AHF approach, respectively).

Although there is a halo identification number which includes halos and subhalos,

in order to find an equivalent across all three approaches, we are forced to use only
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the FoF halo identification number to decide if galaxies are in the same halo. FoF

can spuriously add halos together, so the Durham group uses SUBFIND (Springel

et al., 2001) to split the FoF halos. In the Durham model, joined parents are split

if the centre of parent 1 is outside twice the half-mass radius of parent 2, and

parent 1 has retained more than 75% of its original mass. Conversely, AHF defines

a halo according to its virial radius, and a subhalo is simply an object which has

its centre inside the virial radius of a higher mass object. The Munich approach

is to use the output of SUBFIND. This algorithm, however, follows the density

contour, producing an irregular shaped halo. Subhalos are defined as self-bound

objects composed of particles associated with the host halo.

1.4 Semi-analytic Models

Semi-analytic models (SAMs) are phenomenological prescriptions of baryonic

physics employed to model large samples of galaxies in such a manner as to

allow ready comparisons with observations. These prescriptions are applied to

dark matter halo merger trees, upon which the baryonic physics is assumed to

depend.

1.4.1 Merger Trees

Dark matter halos coalesce to form ever-larger halos, ultimately leading to the

formation of groups and clusters. The tool which allows us to keep track of

these processes is the “merger tree”. These trees allow us to identify which halos

have merged, and give us the basis for understanding how interactions with the

environment affect galaxy formation. Effectively a merger tree for a dark matter

simulation involves identifying where the tracer particles belonging to a halo at

time t are at time t + ∆t. Once identified, a process called “walking the tree”
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is used to follow an object through time. In the Millennium Run, a Depth-First

search algorithm is employed in which an object is followed back in time to its

formation before another branch of the tree is traversed.

1.4.2 Description of the Models

The SAMs used in our analysis employ the merger trees associated with the

Millennium Simulation (Springel et al., 2005), a large N-body simulation cor-

responding to a significant volume of the visible Universe, and generated using

the WMAP Year 1 cosmology (Spergel et al., 2003). The simulation used 21603

particles in a periodic box of length 500h−1 Mpc, gravitational softening of 5h−1

kpc, and individual particle masses of 8.6×108 M⊙. 64 outputs exist within the

Millennium database, ranging from redshift z=127 to z=0. The simulation was

post-processed using a Friends-of-Friends (FoF) algorithm (Geller and Huchra,

1983), in order to identify density peaks. Then SUBFIND (Springel et al., 2001)

was employed to identify substructure and split spuriously joined halos. This

information was then used to build merger trees for the dark matter halos, onto

which the SAMs are “mapped”.

We will highlight the different ways in which the SAM codes create merger

trees, the way in which galaxy positions are defined, the implementation of satel-

lite disruption and accretion, and the way in which supernova and AGN feedback

are implemented. This is critical, in order to interpret their predictions in light

of the observational constraints described later.

When a halo first forms it is given a specific amount of hot gas, the upper

limit for which is set by the baryonic mass fraction of the Universe, although in

practise, this is reduced in smaller halos by the inclusion of a heating effect due

to the ultraviolet background (Gnedin, 2000; Kravtsov et al., 2004). This gas is

assumed to be heated to the virial temperature of the dark matter halo.

42



CHAPTER 1

This hot gas is then allowed to cool. In large halos this occurs according to

the cooling time, given by,

tcool =
3µ̄mpkTvir

2ρg(r)Λ(T, Z)
(1.21)

where tcool is the time it takes for the hot gas to cool to a temperature where

it is potentially starforming, µ̄mp is the mean particle mass, k is Boltzmann’s

constant, Tvir is the halo virial temperature, ρg(r) is the hot gas density, and

Λ(T, Z) is the plasma cooling function. The halo is assumed to be isothermal,

ρg(r) =
mhot

4πRvirr2
(1.22)

where mhot is the hot gas mass of the halo, Rvir is the virial radius of the halo,

and r is the radius. A cooling radius rcool needs to be defined which is proportional

to the age of the halo. In Croton et al. (2006) this is set to the radius at which

tcool is equal to the halo dynamical time. In small halos ( < 3 × 1011 M⊙) the

cooling time is equal to the free-fall time. The cooling radius and density of the

halo are then used to calculate the mass of hot gas which has cooled in that

timestep and consequently increase the cold gas reservoir,

ṁcool∆t = 4πρg(Rcool)r
2
coolṙcool∆t (1.23)

where ṁcool∆t is the change in the hot gas mass and ṙcool is the velocity at

which the cooling radius increases. As the hot gas cools, more hot gas falls into

the halo from outside, proportionally to the increase in dark matter mass.

Merging dark matter halos result in satellite galaxies, starbursts, and other

processes. When halos merge the galaxy of the larger halo is usually chosen to

be the central galaxy of the new halo, and the secondary halo’s galaxy becomes

a satellite galaxy. This galaxy then loses its hot gas reservoir in order to mimic
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the effect of ram-pressure stripping (McCarthy et al., 2008). A countdown then

begins which describes the amount of time the satellite has until it is considered

to merge with the central galaxy. Equation (1.24) below, is used by Croton et al.

(2006), De Lucia and Blaizot (2007), Bertone et al. (2007), and Nagashima et al.

(2005), after Binney and Tremaine (1987), where ln(Λ) is the Coulomb logarithm.

Lacey and Cole (1993) identified an alternative form for the dynamical friction

of galaxies, shown in equation (1.25). These equations differ in that the satellite

mass in equation (1.24) is the mass after stripping has taken place, (i.e., the last

time the subhalo can be identified by the halo finder), while in equation (1.25) it

is the mass before stripping.

τmrg = 1.17
Vvirr

2
sat

Gmsatln(Λ)
(1.24)

τmrg = fdfΘorbitτdyn
0.3722MH

ln(Λ)Msat

(1.25)

where Θorbit is a function of halo internal energy, angular momentum, orbital

radius, and halo virial radius,MH is the halo mass,Msat is the mass of the satellite

including dark matter, Vvir is the virial velocity, and fdf is a free parameter. The

central assumptions in Eqn. 1.24 used in this expression are that all orbits are

circular, galaxies are point masses, and galaxy mass is the total mass of stars

plus the mass of the satellite halo the last time the halo was identified. The

countdown to merging begins when the galaxy enters the parent of the merging

dark matter haloes. The more massive galaxy becomes the new central galaxy

(Cole et al., 2000), by construction.

Galaxy mergers are defined as one of two types - minor and major. A major

merger is defined to be that between one galaxy and a second one whose mass is in

excess of 30% of the former. A minor merger is assumed to have very little impact

on the central galaxy while a major merger is assumed to induce a starburst.
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Stars form from an associated cold gas disk, which corresponds to gas lying

below a prescribed density threshold. This gas is assumed to be evenly distributed

throughout the disk and hence a critical cold gas mass for star formation can be

determined. For example, in the Croton et al. (2006) model this is given by

mcrit = 3.8× 109
(

Vvir

200kms−1

)

(

3λ/
√
2Rvir

10kpc

)

M⊙ (1.26)

from Kauffmann (1996) and Mo et al. (1998). λ is the spin parameter of the dark

halo (Bullock et al., 2001). From this the star formation rate is

ṁ∗ = αSF (mcold −mcrit)Vvir/rdisk (1.27)

Galaxy disks form via cold gas accretion, and bulges form from starbursts

and disc buckling from unstable disks. Starbursts destroy galaxy disks in the

simulations and a tunable fraction of the cold gas is turned into stars (Croton

et al., 2006)

Feedback acts to regulate star formation. It is required because the luminos-

ity function of groups is significantly different from the dark matter halo mass

function. Supernova feedback is dominant in small halos. Supernova feedback,

which comes from exploding stars, acts to heat the cold gas back into hot gas,

or can eject gas from the halo. This provides an explanation for the observed

absence of many small galaxies, such as the missing dwarf galaxies which, from

the simulations, should orbit the Milky Way.

AGN feedback dominates in large halos and acts to heat the gas. This process

is tied to the growth of supermassive black holes. Two approaches to AGN

feedback are used in the models utilised in this thesis, both of which are described

in the subsequent two subsections.

The final stage of any SAM is to convert from the mass regime, to observables
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such as luminosity. This requires extensive knowledge of the merging history,

metallicity, and stellar mass. Cole et al. (2000) and Kauffmann et al. (1999)

describe two methods of achieving this, including their preferred methodology for

taking into account the effects of dust extinction.

1.4.3 Durham Models: Bower et al. (2006; D B06); Font

et al. (2008; D F08)

In the so-called “Durham” models, merger trees are produced by linking together

halos in different outputs, according to the specific halo at later times that con-

tains the largest fraction of particles in a halo at an earlier time. The Durham

models do not trace the actual dark matter subhalos. To position the galaxies

within a parent halo, the Durham model assigns the galaxy to the most bound

particle of the halo at the time of galaxy formation. The model constantly checks

that the galaxy remains bound to the dark halo throughout the simulation, and if

not the galaxy is reassigned to the most bound particle of the parent. The galaxy

is said to have merged with the halo central galaxy according to the dynamical

friction time-scale.

AGN feedback is modelled in such a way as to regulate the cooling of hot

gas. If the cooling time for a particular dark halo exceeds a tunable fraction of

the free-fall time, the AGN can have a significant effect on the galaxy luminosity.

In large halos with large Eddington luminosities, the AGN feedback is assumed

to balance heating and cooling. This truncates star formation and prevents the

formation of overluminous galaxies. While feedback is active, the supermassive

black hole is assumed to grow proportionally to the cooling luminosity and the gas

accretion, due to disk instabilities. The model assumes quasi-hydrostatic cooling

for AGN “active” galaxies. It has a strict transition between AGN “active” and

“inactive” phases, with AGN feedback becoming efficient in galaxies of mass

46



CHAPTER 1

∼2×1011h−1 M⊙.

For low mass galaxies, supernova feedback becomes an important mechanism

by which galactic winds are driven and star formation is quenched, both of which

lead to a reduction in the number of low luminosity galaxies. Bower et al. (2006)

and Font et al. (2008) relate supernova reheating directly to the circular velocity

of the galaxy disk according to Cole et al. (2000):

Ṁreheat ∝
1

V 2
disk

Ṁ∗Ṁeject ∝ V 2
diskṀ∗ (1.28)

where Ṁreheat is the rate of change of mass of reheated gas, Vdisk is the disk

circular velocity, Ṁ∗ is the time derivative of stellar mass, and Ṁeject is the

change in the mass of ejected gas. In halos with a shallow potential this has the

effect of reducing the amount of cold gas available to form stars by heating the

gas back into the hot gas reservoir. The hot gas reservoir is dominated by (i)

ejection from low mass halos, and by (ii) reheating, without ejection, from large

halos.

The essential difference between the Bower et al. (2006) and Font et al. (2008)

models is in the implementation of ram-pressure stripping of the hot gas. In the

Bower et al. (2006) model, along with both Munich models described below, the

hot gas is instantaneously stripped when it enters a halo already containing a

central galaxy. In the Font et al. model, this process happens gradually and

depends on the orbit of the galaxy. This has the beneficial effect of reducing the

population of faint red galaxies, and more closely matching the observations.

1.4.4 Munich Models: De Lucia et al. (2006; M D06);

Bertone et al. (2007; M B07)

The so-called “Munich” model merger trees (Springel et al., 2005), used by De

Lucia et al. (2006), De Lucia and Blaizot (2007) and Bertone et al. (2007), follow
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the positions of subhalos for as long as they can be identified, according to the

minimum number of particles set by SUBFIND. The trees are constructed by

following the most bound halo particles and searching for the descendant halo in

the next output.

The Munich models calculate galaxy position by assigning the galaxy to the

most bound particle of a (sub)halo at each time step. This is done until the

(sub)halo is no longer identifiable, whereupon the galaxy is assigned to the most

bound particle of the (sub)halo, the last time the (sub)halo could be identified.

The countdown to galaxy merging begins when the satellite subhalo can no longer

be identified and resets if the parent halo undergoes a major merger.

The dynamical friction calculation in the Munich models is simpler than in the

Durham models, but the semi-analytic countdown to merging is delayed compared

to the Durham models. In De Lucia et al. (2006), De Lucia and Blaizot (2007) and

Bertone et al. (2007), the lifetime of galaxies in groups depends on the amount

of time the (sub)halo finder can identify the subhalo plus the analytic countdown

given in Eqn. (1.24).

A two-mode formalism is adopted in the Munich models. Here, a high-energy

or “quasar” mode occurs subsequent to mergers, along with a constant low-energy

“radio” mode, which suppresses cooling flows (Croton et al., 2006). In the quasar

mode, accretion of gas onto the black hole peaks at z ∼3, while the radio mode

reaches a plateau at z∼2. AGN feedback is assumed to be efficient only in massive

halos, with supernova feedback being more dominant in lower-mass halos.

In De Lucia and Blaizot (2007), the amount of reheated (by supernovae) cold

gas is proportional to the stellar mass, and the mass ejected from the halo is

inversely proportional to the host halo’s circular velocity squared (Croton et al.,

2006).
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Ṁreheat ∝ Ṁ∗Ṁeject ∝ V −2
vir Ṁ∗ (1.29)

As also occurs with the Durham models, some of the gas will be ejected from low

mass halos.

Bertone et al. (2007) adopt a more sophisticated treatment of supernova feed-

back, while maintaining the same AGN feedback as in De Lucia et al. (2006).

Rather than simply parametrising the effect of supernovae feedback, the Bertone

et al. (2007) model follows the dynamical evolution of the wind as an adiabatic

expansion followed by snowploughing. This implementation has the effect of

increasing the luminosity of the brightest galaxies. The calculation of merger

timescale in the De Lucia et al. (2006) model follows that of Croton et al. (2006)

and is based on a similar equation to the Durham model and is given in eqn.

1.24.

The properties of groups in the De Lucia and Blaizot (2007) and Bertone et al.

(2007) models are similar to one another, as are the properties of the two Durham

models - Bower et al. (2006) and Font et al. (2008). Thus, in some of what follows,

we just discuss the De Lucia and Blaizot (2007) and Bower et al. (2006) model

predictions, as they are both excellent representatives of their models’ lineage. We

discuss the results based upon their descendants, Bertone et al. (2007) and Font

et al. (2008), respectively, only when they show significantly different behaviour

from De Lucia and Blaizot (2007) and Bower et al. (2006).

Another minor point to note is that these SAMs sometimes “double count”

certain galaxies, in the sense that the same galaxy may be listed more than once,

with a different ID and history, but the same particle position as another galaxy.

This trend is slightly more common in the Durham models than in the Munich

models. Thus a galaxy group may be formed of several galaxies in exactly the

same place and so have zero galaxy separation. This is not a large effect, and
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does not affect the results of the analysis which follows. This effect is ∼ 1% of

all galaxies in the Bower model and far less in the Munich models.

1.5 N-body data

Using the same cosmology as the Millennium run we also used an N-body sim-

ulation by Nagashima et al. (2005), N05, although not the SAM also presented

in the same paper. This simulation uses a 70h−1 Mpc box, and 5123 particles.

This means that the mass and force resolution is much finer than in the Mil-

lennium run. We limit the mass to those (sub)halos with a mass greater than

1.72× 1010M⊙. This corresponds to 80 particles in N05, (20 particles in the Mil-

lennium Run2). In order for the mass limits of the datasets to match, we should

use a mass cut of almost 200 particles. However, subhalos rapidly loose up to

90% of their mass, due to stripping (Klypin et al., 1999; Diemand et al., 2007).

This mass limit is also greater than the completeness limit of the simulation.

The mass function of the simulation begins to turn over at 40 particles, such that

there are more halos with 40 particles than with 20. This is clearly not correct

for a ΛCDM cosmology which is expected to follow the Press-Schechter function,

Press and Schechter (1974). Hence, we limit the size of the haloes we utilise in

the N-body model exploration, and set a minimum luminosity for galaxies in the

SAMs to -17 magnitudes in the r-band.

1.6 Types of Group & Observational Data.

We employ a wide range of observational data related to groups, to compare with

the SAM predictions: these include the datasets of Tucker et al. (2000), Tago

et al. (2008, 2010), Yang et al. (2007) along with those of Allam and Tucker

2http://galaxy-catalogue.dur.ac.uk:8080/Millennium/Help?page=simulation
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(2000), Barton et al. (1996), Hickson (1982), and Hickson et al. (1992). We

include the Hickson Groups because they are the archetypical and best-studied

sample of compact groups, and remain the primary source against which all newer

catalogues are compared. Completion corrections for Malmquist bias in these

magnitude-limited group catalogues are problematic; how each relevant observa-

tional dataset dealt with this bias is described below.

1.6.1 Loose groups

In a general (and ideal) sense, groups as a whole are virialised ensembles of

galaxies orbiting a common centre, but without the richness possessed of more

massive clusters. We use the word “ideal” to reflect the fact that many so-called

groups are not bound physically, but instead have been categorised as groups

based upon random projection effects. Although we can identify objects which

are in close proximity in projection, it is not possible to be precise along the line

of sight. For distant objects we must rely on the Hubble flow to identify where

a galaxy lies, but this is complicated by the line-of-sight peculiar velocites of the

galaxies; a peculiar velocity of 1000 km/s can result in an error in the distance

derivation of ∼ 10h−1 Mpc.

Ideally, the loose group identified in a redshift survey should correspond to ac-

tual bound objects, although this is not always the case because of the problems

outlined above. Kim et al. (2002) and Nichol (2004) compared various methods

- e.g. Adaptive Kernal, Voronoi Tessellation and Friends-of-Friends - of cluster

identification but groups often have different properties. The most commonly

used method (Eke et al., 2004; Tago et al., 2008; Huchra and Geller, 1982) is

the Friends-of-Friends (FoF), see Chapter 2. In N-body simulations, a group is

defined as a virialised region with mass greater than an individual galaxy and

less than a cluster, usually taken to lie between 5× 1011 M⊙ and 5× 1013 M⊙. In
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redshift surveys, where the group-cluster division is done on the basis of galaxy

numbers, a group has 3 < Nmem < 30 galaxies, where Nmem is the group rich-

ness, although this is again complicated by the aforementioned Malmquist bias

plaguing magnitude-limited surveys. These divisions are not well-defined and

vary between authors; this is a representative problem when comparing obser-

vational data with theoretical predictions - the former tend to prefer to work in

“luminosity space”, while the latter tend to favour “mass space”.

1.6.2 Tucker et al. (2000)

This group catalogue was taken from the Las Campanas Redshift Survey (Schect-

man et al. 1996), an optically-selected redshift survey extending to z = 0.2. The

sample of galaxies spans recession velocities of 7500 to 50000 km/s and luminosi-

ties between −22.5 and −17.5 in the R-band. Groups are selected to lie within the

velocity range 10000 to 45000 km/s, to avoid incompleteness. Galaxies were as-

sembled into groups via a Friends-of-Friends algorithm (Chapter 2). The linking

length is adaptive, meaning the linking length increases with distance according

to the galaxy sampling rate.

The linking lengths are given by

Dij = 2Davesin(θij/2) ≤ DL

Vij = c× |zizj| ≤ VL

where Dij is the projected linking length, Dave is the average distance of galaxies

i and j, and θij is the angular separation of galaxies i and j. DL is the fiducial

linking length, Vij is the line of sight linking length, c is the speed of light, zi,j

is the redshift separation of galaxies i and j, and VL is the fiducial line-of-sight
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linking length.

These limits come from the choices of linking length which are 0.715h−1 Mpc

in projection and 500 km/s along the line-of-sight, so ten galaxies stretched out

along the line-of-sight can exceed the velocity range of the survey. The projected

linking length corresponds to a minimum density contour of 80 above background.

One limitation of this survey is that each field is observed only once, so that close

galaxies in groups can be split and group properties misrepresented.

The final catalogue contains 1495 groups which include 35% of the total num-

ber of galaxies in the sample. The group definition requires three galaxies to be

linked in order to make a galaxy group.

1.6.3 Yang et al. (2007,2008)

The next important compilation of groups is that of Yang et al. (2007, 2008),

based upon the fourth data release of the Sloan Digital Sky Survey (Adelman-

McCarthy et al. 2006; SDSS DR4), and in particular, the Sample II described

therein.

The group finder (Yang et al., 2005) uses an FoF algorithm with a linking

length of 0.3 times the mean galaxy-galaxy separation in projection, and 0.05

along the line-of-sight. From this, the geometric and luminosity weighted centres

are identified. Each group is assigned a characteristic luminosity and the mass-

to-light ratio and the mass of the parent dark halo is assumed. Galaxies are

assigned to the halo and various group properties are calculated. The distance

of each galaxy from the group centre is identified and a galaxy number density

found. If this density is above a certain threshold then it is applied to the group.

This process is iterated.

Yang et al. (2008) apply this catalogue to conditional luminosity functions,

which we will use in a later chapter.
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1.6.4 Tago et al. (2008; T08); Tago et al. (2010; T10)

The T08 catalogue is based on SDSS DR5 (Adelman-McCarthy et al. 2007) using

the FoF approach, with a scaling relation with distance of,

LL/LLo = 1 + a arctan(d/L) (1.30)

where LL/LL0 is the scaling of the linking length, a is a constant, d is the comov-

ing distance of the object and L is the fiducial distance (Tago et al., 2008). The

justification for this approach is that this scaling procedure removes many of the

systematic changes to the group with distance. An example is that in Eke et al.

(2004) the size of a group increases steadily with distance. This catalogue uses a

more traditional scaling procedure based on the selection function of the survey.

This systematic bias is considerably reduced using the Tago et al. approach. Val-

ues of the parameters in Equation (1.30) are found by taking galaxy groups and

shifting them to various distances and identifying how the changing luminosity

cut affects the group size. Tago et al. (2008) fit a = 0.83 and L = 169.8h−1

Mpc to Eqn. (1.30). The linking parameters in the line of sight are 250km/s

and 0.25h−1 Mpc, in projection. These choices avoid the inclusion of filament

galaxies. Groups are produced using a fixed linking length, and are then trans-

lated to various distances, so much so that some galaxies become too dim to be

identified. The groups are then examined using a minimal spanning tree in order

to find the minimum linking length required to reassemble the group. The trend

of this linking length with distance is used to identify Eqn. (1.30) and define the

constants a and L.

Tago et al. (2010) apply the same method to SDSS DR7 Adelman-McCarthy

et al. (2008), where a = 1 and the scaling redshift is 0.05. However, they also

apply FoF to a volume-limited sample with a minimum luminosity of −18 mag.

The linking length scaling is derived iteratively, using the mean redshift of the
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group to set the distance scale. Also, no group is identified with > 100 mem-

bers, because the scaling law was found to break down at this point, resulting in

unphysically large clusters.

1.6.5 Compact Groups

There are several definitions of compact groups in the literature. The original

quantifiable definition was by Hickson (1982), who specified four criteria for defin-

ing compact groups:

1. Nmembers > 4 (Richness)

2. θN ≥ 3θG (Isolation)

3. µ̄G < 26.0 (Compactness)

4. mmin = mBGG + 3 (Luminosity)

where N is the number of galaxies, θN is the angular separation of the group

and the nearest non-group member, θG is the angular diameter of the group,

and µ̄G is the group surface brightness, µ̄G = m + 2.5log(A), where m is the

total apparent magnitude of galaxies and A is the area in square arcseconds.

An additional criterion is that the galaxies that are included are those which lie

within three magnitudes of the brightest group galaxy (BGG).

There are certain limitations and justifications for each of these criteria. The

magnitude restriction attempts to limit the redshift range of the galaxies assigned

to a group. The isolation criterion excludes cluster cores and high density regions;

the compactness criterion ensures that the group is compact in projection. The

galaxies are separated by approximately their own diameter, and yet provide a

large enough sample from the survey. The most complex of these rules is the

isolation criterion which limits both the local density of the environment and
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limits the size of the group. However, the isolation criterion fails in its objective

to exclude objects which are subsets of larger systems because Tovmassian et al.

(2006) found that many compact groups are the dense cores of loose groups. It

also can exclude valid systems because of an interloping galaxy within the zone

of exclusion. Other catalogues have been developed, based on Hickson’s criteria,

modified to take into account the specifics of a given survey - e.g. Iovino (2002)

and Focardi and Kelm (2002).

Barton et al. (1996), however, implemented a friends-of-friends procedure to

identify compact groups by taking advantage of the redshift information of the

CfA Survey (Huchra et al., 1983). Galaxies are linked by their distance in pro-

jection, and by their redshift velocity along the line of sight. The search areas for

neighbours are cylindrical, as opposed to our 3D spherical search area. Barton

et al. (1996) settled on a linking length of 50 kpc in projection and a redshift ve-

locity linking length of 1000 km/s. This line of sight linking length corresponds

to 10h−1 Mpc, to take into account the peculiar velocity of galaxies. They arrived

at these values by exploring the parameter space, and chose the linking lengths

which most closely matched Hickson’s results.

Hickson’s criteria, which are the basis for all compact group studies, are quite

arbitrary; for example, the compactness criterion was given its particular value to

ensure groups were compact, but also to simply ensure that there were sufficient

groups in his catalogue.

1.6.6 Barton et al. (1996)

Barton et al. (1996) were the first to identify compact groups using a FoF al-

gorithm, the linking lengths for which were employed in the Allam and Tucker

(2000) work described below. They use the CFA2 (Geller and Huchra, 1989;

Huchra et al., 1990, 1995; Giovanelli and Haynes, 1985) survey containing 6500
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+ 4283 galaxies along with the SSRS2 survey (da Costa et al., 1988) containing

3600 galaxies. These observations made use of photographic plates and avoided

the fibre-induced errors faced by Tucker et al. (2000). Barton et al. (1996) use

VL = 1000 km/s and DL = 50 kpc, chosen as noted earlier, to recover the trends

defined by the Hickson compact groups.

1.6.7 Allam et al. (2002)

This catalogue of compact groups is the companion to Tucker et al. (2000). The

survey limits are the same, both in luminosity and recession velocity. The princi-

pal difference is that the linking lengths in the FoF algorithm were modified. The

projected linking length is 50h−1 kpc and the line of sight linking length is 1000

km/s. The linking length again scales in the same way as before. Apart from

the increased velocity space linking length, we would expect these galaxies to be

a subset of the Tucker et al. groups. That the line-of-sight linking length differs

makes direct comparison with the work outlined in subsequent chapters some-

what difficult. This catalogue contains a total of 76 groups, although this will

not be a complete sample for the field because of the selection effects described

in Tucker et al. (2000).
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DISTRIBUTION AND

RICHNESS OF GROUPS

2.1 Introduction

We begin our examination of group properties by investigating group populations

at z=0. We assemble groups using different linking lengths. This will give us an

overview of how changing the linking length of the FoF algorithm, and therefore

the galaxy density of groups, effects the spatial distribution of the objects iden-

tified. This is a logical first step in identifying any differences between the SAMs

and the observations of Tago et al. (2010), between z=0 and z=0.2. Within the

Millennium Simulation at z=0, the four SAMs yield different numbers of galaxies,

despite being built upon the same underlying dark matter distribution. It is use-

ful to review the respective galaxy numbers, and distributions, for these models.

A summary of the four SAMs used is shown in Table 2.1.
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Table 2.1: Summary of the SAM models and their basic differences
Family Model Reference Description
Munich M D06 De Lucia et al. (2006) 2 mode AGN
Munich M B07 Bertone et al. (2007) Improved SN feedback
Durham D B06 Bower et al. (2006) Single mode AGN
Durham D F08 Font et al. (2008) More gradual ram-pressure stripping
N-body only N05 Nagashima et al. (2005) High resolution N-body

2.2 Group Finding Algorithm and the construc-

tion of group catalogues for the present work.

The Friends-of-Friends algorithm is one of the most popular methods of assem-

bling galaxies into groups (Geller and Huchra, 1983). It links galaxies together

based on spatial proximity. If we start at galaxy 1, we search for all galaxies

within a distance l of that galaxy; then, for each of those galaxies, we search for

all galaxies within l that have not already been assigned to a group. We continue

this process until no more galaxies are added to the list. These linked galaxies

are then a group. In a 3D simulation volume such as the Millennium Run and the

Nagashima et al. (2005) simulation l =
√

dx2 + dy2 + dz2, where l is the linking

length, dx is the separation along the x axis, dy is the separation along the y

axis, and dz is the separation along the z axis.

In observational catalogues this procedure becomes more complex, requiring

separate linking lengths in projection (right ascension and declination) and along

the line of sight. Typically the linking length needs to be much greater along

the line of sight because distances are calculated from the Hubble flow, but are

affected by the peculiar velocities of the galaxies. For example, in Barton et al.

(1996), the projected linking length is 50h−1 kpc in projection and 1000 km/s

along the line of sight, which is equivalent to 10000h−1 kpc - i.e., two orders of

magnitude greater. Another problem, discussed in detail by Eke et al. (2006)
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and Tago et al. (2008) is that a technique must be found for compensating for

the fact that the observation threshold for galaxy absolute magnitudes increases

with distance, so that at great distances only the very brightest objects can be

seen. This typically results in more distant galaxies appearing more diffuse.

2.2.1 Synthetic group catalogues

In order to construct a statistically significant (and representative) galaxy group

catalogue, we have worked with a sub-sample of the Millennium Simulation

amounting to ∼3% of the available volume: specifically, 64 boxes of length 125h−1

Mpc drawn from the database. Our results are robust to this choice, having been

tested a posteriori on alternate 125h−1 Mpc boxes. A luminosity limit of Mr=−17

in the SDSS r-band was imposed. At lower luminosity the effect of the limited

mass resolution of the N-body background affects the completeness of the sam-

ple. We identify galaxy groups as overdensities in the galaxy population using

an FoF algorithm (Geller and Huchra, 1983). No maximum number of members

is set but we require that at least four galaxies be linked in order to define a

group. Although this removes groups such as the Local Group, it does adhere to

Hickson’s (1982) definitions for compact groups.

We first construct a “loose group” (LG) catalogue using a linking length of 0.2

times the mean inter-particle separation. This linking length was chosen based

on the assumption that the galaxy position distribution traces the dark matter

exactly.

A linking length of 0.2 times the mean inter-particle separation corresponds

to a co-moving linking length of ∼500h−1kpc. To further examine the effects

of density we also define two “compact group” catalogues, Compact (CG) and

Very Compact (vCG) Groups, using co-moving linking lengths of 150h−1 kpc and

50h−1 kpc, respectively. The vCG linking length is comparable to the projected
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linking length used by Barton et al. (1996) and Allam and Tucker (2000) to

identify groups. The value of 50h−1kpc is arrived at by calibrating to the Hickson

(1992) catalogue using projected galaxy separations. The middle linking length

of 150h−1 kpc is similar to that advised by McConnachie et al. (2008), based upon

their 3D linking length analysis of mock catalogues of Hickson compact groups

based on the De Lucia et al. (2006) SAM.

Henceforth we refer to the SAMs as M B07, M D06, D B06, D F08 for the

Bertone et al. (2007), De Lucia and Blaizot (2007), Bower et al. (2006) and

Font et al. (2008) models, respectively. In selecting the galaxies we will use to

assemble our groups we must bear in mind the limits of the Millennium Run.

There is a completeness limit on the Millennium Run SAMs caused by the finite

mass resolution. Galaxies with a luminosity less than -17 mag are incomplete

because dark matter halos below a certain mass resolution are poorly detected.

Another catalogue, based on all galaxies that lie within the same dark matter

halo, hereafter called the halo-based group catalogues, is also produced, as this

is the natural unit of the SAMs. Each galaxy is assigned to a particular halo by

SUBFIND based on whether a given halo contains the dark matter particle that

is flagged to be a particular galaxy.

We also provide a small sample of compact groups from the Nagashima et al.

(2005) N-body simulation, called N05.

Where possible, these synthetic group catalogues are compared directly with

the empirical datasets of Tucker et al. (2000), Allam and Tucker (2000), and Tago

et al. (2008); the former two datasets are particularly useful in this regard as they

provide both loose and compact groups from the same underlying survey.

We also construct observational group catalogues based on the method of Tago

et al. (2010), shown in section 1.6.4 of Chapter 1. We apply our FoF algorithm

using the same parameters and linking lengths as Tago et al. (2010) and can
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recover the same catalogue (volume limited; −18 mag) to within 1% accuracy.

We can then use this algorithm to produce a loose-compact group catalogue. The

difference is due to the methods we use to calculate the velocity separation which

has an effect on the projected separation as well.

We note that the CG galaxies are, by necessity of the group finding algorithm,

subsets of the LG catalogue, in that every galaxy assembled into a group at

short linking length must be part of a group with a larger linking length. Our

catalogues also contain clusters and cluster cores, a point to which we return

shortly. The physical interpretation of the linking length variation and its impact

upon resulting galaxy distribution is non-trivial. The FoF algorithm essentially

probes deeper into the potential well at shorter linking lengths, selecting galaxies

closer to the cluster/group core. These galaxies are generally old, and have sunk

deeper into the cluster potential, or they are galaxies near their respective orbital

pericentre.

However, the algorithm also extracts galaxies in the cluster periphery that

happen to be close to one another, either by chance or as an artifact of their

infall history. These peripheral groups are a natural part of the analysis and

can be considered as essentially cluster substructure. They represent a negligible

proportion of LGs but can represent ∼ 20% of CGs and vCGs. Conversely, the

adopted LGs linking length, while popular in the literature, usually associates

galaxies from small separate halos and assigns them to the cluster/group when

they are not within the cluster/group enveloping dark halo.

Groups can also be defined according to the position of galaxies in the host

dark matter halo. There are slight differences in the definition of host halo in the

Durham and Munich models. In the Durham models the hosts are based on FoF

halos and a SUBFIND pass to identify those halos only connected spuriously.

Munich groups are merely FoF groups.
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2.3 Global properties

The spatial distribution and richness of groups is highly dependant on the lu-

minosity limits of a particular dataset. For comparison with SDSS observations,

we concentrate on luminosity cuts in the SDSS r-band. However, we also note

certain properties of the Johnson R-band. The relationship between these two

bands is fairly close: the best fit for M D06 is,

J = 0.94× S − 0.7, (2.1)

where J is the Johnson R-band, and S is the SDSS r-band. D B06 shows a best

fit line of:

J = S − 0.06, (2.2)

There is very little scatter in these profiles. This means that there is only a

small difference in the catalogues, regardless of bands chosen. This difference,

though slight, is larger in the Munich models. The result of this is that we can

use either the sdss-r and Johnson-R bands interchangeably.

2.3.1 Spatial Distribution

The starting point for any exploration of group properties has to be the back-

ground galaxy distribution. We show below the initial number of galaxies, or dark

halos, in the datasets. We also provide the corresponding standard deviations for

the SAMs. There is no standard deviation for the N05 model, because there is

only one volume. For the -17 mag cut we find:

• ∆D B06 = 0.065 (0.006) h3Mpc−3

• ∆D F08 = 0.066 (0.009) h3Mpc−3

• ∆M D06 = 0.063 (0.006) h3Mpc−3

63



CHAPTER 2

• ∆M B07 = 0.050 (0.005) h3Mpc−3

• ∆N05 = 0.12 h3Mpc−3

where ∆ is the number of galaxies per cubic megaparsec. The first number is the

mean spatial density in the 64 subvolumes, and the number in brackets is the

standard deviation. We henceforth refer to ∆ as the “spatial density”.

The M B07 model has the fewest galaxies, while the other three SAMs have

essentially the same number of galaxies per cubic megaparsec. This difference in

galaxy number density is due to the different supernova feedback approach im-

plemented in the M B07 model. This particular approach reduces the number of

dim galaxies, while making the brightest galaxies unphysically brighter (Bertone

et al., 2007).

Halo-based groups follow the general distribution of dark matter halos. These

groups are assembled by grouping galaxies that lie within the same dark matter

halo. For FoF groups, as the linking length decreases, so too does the number of

galaxy groups. For each SAM, a box, 125h−1 Mpc on the side, was extracted from

the entire Millennium volume, and the group finder was run at various linking

lengths. When linking lengths are referred too it is the FoF groups that are being

discussed. The resulting distributions are shown in Fig. 2.1. Panel 1 shows that

Durham models produce a higher number of groups than either Munich model.

It also shows that D F08 produces the most groups at all linking lengths. This

is a consequence of the ram pressure stripping procedure implemented in D F08,

where the loss of hot gas from the galaxy is more gradual than in the other

models.

Panel 1 clearly shows that the M B07 model produces the fewest groups over-

all. The two Munich models converge at short FoF linking lengths, but the

trends begin to diverge at ∼ 200h−1 kpc. This is because the M D06 model

as a significantly steeper slope in the range, 200 − 500h−1 kpc. The result of
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Figure 2.1: The spatial density of groups according to the linking length (top
panel), profile normalised by the number of LGs (second panel), and the spatial
density distribution according to the density contour (bottom panel). The blue
dashed, red, pale blue, green and black lines show the D B06, M D06, M B07,
D F08 and N05 models respectively.

this different gradient is that M B07 produces far fewer LGs. The Durham and

Munich models show increasingly different group populations as the FoF galaxy

group finer linking length decreases. Although the M B07 model produces far

fewer loose groups, the profile has the same gradient as the Durham models, at

longer linking lengths. The result of the supernova feedback process implemented

in M B07 is to remove some of the galaxies close to the luminosity cut. This has

the effect of reducing the number of groups with more than four galaxies of mag

< −17 in the r-band. The N05 catalogue, however, produces a significantly lower
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compact group population than any of the SAMs.

The linking length of the FoF galaxy group finder can also be interpreted as

a density threshold, in that we have two particles within a search radius l. Thus,

the minimum density of objects in groups is given by

ρ =

(

3

2πl3

)

(2.3)

This is shown in Panel 3 of Fig. 2.1. Our vCGs, CGs and LGs have a galaxy

density threshold of 3.8× 103, 1.4× 102 and 3.4 respectively, which corresponds

to an overdensity of ∼ 60000.0, 2000.0 and 52.0. The overdensity is ∆ = ρ/ρ̄,

where ρ is the density contour picked out by the FoF algorithm, and ρ̄ is the

background galaxy density. This means we produce a density profile of galaxies

in the simulation volume. We conclude that galaxies in the Durham models tend

to occupy significantly denser regions than galaxies in the Munich models. The

N05 N-body simulation produces a third as many CGs as in the M D06 model,

while LGs are twice as common.

The most striking difference between the group populations in the SAMs, and

in the N-body simulation, is that the spatial density/linking length gradient is

much steeper in N05. The profile is practically linear for N-body and curved for

the SAMs. We fit a polynomial to give a quantitative estimate of the difference

between the models. The form we fit is,

y = (m× l + c)
1

α (2.4)

where m,c and α are constants, and l is the linking length. The slope of the

distribution is much steeper for a low value of α, as shown in Panel 2 of Fig.

2.1. Restricting the discussion to the relevant sampling criteria (i.e., Mr < −17),

the M D06 & M B07, and D B06 & D F08 models have a galaxy number density

given in Table 2.2.
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Table 2.2: The best fit polynomials for the changing spatial density of groups
with linking length.

Model m c α

B06 6.1× 10−9 −3.9× 10−10 3.24
D06 6.4× 10−6 −4.5× 10−7 2.09
B07 1.4× 10−8 −1.1× 10−9 2.98
F08 2.5× 10−10 −1.6× 10−11 3.79
N05 6.1× 10−3 −7.9× 10−4 1.08

The relative proportions of galaxies that are classified as being members of

groups, along with the average group richness, are listed in Table 2.3. The per-

centage of galaxies associated with LGs is comparable in three of the four SAM

variants. The M D06 model shows approximately 6 percent fewer groups than

D B06 groups. The models diverge increasingly with decreasing linking length.

The difference in the proportion of galaxies in groups should provide a key

diagnostic for comparing and discriminating between the four SAMs. Indeed,

McConnachie et al. (2008, 2009) compared compact groups in mock redshift cat-

alogues to SDSS DR6 observations, and concluded that the M D06 SAM over-

produced compact groups by ∼ 50%. By extension, this means that the D B06

& D F08 models necessarily result in an even more dramatic “overproduction” of

CGs (by an order of magnitude), suggesting that the Durham models provide a

significantly worse fit to the empirical data.

The steepness of the N-body slope is, in part, due to overmerging. When

halos fall into a larger halo they are tidally stripped. Nagashima et al. (2005)

approximate the rate at which this occurs using

rt
rs

=
rperi
rapo

Mh

Ms

(

Vcirc,s

Vcirc,h

)3

, (2.5)

where rt is the stripped radius, rs is the pre-stripped radius, rperi and rapo are

the pericentric and apocentric radii, Mh is the host mass, Ms is the subhalo
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mass and Vcirc,h,Vcirc,s are the circular velocities of host and satellite. For a given

radial distribution, Eqn. 2.5 gives the mass stripped in one orbit. However,

Klypin et al. (1999) discovered that the finite numerical resolution of simulations

results in additional numerical stripping. Also, galaxies continue to exist after

their dark matter (sub)halos have dropped below the identification threshold, as

in Limousin et al. (2009). Dark matter halos extend far beyond the inner region

that contains the galaxy, and so in close spatial proximity to group cores a halo

finder has difficulty in identifying individual (sub)halos (Gill et al., 2004). At

lower resolution, the subhalos can only be found within an unphysically brief

amount of time. These considerations mean that we limit the minimum group

finding linking length to 150h−1kpc. The fact that galaxies last longer than haloes

is not entirely due to the numerical limitations of the simulation. The longer life

of galaxies makes physical sense, because the baryons are at the bottom of the

potential well, and subhalos are stripped from the outside in (Diemand et al.,

2007).

We include the total number of galaxies in Table 2.3. We do this in order

to make direct comparisons between the datasets, as it provides a method of

normalisation.

Finally, we compare the D B06 and M D06 to T10 in Fig. 2.2. In one 125h−1

Mpc box we find the total number of galaxies with a particular luminosity cut.

We chose these to match the luminosity cuts of the Tago et al. (2010) volume

limited catalogues, namely, -17,-18,-19 and -20 in the r-band

Figure 2.2 shows that there is a different trend in galaxy fraction in observa-

tions and SAMs. The gradients of the number of groups versus linking length in

the three catalogues are different. The models show a decreasing gradient with

linking length, while in the observations the gradient increases. In principle, this

may be due to the 2D group finding method used in the observations, while the
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Table 2.3: The number of galaxy groups in M D06 and D B06 and T10 as a
function of linking length. The numbers in each column are for the different
luminosity cuts. The order quoted is where the r-band magnitude is: < −18,
< −19, < −20, respectively.

ll D B06 M D06 T10
all (95000,53142,26247) (94262,56986,27071) (40665,94912,148195)
400 2643, 1453, 533 1847, 758, 235 -, -, 2771
350 2541, 1362, 507 1695, 693, 203 -, -, 2267
300 2384, 1269, 450 1522, 607, 186 -,2108, 1814
250 2212, 1182, 396 1363, 526, 151 996, 1687,1283
200 1994, 1022, 342 1126, 431, 122 786, 1254, 800
150 1681, 855, 275 822, 316, 89 521, 774, 413
100 1277, 640, 196 480, 171, 43 242, 297, 112
50 728, 310, 96 85, 35, 10 41, 21, 3

Figure 2.2: The profiles of the number of groups in the D B06 and M D06 models
and T10 observations normalised to the total number of group galaxies. Corre-
sponds to Table 2.3. Black is for the -20 magnitude cut, Green is the -19 mag-
nitude cut and Blue is for the -18 magnitude cut. The solid lines show D B06
groups and the dashed lines are for M D06 groups, the dotted lines are for T10
observation groups.
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Figure 2.3: Shows the distribution of mean group richness against linking length
in the D B06 (blue dashed line), D F08 (green solid line), M B07 (blue solid line),
M D06 (red solid line) and N05 (black solid line) datasets. The errors are σ/

√
N ,

where σ is the standard deviation and n is the number of groups at that linking
length.

models use a 3D linking length. Upon examination, however, we find this is not

the case. In the D B06 model, which we use to test the above idea, we find

that the gradient of the profile decreases with increasing linking length distance.

This suggests that this trend is intrinsic to the SAM method of placing galaxies,

which does not mimic the universe. The profiles with linking length depend on

the placement of galaxies in groups, which is discussed in the next chapter.

2.3.2 Group Richness

The group richness is a measure of the number of galaxies present in a group at

a given linking length. We see in Fig. 2.3 and Table 2.4 that there are obvious

patterns in the richness profiles. Of the four SAMs, the M D06 model produces
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Table 2.4: The mean group richness for each model at the different linking lengths.
The number in brackets indicates the variation in different subvolumes. The ‘∗’
specifies that loose groups in Tago et al. (2010) corresponds to l = 250h−1kpc
with a -18 mag cut instead of the number quoted in the first column. The T10
column also shows the mean number of galaxies per group at each linking length.
Errors in the T10 column are of the form σ/

√
N

model D B06 M D06 M B07 D F08 N05 T10

halos 14.9 13. 3 14.6 15.2 11.4
l = 520h−1kpc 13.5 (0.1) 11.8 (0.07) 13.6 (0.1) 14.0 (0.1) 9.6 6.5∗ ± 0.2
l = 150h−1kpc 9.4 (0.04) 7.5 (0.04) 8.4 (0.05) 9.7 (0.05) 4.7 5.3± 0.1
l = 50h−1kpc 6.6 (0.02) 4.7 (0.01) 4.9 (0.01) 6.7 (0.02) N/A 4.1± 0.1

groups with the lowest richness at all linking lengths.

N05 shows a lower richness than any of the SAMs. This is due to the issues

described in the previous section. For comparison, Hickson (1982) finds an av-

erage richness of 4.2 in compact groups. The richness profile for the SAMs, Fig

2.1, reproduces the fact that there are two families of SAM. All four catalogues

produce different profiles for CGs. The gradient of the Munich model profiles is

slightly steeper, and produces a significantly lower numbers of large CGs. The

N05 simulation has a shallower profile. However, the most striking difference is

in vCGs. The Durham models have a similar trend to each other, and produce

many times more groups at all richnesses. Munich models produce far fewer

groups at all richnesses, as we have already shown in Fig. 2.1. We also present,

in Table 2.4, the error on the mean of the 64 subvolumes, i.e. σ/
√
N , where σ is

the standard deviation and N is 64. This gives us a measure of the variation in

the different volumes. There is no error on the N05 sample because we only have

a single volume. The way in which the group richness varies with mass is shown

in Fig. 2.4.

From Yang et al. (2008), based on the integral of the luminosity functions

provided in the paper, see §5.4, and the SAMs D B06 and M D06, we show the

mean total number of galaxies in groups of various masses. In the list below the
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Figure 2.4: The distribution of richness with the mean amount of mass per galaxy
in a halo. This is a measure of galaxy density. M D06, M B07, D B06 and D F08
are the red, pale blue, dark blue and green symbols. Again we see that there are
more galaxies in D B06 groups and the amount of mass per galaxy converges for
large objects, with greater scatter at low richness.
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results are given in order, Y07, D B06 and M D06

• 1014.4 − 1015.0 M⊙ : 414.4, 366.012, 478.141

• 1014.1 − 1014.4 M⊙ : 126.2, 158.459, 215.551

• 1013.8 − 1014.1 M⊙ : 56.6, 80.9649, 109.507

• 1013.5 − 1013.8 M⊙ : 24.8, 41.4742, 55.2979

• 1013.2 − 1013.5 M⊙ : 11.96, 20.8117, 28.181

• 1012.9 − 1013.2 M⊙ : 6.57, 10.4643, 14.5028

Both SAMs show a higher group richness than the Yang et al. (2008) obser-

vations. It is interesting that the Munich values are higher than the Durham

values, but this is based on halo based groups rather than FoF defined objects

and is dependant on the mass of the host halo. The hosts in D B06 tend to be

more massive than in M D06. The Yang et al. (2008) data are based on the in-

tegration of the luminosity function, which compensates for the selection effects

of the survey.

2.4 Correlation Functions of Groups

The correlation function of galaxies is a commonly used measurement of the

clustering of objects. The distributions of galaxy-galaxy separations are compared

with a distribution of random points. The end result of this may be power

function of the form

ζ(r) =

(

r

ro

)γ

, (2.6)

where r is the galaxy pair separation, ro and γ are free parameters and ζ(r)

is the correlation function. ro is a measure of the clustering distance of the
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distribution and provides a scale for clustering. γ is the slope of the log of the

correlation function. There are several forms for ζ(r) presented in the literature:

see especially Davis and Peebles (1983); Hewett (1982); Hamilton (1993); Landy

and Szalay (1993).

The most basic form for the correlation function is

ζ(r) =

(

DD

RR

)

− 1, (2.7)

where DD is the normalised histogram of galaxy pair separations

DD =
∑

i

∑

j

n(δr)in(δr)j, (2.8)

and RR is the histogram of random pair separations. However, there are several

problems associated with this form, which has led to the development of several

new forms. This technique was originally designed for large scale galaxy surveys,

and is based on the angular and redshift space separations. The key problem

with the above, so-called ‘natural’, form of the correlation function, is that the

survey selection function declines with distance. The limits of the natural form

led to the development of the Davis and Peebles (1983) estimator,

ζ(r) =

(

DD

DR

)

− 1, (2.9)

where DR is the cross correlation between galaxies and random points, with the

same selection function. Other estimators, Hewett (1982)

ζ(r) =

(

DD −DR

RR

)

, (2.10)

and Hamilton (1993),
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ζ(r) =

(

DD.RR

DR2

)

− 1, (2.11)

attempted to refine this further. This method attempts to reduce selection ef-

fects, and decrease the error to approximately Poisson counting errors. Landy

and Szalay (1993) presented an estimator where the error was approximately

Poissonian,

ζ(r) =

(

DD − 2DR +RR

RR

)

, (2.12)

The error on this estimator is:

∆ζ(r) =

(

∆(GG)
1

RR

)2

+

(

∆(CC)
2

RR

)2

+

(

∆(RR)
GG− 2CC

RR2

)2

, (2.13)

where ∆(GG), ∆(RR) and ∆(NN) are
√
NGG/Ng−g−pairs,

√
NRR/Nr−r−pairs and

√
NCC/Ng−r−pairs and NGG is the number of galaxy-galaxy pairs in a bin and

Ng−g−pairs is the total number of possible galaxy-galaxy pairs and ζ(r) is the

correlation function.

We select the Landy and Szalay (1993) estimator, which has the lowest error,

and calculate the correlation function of LG, CG and vCGs. For large volumes

we extract a random sample of galaxies. We take this selection because the

calculation of the correlation function is an N2 algorithm, and so it is not feasible

to calculate ζ(r) for very large numbers of galaxies. We find the correlation

function based on 20000 randomly selected groups from each catalogue.

Figure 2.5 shows the correlation function of vCGs and LGs for the M D06

and D B06 groups. There is a shorter clustering length for LGs than CG and

vCGs. CGs have the steepest slope. The correlation length is always less than

the mean galaxy-galaxy separation.
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In log space, Eqn. 2.6 has the form, y = mx + c, where m is α and c is

−αlog10Ro. The power law form is only present in a certain range. At either end

of the distribution the profile deviates, as can be seen in Fig. 2.5 . We include

the poisson error on the distribution.

In Fig. 2.5 we see that there is very little difference in the correlation lengths

between groups of similar density in the M D06 and D B06 models. There is,

however, a noticeable increase in the correlation length as the group intergalactic

separation changes. This can also be seen in Tables 2.5 and 2.6. In Table 2.6 we

have fixed the slope to -1.8 (Mo and White, 1996) in order to make comparisons

in the correlation length, R.

As we increase the group density we see that the correlation length of the

groups increases. This indicates that vCGs are more strongly clustered than loose

groups. This trend is useful in identifying the properties of the environments of

compact groups.

There is a considerable literature, e.g. Mo and White (2002), Mo and White

(1996), Jing (1998), Sheth and Tormen (1999), Sheth et al. (2001) and Maglioc-

chetti and Maddox (1999), on how the correlation length of halos is affected

by the halo mass and the redshift of formation. For example, Merchán et al.

(2000) find that for halos with mass cuts of 5 × 1012 < M < 4 × 1014 M⊙,

2 × 1013 < M < 4 × 1014 M⊙ and 5 × 1013 < M < 4 × 1014 M⊙ the correlation

lengths are, 9.5, 10.8 and 14.1 h−1 Mpc respectively. Thus, the mean vCG ap-

pears to occupy a higher mass halo than the mean LG. Mo and White (2002)

find that below M∗ there is little dependency of clustering on halo mass, (not

found by Jing (1998)), above M∗ there is a strong dependence on mass. This is

the regime we are exploring with groups.

At the low galaxy separation, R < 2−1Mpc, there is a noticeable difference.

Unfortunately, this region cannot be fitted with a power law and has large error
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Figure 2.5: The correlation functions of LGs, CGs and vCGs for M D06 and
D B06 models. LGs are shown by the solid block, CGs are vertical lines and
diagonal lines are for vCGs. This thickness of the plots shows the error and the
M D06 model is red, the D B06 model is dark blue. The units of R on the x-axis
are log(h−1Mpc).

bars. In the region 0.8h−1Mpc≤ R < 2h−1Mpc the M D06 and D B06 models

have a distinctly different slope. The errors are too large to be certain of this

difference.

Mo and White (2002), Mo and White (1996), Jing (1998), Sheth and Tormen

(1999), Sheth et al. (2001) and Magliocchetti and Maddox (1999) show that

haloes of a given mass actually become more strongly clustered with increasing

redshift once the mass chosen exceeds M∗(z), where M∗(z) is the knee of the

galaxy mass function and is approximately the mass of the Milky Way galaxy.

This suggests that vCGs and CGs occupy either more massive haloes or older

haloes. The result for the halo mass is useful, because it implies that vCGs are

predominantly inside massive halos, possibly meaning that a greater fraction of

vCGs are inside clusters, or are cluster cores than CGs or LGs.
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Table 2.5: Best fit formulae for the correlation function shown in Fig. 2.5
Model vCG CG LG
D06 (R/7.51)−1.75 (R/4.92)−1.93 (R/3.29)−1.78

B06 (R/6.41)−1.89 (R/4.27)−1.92 (R/3.26)−1.64

Table 2.6: Best fit formulae for the correlation function shown in Fig. 2.5, with
slope set to a canonical -1.8.

Model vCG CG LG
D06 7.51 4.84 3.31
B06 6.63 4.17 3.48

2.5 Summary

We see a significantly different predicted compact group spatial density distribu-

tion in each of the SAM lineages. The trends are different from the observations,

which we at first thought was due to the 2D implementation of the group finder,

but later disproved. The two SAM lineages are clearly shown in the group spatial

density and richness profiles. The population and richness of the Durham SAMs

are considerably higher than in the Munich SAMs. We also tentatively conclude

that the model groups are richer than indicated in the observations.

The N-body catalogue shows a significantly different trend in group popula-

tion with increasing linking length. There are fewer dense N-body groups, and

considerably more large groups in the SAMs. This is due to the difference in

the samples and subhalo mass cuts in the SAMs and N-body simulation. In the

SAMs we are able to cut according to the galaxy luminosity, while in the N-body

simulation the cut as to be in the halo mass. The N-body groups show a lower

richness, because of the stripping of subhalos, and the shortcomings of the halo

finder.

The correlation function of the two different SAM lineages are the same. The

correlation length increases with decreasing linking length indicating that denser

objects exist in more massive groups and clusters than the average loose group.
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Alternatively, the correlation length cn also increase according to the redshift of

formation of the host halo. The slope of the log of the correlation function does

not change significantly with group density and is fit by a canonical slope of 1.8.
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GROUP PROPERTIES

3.1 Introduction

Ribeiro et al. (1998) found that Hickson Compact Groups (Hickson, 1982), (HCGs),

are not homogeneous from a dynamical point of view. We calculate the various

properties of the groups from the SAMs and the N-body simulation. The prop-

erties of groups are difficult to recover with any precision, because of the small

number of galaxies. However, the large numbers of groups in our catalogues allow

us to arrive at certain conclusions about group properties.

We calculate the harmonic radius of groups, a property which is used as a

proxy for the virial radius (Tucker et al., 2000). We also make comparisons with

our sub-catalogues from the observational group catalogue of Tago et al. (2010),

T10, and the observations of Yang et al. (2007), Y07. As Tucker et al. (2000) and

Yang et al. (2007) are magnitude limited surveys, we ask whether a luminosity

cut affects the physical properties of the group. From Tago et al. (2008) we know

that Eke et al. (2006) groups, among others, show a noticeable trend in group

size. These results show that groups have greater size at higher redshift. This

suggests that the scaling relation for linking length, based on the survey selection

function, introduces a systematic deviation. In other words, the dynamic linking
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length does not merely compensate for the loss of galaxies which fall below the

apparent magnitude limit of the survey. An alternative was presented by Tago

et al. (2008, 2010), presented in Chapter 1. In the SDSS observations Tago et al.

(2008, 2010) use the constants a = 1.0 and z0 = 0.05, (for nmem ≥ 2). Using this

method they find that the group size does not change with redshift.

It is a direct consequence of our group finding method that groups formed

from smaller linking lengths are subsets of larger groups. This means that each

compact group must be either a group in its own right, or it is a denser region

inside a larger group. We can associate a compact group with a loose group using

a variety of techniques.

Many of the methods used to identify group properties rely on the assumption

of virialisation. This, however, is not necessarily true for many groups (Niemi

et al., 2007), especially for more compact groups (McConnachie et al., 2008). We

examine a variety of group properties, and compare how these vary with linking

length. We also explore the associations between compact groups and their loose

parents.

3.2 Group Properties

3.2.1 Harmonic Radius

The harmonic radius of a group is often used as a proxy for the virial radius

(e.g. Tago et al. 2008), and, as such, is a very useful quantity to calculate. This

quantity gives us access to the formulae for virialised structures. However, the

harmonic radius is known to change with linking length.

In 3D we calculate the harmonic radius using

Rharm =
2

n(n− 1)

n−1
∑

i=1

n
∑

j=i

1

|xi − xj|
(3.1)
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where, n is the number of group members, |xi,j| is the ith or jth particle position.

The 2D equivalent, based on positions in ra and dec, is

Rharm = D sin





Nmem(Nmem − 1)

4

(

∑

i

∑

j>i

θ−1
ij

)−1


 (3.2)

where, θij is the angular separation of galaxies i and j.

We apply Eqn. 3.1 and Eqn. 3.2 to the models, and the observations of

T10 and Y08. Y08 is used only for LGs, because we have not applied our FoF

algorithm to this dataset. These two sets of observations are described in Tago

et al. (2010); Yang et al. (2007). T10 groups are defined using an FoF algorithm

applied to a volume-limited sample which mimics the simulation boxes used in

the models. These qualities enable us to use shorted linking lengths on the groups

in order to compare to our model groups. The Y08 dataset uses a more complex

technique, Yang et al. (2005), to assemble groups, based on a magnitude limited

survey. For this reason we use only the loose group catalogues, as presented in

Yang et al. (2007)

The harmonic radius of groups is tightly correlated with the maximum galaxy-

galaxy separation, which is set by the linking length, the number of galaxies in a

group, and the group shape. This is because a group stretched out along a line

is going to have a larger harmonic radius than a spherical group.

Tucker et al. (2000) find a median harmonic radius of 0.53h−1Mpc for their

2D projected groups. These authors include a constant, π, in their 2D formula-

tion, such that Rharm becomes πRharm, which we neglect. If, however, we include

π in Eqn. 3.1, the median harmonic radius of LGs in the Munich SAMs ap-

proaches this value. The N05 LG median harmonic radius exceeds their value,

and the Durham group harmonic radius falls below it. This is shown in Fig. 3.1.

The harmonic radius instantly shows a significant difference between M D06 and

D B06 groups.
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Figure 3.1: The solid lines show the median group harmonic radius for a sub-
volume for the N05 (black) M D06 (red), M B07 (pale blue), D B06 (dark blue
dashed) and D F08 (green) models. The red, light blue, dark blue and green
dotted lines show the harmonic radii for groups based on the dark matter distri-
bution. The harmonic radii of T10 groups is shown in the purple dotted line.
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Allam and Tucker (2000) find that for their compact groups the mean har-

monic radii is 0.05h−1Mpc, while Hickson found that R̄harm = 0.06h−1Mpc.

We find that for M D06, and D B06, groups, the harmonic radii is close to

0.03h−1Mpc for both models. As we find in the SAMs, the group catalogues

of Allam and Tucker (2000), and Tucker et al. (2000), show the same strong

dependence on linking length, i.e. 0.05 ± 0.002h−1Mpc and 0.58 ± 0.1h−1Mpc,

where the difference in linking length is 0.05h−1Mpc against 0.72h−1Mpc.

Rharm is often used to define the virial mass of a group. The sensitivity of

this parameter to the linking length makes the virial approximations of group

mass etc., more sensitive to the method used to identify groups, than the physics

behind them.

We can see, in Fig. 3.2, that there is no significant difference in harmonic

radius, as we change the luminosity cut. Thus, the luminosity cut does not have

a large effect on the results. This makes comparison between the model datasets

and the observations easier.
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Figure 3.2: Shows the distribution of group harmonic radius for different lumi-
nosity cuts in the D B06 model. The red line shows the Mr = −17 luminosity
cut, the blue line is for a Mr = −20 luminosity cut and the green line is the
Mr = −21 cut. The width of the line indicates the Poisson error.
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3.3 Velocity Dispersion

The velocity dispersion of groups is traditionally, (Yahil and Vidal, 1977), given

by,

σv =

√

√

√

√

N
∑

i=1

(x− x̄)2
1

(N − 1)
(3.3)

where σv is the velocity dispersion, x is the velocity along the x, y, z axes, x̄ is

the mean of x, and N is the number of galaxies in the group.

Although Eqn. 3.3 is the traditional definition for velocity dispersion, it is

not particularly robust. For low Nmem groups Beers et al. (1990) and Wainer

and Thissen (1976), suggested the ‘gapper’ method. This involves arranging

the galaxy velocities in descending order, and finding the separation between

successive pairs, gi,

gi = xi+1 − xi, i = 1, ..., n− 1 (3.4)

where xi is the 1D velocity of galaxy, i. Each galaxy, i, is weighted by wi,

wi = i(n− i) (3.5)

where n is the number of galaxies in the group. The final form of the Beers

estimator for the velocity dispersion is,

σv =

√
π

(n− 1)

n−1
∑

i=1

wigi (3.6)

Using these two estimators, we look at one 125h−1 subsample, and compare

the Beers and standard velocity dispersion. We choose vCGs because the gapper

approach is designed for low richness groups, so we should see a greater difference

in vCGs. Surprisingly, we find that there is very little scatter between the two
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Table 3.1: The median and standard deviation of the gapper and standard ve-
locity dispersions for M D06 and D B06 at three linking lengths.

Gapper Standard
model l/h−1Mpc median/kms−1 σ/kms−1 median/kms−1 σ/kms−1

M D06 50 505.102 372.258 472.318 351.053
D B06 50 356.100 237.458 339.851 234.068
M D06 150 378.396 282.253 360.446 274.814
D B06 150 308.443 240.065 295.438 236.793
M D06 520 148.408 102.951 172.048 130.031
D B06 520 145.932 98.8997 169.876 125.739

methods for any of the model. The difference between our models and observa-

tions, apart from our velocity dispersions being in 3D, is that the observations

limit the maximum possible velocity dispersion, via the line of sight linking length.

The median and standard deviation of the velocity dispersion for our groups

is shown in Table 3.1 and Fig. 3.3. Hickson et al. (1992) find a mean velocity

dispersion of 300km/s for both compact groups and loose groups. We find that

our compact sample has a significantly higher median velocity dispersion than

loose groups. This suggests that the lack of Hickson’s isolation criterion means

we are probing the bottom of deep potential wells, where Hickson does not. We

also find that M D06 has a higher velocity dispersion than D B06 groups, despite

having fewer members. This suggests that the distribution of groups by host mass

is different, with more M D06 vCGs being contained within high mass halos. This

result can also be inferred from the correlation function analysis in the previous

chapter. Alternatively it could mean that more M D06 groups are unbound.

The mean and median values for Tucker et al. (2000) loose groups is 153 km/s.

Tago et al. (2010) show a lower velocity dispersion of 89 km/s. Tago et al. (2010)

note that their restrictive linking lengths bias velocity dispersions, but it is the

choice they have made in order to remove potential filament galaxies from their
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Figure 3.3: Shows the median group standard velocity dispersion, solid lines show
the velocity dispersion for the N05 (black), M D06 (red), M B07 (pale blue),
D B06 (dark blue) and D F08 (green) models. The dotted lines show the velocity
dispersion for halo based groups.

samples.
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3.4 Crossing time

Hickson et al. (1992) defined the dimensionless crossing time of groups,

tdyn =
rpair
σv

(3.7)

as a measure of the level of dynamical evolution. This parameter measures the

maximum number of times a galaxy could orbit the group since its formation.

This is slightly different from the form implemented in Hickson et al. (1992),

because we use the 3D harmonic radius, while Hickson uses the projected values.

Assuming the group is spherical (which is not strictly true, §3.7) the difference

between this and Hickson’s parameter is a factor of
√
2/
√
3. Hickson et al. (1992)

give a median crossing time of 0.016 H−1
o .

We show the results from one subvolume, for a variety of linking lengths,

and for halo based groups in Fig. 3.4. As Hickson interpreted the crossing time

as a measure of dynamical evolution, we can state that D B06 and D F08 are

more dynamically evolved systems than M D06 and M B07 groups, at all linking

lengths greater than 0.1h−1Mpc. The reason for this probably lies in the form

of the satellite lifetime, which must be longer in D B06 and D F08. The M D06

model is the least dynamically evolved of the SAMs. The difference in slope

between M D06 and M B07 indicates that the supernovae feedback prescription

has an effect on the apparent dynamical evolution of groups. This is an indi-

rect effect, however. The supernova feedback in M B07 removes low luminosity

galaxies from the sample and so we are left with fewer galaxies in groups. This

lack of dim galaxies has an effect on the calculation of the crossing time. We

also note that the crossing times of the FoF LGs are higher than the halo-based

groups, due to the addition of galaxies/halos not contained within a parent halo.

The crossing time of the SAMs is proportional to the linking length, such that we
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can simply conclude that the larger the group the less dynamically evolved it is.

The N05 groups, however, show a different trend, such that compact groups are

dynamically evolved, while at longer linking lengths they are distinctly not. This

links in with the distribution of galaxies in groups, shown below. The N05 groups

have a much higher crossing time, which is not a straight line like the others. The

reason for this is that the dark matter halos disintegrate quicker than the galaxies

(Diemand et al., 2007). This is because the galaxy is in the centre of a dark mat-

ter halo, and thus protected from the effect of the gravity of the host halo, and

baryonic matter in galaxies has a high density. The effect of numerical resolution

also enhances the effect of halo stripping (Klypin et al., 1999). Alternatively, the

old halos sink to the centre and can no longer be identified (Gill et al., 2004) as

previously discussed. Thus, using dark matter halos we preferentially select new,

dynamically younger objects, than in the SAMs.

Comparing our data to Hickson’s compact groups, we find that the crossing

time of all groups are approximately the same at low linking length. This result

is, however, 2.5 times too small, relative to Hickson. Tucker et al. (2000) found

that his loose groups have a median crossing time of 0.1H−1
o , which is 1.5 times

the value for D06 groups. D B06 loose groups are 2.5 times smaller than Tucker

groups. Using the Tago catalogue we find a crossing time for compact groups to

be 0.015 H−1
o , which is higher than the models. This difference between models

and observations may be due to the different luminosity cuts in the models or

the group finder itself. The luminosity cut is -17 throughout in the models, but

varies significantly over the Hickson sample. We did, however, explore the effect

of luminosity cuts on the harmonic radii of groups in a previous section and

found the effect to be minimal. Tucker’s loose group show a much larger crossing

time than Hickson or the model compact groups. This is because, as previously

noted, the group radius is very sensitive to the galaxy separation. Hickson’s
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Figure 3.4: The solid lines show the median group crossing time for a subvolume
for the N05 (black), M D06 (red), M B07 (pale blue), D B06 (dark blue) and
D F08 (green) models. The dotted/dashed lines show the crossing time for halo
based groups. The dashed line shows the crossing time of Hickson et al. (1992)
for Hickson compact groups.

groups are a heterogeneous sample, with a wide variety of group sizes. This is

because, in dense environments groups can be comparatively larger than in dense

environments, while the FoF approach we use effectively limits the inter-galaxy

separation. A combination of this, or the effect of selection effects from the

observations verses the models, are potential explanations for the difference.

3.5 Group Types

We define several types of group based on various properties of groups. We define

three types of group based on their dark matter distribution. Groups of galaxies

can consist of galaxies in several situations in the SAMs. They can contain

galaxies from a single host halo, or multiple halos. They can contain the central
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Table 3.2: Proportion of galaxy group types where the first number is the pro-
portion of inner, peripheral and distinct. na indicates where no data is provided.

Model vCG CG LG
M D06 80 / 19 / 0 78 / 22 / 0 35 / 1 / 64
M B07 77 / 22 / 0 77 / 22 / 0 48 / 2 / 51
D B06 83 / 14 / 2 83 / 12 / 5 20 / 0 / 80
D F08 82 / 15 / 3 83 / 11 / 6 22 / 0 / 78
T10 39 / 60 / na 84 / 15 / na na / na / na

galaxy of the host or not. These can be summarised as follows:

1. Inner(I) - The group lies in the bottom of the host potential, defined in the

SAMs as containing the host central galaxy. In observations, we say that an

inner group contains the brightest group galaxy of the parent. The central

galaxy, and the brightest galaxy, are not necessarily the same in the SAMs,

but this is a common approximation in observational catalogues, i.e. Yang

et al. (2008)

2. Distinct(D) - The group consists of galaxies in separate dark halos, defined

as containing at least 1/4 of galaxies from more than one host. We do not

define this type for observations.

3. Peripheral(P) - The group consists of galaxies from a halo, but not the

central galaxy. We also require that any galaxies from other halos are from

halos with significantly smaller mass. If a group in observations in part of

a parent, but does not contain the brightest group galaxy, it is peripheral.

Clearly, in the halo based group catalogues, groups are all type-I. Table 3.2

shows the proportions of group types as defined above.

An interesting observation that can help determine the difference between pe-

ripheral and central groups is the group luminosity and group velocity dispersion

relation. If we calculate the total luminosity of groups and the mass, we can

see a distinct population of dim, high velocity dispersion, high mass groups, Fig.
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Figure 3.5: Shows the luminosity against 1D velocity dispersion. The black
contour shows the distribution of central groups, the red contour shows peripheral
groups in the models. The dark blue points show T10 centrals and the red are
T10 peripherals. The model and group catalogue is given in each panel. The
numbers of points in each plot are given by Table 3.3

3.5. Luminosity and mass is tightly correlated for central groups, but there is a

subset of groups which are not correlated, and form a cloud of points. Observa-

tionally, this is a useful method for distinguishing peripheral from central groups.

Peripheral groups tend to be the smallest in terms of the number of galaxies.
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Table 3.3: The number of groups used to generate the plots in Fig. 3.5
Model Total (vCG) Total (CG)
M D06 2311 4115
D B06 6743 9610
T10 41 521

3.6 Galaxy distribution

In Fig. 3.6 we find that cluster galaxies in D B06 are more highly concentrated

in the cluster centre, than in M D06, right panel. The results are similar when

scaled. We compare, in the left panel, with the observations of Y07, in order to

identify whether the flat or peaked form is replicated in the real universe. These

plots are done using a face-on projection rather than the full 3D, because of the

need for observational comparison. We see that the centre of the observational

clusters show a fall in the number of galaxies.

Figure 3.7 shows the distances to the nearest neighbour galaxies in LGs. We

find that the D F08 model is very similar to D B06, and is not included in the

figure. It can be seen that the D B06 model, the nearest neighbour separation is

slightly smaller than for the Munich models. The figure shows that the Durham

models are denser than those in the Munich models. This may be indicative of

shorter merging times in the Munich models, than in the Durham approach. The

longer the galaxy survives, the deeper it sinks into the parent halo because of

dynamical friction. It follows that the longer the average galaxy lifetime, the

denser the resulting environment. This also explains the lower abundances of

CGs and vCGs in the Munich models. The higher population of vCGs and CGs

in the D B06 model, compared to the Munich models, may be traceable to the

subhalo accretion prescriptions, (Li and Helmi, 2008; Berrier et al., 2009). A

faster merging time in the Munich Models may result in smaller survival times
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Figure 3.6: A plot of the position of the galaxy in the top 50 most massive clusters
in the millimillennium simulation. The left panel shows the normalised number
of galaxies against radius from the centre, the right panel shows the normalised
number of galaxies against the radius scaled by the radius of the most distant
cluster member. The dashed line is for D B06 groups, the solid line is for M D06
groups, and the red line is Y07 observations. Errors are poisson, i.e.

√
N , where

N is the number of galaxies in each radial bin.

Figure 3.7: The distribution of nearest neighbour pair separations for galaxies in
LGs for the three models, the dotted line is M B07, the dashed line is M D06,
and the thick line is D B06. The plots shows that D B06 galaxies tend to be
closer together.
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for non-central galaxies. This explains the lower abundances of CGs and vCGs

in the Munich models.

The shallower profile in the observations goes some way to explain why the

profile of the number of groups against linking length is so different in the obser-

vations. The galaxy distribution in the real universe is less concentrated than in

SAMs so a longer linking length is required to assemble more groups.

3.7 Group Shape

A number of authors have looked at the shape of groups and clusters: e.g.

Robotham et al. (2008); Paz et al. (2006); Plionis et al. (2004); Orlov et al.

(2001). Other authors have studied the shape of Compact groups e.g. Oleak

et al. (1998). Our advantage is that we have 3D group information and envi-

ronmental information as well as comparatively large (Hickson, 1982; Allam and

Tucker, 2000; Barton et al., 1996) sample sizes. Tovmassian et al. (2006) found

evidence that Compact groups are the elongated cores of loose groups, and we

can look at these ideas in detail. We examine the shape of groups, at different

linking lengths, and compare with observations. However, the groups have low

richness, and so has large uncertainties when the group shape is calculated.

In order to calculate the shape of groups we calculate the inertial tensor of

the group and derive the eigenvalues. This method is favoured by most authors,

e.g. Paz et al. (2006); Plionis et al. (2004). We calculate the geometric centre of

the group, and shift the group into that reference frame. Next we calculate the

inertial tensor.
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(3.8)

where N is the number of particles, xn is the x position of the nth particle, yn

is the y position of the nth particle and zn is the z position of the nth particle.

The diagonal elements are the moments of inertia of the particle ensemble.

The inertial tensor is derived from the angular momentum of a set of particles.

The angular momentum, L, is written as :

L =
N
∑

i=1

mi (ri × vi) =
N
∑

i=1

miri (ωi × ri) (3.9)

where N is the number of particles, ri is the position of the ith particle, vi is

the velocity of the ith particle, mi is the mass of the ith particle and ωi is the

angular velocity of the ith particle. This can be rewritten as

L = Iω (3.10)

where, ω is the angular momentum vector and I is the inertial tensor. I then

takes the form of

I =
N
∑

i=1

mi
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(3.11)

This can then be rewritten as
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(3.12)

Usually only the second term of Eqn. 3.12 is commonly used in deriving the

shape of halos or groups, e.g. Knebe et al. (2010).

We extract the eigenvalues of the above matrix, λa, λb, λc and, where (a, b, c) =
√
λa, λb, λc, and define the axes such that a > b > c. a, b and c are the axial

ratios of the shape ellipse. The moments of inertia are the diagonal elements of

I.

We also calculate the sphericity, the measure of how spherical the group is:

S =
c

a
(3.13)

and the triaxiality, (Franx et al., 1991), which measures how oblate, (T=0), or

prolate, (T=1), the group is:

T =
a2 − b2

a2 − c2
(3.14)

The 2D equivalent of sphericity is eccentricity, or

E =
b

a
(3.15)

Paz et al. (2006) discover that the shape of subsamples of galaxies from rich

groups are indistinguishable from the shape of poor groups. They find that groups

with a small number of members produce extended non-spherical distributions,

simply due to the small numbers. As many of the groups have very few members,

there is a large degree of error in calculating the group shape. In order to make

any definitive conclusions we create a monte-carlo catalogue of spherical groups.
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We construct our mock catalogues to have the same richness function as the

groups. For each group in the catalogue about group shape we find the number

of members, Nmem. We then generate random positions, and remove all points

outside a sphere. We then select the first Nmem points from this list. The mock

and group catalogues are then fed into Eqn. 3.8. The placement of the mock

galaxies is such that for large N the group would be spherical. Any deviation

from the sphere is only due to small number sampling. We then run KS tests of

the result. If the FoF groups are spherical, we expect the distributions to lie on

top of one another. By comparing groups to the random catalogue we can see

whether groups tend towards prolate (a > b = c), oblate (a = b > c), spherical

(a = b = c) or triaxial (a 6= b 6= c) forms.

Fig. 3.8 demonstrates the distribution of b/a against c/b. Where c/b = 1

the group is prolate, while b/a = 1 groups are oblate. Where both c/b = 1

and b/a = 1 the group is spherical. The diagonal line is the 1:1 ratio. It is

instantly obvious that the shape of the SAM groups is not spherical, and that

they tend towards being prolate. This is most clear in clusters, which appear more

prolate than the random data. Smaller groups are more triaxial and scattered, as

expected. There appears to be no significant difference in the plots as the linking

length is altered. In order to test this statement, we perform KS tests on the

data, Table 3.4.

Paz et al. (2006) identify the 3D shapes of groups in 2PIGG, SDSS-DR3GC

and a GALFORM mock 2PIGG catalogue (Cole et al., 2000). They conclude

that small numbers produce less spherical and more prolate objects, than high

richness objects. This can be inferred from our Figs. 3.8(a) & 3.8(b). Figure 3.9

shows that groups tend to be less spherical than the random catalogue.

The elongated shapes of compact groups have important implications for Hick-

son’s groups. He requires that the group fit into a circle of radius R, and be
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(a) b/a v. c/b

(b) S v. T

Figure 3.8: The distribution of group elliptical axial ratios for random groups
(colours) and simulated groups (contours). The top row shows all groups in the
group catalogue, the middle from those groups with more than 20 members and
the bottom row those groups which have 4 members. LG, CG and vCG are from
left to right. Panel a shows the axial ratios and Panel b shows the relationship
between sphericity and triaxiality.
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Table 3.4: KS-tests where the null hypothesis is that the group shape and the
random group shapes are not extracted from the same distribution.

Db/a Dc/a Dc/b DT pb/a pc/a pc/b pT
LG

all 0.267 0.293 0.200 0.213 0.008 0.003 0.090 0.059
= 4 0.160 0.200 0.200 0.253 0.275 0.090 0.090 0.014
< 30 0.453 0.280 0.280 0.213 0.000 0.005 0.005 0.059

CG
all 0.227 0.267 0.347 0.227 0.038 0.008 0.000 0.038
= 4 0.160 0.200 0.200 0.213 0.275 0.090 0.090 0.059
< 30 0.413 0.267 0.293 0.160 0.000 0.008 0.003 0.275

vCG
all 0.120 0.200 0.347 0.200 0.633 0.090 0.000 0.090
= 4 0.093 0.160 0.147 0.187 0.889 0.275 0.376 0.135

isolated by a radius 3R. However, because the groups tend to be elongated struc-

tures, this preferred circular geometry does not follow from these results, or the

observations, i.e. Tovmassian et al. (2006); Oleak et al. (1998). These groups

have a lower richness limit of 5 galaxies, so we remove all CGs with N < 5 from

our sample. The distribution of shape is affected by the number of members in

2D as well as 3D. They also find that this is even slower in 3D than in 2D. Using

2D coordinates introduces an additional problem; the measured shape depends

on the inclination of the group, Fig. 3.10. If we produce a new sample of random

catalogues containing groups of different axial ratios, (Oleak et al., 1998), and

over plot the results for groups, we find that, in general, groups of galaxies have

an ellipticity of 0.6± 0.2, Fig 3.11.

We compare the results of the SAMS to the galaxy groups of Yang et al.

(2008), based on the SDSS DR4. We convert between the right ascension, α, and

declination, δ and Cartesian x and y, using,
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Figure 3.9: Shows the mean and standard deviation (error bars) for spherical
groups against the number of members in the random catalogue. The black line
shows results for spherical groups, the red line for a large N axial ratio of 1:15,
green for ratio is 1:2 and blue is for 1:3. This is for 2D groups.

Figure 3.10: The 2D ellipticities of projected groups. The same groups are plotted
at different inclinations and the different projected axial ratios are shown.
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Figure 3.11: Plot of the profile of ellipticity against group membership. The
dotted lines show the predicted mean ellipticities for 1000 random groups of
ellipticity given in the figure. The solid line is for D06 vCGs and the error bars
are the standard deviation of the distribution. The groups seem to converge to
b/a ∼ 0.6± 0.2, in keeping with Oleak et al. 1998.

x = (α− 〈α〉)cos(〈δ〉)

y = (δ − 〈δ〉)

where, 〈α〉 is the group luminosity weighted mean right ascension, and 〈δ〉 is

the group luminosity weighted mean declination. We apply this to the inertial

tensor, Eqn. 3.8, setting zi = 0.0. There are several issues with comparing the

observations to the models, because more distant groups lack the low luminosity

galaxies present in closer groups. However, the overriding problem for shape

finding is, yet again, the low richness of some groups. Nevertheless, we also run

our spherical group random sample to compare our group shapes with it, and can

use this to gain insight into the shape of groups.
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Figure 3.12: Shows the ellipticity distribution of the projected group shape for
groups with 4 galaxies. Within the error the M D06 groups (red) are remarkably
close to the observations, (Y08 is green, T08 is black), while some D B06 (blue)
groups tend to be more elliptical. Also shown are the trends for randomly filled
spheres.

Both the models and the observations show that groups tend to be significantly

more elliptical than the random spheres, Fig. 3.12. The SAMs show group

shape to be relatively insensitive to linking length. D B06 groups, show a higher

proportion of triaxial groups than the observations, making the Munich groups a

better fit.

3.8 Environment of Groups

Although we have removed the isolation criterion from our group finding analysis,

we explore the local environment of our groups. Barton et al. (1996) searched their

galaxy catalogue for the closest galaxies around compact groups. They identify

which groups exist in a dense environment and which do not. One drawback of

their method is that the single closest galaxy may be spurious, a galaxy that just
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by chance happens to be close the the group in an otherwise diffuse environment.

They define the environment of their compact groups using the parameter,

Υ = Riso/Rgroup (3.16)

where Riso is the isolation radius and Rgroup is the group size. If Υ > 3 then the

group is isolated in a manner kin to Hickson’s isolation criterion. Our choice of

group finding approach allows us more sophistication. All compact groups found

using our method are a subset of the loose group catalogue. This comes from the

fact that galaxies linked by a shorter linking length, must be linked by a longer

linking length. This means each vCG has an associated CG and LG. Thus, we

can specify that compact groups are part of either,

1. a cluster - where the galaxy population of the LG is N > 30

2. a rich group - where the galaxy population of the LG is 10 > N ≤ 30

3. a poor group - where the galaxy population of the LG is 5 > N ≤ 10

4. isolated - where the LG contains no additional galaxies

These definitions are based on pairing a particular compact group with a

particular loose group. Occasionally, the largest clusters contain more than one

compact group. Additional definitions are required to identify whether a group

is truly isolated, or whether it is part of a group or a cluster core. The spirit of

Hicksons definition, (Hickson 1982), suggests that isolated or peripheral compact

groups are what he originally had in mind. Tovmassian et al. (2001) identified

that many Hickson Compact groups (HCGs) are the cores of loose groups.

The procedure used to identify these correspondences is the same as used in

a simple merger tree algorithm. The particle id number of galaxies in compact

groups, and identify which loose group it lies within. This is repeated for all
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Table 3.5: The % of vCGs in a particular environment. The luminosity cut is -18
in the sdss r-band.

Environment M D06 D B06
Isolated 7.1% 3%
Poor 28.2% 19%
rich 36.5% 41%

Clusters 28.2% 36%

Table 3.6: Averages and standard deviations for vCG environments. The number
in brackets is the standard deviation, the other is the mean in 64 boxes.

Environment M D06 D B06
Isolated 6.38(2.6) 30.66(6.5)
Poor 46.03(7.2) 201.08(20.0)
Rich 74.59(11.4) 363.61(34.2)

Clusters 108.08(21.5) 468.55( 87.8)
Total 235.08(30.7) 1063.89(131.3)

galaxies in compact groups. Technically, we require only that one galaxy per

compact group is traced, because all compact group galaxies must lie within the

same loose group, as explained above.

Table 3.5 shows the number of groups in a particular environment for a single

125h−1Mpc volume. When we take the mean and standard deviation of all 64

volumes we find similar results, Table 3.6, but with considerable variation between

subvolumes.

Thus, in both models, 3%-7% of very compact groups are what Hickson orig-

inally had in mind when he defined compact groups, in that they are not part

of a larger system. We find a total of 2000 true compact groups in the entire

Millennium volume in the Bower model, and 408 for the De Lucia model, making

these extremely rare objects.

We can identify potentially peripheral compact groups, most of which are in
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Table 3.7: Top two rows: The % of LGs containing more than 1 or 2 vCGs.
Lower two rows: The % of vCGs occupying an LG containing more than 1 or
2 compact groups.

D B06 M D06
LGs > 1 0.9+/-0.2 0.1+/-0.04
LGs > 2 3.5+/-0.7 1.2+/0.7

vCGs in LG > 1 10.7+/-1.0 5.8+/-1.4
vCGs in LG > 2 2.8+/-0.3 0.3+/-0.1

clusters, or rich groups, and compare their dynamics to cluster/rich group cores.

Over a quarter of compact groups that lie within clusters are peripherals, i.e. not

part of the cluster core. Most loose groups do not contain a very compact region.

On the other hand, Table 3.7 shows that 10% of very compact groups exist in loose

groups which contain more than one compact region. Between 2 and 4% lie in

loose groups contain more than 2 compact groups. The cluster with the largest

number of compact regions contains 41 compact groups, including the cluster

core. Alternatively, we can say that 2-3% of all loose groups contain more than

one compact region in the D B06 model. We repeat this analysis for the M D06

model, shown in Table 3.7. This difference in substructure is most probably

due to the higher number of galaxies in LGs in the D B06 model compared to

the M D06 model. D B06 model LGs have closer together galaxies, thus more

potential vCGs. This table also suggests that part of the vCG population in

D B06 models is directly due to the richer haloes in the Durham models because

a greater percentage of vCGs lie inside large LGs.

The limited number of compact groups in M D06 makes a telling difference in

this analysis. If we look at clusters (> 30 galaxies) the difference is most drastic.

31% D B06 and 5% M D06 clusters contain more than one compact group. This

difference should help provide a refinement to the SAMs, and provide a diagnostic
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for observational comparison. Comparing cluster substructure to observations

will provide a good diagnostic between the merging timescales in SAMs, and

whether reality is more closely mimicked by M D06 and D B06.

3.8.1 Observations

In our T10 sample we identify 41 vCGs. We find that most of them are the only

one in a given LG, 24 are alone in their loose group and the remaining 17 are

divided up in 7 clusters. 2 vCGs are isolated, 7 are in poor groups, 15 are in

rich groups and 17 are in clusters. Proportionally this is, 5%, 17%, 37% and 41%

in each environment, which is not too dissimilar to the models. Unfortunately

we do not have enough objects to distinguish which model fits best. We show

an example of a cluster with multiple compact objects, extracted from the SDSS

DR7, Fig. 3.13.

The figures show that compact galaxy associations are real and can be a

considerable fraction of cluster galaxies. In this case, the cluster contains 86

galaxies, 29 of which are in compact associations. In this case one of the compact

groups contains the brightest cluster galaxy, despite being off centre.

3.8.2 Correspondences

We can compare the correspondences of compact groups properties to their host

loose groups. In this way we can calculate the effectiveness of finding group

properties from the vCG sample. Thus, we effectively measure the validity of

using compact group parameters, such as the crossing time estimator, Eqn. 3.7,

to measure the group characteristics. This is important, because groups should

really be virialised, bound, structures.

We compare the predicted halo mass calculated using,
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5'

z = 0.024

Figure 3.13: A cluster from T10 consisting of 86 galaxies and 6 compact regions.
All cluster members are marked on the figure with circles. Those galaxies also
members of vCGs are marked with white circles. This image is 512 pixels by 512
pixels and has 3” per pixel.
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Mvir =
σ2rvir
G

(3.17)

where σ is the velocity dispersion, and rvir is the virial radius or harmonic radius.

There is some correlation between vCGs and LGs, Fig. 3.14, but the result is

highly scattered, making conclusions difficult from these plots alone.

In the observations, we see something similar, although we can only use the 2D

projection. We must multiply our harmonic radius by
√

3/2 and our velocity

dispersion by
√
3, thus Eqn. 3.17 becomes,

Mvir =
33/2σ2rvir

G
√
3

(3.18)

Again, we find a large scatter in the results. Instead of using two derived quan-

tities, harmonic radius and velocity dispersion, we examine the correlation in

velocity dispersion alone, in an attempt to reduce the scatter in the system.

The comparison of velocity dispersion in our T10 catalogues shows a tight

correlation between vCGs and LGs, especially for central vCGs. Fig. 3.15 shows

that the behaviour of observations, and the SAMs are reasonably close. Except

that T10 groups peripherals dominate at the high velocity dispersion, more than

in the model. This is due to the different luminosity cut meaning more groups

are central. However, applying a KS test to Fig. 3.15 we find that the samples of

peripherals and central groups are members of the same distribution to a proba-

bility of 0.34 for peripherals and 0.35 for centrals. However, the accuracy of the

k-s test is limited by the small number of galaxies in the subsamples. There are

only 246 M D06 galaxies used in Fig. 3.15 and 41 T10 galaxies. If we apply the

same tests to the distributions as a whole we find that there is only a probability

of 0.02 that they are of the same distribution. These values are however, substan-

tially higher than two utterly dissimilar distributions. We concluded, tentatively,

that these distributions are the same and the models match the data well.
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(a) M D06

(b) D B06

Figure 3.14: The ratio of group mass calculated from the virial approximation
for CGs and their associated LG. The dotted line is the 1:1 ratio, the contours
show the point density, the same for each plot, and the crosses show the mass
calculated from the virial quantities of the LGs and CGs.
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Figure 3.15: Shows the velocity dispersion and type of group in M D06 and T10
groups for vCGs and LGs. The y axis shows the velocity dispersion of groups
formed with a 250h−1 kpc linking length, and the x-axis vCGs. Red squares are
peripheral M D06 groups, dark blue squares are central M D06 groups, yellow
stars are peripheral T10 groups and blue stars are central T10 groups. We define
central and peripheral to be the environment of the compact group.
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This close relationship between the velocity dispersions of LGs and vCGs

means that the mass calculation using the assumption of virial equilibrium is

dependant on the harmonic radius. Similarly for the crossing time. There is no

reason to assume that the crossing time of compact groups in Hickson (1982), is

useful if the group is part of a larger structure. The radius used in the calculation

of the crossing time should be the radius of the parent object not just the compact

group within the loose group.

3.9 Conclusion

We find notable differences between the predictions made by the two SAMs, the

N-body simulation, and the observations. However, what we have seen suggests

an alternative method of identifying compact groups. Hickson (1982) devised

his criteria for identifying compact groups before automatic group finding algo-

rithms were widely available. He used a preferential geometry, using a mini-

mum enclosing circle approach for identifying potential group members, and a

larger circle defining the degree of isolation. We have found, however, that most

compact groups are elongated filamentary structures which sit within relatively

non-spherical structures. A more natural approach to group finding would be to

identify loose groups using FoF, and then use smaller linking lengths to identify

dense knots of galaxies. Once this has been done the criteria of isolating or surface

brightness etc. can be applied to match the author’s requirements. Our method

allows the author to naturally study the environment of compact groups, and

provides a more systematic way of studying the behaviour of galaxies in dense

environments.
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BRIGHTEST CLUSTER

GALAXIES

4.1 Introduction

Brightest cluster galaxies, or BCGs, are giant, extremely luminous giant elliptical

galaxies. These objects are the most massive, and luminous, galaxies in the

universe. BCGs can be divided into 3 classes, cD, D and gE galaxies. A cD or

D galaxy differs from a standard giant elliptical, because its luminosity profile

is shallower than de Vaucouleurs’ law 1 (Schombert, 1987). Additionally, a cD

galaxy lies within a diffuse stellar halo. Most BCGs are elliptical galaxies, and

so it is common to compare these objects with standard ellipticals. Various

authors have discovered, both in observations (Schombert, 1987; Hoessel et al.,

1987; Lauer and Postman, 1992), and semi-analytic simulations, such as von der

Linden et al. (2007), that BCGs are ‘special’. These differences are thought to

be due to the high density environment in which these objects reside.

There has been considerable debate over the origins of BCG’s, and cD galaxies

1I(R) = I0 exp (−kR0.25), where I is the surface brightness, I0 and k are constants and R is
the distance from the centre.
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in particular. One model, based on ‘Galactic Cannibalism’, suggests that large

galaxies in the cluster cores merge to form the cD or D galaxy. This galaxy then

grows via further mergers, (Hausman and Ostriker, 1978; Ostriker and Tremaine,

1975). This scenario has been shown to be insufficient for the formation of large

10L∗ galaxies, (Lauer, 1988). The favoured scenario is that cD and D galaxies

form via mergers inside groups of galaxies, whereupon the group falls into a

cluster. The lower velocities of galaxies in groups means that the galaxy merger

efficiency is greater, (Zabludoff and Mulchaey, 1998). This model would explain

the existence of cD galaxies in poor clusters. It is the favoured model, if BCGs

with high velocity offsets are identified, (Oegerle and Hill, 2001).

It was long believed that BCGs exist at the bottom of the cluster potential,

consistent with the position of the X-ray peak (Jones et al., 1979). BCGs, there-

fore, would be expected to exist in the cluster core, and move with a velocity

equal to the cluster average. In fact, it is frequently assumed that the BCG is

the central galaxy in a cluster, and no further thought is given to the matter. A

number of investigations, using small samples of clusters, Zabludoff et al. (1993),

Laine et al. (2003), Kriessler and Beers (1997) and Beers and Geller (1983), for

example, have shown that this is not the case.

Andernach et al. (2007) took a large sample of DSS images, and derived the

line of sight velocity offsets of the BCGs for 326 clusters, resulting in a sample

of 385 BCGs. The clusters used in this sample contain cD galaxies, or galaxies

which are Bautz-Morgan Type I-II. Type I clusters have a very bright cD galaxy,

Type III clusters contains a BCG that is not significantly brighter than average,

and Type II clusters are intermediate between Type I and III.

Andernach et al. (2007) discovered that 50 per cent of BCGs had a velocity

offset greater than 0.37σv. They concluded that this result is consistent with the

seeds of BCGs being collapsed compact or loose groups. Additionally, Beers &
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Geller and Krissler & Beers noted that D and cD galaxies occupy local density

maxima, rather than the cluster potential minimum.

Gravitational effects are dominated by the dark matter distribution of the

cluster. Each galaxy rests at the bottom of a local potential well, which is pro-

duced by a dark matter subhalo. This subhalo is itself embedded inside the dark

matter halo of the cluster. There is a well known relationship between galaxy

dark halo mass and galaxy luminosity, (Vale and Ostriker, 2006, 2008). This

relationship allows us to model the properties of the BCG in dark matter only

simulations. Henceforth, in this Chapter we use the most massive cluster sub-

halo, MCS, as a proxy for the Brightest Cluster Member. We are able to identify

massive subhaloes that should correspond to particularly luminous galaxies. This

means our sample is only comparable to BCGs in general, and not specific classes

of brightest galaxy i.e. cD galaxies.

The reason for this work was the paper by Andernach et al. (2007). They

suggested that their high proportion of velocity offsets > 0.37σv is evidence that

BCGs emerge from infalling galaxy groups.

4.2 Method

We use two sets of previously published simulations to model 48 clusters with

a mass range between 3.6 × 1014h−1M⊙ and 4.2 × 1014h−1M⊙. In each case we

use the same cosmological parameters, Ωm = 0.3,ΩΛ = 0.7, Ωb = 0.048, h = 0.7,

σ8 = 0.9, from the WMAP 1-Year results (Spergel et al., 2003).

The first dataset was presented in Nagashima et al. (2005), N05, using 5123

particles in a 70h−1Mpc box.

The second data set was presented by Gill et al. (2004, 2005); Warnick et al.

(2008). They presented a sample of 8 clusters, generated using a re-simulation
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technique. This simulation uses a 64h−1Mpc box and 5123 particles. It is simu-

lated using the MLAPM, (Knebe et al., 2001), a cosmological AMR code. The

force resolution is ∼ 2h−1kpc and a mass resolution of 1.6×108h−1M⊙ is attained.

The force resolution of the Warnick et al. (2008) simulation is twice as fine

as N05. This means that these subhaloes will suffer less from numerical effects,

(Klypin et al., 1999).

We look at the 3D and 2D separations of the subhaloes from the cluster density

maxima, and potential energy centres. We then scale the data with the virial

radius of the parent cluster. This is done so that clusters of different masses can

be compared easily. The velocity offsets of the subhalos of each cluster are found

in both 3D and 1D. These offsets are scaled by the cluster velocity dispersions.

V̄off

σv

=
V̄SH − V̄clus

σv

(4.1)

where Voff is the 3D velocity offset, Vclus is the velocity of the cluster dark matter

halo, VSH is the subhalo velocity and σv is the velocity dispersion of the cluster.

We can do this because there is only a small difference between the velocity dis-

persion of the dark matter in a halo, and the velocity dispersion of the subhaloes,

e.g. Gill et al. (2004).

For our 1D results we use:

voff
σv,1D

=
vSH − vclus

σv,1D

(4.2)

d

Rvir

=

√

(XSH −Xclus)2 + (YSH − Yclus)2

Rvir

(4.3)

where v is the velocity along the line of sight, and X and Y is the 2D position of

the object on the sky.

For the observational case of Y07 we use the distance equation of
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d

Rvir

= 2
DL

Rhar

sin

(

Θij

2

)

(4.4)

and,

voff
σv,1D

= c
zSH − zclus

σv,1D

(4.5)

for the velocity offset.

We use the Yang et al. (2007) dataset because this catalogue includes clusters,

while Tago et al. (2010) does not include groups with a richness > 80 because of

subtlties in their group finding method.

4.3 Results

4.3.1 Identifying clusters

AHF, the (sub)halo identification algorithm we applied to the simulation (Gill

et al., 2004), returns haloes from the simulation in order of mass, so it is relatively

simple to extract the most massive objects. We require that the cluster halo is

not a subhalo of another, more massive, cluster. We also require that the cluster

contains more than 25 subhaloes within its virial radius. Using these criteria we

select the 40 most massive clusters from N05. The number of subhaloes in our

clusters ranges from 201 to 26 with a median of 48 for the Nagashima run. The

clusters in the Warnick & Knebe simulation contain 78 to 388 haloes within the

same mass range.

4.3.2 Subhalo

In Fig. 4.1, we plot the subhalo velocity offset against its distance from the

dark matter density maximum. These values are then scaled by the halo velocity
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Figure 4.1: The distance from the cluster core against velocity offset from the
cluster core for all subhaloes within 2.5 rvir

Figure 4.2: Mass of subhalo against distance from cluster centre.

119



CHAPTER 4

Figure 4.3: Mass of subhalo against velocity offset from parent cluster.

dispersion, and halo virial radius respectively. Also shown is the relationship

between each parameter and the subhalo mass, Fig. 4.2 and Fig. 4.3.

In Fig. 4.1 we can see a number of features. The first is that the velocity

offset of dark matter haloes is greater towards the centre of each cluster. This is

unsurprising, as it is due to basic orbital mechanics. We can also see the effects of

the ‘backsplash population’. These subhalos are those galaxies that have passed

through the cluster at least once, and are falling in a second time. The high

speed tail shows the population of infalling haloes, and the low speed population

are the backsplash galaxies (Gill et al., 2005; Knebe et al., 2008). In Fig. 4.2 we

see that the distribution of subhalo mass with distance from the cluster centre is

essentially uniform. High mass haloes are found at all distances from the centre.

This is consistent with constant infall onto the cluster. On the other hand, the

subhalo velocity offsets have a median of 0.86σv, suggestive of an offset between

the dark matter, and average subhalo velocity.

We can repeat this process for 1D velocity offsets, and 2D separations, in order

to model what can be observed. We take 3 projections, along the x,y and z axes
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(a) The top two most massive halos

(b) The top five most massive halos

Figure 4.4: Top panel: The distance from the cluster core against velocity offset
for the 5 most massive subhaloes within Rvir. Bottom panel: The distance from
the cluster core against velocity offset for the 2 most massive subhaloes within
Rvir. Red points are for the BCGs, green points are for the second most massive
subhalos and the blue points are for the second, third and fourth most massive
subhalos.
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and use σ1D =
√
3σ3D, assuming that the cluster is approximately virialised. For

each projection, we take the velocity offset projected along the line of sight, and

the separation of the subhalo from the cluster density maximum, projected onto

the plane perpendicular to the line of sight. These are then stacked to increase

the statistical significance of our results. We lose the clear trend between distance

and velocity offset in projection.

4.3.3 Most Massive Cluster Members

We repeat the analysis above for the 5 most massive subhaloes in each cluster.

The most noticeable thing is that there is a greater proportion of high mass

subhaloes in the low Voff/dist region of the parameter space. By the time the 6

to 10th most massive subhaloes are plotted, they are essentially indistinguishable

from the general distribution in 3 dimensions.

Taking the same plot as Fig. 4.4(a), but only using the 2 most massive

subhaloes in each cluster, we show in Fig. 4.4(b) that the low velocity offset

population appears to be more dominant.

Compiling the velocity offset information, we recover the histograms produced

by Andernach et al. (2007) in both 3D and 1D. Fig. 4.5 shows the 3D velocity

offsets for all subhaloes within the cluster virial radius. The subhalo velocity

offset peaks at around 1.1 σv, suggesting a slight antibias between the dark mat-

ter velocity distribution, and the subhalo velocities. Figure 4.6 shows the 1D

equivalent.

We compare the histograms of the velocity offset of the 2 most massive sub-

haloes with the histogram by Andernach et al. (2007), Fig. 4.7. Our histogram

is significantly less steep than the one produced by Andernach et al. We put this

down to their sample being of cD galaxies, and very luminous galaxies, and our

being unable to distinguish between galaxy types.
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Figure 4.5: 3D velocity offsets for all haloes within the virial radius.

Figure 4.6: 1D velocity offsets for all haloes within the virial radius.
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Figure 4.7: Comparison between the velocity offsets of Andernach et al. (red)
and our 2 most massive subhaloes, (black). The dotted lines are the median +/-
the standard error on the median.

4.4 In the SDSS survey

Using the Yang et al. (2008) catalogue, we compare the position of the most

luminous galaxy with the geometric and luminosity weighted cluster centre. We

then compare this with a set of randomly selected galaxies from within the clus-

ters. In this catalogue we define a cluster as containing more than 30 galaxies

with a luminosity within 3 magnitudes of the BCG. A similar project was re-

cently carried out by Skibba et al. (2011). They make comparisons to SAMs

(MORGANA; Monaco et al. (2007), the model of Croton et al. (2006)) and halo

occupation functions. Here, we compare the N-body results with the observa-

tions, Figs. 4.8(a) & 4.8(b). We centre the cluster on the luminosity weighted

mean, in order to provide equivalence between the models and observations. We

chose this measure of the cluster centre because the centre of a cluster is an ill-

defined concept without dark matter information, or X-ray observations. We see

that the BCG in Yang et al. is much more centrally concentrated than the most
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massive subhalo. This indicates that the most massive subhalos are not a good

match for the spatial distribution of brightest cluster galaxies in projection, but

are a better match in redshift space.

4.5 Discussion & Conclusion

It has been noted that clusters of galaxies have, in general, very bright galaxies

near their centre. This is not always the case, but is true in a majority of cases.

We examined whether we could find the same trend using high resolution N-body

only simulations and found that, although there was a noticeable correspondence

using the velocity offset of clusters in dark matter simulations and observations,

we did not see any correspondence between the trends in projected spatial offset.

This could be because limitations in the model. These limitations are:

1. The tidal stripping of the dark matter subhalo rapidly reduces its mass

before it reaches close proximity with the centre, e.g. Klypin et al. (1999).

This is because the halo looses mass because of gravitational interactions.

This happens in nature, but is enhanced by the limited resolution of the

simulation.

2. The halo that close to the bottom of the potential cannot easily be identified

by the halo finder (Gill et al., 2004). This is because the density constract

between the halo centre and the cluster centre is insufficient for the subhalo

to be identified.

3. The BCG has been at the centre of the cluster for some time and has built

up in-situ and is therefore indistinguishable from the cluster halo itself.

This is because the cluster centre and the centre of the BCG are the same

so the halo finder cannot untangle them.
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Further investigation is required, of both the BCGs in observations and the

mass history of the infalling objects, before the particular reason for this difference

can be identified.

We note that when groups fall into clusters, the subhalos are stripped rapidly

from the group parent, after one orbit of the cluster centre, although the core

of the group remains. This suggests that if the brightest galaxy in the group is

offset from the centre of the group then it will be found in the cluster periphery.

There is also the issue of bias from the numerical approach that must be

considered. The halo finding procedure uses density contrast to define potential

halos, and the density profile to define subhalo radius. As this radius is tied to the

mass proximity to the cluster centre the halo finder can reduce the subhalo size

artificially. The halos are stripped rapidly, yet the galaxy should be unaffected

for far longer than the halo because of its privileged location in the centre of the

subhalo potential well, (Diemand et al., 2007).

An infalling group falls into the cluster as a local density maximum. The

bright central galaxy of that group may outshine the cluster central galaxy. We

see this effect in the Millennium Run SAMs (see the following chapter for details).

Tracking groups into the cluster we find that subhalos and galaxies are rapidly

stripped from the group, within ∼ 1 orbit. This suggests that a bright group

central galaxy should not be within a density maximum for more than one orbit.

Bertone and Conselice (2009) find that more massive galaxies merge more rapidly

with the cluster central galaxy. This provides a potential explanation of the BCG

position. When the brightest group galaxy first falls into the cluster it is in the

local density maximum of the galaxies bound to the group halo. After one orbit

the other group galaxies have been dispersed, but the massive group brightest

galaxy will rapidly merge with the BCG. More work is required to explore this

scenario.
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(a) Spatial separation

(b) Velocity space

Figure 4.8: The distribution of BCGs in observations, (black solid lines), and
N-body subhalos (red dashed lines). Panel a: projected separation and panel
b velocity space separation.
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LUMINOSITY FUNCTIONS

5.1 Introduction

It is in the examination of the luminous properties of galaxies that SAMs must

be carefully constructed and tuned. Many physical processes are required to cor-

rectly model the luminosity distribution of galaxies. The physical prescriptions

discussed in the Introduction to this thesis are all required, including super-

nova feedback, gas infall, radiative cooling, dust etc. Along with prescriptions

to change these parameters into observables by modelling spectophotometry etc.

Particularly important for modelling galaxies are AGN and supernova feedback

effects which reduce the luminosity of the brightest and dimmest galaxies respec-

tively. When galaxies merge with a parent halo all the hot gas of those galaxies is

added to the central galaxy of the halo which is assumed to lie in the halo centre.

We now examine the luminosity function of FoF groups in the semi-analytical

models at z=0. The global luminosity function is usually fit with a Schechter

function, (Schechter, 1976),

Φ(M) = φ∗

(

M

M∗

)α

exp

[

−
(

M

M∗

)]

, (5.1)
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where M is the absolute magnitude of the galaxy, α defines the low end slope, φ∗ is

the function normalisation and M∗ is the position of the knee in the distribution.

This can be used straightforwardly for the SAMs. In order to produce a luminosity

function for redshift survey data, Yang et al. (2008) use the stepwise maximum-

likelihood method, Efstathiou et al. (1988). The profile from the redshift survey

‘as-is’ is not appropriate without modification because the dimmest galaxies are

removed from a sample as the survey distance increases. In order to compensate

for this effect an estimator must be used. The stepwise maximum-likelihood

method assumes that the luminosity function can be parametrised as a set of Np

step functions of width ∆M , such that φ(M) = φk and the best fit weights of φk

identified via a minimum likelihood approach.

We used the luminosity distribution to explore the properties of groups at

different linking lengths because it draws in all the SAM physics, and compare to

the observations of Yang et al. (2008) among others. We also study the magnitude

gap profile and how this is affected by linking length.
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Figure 5.1: Derived SDSS r-band luminosity functions for galaxy groups
constructed with the SAMs described herein: “All” refers to the global
galaxy luminosity function; “LG” to loose groups; “CG” to compact groups;
“vCG” to very compact groups. The dashed/dotted/solid lines refers to the
M B07/M D06/D B06 models, respectively.

5.2 Luminosity Function of FoF Groups

Fig. 5.1 shows how the luminosity function changes with FoF linking length for

different SAM prescription. It is unsurprising that the global luminosity functions

of all the models are similar because the semi-analytic models are designed to

replicate the same observational luminosity function of Blanton et al. (2003) so

it is expected that the models are similar in this regime. At smaller linking

lengths (moving from top to bottom in the figure) there are a decreasing number

of galaxies, in all SAMS, a fact which is more dramatic in the “Munich” variants

(M D06; M B07), as noted in § 4. This suggests that the “Durham” model

galaxies are more centrally concentrated than those of the “Munich” variants,

discussed in detail Chapter 3.

The second, and perhaps more striking, feature of Fig. 5.1 is the relative

dearth of intermediate luminosity (−21 ≤ Mr ≤ −18) galaxies in the M D06
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catalogues (in relation to a simple Schechter (1976) function). This is manifest

in the “wiggle” or “dip” seen in the M D06 group luminosity function that is

not present in the other models. This wiggle becomes more apparent at shorter

linking lengths (i.e., CGs and vCGs).

The M B07 SAM, which employs the same AGN feedback prescription as

that of M D06, shows no such feature in the luminosity function. Weinmann

et al. (2006; fig 3) show a similar wiggle in the luminosity function of groups

in particular mass bins, known as the conditional luminosity function, using the

Croton et al. (2006) SAM (a close “cousin” to the M D06 SAM employed here).

Luminosity function, the magnitude gap, relative populations of vCGs etc. all

suggest that Durham models are more centrally concentrated. A possible reason

for this higher central concentration is largely due to the accretion prescriptions.

If the subhalos in the Munich models accreted on shorter timescales, then once

they reach the central region they are rapidly accreted, whereas in D B06 the

galaxies remain present in the central regions over a longer time, hence those

groups tend to be more concentrated. This potential difference in satellite lifetime

is down to the different techniques the two models use to follow satellites. The

Munich models follow subhaloes until they can no longer be identified, before

initialising an analytical countdown. The Durham models, however, do not follow

subhaloes, and use a different technique to calculate the satellite merging time.

This will be discussed in further detail in the next chapter.

Fig. 5.2 shows the luminosity functions of the three primary SAMs (M D06,

D B06, M B07) and the three primary linking lengths (LG, CG, vCG) under

consideration here, decomposed into centrals and satellites. Fig. 5.3 shows the

best fit profiles to the plots. The M D06 and M B07 centrals are fit by a Gaussian,

while the D B06 model centrals are fit with Schechter functions. All satellites are

fit by Schechter functions. The characteristic shape of the centrals has been
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Figure 5.2: Group luminosity functions for for the three primary SAMs under
consideration (M B07, M D06, D B06). In each panel, the dotted lines correspond
to central galaxies and the dashed lines are for the satellites; the thick solid lines
represent the group luminosity function and the thin solid line defines the global
galaxy luminosity function for reference. The legend M B07, M D06, D B06 refers
to the model as defined above and the number in brackets refers to the linking
length in h−1kpc.
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Figure 5.3: The best fit lines for group luminosity functions for the three primary
SAMs under consideration (M B07, M D06, D B06). Labels as in Fig. 5.2. The
thick dashed and dotted lines show the best fit functions for satellites and centrals
respectively. The thin lines, solid for satellites, dashed for centrals. See Table
5.2 for best fit parameters, but best fit lines for LG centrals in the M D06 (520)
and M B07 (520) are not shown because they show considerable deviation from
a Schechter or Gaussian profile.
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suppressed in the LGs due to the contamination of central galaxies with centrals

of low mass haloes surrounding the main group halo. This is because LGs include

centrals from small mass haloes outside the main group halo.

The luminosity function for CGs, however, shows the aforementioned Gaus-

sian central + Schechter function satellite two-component structure, when de-

composed. The best fit parameters are shown in Table 5.2. The aforementioned

wiggle in the M D06 luminosity function is apparently due to the combined effect

of (i) a general lack of satellites, and (ii) the sharpness (or “peakiness”) of the

central galaxy luminosity distribution. Relative to the D B06 SAM prediction,

this central distribution is very narrow, without the low-luminosity tail associated

with the D B06 model. Further, the satellite galaxy luminosity function is much

steeper in the M D06 model than in either those of D B06 or M B07. The third

panel in the first row of Fig. 5.2 clearly illustrates the signature of the deficit

of intermediate luminosity galaxies in the M D06 SAM. The third row of Fig.5.2

shows that this effect remains at the shortest linking lengths (and the difference

in the absolute number of vCGs is also clear).

The contrast between the M D06 and M B07 models is of particular inter-

est because they use the same AGN feedback implementation, but differ in their

choice of supernovae feedback. This has the effect of reducing the number of low-

luminosity galaxies, whilst simultaneously making the most massive (luminous)

galaxies “over-luminous” (Bertone et al., 2007). Although not clear from 5.2 the

M B07 treatment of supernovae feedback also leads to a more significant popu-

lation of intermediate-luminosity satellites and a shallower luminosity function,

thus smoothing out the “wiggle”.
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Table 5.1: Proportion of galaxy group types, where the three numbers are the
percentage of bright central, peripheral and dim central groups.

Model LG CG vCG
B07 82/02/16 70/22/08 71/23/06
D06 90/01/09 74/21/05 75/20/05
B06 79/00/21 63/12/25 64/15/21

5.3 In SAMs

We define three types of identified groups. The first type, Bright central groups,

are those where the brightest galaxy is also the central; the second type, Periph-

eral groups are those without a central galaxy and, therefore, the central galaxy

is a satellite. The third type of group, dim centrals are those where the central

galaxy is not the brightest. The relative number of groups with each type is

shown in Table 5.1. Except in the F08 model, the central galaxy is the only one

with hot gas and it acquires all the hot gas from infalling satellites. The central

galaxy is also the only galaxy that experiences mergers and grows hierarchically.

There is a striking difference between the three main models for LGs and a

noticeable difference between the Munich and Durham models at shorter linking

lengths. B06 groups show a significant under-abundance of Brightest Group

Galaxy (BGG) centrals compared to D06 groups, while B07 sit between the two

extremes for LGs and is more similar to D06 for denser groups. There is a

significant proportion of peripheral CGs and vCGs, but very few peripheral LGs.

Many LGs consist of galaxies in a large group halo and galaxies in smaller halos

around it.

In Fig. 5.4 the luminosity functions of the first ranked galaxies of our groups

have been decomposed by group type. It can be seen that, in the Munich SAM,

for the denser groups, there is a large difference between the shape of the LF of

central and peripheral groups. The difference is most extreme for the D06 model,

where the low magnitude tail is due, almost entirely, to peripheral groups. On the
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Figure 5.4: Luminosity function of all first ranked galaxies (thin solid line); dis-
tribution of bright central groups (thick solid line); the first ranked galaxies in
peripheral groups (dotted line) and dim central groups (dashed line) . Labels as
in Fig. 5.2. An excess of peripheral brightest group galaxies is apparent in the
Munich models.

contrary, in the B06 model the distribution of groups is not particularly different

for the different group types.

5.4 Conditional Luminosity Function

We now examine the conditional luminosity functions in four different mass bins

for the D B06, M D06, and M B07, SAMs. In this section groups consist of

galaxies within the same dark matter halo. The limit on the minimum number

of members still applies. Even for LGs there is not a one-to-one correspondence

between halo groups and FoF groups.
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Table 5.2: Best fit parameters for groups of galaxies. Schechter functions are fit
to satellite galaxies in all three models and to D B06 centrals. M D06 and Be07
centrals are fit with Gaussian. This Table shows the parameters used in Fig.
5.3. For all satellite galaxy profiles the Schechter parameters, the position of the
knee, the low luminosity slope and the normalisation. For the Gaussian centrals
of M D06 and M B07 the parameters given are the position, deviation and height
of the peak.

linking length Centrals Satellites
M̄ σ H M∗ α φ

M B07 LG N/A N/A N/A −21.1 −1.47 0.0021
CG −21.20 0.65 0.0004 −21.7 −1.47 0.0005
VCG −21.42 0.77 5.03e-05 −21.9 −1.26 6.064e-05

M D06 LG N/A N/A N/A −20.1 −1.18 0.0043
CG −21.35 0.75 0.0003 −20.7 −1.12 0.0018
VCG −21.69 0.91 4.77e-5 −21.1 −1.06 0.0002

M∗ α φ∗ M∗ α φ
D B06 LG −21.56 −0.95 0.0022 −20.7 −1.13 0.0057

CG −21.03 0.20 0.0013 −20.8 −1.09 0.0031
vCG −21.20 0.33 0.0005 −21.0 −1.04 0.0009

We calculate groups based on those galaxies which lie in the same dark mat-

ter halo and subdivide by mass. We plot these mass-dependent luminosity func-

tions in Fig. 5.5, and present the corresponding best-fit Gaussian and Schechter

functions in Table 5.3. The 1013−14M⊙ mass bin shows little evidence for the

“wiggle” (for any of the SAMs) alluded to earlier, whereas the 1014−15M⊙ and

1012−13M⊙ bins show “peaks” in the Munich (M D06, M B07) models, but not in

the Durham (D B06) model. As the satellite luminosity functions are essentially

the same here, the difference is necessarily due to the shape of the central galaxy

luminosity function which is widest for the D B06 SAM, and narrowest for the

M D06 models. The “wiggle” in the M D06 model is particularly prominent in

the lowest mass bin (top right panel), where a number of physical processes be-

come relevant. Bower et al. (2006) points out that at ∼ 2× 1011M⊙ the cooling

rate exceeds the free-fall rate and the halo is no longer in hydrostatic equilibrium.

This has repercussions for the effectiveness of feedback from the central source,
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(Binney 2004), and is used in the Durham paper to explain the break in the lu-

minosity function. Our results indicate that in the Munich models this may have

other repercussions.

For the highest mass bin we can see that the satellite luminosity function is

steepest for the M D06 SAM and shallowest for the D B06 model. The charac-

teristic luminosity at the “knee” of the Schechter function, (M∗), is lowest for the

D B06 model. However, this bin has only a small effect on our groups because

the FoF group luminosity function “wiggle” occurs at lower luminosity than the

wiggle seen in this particular mass bin. The wiggle seen in the group luminosity

function can be traced primarily to the luminosity function in the 1012−13M⊙ bin.

In this mass range, the satellite distribution is fairly steep and the central galaxy

luminosity function relatively narrow and bright.

In contrast with the M D06 SAM, the wiggle in the luminosity function

does not occur with the D B06 model due to the latter’s much broader cen-

tral galaxy luminosity function, a breadth which tends to produce significantly

more low-luminosity centrals compared to M D06. The wiggle is most clear in the

1012−13M⊙ mass bin where the width of the Gaussians are, σD B06 ≈ 1.64σM D06,

and σM B07 ≈ 1.35σM D06. Below this mass, the centrals dominate over satel-

lites and the wiggle is not apparent because more haloes contain simply one

galaxy. The group galaxy luminosity decreases with halo mass in both centrals

and satellites, although more for centrals, which causes the wiggle to shift to

lower luminosity.

Using galaxies in dark haloes compared to galaxies identified using a partic-

ular FoF algorithm it is found that the FoF method produces a narrower central

galaxy profile than the halo method. This does not affect our model-model com-

parison but is important when comparing directly with observations.In figure 3
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Figure 5.5: The conditional luminosity functions in three mass bins for halo-
based groups for the three primary SAMs , at redshift z=0. The top row shows
the profiles of all halo members, the second row show central galaxies and the
bottom row shows satellites. Three mass bins are used, roughly, clusters, large
groups and small groups. The thin solid, dashed and thick solid lines are for
the M B07, M D06 and D B06 models respectively. The best fit Schechter and
Gaussian profiles are shown in Table 5.3

of Weinmann et al. (2006), also Yang et al. (2008), we can see that the con-

ditional luminosity function of groups depends on the method used to identify

group members and the method used to define group masses.

The luminosity and mass distributions of central galaxies are similar for both

Munich (M D06, M B07) models, and significantly wider for the Durham (D B06)

SAM, but the M D06 SAM leads to a much lower luminosity and stellar mass

Schechter function normalisation (φ) than either of the M B07 or D B06 models.

While the turnover in the satellite distributions occurs at approximately the same
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Table 5.3: Best-fit parameters for the inferred conditional luminosity, plotted in
Fig. 5.5. For all satellite galaxy profiles, the Schechter parameters, (the position
of the knee, the low luminosity slope and the normalisation), are shown. For the
Gaussian centrals of M B07 and M D06 the parameters given are the position,
deviation and height of the Gaussian.

log(M) Centrals Satellites
M∗ α φ M∗ α φ
M̄ σ H M∗ α φ

M B07 14− 15 −23.12 0.47 0.00001 −21.03 −1.210 0.00083
13− 14 −21.85 0.58 0.00018 −20.90 −1.150 0.00208
12− 13 −20.94 0.76 0.00124 −20.41 −1.042 0.00230

M D06 14− 15 −22.74 0.44 0.00001 −21.48 −1.50 0.00031
13− 14 −21.67 0.52 0.00020 −21.36 −1.47 0.00078
12− 13 −20.88 0.55 0.00171 −20.67 −1.45 0.00106

D B06 14− 15 −21.2 2.33 0.00001 −20.84 −1.089 0.00160
13− 14 −20.7 1.47 0.00033 −20.66 −1.093 0.00289
12− 13 −20.3 0.36 0.00419 −20.26 −1.047 0.00254

position in each of the SAMs, the low-mass end slope is steepest for the M D06

SAM and, as noted previously, the M D06 centrals’ distribution is roughly two-

thirds the width of that of the M B07 and D B06 SAMs. This suggests that, as

with our FoF groups, the peak is due to a relatively sharp central peak and a

dearth onof intermediate satellites. The behaviour of the stellar mass function

essentially echoes that of the luminosity function and Munich groups tend to have

thinner profiles, except for peripherals compared to D B06.

The Munich galaxy types are decomposed into those galaxies in the centre of

subhalos and those where the galaxies subhalos are unresolved. The steepness of

the low luminosity end of the luminosity profile is due to an excess of satellites in

unresolved subhalos. Additionally the stellar mass of galaxies in Munich models

is not reduced by stripping. Maybe a fraction of low luminosity satellites would

fall below the Mr = −17 limit we imposed once this effect is taken into account.

Should this effect be included the distribution may flatten, but fewer vCGs would

be found.

Y08 shows the CLFs for SDSS groups. The luminosity functions are produced
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using the Y08 study of the conditional luminosity function of SDSS DR4 galaxies.

They are fit modified Schechter and Gaussian functions to the satellite and central

galaxy luminosity distributions. The functional forms are,

Φcen(L|M) =
1√
2πσc

exp

[

(logL− logLc)
2

2σ2
c

]

, (5.2)

Φsat(L|M) = φ∗
s

(

L

L∗
s

)(α∗

s
+1)

exp

[

−
(

L

L∗
s

)2
]

, (5.3)

where, L is the luminosity, Lc is the mean position of the Gaussian, σc is the width

of the Gaussian, φ∗
s is the normalisation of the modified Schechter function, α∗

s is

the low mass slope and log(L∗
s) = log(L∗

c) − 0.25 and is the position of the knee

of the modified Schechter function.

Y08 provide the best fit parameters, which we compare to the M D06 and

D B06 models using the same mass cuts as Y08. In Fig. 5.6(a) and Fig. 5.6(b)

we show the model and Y08 group luminosity functions. Each model diverges

quiet noticeably from the observations. These plots show the luminosity functions

of all galaxies which are members of groups within a specific mass range divided

by the total number of groups in that mass range.

We show the entire observational mass range in each plot because the different

methods of identifying mass in the model and the observations may include a

systematic difference.

The best fit curves presented in table 1 of Y08 are compared with luminosity

functions of the D B06 and M D06 models. The resulting plots are shown in Fig.

5.6(b). The normalisation of the plots is the number of galaxies per luminosity per

group. That is the standard luminosity function divided by the number of groups.

Panel ‘a’ shows the satellite galaxy distribution. It appears that the luminosity

function of galaxies in each mass bin correspond best to Y08 luminosity function

of the same mass bin.
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(a) Satellite galaxies

(b) Central Galaxies

Figure 5.6: The conditional luminosity function of the models, D B06 (solid
black line) and M D06 (dashed line) plotted over the CLFs of Y08 (shown in
red). The number quoted being the centre of each mass bin and the box width
being ∼ 0.31 mag. In panel ‘a’ the top pair of lines are the 1014.58M⊙ cut, the
next is the 1013.94M⊙ cut etc, down to 1012.16M⊙. The numbers on the panels are
the log(Mass) of the parent halo in solar masses.
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The shape of the profiles are considerably different for the CLFs are previ-

ously mentioned. For low mass groups there are far fewer satellites than in the

observations, although the M D06 model has more galaxies in the halo. The

1012.75M⊙ groups show that M D06 groups produce more low mass galaxies. The

mass given by Y08 seems to be closer to 2.24 times larger than the closest equiv-

alent in the Millennium Run, given the scaling of the luminosity functions. In

general the number of galaxies per group with low luminosity is higher in the

M D06 model than in the D B06 model for satellites, although the D B06 model

has more bright galaxies. There is some evidence of the dearth of intermediate

luminosity galaxies in M D06 at the high mass end.

Weinmann et al. (2006) note that the method used by Y08, presented in

Yang et al. (2005), artificially narrows the central galaxy luminosity function.

This is because their iterative technique uses the brightest galaxy luminosity

in the derivation of the group halo mass, while in the models there is no such

direct linking of mass and luminosity. However, even taking this into account,

there are significant differences between the models and the observations. The

M D06 model shows that the low mass group centrals peak in the same place at

the observations while the others are somewhat displaced. However, the D B06

groups are even wider than the M D06 groups.

However, the D B06 groups still look like Gaussians, while for FoF groups

they look like Schechter function. This, we conclude, therefore, is the result of

the higher proportion on non-central BCGs in this model. As the observed groups

use the same criterion (the central is the BCG) we can state that the D B06 model

is less true to the observations than the M D06 model in this respect. There is

most divergence in the three data sets for low mass halos, particularly for the

lowest mass satellites.

We note that the majority of group halo hosts in the models lie in the upper
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centre region of the distribution. The median vCG has a mass of 1.7×1013M⊙ for

both M D06 and D B06, but with considerable variation in each case. This means

that the profiles closest to this value are more important to the analysis of vCGs

than further away. In Fig. 5.4 we see that the models are reasonably similar at

this point, although the peak in the central luminosity function is greater in the

Munich variant.

This also suggests that the relative lack of vCGs in M D06 compared to D B06

is due to the ‘placement’ of galaxies in groups rather than the absolute numbers.

In the following section we examine the possible reasons for the dearth of galaxies

in CGs and vCGs.

5.5 Magnitude Gap

The magnitude “gap” between the first- and second-ranked (and, indeed, lower-

ranked) galaxies within a group can be used as a fair predictor of the group

(or halo) age (von Benda-Beckmann et al., 2008), as the central galaxy tends

to grow unceasingly with time via satellite accretion/stripping. This process

inevitably increases the magnitude gap. This process is controlled by feedback

processes in the central galaxy (Section 2) and by infalling galaxies. Taken to its

extreme, such an effect gives rise to the so-called “fossil groups”, which are groups

with a huge magnitude gap most likely caused by a lack of recent galaxy infall

onto the group (D’Onghia et al., 2005; Milosavljević et al., 2006; Sommer-Larsen,

2006; Dariush et al., 2007; Sales et al., 2007; van den Bosch et al., 2007; Dı́az-

Giménez and Mamon, 2010; Jones et al., 2000, 2003; Mendes de Oliveira et al.,

2006; Cypriano et al., 2006; Santos et al., 2007; Vikhlinin et al., 1999). However,

Zibetti et al. (2009) contradict the above papers, showing that although there is

a high magnitude gap in these objects, there is no apparent lack of substructure.
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Figure 5.7: Conditional (mass-dependent) magnitude gaps between first- and
second-ranked galaxies for the SAMs included in this study. Thick solid, thin
solid and dashed lines are for D B06, M B07 and M D06 groups respectively.
Panels A-C are for halo-based groups subdivided by group mass, and panels G,K
and P are for all FoF-groups regardless of mass. Panels D-G are for LGs, panels
H-K are for CGs, and panels L-P are for vCGs. The vertical line shows the cut
off for Fossil groups (Sales et al. 2007). The numbers in each panel give the
percentage of groups which are fossil systems, and, in brackets, the total number
of groups in each mass bin.The first number is for D B06, the second for M D06
and the third for M B07.
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In Fig. 5.7, far right column, we compare the magnitude gap distribution be-

tween first and second ranked group galaxies in both the suite of SAMs employed

here and the observations (both in the SDSS r-band). Both the Durham and

Munich SAMs appear to provide only limited matches. The M D06 model (and

to a lesser extent, that of M B07) shows a preferred magnitude gap of ∼1 mag

between the two most-luminous galaxies in the model groups (particularly in the

CGs and vCGs), while the D B06 SAM predicts more equal luminosity first- and

second-ranked group galaxies. On the other hand if we compare to the results of

van den Bosch et al. (2007) we find that we have far fewer fossils (LGs) in the

highest two mass bins for all three models but more for M D06 groups in the

lowest mass bin.

A fairer comparison of the model predictions with the observations must take

into account the selection effects inherent within the data. Specifically, the data

upon which these results are based have (i) a limited dynamic range of ∼2 mag,

Lin et al. (1996) which is driven by minimum signal-to-noise requirements, and (ii)

discard groups that contain fewer than four galaxies within ∼2 mag of the first-

ranked galaxy. We have imposed comparable selection effects upon the models,

and the impact upon the luminosity functions of the first- and second-ranked CG

galaxies is shown in the right hand panels of Fig. 5.8. The figure shows that the

turnover in the Munich models is no longer shown in the heavily selected data.

The entire range of the profile is curtailed and the models and data now lie closer

to one another. However, the models produce a significant shortage of pairs with

low magnitude gaps for LGs and a higher population of groups with a magnitude

gap of 1. This effect is more extreme in the Munich models but is still present in

D B06.

When implementing this limiting criterion the left hand column of Fig. 5.8

demonstrates that the models appear to match with observations in this case,
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most significantly in the bottom panel, showing vCGs. In the LG catalogue (Top

left panel), the models suggest that the magnitude difference between the bright-

est and second brightest galaxies is slightly too large. A possible interpretation

of this is that real groups are accreting large galaxies on their peripheries (which

are not found in the vCG catalogue because it probes the centres of groups),

thus producing the broader profile. These infalling galaxies are rapidly stripped

in the models resulting in the convergence between model and observation with

decreasing linking length. Fig. 5.7 however, shows that the unrestricted magni-

tude gap profile widens slightly with density suggesting that there is a population

of bright infalling galaxies where the infalling galaxy is also the brightest in the

group. This seems contradictory but Fig. 5.8 shows a similar broadening in the

observations. The small sample size of observed compact group catalogues means

that care should be taken before drawing firm conclusions from this trend and

that larger samples are required to test this hypothesis.

The central galaxy of a group in M D06 is too bright compared to the bright-

est satellite. This may be because the central galaxy is so privileged in that only

it undergoes merging and hot gas accretion. The D B06 model is closer to the

magnitude gap distribution of the observations, possibly due to the higher pop-

ulation of none central brightest group galaxies. The SAMs define the central in

each output to have the properties of the central of the largest progenitor halo in

the previous output, but if both halos are similar in mass there is no physical jus-

tification for this extremal strict difference. Also, because only the central galaxy

merges there can be no satellites which grow while in the group environment,

favouring the central still further.

When the dynamic range is increased to 3 mag the models begin to diverge

clearly, with the M D06 model both “broadening” and shifting to lower lumi-

nosity, relative to the distributions, based upon the M B07 and D B06 SAMs
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Figure 5.8: Left column: Normalised counts of the magnitude gap between 1st
and 2nd ranked galaxies. The thin solid, dashed and thick solid lines are for
M B07, M D06, D B06 models. The top left panel shows Tago et al. (2008)
groups (dot-dashed line), Tucker et al. (2000) groups (blue dotted line) and Yang
et al. (2008) groups (solid red line). The middle panel shows the results for CGs
in SAMs, and the bottom left panel shows Allam and Tucker (2000) compact
groups along with vCGs. Right column: The upper panel shows the second
ranked luminosity function for LGs, and the lower panel shows the distribution
of first ranked galaxies. Line styles are the same as for the right column. Data
are limited to those groups with a first ranked to fourth ranked magnitude gap
of 2 magnitudes, to mimic a survey dynamic range.
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Table 5.4: Percentage of groups with magnitude gap between first and second
ranked galaxies greater than 2 magnitudes (top) and less than 0.5 magnitudes
(bottom)

gap M B07 M D06 D B06
LG > 2 15.2 20.6 10.8
CG > 2 23.8 28.4 14.9
vCG > 2 29.8 27.5 18.2
LG < 0.5 28.7 22.7 35.6
CG < 0.5 19.7 16.4 30.4
vCG < 0.5 18.7 17.8 27.5

(right most column of Fig. 5.7). The turnover in the profiles becomes distinct

at this dynamical range, whereas before it was not possible to easily distinguish

the two models. Table 5.4 shows the populations of groups in the two extreme

cases of small and large magnitude gap. The differences are very large between

the Durham and Munich models. We also note that the profile in Yang et al.

(2008) is distinctly wider than the profile for Tago et al. 2010, suggesting that

Yang et al. has a higher dynamic range than Tago et al. groups. At a dynamic

range of 4 magnitudes the three models shown are distinctly different and Yang

et al. closely matches the D B06 model with no sign of the turn over, as noted

by Dariush et al. (2010).

Although the global luminosity function of galaxies is well matched by ob-

servations the profiles for the first and second ranked galaxies shown in Fig.5.8

tend to be dimmer and wider than observations. Notable is the second peak in

the luminosity function of the M D06 model caused by an excess of dim first and

second ranked galaxies although this may be due to the specifics of the group

finder.

We next analysed the magnitude gap statistic for the conditional halo based

groups. What is readily apparent is that the “Munich” (M D06; M B07) mod-

els are both “flatter” (in the sense of showing little preference for either equal-

luminosity first- and second-ranked group members (0 mag gap), or 1 mag gaps
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Figure 5.9: Lines as in Fig. 5.8 but with a first to fourth ranked magnitude gap
of 3. Here the D B06 model essentially matches the Y08 data.
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between the same) and “broader” than the “Durham” (D B06) models, but they

trace each other reasonably well in the two highest mass bins; the Munich models

only diverge in the lowest mass bin, as noted earlier in Fig. 5.5. This is where

the M D06 model “turns over” and possesses its most obvious “peak”, while the

D B06 and M B07 models appear most similar. We conclude therefore that this

turnover in the Munich models’ luminosity functions can be traced to the “peak”

in the lower mass bin of the associated conditional luminosity function.

Dariush et al. (2007); fig 4a, Smith et al. (2010), show a comparable repre-

sentation of the top-left panel of our Fig. 5.7, employing the Croton et al. (2006)

SAM as applied to the Millennium Simulation (in the R-band, and for a slightly

different mass range, but effectively similar to what we have shown.) Dariush

et al. (2007) point out that the magnitude gap profile of LGs in Croton et al.

(2006) model is similar to ln Λ=2 theoretical model of Milosavljević et al. (2006),

where ln Λ is the Coulomb logarithm that controls the merger rate. When the

Croton et al. (2006) SAM is compared with the SDSS C4 catalogue (Miller et al.,

2005), as is done in fig. 4c of Dariush et al. (2007) the apparent mis-match at

small first- and second-ranked magnitude differences between the Munich SAM

and the data become apparent - i.e., the SDSS C4 catalogue shows a magnitude

difference distribution which prefers approximately equal luminosity first- and

second-ranked galaxies in groups and clusters, consistent with the Durham SAM

predictions.

The proportion of first-ranked (by luminosity) galaxies being centrals is suf-

ficiently high to make the transition from the theoretical definitions of “central”

and “satellite” galaxies into the observational regime of “brightest” and “second

brightest” group galaxies - i.e., we can associate the brightest group galaxy with

a central, and the second-brightest galaxy with a satellite. This then allows us to
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plot the luminosity function of first- (M1) and second-ranked (M2) group galax-

ies, as shown in Fig.5.8, and associate the distribution in M1 with model centrals,

and the distribution in M2 with model (brightest) satellites.

In Fig. 5.8, top right panel we can see that the first-ranked galaxy luminosity

function of D B06 is broader and flatter than those of the two Munich SAM

variants; as expected, the M B07 model galaxies are on average more luminous.

For the distribution of second-ranked galaxies, the M D06 galaxies are on average

∼1 mag less luminous than the Durham model galaxies, and the distribution

is broader, peaking at approximately 3.7 rather than 4.1, (Fig. 5.8) which is

as expected from the steep luminosity function slope for satellites. When we

apply a pseudo-empirical dynamic range limitation of 2 mag to the Tucker et al.

(2000) and Allam and Tucker (2000) data sets, the differences between the various

SAMs become less apparent. The galaxy luminosity functions are broadened as

a whole, with peaks in the distributions which are comparable with each other

(Fig.5.8,bottom right panel).

Milosavljević et al. (2006) however, note that the r-band luminosity gap dis-

tribution of 730 galaxies from SDSS C4, (Miller et al., 2005), shows some degree

of flattening / turnover. This effect is not as significant as for the M D06 model,

above, but suggests that the turnover is a property of clusters rather than all

groups.

5.6 Satellite-Satellite Mergers

One theory advanced in the above sections is that the shape of the magnitude

gap is in part due to the lack of satellite-satellite merging. The Mitaka code by

Nagashima and Yoshii (2004) has the option of implementing or not implementing

this process.

The galaxies which have merged with the halo but not yet merged with the
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central galaxy are assumed to merge at a rate governed by,

τcol = 1.48× 108
M3

(

Vc

Vg

)4

V 3
c M

2ng

(5.4)

where M is the progenitor mass, Vc is the circular velocity of the halo, Vg is the

circular velocity of the galaxy, ng is the number of galaxies in the halo. We run the

code to produce 1000 clusters of M = 1 × 1014M⊙ with a minimum progenitor

mass of 1.8 × 1010M⊙. When the satellite-satellite merging is switched on the

galaxy-galaxy richness falls by ∼ 10%, but there is no difference between the M1-

M2 magnitude gap profile. This suggests that the presence of no satellite-satellite

merging is a possible explanation of the higher compact group density identified

by McConnachie et al. (2008), although not sufficient alone.

5.7 Conclusions

By constructing luminosity functions of galaxy groups (ranging from loose to very

compact) using variants of several leading SAMs as applied to the Millennium

Simulation, we have explored an astrophysical regime in which the SAMs have

not previously been inter-compared in great detail.

Several obvious differences between the M D06 and D B06 (i.e., loosely speak-

ing, the Munich and Durham variants, respectively) became apparent, including

an intermediate luminosity “wiggle” in the M D06 group luminosity functions

not readily apparent when using the D B06 SAM. We trace the origin of this

wiggle to two competing effects resulting from the underlying physics within the

M D06 SAM - a steeper faint-end slope to the satellite luminosity function and

a narrower distribution to the central galaxies’ luminosity function. This is most

likely due to the lack of mass stripping in satellite galaxies without enveloping

subhalos, type 2 groups, and the particular formulation of AGN in the Munich
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models. A systematic exploration of parameter space in the respective SAM may

however, be required to further isolate the cause of the difference.

Observations conducted by Weinmann et al. (2006) suggest that such a wiggle

in the group luminosity function might exist, similar to that seen when apply-

ing the M D06 SAM. However, these same observations tend to show a steeper

magnitude gap profile, between first and second ranked galaxies, than can be

seen in any of the SAMs. We also see significant “flattening” in the M D06 gap

distribution (i.e., a comparable likelihood for first- and second-ranked galaxies

to be of equal luminosity, as to have a one magnitude luminosity difference), a

feature that is not consistent with the data sets described by Miller et al. (2005)

or Dariush et al. (2007).

The models applied to the Millennium simulation produce noticeably different

galaxy group properties. The group luminosity functions diverge with increasing

galaxy density. This means that, for example, the cores of clusters in the various

models have different properties, while the properties of the entire cluster will be

more similar. As the same dark matter background was used in the three models

there are similar numbers of groups and clusters in the models, but according to

our definitions, the denser structures are several times more common in the D B06

model. The M D06 model luminosity function shows a peak for the brightest

galaxies that does not appear in the Durham models and is less evident in M B07.

The magnitude gap profiles of the models also differ between the Munich and

Durham models, demonstrating a different profile at the small gap part of the

distribution. All models show a shallower, wider magnitude gap profile than the

observations. This suggests that modellers need to improve how the central /

bright satellite luminosities are calculated. The designation of a single central

galaxy which is modelled in a manner that is different to that for the other group

members is a simplification which will may need to be improved upon.
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The existence of more, denser, CG and vCG groups in the Durham models

compared to the Munich sample suggests that the different merging time-scales

and implementations of satellite accretion can have noticeable effects on the pre-

dictions of the models. Similarly the fact that the Durham models show a shorter

mean galaxy-galaxy separation, indicates that these groups are denser. This sug-

gests that merging time-scales are longer in the Durham groups. This is backed

up by the luminosity function of groups because the evident ’wiggle’ in the M D06

groups appears to be due to a smaller population of satellites and brighter cen-

trals, which is a direct result of the rate at which satellite galaxies are accreted

onto the central galaxy. However, while observations show a similar ‘wiggle’ in

group luminosity functions, suggesting the shorter merging time is more physical,

McConnachie et al. (2008) find fewer compact groups in their field than in the

SAMs, suggesting the merging time-scale should be even shorter. The limited

magnitude gap profile indicates that the gap between central and satellite galax-

ies should be smaller, which may be due to additional physics that is not yet

implemented in the models.
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MERGER TREES

6.1 Introduction

In the previous chapters we noted that the Durham models produce a higher num-

ber of vCGs compared to the Munich models. We suggested that this difference is

due to different satellite galaxy lifetimes. We hypothesised that satellite merging

times are shorter in the Munich models. This is needed in order to remove galax-

ies from groups and clusters. When a galaxy falls into a group or cluster its orbit

decreases due to dynamical friction. This means that older galaxies are expected

to lie closer to the centre of the cluster. If satellite galaxies last longer, we would

expect clusters to be more centrally concentrated, thus producing more vCGs,

etc. The Durham and Munich models use very different techniques to calculate

the merging times of satellites.

Binney and Tremaine (2008) relate the merging rate of a satellite galaxy to the

mass and circular velocity of the host halo, the mass of the satellite and the radius

of the satellite from the cluster centre. This simple model has been frequently

tested by comparison to numerical simulations (Conselice, 2006). Bertone and

Conselice (2009) calculates the lifetimes of satellite galaxies according to satellite

galaxy mass rather than cluster mass but find that between z=3 and z=1 a
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significant decrease in galaxy lifetimes can be seen.

In this Chapter we will expand on our description of the merger trees presented

in Chapter 1, and examine the merging times of galaxies in clusters. We will then

attempt to explain the different vCG and CG populations.

6.2 Calculating Merging times

The Millennium Run produces 64 outputs spaced in time according to,

log(1 + zn) = n(n+ 35)/4200, (6.1)

where z is the redshift and n is the output number. These are then used to

build up the merger trees in each model.

Haloes are assembled using an FoF algorithm (Huchra and Geller, 1982),

forming haloes with a mean overdensity of 200, which is the same as a virialized

group.

6.2.1 Munich

The Munich model, (Croton et al., 2006), uses SUBFIND, (Springel et al., 2001),

to compute the dark matter density field of each FoF halo and identifies subha-

los. These subhaloes are extracted from the parent halo during the unbinding

procedure, effectively lowering the mass by ∼ 10%. This means that halos in

the Durham models are ∼ 10% more massive than Munich halos. The spheri-

cal overdensity approach is then used to define the virial mass of the halo. The

centre of the group is the minimum of the gravitational potential. The sphere is

then expanded until the mean overdensity is 200 times the critical density of the

universe.

The merger trees used in the Munich models are described in Springel et al.
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(2005). Halos are tracked by following particles from one output to the next,

weighted by binding energy. The halo with the highest number of weighted par-

ticles is defined as the descendant halo. For each (sub)halo a unique descendant

is known, and the merger tree contains a list of halo progenitors. There is no

one-to-one correspondence between halos and FoF groups, because not all FoF

groups contain bound structures. Halos are arranged by progenitor mass. The

central galaxies of halos or subhalos can merge, but satellites without a subhalo

can only merge with a galaxy at the centre of a halo or subhalo.

6.2.2 Durham

The Durham model merger trees are described by Harker et al. (2006) and Helly

et al. (2003). SUBFIND is applied but subhalos are not followed by the merger

trees. Satellite galaxies can only merge with the group central galaxy. One

problem comparing the two sets of merger trees involves the slightly different

methods used to assemble them. The Durham approach produces galaxies that

first appear in the catalogue as a satellite, without a central phase. Occasionally

main branch galaxies can have satellite status for several outputs. This does not

occur in the Munich model.

6.3 Dynamical Friction Time

6.3.1 Munich

Substructure is followed until it can no-longer be identified, (Croton et al., 2006).

This occurs when its mass falls below 1.7× 1010h1M⊙. At this point the merging

time is given by the equation of Binney & Tremaine (1987),

τfriction = 1.17
Vvirr

2
sat

Gmsat ln(Λ)
(6.2)
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where msat is the mass of the satellite orbiting in an isothermal halo of virial

velocity Vvir = (GMvir/rvir)
1/2) and Λ = 1 +Mvir/msat where Mvir is the virial

mass and rsat is the distance of the satellite from the cluster centre. rsat and msat

are taken from the last time the subhalo could be identified. The merging time

depends on the mass and radius of the cluster, the mass of the satellite and the

distance of the satellite from the cluster centre. The countdown is reset when

the parent halo merges with an even larger halo. The outcome of the galaxy-

galaxy merger will depend on the baryonic mass ratio of the progenitors. The

main progenitor will have the larger mass and the stars and gas of the lower mass

galaxy will merge with this progenitor.

6.3.2 Durham

The dynamical friction timescale in this model is similar to the approach of Cole

et al. (2000). However, the actual implementation comes from Benson et al.

(2002), which is considerably more complex, but provides similar results as the

Cole at al. equations according to Benson et al. (2002). Cole et al. define the

merging timescale as:

τfriction = fdfΘorbit
0.3722πrvirMvir

Vvirmsat ln Λ
, (6.3)

where fdf is a tunable parameter, given to be 1.5, Λ = Mvir/msat and Θorbit

is,

Θorbit =

(

J

Jc(E)

)0.78(
rc(E)

rvir

)2

, (6.4)

where E and J are the initial energy and angular momentum of the satellite’s

orbit and rc(E) and Jc(E) are the energy and angular momentum of a circular

orbit of the same energy.
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In the Benson et al. (2002) approach the orbit of the satellite galaxy is followed

more closely. The initial orbital energy and angular momentum of the satellite

upon merging is calculated. Two important parameters are defined, rc(E)/Rvir

which parametrises the median binding energy of the halo, and J/Jc which mea-

sures the orbital ellipticity. rc(E)/Rvir is chosen to be constant, with a value of

0.5 and J/Jc can vary between 0.1 and 1.0 at random. Given these parameters,

the apocentric distance of the satellite’s orbit is found, and the orbit equations

are integrated. The code keeps track of tidal stripping to remove mass from the

satellite. The new mass is then used for the next iteration of the orbit equations.

The equations of motion are integrated until it is terminated by one of three

conditions:

1. The simulation reached z=0.

2. The host halo merges with a larger halo.

3. The satellite galaxy merges with the group central galaxy.

Satellite-central merging takes place when the orbital radius calculated from

the orbital equations of Benson et al. (2002) falls below Rmerge. Rmerge is the

sum of the half mass radius of the central and satellite galaxies. This method the

satellite galaxy can also loose baryonic mass.

The effect of this is that although these merging times match Cole et al. (2000)

generally, some satellites have very long merging times as they loose a great deal

of mass through tidal stripping.

6.4 Method

Merger trees are supplied for both the Durham and Munich SAMs. In order to

test the lifetimes of satellites in galaxies we explore the merger trees for both

galaxies and halos.

160



CHAPTER 6

Figure 6.1: The masses of the linked pairs of halos from the two models. The red
line is the 1:1 line.

We identify like pairs of the most massive clusters in both the D B06 and

M D06. We do not use the full Millennium Run but use the models applied to

the millimillennium simulation 1. The cluster pairs are matched according to the

position of the most bound particle of the cluster halo. The main systematic

difference in the two sets of clusters is that D B06 clusters are, on average, 10%

more massive than their fellows in M D06. Figure 6.1 does not simply apply to

the clusters but all matched pairs of halos over the entire mass range.

Firstly, we extract the merger trees for halos in each model and follow the main

branch of the merger tree. This lets us follow the main branch of the cluster back

in time. The main branch is the track of the most massive progenitor of the

cluster.

We decided to trace like clusters, and found the main branch of each. However

the main branches of the M D06 and D B06 clusters are not necessarily the

same. Where the main branches of the matched clusters different we discard

1This uses the same cosmology and resolution as the main Millennium Run but the box size
is only 64.5h−1Mpc
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those clusters from our sample. If the D B06 main branch galaxy is found to

be a satellite at any point we also discard that cluster pair. Of our 50 clusters,

the first cut leaves 33 clusters with the same main branch, after the second cut

we are left with 19 objects. This means that any scatter in the results of the

matched pairs is due to differences in dark halo identification technique and the

SAM implementation.

In each time step we look for galaxies which merge with the central galaxy of

the cluster. We then identify the merging history of these galaxies. To do this

we used exactly the same procedure on haloes which merge with the clusters.

Figure 6.2 shows that the D B06 model experiences more cluster-halo mergers

than the M D06 model. If we take the smallest subsample of 19 clusters we can

see a very tight correlation between halo infall. This difference is due to the larger

volume of D B06 clusters and the additional time M D06 halos exist as subhalos.

M D06 shows considerably more merging galaxies with the central, indicative of

a faster merging rate. Figure 6.3 shows that for each cluster the merging rate of

halos is similar and tightly correlated with halo mass and that D B06 galaxies

have a lower number of mergers.

For our subsample of 19 clusters we follow those galaxies which merge with the

cluster central galaxy back in time, and we can identify when that galaxy enters

the cluster. We then calculate the time elapsed between the galaxy entering the

cluster and it merging with the central galaxy, Fig. 6.4. We also identify satellite

galaxies at z=0 and identify when they enter the host cluster. We plot this in

Fig. 6.5.
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Figure 6.2: Shows the number of mergers in matched pairs of galaxies. Top panel:
The number of satellite-central galaxy mergers. Bottom panel: The number of
halo-cluster mergers. The blue dashed line is the 1:1 ratio. Red squares illustrate
the effect of discarding clusters, wherein the D B06 model central galaxy becomes
a satellite for several time steps.
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Figure 6.3: Shows the number of mergers in each model (D B06 are squares,
M D06 are stars). The top panel shows the number of satellite-central galaxy
mergers, and the bottom panel shows halo-cluster mergers. Red symbols illustrate
the effect of discarding clusters, wherein the D B06 model central galaxy becomes
a satellite for several time steps (approx 1 Gyr).
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6.5 Merging times

We have described two sets of data in the previous section:

1. Galaxies which merge with the cluster central

2. Those which are cluster satellite galaxies at z=0.

6.5.1 Merged galaxies

Figure 6.4 shows the distribution of merging times in our cluster sample. We see

that more galaxies merge rapidly in both models and the distributions are the

same within the error, Table 6.1. Figure 6.4 shows that the trends in merging

time are essentially the same. We do, however, see a difference in panel ‘A’ of

Fig. 6.5. In this plot we can see that the additional galaxies which merge in

the M D06 model fell in at very early times compared to the D B06 model. At

more recent times the two models show no significant differences. Bertone and

Conselice (2009) note that there is an additional 1 Gyr in the Munich models

when the galaxy lies within the subhalo of a cluster, which may account for the

difference in galaxy lifetime.

6.5.2 Satellite galaxies

Figure 6.5 panel ‘B’ shows the time at which each satellite galaxy enters the clus-

ter. There is a population of satellites with early infall times in the B D06 model

that is not present in M D06. If we add together the infall times of unmerged

Table 6.1: The mean, median, standard deviation of the merged galaxy lifetime
and number of galaxies for each model.

Model x̄ x̃ σx n
D B06 2.22 1.40 2.33 183
M D06 2.85 1.87 2.69 339
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Figure 6.4: Shows the distribution of galaxy merging times normalised by the
total number of galaxy mergers. The black line is the D B06 model and error
while the red dotted line is for the M D06 model. Errors are Poisson. The number
of merging galaxies in each model is quoted in the panel.

satellites and merged galaxies we can see that these early galaxies are the same

as those which cause the merging excess in panel ‘A’.

Despite the short merging time of galaxies which do eventually merge there

are far more galaxies in both models which never merge. We can set the upper

limit of galaxy ages in M D06 to be ∼ 10 Gyr, but in the D B06 model we can

have satellites with potential ages greater than the Hubble time.
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Figure 6.5: Shows the time of infall of galaxies into the cluster. Panel A shows
the infall time of halos which merge with the central galaxy. Panel B shows the
infall time of galaxies which do not merge. Panel C shows the sum of panel A
and panel B. The x axis is the look back time. The solid black line shows the
D B06 result and the red dashed line is for the M D06 model.
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6.6 Conclusion

In this chapter we examined the lifetime of satellite galaxies in the different

models, in an effort to reconcile the different population of vCGs. We found,

however, that measuring the time between a galaxy entering the parent halo and

merging is essentially the same in each model (D B06 galaxies take only 400 Myr

more). We note that far fewer of the galaxies which enter a group halo merge

in the D B06 model. However, there are similar numbers of galaxies entering a

given halo in each model. This can be reconciled by the existence of a considerable

population of galaxies which merge in the M D06 model and do not merge in the

D B06 model. Thus, the Durham model produces a bimodal satellite population.

A significant number of galaxies merge in a timescale comparable to the timescale

of merging in the M D06 model, another population merges in a time longer than

the age of the universe. This second population was alluded to in Benson et al.

(2002), which first presented the merging timescale method used in the D B06

and D F08 models. Before 10 Gyr almost all galaxies in M D06 will merge, in

D B06 this is only 20%. Thus we have a population of galaxies which merge

relatively quickly, another which merges over periods greater than the Hubble

time on D B06 and a population in M D06 which lasts 10 Gyr.

Thus, this explains the richer groups and clusters in the Durham models,

and why Durham groups and clusters appear more centrally concentrated. The

relative lack of mergers in the Durham models may also explain the relative

brightness of the first ranked galaxies in the Munich models. More mergers mean

that the brightest group galaxies are fed more gas and stars than other galaxies,

especially at early times. This has the effect of increasing the magnitude gap and

preventing the formation of the dim central galaxies seen in the D B06 groups.
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POLAR DISC GALAXY

7.1 Introduction

One of the original reasons for postulating the existence of dark matter was the

flatness of the rotation curve of disc galaxies. The circular velocity of gas in

galaxy discs was found to be non-keplerian far beyond the edge of the stellar

disc, suggesting an invisible mass distribution surrounding the galaxies. From

these observations the spherical density distribution of the inner region of the

dark halo could be calculated. A polar disc galaxy (Whitmore et al., 1990),

originally called a ‘multispin’ galaxy by Rubin (1994), is characterised as having

two orthogonal discs. This characteristic of polar disc galaxies makes them useful

in finding the shape of the dark matter halo. Using the orthogonal line-of-sight

velocity profiles, it is possible to probe the shape of the inner region of the dark

matter halo (Casertano and van Gorkom, 1991; Schweizer et al., 1983; Sackett

et al., 1994; Iodice et al., 2006). Bailin et al. (2005) show that galaxy discs are

normally aligned to the minor axis of the dark halo in the inner region, and then

diverge at greater distances.

Polar disc galaxies are usually of type S0, surrounded by an orthogonal disc

of gas and stars. Less than 1% of S0 galaxies have been found to contain polar
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discs (Macciò et al., 2006). This, however, is a lower limit, because the polar

disc tends to be diffuse relative to the old stellar disc, and can only be seen

edge on. To identify polar discs at other inclinations, detailed kinematics are

required (e.g. Chilingarian et al. (2009), Reshetnikov (2004)). Most polar disc

galaxies commonly share various properties including: extended ring structure,

(van Gorkom et al., 1987; van Driel et al., 1995, 2000; Arnaboldi et al., 1997;

Iodice et al., 2002); young stellar populations (Gallagher et al., 2002; Karataeva

et al., 2004; Cox et al., 2006); spiral arms (Arnaboldi, 1995; Iodice et al., 2004; Cox

et al., 2006) and continuous, as opposed to bursty, star formation (Reshetnikov

et al., 2002; Karataeva et al., 2004).

The literature presents several scenarios for the formation of a polar disc

galaxy:

1. Head-on wet mergers with low initial angular momentum (Bekki, 1998).

2. Accretion of a gas-rich galaxy that is disrupted in a ring around the host

(Schweizer et al., 1983; Reshetnikov and Sotnikova, 1997; Bekki, 1998;

Tremaine and Yu, 2000; Sparke and Cox, 2000; Bournaud and Combes,

2003).

3. Cold gas accretion along filaments (Macciò et al., 2006).

Neither of the former two scenarios account for the high mass of the polar

structure, its extended structure, or the lack of induced starbursts. These scenar-

ios also suggest that polar discs should preferentially lie in high density regions,

yet this is not observed (Brocca et al., 1997). Cold accretion, however, puts no

limit on the mass of the polar disc and studies have shown (Macciò et al., 2006;

Connors et al., 2006) it is possible for gas to flow into a galaxy perpendicular to

the disc.

Macciò et al. (2006) identify a polar ring galaxy in their simulations, and
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attribute the formation to gas flowing in from extended filaments. The gas flows

into the galaxy along preferential directions, and is braked by ram-pressure. The

gas collides with both halo gas, and gas from a second filament. The small

impact parameter is sufficient to allow the gas to retain angular momentum, and

rotate at ∼ 15kpc. By measuring the shape of the dark matter halo directly in

the simulation, they find that the halo is closely spherical, and the potential is

oblate. This means that inflowing gas not directly perpendicular to the disc is

quickly brought into the plane of the disk. Macciò et al. (2006) find that the

polar disc exists for 1.6 Gyr when in-falling satellites, which disrupt the polar

disc, are removed from the simulation.

Brook et al. (2008) also find a polar disc formed through accretion. This exists

for 3 Gyr, with new gas falling onto the polar disc only from z=0.5 onwards. This

is backed up by observations of NGC 4650A (Whitmore et al., 1990), which has

a star-forming polar disc for at least 1 Gyr (Iodice et al., 2002). Brook et al.

indicate that the latter part of the lifetime of the polar disc is unstable, with

some coupling between the polar disc and the central disc. They suggest that

the polar disc forms as a result of the last major merger changing the angular

momentum of the stars and gas of the central disc. Subsequent gas falls in along

the old trajectory.

7.1.1 Motivation

We examine how precisely the dark matter halo aligns with the orthogonal discs,

and exactly how or why the cold flows become so extremely disoriented with re-

spect to the inner disc. These extreme objects are excellent test beds for studying

the role of gas infall, and merging, in the universe. We expand on the precise

reason a polar disc galaxy should form. If a polar disc galaxy forms by cold

accretion of gas, we examine the mechanism which causes the polar structure to
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develop, as opposed to simply adding gas to the old disc. We also try to identify

whether a polar disc is a ‘special’ object, or if it is merely an extreme example of

a more common effect, such as a warp. We identify what event causes the galaxy

to take on the polar disc structure.

We align the particle positions to the polar disc and measure the angle and

axial ratios of the dark matter halo, and how these properties vary with radius.

We compare these results with the angular momentum of the dark halo at various

radii. We also examine how this varies with time: for example, how the shape

and angular momentum of the dark halo influences, or is influenced by, the polar

disc.

The shape of dark matter haloes is a prediction of ΛCDM cosmology. One

way to measure the shape of dark matter haloes in real galaxies has been to

use polar disc galaxies. Having two orthogonal discs provides an unparalleled

opportunity to study the shape of dark matter haloes observationally (Casertano

and van Gorkom, 1991; Schweizer et al., 1983; Sackett et al., 1994; Iodice et al.,

2006), because the circular velocity of the gas and stars is dependant on the mass

distribution, which is influenced by the dark matter distribution.

We use the simulations to test whether such methods are valid. We are able

to measure the shape of the dark matter halo using methods which mimic obser-

vations, and compare them with the actual shape of the dark matter halo.

7.1.2 Simulation

The polar disc studied in this chapter forms through cold accretion, and is taken

from Brook et al (2008). It was modelled using GASOLINE, (Wadsley et al.,

2004). GASOLINE is used to compute the collisionless dark matter background,

the gas and the stars, using self-consistent cosmological initial conditions. The

simulation was carried out using the San Diego Supercomputing Facility, for a
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total of 500000 CPU hours. The CMBFAST code was used to generate the

transfer functions, and initial power spectrum.

The size of the simulation volume is 28.5 Mpc, which is large enough to provide

realistic tidal torques from the large-scale structure. The force resolution of the

simulation is defined by the smoothing length of 0.15 kpc. The simulation is

run from z = 100 until z = 0. The cosmology is Ω0 = 0.3,ΩΛ = 0.7, σ8 = 0.9,

H0 = 70.0, where Ω0 is the matter density, ΩΛ is the cosmological constant, h is

Hubble’s constant and σ8 is the rms fluctuation of the power spectrum at the 8

Mpc scale.

Re-simulation is the only way to simulate both a large enough volume to

achieve a realistic merging history, and detailed galaxy properties. There are

several steps in running a re-simulation. In this case, the technique of Katz and

White (1993) was used. Trying to simulate the entire volume at high enough res-

olution, with gas physics included, is prohibitive, because computational power is

wasted modeling regions that are simply not of interest. We cannot simply extract

the object of interest, and run it in isolation, because filaments and neighbouring

haloes influence the evolution of the object. Initially, a dark matter only simu-

lation was run to z=0, and a relevant dark matter halo was selected. It is then

this region which was re-simulated at higher resolution. The simulation employs

periodic boundary conditions, so it is elementary to recentre the volume on the

object of interest. Higher resolution particles are then added, such that the parti-

cle masses increase with distance from the centre of the volume. Six generations

of particle are used, each decreasing in mass by a factor of eight, ( 9.50× 104M⊙,

8.86× 105M⊙, 7.09× 106M⊙, 4.54× 108M⊙, 3.63× 109, 2.905× 1010 M⊙), their

effective spatial proximity accordingly decreasing by two. Gas particles are added

in the inner region, and are assumed to follow the dark matter initially. The high

resolution initial conditions (‘ICs’) can be achieved by interpolating new spatial
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and velocity offsets from the original grid. The end result is shown in Fig. 7.1,

which shows the dark matter particle distribution at z = 18.7. It is vital that

the region of interest is not contaminated by higher mass particles. Gas is only

followed within the high density region. The mass of the initial gas particles is

1.6 × 104M⊙ and the mass of star particles is 3.3 × 103M⊙. Gas particles can

transform into up to three star particles. Gas particles with a mass < 20% of

the original mass are removed from the simulation, and the mass is redistributed

to nearby gas particles. Star particles lose mass due to supernovae and stellar

winds, and the mass is redistributed to nearby gas particles. In comparison, in

the polar disc simulated by Macciò et al. (2006) the dark matter particles are

4.90× 104M⊙, whilst gas particles have mass 9.75× 104M⊙, with a gravitational

softening of 100 kpc.

Star formation, as defined by Stinson et al. (2006), requires various conditions

to be present. The temperature of the gas < 15000K, and must be in a virialised

region. Additionally, the gas must have a minimum density of 0.1cm−3, and be

in a convergent flow. The star formation efficiency is set to 0.05. When the stars

reach the end of their life, they release 1050ergs of energy back into the ISM.

These parameters were defined using an isolated Milky Way sized galaxy.

7.1.3 Orientation of the disc

We calculate the angular momentum of the disc and re-orientate the simulation

volume so that the polar disc of the galaxy is aligned to the z-axis. The particle

positions and velocities are used to calculate L, the angular velocity,
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Figure 7.1: The distribution of dark matter particles at z = 19. Dark blue
particles are the lowest mass, and the red are the most massive particles.
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Lx = m(ryvz − rzvy) (7.1)

Ly = m(rzvx − rxvz) (7.2)

Lz = m(rxvy − ryvx) (7.3)

L =
√

L2
x + L2

y + L2
z (7.4)

where Lx,y,z is the angular momentum component in the x, ,y z direction, rx,y,z is

the position and vx,y,z is the velocity component. We align the simulation volume

such that the cold gas of the polar disc at z = 0.15 is aligned with the z-axis.

The cold gas in the polar disc is defined as those gas particles with a temperature

< 40000K, and a distance from the centre of the galaxy of 15 kpc in physical

units. This is used for all other outputs, so that the other outputs are aligned

according to the polar disc cold gas at z = 0.15. We do, however, allow the centre

of the volume to change, so that the origin is centred on the most bound particle

of the dark matter halo in each output, and it is this point about which we rotate

the volume.

7.2 Polar disc galaxy

AHF (Gill et al., 2004) was used to identify dark matter haloes, and merger trees

were calculated using the algorithm included in the AHF package. When tracing

the galaxy halo through time, we used the halo merger trees to follow the parent

dark matter halo. We find that the largest galaxy halo is first identified at z = 7.9,

and remains the halo with the largest number of particles from then onwards. At

z=0.15, when the stellar and polar discs are at their maximum angle, the masses

of the three components in this galaxy are: Mstars = 1.01 × 1010M⊙,Mgas =

7.63× 109M⊙ and Mdark = 1.08× 1011M⊙.
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We define the polar disc as those stars formed after 8 Gyr (see §7.4 for details).

The stellar disc is defined by those stars formed between 4 and 7 Gyr. We also

define a halo, which is comprised of stars which formed before 4 Gyr. The last

major merger occurs at ∼4 Gyr, and the polar disc begins to appear at 7 Gyr.

The times defined above are markers of important moments in the lifetime of

the galaxy. According to these definitions, the polar disc has a stellar mass of

1.3× 109M⊙, the stellar disc has a stellar mass of 3.0× 109M⊙, and the halo has

a mass of 4.8 × 109M⊙. Of the three components, the halo is by far the most

massive, and the polar disc the least massive. However, both stellar discs have a

higher density than the galaxy halo, and the baryons are dynamically dominant

in the inner region. This differs slightly from the numbers quoted in Brook et al.

(2008), but that is due to the specific definition of the three components. Our

polar disc has a mass 2 times less than the stellar disc, similar to that found by

Brook et al. (2008).

The virial radius of the halo is Rvir = 132kpc, and the cold gas mass is

Mcool = 1.24×109M⊙, where the cold gas is gas with a temperature below 40,000

K. The scale lengths of the two discs are 3.4 and 0.95 kpc for polar and stellar

discs. The approximate edges of the polar and stellar discs are 5 and 9 kpc

from the centre respectively, as determined by eye. At maximum inclination the

discs are at an angle of 84 degrees. The Macciò et al. (2006) polar disc galaxy

has a similar extent and mass. However, our polar disc galaxy, called the PDG

henceforth, lasts longer than Maccio et al’s galaxy, which only endures for 1.6

Gyr, while our polar disc exists for ∼4 Gyr. The Macciò et al. (2006) polar disc

has a total baryonic mass of 6.75 × 109M⊙ within a virial radius of 98 kpc. We

also note that the formation time of the Brook et al. (2008) galaxy corresponds

to the time of the last major merger.
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7.3 Evolution of discs

The events described above form a narrative of galaxy formation. The galaxy

disc first forms at z = 3.29 whereupon the disc is face on in the y-z plane. At

z = 2 the last major merger takes place, and the gas disc becomes a great deal

more compact although the stellar disc takes on a elliptical shape, and a tidal tail

is visible until z = 1.6. The disc is still face on in the y-z plane defined by the

z = 0.15 polar disc. This interaction begins at z = 2.27, and lasts for 1 Gyr, with

a merging mass ratio of 0.2. This merger causes the galaxy to become elliptical,

throwing stars into the stellar halo. At z = 0.94 a large knot of gas is accreted to

the central galaxy, whereupon the polar disc starts to develop, and both the gas

and stars begin to rotate around to their later orientation. By z = 0.8 the polar

disc consists of a diffuse cloud of gas surrounding a denser disc of gas, which is

orientated with the stars. In the previous simulation output there are hints of

the forming disc, and a large arc of cold gas can be seen back to z = 1.0. This arc

is of insufficient mass to form the polar disc, discounting the first two formation

scenarios outlined in the section 7.1. This inner gas has been completely ejected

or has formed stars by z = 0.42, leaving only the polar disc with any cold gas.

We take z = 0.17 as the main simulation output for the investigation and

discussion because the polar disc is fully established, and this output shows very

little disturbance. The last 4 Gyr of the simulation shows an essentially passive

evolution.

The output-by-output description of the simulation found by looking at images

of the galaxy’s cold gas is shown in Table 7.1. This table shows various key events

in the formation of the polar disc, and marks them with a ’o’, but the principal

output at z = 0.17 is marked with an ‘X’. By z = 0 the polar structure has

become unstable and can no longer be found. The polar disc is a stable structure

for over 3 Gyr, showing evidence of spiral arms and warps.
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Table 7.1: Comments on simulation outputs. ’o’ shows important changes to the
system and X is the primary output.

# aexp z time dT Notes tick

10 0.14 5.94 0.93 0 Galaxy gas disk forms o
18 0.31 2.27 2.85 0.47 Disrupted gas Core remains intact, last major merger o
21 0.37 1.68 3.79 0.47 Disk reforms, major merger complete, Tidal tail? o
24 0.44 1.30 4.74 0.47 o
26 0.50 1.02 5.69 0.47 Disk shrinks, density increases Evidence of infalling

gas
o

29 0.54 0.87 6.32 0.32 More polar disk diffuse gas visible
30 0.56 0.80 6.63 0.32 Wispy polar disk appears
31 0.57 0.75 6.90 0.26 o
32 0.57 0.74 6.95 0.05 Polar disc has empty inner region
34 0.61 0.63 7.58 0.32 Polar ring thins, xy, definate ring Peak Spericity

moves inwards
36 0.67 0.50 8.45 0.55 Very thin polar disk now, dense core, diffuse polar

disk
o

38 0.70 0.42 9.00 0.47 Polar disk formed, no more core o
47 0.86 0.17 11.36 0.32 X
48 0.88 0.14 11.68 0.32 Bar in polar disk?
49-55 0.89 0.12 11.89 0.21 Bar grows passively

7.4 Star formation

7.4.1 SFR

The star formation rate (SFR) of the galaxy is calculated along two slits and

globally, for the whole galaxy. The slits are placed over each disc, and have a

width of 2 kpc. The inner 1 kpc of the galaxy is excluded from the slit, because

the two discs overlap in this region and become confused. Slit ‘a’ is placed over

the stellar disc, defined to be stars formed between 6 and 6.5 Gyr. Slit ‘b’ is

placed over the cold gas disc, where the cold gas has a temperature < 40000K.

The global SFR is found simply by identifying the number of stars formed in the

interval dt. The SFR is shown in Fig. 7.2, where the global SFR is divided by

10, so it can be shown on the same plot as the SFR along the slits.

The last major merger takes place between 2.8 and 3.8 Gyr, and is visible as

a peak in the SFR of the stellar disc. Early stars, formed before the last major
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Figure 7.2: The star formation rate of the polar disc galaxy along slits laid across
the old (formed at 6.5-7.5 Gyr) stellar disc (black), and the young polar disc (red).
The global star formation rate is also shown as the dashed line (but divided by
10.)
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merger can be seen along both slits, suggesting they are part of the stellar halo

of the galaxy. Then, between 4-7 Gyr the SFR along the polar slit falls to zero

and stars are formed in the central disc. After 7 Gyr the star formation along

the polar slit increases consistently and the SFR in the stellar disk is negligible

after 9 Gyrs when it uses up the inner gas. In the region between 4-7 Gyr there

are two eras of increased star formation with a brief intermission, which is seen

neither in the global or polar SFRs.

It is also clear that there are three distinct eras of star formation after 3 Gyrs,

shown in Fig. 7.2 and Fig. 7.3. The first is between 3-4 Gyr where the mass of

stars increases rapidly due to interactions with the merging halo. This is followed

by a shallower rate of stellar mass increase between 4-8 Gyr, where stars form

in the central disc. Finally there is an even shallower SFR when the polar disc

is forming, from 8 Gyr onwards. The polar disc has a lower star formation rate,

for t > 8Gyr, than the older stellar disc, due to the polar disc being more diffuse

than the early gas disc.

The SFR for our polar disc has an average of 0.06M⊙yr
−1. There are some

differences in the precise form of our PDG and, for example, NGC 4650A, one of

the observed polar disc galaxies. The star formation rate of the polar disc galaxy

NGC 4650A was studied by Spavone et al. (2010). This galaxy shows a low

metallicity of 0.2 Z⊙ with a negligible metallicity gradient. Spavone et al. (2010)

find that the polar disc is approximately 1 Gyr old and the galaxy experianced

a last starburst between 3-5 Gyr ago. Our PDG has an old polar disc, which

lasts several Gyr, and the polar disc becomes important after a delay of several

Gyr between the development of the polar disc and the last starburst. We also

see that the star formation rate in the polar disc is smoothly increasing without

significant starbursts.

We also find that the amount of cold gas (Temperature < 40000K) in the inner
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Figure 7.3: Mass accretion of the various baryonic components in the galaxy.
The cold gas is maintained by cooling hot gas, and star formation. The stellar
component shows three eras of star formation, initial fast star formation before
4 Gyr, an intermediate period of moderate star formation and a time of slow star
formation in the polar disc after 8 Gyr.

15kpc of the galaxy remains basically constant (Fig. 7.3) in the range 8.6-10.3

×108M⊙, between 6 and 13.2 Gyr. The fraction of cold gas experiences a peak as

the polar disc begins to form. The following trough coincides with a peak in the

SFR (Fig. 7.2). The rapid star formation then depletes the cold gas reservoir.

As the polar disc becomes the dominant star forming region the mass of cold gas

grows, only to turn over at 12Gyr and begin to decrease as the polar disc starts

to become unstable. This corresponds to a slight decrease in the fraction of cold

gas.

An analysis along these lines has previously been carried out in Brook et al.

(2008) who use it to identify the changing location of star formation from the

central disc to the polar disc at between 7 and 8 Gyr.
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Possible correlation with mass growth

Figure 7.4 shows the accretion of mass to the dark halo. The accretion and loss of

mass is a natural feature of these simulations due to the methods used to define

the virial mass of the halo (Gill et al., 2004). However, it is interesting to observe

that the SFR peaks, in Fig. 7.2, correspond to a temporary increase in the host

halo mass; in other words a trough in the halo mass corresponds to an increase

in star formation. To improve the clarity of this result we fit a Wechsler profile

(Wechsler et al., 2002), using a non-linear least squares fitting proceedure:

M(a) = Moexp
(

−2ac

(ao
a

− 1
))

(7.5)

where ac is the free parameter, ao is the observation time, Mo is the mass at

the observation time andM(a) is the halo mass at a given time. The actual values

of ao are irrelevant for this work but the line does prove a useful guide to identify

the oscillation on halo mass. Some of the variation away from smoothly increasing

mass is due to clumpy accretion, and this is partially responsible for deviations

from the Wechsler curve. Measuring the subhalo mass fraction and subtracting

it from this mass accretion does not remove the oscillation. This suggests that

the peaks in the SFR after z=2 are not caused by minor merger events. The

mass accretion profile is not in itself interesting, because the variation is within

the expected variation of the halo finder (Knebe et al. private communication).

However, the correlation of this oscillation with the star formation rate might

indicate some additional physical process.

7.4.2 Metallicity

The metallicity of the stars in the polar disc is found using the same slit method

used for the SFR. We take stars from two different eras, 5.0−5.5 Gyr and 9.5−11.5
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Figure 7.4: The mass accretion history of the dark matter halo (solid), and the
Weschler best fit line (dashed)

Gyr. In each case, the metallicity is much higher in the central disc. We also note

that the stellar disc is much more metal rich than the polar disc (see Fig.7.5).

The metallicity of the stellar disc shows a much steeper profile than the polar disc

in Fig. 7.5. The central disc of the galaxy ends at 4 kpc in this output (z = 0.17).

In the extremity of the central disc, the metallicity of the two discs is the same.

The polar disc gas is more primordial and with a metallicity of 0.34Z⊙, compared

to 0.44Z⊙ in the central disc (where Z⊙ = 0.016) consistent with Iodice (2010) for

NGC4650A. This supports the suggestions of Macciò et al. (2006), Brook et al.

(2008) and Iodice (2010), that the polar disc is formed from newly inflowing gas.

In a subsequent section we will see this explicitly.

Buttiglione et al. (2006) found that polar structures have a decreasing metal-

licity with radius. This is also apparent in our simulation and characterises a

polar disc being built up over time (Matteucci and Francois, 1989; Matteucci

et al., 1989; Boissier and Prantzos, 1999). Spavone et al. (2010) find no such

gradient in NGC 4650A. The polar disc in NGC 4650A is thought to be only ∼

1 Gyr old and so the gradient may not have had time to build up.

The gradient of the metallicity with radius profile is shown in Fig. 7.5. We

follow the gas metallicity of the galaxy though time and note that the global
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Figure 7.5: Metallicity profile of stars formed in the stellar disc (black line), and
the polar disc cold gas (blue), along 1kpc thick slits. The stellar disc ends at ∼ 4
kpc at which point the stars are in the galaxy halo. The polar disc ends at ∼ 9
kpc.

metallicity of the cold gas in the halo increases with time. The slope of the

normalised metallicity profile of the polar disc does not.

7.4.3 Stellar Age

Complementary to the metallicity profiles we next examine the stellar age along

the slits (see Fig. 7.6). The age profile of the stellar disc is quite flat near the

centre, dropping in the periphery of the disc. This plot is made by constructing

a histogram of points along each slit and finding the mean age of all stars within

a given bin. The range of stellar age is much greater along the polar disc slit.

The stellar disc shows a relatively flat stellar age until a radius of 3.5 kpc when

only older stars are present. The gradient of the stellar formation time profile is

much steeper in the polar disc, where stellar formation times range from 3.9 Gyr

to ∼ 9 Gyr. It is at this point the polar disc gives way to the pressure-supported

stellar halo. The stars in the polar disc get younger up until a radius of about 5
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Figure 7.6: The stellar age profile along the polar (black), and stellar disc(red),
slits. tform is the mean formation time of stars at a given radius. The stellar disc
ends at ∼ 4kpc, at which point the stars are part of the galaxy halo. The polar
disc ends at ∼ 9kpc.

kpc, and the profile turns over in the outer region. This suggests that the polar

disc forms from the inside out up until the turn over point.

By a radius of about 12 kpc the stellar ages are approximately the same and

we have moved beyond the edge of the disc.

7.4.4 Summary

The Brook et al. (2008) simulated polar disc galaxy matches with many of the

observations presented in the literature (Spavone et al., 2010; Iodice et al., 2002),

but diverges in others. This may, however, simply be due to a small sample size.

Based on the work in the above section we can re-emphasise the following points

of interest:

• The polar disc structure in our simulation is older than NGC 4650A but

has a similar mean metallicity.

• Our stellar disc is substantially more metal rich than the younger polar
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disc.

• The polar disc has a steeper metallicity profile than NGC 4650A which is

presented in Spavone et al. (2010).

• We find, however, that the polar disc does not produce substantial stars

until 3-4 Gyr after the last major merger, due to the time required for the

polar disc structure to build up sufficient cold gas. This is more like UGC

9796 (Cox et al., 2006).

• The stellar age profile shows a peak along the polar disc at 5.5 Gyr although

this may be due to contamination from the stellar halo and the galaxy bulge.

7.5 Halo Shape

7.5.1 Introduction

Dark matter haloes are often approximated as spheres, but they are in actual

fact triaxial. In dark matter only simlations, (e.g. Knebe et al. (2004)). Bailin

et al. (2005), who included baryons, found that galaxy disks align with the inner

region of dark matter haloes. It has also been shown that the spin axis (Flin and

Godlowski, 1986; Navarro et al., 2004; Lee and Erdogdu, 2007), are aligned with

the intermediate principle axes of local tidal tensors provided by the surrounding

structure. The angular alignment and shape of the dark matter halo is free to

change throughout the structure, e.g. Hayashi et al. (2007), Bailin et al. (2005).

We explore the shape and orientation of the dark matter halo as a function of

distance from the centre. The shape is a measurement of how spherical the halo

is, and the orientation is the alignment between the halo shape, and the principle

axes of the cold gas angular momentum. Once we measure the shape, we can

compare this to the shape inferred from measuring the rotation curves of the
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perpendicular discs, and the observations of Iodice et al. (2003). Iodice et al.

(2003) finds that the polar disc halo must be oblate based on observations of the

polar disc.

m

7.5.2 Inertial Tensor

We can find the shape of the dark matter halo using the inertial tensor approach.

We follow the approach of Knebe et al. (2010) who find that using a simple

spherical radial bin as opposed to ellipsoids does not affect the orientation of

the axes, and that using elliptical shells instead of concentric spheres does not

result in significantly different eigenvectors and eigenvalues that differ in an easily

parametrised way. To find the true axial ratios of the triaxial halo, which is

distorted by the use of spherical shells, the parameters must be adjusted by

S = S
√
3

spherical to match the shapes found by following the shape of the potential

more closely. They discard the reduced inertial tensor, favouring the standard

moment of inertia because the reduced approach gives greater weight to the centre

of the halo and biases the result to higher sphericity.

The eigenvalues (a, b, c) of the inertial tensor define the shape of the halo. The

radius of the stellar disc is ∼ 5kpc and the polar disc extends out to ∼ 10kpc.

For our calculation we can use the tensors:

Istdi,j =
∑

n

mnxi,nxj,n, (7.6)

Iredi,j =
∑

n

mnxi,nxj,n/r
2
n, (7.7)

where Istdi,j is the standard inertial tensor and Iredi,j is the reduced inertial tensor.

n is the particle id and i and j is the x,y,z compenent of position vector x. The
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axial ratios are (a, b, c) = (
√
λa,

√
λb,

√
λc). Here, ‘a’ is the major axis, ‘b’ is the

intermediate axis and ‘c’ is the minor axis. This was presented by Bailin and

Steinmetz (2005). These authors plot the shape defined by the reduced inertial

tensor using spherical shells against the shaped defined by the inertial tensor

found using elliptical shells and find very little scatter.

7.5.3 Halo Shape

The sphericity of a halo is the ratio of the longest and shortest axes of the best fit

ellipse and measures how spherical a halo is. If sphericity, S = c/a, is ∼ 1 then

the halo is a sphere, if S ∼ 0 then the halo is extremely elongated. This is often

paired with the triaxiality, T = (1−(b/a)2)/(1−(c/a)2), of a halo which measures

how oblate or prolate it is. The values of T and S define two axes of halo shape,

the triaxality-sphericity of the halo and how prolate-oblate the disc appears. We

use the bootstrapping technique to work out errors, Heyl et al. (1994), and find

they are negligible for this analysis.

The shape profile is extremely smooth and converges to a sphericity of 0.65

in the outer region of the halo, Fig. 7.7. The most interesting feature is in the

inner region, between 0 to 3 kpc. The halo is most spherical at the edge of the

stellar disk, which extends to ∼ 4kpc and then falls again to 0.65 for larger radii.

We also see that the halo is distinctly oblate, (T = 0), except in the inner region

near the stellar disc where it is prolate, (T = 1). The polar disc is in the oblate

region of the dark halo. This is different to the result of Macciò et al. (2006)

where the peak of the sphericity is at 2 times the disc radius and is slightly less

spherical than our result, with a sphericity of 0.5 at a radius of 48 kpc.

189



CHAPTER 7

Figure 7.7: The radial profile of the halo shape shows a smooth distribution of
the halo sphericity. The top panel shows the sphericity from the centre to the
virial radius, using all particles within a distance r. The low panel focuses on the
inner region of the halo. The vertical dotted line is the radius of the stellar disc
and dashed line is the radius of the polar disk.

7.5.4 Halo Alignment

To determine the inner shape of the dark halo using the the two orthogonal disks,

we rotate the volume such that the total angular momentum of the polar disc is

aligned in the x-y plane and take the dot product of the eigenvector of the minor

axis with the z axis. Because the algorithm we have used treats the positive

and negative direction of the eigenvectors as interchangeable, we have chosen to

select the absolute value of the vector in each case, i.e. the z-component of the

eigenvector is always positive. This is shown in the Fig. 7.8. At z=0.17 the

stellar disk is approximately aligned to the y-axis, of the volume and the stellar

disk has a radius of 3 kpc. It is striking that, up until the edge of the stellar disk,

the minor axis of the halo is aligned approximately with the y-axis (green line in

the figure) and then rapidly becomes orthogonal to it. The dark halo minor axis

is henceforth aligned to the angular momentum vector of the polar disk.

This sudden shift suggests that the use of the orthogonal circular velocities is
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Figure 7.8: For the z=0.17 output, the radial profile of the alignment of the dark
matter halo shape. The black line shows the angle of the minor axis of the angular
momentum with the z-axis, γ, the red line shows the x-axis component of the
halo shape and the blue line shows the profile of the y-axis.

not an accurate guide to the shape of the halo even a small distance beyond the

edge of the discs. The flip is consistent with the increased sphericity at the edge

of the stellar disc.

7.5.5 Comparison with the observers approach.

The discovery of the tight correlation between the direction of the polar and stellar

discs and the principle axes of the dark matter halo simplifies the observational

comparison.

Using the orthogonal circular velocities to probe the disc assumes that the

circular velocity is governed by the mass within a given radius, r. A flattened

halo will contain more matter within a distance r aligned to the minor axis of the

halo. We compare to our measurements of the circular velocity of of the two disk

components in our primary output. Although the disks are inclined at 84 degrees

we assume the angle is 90 degrees to make the calculation easier. Fig 7.9 shows

191



CHAPTER 7

Figure 7.9: Panel A: The line of sight velocity profile of the galaxy disks. The
red line is the polar disk, the blue line is the stellar disc, based on the motion
of the stars. The black line is the line-of-sight velocity of the cold gas along the
polar disc slit. Panel B: the ratio of the masses calculated from the velocity
profiles. These mass profiles are shown in Panel B with the same colours as in
panel A

the line-of-sight velocity distribution along each disk. We see that the stellar

disc velocity increases more rapidly with radius than the polar disc. Thus, the

gravitational potential must increase more rapidly along the central disc, (Iodice

et al., 2002). Thus the short axis of the halo is aligned to the equatorial plane of

the polar disc, (Iodice et al., 2003).

From the values of the rotational velocity in Fig. 7.9, we can calculate the

mass within a given radius. The stellar disc peaks at 3 kpc, with a line-of-sight

velocity of approximately 90 km/s. The polar disc has a similar velocity peak of

90 km/s, but at a radius of 6 km/s. The higher circular velocity of the stellar
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disc does suggest a flattening of the halo in that direction because increased mass

within a distance r produces a higher circular velocity according to M = v2r/G,

where r is the radius, v is the circular velocity and G is the gravitational constant,

but this is only true within the radius of the disc. Both the central disc stars and

the polar gas have similar circular velocity profiles. This suggests that the halo

is close to spherical at small radii. The mass ratios shown in the figure show that

for a radius of 3 kpc the axial ratios are 0.9, which matches with the result of the

inertial tensor method.

7.5.6 Evolution of the Halo Shape

By measuring the sphericity through time we can test to see when the observed

properties of the halo shape are established. It is clear that the shape of the dark

halo in the inner region is established early, (centre panel, left column of Fig.

7.10) before the polar disc starts forming stars or is even beginning to build up

(which occurs ∼2 Gyr earlier). The z = 1.68 panel in the figure shows the halo

shape just after the last major merger dark halo can no longer be identified.

The evolution of the angular profile of the minor axis against the three princi-

ple axes of the simulation volume shows a particular evolution of halo orientation

particularly in the inner region of the disc. The minor axis of the inner region

of the dark matter halo is originally aligned to the x-axis, but evolves between

z=1.3 and 0.42 to be aligned to the y-axis. This highlights that the galaxy’s po-

tential is dominated by the stars in the inner region. Although the dark matter

is the dominant mass component in the halo overall the mass of stars dominates

in the inner region, thus the matter responds most to the potential of the stars.

The dark matter particles move within the potential created by these stars in the

inner region and so move in a potential which favours the direction of the disk.

Outside this region, dark matter dominates the potential and the angle of the
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Figure 7.10: Evolution of the halo shape with time. The specific epoch of each
panel is shown in the plot.

halo remains essentially constant. This suggests that the stellar disk is out of

alignment due to a collision, as suggested in Brook et al. (2008). It also suggests

that the infall of gas into the polar disc, having only 10% of the total baryonic

mass, does not have a significant effect on the dark matter and that the old stars

have a predominant influence on the inner dark matter shape.

A shift in the angle of the minor axis is apparent between the inner and outer

regions of the halo. This shift appears to evolve through time, Fig. 7.11. Fig.

7.12 shows the evolution of the shape in the inner 1kpc and at the edge of the halo

respectively. It presents the angle between the minor axis of the dark halo for the

inner kpc and the entire halo against the x,y and z axes. The inner region still

contains sufficient particles so the calculation of the shape remains robust. The

1σ error derived from 100 bootstrap samples is sufficiently small to be neglected.

Fig. 7.12 shows that the halo in the outer region is established early, at ∼3
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Figure 7.11: The time evolutions of the alignment profile of the minor halo axis
with the three principle axes of the simulation. The black line is for z-axis, the
red line is for x-axis and the blue line is for y-axis. The y axis of the plot is the
arccosine of the modulus of the projection of the minor axis along each of the
princpile axes. The y axis is defined as the angle of the minor axis relative to the
z axis of the angular momentum of the cold gas.
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Figure 7.12: The evolution of angular alignment of the minor axis along the three
principle axes. Black is the z axis alignment, red is the x-axis alignment and blue
is the y axis aligment. The solid line shows the minor axis of the halo within the
virial radius, while the dashed line is for the inner kpc of the halo.

Gyr, which is the start of the last major merging event, and remains essentially

constant henceforth. The effect of the major merger on the entire system will be

examined in more detail in §7.6. The inner region, containing the galaxy disc, is

much more dynamic. The inner region is primarily aligned along the x-axis at

earlier times but becomes increasingly angled towards the y axis, while the polar

disc axis has minimal impact on the potential of the inner region. There is also

a smooth rotation of the inner region minor axis towards being primarily aligned

to the y axis from ∼ 4 Gyr until a maximum y-alignment at ∼ 7 Gyr. This time

period corresponds to a slight reorientation of the gas disc which precedes the

formation of the polar disc. This suggests that the last major merger is critical

in forming a polar disc galaxy.

The high density of baryonic matter in the form of stars appears to be the

most important factor in the inner system. The sheer mass of stars in the inner

region appears to influence the shape of the halo.
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We note that the shape and orientation of the halo has changed between

measurements of the stellar and the outer region of the polar disc and so the two

discs probe what are essentially two different haloes. A schematic of the shapes

of the dark halo inside and outside the stellar disc are shown in Fig. 7.13

7.5.7 Comparison With A Standard Disc Galaxy

We examine how discs align with dark matter haloes in a comparable simulation of

a normal disc galaxy. A standard galaxy has very different properties to the polar

disk, as one would expect given the exotic nature of the polar disk. The normal

disc in our standard disc galaxy shows that star formation falls to a relatively

low level after 5 Gyr. This is a similar time to the polar disk galaxy. Critically,

there is no long term ‘twist’ in the dark halo shape in this normal galaxy and the

disc is consistently aligned with the galaxy disc in the inner region of the halo.

The halo of this galaxy has a sphericity of 0.8 in the outer region and a peak of

sphericity, 0.91 at 8 kpc, but the profile is not as smooth or as strongly peaked

as in the polar disc. However, we do notice a brief, temporary ‘twist’ in the inner

region. This occurs before 6 Gyrs when the galaxy in undergoing rapid merging.

In the quiet era the minor axis of the dark halo is aligned with the x-axis and

there is no long term twist in the inner region, although one is sometimes evident

while rapid merging occurs. This also suggests that the dark matter responds to

the stars in the inner region rather than the reverse.

7.5.8 Conclusion

In this section we studied the properties of the shape of the galaxy halo and

identified several critical things that have direct impact on galaxy halo structure.

Various authors, i.e. Iodice (2010), have used circular velocity estimates to mea-

sure the inner structure of the dark matter halo. We have found that the inner
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Figure 7.13: A cartoon of halo orientation.

structure probed by the orthogonal discs can vary greatly from the shape of the

halo at only slightly greater distances from the galaxy due to the dominance of

the baryonic matter on the gravitational potential in this region. The difference

in shape is shown in Fig. 7.13. This affect is strong within the radius of the stellar

disc. We also find that the z axis aligns throughout to the minor axis most of

the halo beyond the galaxy itself. This is different to the findings of Bailin et al.

(2005) who find that the correlation between galaxy disc and dark halo is poor

at the virial radius of the halo. We find that the shape of the halo has changed

at the edge of the stellar disc so the two discs probe different environments.

The twist in halo orientation is not evident in the ordinary galaxy we studied

for more than brief intervals after a merger. This twist may be a characteristic

of polar disc galaxies, but, without a larger sample size it is impossible to say for

certain.
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7.6 Angular Momentum

7.6.1 Introduction

A polar disc galaxy is a very rare object, and so must have an uncommon forma-

tion history. Birnboim and Dekel (2003); Katz and White (1993) and Weinberg

et al. (2002) show cold accretion along filaments is the dominant mode of galaxy

formation. Gas flows down filaments into the dark matter halo of the galaxy.

The other way a galaxy accretes mass is due to galaxy mergers. Brook et al.

(2008) theorised that the polar disc galaxy used here forms as a result of the

last major merger. Alternatively the filament could change direction and gas will

fall in along a new direction. We test the suggestion that the last major merger

disrupts the gas and stars of the galaxy, and changes the angular momentum of

the stars relative to the infalling gas. This pushes the stellar disc out of alignment

with the filament, so that when new gas falls into the halo it falls in along the

old direction, thus building up the polar disc.

The angular momentum of the dark matter, gas and stars is tied into the

formation of the galaxy, the environment and mergers. Naively, one assumes that

gas and dark matter fall into the galaxy from a filament with the same angular

momentum. The gas sinks to the centre of the potential, conserving angular

momentum as so producing the galaxy gas disc. The cold gas forms stars with

the same angular momentum. Thus all the different components are aligned.

The dark halo is an oblate structure, compressed along the z axis of the angular

momentum vector because of the rotation. Reality is far more complex.

By studying the angular momentum of the different components of the galaxy

and the evolution of the galaxy through time we expand on the proposal of Brook

et al. (2008), that polar disc galaxies are formed due to the inflow of cold gas and

the effect of the last major merger.
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7.6.2 Evolution of the angular momentum of the gas, dark

matter and stars

It is a characteristic of polar disc galaxies that the two discs have very different

angular momenta. In the reference frame of the cold gas at z = 0.17 the gas is,

by necessity, aligned with the z-axis, while the angular momenta of the stars is

free. Taking stars formed in the period 4-6.5 Gyr the inclination between stars

and cold gas is 86 degrees while for old stars formed before the last major merger

the angle is 90.3 degrees. The direction of the angular momenta for dark matter,

old stars (tform < 3 Gyr), cold gas and the dark matter of the inner halo is shown

in Fig. 7.14. Before the last major merger the different components are aligned

to one another, but afterwards the inner and outer dark haloes, along with the

gas and stars, become increasingly misaligned.

From this figure we can see that the inner region of the dark halo and the stars

are locked together as the stars dominate the potential in this region. There is

a suggestion in Fig. 7.14 that the inner dark halo responds to the stars. A peak

is evident in the z axis of the stellar angular momentum which falls, reducing

the final stellar angular momentum z axis to almost zero for the duration of the

simulation. The inner dark halo also shows this, but perhaps at a slightly delayed

time. Having said this, the output cadence of the simulation is insufficient to be

sure that this has occured in this way.

The angular momentum of the dark halo entire does not change significantly

with time, apart from some evidence of tumbling, (the oscillation). There is some

evidence in the plot that the first peak and trough in the angular momentum of

the halo entire is echoed in the cold gas and stars, although with a slight delay.

The old stars show a peak in the profile around the time of the last major

merger but it appears a temporary feature without long term effects. However,

at this point the x and y axis components begin to twist towards their final state.
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Figure 7.14: Shows the normalised angular momentum projected on the three
principle axes of the simulation volume. Black shows the z axis, red the x axis,
and blue the y axis. The top panel, labelled ‘halo’, is the angular momentum of
the entire halo, the panel labelled ‘inner’ is the angular momentum of the inner
kpc of the halo, the panel labelled ‘stars’ is the angular momentum evolution of
old (tform < 3 Gyr) stars, and the panel labelled ‘cold’ shows the trend for the
cold gas. The grey area is the time of the last major merger.
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The inner region, however, shows some significant evolution. The x-axis of the

angular momentum of the inner dark halo becomes highly positive just before the

polar disk is established. The effect of the major merger on the total dark halo is

temporary in the inner region, except, possibly in the x-axis, where the angular

momentum gradually falls. There is a suggestion that the dark matter halo z axis

becomes more negative due to this collision, but this does not carry through to

the central region of the halo, where the dark matter angular momentum seems

closely correlated. If we include subhaloes, a rapid, temporary, change of the x-

axis can be seen caused by a small fast moving halo passing through the parent.

This occurs at the time the polar disc begins to form, but this object has no

contribution to the cold gas, stars or the angular momentum of the inner halo.

The old stars show a short term increase in the z-component of the angular

momentum. The x-component then hovers around zero for the rest of the sim-

ulation. The angular momentum changes from being aligned to the x-axis to

being aligned along the y-axis. This process begins at the last major merger,

(age = 3 Gyr), but takes until 7 Gyr to be completely aligned to the y-axis. It is

interesting to note the complementary change to the cold gas. As the stars align

to the y axis, the gas aligns to the z axis, such that, as shown in Fig. 7.15. This

change does not begin until 4.5 Gyr, 1.5 Gyr after the last major merger. This

suggests that there is not simply one event which gives rise to the polar disk, but

that it an effect of the environment. The inner/outer dark matter halo aligns

show a large continuous change over time

The old stars change their angular momentum with time and this must be due

to interactions with the environment, and note that the stars and gas appear to

roll together with time. The angle between cold gas and old stars takes 4 Gyr to

become orthogonal, Fig. 7.15. This suggests that the mechanism that forms the

polar disc is a continuing process. It was noted by Bailin and Steinmetz (2005)
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Figure 7.15: The variation of angle between the angular momenta of stars and
cold gas with time. The dashed line shows the last major merger, and the dotted
line indicated the beginning of star formation in the polar disk.

that as the disc accretes angular momentum its orientation changes and that this

may be the cause of warps.

Finally, the stars, cold gas and halo entire are essentially correlated, pre-

merger, then the stars and cold gas remain lock-step in the x axis angular mo-

mentum component, while the y and z axis components change with time. The

primary difference is in the y and z axes. There is an oscillation in the y axis

of the cold gas in Fig. 7.14, but the y axis of the cold gas seems to follow the

z-axis of the stars. These trends seem amazingly close in the polar disc region to

maintain the polar disc structure, almost as if the two structures are interacting

to maintain the structure.

We also note that the intermediate axis of the halo shape is aligned to the the

angular momentum of the halo.
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7.7 Formation process

7.7.1 Tracing gas

We studied the inflow of gas into the galaxy in an attempt to find the origin of the

polar structure. We have seen that the cold gas angular momentum is inclined to

the stars and dark matter halo and becomes more misaligned with time. Macciò

et al. (2006) points out that unless the infall of gas is along the polar axis of the

potential it will be dragged to align with the disc potential. When gas collapses it

maintains its angular momentum, thus, we should be able to see whether the gas

which made up stars in stellar disc has a different origin to the gas that makes

up the polar disc in the z=0.15 output.

We identify the gas that comprises polar ring structure at z=0.15 as all gas

cooler than 12000K within the inner 10 kpc of the polar disc galaxy. We track

these gas particles back in time to just before the last major merger and calcu-

late the angular momentum of this gas at z=2. This is then used to align the

simulation volume such that the angular momentum of the gas which makes up

the polar disc at z=0.15 is aligned to the z axis of the volume.

When we plot the orientation of the polar disc at z=0.15 we find that the

angular momentum of the infalling has hardly changed between z=2 and z=0.15.

7.7.2 Last major merger

We measure the angular momentum of the last major merger in order to identify

whether the angle of the interaction is sufficient to cause the polar disc structure.

The co-incidence of the last major merger with the beginning of the changes to

the galaxy angular momentum and shape shown in the previous sections suggests

that it plays a major roll in the formation of the structure.

We concentrate on the stars of the galaxies during the interaction because it
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Figure 7.16: The projected schematic of the last major merger at z=2, just before
the stars merge. The black star is the central galaxy, while the red star is the
galaxy which merges. The blue and green lines are the projected velocity vectors.
Distances are in kpc.

is the behaviour of this component which seems to gives rise to the polar disc.

The mass of stars in the polar disc galaxy at z=2 is 3.2×109M⊙ and the merging

satellite is 1.5 × 109M⊙, a ratio of 11:2 as noted by Brook et al. (2008). The

merging galaxy moves down the filament, rather than at an angle to as as we

would have originally expected if it was the cause of the polar disc structure.

We calculate the angular momentum of the interaction treating each galaxy

as a point sitting in free space in the reference frame of the infalling gas. The

collision is shown in Fig. 7.16. The alignment in the y and z direction is very

close and the relative tangential motion of the collision is anticlockwise.

Most of the angular momentum of the interaction is stored in the bulk motion

of the galaxies rather than in the internal motions of the stars, where the angular

momentum of the interaction, central and satellite galaxies are a ratio of 2.3, 1

and 1.5 respectively. We also note that the direction of the angular momentum

of the stars of the satellite is in the same direction as the merger and the angle
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of angular moment of the central galaxy is in the x-z plane.

The resulting angular momentum of this collision is along the x axis, orthog-

onal to the filament. As the angular momentum of the system must be conserved

we suggest that this provides the initial kick which reorientates the central disc

away from the orientation of the polar disc. The orientation of angular momen-

tum of the stars within each galaxy is in the x axis direction for the infalling

satellite and at an inclination in the x-z plane for the central galaxy, which a

greater component along the z direction. Thus the total angular momentum of

all the interacting components is highly orientated in the x direction.

An illustration of the gas filament and the angle of the collision is shown in

Figs. 7.17, 7.18, 7.19

7.7.3 Angular momentum of the infalling gas

We take the gas from the three epochs, 3.3-3.5 Gyr, 6.3-6.5 Gyr and > 9 Gyr

and calculate the change in angular momentum through time. The angular mo-

mentum of the infalling gas changes as it falls into the polar disc galaxy. The gas

which forms the polar disc aligns with the z=0.17 polar disc angular momentum

just after the major merger and is very close to it even before this. This gas

does experience a massive disruption just after the major merger which drives

it to the final angular momentum. This suggests that the major merger causes

a significant contribution to the final angular momentum of the polar gas. This

effect is not as noticeable in the gas distribution for older stars. This suggests

that the large scale infall of gas is the critical cause of the polar disc galaxy.

Initially, at z = 6, the angular momentum vectors of the gas are different, and

the subsequent evolution increases this difference. The direction of the angular

momentum of the infalling polar disk gas is aligned to the direction of the minor

axis of the dark halo. We find that the total angular momentum of the cold gas
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Figure 7.17: Shows x-y projection of a 20 kpc slice around the merging event. The
interacting galaxies are marked with circles, the angular momentum of the gas
is marked with an orange line, the angular velocity of the interaction is marked
with a blue line.

converges towards the major axis of the dark halo shape. The gas which produces

stars in the other two epochs is not aligned to the halo shape. They do, however,

conform to the minor axis in the inner region of the halo as opposed to the outer

edge.
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Figure 7.18: Shows x-z projection of a 20 kpc slice around the merging event. The
interacting galaxies are marked with circles, the angular momentum of the gas
is marked with an orange line, the angular velocity of the interaction is marked
with a blue line.
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Figure 7.19: Shows y-z projection of a 20 kpc slice around the merging event. The
interacting galaxies are marked with circles, the angular momentum of the gas
is marked with an orange line, the angular velocity of the interaction is marked
with a blue line.
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7.8 Summary & Further Work

We will continue our examination of this structure. We have found that the

polar disc shown here is not caused directly by a merger, or stripping. There is

no merging halo that contains enough gas to form the massive polar disc. Thus,

the polar disc must form due to inflowing cold gas. We attempted to identify the

mechanism by which cold flows give rise to a polar structure. The structure of the

polar disc seems to be a result of the direction of gas infall from the filament. We

have shown that there is not a single moment when the polar disc forms but there

is a constant evolution of the angular momentum of infalling gas and stars. The

angular momentum of the last major merger is almost exactly orthogonal to the

filament and we feel that this is the most likely origin of the polar disc structure.

This major merger effects the stars most strongly without any significant influence

on the dark halo. Subsequent to the major merger there is further evolution in

the orientation of the central disc, presumably due to tumbling or torques from

the halo. The magnitude and direction of the major merger interaction seems to

begin this process.

We must also compare the polar disc galaxy to “normal” disc galaxies to

identify what precisely results in the extreme behaviour of the polar disc. Clearly

any conclusions for the formation of polar discs based on a single galaxy are

tentative at best. We need to repeat this analysis on a larger sample of several

polar disc galaxies.
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CONCLUSIONS

The primary conclusions of this thesis are drawn from an analysis of galaxy

groups spanning a range of local density and environment, using a range of semi-

analytical models (SAMs) applied to large-scale cosmological N-body simula-

tions. While concurrent work has explored the properties of high-density compact

groups within the Millennium Simulation (eg. McConnachie et al. 2008,2009;

Diaz-Gimenez & Mamon 2008) using the classical Hickson (1982) criteria, our

unique contribution provides a systematic exploration of the evolution of groups

as a function of density, environment, and underlying baryonic physics prescrip-

tion.

Mamon (2008) raises concerns regarding the misidentification of chance-aligned

(in projected line-of-sight) galaxies in his earlier work (Mamon 1989) when em-

ploying these traditional Hickson (1982) criteria. Our approach in using a three-

dimensional linking length within the SAMs avoids such projection effects. In

redshift surveys, one identifies groups based upon projected spatial and redshift

information, rather than 3d coordinates. Galaxies move with the Hubble flow,

but also have local peculiar velocities. This means that, even when we have

redshift information, groups can be greatly extended along the line-of-sight; this
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phenomenon is known as the “Finger of God” effect. In our work, we have stud-

ied a number of properties of groups in SAMs, as applied to cosmological N-body

simulations, and confronted the predicted characteristics with observations.

In Chapters 2 and 3, we explored the spatial distribution, richness, dynamical

properties, and morphologies of groups, using a range of Friends-of-Friends (FoF)

linking lengths. This allowed us to study the effect of spatial density on galaxy

group properties, using data extracted from SAMs applied to the Millennium

Run (Springel et al. 2005; De Lucia et al. 2006; Bower et al. 2006; Bertone et al.

2007; Font et al. 2008). In Chapter 4, we studied the behaviour of brightest

cluster galaxies in a set of simulated, high-resolution, dissipationless, clusters,

and compared our results with the catalogue of Yang et al. (2007). Chapter

5 presented a thorough analysis of the luminosity distribution of galaxy groups

derived from various SAMs employing a range of baryonic physics to represent

observed galaxy properties, and how this varies with FoF linking length. In

Chapter 6, we examined the merger trees of galaxies in clusters employing the

De Lucia et al. (2006) and Bower et al. (2006) SAMs.

Our main results can be summarised as follows:

• N-body only cosmological simulations do not adequately capture the prop-

erties of extremely dense groups. This is because of the methods used to

identify haloes (Gill et al. 2004; Springel et al. 2001). In order to iden-

tify even moderately compact groups, in a representative volume of the

Universe, we require very high spatial resolution. This is due to the “nu-

merical stripping” (Klypin et al. 1999) which impacts upon lower resolution

simulations.

• M D06 and both Durham models produce similar numbers of Loose Groups

(LGs). M B07 results in overall lower group densities, with a significantly

flatter relationship between spatial density and linking length. However,
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the Durham models produce a significantly greater population of compact

groups than the Munich models; the Durham groups are significantly richer

than the Munich groups. In terms of the spatial density of groups, we find

that D F08>D B06>M D06>M B07, at all linking lengths.

• The richness of SAM groups is lowest using the M D06 model. Again,

groups generated using the Durham-based SAMs are significantly richer.

At short linking lengths, M B07 has a lower mean richness, but at long

linking lengths it produces groups with the same population as D B06. This

is because galaxies in the Durham SAMs are closer together. The results

from observational catalogues show a different spatial density radial profile,

presumably due to the 2D linking length used in our group finder. More

research is required to identify the exact cause of this difference. However,

the differences between the SAMs suggests a significant difference in galaxy

formation history is a non-negligible contributor.

• As with previous authors (e.g. Berlind et al. 2006), we find that the group

size is tightly correlated with the FoF linking length. This is worrying, as

the group radius is an integral part of the derivation of many other group

properties, such as group mass and crossing time. Each author who presents

a group redshift survey uses their own linking length. For example, Tucker

et al. (2000) use a linking length of 750 kpc in order to catch all potential

group members, but Tago et al. (2008, 2010) use 250 kpc to avoid including

filament galaxies. This difference can be traced to the galaxies being more

concentrated towards the central region of groups based upon the D B06

SAM.

• We confirm, not surprisingly, that group shape varies with richness (Tov-

massian et al. 2006). We found, however, that there are more elongated
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groups in the D B06 model, as viewed in projection, than in either the

Munich models or observations.

• The above analysis shows considerable differences between the models. In

many ways the extent of the differences in the morphology and dynamical

properties of groups is surprising, considering each model traces the most

bound particles of infalling halos using a similar technique. All other things

being equal, the dynamics and shape of the groups should be similar. Two

things dominate the choice of which galaxies are included in our catalogues:

the luminosity cut of galaxies, which we select based on the limitations of

the Millennium Run mass resolution, and the lifetime of galaxies hardwired

into the SAM codes. The effect of the luminosity cut was studied in Chapter

3 and was found to have only a small effect on group properties.

• We find further differences between the SAMs when compared with obser-

vations of the luminosity functions and magnitude gap (between first- and

second-ranked group galaxies) profiles of groups. In the Munich models,

we see a characteristic “wiggle”, where the luminosity function of galaxy

groups changes from being dominated by satellite galaxies to being domi-

nated by central galaxies. This is not present in the Durham models, and

is most significant in the M D06 model. This effect can be seen in the

conditional luminosity functions of Yang et al. (2008) and Weinmann et al.

(2006). This is due to the narrowness of the central galaxy profile in the

Munich SAMs (M D06, in particular) and the smaller population of satel-

lites in the Munich models compared to the Durham models. This effect is

larger in compact groups (relative to loose groups), because of the greater

ratio of centrals-to-satellites in less rich groups. The same feature is vis-

ible in lower-mass SAM groups, most pronounced for intermediate-mass

groups, and hardly present in more massive groups. Suggested reasons for
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the existence of the ‘wiggle’ in one set of SAMs, but not the other, include

the effect of two-mode verses one-mode AGN feedback, the particular im-

plementation of supernova feedback, and the different lifetimes for group

satellite galaxies.

• The magnitude gap between the brightest and second-brightest group galaxy

“turns over” in the Munich models (Dariush et al. 2010; Smith et al.

2010). Over a small survey dynamic range in luminosity, this feature can-

not be identified, so observations used to examine this property must have

a dynamic range > 3 mags. This property of groups may be due to the

aforementioned “wiggle”, because the magnitudes of the central and the

closest satellites is wider in the M D06 model. This is particularly signifi-

cant because the turnover is strongest in M D06, which is the model where

the wiggle is most pronounced. Milosavljević et al. (2006) shows that the

turnover is a property of clusters, one that is not modelled by D B06. Ob-

servations (Weinmann et al. 2006; Tago et al. 2010) tend to show a steeper

behaviour in magnitude gap vs luminosity than in any of the SAMs.

• In order to resolve the problem of the larger population of very compact

groups (vCGs) generated with the Durham models, as evidenced by their

smaller mean galaxy-galaxy separations, and their greater central concen-

tration (in the D B06 groups), we examined the satellite galaxy merger

trees. We found that those galaxies which merge with cluster centrals in

both the Munich and Durham models take a similar length of time to merge.

However, most galaxies which fall in never merge with the central galaxy. In

the M D06 model, all galaxies that fell in before a lookback time of 10 Gyr

have merged, but this is not the case in the D B06 model. Therefore, there

is a larger population of galaxies in the Durham models which never merge,

relative to the M D06 model. This analysis was limited to clusters and
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further investigation is required to cover the full mass range applicable to

groups as well. The presence of the “wiggle” in the M D06 group luminos-

ity functions, and the greater similarity of the M D06 cluster galaxy radial

distribution to observations, suggest that the merging times of this model

may be more representative of reality. Conversely though, the worse fit

to the relationship between first- and second-ranked galaxy magnitude and

galaxy luminosity suggests this conclusion is not as straightforward as it

might seem.

In Chapter 4, we explored the properties of infalling subhalos. In the first sec-

tion, we attempted to show a relationship between the spatial and velocity offsets

of the most massive cluster subhalo for 48 clusters and the offsets of brightest

cluster galaxies in observations. Due to our small sample size we have difficulty

coming to any significant conclusions. However, we do see that the spatial offsets

from the cluster centre of the most massive satellite is greater than for brightest

cluster galaxies. This is due to the effect of stripping of subhalos in the simula-

tion. In the second section, we explored the infall of a group into a cluster and

found that group galaxies are rapidly dispersed throughout the cluster. Overden-

sitsies seen in the cluster galaxy distribution caused by infalling groups suggest

that they are being observed during their first orbit, prior to dispersal by the

cluster tidal field.

Chapter 7 investigates the properties of a simulated polar disc galaxy. We

expanded on the analysis of Brook et al. (2008) in order to explore the shape of

the dark matter halo and formation history of this unusual object.

• We find a much stronger metallicity profile in our simulation than can be

seen in similar observations of polar disc galaxies.

• There is a noticeable and long term “twist” in the shape of the inner region

of the dark matter halo. This feature is not present in traditional disc
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galaxy simulations (Bailin et al. 2005). The halo is aligned such that the

halo minor axis is along the z-axis of the angular momentum of the polar

disc. Unlike in Bailin et al. (2005) we see no significant deviation from this

in the outer region.

• Despite the twist, the circular velocity profiles of the perpendicular discs

appear to probe the shape of the outer regions of the halo. This confirms

the suggestion of Iodice et al. (2006) that the perpendicular discs can be

used to study the dark matter halo shape and alignment.

• The principal cause of the polar disc shape is strong inflows of gas along

the same direction throughout cosmic time. The polar disc forms due to a

major merger along the filament with an angular momentum perpendicular

to the infall direction. This changes the angular momentum of the system

and inspires formation of the polar disc.
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FUTURE WORK

Further examination of the effect of the different implementations of AGN and

supernova feedback is required. Indeed, the treatment of energy feedback within

hydrodynamical, semi-analytical, and purely analytical models remains perhaps

the single-most important uncertainty governing the formation and evolution of

galaxies. The development of an “open source” SAM code would provide the

community with a “test-bed” for such exploration; this is the approach we have

initiated in collaboration with Prof Masahiro Nagashima (Kyoto) using the Mi-

taka SAM (Nagashima & Yoshii 2004) as the base upon which to build a modular

feedback framework, including both the Croton et al. (2006) and Bower et al.

(2006) formalisms. A more direct “hands-on” approach should allow us to deter-

mine definitively the origin of the “wiggle” seen in the galaxy group luminosity

function.

We will also test the effect of galaxy-galaxy merging rates on the luminosity

function. This will allow us to “tune” a SAM specifically to the group / cluster

environment instead of the global luminosity function and improve modeling in

this environment. Additional study of groups using full hydrodynamical simula-

tions will of course provide unique insights into the formation of groups which are
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beyond the reach of SAMs (including spatially-resolved baryonic physics and kine-

matics), and we are on the cusp of being able to generate the requisite statistical

sample of said groups (to date, such work has been restricted to high-resolution

dissipationless simulations of groups only).

As the different SAMs track satellites within their hosts in quite different

manners, we feel that a more clinical examination of the satellite “lifetimes” is

required, in particular the role played by the host halo mass on this lifetime.

We have identified in a qualitative sense that this is an important source of the

differences between the Durham and Munich models, but this needs to be re-

examined more quantitatively.

An important next step in our polar disc analysis will be the extension to a

statistical sample of comparable galaxies. We need to assess whether the physical

model suggested here is applicable to the general case. A closer analysis of the

physical state of the system prior to the last major merger will allow us to state

definitively whether or not this is an integral part of the evolutionary process.

With a statistical sample of polar disc simulations, we will also be able to de-

termine whether or not the same physical processes which give rise to warps in

standard discs are ultimately responsible for polar structures. Similarly, a larger

suite of simulations will quantify the diversity of structure and lifetimes of polar

rings, which ultimately will inform observational estimates of polar ring galaxy

counts as a function of redshift and environment.
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