Immune responses to next generation computer gaming

by

Francesca Pell

A thesis submitted in partial fulfilment for the requirements of the degree of MSc (by Research) at the University of Central Lancashire

March 2011

Student Declaration

Concurrent registration for two or more academic awards

- Either *I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution
- or *I declare that while registered for the research degree, I was with the University's specific permission, a *registered candidate/*enrolled student for the following award:

Material submitted for another award

- Either *I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work
- or *I declare that the following material contained in the thesis formed part of a submission for the award of

(state award and awarding body and list he material below):

* delete as appropriate

Collaboration

Where a candidate's research programme is part of a collaborative project, the thesis must indicate in addition clearly the candidate's individual contribution and the extent of the collaboration. Please state below:

Signature of Candidate	THE
Type of Award	MSC (By lesearch)
School	school of sport. Tourism + the Outdoors

Abstract

The purpose of this study was to investigate stress (as measured by cortisol) and immune response (s-IgA was used as a marker) to step aerobics on the Nintendo Wii between people with varying degrees of cardiorespiratory fitness (fair and good). Measures were taken at baseline and then after participants had attended three 30 minute sessions each week for four weeks. Following a washout period, measures were taken again. More specifically, before and after a four week control period (no Nintendo Wii exercise programme). A basic health screen (blood pressure, body composition and estimated \dot{VO}_{2max}) was also carried out and cardiorespiratory responses to exercise recorded. Results revealed that the exercise intervention was vigorous enough at the start to induce a significant ($p \le .05$) increase in cortisol in the fair fitness group, but not at any other time for either fitness group. The exercise did not elicit any significant (p > p).05) changes in s-IgA, regardless of fitness. Although there was a 26% reduction in s-IgA secretion rate following exercise in the fair fitness group. BP, estimated $\dot{V}O_{2max}$ and body composition were not significantly (p > .05) altered as a consequence of exercise in the fair fitness group. In contrast, SBP and estimated \dot{VO}_{2max} were significantly ($p \leq 1$.05) improved in the good fitness group. METs, HR, relative \dot{VO}_2 and EE decreased in both groups, but only significantly ($p \le .05$) for the fair fitness group. It was concluded that regular exercise on the Nintendo Wii does not improve immunosurviellence. If anything, it may even have the opposite effect in low conditioned individuals due to a temporary increase in stress hormones when first starting a structured exercise programme. Moreover, exercise on Wii step is sufficient enough in intensity to contribute to physical activity recommendations to elicit health benefits.

Table of Contents

Page

Chapter 1:	Introduction	1
1.1: P	Physical inactivity	1
1.2: P	hysical inactivity and video games	2
1.3: R	Rationale for video games and exercise ("Exergaming")	4
1.4: N	Vintendo Wii	6
1.5: E	Exergaming and energy expenditure	7
1.6: E	Exergaming and heart rate	10
1.7: Ir	mmune system	12
1.8: Ir	mmune function and exercise	13
1.9: N	Aoderate exercise and immune function	14
1.10:	Immunogloulin A	16
1.11:	Heavy exercise and immune function	18
1.12:	Cortisol	19

Chapter 2: Method

2.1: Participants	21

2.2: Design	22
2.2: Design	2

2.3: Procedure	22
2.3.1: Anthropometry and body composition	22
2.3.2: Aerobic fitness	23
2.3.3: Saliva samples	23
2.3.4: Exercise intervention	27
2.3.5: Cardiorespiratory response during the exercise	28
2.4:Analysis	30

Chapter 3: Results

3.1: Effect of the exercise intervention on resting s-IgA secretion rate	31
3.2: Effect of the exercise intervention on resting cortisol concentration	32
3.3: Effect of an acute bout of exercise on cortisol concentration	33
3.4: Health screen	34
3.5: Cardiorespiratory responses to exercise	35
Chapter 4: Discussion	38
4.1: Resting s-IgA	38
4.2: Cortisol	40

4.3: Health screen

4.3.1: Body composition	42
4.3.2: Blood pressure	43
4.3.3: Estimated $\dot{V}O_{2max}$	44
4.4: Cardiorespiratory responses to exercise	44
4.4.1: Heart rate	45
4.4.2: Energy expenditure	46
4.4.3: Relative oxygen consumption	49
4.5: Limitations	50
4.6: Practical implications	51
Chapter 5: References	53
Chapter 6: Self Reflection	61
Chapter 7: Appendices	
7.1: Appendix 1	64
7.2: Appendix 2	65
7.3: Appendix 3	66
7.4: Appendix 4	69

7.5: Appendix 5	70
7.6: Appendix 6	75
7.7: Appendix 7	79
7.8: Appendix 8	84
7.9: Appendix 9	85
7.10: Appendix 10	86
7.11: Appendix 11	87
7.12: Appendix 12	93
7.13: Appendix 13	95
7.14: Appendix 14	96
7.15: Appendix 15	97
7.16: Appendix 16	98
7.16: Appendix 17	120
7.17: Appendix 18	134
7.18: Appendix 19	135

List of Figures

- Figure 1. The J-shaped model of the relationship between upper respiratory tract infection (URTI) and exercise volume (Nieman, 1994 cited in Bishop, 2006)
- Figure 2. A typical example of an s-IgA standard curve
- Figure 3. Typical example of a cortisol standard curve
- Figure 4. Example of a participant free stepping on the Nintendo Wii balance board and riisers, whilst wearing a face mask connected by a sample line to the MetaLyzer 3B.
- Figure 5. Flow diagram of the progress of the two fitness groups through the phases of the parallel randomised trial (Schulz *et al.*, 2010)
- Figure 6. S-IgA secretion rate $(\mu g/min^{-1})$ of the fair (n = 9) and good (n = 8) fitness groups pre and post both the exercise and control condition
- Figure 7. Cortisol concentration $(\mu g/dL)$ of the fair (n = 9) and good (n = 8) fitness groups pre and post both the exercise and control condition

List of Tables

- Table 1. Participant characteristics by estimated \dot{VO}_{2max} (mL·kg⁻¹·min⁻¹)
- Table 2. Health screen for the fair fitness group (n = 9)
- Table 3. Health screen for the good fitness group (n = 8)
- Table 4. Mean (\pm SD) metabolic equivalents (METs), heart rate (HR), relative oxygen consumption (relative $\dot{V}O_2$) and energy expenditure (EE) at rest and during exercise at the start and end the exercise intervention for the fair fitness group (n = 9)
- Table 5. Mean (\pm SD) metabolic equivalents (METs), heart rate (HR), relative oxygen consumption (relative $\dot{V}O_2$) and energy expenditure (EE) at rest and during exercise at the start and end the exercise intervention for the good fitness group (n = 8)
- Table 6.Paired samples t-tests between participants pre-exercise and post-
washout measures by order of conditions (those that did the exercise then
control condition and vice versa)

Acknowledgements

Firstly I thank my supervisors; Dr Steve Atkins, Dr Stephanie Dillon and last but by no means least, Dr David John Fewtrell. Their expertise and continued support have been invaluable throughout this course. Thanks Matthew Quinn for your help with participant recruitment and data collection during the piloting phase. Next I thank Dr. Belinda Hornby for her advice and supervision during the analysis of the saliva samples. Special thanks to all the participants that made this project such a success with their continued commitment. Not forgetting Matthew Duckham and my family, thank you. This would not have been possible without you.

1. INTRODUCTION

Physical activity is imperative for good health (Blair, 2009; Maddison et al., 2007). Despite this, physical activity has decreased rapidly over the last hundred years (Booth et al., 2000) and is probably the primary risk to health nowadays (Blair, 2009). This is due to modern day lifestyles and environments, which promote sedentary behaviour (Dzewaltowski, 2008; Hillier, 2008; Maddison et al., 2007). For example, children were recently reported as spending almost four hours engaged in screen-based (television, computer and video games) endeavours (Marshall et al., 2006). Such sedentary activities are said to be replacing what was once or would otherwise be healthy, physically active recreation (Pate, 2008; Vandewater et al., 2004). This is apparent in Britain, where total screen time in excess of two hours each day is associated with reduced physical activity (Melkevik et al., 2010). Innovative ways to increase physical activity among the children (Barkley & Penko, 2009) and adults (Baranowski et al., 2008) of today is therefore warranted. The use of popular next generation active computer games is one potential way to revolutionise the way we exercise (Daley, 2009) and consequently improve health due to the well recognised benefits of regular physical activity (McArdle et al., 2006).

1.1 Physical inactivity

Copious research indicates that physical inactivity is associated with a greater risk of cardiovascular disease, high blood pressure, stroke, type 2 diabetes, obesity, certain cancers and psychological disorders (ACSM, 2009). For example, Taylor *et al.*, (1962) found that men working moderately active jobs were less likely to have coronary heart disease than those men with sedentary roles within the railroad industry. Moreover, Lee and Paffenbarger (2000) reported that vigorous activity was significantly ($p \le .001$) and negatively related to mortality in 13,485 Harvard graduates.

Regardless, 61% of men and 71% of women in the UK do not meet current physical activity recommendations (Craig *et al.*, 2009). This being an accumulation of at least 30 minutes of moderate intensity exercise on five days each week or 20 minutes of vigorous intensity exercise on three days every week (Haskell *et al.*, 2007). Similarly, 68% of boys and 76% of girls in the UK fail to satisfy minimum physical activity guidelines (Craig *et al.*, 2009), which for children is an hour's physical activity on five or more days per week (Hardman & Stensel, 2003). Evidently, recommendations that require significant lifestyle changes are still not being met generally (Hill, 2009) and therefore innovative ways to increase physical activity need to be explored (Barkley & Penko, 2009). New generation active computer games have been proposed as a possible way to do just that (Daley, 2009; Graves *et al.*, 2008a).

1.2 Physical inactivity and video games

In developed countries, children spend in excess of five and a half hours participating in screen-based activities on a daily basis (Hardman & Stensel, 2003). With 75% of children in the UK reportedly spending approximately two hours playing video games specifically, between three and seven days a week (Pratchett, 2005 cited in Graves *et al.*, 2008b). Video games in particular, are equally as popular among adults (Bausch *et al.*, 2008; Siegel *et al.*, 2009). Over one fifth of American adults for example, play video games on all or most days (Lenhart *et al.*, 2008). The use of video games among both children and adults is anticipated to rise (Daley, 2009; Lanningham-Foster *et al.*, 2009). The popularity of video games is a growing concern due to their negative impact on health (Leon & Abbott, 2007 cited in Bausch *et al.*, 2008).

Video game use is inversely associated with physical activity (Janz & Mahoney, 1997 cited in Tremblay & Willms, 2003). However, Marshall *et al.*, (2006) argue that video games (amongst other media-based inactivity) are being wrongly connected to the recent epidemic of inactivity, given that the amount of media use has not altered over the last five decades (Roberts *et al.*, 1999 cited in Marshall *et al.*, 2006). Furthermore, there also seems to be a positive relationship between video games and childhood obesity (Brown, 2006; Hardman & Stensel, 2003; Stettler *et al.*, 2004), although not conclusively (McMurray *et al.*, 2000).

Stettler *et al.*, (2004) reported that the risk of obesity was almost double with every daily hour spent playing electronic games. Opportunities are being provided within schools in an attempt to counteract inactivity (Jago & Baranowski, 2004 cited in Graves *et al.*, 2008b) and its associated health problems, such as obesity (Brown, 2006; Hardman & Stensel, 2003; Mohebati *et al.*, 2007; Stettler *et al.*, 2004). However, school-based interventions have had limited success (Baranowski *et al.*, 2002). Daley (2009) and Graves *et al.*, (2008b) both argued that in order to combat inactivity, every environment that children engage with needs to be addressed, including the home. Since video games are a fundamental part of modern day living (Daley, 2009), which are not simply going to disappear (Pate, 2008). It may be necessary in the fight against inactivity to unite with, as opposed to resist, such electronic entertainment (Daley, 2009). Thereby making technology part of the solution rather than the problem, as is has been so far (Hillier, 2008).

1.3 Rationale for video games and exercise ("Exergaming")

Given that millions of people play video games, it provides an obvious opportunity to improve fitness on a large scale (Siegel *et al.*, 2009), simply by replacing what was once primarily sedentary video gaming (Barkley & Penko, 2009; Daley, 2009) with what is now active video gaming ("exergaming") (Fawkner *et al.*, 2010; Maddison *et al.*, 2007). This is perhaps a viable way of increasing physical activity, since people spend substantial amounts of time playing sedentary video games, which they are reluctant to give up (Faith *et al.*, 2001 cited in Daley, 2009). New generation video games that are designed to promote movement are therefore being targeted as a contemporary way in which to encourage physical activity, not just among children (Daley, 2009; Graves *et al.*, 2008a), but the entire family (Lanningham-Foster *et al.*, 2009; Siegel *et al.*, 2009; Willems & Bond, 2009a; Willems & Bond, 2009b).

Video games have the potential to promote such positive behaviour change because they are enjoyable, captivate attention and appeal to a wide audience (Baranowski *et al.*, 2008), which may help combat the current epidemic of overweight and obesity (Graves *et al.*, 2008a; Miyachi *et al.*, 2010). Additionally, it could be argued that unlike traditional forms of exercise, people are internally motivated to play video games because they are entertaining (Graf *et al.*, 2009) and also have greater adherence rates (Mark *et al.*, 2008). For example, Penko and Barkley (2010) and Barkley and Penko (2009) found that children and adults respectively, prefer playing Nintendo Wii boxing (despite being more physiologically demanding) rather than a more traditional form of physical activity (leisurely treadmill walking) and a sedentary video game. Although not all children are of this opinion, with some apparently finding active video games boring (Madsen *et al.*, 2007, Chin *et al.*, 2008 cited in Daley, 2009). Nevertheless, by

appealing to the interests and abilities of people through original forms of physical activity, there may be a greater promise of meeting recommendations (Bausch *et al.*, 2008).

For instance, participation in a particular activity is governed by the extent to which a person likes that type of physical activity (Roemmich *et al.*, 2008). Therefore, people may be more willing to engage in physical activity on the Nintendo Wii for example, rather than more traditional activities, which in comparison people like less (Barkley & Penko, 2009). Sell *et al.*, (2005 cited in Sell *et al.*, 2008) also concluded that people who found a physically active video game (Eye Toy) more enjoyable, would be more willing to participate in this kind of activity, rather than a less enjoyable and more traditional mode of physical activity. Exergames therefore provide a greater promise for increased physical activity and also the maintenance of that health benefiting behaviour (Graves *et al.*, 2010).

There is the worry however that promotion of active computer games may inadvertently reduce physical activity levels; in that they replace time spent engaged in authentic sports (Daley, 2009; Pate, 2008). Furthermore, playing active computer games pose a new risk of injury (Pasch *et al.*, 2008). For example, a 16-year-old boy experienced a twisting injury, referred to as 'Wii knee', whilst playing a new generation active computer game (Robinson *et al.*, 2008). More recently, a 'Wii fracture' was reported, as in the case of a 14-year-old girl who fractured her foot when she fell off her Nintendo Wii Fit balance board (Eley, 2010). Robinson *et al.*, (2008) warns that injuries more commonly associated with athletic endeavour will ensue with the advancement of

activity promoting video games. However, Graf *et al.*, (2009) highlighted that these injuries are also a risk related to all other forms of physical activity.

1.4 Nintendo Wii

The most recent activity-promoting video console is the Nintendo Wii (Graf *et al.*, 2009), which is controlled by motion of a wireless handheld controller or force plate (Miyachi *et al.*, 2010). The Nintendo Wii is highly popular (Graf *et al.*, 2009; Miyachi *et al.*, 2010; Pasch *et al.*, 2008; Willems & Bond, 2009a; Willems & Bond, 2009b), with sales in the UK exceeding six million since its release in December 2006, making it the fastest selling console in history (Nintendo, 2009). The Nintendo Wii Fit game specifically has sold almost three million (Wallop, 2009). No doubt because of its wide appeal, including both men and women (Wallop, 2009) as well as all ages, unlike previous consoles that were mostly limited to the 16 to 35 year old male gamer (Mintel, 2008).

The government previously frowned upon the use of video games, due to their sedentary nature and possible influence on the incidence of obesity (Wallop, 2009). However, the Nintendo Wii is attracting otherwise sedentary people to actually engage in fun and sociable exercise (Mintel, 2009). For this reason, the Department of Health has, for the first time, endorsed a video game (Dawar, 2009). Allowing Nintendo to advertise the NHS Change4Life programme, with the intention of increasing exercise (as well as healthy eating) (Wallop, 2009). Health benefits in doing so could be potentially widespread, given that nearly a quarter of homes in Britain own a Nintendo Wii (Wallop, 2009).

1.5 Exergaming and energy expenditure

A number of studies advocate the use of physically active video games to increase energy expenditure (EE) through body movements (Ridley & Olds, 2001 cited in Sell *et al.*, 2008). An early study by Graves *et al.*, (2008a) established that children (15 ± 1 years) playing new generation active computer games expended significantly ($p \le$ 0.001) more energy when compared to sedentary computer games. Using the intelligent device for EE and activity system, predicted EE during Nintendo Wii Sports bowling, tennis and boxing was 190.6 ± 22.2, 202.5 ± 31.5 and 198.1 ± 33.9 kj·kg⁻¹·min⁻¹ respectively, versus 125.5 ± 13.7 kj·kg⁻¹·min⁻¹ during a sedentary game on the XBOX 360. Despite an increase in EE during active computer games, this was not adequate enough to contribute to daily physical activity recommendations (Graves *et al.*, 2008a). Although, irrespective of whether physical activity guidelines are met, small increases in EE may improve health by protecting against obesity (Hill, 2009) and mortality (Manini *et al.*, 2006).

Subsequently, Graves *et al.*, (2008b) specifically measured upper limb and total body movement, guaranteeing more accurate results (Pasch *et al.*, 2008), on EE in children $(15 \pm 1 \text{ years})$ during the same active and sedentary computer games. Using ActiGraph accelerometers, significantly ($p \le 0.05$) greater movement in the upper limbs and total body were detected during the active Nintendo Wii games relative to the sedentary XBOX 360 game. Indirect calorimetry revealed unsurprisingly that the active computer games demanded significantly more EE (Graves *et al.*, 2008b), thus corroborating their initial findings (Graves *et al.*, 2008a). This more recent study however showed that in terms of metabolic equivalents (METs), boxing on Nintendo Wii Sports (3.2 METs) could be classified as moderate exercise (3-6 METs), within the intensity guidelines of the ACSM (2009). Willems and Bond (2009a) have since supported that Nintendo Wii boxing can contribute to physical activity guidelines to elicit health benefits.

Likewise, Lanningham-Foster *et al.*, (2009) studied EE and physical movement during an active Nintendo Wii game (Wii Sports Boxing) and a sedentary PlayStation 2 game (Disney's Extreme Skate Adventure) in both children (12 ± 2 years) and adults (34 ± 11 years). Movement during these activities was measured using accelerometers and was significantly ($p \le 0.0001$) greater in all ages during the active computer game as opposed to the sedentary game. EE measured by indirect calorimetry was also significantly elevated during the active computer game compared to the sedentary game in both young and old ($p \le .001$ and $p \le .003$ respectively) and was comparable to more conventional types of physical activity (Daley, 2009). Therefore, even at the current use of video games, daily EE could be greatly improved (more than doubled) with the substitution of sedentary video games for active ones (Lanningham-Foster *et al.*, 2009).

Subsequently, Miyachi *et al.*, (2010) criticised Graves *et al.*, (2008a; 2008b) and Lanningham-Foster *et al.*, (2009) methods, speculating that EE may have been underestimated. Miyachi *et al.*, (2010) therefore used a metabolic chamber to determine EE in adults (25 - 44 years) during all of the Nintendo Wii Sports and Wii Fit Plus activities. As predicted, METs were greater than those reported by Graves *et al.*, (2008a). This may have been attributable to varying methods, but also possibly due to differences in participants' age (Zhang *et al.*, 2004 cited in Miyachi *et al.*, 2010). Nonetheless, Wii Sports bowling was still only considered as light intensity (2.7 METs), whereas tennis was promoted as moderately intense (3.0 METs), joining the same category as boxing (4.2 METs). Overall, a third of all Nintendo Wii Sports and Wii Fit

Plus activities were grouped as moderate intensity and can therefore contribute to daily physical activity recommendations (Miyachi *et al.*, 2010).

Not only is there variation in the energy demands between games (Miyachi *et al.*, 2010), as Böhm *et al.*, (2008) explained, EE is also governed by the type of console used. Specifically, in this study Nintendo Wii Sports tennis required significantly ($p \le .01$) less energy consumption than EyeToy Kinetic and was attributed to the gross muscle movements exclusive to the latter (Böhm *et al.*, 2008). Consequently, Böhm *et al.*, (2008) recommended a greater use of the legs to increase the metabolic demands of subsequent video games. This has been supported by Miyachi *et al.*, (2010) research, whereby resistance and aerobic exercises (incorporating leg movements) within the Wii Fit Plus game required, on average, more EE than the games featured in its ancestor (Wii Fit Sports), which relies predominantly on smaller upper limb movements.

One such game that features in Nintendo Wii Fit Plus is free step. As recommended by Böhm *et al.*, (2008), this game utilises gross musculature, maximising the metabolic demands. Accordingly, Miyachi *et al.*, (2010) established that free step was 3.3 ± 0.6 METs and therefore is classified as moderate intensity exercise, in accordance with the intensity classifications outlined by the ACSM (2009). In agreement, Graves *et al.*, (2010) reported that step aerobics on the Nintendo Wii was moderate intensity among adolescents, young adults and older adults (3.2 ± 0.7 , 3.6 ± 0.8 and 3.2 ± 0.8 METs respectively). Although the findings of White *et al.*, (2010) refute this. METs in their participants (n = 26) only averaged $2.43 \pm .43$ METs during Nintendo Wii step and it was therefore concluded that this activity promoting video game could not count as part of physical activity recommendations (White *et al.*, 2010). However, Quinn (2010) found that the energy costs of the free step activity could be exaggerated with the use of a riiser. The riiser being an unofficial Nintendo Wii balance board accessory, which elevates the height of the balance board to that of a conventional step (four inches) (ZooZen, 2009). Compared to Miyachi et al., (2010) and White et al., (2010) findings, Quinn (2010) reported higher METs for free step using the balance board alone (4.0 \pm 0.4 METs), which was significantly less than when accompanying the balance board with a riiser $(5.1 \pm 0.7 \text{ METs})$. Further still, the height of the balance board was increased beyond the height of a traditional step with the inclusion of two riisers, making the step seven inches tall in total. This again led to a significant increase in METs (6.2 \pm 0.5 METs) relative to both the balance board alone and the use of one riiser. Hence, free step with two riisers makes this Nintendo Wii Fit activity vigorous (> 6 METs) in intensity (ACSM, 2009). This is more comparable to the authentic version of step aerobics, which is also vigorous in intensity (8.5 METs) when using a step between six and eight inches in height (Ainsworth et al., 2000). Free step from Nintendo Wii Fit Plus was used to examine whether or not this moderate to vigorous exercise (Miyachi et al., 2010) could improve immunosurveillance.

1.6 Exergaming and heart rate

Increased heart rate (HR) is another physiological change associated with active but not sedentary video games (Mark & Rhodes, 2009). For example, HR was significantly higher during bowling, tennis and boxing (103 ± 17 , 107 ± 15 and 137 ± 25 b·min⁻¹ respectively) on Nintendo Wii Sports when referenced to the average HR of 85 ± 12 b·min⁻¹ during a sedentary game on the XBOX 360 (Graves *et al.*, 2008b). Later, Willems and Bond (2009a) documented that HR response during 10 minutes of Nintendo Wii boxing (115 b·min⁻¹) was similar to that recorded during treadmill

walking for the same amount of time. Given that walking at the speed $(6.1 \pm 0.6 \text{ km} \cdot \text{h}^{-1})$ specified in Willems and Bonds (2009a) study is considered moderate intensity physical activity (Ainsworth *et al.*, 2000), the non-significant difference between HR response during treadmill walking and Nintendo Wii boxing confirms that selected active video games are moderate exercise.

Despite the fact that the metabolic demands associated with playing active video games are encouraging (Daley, 2009), there is no parallel between the energy costs of playing active video games compared to participation in the sport itself (Graves *et al.*, 2008a; Graves *et al.*, 2008b; Miyachi *et al.*, 2010). For example, Graves *et al.*, (2008b) and Miyachi *et al.*, (2010) reported Nintendo Wii Sports boxing as 3.2 ± 1.4 and 4.2 ± 0.9 METs respectively, though actual boxing ranges from 6-12 METs (Ainsworth *et al.*, 2000). Therefore, active video games cannot be a substitute for authentic sports (Daley, 2009). Although certain active video games are similar in intensity to some more traditional forms of physical activity, such as walking (Graf *et al.*, 2009), skipping and jogging (Maddison *et al.*, 2007). Regardless, video games may provide the only opportunity for activity in some cases (Barker, 2005 cited in Brown, 2006) and at least some lower intensity activity is better than none whatsoever (Daley, 2009).

Literature on next generation computer games remains limited (Mark & Rhodes, 2009). Of the studies that do exist, the focus tends to be predominantly on acute physiological responses to gameplay (Mark & Rhodes, 2009). Even though evidence to support that Nintendo Wii gameplay is more physiologically demanding than a sedentary counterpart is accumulating (Penko & Barkley, 2010), research to suggest that the physiological stress induced by exergaming is adequate enough to satisfy physical activity recommendations remains scarce (Fawkner *et al.*, 2010). Only a limited number of studies indicate that active computer games are moderate intensity exercise, depending on the specific exergame (Daley, 2009). Apparently no research has investigated the effect of this potentially new exercise mode on immune function. The purpose of this current research was therefore to address this contemporary research question.

1.7 Immune system

The immune system defends against foreign bodies by recognising, attacking and ultimately destroying them (Gleeson, 2006). In particular, the immune system protects the body from microorganisms that cause diseases (pathogens), including bacteria, protozoa, viruses and fungi (Gleeson, 2006). The immune system comprises of two parts; innate (natural or non-specific) and adaptive (acquired or specific) immunity (Gleeson, 2006). The innate immune system is the first line of defence against a pathogen (Mackinnon, 1999). This is achieved through physical barriers, namely the skin and mucosal membranes, which are responsible for preventing the pathogen from entering the body, chemical barriers, such as pH in the stomach that creates a hostile environment for microbes and finally phagocytic cells that destroy microorganisms (Mackinnon, 1999). Activation of the innate immune system usually initiates a subsequent response from the adaptive immune system (Gleeson, 2006). Both systems therefore interact to produce the optimum immune response (Mackinnon, 1999).

The adaptive immune system responds to specific antigens on a pathogen (Yaqoob & Calder, 2003). Furthermore, unlike the innate immune system, the adaptive immune system produces memory cells following the initial exposure to an antigen, making subsequent exposure to the same antigen quicker and more successful (Mackinnon,

12

1999). In this instance, the host will not experience any symptoms of illness (Gleeson, 2006). This is because there is no longer the delay of a few days that is evident during the primary immune response, whereby the pathogen is able to access and multiply within the body (Gleeson, 2006). The adaptive immune response is achieved via one of two ways; humoral immunity or immune cells (Mackinnon, 1999). The former is mediated by antibodies or in another word, immunoglobulins (Gleeson, 2006). The effectiveness of immune system can be both hindered and facilitated with exercise participation (Gleeson, 2007).

1.8 Immune function and exercise

Nieman (1994 cited in Bishop, 2006) proposed a J-shaped relationship between exercise intensity and infection risk (Figure 1). This suggests that while moderate exercise reduces the risk of infection below that of a sedentary person, high intensity exercise carries a greater risk of infection than a sedentary lifestyle (Bishop, 2006). Following anecdotal reports (Hardman, 2006), the relationship between heavy exercise and infection risk initially received the greatest attention (Nieman, 2000b). It is therefore well established that heavy exercise increases infection risk (Matthews *et al.*, 2002). Since then, there has been more interest into the effect of moderate exercise on infection risk (Bishop, 2006), which has implications for public health (Nieman, 2000b). For example, upper respiratory tract infections (URTIs) are primarily responsible for doctors' visits and absence from work (Matthews *et al.*, 2002). Therefore, a better understanding of the association between exercise and URTI is warranted for health promotion (Kostka *et al.*, 2000).

Risk of URTI

Figure 1. The J-shaped model of the relationship between upper respiratory tract infection (URTI) and exercise volume (Nieman, 1994 cited in Bishop, 2006)

1.9 Moderate exercise and immune function

Although there is still some confusion surrounding the optimal intensity of exercise for health (Lee & Paffenbarger, 2000), studies that corroborate the relationship between moderate exercise and infection risk include Shepard *et al.*, (1995), who found that over three quarters of Masters athletes perceived themselves as less susceptible to viral illnesses than their age matched peers. Another more recent survey, reported that among a group of non-elite marathon runners (n = 170), 90% agreed that they seldom get sick (Nieman, 2000 cited in Bishop, 2006). This is because, unlike following prolonged endurance exercise (Nieman, 1997), the immune system is not suppressed as a consequence of moderate exercise (Nieman, 2000b).

Nieman *et al.*, (1990 cited in Bishop, 2006) examined the effect of a 15 week exercise programme on illness symptoms in 36 sedentary and overweight females. Compared with a control group, the exercise group experienced fewer days with URTI symptoms

 $(10.8 \pm 2.3 \text{ versus } 5.1 \pm 1.2 \text{ days respectively})$. Whilst this demonstrates that moderate exercise can alleviate the duration of URTIs, Matthews *et al.*, (2002) acknowledged that the effect of moderate exercise on the number of URTIs is still vague.

Consequently, Matthews *et al.*, (2002) measured the relationship between URTI in 547 healthy adults and their participation in moderate-to-vigorous activity over the course of a year. The results indicated a 20 to 30% reduction in the incidence in URTI with moderate levels of activity when compared to low levels of activity (Matthews *et al.*, 2002). Similarly, Kostka *et al.*, (2000) identified a significant ($p \le .05$) negative association (r = -0.29) between the number of URTI and moderately intense physical activity among 61 healthy, active and elderly participants. Additionally, the duration of the URTI was significantly ($p \le .05$) and inversely related (r = -0.26) to sports activity (Kostka *et al.*, 2000). In contrast, a more recent study failed to recognise a difference in the occurrence of common cold between participants engaged in moderate leisure activity and those who were sedentary (Hemila *et al.*, 2003).

Generally, these findings lend some support to the hypothesis that moderate exercise can improve immunity over a sedentary lifestyle (Moreira *et al.*, 2009). This is thought to be explained by enhanced 'immunosurveillance', which improves the hosts ability to fight infections (Nieman, 2000b). This may be attributable to an increase in natural killer cell activity (NKCA), a type of lymphocyte that destroys cells infected by virus (Bishop, 2006). For example, Nieman *et al.*, (1990 cited in Bishop, 2006) found a 57% increase in NKCA among participants after six weeks of a brisk walking programme (45 minutes, five times per week) compared to only a 3% increase among a control group, which possibly explained the fewer URTI symptom days experienced by the exercising group. However, Nieman *et al.*, (2000) later found that significantly higher NKCA among elite female rowers compared to non-athletes was not related to two month history of URTI. Alternatively, elevations in salivary immunoglobulin A (s-IgA) may account for the suggested lower risk of infection following moderate exercise (Bishop, 2006), as discussed in detail below. Although, more research is needed to better establish whether or not increases in NKCA or s-IgA, with moderate exercise, facilitate immune function (Bishop, 2006).

1.10 Immunogloulin A

Immunoglobulins are a type of glycoprotein that are synthesised by B lymphocytes (Rahimi *et al.*, 2010). In particular, immunoglobulin A (IgA) is the primary antibody within mucosal secretions and is therefore largely responsible for pathogen protection at mucosal membranes (Bishop, 2006). IgA is responsible for preventing pathogens from entering the body by averting their attachment and multiplication (Nieman, 1997). An elevation in IgA concentration is therefore thought to aid protection from URTI (Klentrou *et al.*, 2002).

Previous research has indicated that moderate exercise increases IgA, which consequently enhances immunity from infection (Mackinnon & Jenkins, 1993 cited in Cieslak *et al.*, 2003). Klentrou *et al.*, (2002) for example, found that a 36.5% increase in resting salivary IgA (s-IgA) concentration, as a result of a 12 week moderate exercise program, was significantly related to a reduction in influenza symptoms (r = -0.70, $p \le 0.01$) and overall sick days (r = -0.64, $p \le 0.05$). Likewise, an improvement in mucosal immune function was reported in 45 healthy and elderly participants following a

16

significant ($p \le .05$) increase in s-IgA after a year of twice weekly moderate exercise training compared to baseline (33.8 ± 27.2 versus 24.7 ± 14.4 µg/ml respectively) (Akimoto *et al.*, 2003).

In contrast, an earlier study by Mackinnon and Jenkins (1993 cited in Akimoto *et al.*, 2003) revealed that eight weeks of exercise training did not result in an improvement in s-IgA levels. Some may therefore argue that moderate exercise does not influence s-IgA levels (Mackinnon, 1999). Whilst these discrepancies may be explained by varying methods used to measure IgA (Bishop, 2006), conflicting results certainly exist regarding the effect of exercise on s-IgA concentration (Rahimi *et al.*, 2010). In addition, the association between exercise-induced changes in s-IgA and infection risk remains unclear (Rahimi *et al.*, 2010), thus justifying the need for further studies to clarify this relationship (Bishop, 2006).

Even though previous research has used s-IgA as an indicator of mucosal immune function (Mackinnon, 1999), Nieman *et al.*, (2000) argued that a solitary marker of immune function is unlikely to predict URTI risk in athletes, due to the complexity of the immune system. However, Gleeson *et al.*, (1999) reported that pre-season s-IgA concentration, more specifically low s-IgA1 (one of the two subclasses of s-IgA) concentration was related to a greater incidence of URTI during the season in elite swimmers. This supports that s-IgA concentration can be used to predict infection risk in athletes (Gleeson *et al.*, 1999), although future research is needed to confirm this (Nieman, 2000b).

1.11 Heavy exercise and immune function

In contrast, a reduction in s-IgA concentration is apparent during heavy exercise (Gleeson, 2000 cited in Gleeson, 2005), with the extent of the decrease dependent on exercise intensity (Mackinnon, 1999). It has not yet been established what mechanisms are accountable for the exercise-induced reduction in mucosal immunoglobulins (Mackinnon, 1999). One possible explanation is that elevated cortisol (described later), which is often associated with heavy exercise (Mackinnon, 1999), suppresses antibody synthesis (Ambrose, 1966 cited in Rahimi *et al.*, 2010), although Fleshner (2000 cited in Rahimi *et al.*, 2010) disagrees. Nevertheless, in this instance, the individual is more susceptible to infection, due to a reduction in the body's natural response (Klentrou *et al.*, 2002).

This is a common view among athletes and their coaches, who believe they are more vulnerable to infection when participating in intense training (Fitzgerald, 1991 cited in Mackinnon, 1999). Several studies support that intense exercise performed at least every day is related to a reduction in s-IgA, which may explain the higher rate of URTI among athletes (Mackinnon, 1999). For instance, Mackinnon *et al.*, (1993 cited in Nieman, 1997) reported low concentrations of IgA in elite hockey and squash players after exercise, leading to URTI.

In addition to a reduction in s-IgA, many other negative changes, such as a decrease in NKCA and T and B cell function following heavy exercise (Nieman, 1997) are assumed to be responsible for the increased incidence of URTI among athletes (Bishop, 2006). These changes in immunity may persist anywhere from three hours up to three days

post exercise, depending on the specific immune measure (Nieman, 2000a; Nieman, 2000b). During this time, often referred to as an 'open window', the suppression of host defence mechanisms allows an opportunity for viruses and bacteria to enter the body, thereby increasing the risk of infection (Hoffman-Goetz & Pedersen, 1994 cited in Nieman, 1997; Nieman, 2000b).

1.12 Cortisol

Cortisol is a steroid hormone secreted by the adrenal glands, a process that is controlled by the production of adrenocorticotrophic hormone from the pituitary gland in the brain (Frayn & Akanji, 2003). Cortisol is a marker for stress (Brenner *et al.*, 1998 cited in Cieslak *et al.*, 2003) and has been associated with a reduction in immune function (Cieslak *et al.*, 2003), possibly due to the significant link between elevated cortisol concentration and reduced s-IgA (Hucklebridge *et al.*, 1998). For example, significant (p = 0.03) increases in cortisol levels following a swim test (five 400 meter laps at 85 ± 1.2 % of their personal best that season) was accompanied by a decline, although not significantly (p = 0.06), in IgA secretion rate (Dimitriou *et al.*, 2002). However, Farzanaki *et al.*, (2008) found that whilst routine training in young elite female gymnasts led to a significant increase in cortisol after two sessions, s-IgA was unchanged and did not correlate with cortisol concentration.

Typically, cortisol is only produced during rigorous exercise (Mackinnon, 1999). For example, Jacks *et al.*, (2002) identified a significant ($p \le .01$) increase in participants (n = 10) salivary cortisol concentration following intense (76.0 ± 6.0% $\dot{V}O_{2max}$) cycling comparative to rest, whilst the same exercise at low (44.5 ± 5.5% $\dot{V}O_{2max}$) and moderate

(62.3 \pm 3.8% $\dot{V}O_{2max}$) intensities demonstrated no significant difference in salivary cortisol concentration. Therefore, in summary, given that cortisol is immunosuppressive (Cieslak *et al.*, 2003) and that increased cortisol is only apparent during intense exercise (Jacks *et al.*, 2002), it seems reasonable to suggest that this is one explanation as to why heavily exercising individuals are at more risk of infection than those who are moderately active, as illustrated by Nieman's (1994 cited in Bishop, 2006) J-shaped model of the relationship between URTI and exercise volume.

The purpose of this study was to investigate stress (measured by salivary cortisol) and immune response (assessed using s-IgA) to moderate exercise among participants with varying levels of cardiorespiratory fitness. Unlike any other previous research however, the mode of exercise was next generation active computer games. Furthermore, changes in physiological responses to regular participation in next generation active computer games were also investigated. It was hypothesised, based on previous literature, that the moderate exercise intervention would not affect cortisol concentration, but would enhance participants' immune function, as indicated by a significant increase in s-IgA. Furthermore, given that the extent to which exercise effects immune function is governed by fitness, with more sedentary individuals experiencing the greater benefit (Nehlsen-Cannarella *et al.*, 1991 cited in Akimoto *et al.*, 2003), this was thought to be true among the lower fitness individuals relative to the higher fitness group in the current study.

2. METHOD

Thirteen females and four male participants were recruited via global e-mail, poster (Appendix 1) and word of mouth in the months of May and June 2010. Informed written consent (Appendix 2) was obtained from each participant after they had read an information sheet (Appendix 3). Estimated $\dot{V}O_{2max}$ was determined using the Åstrand-Ryhming (1954 cited in ACSM, 2009) cycle ergometer test (described below) and was used to separate participants into two groups, each with a minimum of seven participants, as recognised using Schoenfeld's (2010) power calculation (Appendix 4). Group one had an estimated $\dot{V}O_{2max}$ considered fair or below (referred to as the fair fitness group for convenience) and the second group had an estimated $\dot{V}O_{2max}$ deemed equal to or above good (labelled as the good fitness group hereafter), based on age and gender (ACSM, 2009). Participant characteristics are displayed in Table 1.

	Fair Fitness Group (n = 9)		Good Fitness Group (n = 8)	
	Mean	\pmSD	Mean	\pm SD
Age (yrs) Mass (kg) Stature (cm) Body Fat (%) Body Mass Index (kg·m ²) Systolic Blood Pressure (mmHg) Diastolic Blood Pressure (mmHg)	42 76 164 37 28 126 85	$ \pm 13 \pm 9 \pm 9 \pm 15 \pm 5 \pm 12 \pm 9 = 12 = $	34 64* 163 28 24 119 77	$\pm 14 \\ \pm 5 \\ \pm 5 \\ \pm 13 \\ \pm 2 \\ \pm 11 \\ \pm 10 $

Table 1. Participant characteristics by estimated $\dot{V} O_{2max}$ (mL·kg⁻¹·min⁻¹)

* Significantly different ($p \le .05$) from the fair fitness group (independent t-test) (Appendix 5)

An ethics form (Appendix 6) and risk assessment (Appendix 7) were submitted to the Ethics Committee of the school of Psychology at the university of Central Lancashire (UCLan), who provided ethical clearance.

The study was a crossover design, whereby participants acted as their own controls. The order in which participants completed the exercise intervention (four-week Nintendo Wii programme) and the control condition was randomised according to participants' availability. A two-week washout period between the conditions was employed to allow all measures to return to baseline, thus preventing the effect of the previous condition confounding the results of the subsequent condition.

2.3 Procedure

Inclusion in the study depended on the outcome of a basic health screen. This involved satisfying a Physical Activity Readiness Questionnaire (Canadian Society for Exercise Physiology, 2002) or PAR-Q (Appendix 8). Eligibility was also subject to the absence of contraindicative blood pressure. Participants were excluded if their resting systolic blood pressure (SBP) was equal to or above 200 mmHg or diastolic blood pressure (DBP) was equal to or exceeding 115 mmHg (ACSM, 1995 cited in Howley & Franks, 1997). Blood pressure was assessed twice using a digital blood pressure machine (BoSo Medicus, Germany), following a minimum of five minutes seated rest, as advised by the National High Blood Pressure Education Program (2004).

2.3.1 Anthropometry and body composition

Stature (cm) was measured to within one millimetre using a free-standing stadiometer (Seca, Birmingham). Body mass was determined using integrated digital scales (accurate to 0.01 of a kilogram) contained in the BodPod air displacement plethysmography system. These scales were calibrated for accuracy using a series of

known masses. Fat and fat-free body mass were determined using the BodPod air displacement plethysmography system (Life Measurement, Inc, USA). In preparation for this test, participants were asked to wear either a swimming costume or other tight fitting clothing, remove all jewellery and wear a swim cap. Participants sat inside the calibrated BodPod and three tests, approximately 40 seconds in duration, were conducted. The BodPod measures body volume and uses body mass to calculate body density, which is then entered into the Siri equation to ultimately decipher body composition (Howley & Franks, 1997).

2.3.2 Aerobic Fitness

Aerobic fitness was assessed using the Åstrand-Ryhming (1954 cited in ACSM, 2009) cycle ergometer test. Participants used an appropriately adjusted Monark 834E cycle ergometer (Monark, Sweden). An individual and constant work rate was selected based on participants' fitness and age; the former being indicated by an International Physical Activity Questionnaire (IPAQ, 2002) (Appendix 9). Participants cycled at around 50 revolutions per minute for six minutes. In the 5th and final minute, an Onyx[®] 9500 fingertip pulse oximeter (Nonin Medical, Inc, USA) was used to record heart rate (b·min⁻¹). Average heart rate was referred to a nomogram to estimate \dot{V} O_{2max} (Astrand-Ryhming, 1954 cited in ACSM, 2009), which was adjusted for body mass (Adams, 2002) and corrected for age (Astrand, 1960 cited in Adams, 2002).

2.3.3 Saliva samples

Unstimulated, whole saliva samples were collected by passively drooling through a two inch straw into a 2mL safeseal polypropylene microtube (Sarstedt, Germany) for five minutes, as instructed by Salimetrics (2009) (Appendix 10). To minimise sample contamination, participants were encouraged not to consume food or drink for a minimum of 30 minutes prior to collection and were also asked to rinse their mouth with distilled water (Chiappin *et al.*, 2007). Each sample was dated and labelled with the time taken to collect the sample. The samples were immediately frozen at -25°C (Lec, UK). S-IgA concentration was measured using an enzyme immunoassay (Demeditec Diagnostics, Germany).

All saliva analysis was completed within the guidelines outlined in a CoSHH risk assessment (Appendix 11). Reagents and the plate were brought to room temperature. Saliva samples were thawed and centrifuged at 3000 rpm for five minutes using a MSE Micro Centaur (Sanyo, UK). Scales (Denver Instrument, Germany) were used to weigh the saliva samples to determine their volume (1ml of saliva = 0.9672g). This was then used to compute flow rate, since this influences s-IgA concentration (Kegler *et al.*, 1992; Vining *et al.*, 1983 cited in Salimetrics, 2009). Specifically, flow rate (ml/min) was calculated (Appendix 12) by dividing the volume (ml) of saliva by the time (minutes) taken to collect the sample (Mackinnon & Jenkins, 1993 cited in Akimoto *et al.*, 2003).

With the aid of an automated work station (PerkinElmer Precisely, USA), 190 μ l of red EIA buffer was pipetted into the wells corresponding to the unknown samples (Appendix 13). Ten μ l of the unknown samples, which had been diluted with EIA buffer (10 μ l of saliva to 1ml of EIA buffer) were then added, whilst 100 μ l of the calibrators and controls were pipetted into the appropriate wells. All samples were assayed in duplicate. The assay was incubated at 31°C for 1.5 hours. A plate washer
(BioTek, USA) washed the plate three times with washing solution concentrate that had been diluted (21 fold) with distilled water. Conjugate (100 μ l) was added to every well and the plate was then incubated again at 31°C, but for 0.5 hours this time. The plate was washed five more times before 100 μ l of substrate solution was dispensed. After a third and final incubation period of 0.25 hours at room temperature, 100 μ l of stop solution was added. Optical density was then measured immediately at 450 nm using a multilabel plate reader (PerkinElmer Precisely, USA). Using WorkOut 2.5 software (Dazdaq, UK), the concentration of IgA in the unknown samples were interpolated from a standard curve (Figure 2). Before statistical analysis, these absolute concentrations were exported into Microsoft Office Excel 2007 and multiplied by saliva flow rate to provide IgA secretion rate (μ g·min⁻¹), a more reliable measure than just absolute s-IgA concentration (Mackinnon, 1999).

Figure 2. A typical example of an s-IgA standard curve

Participants were also required to provide six oral swabs (Sarstedt, Germany), one immediately before and after both the first and final session of the exercise intervention and pre and post the control condition. Where possible, samples were taken at the same time of day to control for diurnal variation in hormone concentration (Farzanaki *et al.*, 2008). Participants positioned the salivette under their tongue for one minute (Salimetrics, 2009). The salivette was subsequently labelled and frozen at -25°C, before being assayed in duplicate to measure cortisol concentration. Cortisol was measured using saliva samples as opposed to the traditional method of intravenous blood samples (Lumley *et al.*, 1995 cited in Dimitriou *et al.*, 2002), since the anxiety associated with the latter can influence blood cortisol concentration (Vining *et al.*, 1983 cited in Jacks *et al.*, 2002). Furthermore, compared to blood serum, saliva provides a more precise measure of biologically available (unbound) cortisol (Vining *et al.*, 1983 cited in Rudolph & McAuley, 1998).

Samples were thawed and centrifuge at 6000 rpm for 10 minutes using a MSE Harrier 18/80 centrifuge (Sanyo, UK). Once the plate and reagents were to room temperature, 25 μ l of standards, controls and unknowns were pipetted by an automated work station (PerkinElmer Precisely, USA) into the appropriate wells (Appendix 14). Next, 25 μ l of assay diluent was added to the zero and NSB wells only. To each well, 200 μ l of diluted conjugate (15 μ l of conjugate and 24ml assay diluent) was then added. A microplate spectrophotometer (SPECTRAmax PLUS) was used to mix the plate, before being incubated for 55 minutes at room temperature. A plate washer (BioTek, USA) then washed the plate four times with wash buffer concentrate that had been diluted ten times with distilled water. TMB substrate solution (200 μ l) was dispensed into each well and following mixing, the plate was then left to incubate for another 25 minutes at room

temperature. Finally, 50 µl of stop solution was added and the plate mixed before a plate reader (PerkinElmer Precisely, USA) at 450nm determined the optical density of individual wells. Cortisol concentration in the unknown samples were again interpolated from a standard curve (Figure 3) generated in WorkOut 2.5 (Dazdaq, UK) and data was then exported into Microsoft Office Excel 2007. It was not necessary to calculate saliva flow rate since this does not influence cortisol concentration (Riad-Fahmy *et al.*, 1983 cited in Rudolph & McAuley, 1998).

Figure 3. Typical example of a cortisol standard curve

2.3.4 Exercise intervention

The intervention was an exercise programme using the Nintendo Wii (Nintendo[®] Co, Ltd, Japan). Participants attended the physiology laboratory at UCLan for three sessions every week for four consecutive weeks. Only those participants with an 80% or above attendance rate (Appendix 15) were included in the analysis. Each session consisted of

30 minutes of free stepping on the Wii Fit Plus game, including a five minute warm-up and cool-down, concluding with optional stretches, as recommended by the ACSM (2009). The usually one inch Nintendo Wii Fit balance board was elevated a further six inches with the use of two Wii riisers (ZooZen Ltd, Hong Kong), thus exceeding the height of a conventional four inch step (ZooZen, 2009). Quinn (2010) established that compared to the balance board alone or the use of a single Wii riiser, using two Wii riisers significantly increases the energy costs of free step on Nintendo Wii Fit Plus (4.0 \pm 0.4, 5.1 \pm 0.7 and 6.2 \pm 0.5 METs respectively). Measures of blood pressure, body composition, cardiorespiratory fitness and saliva were taken at the start of the exercise intervention and repeated once the exercise intervention was completed.

A two week washout period was imposed, before participants 'crossed over' from the exercise intervention into the control condition. This consisted of no Nintendo Wii exercise programme but the continuation of their normal physical activities. As with the exercise intervention, at the start and end of the four week control period, blood pressure, body composition, cardiorespiratory fitness and saliva were assessed.

2.3.5 Cardiorespiratory response during the exercise

During the first and last session of the exercise intervention, a MetaLyzer[®] 3B (CORTEX Biophysik, Germany) was used for breath-by-breath analysis of oxygen consumption ($\dot{V}O_2$) and other respiratory variables. Data was averaged over one minute epochs in the MetaSoft software and exported into Microsoft Office Excel 2007. EE (J·kg⁻¹·min⁻¹) was calculated from $\dot{V}O_2$ since 1L of oxygen is equivalent to 4.9 kcal and 1J is the same as 0.000239 kcal (McArdle *et al.*, 1996 cited in White *et al.*, 2010). To

calibrate the MetaLyzer 3B, pressure from the laboratory barometer was manually entered. The gas sensors were calibrated with ambient air first and then a known concentration (5.09% CO₂ and 14.46% O₂) of calibration gas (Boc Limited, Germany). The pneumotach was calibrated using a three litre syringe (Hans Rudolf, Inc, USA). After successful calibration, participants were asked to wear an appropriately sized face mask (Hans Rudolf, Inc, USA) and accompanying head cap. A Polar transmitter (Polar, Finland) was placed inferiorly to the xiphosternal joint to detect HR. Conduction gel was used to aid recording. The complete exercise intervention equipment set-up is shown in Figure 4.

Figure 4. Example of a participant free stepping on the Nintendo Wii balance board and riisers, whilst wearing a face mask connected by a sample line to the MetaLyzer 3B.

2.4 Analysis

Results are presented as means and standard deviations. Kolmogrov-Smirnov tests were conducted to check if the data was normally distributed. Paired samples t-tests were then performed to test significant differences between pre and post both the exercise and control condition (Appendix 16) and also between baseline and post washout (Appendix 17) using PASW Statistics 18 (SPSS, UK). A priori t-tests were deemed appropriate as multiple post-hoc t-tests would be required anyway following an ANOVA, since there were only two means in each factor. Alpha level was set to $p \le 0.05$. Effect size (Cohen's d) was also estimated (Kinnear & Gray, 2009) (Appendix 18). Where appropriate, an approximation of the magnitude of effect (Thomas & Nelson, 1996) was also calculated (Appendix 19).

3. RESULTS

The flow diagram in Figure 5 depicts participants compliance through all stages of the study, as recommended by the CONSORT Statement (Schulz *et al.*, 2010).

Figure 5. Flow diagram of the two fitness groups progressing through the phases of the parallel randomised trial (Schulz *et al.*, 2010)

3.1 Effect of the exercise intervention on resting s-IgA secretion rate

There was no significant (t $_{(8)} = 1.547$, p = .161, d = 0.5) difference in s-IgA secretion rate in the exercise condition for the fair fitness group (Figure 6). However, an approximation of the magnitude of the effect (Thomas & Nelson, 1996) revealed that there was a 26% reduction in s-IgA secretion rate (although not significant). In contrast, an increase in s-IgA secretion rate was significant (t $_{(7)} = -3.052$, $p \le .05$, d = 1.1) in the control condition for the fair fitness group (Figure 6).

* Significantly ($p \le .05$) different

S-IgA secretion rate did not alter in the exercise condition and was therefore not significantly (t $_{(7)} = .008$, p = .994, d = 0.0) different for people with a good level of fitness (Figure 6). Whilst there was a 14% reduction in s-IgA secretion rate in the control condition (Figure 6) for the good fitness group, this was not significant (t $_{(7)} = .486$, p = .642, d = 0.2).

3.2 Effect of the exercise intervention on resting cortisol concentration

Resting cortisol concentration did not change significantly in either the exercise (t $_{(6)}$ = -1.408, *p* = .209, d = 0.5) or control (t $_{(6)}$ = -2.024, *p* = .089, d = 0.8) condition for the fair fitness group (Figure 7), despite an increase of 15% and 10% respectively.

Figure 6. S-IgA secretion rate (μg/min⁻¹) of the fair (n = 9) and good (n = 8) fitness groups pre and post both the exercise and control condition

Figure 7. Cortisol concentration (μ g/dL) of the fair (n = 9) and good (n = 8) fitness groups pre and post both the exercise and control condition

The good fitness group experienced a 10% increase in resting cortisol concentration in the exercise condition and a 6% decrease in the control condition (Figure 7). Even so, these changes were not significant (t $_{(6)} = -2.404$, p = .053, d = 0.9 and t $_{(6)} = .938$, p = .385, d = 0.4 correspondingly).

3.3 Effect of an acute bout of exercise on cortisol concentration

In the initial exercise session, the fair group had a significant (t $_{(6)} = -2.440$, $p \le .05$, d = 0.9) increase in cortisol concentration from the start (2.73 ± .57 µg/dL) to the end (3.20 ± .41 µg/dL). Contrary, during their final exercise session, cortisol concentration reduced by 11% from the start (3.32 ± .60 µg/dL) compared to after (2.94 ± .51 µg/dL), but this was not a significant (t $_{(5)} = 1.980$, p = .105, d = 0.8) difference.

For the good fitness group, cortisol concentration increased by 4% from before (2.96 \pm .28 µg/dL) compared to after (3.07 \pm .19 µg/dL) their first exercise bout, which was not significantly (t ₍₆₎ = -.979, *p* = .365,

d = 0.4) different. Likewise, a negligible 1% decrease in cortisol concentration before $(3.26 \pm .48 \ \mu\text{g/dL})$ and after $(3.23 \pm .36 \ \mu\text{g/dL})$ their last exercise session was not significant (t ₍₆₎ = .275, *p* = .792, d = 0.1).

3.4 Health screen

There were no significant changes in any of the parameters measured as part of the health screen in either the exercise or control condition for the fair fitness group (Table 2). Though a 6% decrease in fat % (t₍₇₎ = 2.241, p = .06, d = 0.8) and a 3% increase in fat free % (t₍₇₎ = -2.241, p = .06, d = 0.8) were almost significant. As well as a 17% increase in estimated $\dot{V}O_2$ in the exercise condition (t₍₈₎ = -2.173, p = .06, d = 0.7).

Table 2. Health screen for th	e fair fitness group	(n = 9)
-------------------------------	----------------------	---------

	Exercise		Control	
	Pre	Post	Pre	Post
SBP (mmHg)	126 ± 11	123 ± 13	124 ± 12	126 ± 11
DBP (mmHg)	85 ± 8	86 ± 10	85 ± 11	86 ± 6
Fat (%)	35 ± 15	33 ± 14	33 ± 16	34 ± 16
Fat Free (%)	65 ± 15	67 ± 14	67 ± 16	63 ± 18
Mass (kg)	76 ± 9	77 ± 9	76 ± 10	76 ± 9
Estimated $\dot{V}O_{2max}$ (ml·kg ⁻¹ ·min ⁻¹)	29 ± 6	34 ± 10	42 ± 17	36 ± 10
IPAQ	$1 \pm .05$	$2 \pm .78$	$2 \pm .71$	$2 \pm .60$

Note: SBP = systolic blood pressure, DBP = diastolic blood pressure and IPAQ = international physical activity questionnaire (1, Low; 2, Moderate; 3, High physical activity)

In contrast, the good fitness group had a significant decrease in SBP in both the exercise (t₍₇₎ = 2.681, $p \le .05$, d = 0.9) and control (t₍₇₎ = 2.521, $p \le .05$, d = 0.9) condition (Table 3). They also had a significant (t₍₇₎ = 2.785, $p \le .05$, d = 1.0) reduction in DBP in the control condition. Furthermore, estimated \dot{VO}_{2max} was significantly (t₍₇₎ = -2.549, $p \le .05$, d = 0.9) improved as a consequence of exercise. There were no significant differences in any of the other measures.

Table 3. Health screen for the good fitness group (n = 8)

	Exercise		Control	
	Pre	Post	Pre	Post
SBP (mmHg)	119 ± 11	$109 \pm 7*$	119 ± 8	$112 \pm 8^{\#}$
DBP (mmHg)	77 ± 10	72 ± 5	82 ± 4	$74\pm9^{\#}$
Fat (%)	28 ± 13	28 ± 11	27 ± 12	27 ± 12
Fat Free (%)	72 ± 13	72 ± 11	73 ± 12	73 ± 12
Mass (kg)	64 ± 6	64 ± 6	63 ± 6	63 ± 6
Estimated $\dot{V}O_{2max}$ (ml·kg ⁻¹ ·min ⁻¹)	43 ± 6	57 ± 15*	50 ± 9	56 ± 12
IPAQ	3 ± .53	2 ± .52	2 ± .35	2 ± .89

Note: SBP = systolic blood pressure, DBP = diastolic blood pressure and IPAQ = international physical activity questionnaire (1, Low; 2, Moderate; 3, High physical activity)

*, [#]Significantly different ($p \le .05$) from pre exercise and pre control respectively

3.5 Cardiorespiratory responses to exercise

There were no significant differences in METs, HR, relative $\dot{V}O_2$ or EE at rest for either the fair (Table 4) or good (Table 5) fitness group. In the exercise condition however, METs, HR, relative $\dot{V}O_2$ and EE did significantly (t ₍₈₎ = 3.622, $p \le .01$, d = 1.2; t ₍₈₎ = 3.420, $p \le .01$, d = 1.1; t ₍₈₎ = 3.511, $p \le .01$, d = 1.2 and t ₍₈₎ = 3.653, $p \le .01$, d = 1.2 respectively) decrease in the fair fitness group.

nuicos Broup (n = 5)				
	R	est	Exe	ercise
	Pre	Post	Pre	Post
METs	0.79 ± 0.42	0.97 ± 0.84	4.82 ± 0.74	$3.94\pm0.64*$
HR ($b \cdot min^{-1}$)	75 ± 9	68 ± 6	126 ± 12	$114 \pm 15*$
Relative $\dot{V}O_2$ (ml·kg ⁻¹ ·min ⁻¹)	2.6 ± 1.7	2.2 ± 0.9	16.8 ± 2.7	$13.8 \pm 2.3*$
$EE (J \cdot kg^{-1} \cdot min^{-1})$	56 ± 30	49 ± 14	336 ± 41	$276 \pm 33^{*}$

Table 4. Mean (± SD) metabolic equivalents (METs), heart rate (HR), relative oxygen consumption (relative $\dot{V}O_2$) and energy expenditure (EE) at rest and during exercise at the start and end the exercise intervention for the fair fitness group (n = 9)

*Significantly different ($p \le .05$) from pre exercise

The effects of exercise on METs, HR, relative $\dot{V}O_2$ and EE were not significantly different in the good fitness group (Table 5). However, both METs and relative $\dot{V}O_2$ were approaching significance (t ₍₇₎ = 2.075, *p* = .077, d = 0.7 and t ₍₇₎ = 2.254, *p* = .059, d = 0.8 respectively).

Table 5. Mean (\pm SD) metabolic equivalents (METs), heart rate (HR), relative oxygen consumption (relative $\dot{V}O_2$) and energy expenditure (EE) at rest and during exercise at the start and end the exercise intervention for the good fitness group (n = 8)

	Rest		Exercise	
	Pre	Post	Pre	Post
METs	1.28 ± 0.77	0.93 ± 0.16	5.04 ± 1.11	4.32 ± 1.04
HR $(b \cdot min^{-1})$	76 ± 12	71 ± 5	117 ± 16	110 ± 9
Relative $\dot{V}O_2$ (ml·kg ⁻¹ ·min ⁻¹)	4.4 ± 2.6	3.4 ± 1.2	17.8 ± 3.8	15.1 ± 3.7
$EE (J \cdot kg^{-1} \cdot min^{-1})$	93 ± 55	66 ± 34	361 ± 77	316 ± 76

There was no significant difference in measures taken at baseline compared to at the end of the washout period, irrespective of the order in which the conditions were completed, with the exception of estimated \dot{VO}_2 when the exercise condition was completed prior to the control condition (Table 6).

Table 6. Paired samples t-tests between participants pre-exercise and post-washout measures by order of	
conditions (those that did the exercise then control condition and vice versa)	

	Exercise Condition 1 st	Control Condition 1 st
S-IgA secretion rate ($\mu g/min^{-1}$)	t (7) = 1.28, $p = .24$	t $_{(7)} = .25, p = .81$
Cortisol concentration (µg/dL)	t (4) = -1.26, $p = .28$	t $_{(6)}$ = .20, p = .85
SBP (mmHg) DBP (mmHg)	t $_{(8)} = 1.23, p = .26$ t $_{(8)} = 1.17, p = .28$	t ₍₇₎ =49, <i>p</i> = .64 t ₍₇₎ = -1.28, <i>p</i> = .24
Fat (%) Fat Free (%) Mass (kg)	t $_{(6)} = 1.03, p = .34$ t $_{(6)} = -1.03, p = .34$ t $_{(7)} = .70, p = .51$	$t_{(5)} = .42, p = .69$ $t_{(5)} =39, p = .71$ $t_{(5)} = 1.81, p = .13$
Estimated $\dot{V}O_{2max}$ (ml·kg ⁻¹ ·min ⁻¹)	t (7) = -3.65, $p \le .01*$	t ₍₇₎ =95, <i>p</i> = .37
IPAQ	t $_{(7)} =36, p = .73$	$t_{(7)} = 1.00, p = .35$

Note: s-IgA = salivary immunoglobulin A, SBP = systolic blood pressure, DBP = diastolic blood pressure and IPAQ = international physical activity questionnaire *Significantly different ($p \le .01$) from pre-exercise to post-washout

4. DISCUSSION

The primary purpose of this study was to investigate stress and immune response to a four week Nintendo Wii step aerobics programme. The hypothesis that the Wii exercise sessions would not alter cortisol concentration was rejected, although measures of resting cortisol concentration would support this. S-IgA was expected to increase significantly in the exercise condition, consequently indicating an improvement in immune function. This was thought to be more pronounced in the fair fitness group relative to those with a good level of fitness. The hypothesis was again rejected, as the Nintendo Wii exercise programme did not significantly increase s-IgA in either fitness group. In fact, exercise had the opposite effect for the fair fitness group (s-IgA declined), although this was not significant statistically, whilst s-IgA remained unchanged in the good fitness group.

4.1 Resting s-IgA

Since there were no significant changes in s-IgA in either fitness group following the exercise intervention, this contradicts the findings of previous research. For example, Akimoto *et al.*, (2003) found that s-IgA significantly increased after exercise twice a week for four and 12 months ($33.8 \pm 27.2 \ \mu g/min^{-1}$ and $46.5 \pm 35.1 \ \mu g/min^{-1}$ respectively) compared to baseline ($29.5 \pm 26.0 \ \mu g/min^{-1}$). Furthermore, Klentrou *et al.*, (2002) witnessed a significant increase in s-IgA from $237.3 \pm 61.2 \ ml\cdot l^{-1}$ to $373.5 \pm 81.1 \ ml\cdot l^{-1}$ following 12 weeks of moderate exercise, which was accompanied by significantly less influenza symptoms.

The results do however agree with McDowell *et al.*, (1991 cited in Rahimi *et al.*, 2010) and Nehlsen-Cannarella *et al.*, (2000 cited in Rahimi *et al.*, 2010). Likewise,

Mackinnon and Jenkins (1993 cited in Akimoto *et al.*, 2003) also reported no significant difference in s-IgA following two months of interval training. Akimoto *et al.*, (2003) later suggested that the duration of Mackinnon and Jenkins (1993 cited in Akimoto *et al.*, 2003) study may not have been adequate enough to significantly alter s-IgA. This may also explain why s-IgA was not significantly changed in the current study, whereby only a four week exercise intervention was employed, though further research would be needed to confirm this. Whilst moderate exercise is proposed to improve immunosurviellence (Nieman, 2000b), these results may support that moderate exercise rarely influences immune function (Bishop, 2006). However, exercise in the fair fitness group did cause a 26% reduction in s-IgA concentration, albeit non-significantly. This unexpected finding may be explained when the results for cortisol are considered (see below).

In the control condition, there was an unpredicted significant increase in s-IgA in the participants with a fair level of fitness. The IPAQ scores during the control condition indicated that the fair fitness group were still moderately active in spite of no Nintendo Wii exercise. In this instance, the significant increase in s-IgA would agree with the effect of moderate exercise in previous studies (Akimoto *et al.*, 2003; Klentrou *et al.*, 2002) and would conform to Nieman's (1994 cited in Bishop, 2006) J-shaped model, whereby moderate activity is related to improved immune function.

Contrary to the fair fitness group, the good fitness group had a non-significant 14% reduction in s-IgA during the control period. Reference to Nieman's (1994 cited in Bishop, 2006) model may also help to explain this. Specifically, during the exercise period, the addition of the Nintendo Wii exercise programme to their regular physical

activity may have resulted in them exercising at the optimum level with regard to immune function, which may explain why s-IgA remained unchanged in the exercise condition. Contrary, once they were no longer participating in the Nintendo Wii exercise programme (i.e. the control condition) they were more sedentary and therefore subjected to a negative effect on immune function (decreased s-IgA), as depicted by Niemans (1994 cited in Bishop, 2006) J-shaped model.

4.2 Cortisol

In response to the first exercise session, the fair fitness group had a significant increase in cortisol concentration, which is usually only associated with rigorous exercise (Mackinnon, 1999). For instance, cortisol significantly increased following 2.5 hours of intensive running among a group of marathoners (Nieman et al., 1995 cited in Nieman, 1997). Whilst METs (4.82 \pm 0.74 METs) would suggest that the exercise was only moderate intensity, maximum heart rate (HR_{max}) minus resting heart rate (HR) was computed to give heart rate reserve (HRR) (Cole et al., 1999). This established that exercise was initially performed at 85% of HRR in the fair fitness group and that the exercise intensity was arguably more than vigorous (HHS, 1996 cited in ACSM, 2009). Based on METs, Quinn's (2010) research would further reinforce that exercise on Wii step using two riisers is vigorous. This may explain why s-IgA unexpectedly decreased as a result of the 'moderate' exercise, since elevated cortisol is correlated with a reduction in s-IgA (Hucklebridge et al., 1998). In contrast, there was no significant exercise-induced change in cortisol concentration during their final exercise session for the fair fitness group. Possibly because exercise training causes a reduction in the cortisol response at a given exercise intensity (Mackinnon, 1999).

If indeed the exercise was more vigorous at the start of the exercise intervention, the cortisol results for the fair fitness group would support the findings of Jacks *et al.*, (2002). Specifically, there was a significant ($p \le .01$) increase in salivary cortisol concentration following intense cycling, whereas at low and moderate intensities there were no significant differences (Jacks *et al.*, 2002). Likewise, Farzanaki *et al.*, (2008) found that significant increases in cortisol were only evident during days of increased training volume in a cohort of young female gymnasts and not when training was reduced. Despite the increase in cortsiol on heavier training days there was no significant change in s-IgA (Farzanaki *et al.*, 2008), similarly to the current study.

The good fitness group on the other hand had no significant alteration in cortisol concentration after exercise at either the start or end of the exercise intervention. This difference compared to the fair fitness group may be explained by the fact that increased cortisol is dependent on exercise intensity in relation to exercise capacity (Mackinnon, 1999). These results support that exercise has to be performed at high intensity and for one hour or more in order for cortisol to significantly increase (Jacks *et al.*, 2002). Furthermore, these results illustrate that cortisol response after exercise is less pronounced in fit people compared with those who are untrained (Luger *et al.*, 1987 cited in Rudolph & McAuley, 1998). Likewise, Marthur *et al.*, (1986 cited in Rudolph & McAuley, 1998) reported a 36% increase in cortisol among fit runners, compared to a 161% increase in unfit runners following maximal exercise.

The moderate exercise intervention did not alter resting cortisol concentration in either fitness group. This mimics the findings of O'Connor *et al.*, (1989), who also found that an increase in exercise training did not alter resting cortisol concentration among a

group of swimmers. As was expected, there were also no significant changes in cortisol concentration during the control period, again for people with either classification of fitness.

4.3 Health screen

4.3.1 Body composition

Regular active video gaming was not adequate enough to alter overall body mass. It may not be surprising that both fitness groups maintained their body mass since they were completing approximately 2000 steps in each session, which is equivalent to burning approximately 100 kilocalories (kcal) and has been known to prevent weight gain (Hill *et al.*, 2003 cited in Hill, 2009). An extra 2000 daily steps has even resulted in a reduction in body mass index (Toole *et al.*, 2007 cited in Hill, 2009). However, actual weight loss is usually dependant on a combination of both increased EE and a reduction in energy intake (ACSM, 2009). Consequently, weight loss in the current study may have been limited by the fact that energy intake was not modified and was presumably relatively stable throughout the study. Irrespective of whether or not they lost weight though, participation in regular physical activity is still advisable for the health of the participant (Blair, 2009). For example, a study by Church *et al.*, (Church *et al.*, 2005) showed a significantly greater risk of mortality from cardiovascular disease in normal weight men who had low cardiorespiratory fitness compared to overweight or obese men that were moderately or highly fit.

Sell *et al.*, (2008) suggested that future research on active video games should look at changes in actual body composition. Under this advice, this study revealed that whilst

there was not a reduction in body mass, there was a shift in the ratio of fat mass to fat free mass in the fair fitness group. Their percentage body fat in particular reduced by 6% so that it was approaching the optimal range for health (10% to 22% for males and 20% to 32% for females) (Lohman, 1982 cited in ACSM, 2009). Interestingly, the positive change in the fat to fat free mass ratio induced by the Nintendo Wii exercise was reversed during the control condition. It may be concluded therefore that participation in active video games not only maintains but actually improves body composition in people who are less fit and overweight according to their BMI (ACSM, 2009).

4.3.2 Blood pressure

One of the ways in which exercise prevents premature death is through a reduction in blood pressure (Lee & Paffenbarger, 2000). However, the Nintendo Wii exercise programme did not alter blood pressure in the fair fitness group. Whilst a reduction in SBP of 3 mmHg was not statistically significant, realistically this is significant given that even a 2 mmHg reduction in SBP is related to a 14% less chance of stroke and a 9% decrease in coronary artery disease risk (Pescatello *et al.*, 2004 cited in Warburton *et al.*, 2007). There was a significant reduction in SBP in the exercise condition in the good fitness group, although a reduction in both SBP and DBP was also observed in the control condition for the participants with good fitness. Since a reduction in blood pressure is a classic effect of exercise (Whelton *et al.*, 2002), it may be proposed that the good fitness group were actually engaged in more physical activity during the control period relative to during the Nintendo Wii exercise condition, with the amount of physical activity during this time being underreported via the IPAO.

4.3.3 Estimated \dot{VO}_{2max}

Exercise improved estimated \dot{VO}_{2max} in both fitness groups. This is the result of an increase in both maximal cardiac output and oxygen extraction (Bouchard et al., 2006). Only the good fitness groups increase from $43 \pm 6 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ to $57 \pm 15 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ was significant. Despite a typical improvement in aerobic fitness being 8-20% following aerobic training (Warburton et al., 2004 cited in Warburton et al., 2007), the 17% improvement in fair fitness group from 29 \pm 6 ml·kg⁻¹·min⁻¹ to 34 \pm 10 ml·kg⁻¹ ¹·min⁻¹ was not quite significant (p = .06). Nevertheless, these improvements are particularly encouraging since low cardiorespiratory fitness has been identified as the leading cause of all deaths, ahead of obesity, diabetes, smoking and either high blood pressure or cholesterol (Blair, 2009). What is more, the fair fitness groups estimated \dot{VO}_{2max} declined during the control period in the absence of the Nintendo Wii exercise programme. In contrast, the good fitness group continued to experience an improvement in $\dot{V}O_{2max}$, although this was not significant. However, the results for estimated $\dot{V}O_{2max}$ during the control condition may be dubious since estimated $\dot{V}O_{2max}$ was still significantly elevated at the start of the control period compared to baseline, despite a two-week washout period. It should also be acknowledged that $\dot{V}O_{2max}$ was only estimated from a cycle ergometer test and therefore the results are not as accurate than if actual $\dot{V}O_{2max}$ had been measured (ACSM, 2009).

4.4 Cardiorespiratory responses to exercise

Previous research has tended to investigate only the acute physiological responses to a single bout of active video gaming, whilst long-term benefits of active video games on fitness has been overlooked (Mark & Rhodes, 2009). The following findings may help address this shortage of knowledge.

In the fair fitness group, HR at baseline was 126 ± 12 b·min⁻¹. This is comparable to the HR reported in a group of children $(122 \pm 18 \text{ b} \cdot \text{min}^{-1})$ during the same active video game (White et al., 2010), although higher than those witnessed by Graves et al., (2010) among adolescents ($102 \pm 18 \text{ b}\cdot\text{min}^{-1}$), young adults ($95 \pm 10 \text{ b}\cdot\text{min}^{-1}$) and older adults $(95 \pm 11 \text{ b·min}^{-1})$. Comparisons between studies have to be made with caution though as many factors such as competiveness and the enthusiasm of the movement can affect the metabolic demands of active video games (Willems & Bond, 2009a). Following the exercise intervention, the fair fitness groups HR reduced significantly to 114 ± 15 b·min⁻¹. A reduction in HR at a given work load is a classic benefit associated with regular exercise (ACSM, 2009). This suggests that active video games on the Nintendo Wii, particularly Wii step, can elicit the same benefits as more conventional modes of exercise. Whilst the good fitness groups HR did reduce from 117 ± 16 b·min⁻¹ to 110 ± 9 b·min⁻¹ following the exercise intervention, unlike the fair fitness group, this reduction was non-significant. This indicates that people with lower fitness and therefore a greater exercising heart rate at the same work rate have a greater potential to reduce HR from this type of exercise.

In order to retain or improve cardiorespiratory fitness, adults must work at an exercise intensity of at least 60% HR_{max} (Pollock *et al.*, 1998 cited in Graves *et al.*, 2010). Participants HR_{max} was estimated using the Karvonen formula (Jackson, 2007) and their percentage HR_{max} was derived from their average exercising HR. Since the fair fitness group were exercising at 70% HR_{max} and the good fitness group at 64% HR_{max} , step aerobics on the Nintendo Wii can benefit cardiorespiratory fitness. This corroborates the findings of White *et al.*, (2010), whereby HR during Wii step was 62% of participants

(n = 26) HR_{peak}. In contrast, Graves *et al.*, (2010) reported that Wii aerobics (including step) was not sufficient enough to elicit positive changes in cardiorespiratory fitness.

4.4.2 Energy expenditure

Irrespective of fitness, the METs achieved during the Nintendo Wii step (between 4 and 5 METs) contribute to existing research, in that Wii step aerobics is moderate to vigorous in intensity (>3 METs) (Graves *et al.*, 2010; Quinn, 2010). This demonstrates that certain active video games such as Wii step and others like it, for example Wii boxing (Graves *et al.*, 2008b; Miyachi *et al.*, 2010; White *et al.*, 2010; Willems & Bond, 2009a), are a novel way to contribute to daily physical activity recommendations (Haskell *et al.*, 2007). That said, care must be taken when advocating the use of active video games, as not all are adequate enough in intensity to satisfy physical activity recommendations (Miyachi *et al.*, 2010).

Furthermore, Wii step has not consistently been reported as moderately intense. Specifically, White *et al.*, (2010) findings contradict the results of the current study and others like it (Graves *et al.*, 2010; Quinn, 2010), since they argued that Wii step is only light in terms of intensity ($2.43 \pm .43$ METs). Methodological differences may account for the difference in EE (Zhang *et al.*, 2004 cited in Miyachi *et al.*, 2010). For example, both the current study and Quinn (2010) used riisers to elevate the height of the Wii balance board, as well as the energy costs of Wii step (Quinn, 2010). Whereas it would appear that White *et al.*, (2010) used the balance board at its stand alone height, which may account for the discrepancies between their findings and those in the current study. However, Graves *et al.*, (2010) did not increase the height of the balance board and yet

they reported similar results to the current study. Hence, when the balance board is elevated, the intensity of Wii step is adequate enough to contribute to physical activity recommendations, although when the Wii balance board is not elevated it may (Graves *et al.*, 2010) or may not (White *et al.*, 2010) be a suitable exercise to contribute to physical activity recommendations. Even so, whilst light intensity exercise may fall short of physical activity recommendations, small increases in EE are easily attained and sustained and may therefore still help with weight management (Hill, 2009). Additionally, some exercise, be it light, is better than none at all (Daley, 2009).

Graves *et al.*, (2010) highlighted the absence of longitudinal studies that investigate how experience of the Nintendo Wii affects EE. This study showed that EE reduced in the fair fitness group and whilst this was true among the good fitness group, the latter was not significant. In particular, EE went from $336 \pm 41 \text{ J} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ at the beginning of the exercise programme to $276 \pm 33 \text{ J} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ at the end in the fair fitness group. Likewise, the good fitness group initially had an EE of $361 \pm 77 \text{ J} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$, which declined to $316 \pm 76 \text{ J} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ following the exercise intervention. In contrast, Sell *et al.*, (2008) found that EE increased with experience. However, this was using another type of active computer game (dance dance revolution), which has three difficulty levels that participants were allowed to self-select (Sell *et al.*, 2008), even though the energy requirements vary depending on the level (Fawkner *et al.*, 2010) and not necessarily with experience.

EE was comparable to a similar study by Graves *et al.*, (2010), whereby EE was $348 \pm 45 \text{ J}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ among adolescents ($16 \pm 1 \text{ years}$) and $345 \pm 60 \text{ J}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ among young adults ($28 \pm 5 \text{ years}$). EE in older adults ($58 \pm 7 \text{ years}$) was significantly lower

 $(252.2 \pm 84 \text{ J}\cdot\text{kg}^{-1}\cdot\text{min}^{-1})$ however, compared with the younger participants. Likewise, Lanningham-Foster *et al.*, (2009) also noticed that EE was significantly greater in children $(5.14 \pm 1.7 \text{ kcal}\cdot\text{kg}^{-1}\cdot\text{hr}^{-1})$ relative to adults $(2.67 \pm 0.95 \text{ kcal}\cdot\text{kg}^{-1}\cdot\text{hr}^{-1})$ when playing active computer games on the Nintendo Wii. These studies illustrated that the degree of EE is dependent on the age of the participants (Zhang *et al.*, 2004 cited in Miyachi *et al.*, 2010). Consequently, children may receive a greater benefit in terms of EE compared to the adults tested in this study when participating in Nintendo Wii step.

Moderate intensity physical activity that requires a daily EE of around 200 calories is enough to elicit health benefits (Pate *et al.*, 1995). Whilst the energy expended by both the fair (pre; 122 ± 11 kcal, post; 101 ± 18 kcal) and good (pre; 108 ± 16 kcal, post; 95 \pm 19 kcal) fitness groups did not satisfy this recommendation, if they were to complete the Nintendo Wii step sessions twice a day (40 minutes in total), generally they would expend sufficient calories (approximately 200) for positive health outcomes. This seems feasible since the majority of children in the UK spend approximately two hours playing video games up to seven days a week (Pratchett, 2005 cited in Graves *et al.*, 2008b) and video game use in all ages is set to rise (Lanningham-Foster *et al.*, 2009). Better still, Lee and Skerrett (2001 cited in Warburton *et al.*, 2006) suggested that even a weekly energy expenditure of 500 kcal may be adequate enough for health benefits. In this case, at the bare minimum, performing Wii step for 20 minutes each day for five days a week could elicit health benefits. Although greater benefits are obtained with increasing EE (Warburton *et al.*, 2006).

Nintendo Wii step is similar in terms of EE to activities including; volleyball, doubles tennis, skateboarding and gymnastics (Ainsworth *et al.*, 2000). Whilst this is

encouraging when comparing active video games with sedentary ones (Mark *et al.*, 2008), this study also illustrated that active computer games are not comparable to the actual activity, in this instance step aerobics, since this is much more vigorous in intensity (Ainsworth *et al.*, 2000). This corroborates that the Nintendo Wii is no substitute for authentic sports, as reported in several previous studies (Daley, 2009; Graves *et al.*, 2008a; Graves *et al.*, 2008b; Miyachi *et al.*, 2010).

4.4.3 Relative oxygen consumption

At baseline, relative \dot{V} O₂ for both the fair and good fitness group (16.8 ± 2.7 and 17.8 ± 3.8 ml·kg⁻¹·min⁻¹ respectively) was similar to that reported by White *et al.*, (2010) (17.0 ± 4.9 ml·kg⁻¹·min⁻¹). Relative \dot{V} O₂ was then reduced as a result of the Wii exercise programme. This was a significant reduction for the fair fitness group (13.8 ± 2.3 ml·kg⁻¹·min⁻¹), although not for the good fitness group (15.1 ± 3.7 ml·kg⁻¹·min⁻¹). This demonstrated that both fitness groups, but the fair fitness group more so, were both consuming less oxygen relative to the same workload after the four week exercise intervention. A reduction in myocardial oxygen cost being an advantage of regular exercise (ACSM, 2009).

In summary, cardiorespiratory responses to the Nintendo Wii were enhanced in both fitness groups as a result of the Nintendo Wii exercise programme, although the reductions in METs, HR, EE kind relative O_2 were only significant in the fair fitness group. This conforms to the dose-response curve, which estimates the association between physical activity and health benefits (Pate *et al.*, 1995). Specifically, it illustrates how lower active individuals have more to gain in health benefits compared to more active individuals (Pate *et al.*, 1995). However, further studies are needed to better established the potential health benefits of active video games (Miyachi *et al.*, 2010).

4.5 Limitations

Willems and Bond (2009a) identified a small sample size (n = 10) as a limitation in their study and the same applies here, whereby only 17 participants were recruited. Though this sample size was adequately powered to indentify significant effects, generalising these results to the wider population is restricted since the sample size is so low. Another criticism that has been appreciated by several other authors (Lanningham-Foster *et al.*, 2009; Mark *et al.*, 2008; Pasch *et al.*, 2008) was that the study was conducted in a laboratory, which is not ecologically valid since active video games are usually played in the comfort of your own home. On the other hand, this could be considered as an advantage as it enabled participants' compliance with the exercise programme to be monitored.

Additionally, there are a number of factors which influence immune function. These include for example, diet, obesity and genetics (Gleeson, 2006). However, these factors were not controlled for in the current study. Consequently, any changes in immune function, as indicated by an alteration in s-IgA, may not be entirely attributable to the Wii exercise intervention. Furthermore, whilst every effort was made to take saliva samples at the same time of day, since both s-IgA and cortisol exhibit diurnal variation (Hucklebridge *et al.*, 1998), this was not always feasible due to participants availability and the saliva results may have been wrongly influenced as a result. The final flaw was

that a measure of the incidence of URTIs was not taken. Therefore it is not known whether or not any of the changes in s-IgA transpired into any clinically relevant changes in the number or duration of URTI experienced by the participants.

4.6 Practical implications

There was a zero dropout rate in the current study. This is particularly surprising since dropout rates in structured exercise programmes have been known to range from 9% to 87% (Marcus *et al.*, 2006). This may be a result of the novel exercise mode, as previous studies have identified a greater adherence to active video games when compared to traditional exercise (Annessi & Mazas, 1997; Rhodes et al., 2008 cited in Mark & Rhodes, 2009; Warburton et al., 2007). This is probably because both adults (Barkley & Penko, 2009; Sell et al., 2008) and children (Penko & Barkley, 2010) alike prefer active video games over more conventional modes of exercise. Active computer games may therefore provide a greater promise of maintaining physical activity participation (Graves *et al.*, 2010) and consequently enhance the number of people meeting physical activity recommendations. Active video games may also lead to participation in others types of physical activity (Maddison et al., 2007). However, other potential barriers to long-term engagement in exergaming include the cost of active video games, limited space, type of game and the players age (Dixon et al., 2010). These factors therefore need further consideration if exergames are going to be a successful tool for maintaining recommended physical activity levels (Dixon et al., 2010).

To conclude, regular exercise on the Nintendo Wii does not improve immunosurviellence. If anything, it may even have the opposite effect in low conditioned individuals due to a temporary increase in stress hormones when first starting a structured exercise programme. The exercise intensity was sufficient enough to improve measures of cardiorespiratory fitness, with the lower fitness group receiving the greatest benefit overall. These results, coupled with the high adherence rates, confirm that active gaming can be an innovative way to contribute to daily physical activity recommendations to elicit health benefits.

5. REFERENCES

ACSM (2009) *ACSM's Guidelines for Exercise Testing and Prescription*. Philadelphia: Lippincott Williams & Wilkins.

Adams, G.M. (2002) *Exercise Physiology Laboratory Manual*. New York: McGraw-Hill.

Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., O'Brien, W.L., Bassett, D.R., Jr., Schmitz, K.H., Emplaincourt, P.O., Jacobs, D.R., Jr., & Leon, A.S. (2000) Compendium of physical activities: an update of activity codes and MET intensities. *Medicine & Science in Sports & Exercise*. **32:** S498-S504.

Akimoto, T., Kumai, Y., Akama, T., Hayashi, E., Murakami, H., Soma, R., Kuno, S., & Kono, I. (2003) Effects of 12 months of exercise training on salivary secretory IgA levels in elderly subjects. *British Journal of Sports Medicine*. **37:** 76-79.

Baranowski, T., Buday, R., Thompson, D.I., & Baranowski, J. (2008) Playing for real: video games and stories for health-related behavior change. *American Journal of Preventive Medicine*. **34**: 74-82.

Baranowski, T., Cullen, K.W., Nicklas, T., Thompson, D., & Baranowski, J. (2002) School-based obesity prevention: a blueprint for taming the epidemic. *American Journal Health Behavior*. **26**: 486-493.

Barkley, J. E. and Penko, A (2009) Physiologic Responses, Perceived Exertion, and Hedonics of Playing a Physical Interactive Video Game Relative to a Sedentary Alternative and Treadmill Walking in Adults. *Journal of Exercise Physiology*. **12**: 12-32.

Bausch, L, Beran, J, Cahanes, S, and Krug, L (2008) Physiological responses while playing Nintendo Wii sports. *Journal of Undergraduate Kinesiology Research*. **3:** 19-25.

Bishop, N. C. Exercise and infection risk. *In:* M. Gleeson, ed. (2006) *Immune Function in Sport and Exercise*. Philadelphia: Churchill Livingstone Elsevier.

Blair, S.N. (2009) Physical inactivity: the biggest public health problem of the 21st century. *British Journal of Sports Medicine*. **43**: 1-2.

Böhm, H., Hartmann, M., & Böhm, B. (2008) Predictors of metabolic energy expenditure from body acceleration and mechanical energies in new generation active computer games. *In: Computer Science in Sport - Mission and Methods*. Germany: Schloss Dagstuhl - Leibniz Center for Informatics.

Booth, F.W., Gordon, S.E., Carlson, C.J., & Hamilton, M.T. (2000) Waging war on modern chronic diseases: primary prevention through exercise biology. *Journal of Applied Physiology*. **88**: 774-787.

Bouchard, C., Blair, S.N., & Haskell, W.L. (2006) *Physical Activity and Health*. Champaign: Human Kinetics.

Brown, D. (2006) Playing to win: video games and the fight against obesity. *Journal of the American Dietetic Association*. **106:** 188-189.

Canadian Society for Exercise Physiology (2002) *PAR-Q & YOU* [online] Available at: <<u>http://www.csep.ca/CMFiles/publications/parq/par-q.pdf</u>> [Accessed on 5-11-2010].

Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E.F. (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. *Clinica Chimica Acta*. **383**: 30-40.

Church, T.S., Lamonte, M.J., Barlow, C.E., & Blair, S.N. (2005) Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. *Archives of Internal Medicine*. **165**: 2114-2120.

Cieslak, T.J., Frost, G., & Klentrou, P. (2003) Effects of physical activity, body fat, and salivary cortisol on mucosal immunity in children. *Journal of Applied Physiology*. **95**: 2315-2320.

Cole, C.R., Blackstone, E.H., Pashkow, F.J., Snader, C.E., & Lauer, M.S. (1999) Heartrate recovery immediately after exercise as a predictor of mortality. *New England Journal of Medicine*. **341**: 1351-1357.

Craig, R., Mindell, J., and Hirani, V. (2009) *Health Survey for England 2008* [online] Available at:

<<u>http://www.ic.nhs.uk/webfiles/publications/HSE/HSE08/Volume_1_Physical_activity</u> <u>and_fitness_revised.pdf</u>> [Accessed on 27-9-2010].

Daley, A.J. (2009) Can exergaming contribute to improving physical activity levels and health outcomes in children? *Pediatrics*. **124:** 763-771.

Dawar, A (2009) NHS Change4Life Campaign endorses video game exercises [online] Available at:

<<u>http://www.timesonline.co.uk/tol/life_and_style/health/article6890221.ece</u>> [Accessed on 31-1-2010].

Dimitriou, L., Sharp, N.C., & Doherty, M. (2002) Circadian effects on the acute responses of salivary cortisol and IgA in well trained swimmers. *British Journal of Sports Medicine*. **36**: 260-264.

Dixon, R., Maddison, R., Ni, M.C., Jull, A., Meagher-Lundberg, P., & Widdowson, D. (2010) Parents' and children's perceptions of active video games: a focus group study. *Journal of Child Health Care.* **14:** 189-199.

Dzewaltowski, D.A. (2008) Emerging technology, physical activity, and sedentary behavior. *Exercise and Sport Sciences Reviews*. **36:** 171-172.

Eley, K.A. (2010) A Wii fracture. *The New England Journal of Medicine*. **362:** 473-474.

Farzanaki, P, Azarbayjani, M. A, Rasaee, M. J., Jourkesh, M, Ostojic, S. M, and Stannard, S (2008) Salivary immunoglobulin A and cortisol response to training in young elite female gymnasts. *Brazilian Journal of Biomotricity*. **2:** 252-258.

Fawkner, S.G., Niven, A., Thin, A.G., Macdonald, M.J., & Oakes, J.R. (2010) Adolescent girls' energy expenditure during dance simulation active computer gaming. *Journal of Sports Sciences*. **28:** 61-65. Frayn, K. N. & Akanji, A. O. Integration of Metabolism 3: Macronutrients. *In:* M. J. Gibney, I. A. Macdonald, & H. M. Roche, eds. (2003) *Nutrition & Metabolism*. Oxford: Blackwell Publishing.

Gleeson, M (2005) Immune Function and Exercise. *European Journal of Sport Science*. **4:** 52-66.

Gleeson, M. Introduction to the immune system. *In:* M. Gleeson, ed. (2006) *Immune Function in Sports and Exercise*. Philadelphia: Churchill Livingstone Elsevier.

Gleeson, M. (2007) Immune function in sport and exercise. *Journal of Applied Physiology*. **103**: 693-699.

Gleeson, M., Hall, S.T., McDonald, W.A., Flanagan, A.J., & Clancy, R.L. (1999) Salivary IgA subclasses and infection risk in elite swimmers. *Immunology and Cell Biology*. **77**: 351-355.

Graf, D.L., Pratt, L.V., Hester, C.N., & Short, K.R. (2009) Playing active video games increases energy expenditure in children. *Pediatrics*. **124**: 534-540.

Graves, L., Stratton, G., Ridgers, N.D., & Cable, N.T. (2008a) Energy expenditure in adolescents playing new generation computer games. *British Journal of Sports Medicine*. **42:** 592-594.

Graves, L.E., Ridgers, N.D., & Stratton, G. (2008b) The contribution of upper limb and total body movement to adolescents' energy expenditure whilst playing Nintendo Wii. *European Journal of Applied Physiology*. **104**: 617-623.

Graves, L.E., Ridgers, N.D., Williams, K., Stratton, G., Atkinson, G., & Cable, N.T. (2010) The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. *Journal of Physical Activity and Health.* **7**: 393-401.

Hardman, A. E. Acute Responses to Physical Activity and Exercise. *In:* C. Bouchard, S. N. Blair, & W. L. Haskell, eds. (2006) *Physical Activity and Health*. Champaign: Human Kinetics.

Hardman, A.E. & Stensel, D.J. (2003) *Physical Activity and Health: The evidence explained*. London: Routledge.

Haskell, W.L., Lee, I.M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., Macera, C.A., Heath, G.W., Thompson, P.D., & Bauman, A. (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. *Medicine and Science in Sports and Exercise*. **39**: 1423-1434.

Hemila, H., Virtamo, J., Albanes, D., & Kaprio, J. (2003) Physical activity and the common cold in men administered vitamin E and beta-carotene. *Medicine and Science in Sports and Exercise*. **35**: 1815-1820.

Hill, J. O (2009) Can a small-changes approach help address the obesity epidemic? A report of the Joint Task Force of the American Society for Nutrition, Institue of Food Technologists, and International Food Information Council. *American Journal of Clinical Nutrition*. **89:** 477-484.

Hillier, A. (2008) Childhood overweight and the built environment: Making technology part of the solution rather than part of the problem. *Annals of the American Academy of Political and Social Science*. **615**: 56-82.

Howley, E.T. & Franks, B.D. (1997) *Health Fitness Instructor's Handbook*. Champaign: Human Kinetics.

Hucklebridge, F., Clow, A., & Evans, P. (1998) The relationship between salivary secretory immunoglobulin A and cortisol: neuroendocrine response to awakening and the diurnal cycle. *International Journal of Psychophysiology*. **31**: 69-76.

IPAQ (2002) *Downloadable Questionnaires* [online] Available at: <<u>http://www.ipaq.ki.se/downloads.htm</u>> [Accessed on 14-4-2010].

Jacks, D.E., Sowash, J., Anning, J., McGloughlin, T., & Andres, F. (2002) Effect of exercise at three exercise intensities on salivary cortisol. *The Journal of Strength & Conditioning Research.* **16**: 286-289.

Jackson, A.S. (2007) Estimating maximum heart rate from age: is it a linear relationship? *Medicine and Science in Sports and Exercise*. **39:** 821.

Kinnear, P.R. & Gray, C.D. (2009) SPSS 16 made simple. Sussex: Psychology Press.

Klentrou, P., Cieslak, T., MacNeil, M., Vintinner, A., & Plyley, M. (2002) Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. *European Journal of Applied Physiology*. **87:** 153-158.

Kostka, T., Berthouze, S.E., Lacour, J., & Bonnefoy, M. (2000) The symptomatology of upper respiratory tract infections and exercise in elderly people. *Medicine & Science in Sports & Exercise*. **32:** 46-51.

Lanningham-Foster, L., Foster, R.C., McCrady, S.K., Jensen, T.B., Mitre, N., & Levine, J.A. (2009) Activity-promoting video games and increased energy expenditure. *Journal of Pediatrics*. **154**: 819-823.

Lee, I.M. & Paffenbarger, R.S. (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study. *American Journal of Epidemiology*. **151**: 293-299.

Lenhart, A, Jones, S., and Macgill, A. R. (2008) Adults and video games [online] Available at:

<<u>http://www.pewinternet.org/~/media//Files/Reports/2008/PIP_Adult_gaming_memo.p</u> <u>df.pdf</u>> [Accessed on 6-10-2010].

Mackinnon, L.T. (1999) Advances in Exercise Immunology. Champaign: Human Kinetics.

Maddison, R., Mhurchu, C.N., Jull, A., Jiang, Y., Prapavessis, H., & Rodgers, A. (2007) Energy expended playing video console games: an opportunity to increase children's physical activity? *Pediatric Exercise Science*. **19**: 334-343.

Manini, T.M., Everhart, J.E., Patel, K.V., Schoeller, D.A., Colbert, L.H., Visser, M., Tylavsky, F., Bauer, D.C., Goodpaster, B.H., & Harris, T.B. (2006) Daily activity

energy expenditure and mortality among older adults. *Journal of the American Medical Association*. **296:** 171-179.

Marcus, B.H., Williams, D.M., Dubbert, P.M., Sallis, J.F., King, A.C., Yancey, A.K., Franklin, B.A., Buchner, D., Daniels, S.R., & Claytor, R.P. (2006) Physical activity intervention studies: what we know and what we need to know: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity); Council on Cardiovascular Disease in the Young; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. *Circulation*. **114**: 2739-2752.

Mark, R and Rhodes, R. E (2009) Active Video Games: A Good Way to Exercise? *WellSpring*. **20**.

Mark, R, Rhodes, R. E, Warburton, D. E. R, and Bredin, S. S. D (2008) Interactive Video Games and Physical Activity: A Review of the Literature and Future Directions. *Health & Fitness Journal of Canada*. **1:** 14-24.

Marshall, S.J., Gorely, T., & Biddle, S.J. (2006) A descriptive epidemiology of screenbased media use in youth: a review and critique. *Journal of Adolescence*. **29:** 333-349.

Matthews, C.E., Ockene, I.S., Freedson, P.S., Rosal, M.C., Merriam, P.A., & Hebert, J.R. (2002) Moderate to vigorous physical activity and risk of upper-respiratory tract infection. *Medicine & Science in Sports & Exercise*. **34**: 1242-1248.

McArdle, W.D., Katch, F.I., & Katch, V.L. (2006) *Exercise Physiology: Energy, Nutrition and Human Performance*. Philadelphia: Lippincott Williams & Wilkins.

McMurray, R.G., Harrell, J.S., Deng, S., Bradley, C.B., Cox, L.M., & Bangdiwala, S.I. (2000) The influence of physical activity, socioeconomic status, and ethnicity on the weight status of adolescents. *Obesity Research.* **8**: 130-139.

Melkevik, O., Torsheim, T., Iannotti, R.J., & Wold, B. (2010) Is spending time in screen-based sedentary behaviors associated with less physical activity: a cross national investigation. *International Journal of Behavioral Nutrition and Physical Activity*. **7**: 46.

Mintel (2008) *Video and Computer Games - UK - August 2008* [online] Available at: <<u>http://academic.mintel.com/sinatra/oxygen_academic/search_results/show&/display/id</u> =280418> [Accessed on 13-10-2010].

Mintel (2009) *Fitness in the Home - UK* [online] Available at: <<u>http://oxygen.mintel.com/sinatra/oxygen/display/id=394699</u>> [Accessed on 29-1-2010].

Miyachi, M., Yamamoto, K., Ohkawara, K., & Tanaka, S. (2010) METs in adults while playing active video games: a metabolic chamber study. *Medicine & Science in Sports & Exercise*. **42:** 1149-1153.

Mohebati, L., Lobstein, T., Millstone, E., & Jacobs, M. (2007) Policy options for responding to the growing challenge from obesity in the United Kingdom. *Obesity Reviews.* **8:** 109-115.
Moreira, A., Delgado, L., Moreira, P., & Haahtela, T. (2009) Does exercise increase the risk of upper respiratory tract infections? *British Medical Bulletin*. **90:** 111-131.

National High Blood Pressure Education Program (2004) *The Seventh Report of the Joint National Comittee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure* [online] Available at: <<u>http://www.nhlbi.nih.gov/guidelines/hypertension/jnc7full.pdf</u>> [Accessed on 5-11-2010].

Nieman, D.C. (1997) Immune response to heavy exertion. *Journal of Applied Physiology*. 82: 1385-1394.

Nieman, D.C. (2000a) Exercise effects on systemic immunity. *Immunology and Cell Biology*. **78:** 496-501.

Nieman, D.C. (2000b) Is infection risk linked to exercise workload? *Medicine & Science in Sports & Exercise*. **32:** S406-S411.

Nieman, D.C., Nehlsen-Cannarella, S.L., Fagoaga, O.R., Henson, D.A., Shannon, M., Hjertman, J.M., Schmitt, R.L., Bolton, M.R., Austin, M.D., Schilling, B.K., & Thorpe, R. (2000) Immune function in female elite rowers and non-athletes. *British Journal of Sports Medicine*. **34**: 181-187.

Nintendo (2009) *Wii sales in UK top six million in less than three years* [online] Available <<u>http://www.nintendo.co.uk/NOE/en_GB/news/2009/wii sales in uk top six million</u> in less than three years 15296.html> [Accessed on 8-10-2010].

O'Connor, P.J., Morgan, W.P., Raglin, J.S., Barksdale, C.M., & Kalin, N.H. (1989) Mood state and salivary cortisol levels following overtraining in female swimmers. *Psychoneuroendocrinology*. **14**: 303-310.

Pasch, M., Berthouze, N., van Dijk, B., & Nijholt, A. (2008) Motivations, Strategies, and Movement Patterns of Video Gamers Playing Nintendo Wii Boxing. *In: Facial and bodily expressions for control and adaptation of games (ECAG 2008)*. pp. 27-33.

Pate, R.R. (2008) Physically active video gaming: an effective strategy for obesity prevention? *Archives of Pediatrics and Adolescent Medicine*. **162**: 895-896.

Pate, R.R., Pratt, M., Blair, S.N., Haskell, W.L., Macera, C.A., Bouchard, C., Buchner, D., Ettinger, W., Heath, G.W., King, A.C., & . (1995) Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. *The Journal of the American Medical Association*. **273**: 402-407.

Penko, A.L. & Barkley, J.E. (2010) Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children. *Annals of Behavioral Medicine*. **39:** 162-169.

Quinn, M. 2010. The effect of three riiser heights on energy expenditure during Nintendo Wii Fit step aerobics. Unpublished dissertation. UCLan.

Rahimi, R., Ghader, M, Mirzaei, B, Ghaeni, S, Faraji, H, Vatani, D. S, and Rahmani-Nia, F (2010) Effects of very short rest periods on immunoglobulin A and cortisol responses to resistance exercise in men. *Journal of Human Sport & Exercise*. 5: 146-157.

Robinson, R.J., Barron, D.A., Grainger, A.J., & Venkatesh, R. (2008) Wii knee. *Emergency Radiology*. **15:** 255-257.

Roemmich, J.N., Barkley, J.E., Lobarinas, C.L., Foster, J.H., White, T.M., & Epstein, L.H. (2008) Association of liking and reinforcing value with children's physical activity. *Physiology and Behavior*. **93**: 1011-1018.

Rudolph, D.L. & McAuley, E. (1998) Cortisol and affective responses to exercise. *Journal of Sports Sciences*. **16:** 121-128.

Salimetrics (2009) *Saliva Collection and Handling Advice* [online] Available at: <<u>http://www.salimetrics.com/assets/documents/collection-supplies/Saliva-Collection-and-Handling-Advice-large-format-4-7-09.pdf</u>> [Accessed on 31-8-0010].

Schoenfeld, D (2010) Statistical considerations for a cross-over study where the outcome is a measurement [online] Available at: <<u>http://hedwig.mgh.harvard.edu/sample_size/js/js_crossover_quant.html</u>> [Accessed on 26-6-2010].

Schulz, K.F., Altman, D.G., & Moher, D. (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. *Trials*. **11**: 32.

Sell, K., Lillie, T., & Taylor, J. (2008) Energy expenditure during physically interactive video game playing in male college students with different playing experience. *The Journal of American College Health.* **56:** 505-511.

Shephard, R.J., Kavanagh, T., Mertens, D.J., Qureshi, S., & Clark, M. (1995) Personal Health Benefits of Masters Athletics Competition. *British Journal of Sports Medicine*. **29:** 35-40.

Siegel, S.R., Haddock, L., Dubois, A.M., & Wilkin, L.D. (2009) Active Video/Arcade Games (Exergaming) and Energy Expenditure in College Students. *International Journal of Exercise Science*. **2:** 165-174.

Stettler, N., Signer, T.M., & Suter, P.M. (2004) Electronic games and environmental factors associated with childhood obesity in Switzerland. *Obesity Research*. **12:** 896-903.

Taylor, H.D., Klepetar, E., Keys, A., Parlin, W., Blackburn, H., & Puchner, T. (1962) Death rates among physically active and sedentary employees of the railroad industry. *American Journal of Public Health and the Nations Health*. **52:** 1697-1707.

Thomas, J.R. & Nelson, J.K. (1996) *Research Methods in Research Activity*. Champaign, IL: Human Kinetics.

Tremblay, M.S. & Willms, J.D. (2003) Is the Canadian childhood obesity epidemic related to physical inactivity? *International Journal of Obesity and Related Metabolic Disorders*. **27:** 1100-1105.

Vandewater, E.A., Shim, M.S., & Caplovitz, A.G. (2004) Linking obesity and activity level with children's television and video game use. *Journal of Adolescence*. **27**: 71-85.

Wallop, H (2009) *NHS endorses Nintendo Wii Fit video game* [online] Available at: <<u>http://www.telegraph.co.uk/technology/nintendo/6430935/NHS-endorses-Nintendo-Wii-Fit-video-game.html</u>> [Accessed on 31-1-2010].

Warburton, D.E., Bredin, S.S., Horita, L.T., Zbogar, D., Scott, J.M., Esch, B.T., & Rhodes, R.E. (2007) The health benefits of interactive video game exercise. *Applied Physiololgy, Nutrition and Metabolism.* **32:** 655-663.

Warburton, D.E., Nicol, C.W., & Bredin, S.S. (2006) Health benefits of physical activity: the evidence. *Canadian Medical Association Journal*. **174**: 801-809.

Whelton, S.P., Chin, A., Xin, X., & He, J. (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. *Annals of Internal Medicine*. **136**: 493-503.

White, K., Schofield, G., & Kilding, A.E. (2010) Energy expended by boys playing active video games. *Journal of Science and Medicine in Sport*.

Willems, M.E.T. & Bond, T.S. (2009a) Comparison of Physiological and Metabolic Responses to Playing Nintendo Wii Sports and Brisk Treadmill Walking. *Journal of Human Kinetics*. **22**: 43-49.

Willems, M. E. T. and Bond, T. S. (2009b) Metabolic equivalent of brisk walking and playing new generation active computer games in young-adults. *Medicina Sportiva*. **13**: 95-98.

Yaqoob, P. & Calder, P. C. The Immune and Inflammatory Systems. *In:* M. J. Gibney, I. A. Macdonald, & H. M. Roche, eds. (2003) *Nutrition & Metabolism*. Oxford: Blackwell Publishing.

ZooZen (2009) *Real workout with your Wii balance board* [online] Available at: <<u>http://www.zoozen.com/cgi-bin/zoozen2/engine.pl?function=viewid&id=RKS00021</u>> [Accessed on 12-10-2010].

6. SELF REFLECTION

What a year, probably one of the worst of my life! I never envisaged that this Msc would be as difficult as it turned out to be. I am shocked that I am here actually writing a self reflection and putting together all of the finishing touches to my thesis. On numerous occasions over the last 12 months, I severely questioned whether or not I would make it this far. Credit to my willpower (or rather stubbornness), that I have survived right through to the end.

As you may have guessed, this project has not been by any means easy for me. This is primarily attributable to the repeated set-backs that I encountered along the way. For example, it was several months after I had initially put in an order for my saliva kits before they were actually purchased. In retrospect, I should have used my support network (supervisors) sooner rather than later, since that is what they were there for. As well as be a bit more proactive about the situation myself, although at the time, I thought I was doing everything within my power to get it resolved. Had I done this, things may have been sorted quicker and may not have had such a negative impact on my progress.

What have I learned? Possibly that I am not cut out for postgraduate study or at least I am not prepared to sacrifice my life for any further study. That is not to say that you have to sacrifice your life if undertaking postgraduate study, only I seemed to struggle to get the balance right between work and play. Mainly all work and no play! This is not very healthy for anyone. This is all despite attending workshops to help with time and project management. I do not know why I struggled so much with this, since I coped better at undergraduate when I had exams, lectures and assignments to juggle, in addition to my dissertation. The worse thing I ever did was probably not allowing

myself an official holiday, whereby I could completely switch off from work and recover for the next stage. I suppose this knowledge would lend itself well to if I ever did decide (god forbid) to do a PhD.

I have identified that I am seriously lacking in confidence. For instance, when questioned about my methods by a member of staff I literally went to pieces, despite knowing that I could justify what it was that I was being queried about. I do not think this is directly related to my belief in my academic ability but circumstances in my personal life. Whilst this does not exactly fill me with joy when anticipating my viva, this experience has been invaluable in terms of teaching me to believe in myself and my own expertise more. Though I think this will take time. Who knows, if I cope well in my viva that may just help me on my way.

I managed to generate a reference list and even make use of the in-text citations function on Reference Manager and would therefore say that this is a skill I have gained through this Msc project. I have never used a bibliographic database before and was quite intimidated by the prospect of doing so, as I do not consider myself adept with computers. Since I paid for the privilege, I thought I better use it, and in doing so I can now appreciate how a package like Reference Manager can be an invaluable tool and time-saver on a project of this scale. I would definitely use it again, especially since I found it relatively easy to use once I knew how. For future reference, I should maybe allow myself to invest more time in getting to grips with software like Reference Manager, so that I can experience the benefit in the long run. I must admit that I am finding it difficult to identify skills that I have developed by virtue of this MSc. I imagine my skill development has been extensive in many areas, although usually I need feedback and reassurance from others in order to acknowledge the things I am good at. Again, this is probably a confidence thing. One thing in particular that I remember my supervisor mentioning was my writing skills. They said that I was undoubtedly writing at the correct level (i.e. postgraduate). I feel this was aided by a technical/scientific writing course, which I was especially receptive to because of the way in which it was delivered.

Another skill, which I myself would like to highlight, is my organisational skills. Coordinating 17 people to come in three times a week for four weeks, in addition to four separate testing sessions over the course of a 10 week period and orchestrating that around their family and work commitments, as well as my own, was a mammoth task. I felt I excelled in organising this through effective communication and cooperation from the participants. Most people might find this stressful, but I seem to thrive in situations like this. My brain seems to be very ordered and logical in the way in which I approach and complete tasks and this may explain why I did not handle things well when situations that were out of my control did not go to plan.

Even though I have found this last year extremely challenging, indeed overwhelming at times, I do not regret embarking upon this project, as it has been equally as rewarding. I am very fortunate and grateful to have had this opportunity with the help of the Gilbertson Excellence Scholarship. Overall, I can honestly say that I have tried my best, and as my mum always tells me, that is all you can do.

7. APPENDICES

Do you want to get Wii*Fit*?

Do you fancy a change to conventional exercise methods? As part of our MSc project, we are offering a FREE health screen and a four week step aerobics programme using the Nintendo Wii. Perfect if you are keen to improve your health, fitness and overall well-being.

Interested? Please contact either Francesca or Matt on:

Francesca: 07878929049 Matt: 07898853727

FPell@uclan.ac.uk MPDuckham@uclan.ac.uk

University of Central Lancashire

School of Psychology

CONSENT FORM

Title of Project: The effect of step aerobics using Nintendo Wii Fit on immune function and blood lipids

Name of Researcher(s): Matthew Duckham & Francesca Pell (MSc students)

Name of Supervisor(s): Steve Atkins, Stephanie Dillon, & David Fewtrell

Please Tick box

I confirm that I have read and understand the participant information sheet for	
this study. I have had the opportunity to consider the information, ask questions \square	
and have had these answered satisfactorily.	

I understand that my participation is voluntary and that I am free to withdraw at any time, without giving any reason.

I agree to take part in this study.

Name of Participant

Date

Signature

I confirm that I have explained to the above individual the nature, purpose and possible risk associated with the participation in this research study, and have answered any questions that have been raised.

Researcher(s)

Date

Signature

Participant Information Sheet

We (Francesca Pell and Matthew Duckham) are currently masters (MSc) students undertaking a masters research project. The following information will indicate why we are conducting this research and what participation will entail. Please read the following information carefully. You may ask any questions if you are not clear on anything or if you would like more information.

Study title

The effect of a four week Nintendo Wii Fit training programme on blood lipids and immune function.

What is the purpose of the study?

To investigate the effect of a four week Nintendo Wii programme (step aerobics) on blood lipids (e.g. cholesterol) and immune function.

Why have I been chosen?

You have kindly volunteered to take part in this study.

Do I have to take part?

Taking part in this study is entirely voluntary. You may withdraw at any time (see contact details at the bottom of the page) before completing your final testing session, at which point your data will be anonymised (for the purpose of analysis) and therefore we cannot trace your results back to you personally after this time.

What do I have to do?

Participants are invited to attend the sports physiology lab at the University of Central Lancashire. Participants will be asked to give both a blood and two saliva samples, along with some basic data (height, weight etc). After four weeks have passed, these measures will be repeated and participants will begin their four week step aerobics programme, using the Nintendo Wii. Each training session will be about 20 minutes long and it is hoped participants will attend three sessions per week for the entire four week training programme. When the four week training has been completed, a third and final measure of blood, saliva and the body (height, weight etc) will be taken. In addition, participants will be asked to wear a metalyser (meta-max) during the first and last training session of the Nintendo Wii programme. This involves placing a face mask

over the mouth and nose, whilst wearing a device that rests on the shoulders, this allows measures of heart rate, oxygen consumption and other gas analyses to be obtained. Blood samples will be taken using a lancet to make a small puncture (finger prick) at the end of a finger of choice (index or middle finger), whilst the blood is collected. In addition, a saliva sample will be taken by passively dribbling through a straw.

What are the possible risks of taking part?

The study will include some moderate-to-vigorous physical activity and as such, a questionnaire (PAR-Q) is used to assess participants' suitability. In subsequent exercise sessions, you will be asked if your health has changed so that you now answer 'YES' to any of the questions on the PAR-Q. Participation will be dependent on this response. Moreover, a comprehensive risk assessment has been undertaken to identify and control any potential risks, in order to help ensure the safety of all participants.

What are the possible benefits of taking part?

You may enjoy this exciting new way in which to exercise on the Nintendo Wii, not to mention the health benefits that are commonly associated with participation in physical activity. You will receive a free health screen (e.g. blood pressure and physical fitness test) and will also be taking part in an innovative study, which can contribute to the limited research in this area.

Will the results be confidential?

The results of the study will be anonymous in that no results can be linked the participants' name. This will be achieved by identifying participants by a unique number rather than their name, a record of which will be stored separate from any of the participants' results. In no instance will individual data be presented, only group averages.

What will happen to the results of the research study?

The data will be saved on a password protected laptop and then incorporated into a written report and presentation, which will be assessed by internal and external staff at UCLAN. Thereafter, it is possible that the results may be published in an academic journal.

Student Contact Details

For further information or if you wish to withdraw, please do not hesitate to contact:

Matthew Duckham (BSc Hons) MSc Research Student <u>MPDuckham@uclan.ac.uk</u>

Francesca Pell (BSc Hons) MSc Research Student FPell@uclan.ac.uk

Supervisory Contact Details

Dr Stephanie Dillon Course Leader for BSc (Hons) Human Nutrition Disability Contact & Extenuating Circumstances Officer [ECs] for CASES, School of Psychology University of Central Lancashire Preston PR1 2HE Tel: 01772 893516 SDillon@uclan.ac.uk

Dr David Fewtrell Senior Lecturer Sports Biomechanics Centre for Applied Sport & Exercise Sciences University of Central Lancashire Preston Lancashire PR1 2HE 01772 893329 djfewtrell@uclan.ac.uk

Dr Steve Atkins Principal Lecturer Centre for Applied Sport & Exercise University of Central Lancashire Preston Lancashire PR1 2HE Tel: 01772 893523 SAtkins@uclan.ac.uk

Further Information

Please let us know if we can be of assistance in directing you to any further information sources relating to health and fitness.

Statistical considerations for a cross-over study where the outcome is a measurement

Request

0.05 Significance Level (%) — 2 sided (default is 0.05, two-sided)

6.3 • Within patient standard deviation (*if known*), or \bigcirc Standard deviation of the difference between the two value for the same patient (*if known*)

Enter two of the following three values and the remaining value will be calculated

1.		Total number of patients
2.	0.8	Power (usually 0.8 or 0.9)
3.	12.2	Minimal detectable difference in means

Calculate

Response

Calculation performed at: 14 December 2010 18:22:56

The provided parameters were: significance level (adjusted for sidedness) = 0.025, standard deviation within patients = 6.3, standard deviation of the difference = undefined, number of patients = undefined, power = 0.8, difference in means = 12.2.

The variable calculated was the total number of patients.

A total of 7 patients will enter this two-treatment crossover study. The probability is 85 percent that the study will detect a treatment difference at a two-sided 0.05 significance level, if the true difference between treatments is 12.200 units. This is based on the assumption that the within-patient standard deviation of the response variable is 6.3.

This software developed by David Schoenfeld, Ph.D. (<u>dschoenfeld@partners.org</u>), with support from the MGH Mallinckrodt General Clinical Research Center. Javascript version developed by REMorse.

These calculations are based on assumptions which may not be true for the clinical trial that you are planning. We do not guarantee the accuracy of these calculations or their suitability for your application. We suggest that you speak to a biostatistical consultant when planning a clinical trial. Please contact us if you have any questions or problems using this software

http://hedwig.mgh.harvard.edu/sample_size/js/js_crossover_quant.html

14/12/2010

T-Test

[DataSet22] C:\Users\Matt\Documents\MSc Thesis\Blood Pressure_1.sav

Group Statistics						
	- Poor_or_Good	N	Mean	Std. Deviation	Std. Error Mean	
Age_yrs	1.00	9	40.0000	13.28533	4.42844	
	2.00	8	33.8750	14.05538	4.96933	
BMI	1.00	9	27.8993	5.08324	1.69441	
	2.00	8	24.0938	2.11112	.74639	
Mass_kg	1.00	9	76.3778	8.65141	2.88380	
	2.00	8	63.7500	6.58461	2.32801	
Height_cm	1.00	9	166.3889	8.75992	2.91997	
	2.00	8	162.6250	4.86056	1.71847	
SBP_mmHg	1.00	9	126.0556	11.06923	3.68974	
	2.00	8	118.6250	10.70297	3.78407	
DBP_mmHg	1.00	9	85.2778	8.84276	2.94759	
	2.00	8	77.2500	9.67323	3.42000	
BF_Percent	1.00	8	34.5625	14.71908	5.20398	
	2.00	7	27.6286	12.79163	4.83478	
Estimated_VO2max_mL_kg_	1.00	9	29.2267	5.98010	1.99337	
min	2.00	8	43.3900	6.29571	2.22587	

		Levene's Test	for Equality of
		Varia	nces
		F	Sig.
Age_yrs	Equal variances assumed	.208	.655
	Equal variances not		
	assumed		
ВМІ	Equal variances assumed	2.787	.116
	Equal variances not		
	assumed		
Mass_kg	Equal variances assumed	1.663	.217
	Equal variances not		
	assumed		
Height_cm	Equal variances assumed	1.969	.181
	Equal variances not		
	assumed		
SBP_mmHg	Equal variances assumed	.081	.780
	Equal variances not		
	assumed		
DBP_mmHg	Equal variances assumed	.000	.989
	Equal variances not		
	assumed		
BF_Percent	Equal variances assumed	.450	.514
	Equal variances not		
	assumed		
Estimated_VO2max_mL_kg_	_ Equal variances assumed	.135	.718
min	Equal variances not		
	assumed		

		t-test	for Equality	of Means
		t	df	Sig. (2-tailed)
Age_yrs	Equal variances assumed	.923	15	.370
	Equal variances not	.920	14.520	.373
	assumed			
ВМІ	Equal variances assumed	1.967	15	.068
	Equal variances not	2.055	10.935	.065
	assumed			
Mass_kg	Equal variances assumed	3.351	15	.004
	Equal variances not	3.407	14.693	.004
	assumed			
Height_cm	Equal variances assumed	1.075	15	.299
	Equal variances not	1.111	12.753	.287
	assumed			
SBP_mmHg	Equal variances assumed	1.403	15	.181
	Equal variances not	1.406	14.874	.180
	assumed			
DBP_mmHg	Equal variances assumed	1.788	15	.094
	Equal variances not	1.778	14.339	.097
	assumed			
BF_Percent	Equal variances assumed	.966	13	.351
	Equal variances not	.976	13.000	.347
	assumed			
Estimated_VO2max_mL_kg_	Equal variances assumed	-4.755	15	.000
min	Equal variances not	-4.740	14.545	.000
	assumed			

		t-test for Equa	lity of Means
			Std. Error
		Mean Difference	Difference
Age_yrs	Equal variances assumed	6.12500	6.63275
	Equal variances not	6.12500	6.65622
	assumed		
ВМІ	Equal variances assumed	3.80554	1.93518
	Equal variances not	3.80554	1.85152
	assumed		
Mass_kg	Equal variances assumed	12.62778	3.76862
	Equal variances not	12.62778	3.70621
	assumed		
Height_cm	Equal variances assumed	3.76389	3.50231
	Equal variances not	3.76389	3.38812
	assumed		
SBP_mmHg	Equal variances assumed	7.43056	5.29637
	Equal variances not	7.43056	5.28521
	assumed		
DBP_mmHg	Equal variances assumed	8.02778	4.48964
	Equal variances not	8.02778	4.51494
	assumed		
BF_Percent	Equal variances assumed	6.93393	7.17469
	Equal variances not	6.93393	7.10327
	assumed		
Estimated_VO2max_mL_kg_	_ Equal variances assumed	-14.16333	2.97836
min	Equal variances not	-14.16333	2.98798
	assumed		

		t-test for Equa	ality of Means
		95% Confidence Differ	e Interval of the ence
		Lower	Upper
Age_yrs	Equal variances assumed	-8.01238	20.26238
	Equal variances not assumed	-8.10335	20.35335
BMI	Equal variances assumed	31920	7.93027
	Equal variances not assumed	27258	7.88365
Mass_kg	Equal variances assumed	4.59516	20.66040
	Equal variances not assumed	4.71379	20.54177
Height_cm	Equal variances assumed	-3.70111	11.22889
	Equal variances not assumed	-3.57014	11.09792
SBP_mmHg	Equal variances assumed Equal variances not	-3.85839 -3.84292	18.71950 18.70403
	assumed		
DBP_mmHg	Equal variances assumed Equal variances not assumed	-1.54167 -1.63438	17.59723 17.68993
BF_Percent	Equal variances assumed Equal variances not assumed	-8.56605 -8.41178	22.43391 22.27964
Estimated_VO2max_mL_kg_ min	Equal variances assumed Equal variances not assumed	-20.51155 -20.54947	-7.81512 -7.77720

DATASET ACTIVATE DataSet19. DATASET CLOSE DataSet22. DATASET ACTIVATE DataSet19. DATASET CLOSE DataSet21. DATASET ACTIVATE DataSet19. DATASET CLOSE DataSet20.

SCHOOL OF PSYCHOLOGY ETHICS COMMITTEE ETHICS FORM FOR STAFF, MPhil/PhD & MSc RESEARCH PROJECTS

Before completing this form you should read the UCLAN *Code of Conduct* and the British Psychological Society *Code of Conduct* (both online at <u>www.uclan.ac.uk/scitech/psychology/research/ethics.php</u>). In addition, for questions 4-22, please see the attached guidance notes. PhD & MSc students should discuss the completion of this form with their supervisor.

All researchers MUST obtain ethical approval BEFORE collecting any data.

Research Team

Researcher name(s) & email

Francesca Louise Pell: FPell@uclan.ac.uk

Researcher type: MSc Student

Supervisor name(s) & email (if applicable)

Stephen Atkins: SAtkins@uclan.ac.uk Stephanie Dillion: SDillon@uclan.ac.uk David John Fewtrell: DJFewtrell@uclan.ac.uk

Project details (please see attached guidance notes)

What is the project title?

Effect of step aerobics using Nintendo Wii Fit on immune function

What is the likely duration of project?

One year

Please provide a brief summary of the project aims (Max 250 words)

This current research is intended to investigate the effect of moderate/vigorous exercise on immune function, but more specifically and unlike any other previous research, it will utilise active games on the Nintendo Wii console as the mode of exercise. Concentrations of salivary immunoglobulin A (S-IgA) and cortisol will be utilised to assess whether this type and intensity of exercise has an immunosuppressive effect or alternatively an advantageous effect on immune function, as depicted by Nieman's (1994 cited in Gleeson, 2005) J-shaped model of the relationship between infection risk and exercise volume. Furthermore, the purpose of this study is to determine whether or not it is plausible for the Nintendo Wii to act as a vehicle in which to encourage moderate/vigorous intensity exercise, resulting in other potential health benfits, by contributing to exercise recommendations outlined by the ACSM (2009).

Please provide a brief summary of the project methods (Max 250 words)

Twenty participants will be invited to take part in this single subject design study. Baseline measures of immune function will be taken initially and repeated again after one month (control condition). They will then participate in a four week training programme (experimental condition) on the Nintendo Wii. This will consist of moderate/vigorous exercise sessions (step aeorobics), 20 minutes in duration on three separate occasions for each of the four weeks. Subsquently, measures of immune function will be taken in order to examine whether the intervention influences immune function in comparison to the control condition. Markers of immune function will be assessed via a saliva sample, these will include S-IgA and cortisol. In order to obtain a salvia sample, participants will be asked to passively drool through a straw into a cryovial. This sample will be stored appropriately (frozen) until it is analysed using enzyme-linked immunosorbant assay (ELISA) to determine the concentration of both S-IgA and cortisol.

Does the research involve contact with any other organisation or group (e.g. schools, companies, charities, hospitals, sports clubs)? If **yes**, please give details.

No

Is the research to be funded externally? If **yes**, please give details.

No

Will ethical approval for the proposed research be sought from any other body (e.g. collaborating departments, Home Office, health authority, education authority)? If **yes**, please give details.

No

Has a Risk Assessment form been completed?

Yes (see attached)

Has permission been obtained to use any copyright materials (e.g. personality tests)? Please also indicate whether particular qualifications or training are needed to administer the tests, and if so, whether the researcher is appropriately qualified.

The 'Save a life' Basic First Aid course and a defibrillator course have been completed to allow unsupervised testing and data collection to take place.

Participants (Please see attached guidance notes. Projects without participants may leave this section blank and proceed to Q. 22.)

Who do you propose to use as participants and do they belong to a group unable to provide **informed** consent?

The healthy adults with a sedentary lifestyle recruited for this study will all be able to provide written informed consent.

Please indicate exactly how participants will be recruited for the project.

Advertisments (see attached) in the form of posters and also electronic advertisements (e-mail and screen saver adverts) will be accessible by both staff and students at UCLAN

How exactly will consent be given (e.g., verbal or written)?

Written (see consent form attached)

What information will be provided at recruitment and briefing to ensure that consent is **informed**?

Participants will be provided with a comprehensive information sheet (see attached)

Please indicate what information will be provided to participants at debrief.

None, as all necessary information will be provided within the information sheet, which participants will recieve (and retain) at briefing

Please give details of any proposed rewards or incentives to be offered to encourage participation.

None

Is any deception involved? (If **yes**, please give details and explain why deception is necessary.)

No

Does the procedure involve **any** possible distress, discomfort or harm to participants? If so, what measures are in place to reduce it?

Participants will be invited to provide a saliva sample, wherby they will be asked to passively drool through a straw into a cryovial. This activity may be somewhat embarrassing for some participants. However, each participant will be fully aware of this procedure (via the information sheet) and may therefore chose not to participate in the study. Even after consent is provided, the participant may still withdraw from the study if (s)he wishes.

What mechanism is there for participants to withdraw from the investigation and how is this communicated to participants?

Participants can withdraw from the study at any time prior to data analysis (at which point the data is anonymised and therefore cannot be traced back to the participant). This will be communicated to participants through the information sheet and participants will also be verbally reminded throughout the testing period that they may withdraw.

How are confidentiality and/or anonymity to be maintained?

Each participant will be assigned a number, a record of which will be saved on a password secured computer, only accessible by the researchers. This number will then be used to identify participants results, in order to ensure that their results remain anonymous. Individual data will not feature in the written dissertation or viva, only group averages, which will be veiwed by all the necessary professionals. There is potential for this data to be puplished, but again only anonymised group data will be presented and therefore cannot be linked to any individual participant.

Additional information

Please give details of any other ethical issues that have been considered.

N/A

Submission checklist:

Please attach any risk assessments, questionnaires, interview schedules, experimental protocols, other relevant research materials, advertisements, introductory letters, letters of approval, consent forms, participant briefing/debriefing materials, etc.

Please do NOT submit unnecessary material (for example, multiple copies of the same questionnaires, risk assessment notes or ethics guidance notes, etc.). Staff and Mphil/PhD students should submit the ethics form and attachments to **Susan Ross** (DB120). MSc students should submit the forms to their project supervisor.

Dates of Ethics Committee meetings and submission deadlines are available at: www.uclan.ac.uk/scitech/psychology/research/ethics.php

Would you like to attend the ethics meeting to discuss your proposal (staff, PhD researchers and MSc *supervisors*, not normally MSc students, are welcome to attend that part of the meeting at which their research is to be discussed)? No

(If you indicate 'yes', please make sure you are available 1-3 pm on the day of the meeting and include a contact number we can reach you on when your proposal is about to be considered. Please leave your office extension number and, if you wish, a mobile number here:)

Please print and sign – remember to print from page 4 onwards only.

Signed

(Signing this form certifies that you agree to carry out your research in the manner specified. If you want to deviate from the approved method at any time, you should seek further ethical approval for the change.)

Date

Supervisor signature (MSc projects only).....

(**Note to supervisors:** Signing this form certifies that, in your opinion, the project specified here is ethical under Departmental and BPS guidelines. Do not sign if you are unsure, or if the student has not attached final versions of the research materials they are planning to use.)

School of Psychology RISK ASSESSMENT FORM (Medium & High Risk, Student Version)

Use this form to risk-assess:

Off-campus student activities (research, fieldwork, educational visits etc) in medium/high risk environments such as factories, farms, prisons, remote areas or participants' homes.

All student activities involving medium/high risk procedures or use of specialist equipment.

For low risk locations and activities, use the appropriate low risk form.

This form should be completed by the staff member responsible for the activity (e.g. the project supervisor), in consultation with the student and a qualified or otherwise competent person (normally a technician or Faculty HSE officer). Completed forms must be countersigned by the Head of School or the Chair of the School Health & Safety Committee.

Students:	Assessment Undertaken By: (Staff member)	Assessment Verified By: (Technician or other competent person)		
Names: Francesca Pell Matthew Duckham	Name:	Name:		
Signed:	Signed:	Signed:		
Date: 22/03/10	Date:	Date*:		
*Note: Risk Assessment is va	lid for one year from the date .	given above. Risk		
Assessments for activities las	ting longer than one year shou	uld be reviewed annually.		
Countersigned by Head of School or Chair of H&S Committee:				
Date:				

Risk Assessment For:
Activity:
Four week step aerobics programme using the Nintendo Wii Fit.
Blood and saliva sampling
Location of Activity:
University of Central Lancashire
Darwin Room 026 (Physiology Laboratory)
Preston
Lancashire
PR1 2HE

Page 1 of 2

List	List groups of	List existing	For risks which	Remaining
significant	people who	controls, or	are not	level of risk
hazards here:	are at risk:	refer to safety	adequately	(high,
		procedures	controlled, list the	medium or
		etc:	action needed:	low):
Obstacles	Participants,	Check area		Low
		before and		
	Investigators,	throughout		
		testing		
Injury	Participants	Qualified	Phones available	Med
		First Aider		
		present,		
		equipped with		
		First Aid Kit		
		and		
		defibrillator.		
Slippery/wet	Participants,	Warning signs	Assess prior to	Med
surfaces	Turnetinture		testing and re-	
	Investigators,		assess	
			throughout	
			testing	
Equipment	Participants,	Equipment	Test before use	Med
	Investigators	regularly		
		checked and		
		maintained		
Inappropriate	Participants	Participants	Check	Low
footwear		advised to	clothing/footwear	
and/or		come wearing	and exclude	
clothing		the correct	participants from	
		clothing and	the study if it is	
		footwear for	inappropriate	
		physical		
		activity		
Trails not	Participants	Screening	Inability to	High
appropriate		(PAR-Q)	satisfy a health	
for the			questionnaire will	

health of the			result in exclusion	
participant			from testing	
Fire	Participants, Investigators	Alarms, knowledge of fire exits and drills		High
Electrical Items	Participants, Investigators	Cover/tape any trailing cables, check that it is well maintained	Check before use and use in accordance with instructions	Med
Jewellery	Participants, Investigators	Advise participants to remove or cover any jewellery prior to the testing		Low
Untied long hair	Participants	Provide bobbles so participants can tie back hair		Low
Blood Collection	Participants, Investigators	Investigator will be familiar with the appropriate procedure (see below). Latex gloves and a plastic bib will be worn. The finger will be sterilised using alcohol		High

		wipes. New gloves and lancets will be used for each participant.		
Saliva Collection	Participants, Investigators	Investigator will be familiar with the appropriate procedure (see below). Latex gloves and a plastic bib will be worn. Each participant will be provided with an individual straw and cryovial for their saliva sample.		Med
Bodily Waste Products		Sharps will be disposed of appropriately in a sharp bin, whilst contaminated tissues/gloves etc will be disposed of in a clinical waste bag	Subsequently, these will be collected by the appropriate professionals and disposed of in accordance with relevant guidelines	High
Sample Storage		Samples will be labelled and appropriately		Low

	stored	
	(frozen) in	
	preparation	
	for analysis	

Continue on another sheet if necessary.

Page 2 of 2
Physical Activity Readiness Questionnaire - PAR-Q (revised 2002)

(A Questionnaire for People Aged 15 to 69)

Regular physical activity is fun and healthy, and increasingly more people are starting to become more active every day. Being more active is very safe for most people. However, some people should check with their doctor before they start becoming much more physically active.

If you are planning to become much more physically active than you are now, start by answering the seven questions in the box below. If you are between the ages of 15 and 69, the PAR-Q will tell you if you should check with your doctor before you start. If you are over 69 years of age, and you are not used to being very active, check with your doctor.

Common sense is your best guide when you answer these questions. Please read the questions carefully and answer each one honestly: check YES or NO.

YES	NO								
		1.	Has your doctor ever said that you have a heart condition <u>and</u> that you should only do physical activity recommended by a doctor?						
		2.	Do you feel pain in your chest when you do physical activity?						
		3.	In the past month, have you had chest pain when you were not doing physical activity?						
		4.	Do you lose your balance because of dizziness or do you ever lose consciousness?						
		5.	Do you have a bone or joint problem (for example, back, knee or hip) that could be made worse by a change in your physical activity?						
		6.	Is your doctor currently prescribing drugs (for example, water pills) for your blood pressure or heart con- dition?						
		7.	Do you know of <u>any other reason</u> why you should not do physical activity?						
lf			YES to one or more questions						
you answ	Talk with your doctor by phone or in person BEFORE you start becoming much more physically active or BEFORE you have a fitness appraisal. Tell your doctor about the PAR-Q and which questions you answered YES. You may be able to do any activity you want — as long as you start slowly and build up gradually. Or, you may need to restrict your activities to those which are safe for you. Talk with your doctor about the kinds of activities you wish to participate in and follow his/her advice. • Find out which community programs are safe and helpful for you.								
NOF If you and start b safest take p that you have y before	swered N becoming and easi art in a fi ou can pla your blood e you star	0 hone much est way tness a an the d press t beco	DELAY BECOMING MUCH MORE ACTIVE: tity to all PAR-Q questions, you can be reasonably sure that you can: tore physically active – begin slowly and build up gradually. This is the to go. opraisal – this is an excellent way to determine your basic fitness so est way for you to live actively. It is also highly recommended that you ure evaluated. If your reading is over 144/94, talk with your doctor ing much more physically active.						
Informed Us this questior	<u>e of the P/</u> nnaire, cor	<u>AR-Q</u> : T isult you	e Canadian Society for Exercise Physiology, Health Canada, and their agents assume no liability for persons who undertake physical activity, and if in doubt after completi doctor prior to physical activity.						
	No	cha	ges permitted. You are encouraged to photocopy the PAR-Q but only if you use the entire form.						
NOTE: If the	e PAR-Q is	being g "I ha	ven to a person before he or she participates in a physical activity program or a fitness appraisal, this section may be used for legal or administrative purposes. e read, understood and completed this questionnaire. Any questions I had were answered to my full satisfaction."						
SIGNATURE _			DATE						
SIGNATURE O	F PARENT _ (for particip	ants und	r the age of majority) WITNESS						
		Note: be	This physical activity clearance is valid for a maximum of 12 months from the date it is completed and comes invalid if your condition changes so that you would answer YES to any of the seven questions.						

© Canadian Society for Exercise Physiology

Supported by: Health Santé Canada Canada

continued on other side ...

1a. During the last 7 days, on how many days did you do **vigorous** physical activities like heavy lifting, digging, aerobics, or fast bicycling,?

Think about only those physical activities that you did for at least 10 minutes at a time.

	days per week ເ⇔ or ☐ none	1b.	How much time in total did you usually spend on one of those days doing vigorous physical activities? hoursminutes						
2a.	Again, think <i>only</i> about those physica time. During the last 7 days, on how like carrying light loads, bicycling at walking.	il activ many a regi	vities that you did for at least 10 minutes at a days did you do <u>moderate</u> physical activities ular pace, or doubles tennis? Do not include						
	or days per week ⇔	2b.	How much time in total did you usually spend on one of those days doing moderate physical activities?						
	none		hours minutes						
3a.	During the last 7 days, on how man time? This includes walking at work a and any other walking that you did so	y day and at lely fo	s did you walk for at least 10 minutes at a thome, walking to travel from place to place, r recreation, sport, exercise or leisure.						
or	days per week ⇔	3b.	How much time in total did you usually spend walking on one of those days?						
01			hours minutes						
	none								
The hom sittii	The last question is about the time you spent <u>sitting</u> on weekdays while at work, at home, while doing course work and during leisure time. This includes time spent sitting at a desk visiting friends, reading traveling on a bus or sitting or lying down to								

4. During the last 7 days, how much time in total did you usually spend *sitting* on a **week day?**

____ hours _____ minutes

watch television.

This is the end of questionnaire, thank you for participating.

This is the final SHORT LAST 7 DAYS SELF-ADMINISTERED version of IPAQ from the 2000/01 Reliability and Validity Study. Completed May 2001.

COLLECTING UNSTIMULATED WHOLE SALIVA SAMPLES BY PASSIVE DROOL FROM HUMAN SUBJECTS (ages 5+)

Things to avoid:

- 1. Brushing teeth within 1 hour prior to collection.
- 2. Using salivary stimulants: chewing gum, lemon drops, granulated sugar, drink crystals.
- 3. Consuming a major meal within 1 hour prior to collection.
- 4. Consuming alcohol 12 hours prior to collection.
- 5. Consuming acidic or high sugar foods within 20 minutes prior to collection.

Suggested protocol:

- 1. Rinse mouth with water 10 minutes prior to sample collection
- 2. Document prescription and over-the-counter medications taken.
- 3. Record time of day sample is collected.

Materials required:

- Plastic drinking straws
- Scissors
- Cryovials: polypropylene 2mL capacity
- Labels

Salimetrics Item No. 5002.01

Description 2 mL cryovial

Note: Collections for multiple hormones may require larger vials (information available upon request). It is advisable to use a vial with at least twice the capacity of the necessary sample volume because some saliva foaming will occur.

Prior to Saliva Collection:

- 1. Cut plastic drinking straws into 2-inch (5 cm) pieces.
- 2. Give each subject one (1) straw piece and one (1) cryovial.
- 3. Have subjects rinse their mouth with water 10 minutes prior to collection.

Collecting saliva:

- 1. Instruct subject to imagine eating their favorite food and allow saliva to pool in the mouth.
- 2. With head tilted forward, subject should drool down the straw and collect saliva in the cryovial. (It is normal for saliva to foam.)
- Repeat as often as necessary until sufficient sample is collected. (1 mL - excluding foam - is adequate for most tests).
- 4. If subject's mouth is dry, instruct them to gently chew on the end of the straw. This will stimulate saliva production.
- 5. Keep samples cold after collection (4°C) and freeze (-20° to -80°C) as soon as possible.*

* Secretory IgA and DHEA-S testing requires calculation of saliva flow rates. Do this before freezing samples. Contact Salimetrics for details.

Rev. 12-05-08 mjc

<u>Faculty/Department</u> Psychology			
	<u>Assessors Name(s)</u> Belinda Hornby	Job Title/Position Senior Technician	<u>13737</u>
Briefly describe the task/process. (description, 1 Erzyme linked immuno-sorbent assay (ELIS The saliva samples have been collected outside assessmentprocedure. Once in the laboratory they are stored frozen. Prior to analysis salivettes are placed in the clas gloves and lab coat.	use, users) (A) of saliva samples to measure cortisol and or of the laboratory by <u>Francesca Pell</u> under the a of the laboratory by <u>Francesca Pell</u> under the a s 2 cabinets to thaw, transferred to centrifuge v	ther hormones. attached risk vessels and then centrifuged (6000rpm for 10 minutes	s), any handling of the salivettes is done wear
Decontamination procedure: the manual testing The virkon should be left on for 10 minutes bef benches in the lab sprayed with 650mls 1% virh with 900ml of 1% Virkon following the same p	Class 2 cabinet is $0.72m^2$ and therefore the b ore washing off. The centrifuge is should be sp con. The robotic cabinet should be decontamin rotocol as for the manual assay cabinet above.	ase should be sprayed with 216mls of 1% Virkon and prayed liberally with 150mls of 1% Virkon as left on nated with 900ml of 1% Virkon per long panel and 43	dt the sides with 660mls. a for 10 minutes prior to cleaning off , likewiss 32ml 1% Virkon per short panel. The base sho
On analysis the ELISA kit is removed from the The salivettes (saliva samples) are also placed On reaching room temperature the cotton swab Opening of all salivettes takes place in the class The assay then proceeds in the class II cabinet:	4 °C storage, the reagents are placed in the clat in the class II and allowed to thaw out. s are discarded into a pot within cabinet that co s II lids/tops facing away from the operator to p	iss II cabinet to reach room temperature, the operator ontains 1% Virkon. prevent the operator inhaling any aerosol generated by	r wears PPE to include gloves and a lab coat. oy the opening of the samples
The robot will discard the plate and its contents A hazardous/clinical waste container If there is a spillage then virkon is used to deco Gloves etc. are placed in the 1% Virkon biohaz	· via the hazardous waste jar with the red lid in ntaminate ards container which is inside the cabinet.	the class II cabinet, if the assay is to be automated, o	otherwise manually discard the plates and tips

.

Known Health Effects:	infection °	n/a	corrosive
Frequency and Duration of Exposure	40 times	n/a	During one stage of assay, pipetting 200µL into every well of 96 well
Exposure Route(s)	Inhalation From aerosol droplets created when salivette is opened.	n/a	Inhaled, splashed on skin, ingestion.
WEL		n/a	Not listed
Hazard Class	Class 2 (unless donor is found to be infected after saliva has been conlected or the saliva sample visibly discoloured) and then saliva sample discoloured and then saliva sample (salivette) is disposed of via autoclave and clinical waste route). Operator protection containment is sufficient for most potential pathogens of low titre in saliva. However, according to the HSE document working with viruses, regarding swine flu (see attached p3 bottom para 6) then if it is the predominant circulating strain at the time of doing diagnostic testing then Class II and a vaccination for the operator is sufficient protection. With regards to other pathogens which are transmitted via respiratory liquids (saliva) e.g. Hepatitis, meningitis tuberculosis, salmonella types, class II is considered sufficient as participants in studies are only taken from the healthy normal population and for those who may be asymptomatic and so is classed as class II (see Part 3B p40-45 of Biological Agents: managing the risks in laboratories and healthcare premises).	n/a	Harmful, irritant
Quantity	50µL/well approx 80 wells per assay, from 40 different samples	96 wells per plate	0.015%
Substances (used or produced as by- products or wastes)	Saliva from salivettes	Antibody coated wells	Bromo-nitro-dioxan (Conjugate)

	Not known	May be highly toxic, corrosive (from MSDS). Biohåzard.	Nausea, vomiting, acidosis, ataxia. Chronic exposure risks nerves, kidneys, carcinogen/ tumorigenic, fatal on inhalation.	Burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and Vomiting. Inhalation may result in spasm, inflammation and edema of the larynx and bronchi, chemical pneumonitis, and pulmonary oedema. Extremely destructive to tissue of the mucous Membranes and upper respiratory tract, eyes, and skin.	The results of exposure have not been thoroughly investigated	Not hazardous after acute exposure, after prolonged exposure possible mutagen and irritant	Toxicological properties have not been thoroughly investigated. Known symptoms include burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and vomiting. Inhalation may result in spasm, inflammation and edema of the larynx and bronchi, chemical pneumonitis, and pulmonary oedema. Material is extremely destructive
plate.	Durring one stage of assay, pipetting 200µL into every well of 96 well plate.	Pipetting 50μL into 10 wells	Pipetting 50μL into 10 wells	Pipetting 100µL into 10 wells	Pipetting 100µL into 10 wells	Pipetting 100µL into 10 wells	Pipetting 100µL into 10 wells
	Inhaled, splashed on skin, ingestion.	Inhaled, splashed on skin, ingestion.	Inhalation, skin contact, ingestion.	Inhalation, skin contact, eyes, ingestion	Skin, lungs, eyes, mucous membranes, ingestion.	Skin, lungs, eyes, mucous membranes, ingestion.	Skin, lungs, eyes, mucous membranes, ingestion
	Not known	N/A	N/A	OEL 1.4mg/m3	Not establishe d	Not establishe d	25
	Not known	Biological Class 2, - (treat as patient specimens as recommended by manufacturer). Toxic, corrosive. Biohazard.	Toxic by inhalation, skin contact or if swallowed Cumulative effects.	Harmful on inhalation, causes severe burns	Possible mutagen, irritant, harmful if swallowed	Irritant	Causes severe burns
	0.01%	100%	0.02%	0.015%	0.03%	<5%	0.5M
	N- Methylisothiaziazolon hydrochloride (conjugate)	Human inactivated serum (standards) containing proclin	Thiomersal (standards)	Hydrogen peroxide (colour reagent)	3.3'.5.5'- tetramethylbenzidine (colour reagent)	Dimethylsulphoxide (colour reagent)	Sulphuric acid 0.5M (stop solution)

	F	
eyes, and skin. وبعد and skin. هُ	 √ Eng. Control <i>Details(LEV, fimehood)</i> All work should be conducted in an operator protection safety cabinet, especially opening of salivettes and standards which is likely to generate aerosols and pipetting of solutions which is also likely to generate aerosols. 	actice procedures. All staff and students are trained in GLP and health and safety nvironment, all surfaces are decontaminated before and after experimentation) evel in laboratory techniques and saliva collection too. I any not be apparent in donors of saliva (e.g. if they are asymptomatic) is recommended and available via either experimenters own GP or the university is recommended this will also be recommended. Those doing this type of work are as available, this will also be recommended. Those doing this type of work are eminimal, from things such as TB will hopefully be detected. Training includes ed as of paramount importance. All surfaces likely to come into contact with from a spray container, which although not tested specifically on H1N1 it is
	☐ Isolation Details (glovebox)	oying good laboratory pradrinking in a laboratory er urther trained to a high le ork, which it is recognise- epatitis B vaccine course lenza vaccination become alty, although the risks ar alcohol gel being stresse 1% at a rate of 300ml/ m ²
n Surveillance	<u>Areduction</u> <u>Details</u> Hand washing, personal hygiene is of paramount importance, training in personal and laboratory hygiene, waste disposal and safe and good laboratory practice is mandatory for all conducting this procedure and working in this procedure and working in this procedure and working in this procedure and who have been trained and are wearing appropriate PFE eg. a lab coat. Any cuts must be covered with a water proof plaster.	2 containment levels empl air tied back, no eating or ion or analysis. They are f olonged amounts of this w vailable: for example, a H wise, when the H1N1 inth wise, when the H1N1 inth signs of respiratory diffici nd cleansing of hands with own with virkon solution
Results of Relevant Healt	□ Substitution Details	d) with PPE and under class, hygiene (hand washing, hi take part in saliva collect staff or students doing pro- ended where there is one a angement with HR). Likei- reillance annually and any reillance annually and any giene with hand washing a is are regularly swabbed d type A viruses.
	Control Measures	Further Details (if require All assays are conducted issues including personal before they are allowed to For the biological risks to vaccinations are recomme health centre (by prior arr also subject to health sur- emphasis on personal hyg saliva and biological fluid specific against influenza

With regards to the chemicals which are hazardous, apart from the TMB and 0.5M sulphuric acid, these are present in extremely low concentrations so as to be of minimal risk.

disposal route.
Saliva samples, standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Waste Disposal procedure Saliva samples, standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300ml/m ² Waste Disposal procedure Saliva standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Spillage/release: Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300ml/m ² Waste Disposal procedure Saliva standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
□Water √ Foam √ Powder √ CO2 Spillage/release: Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300m/m ² Waste Disposal procedure Waste Disposal procedure Saliva samples, standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Fire: Extinguisher Type DWater VFoam VPowder VO2 Spillage/release: VFoam VFoam VFoam Spillage/release: Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300ml/m ² Waste Disposal procedure Maste Disposal procedure Saliva samples, standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician Fire: Extinguisher Type \sqrt{Foam} \sqrt{Powder} $\sqrt{CO_2}$ \Box Water \sqrt{Foam} \sqrt{Powder} $\sqrt{CO_2}$ Spillage/release: \sqrt{Powder} $\sqrt{CO_2}$ Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300ml/m ² Waste Disposal procedure Maste Disposal procedure – autoclaving and clinical waste procedure – autoclaving and clinical waste
Ingestion Rinse mouth with copious amounts of water, and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician Fire: Extinguisher Type Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician □water □water □water
SkinWash with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician.IngestionRinse mouth with copious amounts of water, and call a physician.InhalationRinse mouth with copious amounts of water, and call a physician.InhalationRemove individual to fresh air. If breathing is difficult give oxygen and call a physicianFire: Extinguisher TypeDwater \sqrt{Foam} \bigtriangledown Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down all surfaces with a 1% virkon solution at 300m/m ² Wate Disposal procedureSaliva samples, standards, enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Call physician Eyes Wash with sterile water (lab wash bottles) for at least 15 minutes. Call physician Skin Wash with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Ingestion Rinse mouth with copious amounts of water, and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Splitagerlease: Veoan Veo2. Splitagerlease: Veoan Veo2. Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing inclu
Energency Arrangements First Aid: Erst Aid: Skin Wash with sterile water (lab wash bottles) for at least 15 minutes. Call physician Skin Wash with sterile water (lab wash bottles) for at least 15 minutes. Call physician Skin Wash with sterile water (lab wash bottles) for at least 15 minutes. Call physician Impession Rine: Extinguisher Type Interst Extinguisher Type Owner √ Dwater √ √CO ₂ Dwater √CO ₂ Spillage/release: √CO ₂ Mop up any spills using the spills kit stored in the cupboard under the sink in DB034 and wear protective clothing including the 3M spills team mask assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone
∨ Heath Suvetilance required. Doing lots of immunoassays over a prolonged period of time. E.g. immunoassays over a prolonged period of time. E.g. veryday for a few weeks or months ∨ Exposure monitoring required: as previously everyday for a few weeks or months Emergency Arrangements Energency Arrangements Energency Arrangements Eries Aid: Wash with sterile water (lab wash bottles) for at least 15 minutes. Call physician Skin Wash with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Instantion Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Inhalation Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. More to a standous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone assigned and tested for fit, treat as hazardous waste. Swab down surfaces with detergents e.g. Decon. For spills of body fluids (saliva), hormone standards or enzyme-conjugate are to be dispose
answam case of burst saliventes in the centrifuge immonossays over a prolonged period of time. E.g. versyday for a few weeks or months √ Exposure monitoring required: as previously everyday for a few weeks or months Emergency Arrangement First Ada: M √ Exposure monitoring required: as previously everyday for a few weeks or months Emergency Arrangements Emergency Arrangements × Enter Ada: W salh with sterile water (lab wash bottles) for at least 15 minutes. Call physician Event Wash with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Miss W salh with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Miss N and with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Miss N and with sterile water (lab wash bottles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Insentoin Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Indestion Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Indestion Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Indestine Remove individual to fresh air. If breathing is difficult give oxygen and call a physician. Mop up any s
provided and not finne cupboard, latex gloves. spinning down the saliva in case of burst salivates in the centrifuge V Health Surveillance required: Doing lots of immunessays vor a polonged period of time. E.g. V Health Surveillance required: Doing lots of immunessays vor a polonged period of time. E.g. V Health Surveillance required: Doing lots of immunessays vor a prolonged period of time. E.g. V Health Surveillance required: Doing lots of immunessays vor a prolonged period of time. E.g. V Health Surveillance required: Doing lots of immunessays vor a prolonged period of time. E.g. Valent Nathous the relation of watch to field and a physician Event Wash with teerile water (lab wash hortles) for at least 15 minutes. Call physician Event Wash with sterile water (lab wash hortles) for at least 15 minutes. Call physician Event Wash with sterile water (lab wash hortles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Wash with sterile water (lab wash hortles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Wash with sterile water (lab wash hortles) for at least 15 minutes. Remove any contaminated clothing. Call physician. Event Remove individual to fresh ari. If hreathing is difficult give oxygen and call a physician inhalticom Remove individual to fresh ari. If hordles interest the start of the treat share and wash outches and the start of the start of the content of the start of the cupboard under the sink in DB034 and wear protective clothing inel (startwash standards or enzyme-conjugate swah down all suffaces with a 1% virkon solution at 300m/m ² . Waster Disposal protecture standards enzyme (HRP) -cortisol conjugate are to be disposed of via the clinical waste procedure – autoclaving and clinical waste
Details: use the initing gives Details: use the work outside that fume cupboard, spinning down the spinning
O Gloves O Gloves O Gloves O Gloves O Gloves O Gloves Density Density Or coveraliabe coatt Density Density <thdensity< th=""> <thdensity< th=""> Densi</thdensity<></thdensity<>
Present Protective Equipment Present Pr
The Class II cabinet is decommanded with formalin, KI tested, serviced, and the HEPA filter is changed if necessary, very 6 months. Present Protective Equipment Present Protective Equipment Details: use the provided and rot givens Only for provided and rot givens Details Details Details: use the provided and rot given Present Protective Equipment Details Details Details The Shore the provided and rot given the givens Present Protective Equipment Details Details Details Test sploves given to give the provided and rot given the given the splove the splove the splove the splove the provided and rot given the splove t

•

$\sqrt{Visitor}$ Vontractor		re work will involve exposure to more than one substance hazardous to health; consider the risk presented by exposure to such ance may present additional risk of exposure.	hese chemicals and they are widely used routinely together, with the PPE and interventions listed then the is cleaned and fumigated prior to maintenance by the engineer.			ance is not required or generated.			tilation. V		gree of exposure. V		sks. V		ontrols and/or PPE. V			
√ Student	□ Other (specify)	mple circumstances where work	teractions between these ch The Class 2 cabinet is clear			that the hazardous substance is n	safer alternative.	rocess. V	nd use local exhaust ventilation.	л.	mises the chance and degree of e	uipment (PPE). V	ife system of work and risks. λ	ndergraduates	tenance of engineering controls a		onged use of assays	
√ Staff	Dublic	Additional risks: for exan substances in combination. Al	There are no recorded in risk of harm is very low.	Notes:	Hierarchy of control	Change the task or process so t	Replace the substances with a s	Totally isolate or enclose the p	Partially enclose the process a	Ensure good general ventilatio.	Use a system of work that mini	Provide personal protective equ	Train and inform staff in the sa	Additional supervision. $\sqrt{1}$ for un	Examination, testing and main	Monitoring of exposure. V	Health Surveillance. V for prolo	Other (specify).

	Exercise - Pi	re					
	Weight of samp	Minus Weight of Crovial (1.0062g)	Volume of saliva (m	Flow rate (mL/min	Time (min)	Conc. IgA (µg/mL)	lgA (μg/min)
1	2.878	1.8718	1.81040496	0.362080992	5	170.37	61.68774
2	2.1963	1.1901	1.15106472	0.230212944	5	122.238	28.14077
3	2.5865	1.5803	1.52846616	0.305693232	5	282.961	86.49926
4	1.1529	0.1467	0.14188824	0.028377648	5	101.796	2.888731
5	1.1372	0.131	0.1267032	0.02534064	5	93.9617	2.38105
6	3.162	2.1558	2.08508976	0.46335328	4.5	118.613	54.95972
7	1.3545	0.3483	0.33687576	0.067375152	5	367.866	24.78503
8	1.9569	0.9507	0.91951704	0.183903408	5	151.508	27.86284
9	1.306	0.2998	0.28996656	0.057993312	5	54.0507	3.134579
10	2.1824	1.1762	1.13762064	0.227524128	5	117.73	26.78642
11	2.3369	1.3307	1.28705304	0.257410608	5	250.599	64.50684
12	2.7423	1.7361	1.67915592	0.335831184	5	374.495	125.7671
13	2.2433	1.2371	1.19652312	0.239304624	5	161.05	38.54001
14	2.5406	1.5344	1.48407168	0.296814336	5	129.731	38.50602
15	2.4711	1.4649	1.41685128	0.283370256	5	149.144	42.26297
16	2.8276	1.8214	1.76165808	0.846951	2.08	108.96	92.28378
17	1.6832	0.677	0.6547944	0.13095888	5	113.898	14.91595

	Exercise - Po	ost					
	Weight of sampl	Minus Weight of Crovial (1.0062g)	Volume of saliva (m	Flow rate (mL/min	Time (min)	Conc. IgA (µg/mL)	lgA (μg/min)
1	2.9061	1.8999	1.83758328	0.729199714	2.52	103.44	75.42842
2	2.0526	1.0464	1.01207808	0.202415616	5	126.78	25.66225
3	2.4985	1.4923	1.44335256	0.452461618	3.19	47.785	21.62088
4	1.367	0.3608	0.34896576	0.069793152	5	128.199	8.947412
5	1.4975	0.4913	0.47518536	0.095037072	5	173.72	16.50984
6	2.9215	1.9153	1.85247816	0.561357018	3.3	124.081	69.65374
7	1.4401	0.4339	0.41966808	0.083933616	5	194.443	16.3203
8	2.4962	1.49	1.441128	0.2882256	5	94.171	27.14249
9	2.8669	1.8607	1.79966904	0.404420009	4.45	107.281	43.38658
10	2.1666	1.1604	1.12233888	0.224467776	5	142.035	31.88228
11	2.8013	1.7951	1.73622072	0.347244144	5	132.769	46.10326
12	2.9285	1.9223	1.85924856	0.371849712	5	248.617	92.44816
13	2.1659	1.1597	1.12166184	0.224332368	5	138.059	30.9711
14	1.9939	0.9877	0.95530344	0.191060688	5	82.9252	15.84375
15	1.9675	0.9613	0.92976936	0.185953872	5	160.788	29.89915
16	2.7471	1.7409	1.68379848	0.336759696	5	138.998	46.80892
17	1.5954	0.5892	0.56987424	0.113974848	5	125.128	14.26144

	Control - Pro	9					
	Weight of samp	Minus Weight of Crovial (1.0062g)	Volume of saliva (m	Flow rate (mL/min	Time (min)	Conc. IgA (µg/mL)	lgA (μg/min)
1	2.6726	1.6664	1.61174208	0.322348416	5	78.286	25.23537
2	2.9471	1.9409	1.87723848	0.375447696	5	105.276	39.52563
3	2.7165	1.7103	1.65420216	0.697975595	2.37	111.77	78.01273
4	1.415	0.4088	0.39539136	0.079078272	5	104.995	8.302823
5	1.9709	0.9647	0.93305784	0.186611568	5	121.619	22.69551
6	2.8493	1.8431	1.78264632	0.356529264	5	11.2909	4.025536
7	1.7305	0.7243	0.70054296	0.140108592	5	222.456	31.168
8	2.0687	1.0625	1.02765	0.20553	5	109.189	22.44162
9	2.3705	1.3643	1.31955096	0.263910192	5	121.099	31.95926
10	2.0684	1.0622	1.02735984	0.205471968	5	107.27	22.04098
11	2.2407	1.2345	1.1940084	0.23880168	5	124.663	29.76973
12	2.1408	1.1346	1.09738512	0.219477024	5	216.139	47.43754
13	1.8114	0.8052	0.77878944	0.155757888	5	110.673	17.23819
14	3.1077	2.1015	2.0325708	0.585755274	3.47	224.476	131.488
15	2.0018	0.9956	0.96294432	0.192588864	5	129.061	24.85571
16							
17	2.2625	1.2563	1.21509336	0.243018672	5	68.7211	16.70051

	Control - Po	st					
	Weight of sampl	Minus Weight of Crovial (1.0062g)	Volume of saliva (m	Flow rate (mL/min	Time (min)	Conc. IgA (µg/mL)	lgA (μg/min)
1	2.4296	1.4234	1.37671248	0.275342496	5	155.38	42.78272
2	2.8244	1.8182	1.75856304	0.351712608	5	131.099	46.10917
3	2.6356	1.6294	1.57595568	0.776332847	2.03	171.164	132.8802
4	1.1632	0.157	0.1518504	0.03037008	5	100.431	3.050098
5	2.297	1.2908	1.24846176	0.2972528	4.2	128.82	38.29211
6	2.7981	1.7919	1.73312568	0.346625136	5	136.392	47.2769
7	1.7103	0.7041	0.68100552	0.136201104	5	250.79	34.15787
8	2.5442	1.538	1.4875536	0.368206337	4.04	99.7874	36.74235
9	2.4052	1.399	1.3531128	0.27062256	5	123.15	33.32717
10	1.8662	0.86	0.831792	0.1663584	5	100.595	16.73482
11	2.6244	1.6182	1.56512304	0.313024608	5	158.433	49.59343
12	2.0779	1.0717	1.03654824	0.207309648	5	240.746	49.90897
13	2.385	1.3788	1.33357536	0.266715072	5	149.745	39.93925
14	2.9818	1.9756	1.91080032	0.42939333	4.45	112.113	48.14057
15	1.5356	0.5294	0.51203568	0.102407136	5	167.523	17.15555
16	2.351	1.3448	1.30069056	0.260138112	5	164.242	42.7256
17	2.9482	1.942	1.8783024	0.849910588	2.21	58.5628	49.77314

Figure. Plate layout for s-IgA assay

	1	2	3	4	5	6	7	8	9	10	11	12
А	NSB	NSB	Ctrl-	Ctrl-	Unk-							
			L	L	7	7	15	15	23	23	31	31
В	Zero	Zero	Ctrl-	Ctrl-	Unk-							
			Н	н	8	8	16	16	24	24	32	32
С	0.012	0.012	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	1	1	9	9	17	17	25	25	33	33
D	0.037	0.037	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	2	2	10	10	18	18	26	26	34	34
Е	0.111	0.111	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	3	3	11	11	19	19	27	27	35	35
F	0.333	0.333	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	4	4	12	12	20	20	28	28	36	36
G	1.000	1.000	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	5	5	13	13	21	21	29	29	37	37
Н	3.000	3.000	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-	Unk-
	Std	Std	6	6	14	14	22	22	30	30	38	38

Figure. Plate layout for cortisol assay

Post	control	01.30. FI	11.30 20 20 10 1	100-10 Pr	1.08.1	113.05.10	10.05 40 th	15.06.10 9am	23 CTCC	NIC ZI	29.07.10	2.03.10 1.30 pm	15.06.10 1984	15.00.10 11 am	4 .4	A:22011	1.09-10-1	2.09.10	
Pre	control	W021 50.02	SI- FO- S	Masi . 10.1	Q. 11 12	HS 07.10 MAN	the model and	18.05 10	to citiem	20.05AU	01. 50. S	3.0 7.10 CO	15.05.10 10.30am	18.05 JO 302M	4 2 2 1 2 2 PA	02.57 0.22		01. FO. 02	
Post	exercise	1.00 1 - 60.92	Z1.06.19 NO	10.46. 103	8 01.10 mbm	7.07. 10 SOam	26 Q7 10 MASI 10 02	2.08.15 SO PM	21.00.12	MQ1. to.97	21.06.10 12pm	21 CUIS	2.08/10 2.30pm	2.08 XC 2: 30 pm	13.08.16 9.30an	8.04 10/12.30 m	8.07.10 12 BCpm	16.07.19	
4	3	N/A	S S	THE	1 MAR	いい	No.	AN CAN	1900	222	N Sile	I B I B I B I B I B I B I I B I I I B I I I I I I I I I I	30th	Set and	12	1St	為	5.5	
ek .	2	No.	N.	No.		影	No.	2200	and and	1012 SICH	ALL C	NICI NICI	影	影	ALL A	10 ce	30th	NY A	
We	1	Str.	XAR	100	29 MANE	25th	1915		June	1010	THE PART		128-CU	ACC -	A CTH	79 m	ALZ	Serv.	
9	ß	33	- COL	Li th	2Sth	25H	影		June	NAN SA	TUNE	A+11	222	R	et y	S	X	200	
Veek	2	XINI	10 Procession	320	ALCEN	24 M	ATT:	XXX	10 th	ANNU A	BHA	10HVE	21st	ASIZ	AST A	き		AND NO	
S	-	影	HAR	2NO	23.0	23.00	ATSIC STR	13th		the second	TUCE	9445	E.	部	ACC	No.	3	JAK D	
2	3	No.		1282	18th	X	der der	12 P		224		3rd	Se al	AN IN	30th	the state	AT A	25th	
/eek	2	THE PERSON	Thee	N		- lett	HICK	THE	3 rd	No.	2nd	2.nd	- itte	it to	1152	JUNE JUNE	164	2420	
\$	1	ESE ST	J'NGE	Lin	AN.F.	T T	153	Y	Ser 151	AND R	are a	3 MAR	1311	134	2844	Net Contraction	str	5250	
1	З	- reg	182		d'it	1111 JUNE	N	No.	14.22 M	Alex	REIN	28+14 MAY	No.	Ser.	23.00	J'LONK	ALC: H	彭	
'eek	2	a con	X az	ZISE	TUNE	TUNE	-10	10000	X22	ANCE A	Zer Y	26.7	NA A	影	22	34.9	JANKE JAKE	No.	
3	1	29.4%h	And And	20th	A THE	4th JUNE	2845	128 HA	A STA	2415	24th	2 min	彩	ない	ASIZ	Nue	ASK OF	No.	
Pre	exercise	21.06.46	mdzi so ti	17-05.0 4-15pt	3.06.10 F	\$.06/10	28 Ch Sum	22 00 L	F 21 0510	28.06 NO	21.05.00	24.05.0 SOn	30 00 00	30 00 10	@1.FO.12	2.06.10	2.06.19	11.00 10 M	
Participant	Number	- \	2 2	<u> </u>	< c	< S .	6	+ >	28	19/	01/	= >	11 /	V 13	11	< 15	110	ti /	

[DataSet14] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics						
-		Mean	Ν	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise	52.1960	9	27.07620	9.02540	
	Post_Exercise	38.5821	9	22.43983	7.47994	
Pair 2	Pre_Control	29.0262	8	21.57014	7.62620	
	Post_Control	51.2953	8	34.68414	12.26270	

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	Pre_Exercise &	9	.444	.231
	Post_Exercise			
Pair 2	Pre_Control & Post_Control	8	.830	.011

Paired Samples Test

-		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise -	13.61395	26.40546	8.80182	
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	-22.26912	20.63714	7.29633	

Paired Samples Test

		Paired Di	fferences		
		95% Confidence			
		Difference			
		Lower	Upper	t	df
Pair 1	Pre_Exercise -	-6.68309	33.91098	1.547	8
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	-39.52221	-5.01604	-3.052	7

-		Sig. (2-tailed)
Pair 1	- Pre_Exercise -	.161
	Post_Exercise	
Pair 2	Pre_Control - Post_Control	.019

[DataSet14] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics						
-		Mean	Ν	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise	33.2681	8	40.46964	14.30818	
	Post_Exercise	33.2064	8	26.31030	9.30209	
Pair 2	Pre_Control	40.0860	8	38.97797	13.78079	
	Post_Control	34.4378	8	16.51096	5.83751	

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	Pre_Exercise &	8	.855	.007
	Post_Exercise			
Pair 2	Pre_Control & Post_Control	8	.553	.155

Paired Samples Test

		Paired Differences				
		Mean	Std. Deviation	Std. Error Mean		
Pair 1	Pre_Exercise -	.06166	22.58208	7.98397		
	Post_Exercise					
Pair 2	Pre_Control - Post_Control	5.64822	32.85734	11.61682		

Paired Samples Test

		Paired Di	fferences		
		95% Confidence			
		Difference			
		Lower	Upper	t	df
Pair 1	Pre_Exercise -	-18.81743	18.94076	.008	7
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	-21.82120	33.11765	.486	7

-		Sig. (2-tailed)
Pair 1	- Pre_Exercise -	.994
	Post_Exercise	
Pair 2	Pre_Control - Post_Control	.642

```
[DataSet13] C:\Users\Matt\Documents\Chez\Results\Chez
SPSS\Cortisol.sav
```

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise	2.7342	7	.56812	.21473
	Post_Exercise	3.0525	7	.61599	.23282
Pair 2	Pre_Control	2.8876	7	1.21740	.46013
	Post_Control	3.8191	7	1.04871	.39638

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Pre_Exercise &	7	.492	.262
	Post_Exercise			
Pair 2	Pre_Control & Post_Control	7	.430	.335

Paired Samples Test

		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise -	31834	.59827	.22612	
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	93159	1.21800	.46036	

Paired Samples Test

Paired Differences					
		95% Confidence			
		Difference			
		Lower	Upper	t	df
Pair 1	Pre_Exercise -	87164	.23497	-1.408	6
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	-2.05805	.19487	-2.024	6

		Sig. (2-tailed)
Pair 1	- Pre_Exercise -	.209
	Post_Exercise	
Pair 2	Pre_Control - Post_Control	.089

[DataSet13] C:\Users\Matt\Documents\Chez\Results\Chez SPSS\Cortisol.sav

Paired Samples Statistics							
	Mean N Std. Deviation Std. Error Mean						
Pair 1	Pre_Exercise	2.9603	7	.28214	.10664		
	Post_Exercise	3.2593	7	.48129	.18191		
Pair 2	Pre_Control	3.2165	7	.55709	.21056		
	Post_Control	2.9173	7	.45609	.17239		

Paired Samples Correlations

Faired Samples Correlations					
		N	Correlation	Sig.	
Pair 1	Pre_Exercise &	7	.748	.053	
	Post_Exercise				
Pair 2	Pre_Control & Post_Control	7	382	.397	

Paired Samples Test

		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	- Pre_Exercise -	29891	.32892	.12432	
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	.29923	.84419	.31907	

Paired Samples Test

		Paired Di	fferences		
		95% Confidence			
		Differ			
		Lower	Upper	t	df
Pair 1	Pre_Exercise -	60311	.00528	-2.404	6
	Post_Exercise				
Pair 2	Pre_Control - Post_Control	48152	1.07997	.938	6

		Sig. (2-tailed)
Pair 1	Pre_Exercise -	.053
	Post_Exercise	
Pair 2	Pre_Control - Post_Control	.385

[DataSet15] C:\Users\Matt\Documents\Chez\Results\Chez SPSS\Cortisol.sav

Faired Samples Statistics						
-		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise	2.7342	7	.56812	.21473	
	Pre_Exercise_After	3.2018	7	.40982	.15490	
Pair 2	Post_Exercise	3.3154	6	.60118	.24543	
	Post_Exercise_After	2.9408	6	.51189	.20898	

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	Pre_Exercise &	7	.502	.251
	Pre_Exercise_After			
Pair 2	Post_Exercise &	6	.664	.151
	Post_Exercise_After			

Paired Samples Test

		Paired Differences			
		Mean Std. Deviation Std. Error Mea			
Pair 1	- Pre_Exercise -	46758	.50698	.19162	
	Pre_Exercise_After				
Pair 2	Post_Exercise -	.37464	.46357	.18925	
	Post_Exercise_After				

Paired Samples Test

		Paired Differences				
		95% Confidence Interval of the				
		Differ	ence			
		Lower	t	df		
Pair 1	Pre_Exercise -	93645	.00130	-2.440	6	
	Pre_Exercise_After					
Pair 2	Post_Exercise -	11184	.86112	1.980	5	
	Post_Exercise_After					

-		Sig. (2-tailed)
Pair 1	Pre_Exercise -	.050
	Pre_Exercise_After	
Pair 2	Post_Exercise -	.105
	Post_Exercise_After	

[DataSet15] C:\Users\Matt\Documents\Chez\Results\Chez SPSS\Cortisol.sav

		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	Pre_Exercise	2.9603	7	.28214	.10664		
	Pre_Exercise_After	3.0651	7	.18850	.07125		
Pair 2	Post_Exercise	3.2593	7	.48129	.18191		
	Post_Exercise_After	3.2311	7	.36429	.13769		

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	Pre_Exercise &	7	.329	.471
	Pre_Exercise_After			
Pair 2	Post_Exercise &	7	.830	.021
	Post_Exercise_After			

Paired Samples Test

		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise -	10475	.28303	.10697	
	Pre_Exercise_After				
Pair 2	Post_Exercise -	.02818	.27067	.10230	
	Post_Exercise_After				

		Paired Dif			
[95% Confidence	e Interval of the		
		Differ	Difference		
		Lower Upper		t	df
Pair 1	Pre_Exercise -	36651	.15701	979	6
	Pre_Exercise_After				
Pair 2	Post_Exercise -	22215	.27851	.275	6
	Post_Exercise_After				

Paired Samples Test			
		Sig. (2-tailed)	
Pair 1	Pre_Exercise -	.365	
	Pre_Exercise_After		
Pair 2	Post_Exercise -	.792	
	Post_Exercise_After		

[DataSet5] C:\Users\Matt\Documents\MSc Thesis\Blood Pressure.sav

		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	SBP_Pre_E	126.056	9	11.0692	3.6897	
	SBP_Post_E	122.667	9	13.1529	4.3843	
Pair 2	SBP_Pre_C	110.278	9	42.7355	14.2452	
	SBP_Post_C	126.167	9	10.5594	3.5198	
Pair 3	DBP_Pre_E	85.222	9	8.8956	2.9652	
	DBP_Post_E	85.500	9	10.2072	3.4024	
Pair 4	DBP_Pre_C	75.500	9	30.1310	10.0437	
	DBP_Post_C	86.278	9	5.6187	1.8729	

Paired Samples Statistics

Paired Samples Correlations

_		N	Correlation	Sig.
Pair 1	SBP_Pre_E & SBP_Post_E	9	.734	.024
Pair 2	SBP_Pre_C & SBP_Post_C	9	.857	.003
Pair 3	DBP_Pre_E & DBP_Post_E	9	.648	.059
Pair 4	DBP_Pre_C & DBP_Post_C	9	.399	.288

		Paired Differences				
		Mean	Std. Deviation	eviation Std. Error Mean		
Pair 1	SBP_Pre_E - SBP_Post_E	3.3889	9.0477	3.0159		
Pair 2	SBP_Pre_C - SBP_Post_C	-15.8889	34.1282	11.3761		
Pair 3	DBP_Pre_E - DBP_Post_E	2778	8.1052	2.7017		
Pair 4	DBP_Pre_C - DBP_Post_C	-10.7778	28.3616	9.4539		

	Tailed Dampies Test							
		Paired Dif	fferences					
		95% Confidence Interval of the						
	Difference							
		Lower	Upper	t	df			
Pair 1	- SBP_Pre_E - SBP_Post_E	-3.5658	10.3436	1.124	8			
Pair 2	SBP_Pre_C - SBP_Post_C	-42.1222	10.3444	-1.397	8			
Pair 3	DBP_Pre_E - DBP_Post_E	-6.5080	5.9524	103	8			
Pair 4	DBP_Pre_C - DBP_Post_C	-32.5785	11.0229	-1.140	8			

Paired Samples Test

-		Sig. (2-tailed)
Pair 1	- SBP_Pre_E - SBP_Post_E	.294
Pair 2	SBP_Pre_C - SBP_Post_C	.200
Pair 3	DBP_Pre_E - DBP_Post_E	.921
Pair 4	DBP_Pre_C - DBP_Post_C	.287

T-Test

[DataSet1] C:\Users\Matt\Documents\MSc Thesis\Blood Pressure.sav

	Failed Samples Statistics				
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	SBP_Pre_E	118.625	8	10.7030	3.7841
	SBP_Post_E	109.125	8	7.2789	2.5735
Pair 2	SBP_Pre_C	119.250	8	7.6765	2.7141
	SBP_Post_C	111.750	8	7.5829	2.6810
Pair 3	DBP_Pre_E	77.250	8	9.6732	3.4200
	DBP_Post_E	72.188	8	5.0634	1.7902
Pair 4	DBP_Pre_C	81.688	8	4.2421	1.4998
	DBP_Post_C	73.813	8	8.7421	3.0908

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	- SBP_Pre_E & SBP_Post_E	8	.431	.287
Pair 2	SBP_Pre_C & SBP_Post_C	8	.392	.337
Pair 3	DBP_Pre_E & DBP_Post_E	8	.277	.507
Pair 4	DBP_Pre_C & DBP_Post_C	8	.410	.313

Paired Samples Test						
_			Paired Difference	ces		
		Mean Std. Deviation Std. Error Mea				
Pair 1	- SBP_Pre_E - SBP_Post_E	9.5000	10.0214	3.5431		
Pair 2	SBP_Pre_C - SBP_Post_C	7.5000	8.4134	2.9746		
Pair 3	DBP_Pre_E - DBP_Post_E	5.0625	9.5970	3.3931		
Pair 4	DBP_Pre_C - DBP_Post_C	7.8750	7.9989	2.8280		

Paired Samples Test

		Paired Differences			
		95% Confidence Interval of the			
		Difference			
		Lower	Upper	t	df
Pair 1	SBP_Pre_E - SBP_Post_E	1.1219	17.8781	2.681	7
Pair 2	SBP_Pre_C - SBP_Post_C	.4662	14.5338	2.521	7
Pair 3	DBP_Pre_E - DBP_Post_E	-2.9608	13.0858	1.492	7
Pair 4	DBP_Pre_C - DBP_Post_C	1.1878	14.5622	2.785	7

Paired Samples Test

		Sig. (2-tailed)
Pair 1	SBP_Pre_E - SBP_Post_E	.031
Pair 2	SBP_Pre_C - SBP_Post_C	.040
Pair 3	DBP_Pre_E - DBP_Post_E	.179
Pair 4	DBP_Pre_C - DBP_Post_C	.027

T-Test

[DataSet7] C:\Users\Matt\Documents\MSc Thesis\Body Composition.sav

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Fat_Percent_Pre_E	34.563	8	14.7191	5.2040
	Fat_Percent_Post_E	33.338	8	14.1907	5.0172
Pair 2	Fat_Percent_Pre_C	32.600	6	15.6435	6.3864
	Fat_Percent_Post_C	32.667	6	17.7304	7.2384
Pair 3	FatFree_Percent_Pre_E	65.438	8	14.7191	5.2040
	FatFree_Percent_Post_E	66.663	8	14.1907	5.0172
Pair 4	FatFree_Percent_Pre_C	67.367	6	15.6450	6.3871
	FatFree_Percent_Post_C	67.333	6	17.7304	7.2384
Pair 5	TotalMass_kg_Pre_E	76.278	9	9.2560	3.0853
	TotalMass_kg_Post_E	76.889	9	9.0899	3.0300
Pair 6	TotalMass_kg_Pre_C	75.800	7	9.9763	3.7707
	TotalMass_kg_Post_C	76.029	7	9.3229	3.5237

		N	Correlation	Sig.
Pair 1	- Fat_Percent_Pre_E &	8	.995	.000
	Fat_Percent_Post_E			
Pair 2	Fat_Percent_Pre_C &	6	.993	.000
	Fat_Percent_Post_C			
Pair 3	FatFree_Percent_Pre_E &	8	.995	.000
	FatFree_Percent_Post_E			
Pair 4	FatFree_Percent_Pre_C &	6	.993	.000
	FatFree_Percent_Post_C			
Pair 5	TotalMass_kg_Pre_E &	9	.963	.000
	TotalMass_kg_Post_E			
Pair 6	TotalMass_kg_Pre_C &	7	.993	.000
	TotalMass_kg_Post_C			

Paired Samples Correlations

-			Paired Differences			
		Mean	Std. Deviation	Std. Error Mean		
Pair 1	- Fat_Percent_Pre_E -	1.2250	1.5462	.5467		
	Fat_Percent_Post_E					
Pair 2	Fat_Percent_Pre_C -	0667	2.8619	1.1684		
	Fat_Percent_Post_C					
Pair 3	FatFree_Percent_Pre_E -	-1.2250	1.5462	.5467		
	FatFree_Percent_Post_E					
Pair 4	FatFree_Percent_Pre_C -	.0333	2.8654	1.1698		
	FatFree_Percent_Post_C					
Pair 5	TotalMass_kg_Pre_E -	6111	2.4952	.8317		
	TotalMass_kg_Post_E					
Pair 6	TotalMass_kg_Pre_C -	2286	1.3187	.4984		
	TotalMass_kg_Post_C					

Paired Samples Test

-		Paired Dif	Paired Differences		
		95% Confidence Differ	95% Confidence Interval of the Difference		
		Lower	Upper	t	df
Pair 1	- Fat_Percent_Pre_E -	0677	2.5177	2.241	7
	Fat_Percent_Post_E				
Pair 2	Fat_Percent_Pre_C -	-3.0701	2.9367	057	5
	Fat_Percent_Post_C				
Pair 3	FatFree_Percent_Pre_E -	-2.5177	.0677	-2.241	7
	FatFree_Percent_Post_E				
Pair 4	FatFree_Percent_Pre_C -	-2.9737	3.0404	.028	5
	FatFree_Percent_Post_C				
Pair 5	TotalMass_kg_Pre_E -	-2.5291	1.3069	735	8
	TotalMass_kg_Post_E				
Pair 6	TotalMass_kg_Pre_C -	-1.4482	.9910	459	6
	TotalMass_kg_Post_C				

		Sig. (2-tailed)
Pair 1	- Fat_Percent_Pre_E -	.060
	Fat_Percent_Post_E	
Pair 2	Fat_Percent_Pre_C -	.957
	Fat_Percent_Post_C	
Pair 3	FatFree_Percent_Pre_E -	.060
	FatFree_Percent_Post_E	
Pair 4	FatFree_Percent_Pre_C -	.978
	FatFree_Percent_Post_C	
Pair 5	TotalMass_kg_Pre_E -	.483
	TotalMass_kg_Post_E	
Pair 6	TotalMass_kg_Pre_C -	.663
	TotalMass_kg_Post_C	

[DataSet6] C:\Users\Matt\Documents\MSc Thesis\Body Composition.sav

-		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Fat_Percent_Pre_E	27.629	7	12.7916	4.8348
	Fat_Percent_Post_E	27.986	7	11.9910	4.5322
Pair 2	Fat_Percent_Pre_C	27.213	8	11.7005	4.1367
	Fat_Percent_Post_C	26.987	8	11.5470	4.0825
Pair 3	FatFree_Percent_Pre_E	72.371	7	12.7916	4.8348
	FatFree_Percent_Post_E	72.014	7	11.9910	4.5322
Pair 4	FatFree_Percent_Pre_C	72.788	8	11.7005	4.1367
	FatFree_Percent_Post_C	73.013	8	11.5470	4.0825
Pair 5	TotalMass_kg_Pre_E	63.943	7	5.8366	2.2060
	TotalMass_kg_Post_E	63.557	7	6.3416	2.3969
Pair 6	TotalMass_kg_Pre_C	63.075	8	6.3281	2.2373
	TotalMass_kg_Post_C	63.238	8	6.3644	2.2502

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Fat_Percent_Pre_E &	7	.979	.000
	Fat_Percent_Post_E			
Pair 2	Fat_Percent_Pre_C &	8	.951	.000
	Fat_Percent_Post_C			
Pair 3	FatFree_Percent_Pre_E &	7	.979	.000
	FatFree_Percent_Post_E			
Pair 4	FatFree_Percent_Pre_C &	8	.951	.000
	FatFree_Percent_Post_C			
Pair 5	TotalMass_kg_Pre_E &	7	.996	.000
	TotalMass_kg_Post_E			
Pair 6	TotalMass_kg_Pre_C &	8	.996	.000
	TotalMass_kg_Post_C			

-		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	- Fat_Percent_Pre_E -	3571	2.6894	1.0165	
	Fat_Percent_Post_E				
Pair 2	Fat_Percent_Pre_C -	.2250	3.6378	1.2862	
	Fat_Percent_Post_C				
Pair 3	FatFree_Percent_Pre_E -	.3571	2.6894	1.0165	
	FatFree_Percent_Post_E				
Pair 4	FatFree_Percent_Pre_C -	2250	3.6378	1.2862	
	FatFree_Percent_Post_C				
Pair 5	TotalMass_kg_Pre_E -	.3857	.7313	.2764	
	TotalMass_kg_Post_E				
Pair 6	TotalMass_kg_Pre_C -	1625	.5780	.2044	
	TotalMass_kg_Post_C				

	Faired Samples Test						
		Paired Di					
		95% Confidence					
		Differ	ence				
		Lower	Upper	t	df		
Pair 1	Fat_Percent_Pre_E -	-2.8444	2.1301	351	6		
	Fat_Percent_Post_E						
Pair 2	Fat_Percent_Pre_C -	-2.8163	3.2663	.175	7		
	Fat_Percent_Post_C						
Pair 3	FatFree_Percent_Pre_E -	-2.1301	2.8444	.351	6		
	FatFree_Percent_Post_E						
Pair 4	FatFree_Percent_Pre_C -	-3.2663	2.8163	175	7		
	FatFree_Percent_Post_C						
Pair 5	TotalMass_kg_Pre_E -	2906	1.0620	1.396	6		
	TotalMass_kg_Post_E						
Pair 6	TotalMass_kg_Pre_C -	6457	.3207	795	7		
	TotalMass_kg_Post_C						

Paired Samples Test					
		Sig. (2-tailed)			
Pair 1	- Fat_Percent_Pre_E -	.737			
	Fat_Percent_Post_E				
Pair 2	Fat_Percent_Pre_C -	.866			
	Fat_Percent_Post_C				
Pair 3	FatFree_Percent_Pre_E -	.737			
	FatFree_Percent_Post_E				
Pair 4	FatFree_Percent_Pre_C -	.866			
	FatFree_Percent_Post_C				
Pair 5	TotalMass_kg_Pre_E -	.212			
	TotalMass_kg_Post_E				
Pair 6	TotalMass_kg_Pre_C -	.453			
	TotalMass_kg_Post_C				

[DataSet9] C:\Users\Matt\Documents\MSc Thesis\Calculated V02.sav

-		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	PreExercise	29.2267	9	5.98010	1.99337		
	PostExercise	34.2279	9	9.71427	3.23809		
Pair 2	PreControl	42.0765	8	17.09489	6.04396		
	PostControl	34.9006	8	8.46685	2.99348		

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	PreExercise & PostExercise	9	.710	.032
Pair 2	PreControl & PostControl	8	.475	.234

		Paired Differences					
		Mean	Std. Deviation	Std. Error Mean			
Pair 1	PreExercise - PostExercise	-5.00125	6.90504	2.30168			
Pair 2	PreControl - PostControl	7.17589	15.04662	5.31978			
	Paired Samples Test						
--------	----------------------------	----------------	-------------------	--------	----	--	--
		Paired Di	fferences				
		95% Confidence	e Interval of the				
		Differ	ence				
		Lower	Upper	t	df		
Pair 1	PreExercise - PostExercise	-10.30893	.30644	-2.173	8		
Pair 2	PreControl - PostControl	-5.40340	19.75519	1.349	7		

		Sig. (2-tailed)
Pair 1	PreExercise - PostExercise	.062
Pair 2	PreControl - PostControl	.219

T-Test

[DataSet9] C:\Users\Matt\Documents\MSc Thesis\Calculated V02.sav

i alled ballples blatistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PreExercise	43.3900	8	6.29571	2.22587
	PostExercise	57.1426	8	15.40763	5.44742
Pair 2	PreControl	50.4193	8	8.92279	3.15468
	PostControl	55.9005	8	12.25591	4.33312

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	PreExercise & PostExercise	8	.228	.587
Pair 2	PreControl & PostControl	8	.267	.523

Paired Samples Test

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	PreExercise - PostExercise	-13.75258	15.25863	5.39474
Pair 2	PreControl - PostControl	-5.48111	13.09413	4.62948

		Paired Differences			
		95% Confidence Interval of the			
		Differ	ence		
		Lower	Upper	t	df
Pair 1	PreExercise - PostExercise	-26.50911	99604	-2.549	7
Pair 2	PreControl - PostControl	-16.42808	5.46586	-1.184	7

_		Sig. (2-tailed)
Pair 1	PreExercise - PostExercise	.038
Pair 2	PreControl - PostControl	.275

T-Test

[DataSet11] C:\Users\Matt\Documents\MSc Thesis\IPAQ.sav

Failed Samples Statistics					
-		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PreExercise	1.3333	9	.50000	.16667
	PostExercise	1.8889	9	.78174	.26058
Pair 2	PreControl	1.7500	8	.70711	.25000
	PostControl	1.8750	8	.64087	.22658

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	PreExercise & PostExercise	9	.107	.785
Pair 2	PreControl & PostControl	8	.552	.156

Paired Samples Test

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	PreExercise - PostExercise	55556	.88192	.29397
Pair 2	PreControl - PostControl	12500	.64087	.22658

Paired Samples Test

-		Paired Differences			
		95% Confidence Interval of the			
		Differ	ence		
		Lower	Upper	t	df
Pair 1	PreExercise - PostExercise	-1.23346	.12235	-1.890	8
Pair 2	PreControl - PostControl	66078	.41078	552	7

_		Sig. (2-tailed)
Pair 1	PreExercise - PostExercise	.095
Pair 2	PreControl - PostControl	.598

[DataSet10] C:\Users\Matt\Documents\MSc Thesis\IPAQ.sav

		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	PreExercise	2.5000	8	.53452	.18898	
	PostExercise	2.3750	8	.51755	.18298	
Pair 2	PreControl	2.1250	8	.35355	.12500	
	PostControl	2.2500	8	.88641	.31339	

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	PreExercise & PostExercise	8	.775	.024
Pair 2	PreControl & PostControl	8	.342	.407

Paired Samples Test

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	PreExercise - PostExercise	.12500	.35355	.12500
Pair 2	PreControl - PostControl	12500	.83452	.29505

		Paired Differences			
		95% Confidence Interval of the			
		Difference			
		Lower	Upper	t	df
Pair 1	PreExercise - PostExercise	17058	.42058	1.000	7
Pair 2	PreControl - PostControl	82268	.57268	424	7

Paired Samples Test

		Sig. (2-tailed)
Pair 1	- PreExercise - PostExercise	.351
Pair 2	PreControl - PostControl	.685

[DataSet16] C:\Users\Matt\Documents\MSc Thesis\Metalyser data (CHEZ).sav

		Mean	Ν	Std. Deviation	Std. Error Mean	
Pair 1	METExePre	4.8222	9	.74125	.24708	
	METSExePost	3.9478	9	.64160	.21387	
Pair 2	METSRestPre	.7889	9	.41667	.13889	
	METSRestPost	.8822	9	.89212	.29737	
Pair 3	HRExePre	126.2222	9	12.16324	4.05441	
	HRExePost	114.5556	9	14.80803	4.93601	
Pair 4	HRRestPre	74.8889	9	9.34672	3.11557	
	HRRestPost	68.6667	9	6.34429	2.11476	
Pair 5	VO2KGExePre	16.7778	9	2.68225	.89408	
	VO2KGExePost	13.8056	9	2.29326	.76442	
Pair 6	VO2KGRestPre	2.5556	9	1.66667	.55556	
	VO2KGRestPost	2.2119	9	.85326	.28442	
Pair 7	EE_Exercise_Pre	335.7402	9	41.30474	13.76825	
	EE_Exercise_Post	276.1276	9	33.12760	11.04253	
Pair 8	EE_Rest_Pre	56.0782	9	30.33766	10.11255	
	EE_Rest_Post	48.7406	9	14.03529	4.67843	

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	METExePre &	9	.459	.214
	METSExePost			
Pair 2	METSRestPre &	9	.003	.994
	METSRestPost			
Pair 3	HRExePre & HRExePost	9	.729	.026
Pair 4	HRRestPre & HRRestPost	9	.385	.306
Pair 5	VO2KGExePre &	9	.488	.183
	VO2KGExePost			
Pair 6	VO2KGRestPre &	9	.073	.851
	VO2KGRestPost			
Pair 7	EE_Exercise_Pre &	9	.149	.703
	EE_Exercise_Post			
Pair 8	EE_Rest_Pre &	9	.194	.617
	EE_Rest_Post			

-			Paired Differenc	es
		Mean	Std. Deviation	Std. Error Mean
Pair 1	- METExePre – METSExePost	.87444	.72421	.24140
Pair 2	METSRestPre –	09333	.98345	.32782
	METSRestPost			
Pair 3	HRExePre - HRExePost	11.66667	10.23474	3.41158
Pair 4	HRRestPre - HRRestPost	6.22222	9.05232	3.01744
Pair 5	VO2KGExePre -	2.97222	2.53982	.84661
	VO2KGExePost			
Pair 6	VO2KGRestPre -	.34367	1.81575	.60525
	VO2KGRestPost			
Pair 7	EE_Exercise_Pre -	59.61254	48.95451	16.31817
	EE_Exercise_Post			
Pair 8	EE_Rest_Pre -	7.33754	30.85382	10.28461
	EE_Rest_Post			

		Paired Differences			
		95% Confidence Differ	e Interval of the ence		
		Lower	Upper	t	df
Pair 1	METExePre – METSExePost	.31777	1.43112	3.622	8
Pair 2	METSRestPre –	84928	.66261	285	8
	METSRestPost				
Pair 3	HRExePre - HRExePost	3.79955	19.53379	3.420	8
Pair 4	HRRestPre - HRRestPost	73600	13.18045	2.062	8
Pair 5	VO2KGExePre -	1.01994	4.92450	3.511	8
	VO2KGExePost				
Pair 6	VO2KGRestPre -	-1.05204	1.73937	.568	8
	VO2KGRestPost				
Pair 7	EE_Exercise_Pre -	21.98278	97.24231	3.653	8
	EE_Exercise_Post				
Pair 8	EE_Rest_Pre -	-16.37880	31.05389	.713	8
	EE_Rest_Post				

Paired Samples Test				
		Sig. (2-tailed)		
Pair 1	METExePre – METSExePost	.007		
Pair 2	METSRestPre –	.783		
	METSRestPost			
Pair 3	HRExePre - HRExePost	.009		
Pair 4	HRRestPre - HRRestPost	.073		
Pair 5	VO2KGExePre -	.008		
	VO2KGExePost			
Pair 6	VO2KGRestPre -	.586		
	VO2KGRestPost			
Pair 7	EE_Exercise_Pre -	.006		
	EE_Exercise_Post			
Pair 8	EE_Rest_Pre -	.496		
	EE_Rest_Post			

[DataSet12] C:\Users\Matt\Documents\MSc Thesis\Metalyser data (CHEZ).sav

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	METSRestPre	1.2750	8	.77229	.27304
	METSRestPost	.9338	8	.15847	.05603
Pair 2	METExePre	5.0375	8	1.10704	.39140
	METSExePost	4.3213	8	1.04316	.36881
Pair 3	HRRestPre	75.8750	8	12.15892	4.29883
	HRRestPost	71.1250	8	5.48862	1.94052
Pair 4	HRExePre	116.7500	8	16.22828	5.73756
	HRExePost	109.8473	8	9.25973	3.27381
Pair 5	VO2KGRestPre	4.3750	8	2.61520	.92461
	VO2KGRestPost	3.4166	8	1.15227	.40739
Pair 6	VO2KGExePre	17.7500	8	3.84522	1.35949
	VO2KGExePost	15.1375	8	3.69843	1.30759
Pair 7	EE_Rest_Pre	92.9727	8	54.84226	19.38967
	EE_Rest_Post	66.2078	8	34.43265	12.17378
Pair 8	EE_Exercise_Pre	360.6935	8	77.10697	27.26143
	EE_Exercise_Post	316.2261	8	75.55323	26.71 <u>210</u>

Paired Samples Statistics

		N	Correlation	Sig.
Pair 1	- METSRestPre &	8	.158	.708
	METSRestPost			
Pair 2	METExePre &	8	.589	.124
	METSExePost			
Pair 3	HRRestPre & HRRestPost	8	.142	.738
Pair 4	HRExePre & HRExePost	8	.561	.148
Pair 5	VO2KGRestPre &	8	.257	.539
	VO2KGRestPost			
Pair 6	VO2KGExePre &	8	.623	.099
	VO2KGExePost			
Pair 7	EE_Rest_Pre &	8	.249	.552
	EE_Rest_Post			
Pair 8	EE_Exercise_Pre &	8	.556	.153
	EE_Exercise_Post			

Paired Samples Correlations

		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	- METSRestPre –	.34125	.76338	.26990	
	METSRestPost				
Pair 2	METExePre – METSExePost	.71625	.97620	.34514	
Pair 3	HRRestPre - HRRestPost	4.75000	12.61235	4.45914	
Pair 4	HRExePre - HRExePost	6.90275	13.42980	4.74815	
Pair 5	VO2KGRestPre -	.95838	2.57246	.90950	
	VO2KGRestPost				
Pair 6	VO2KGExePre -	2.61250	3.27760	1.15881	
	VO2KGExePost				
Pair 7	EE_Rest_Pre -	26.76495	57.03450	20.16474	
	EE_Rest_Post				
Pair 8	EE_Exercise_Pre -	44.46741	71.95557	25.44013	
	EE_Exercise_Post				

-		Paired Di	fferences			
		95% Confidence Interval of the Difference				
		Lower	Upper	t	df	
Pair 1	METSRestPre –	29696	.97946	1.264	7	
	METSRestPost					
Pair 2	METExePre – METSExePost	09987	1.53237	2.075	7	
Pair 3	HRRestPre - HRRestPost	-5.79419	15.29419	1.065	7	
Pair 4	HRExePre - HRExePost	-4.32485	18.13035	1.454	7	
Pair 5	VO2KGRestPre -	-1.19225	3.10900	1.054	7	
	VO2KGRestPost					
Pair 6	VO2KGExePre -	12764	5.35264	2.254	7	
	VO2KGExePost					
Pair 7	EE_Rest_Pre -	-20.91709	74.44698	1.327	7	
	EE_Rest_Post					
Pair 8	EE_Exercise_Pre -	-15.68895	104.62377	1.748	7	
	EE_Exercise_Post					

		Sig. (2-tailed)
Pair 1	METSRestPre –	.247
	METSRestPost	
Pair 2	METExePre – METSExePost	.077
Pair 3	HRRestPre - HRRestPost	.322
Pair 4	HRExePre - HRExePost	.189
Pair 5	VO2KGRestPre -	.327
	VO2KGRestPost	
Pair 6	VO2KGExePre -	.059
	VO2KGExePost	
Pair 7	EE_Rest_Pre -	.226
	EE_Rest_Post	
Pair 8	EE_Exercise_Pre -	.124
	EE_Exercise_Post	

APPENDIX 17

[DataSet1] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise	36.7330	8	27.12802	9.59120	
	Pre_Control	30.2062	8	21.34832	7.54777	

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Pre_Exercise & Pre_Control	8	.849	.008

Paired Samples Test

-		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise - Pre_Control	6.52676	14.41692	5.09715

Paired Samples Test

		Paired Differences				
		95% Confidence Interval of the				
		Difference				
		Lower	Upper	t	df	
Pair 1	Pre_Exercise - Pre_Control	-5.52609	18.57960	1.280		7

-		Sig. (2-tailed)
Pair 1	- Pre_Exercise - Pre_Control	.241

[DataSet2] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	Pre_Exercise	43.7202	8	39.55021	13.98311	
	Pre_Control	38.9059	8	39.43920	13.94386	

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	Pre_Exercise & Pre_Control	8	.072	.865

Paired Samples Test

-		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise - Pre_Control	4.81423	53.79441	19.01920

Paired Samples Test

-		Paired Differences				
		95% Confidence Interval of the				
		Difference				
		Lower	Upper	t	df	
Pair 1	Pre_Exercise - Pre_Control	-40.15902	49.78748	.253		7

-		Sig. (2-tailed)
Pair 1	Pre_Exercise - Pre_Control	.807

[DataSet2] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise	2.9400	5	.67375	.30131
	Pre_Control	3.4800	5	.99458	.44479

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Pre_Exercise & Pre_Control	5	.387	.519

Paired Samples Test

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise - Pre_Control	54000	.96122	.42987

Paired Samples Test

-		Paired Differences			
		95% Confidence			
		Difference			
		Lower	Upper	t	df
Pair 1	Pre_Exercise - Pre_Control	-1.73351	.65351	-1.256	4

		Sig. (2-tailed)
Pair 1	Pre_Exercise - Pre_Control	.277

[DataSet2] C:\Users\Matt\Documents\MSc Thesis\IgAAmmended.sav

Paired Samples Statistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise	2.8711	7	.26587	.10049
	Pre_Control	2.7987	7	.92430	.34935

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Pre_Exercise & Pre_Control	7	073	.876

Paired Samples Test

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Pre_Exercise - Pre_Control	.07237	.98025	.37050

Paired Samples Test

		Paired Differences				
		95% Confidence				
		Difference				
		Lower	Upper	t	df	
Pair 1	Pre_Exercise - Pre_Control	83421	.97895	.195		6

		Sig. (2-tailed)
Pair 1	Pre_Exercise - Pre_Control	.852

[DataSet1] C:\Users\Matt\Documents\MSc Thesis\Blood Pressure.sav

T and bampies blatisties					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	SBP_Pre_E	126.056	9	10.6491	3.5497
	SBP_Pre_C	109.833	9	42.6292	14.2097
Pair 2	DBP_Pre_E	84.611	9	8.0769	2.6923
	DBP_Pre_C	73.944	9	29.3305	9.7768

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	- SBP_Pre_E & SBP_Pre_C	9	.387	.303
Pair 2	DBP_Pre_E & DBP_Pre_C	9	.382	.310

Paired Samples Test

		Paired Differences			
		Mean Std. Deviation Std. Error Me			
Pair 1	- SBP_Pre_E - SBP_Pre_C	16.2222	39.7399	13.2466	
Pair 2	DBP_Pre_E - DBP_Pre_C	10.6667	27.2844	9.0948	

Paired Samples Test

_		Paired Dit	ferences		
		95% Confidence			
	Difference				
		Lower	Upper	t	df
Pair 1	- SBP_Pre_E - SBP_Pre_C	-14.3245	46.7690	1.225	8
Pair 2	DBP_Pre_E - DBP_Pre_C	-10.3060	31.6393	1.173	8

_		Sig. (2-tailed)
Pair 1	- SBP_Pre_E - SBP_Pre_C	.256
Pair 2	DBP_Pre_E - DBP_Pre_C	.275

[DataSet1] C:\Users\Matt\Documents\MSc Thesis\Blood Pressure.sav

Paired Samples Statistics							
	Mean N Std. Deviation Std. Error Mean						
Pair 1	SBP_Pre_E	118.625	8	11.1795	3.9526		
	SBP_Pre_C	119.750	8	7.6485	2.7042		
Pair 2	DBP_Pre_E	77.938	8	10.9982	3.8884		
	DBP_Pre_C	83.438	8	6.4056	2.2647		

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	- SBP_Pre_E & SBP_Pre_C	8	.826	.012
Pair 2	DBP_Pre_E & DBP_Pre_C	8	.105	.804

Paired Samples Test

		Paired Differences		
		Mean Std. Deviation Std. Error Me		
Pair 1	- SBP_Pre_E - SBP_Pre_C	-1.1250	6.5014	2.2986
Pair 2	DBP_Pre_E - DBP_Pre_C	-5.5000	12.1302	4.2887

Paired Samples Test

-		Paired Di			
		95% Confidence Interval of the			
		Differ	ence		
		Lower	Upper	t	df
Pair 1	- SBP_Pre_E - SBP_Pre_C	-6.5603	4.3103	489	7
Pair 2	DBP_Pre_E - DBP_Pre_C	-15.6411	4.6411	-1.282	7

		Sig. (2-tailed)
Pair 1	SBP_Pre_E - SBP_Pre_C	.639
Pair 2	DBP_Pre_E - DBP_Pre_C	.241

[DataSet1] C:\Users\Matt\Documents\MSc Thesis\Body Composition.sav

Tailed Gamples Glatistics						
		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	Fat_Percent_Pre_E	31.914	7	14.9259	5.6414	
	Fat_Percent_Pre_C	30.400	7	14.6870	5.5511	
Pair 2	Fat_kg_Pre_E	23.643	7	15.2175	5.7517	
	Fat_kg_Pre_C	22.043	7	14.6138	5.5235	
Pair 3	FatFree_Percent_Pre_E	68.086	7	14.9259	5.6414	
	FatFree_Percent_Pre_C	69.600	7	14.6870	5.5511	
Pair 4	FatFree_kg_Pre_E	47.029	7	9.0271	3.4119	
	FatFree_kg_Pre_C	47.157	7	9.5845	3.6226	
Pair 5	TotalMass_kg_Pre_E	70.775	8	13.3190	4.7090	
	TotalMass_kg_Pre_C	70.113	8	13.9967	4.9486	

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	- Fat_Percent_Pre_E &	7	.966	.000
	Fat_Percent_Pre_C			
Pair 2	Fat_kg_Pre_E &	7	.988	.000
	Fat_kg_Pre_C			
Pair 3	FatFree_Percent_Pre_E &	7	.966	.000
	FatFree_Percent_Pre_C			
Pair 4	FatFree_kg_Pre_E &	7	.945	.001
	FatFree_kg_Pre_C			
Pair 5	TotalMass_kg_Pre_E &	8	.982	.000
	TotalMass_kg_Pre_C			

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Fat_Percent_Pre_E -	1.5143	3.8882	1.4696
	Fat_Percent_Pre_C			
Pair 2	Fat_kg_Pre_E -	1.6000	2.3409	.8848
	Fat_kg_Pre_C			
Pair 3	FatFree_Percent_Pre_E -	-1.5143	3.8882	1.4696
	FatFree_Percent_Pre_C			
Pair 4	FatFree_kg_Pre_E -	1286	3.1367	1.1856
	FatFree_kg_Pre_C			
Pair 5	TotalMass_kg_Pre_E -	.6625	2.6662	.9426
	TotalMass_kg_Pre_C			

		Paired Di	fferences		
		95% Confidence	e Interval of the		
		Differ	ence		
		Lower	Upper	t	df
Pair 1	- Fat_Percent_Pre_E -	-2.0817	5.1103	1.030	6
	Fat_Percent_Pre_C				
Pair 2	Fat_kg_Pre_E -	5650	3.7650	1.808	6
	Fat_kg_Pre_C				
Pair 3	FatFree_Percent_Pre_E -	-5.1103	2.0817	-1.030	6
	FatFree_Percent_Pre_C				
Pair 4	FatFree_kg_Pre_E -	-3.0296	2.7724	108	6
	FatFree_kg_Pre_C				
Pair 5	TotalMass_kg_Pre_E -	-1.5665	2.8915	.703	7
	TotalMass_kg_Pre_C				

		Sig. (2-tailed)
Pair 1	- Fat_Percent_Pre_E -	.343
	Fat_Percent_Pre_C	
Pair 2	Fat_kg_Pre_E -	.121
	Fat_kg_Pre_C	
Pair 3	FatFree_Percent_Pre_E -	.343
	FatFree_Percent_Pre_C	
Pair 4	FatFree_kg_Pre_E -	.917
	FatFree_kg_Pre_C	
Pair 5	TotalMass_kg_Pre_E -	.505
	TotalMass_kg_Pre_C	

[DataSet2] C:\Users\Matt\Documents\MSc Thesis\Body Composition.sav

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Fat_Percent_Pre_E	28.833	6	15.2930	6.2433
	Fat_Percent_Pre_C	28.433	6	13.9609	5.6995
Pair 2	Fat_kg_Pre_E	20.050	6	10.6577	4.3510
	Fat_kg_Pre_C	19.600	6	9.6503	3.9397
Pair 3	FatFree_Percent_Pre_E	71.167	6	15.2930	6.2433
	FatFree_Percent_Pre_C	71.533	6	13.9745	5.7051
Pair 4	FatFree_kg_Pre_E	48.967	6	9.7770	3.9915
	FatFree_kg_Pre_C	48.750	6	8.7817	3.5851
Pair 5	TotalMass_kg_Pre_E	69.017	6	4.0425	1.6503
	TotalMass_kg_Pre_C	68.350	6	3.8775	1.5830

Paired Samples Statistics

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	- Fat_Percent_Pre_E &	6	.992	.000
	Fat_Percent_Pre_C			
Pair 2	Fat_kg_Pre_E &	6	.992	.000
	Fat_kg_Pre_C			
Pair 3	FatFree_Percent_Pre_E &	6	.992	.000
	FatFree_Percent_Pre_C			
Pair 4	FatFree_kg_Pre_E &	6	.987	.000
	FatFree_kg_Pre_C			
Pair 5	TotalMass_kg_Pre_E &	6	.975	.001
	TotalMass_kg_Pre_C			

		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	Fat_Percent_Pre_E -	.4000	2.3134	.9445
	Fat_Percent_Pre_C			
Pair 2	Fat_kg_Pre_E -	.4500	1.6610	.6781
	Fat_kg_Pre_C			
Pair 3	FatFree_Percent_Pre_E -	3667	2.3166	.9458
	FatFree_Percent_Pre_C			
Pair 4	FatFree_kg_Pre_E -	.2167	1.8104	.7391
	FatFree_kg_Pre_C			
Pair 5	TotalMass_kg_Pre_E -	.6667	.9026	.3685
	TotalMass_kg_Pre_C			

-					
		Paired Di	fferences		
		95% Confidence	e Interval of the		
		Differ	ence		
		Lower	Upper	t	df
Pair 1	Fat_Percent_Pre_E -	-2.0278	2.8278	.424	5
	Fat_Percent_Pre_C				
Pair 2	Fat_kg_Pre_E -	-1.2931	2.1931	.664	5
	Fat_kg_Pre_C				
Pair 3	FatFree_Percent_Pre_E -	-2.7978	2.0645	388	5
	FatFree_Percent_Pre_C				
Pair 4	FatFree_kg_Pre_E -	-1.6833	2.1166	.293	5
	FatFree_kg_Pre_C				
Pair 5	TotalMass_kg_Pre_E -	2805	1.6139	1.809	5
	TotalMass_kg_Pre_C				

		Sig. (2-tailed)
Pair 1	Fat_Percent_Pre_E -	.690
	Fat_Percent_Pre_C	
Pair 2	Fat_kg_Pre_E -	.536
	Fat_kg_Pre_C	
Pair 3	FatFree_Percent_Pre_E -	.714
	FatFree_Percent_Pre_C	
Pair 4	FatFree_kg_Pre_E -	.781
	FatFree_kg_Pre_C	
Pair 5	TotalMass_kg_Pre_E -	.130
	TotalMass_kg_Pre_C	

[DataSet4] C:\Users\Matt\Documents\MSc Thesis\Calculated V02.sav

	Pared Samples Statistics				
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PreExercise	35.2675	8	9.64980	3.41172
	PreControl	51.4248	8	16.41452	5.80341

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	PreExercise & PreControl	8	.651	.081

Paired Samples Test

-		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	PreExercise - PreControl	-16.15731	12.50588	4.42150

Paired Samples Test

		Paired Differences				
		95% Confidence Interval of the				
		Differ	ence			
		Lower	Upper	t	df	
Pair 1	PreExercise - PreControl	-26.61249	-5.70214	-3.654		7

Paired Samples Test

		Sig. (2-tailed)
Pair 1	PreExercise - PreControl	.008

DATASET ACTIVATE DataSet19. DATASET CLOSE DataSet18.

[DataSet5]

Paired Samples Statistics							
Mean N Std.				Std. Deviation	Std. Error Mean		
Pair 1	PreExercise	37.3388	8	9.98661	3.53080		
	PreControl	41.0710	8	8.99614	3.18061		

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	PreExercise & PreControl	8	.325	.433

Paired Samples Test

-		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	PreExercise - PreControl	-3.73227	11.06025	3.91039	

Paired Samples Test

-		Paired Di				
		95% Confidence				
		Difference				
		Lower	Upper	t	df	
Pair 1	PreExercise - PreControl	-12.97886	5.51433	954		7

		Sig. (2-tailed)
Pair 1	PreExercise - PreControl	.372

[DataSet5] C:\Users\Matt\Documents\MSc Thesis\IPAQ.sav

i alled ballpies blatisties							
-		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	PreExercise	1.8750	8	.83452	.29505		
	PreControl	2.0000	8	.53452	.18898		

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	PreExercise & PreControl	8	.000	1.000

Paired Samples Test

		Paired Differences			
		Mean	Std. Deviation	Std. Error Mean	
Pair 1	PreExercise - PreControl	12500	.99103	.35038	

Paired Samples Test

		Paired Di				
		95% Confidence				
		Difference				
		Lower	Upper	t	df	
Pair 1	PreExercise - PreControl	95352	.70352	357		7

		Sig. (2-tailed)
Pair 1	PreExercise - PreControl	.732

[DataSet7] C:\Users\Matt\Documents\MSc Thesis\IPAQ.sav

i alled ballpies blatisties							
-		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	PreExercise	2.0000	8	.75593	.26726		
	PreControl	1.8750	8	.64087	.22658		

Paired Samples Statistics

Paired Samples Correlations

-		N	Correlation	Sig.
Pair 1	PreExercise & PreControl	8	.885	.004

Paired Samples Test

-		Paired Differences		
		Mean	Std. Deviation	Std. Error Mean
Pair 1	PreExercise - PreControl	.12500	.35355	.12500

Paired Samples Test

		Paired Differences				
		95% Confidence				
		Difference				
		Lower	Upper	t	df	
Pair 1	PreExercise - PreControl	17058	.42058	1.000		7

		Sig. (2-tailed)
Pair 1	PreExercise - PreControl	.351

APPENDIX 18

	Mean _{Diff}	SD _{Diff}	Effect Size(d=)
METs_E	0.87444	0.72421	1.207439831
HR_E	11.66667	10.23474	1.139908781
Relative VO ₂ _E	2.97222	2.53982	1.170248285
EE_E	59.61254	48.95451	1.217712934
IgA_E	13.61395	26.40546	0.515573294
lgA_C	-22.2691	20.63714	- 1.079079756
Cortisol_Exercise	-0.31834	0.59827	0.532100891
Cortisol_Control	-0.93159	1.218	0.764852217
Cortsiol_Pre(B&A)	-0.46758	0.50698	0.922284903
Cortisol_Post(B&A)	0.37464	0.46357	0.808162737
Fat %_E	1.225	1.5462	0.792264908
Fat Free %_E	-1.225	1.5462	- 0.792264908 -
Estimated VO _{2max}	-5.00125	6.90504	0.724289794

Good

	Mean _{Diff}	SD_{Diff}	Effect Size _(d=)
METs_E	0.71625	0.9762	0.733712354
Relative VO2_E	2.6125	3.2776	0.79707713
IgA_E	0.06166	22.58208	0.002730484
lgA_C	5.64822	32.85734	0.171901316
			-
Cortisol_Exercise	-0.29891	0.32892	0.908762009
Cortisol_Control	0.29923	0.84419	0.35445812
			-
Cortsiol_Pre(B&A)	-0.10475	0.28303	0.370102109
Cortisol_Post(B&A)	0.02818	0.27067	0.104112018
SBP_E	9.5	10.0214	0.947971341
SBP_C	7.5	8.4134	0.891435092
DBP_C	7.875	7.9989	0.98451037
			-
Estimated VO _{2max}	-13.7526	15.25863	0.901298478

Fair

APPENDIX 19

Fair	Pre E _M	Post E _M	
IgA	52.19602	38.58207	-26.0824
Cortisol	2.734186	3.142831	14.94576
	Pre	Pre	
	Before _M	After _M	
Cortisol	2.73	3.2	17.21612
SBP	126	123	-2.38095
DBP	85	86	1.176471
Fat %	35	33	-5.71429
Fat Free %	65	67	3.076923
Mass KG	76	77	1.315789
VO ₂	29	34	17.24138

	Pre R _M	Post R _M	
METs	0.79	0.97	22.78481
HR	75	68	-9.33333
Relative			
VO ₂	2.6	2.2	-15.3846
EE	56	49	-12.5

Fair	Pre C _M	Post C _M	
IgA	29.02615	50.34309	73.44047
Cortisol	2.960341	3.259254	10.09725

	Post	Post	
	Before _M	After _M	
Cortisol	3.32	2.94	-11.4458
SBP	124	126	1.612903
DBP	85	86	1.176471
Fat %	33	34	3.030303
Fat Free %	67	63	-5.97015
Mass KG	76	76	0
VO ₂	42	36	-14.2857

	Pre E _M	Post E _M	
METs	4.82	3.94	-18.2573
HR	126	114	-9.52381
Relative			
VO ₂	16.8	13.8	-17.8571
EE	336	276	-17.8571

Good	Pre E _M	Post E _M	
IgA	33.26808	33.20642	-0.18534

Cortisol 2.960341 3.259254 10.09725

	Pre	Pre	
	Before _M	Atter _M	
Cortisol	2.96	3.07	3.716216
SBP	119	109	-8.40336
DBP	77	72	-6.49351
Fat %	28	28	0
Fat Free %	72	72	0
Mass KG	65	65	0
VO ₂	43	57	32.55814

	Pre R _M	Post R _M	
METs	1.28	0.93	-27.3438
HR	76	71	-6.57895
Relative			
VO ₂	4.4	3.4	-22.7273
EE	93	66	-29.0323

Good	Pre C _M	Post C _M	
IgA	40.08599	34.43777	-14.0903
Cortisol	3.216544	3.021403	-6.06679

	Post Before _M	Post After _M	
Cortisol	3.26	3.23	-0.92025
SBP	119	112	-5.88235
DBP	82	74	-9.7561
Fat %	27	27	0
Fat Free %	73	73	0
Mass KG	65	65	0
VO ₂	50	56	12

	Pre E _M	Post E _M	
METs	5.04	4.32	-14.2857
HR	117	110	-5.98291
Relative			
VO ₂	17.8	15.1	-15.1685
EE	361	316	-12.4654