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 22 

Abstract 23 

Macadamia kernels are visually sorted based on the presence of quality defects 24 

by specialized labors. However, this process is not as accurate as non-destructive 25 

methods such as near infrared spectroscopy (NIRS) and nuclear magnetic resonance 26 

(NMR). Thus, NIRS and NMR in combination with chemometrics have become 27 

established non-destructive method for rapid assessment of quality parameters in the 28 

food and agricultural sectors. Therefore, the quality of macadamia nuts was assessed by 29 

NIRS and NMR using chemometric tools such as PCA-LDA and GA-LDA to evaluate 30 

kernel defects. Macadamia kernels were classified as: 1=good, marketable kernels 31 

without defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels affected 32 

by mold; and 5=kernels with insect damage. Using NIRS, the GA-LDA resulted in an 33 

accuracy and specificity of 97.8 % and 100 %, respectively, to classify good kernels. On 34 

the other hand, PCA-LDA technique resulting in an accuracy higher than 68 % and 35 

specificity of 97.2 % to classify immature kernels. For NMR, PCA-LDA resulted in an 36 

accuracy higher than 83% and GA-LDA resulted in an accuracy of 100%, both to 37 

classify kernels with insect damage. NIRS and NMR spectroscopy can be successfully 38 

used to classify unshelled macadamia nuts based on the defects. However, NIRS out-39 

performed NMR based on the higher accuracy results. 40 

 41 

Keywords: Macadamia integrifolia Maiden & Betche, TD–NMR, PCA-LDA, GA-42 

LDA, chemometrics. 43 

 44 

 45 
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1. Introduction 46 

 Macadamia (Macadamia integrifolia Maiden & Betche) nut growers are keen 47 

to continuously improve nut quality as this is the main characteristic required by the 48 

final consumers. Nogueira (2008) mentioned that the quality of macadamia fruit is 49 

associated with favorable climatic conditions, planning and orchard management, 50 

varieties, pest control, plant nutrition, harvest and post-harvest practices. All these 51 

factors are decisive for macadamia development and nut quality. 52 

 According to O’Hare et al. (2004), the main defects that can be observed in 53 

macadamia nuts are immaturity; small nuts; cracks in the shell that allow the occurrence 54 

of biological and chemical contamination; lipids oxidation, which result in unpleasant 55 

odor and taste; bruises, and high moisture. Guthrie et al. (2004) reported other defects 56 

that may be considered, as such: fungal growth, decomposition, germination, and 57 

discoloration of macadamia nuts. Therefore, sound and/or good macadamia nuts must 58 

have light cream color, no signs of mold, decay, insect scars, blemishes, hollow centers, 59 

dark centers, shriveling, off-odors, adhering shells, and loose of extraneous material 60 

(Wall, 2013). 61 

 Macadamia industry has developed various parameters of quality standards. 62 

The Southern African Macadamia Growers’ Association (SAMAC) classifies 63 

macadamia nuts into three classes: first grade, commercial grade, and local market. 64 

These classes are established based on kernel color, flavor and odor, kernel dust, insect 65 

infestation, foreign material. A limit of 1.5 % is used reject the nuts based on the 66 

presence of insect damage, discoloration, and immaturity (SAMAC, 2018). On the other 67 

hand, the United Nations Economic Commission for Europe (UNECE) has a higher 68 

tolerance (5 %) for the presence of these defects (UNECE, 2010). 69 



4 

 

 The sorting process of macadamia kernels in the industry can be carried out 70 

manually (Piza, 2005) or electronically (France, 2007), but both present flaws, since 71 

manual sorting of defective kernels can decrease dramatically with the use of inadequate 72 

lighting and untrained personnel, and the electronic selection uses color to sort kernels, 73 

which may lead to improper selection, since immature kernels can only be identified 74 

based on the deformed, wrinkled, and shrunken kernel (SAMAC, 2018). 75 

The increasing requirements of consumers, regulatory agencies, and 76 

competitors have been an impulse for the development of more accurate quality 77 

assessment techniques in the food industry. In this regard, near infrared spectroscopy 78 

(NIRS) in combination with chemometric modelling have become an established 79 

method for rapid assessment and non-destructive quality parameters in the food and 80 

agricultural sectors (Abbott, 1999; Jensen et al., 2001), since it is fast, safe, relatively 81 

inexpensive technique and provides automation of quality control processes in products 82 

of agroindustry (Pasquini, 2003). 83 

NIRS has been used to evaluate macadamia nut quality. Guthrie et al. (2004) 84 

developed modified partial least squares regression (MPLS) models for oil content 85 

determination in intact macadamia kernels with a root mean square error of calibration 86 

(RMSEC) of 2.4 % and discriminated intact kernels with brown centers or rancidity 87 

from each other and from sound kernels using PCA. Canneddu et al. (2016) developed 88 

models for predicting peroxide value (PV) and acidity index (AI) using PLSR and 89 

classification models to discriminate defects present on shelled macadamia nuts using 90 

FT-NIR. The best model for PV prediction resulted in a coefficient of determination 91 

(Rp
2) of 0.72, and for AI prediction a SEP of 0.14 % and a Rp

2 of 0.80. Adequate 92 

classification models (93.2 %) for defects was possible using principal component 93 

analysis linear discriminant analysis (PCA-LDA). Carvalho et al. (2017) classified 94 
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intact macadamia nuts according to cultivars using PCA-LDA and genetic algorithm 95 

with linear discriminant analysis (GA-LDA), reporting an accuracy higher than 94.4 % 96 

and a value of 82.7 % for sensitivity using GA-LDA, respectively. The better 97 

performance of GA-LDA can be due to that GA algorithm selects several wavenumbers 98 

in a single band, due to collinearity problems. Carvalho et al. (2019) evaluated the 99 

oxidative stability in intact macadamia nuts during drying process and reported a SEP 100 

of 0.55 meq.kg-1 and R²c of 0.57 for PV prediction, and SEP of 0.14 % and R²c of 0.29 101 

for AI prediction. These results demonstrate that NIRS can be used to assess the 102 

oxidative stability of intact macadamia nuts. 103 

Nuclear magnetic resonance (NMR) has also been stated as an alternative 104 

method among non-destructive techniques to evaluate fruit quality (Abbott, 1999). TD-105 

NMR has wide applications for qualitative and quantitative in food analysis  (Conalgo, 106 

1996). In this regard, Pedersen et al. (2000) combined low-field nuclear magnetic 107 

resonance (LF-NMR) and PCA to classify rape and mustard seeds according on the 108 

type of seed, obtaining two distinct groups and 100 % of explained variance. This 109 

technique was also applied to evaluate the efficacy of hydrophobic coatings as a barrier 110 

to the oxidation of macadamia nuts (Colzato et al., 2009). 111 

 Although some results can be found regarding the use of NIRS to assess 112 

macadamia quality defects (Canneddu et al., 2016), this study was performed evaluating 113 

the macadamia in nut not the kernel (unshelled), and no reports were found on using 114 

NMR to evaluate macadamia kernel defects. Therefore, the objective of this study was 115 

to develop NIRS and NMR calibration models to evaluate macadamia kernels based on 116 

the most common defects aiming to improve the quality control process in the 117 

macadamia industry. 118 

  119 
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2. Material and Methods 120 

2.1. Plant material 121 

 Macadamia (Macadamia integrifolia Maiden & Betche) kernels were obtained 122 

in a commercial orchard located in Dois Córregos, São Paulo, Brazil (22º 37' S, latitude, 123 

48º 38' W, longitude, 753 m altitude) in 2017 harvest season. Nuts were harvested three 124 

times during the season (April, June, and August) and kernels were visually sorted by 125 

the industry personnel based on their quality attributes, as such: 1=good, marketable 126 

kernels without defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels 127 

affected by mold; and 5=kernels with insect damage. (Figure 1). These quality attributes 128 

represented the five studied classes (model). It is important to state that the nuts were 129 

dried by the processing industry and used in the analyses without any previous 130 

treatment. 131 

2.2. NIR spectra acquisition 132 

On the surface of each macadamia kernel two Fourier Transformed (FT) NIR 133 

reflectance spectra (11,544 – 3,952 cm-1, nm, resolution of 16 cm-1, and 64 scans) were 134 

collected using a Bruker NIR spectrometer (Tango, Ettlingen, Germany) after 135 

temperature stabilization at ~25°C. The two replica spectra measured per nut were 136 

averaged, so the model is made on a sample basis. Samples were collected in three 137 

different harvests, where 20 nuts were sorted and used for spectra acquisition for each 138 

defect class. This resulted in a total of 300 measured samples (20 nuts x 5 classes x 3 139 

harvests).  140 

2.3. Time domain (TD) NMR measurements 141 

 TD-NMR measurements of macadamia kernels (n=100) were carried out at 22 142 

°C in a 0.27 T (11.3 MHz for 1H) benchtop SLK200 Spinlock instrument (Spinlock 143 

Magnetic Resonance Solutions, Cordoba, Argentina). The measurements were 144 
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performed using the standard CPMG sequence to obtain the exponential decay signal 145 

that is governed by the transverse relaxation time (T2). The sequence used π/2 and π of 146 

11.6 and 19.6 μs, respectively, an echo time of 600 μs, 4 scans and 1500 echoes. 147 

Samples harvested in June 2017 were used and for each defect class 20 nuts were sorted 148 

and used for spectra acquisition, totaling 100 spectra. The mass of the samples ranged 149 

from 14 to 24 g depending on the sample density. The samples were the same used to 150 

collect the NIRS spectra, but the spectra were collected on different days. 151 

2.4. Chemometrics 152 

Data analysis of NIR and TD-NMR were performed within MATLAB R2014b 153 

environment (MathWorks Inc., USA) using PLS Toolbox version 7.9.3 (Eigenvector 154 

Research Inc., USA) and lab-made routines. Three different pre-processing methods 155 

were applied to test the averaged sample spectrum (average of 10 spectra per sample): 156 

(1) only mean-centering; (2) standard normal variate (SNV) followed by mean-157 

centering; (3) Savitzky-Golay second derivative (window of 5 points, 2nd order 158 

polynomial function) followed by mean-centering. The data was split into training (70 159 

%, 210 samples), validation (15 %, 45 samples) and test (15 %, 45 samples) sets using 160 

the Kennard-Stone sample selection algorithm (Kennard and Stone, 2012). The training 161 

and validation sets were used for model construction and internal optimization, 162 

respectively; while the test set was used to evaluate the final predictive performance of 163 

the classification models built towards external samples. 164 

Multivariate classification was performed by means of principal component 165 

analysis linear discriminant analysis (PCA-LDA) and genetic algorithm linear 166 

discriminant analysis (GA-LDA). PCA-LDA performs a feature extraction using 167 

principal component analysis (PCA) followed by a linear discriminant classifier (LDA) 168 

(Morais and Lima, 2018) For this, PCA is applied to the pre-processed data reducing 169 
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the original number of variables (i.e., wavelengths) to a few number of principal 170 

components (PCs) accounting for the majority of the original data variance. Each PC is 171 

composed by scores and loadings, where the first represents the variance between the 172 

samples and the latter the variance on wavelength direction (Bro and Smilde, 2014). 173 

LDA is applied to the PCA scores in a non-Bayesian form as follows (Dixon and 174 

Brereton, 2009; Wu et al, 1996).  175 

     (1) 176 

where  represents the LDA classification scores for sample i;  is the input vector 177 

(i.e., the PCA scores) for sample i;  is the average vector of class k;  is pooled 178 

covariance matrix; and  represents the matrix transpose operation. 179 

GA-LDA is feature selection technique followed by an LDA classifier. Initially, 180 

a genetic algorithm (GA) is applied to reduce to the spectral data into a few number of 181 

variables based on an evolutionary process (Bro and Smilde, 2014); then LDA is 182 

applied to these variables according to Eq. 1. These variables are in the same scale of 183 

the original spectral data and are selected according to the lowest risk of miss 184 

classification .  is calculated in the validation set as (Carvalho et al. 2017). 185 

         (2) 186 

where  is the number of validation samples and  is defined as: 187 

        (3) 188 
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in which the numerator is the squared Mahalanobis distance between sample  (of 189 

class index ) and the mean  of its true class; and the denominator represents 190 

the squared Mahalanobis distance between sample  and the mean  of the 191 

closest wrong class. GA was performed through 100 generations, having 200 192 

chromosomes each. Cross-over and mutation probabilities were set at 60% and 1%, 193 

respectively. The algorithm was repeated three times and the best result was chosen. 194 

 195 

2.5. Figures of merit  196 

The classification performance of each algorithm was evaluated according to 197 

the quality parameters of accuracy (total number of samples correctly classified 198 

considering true and false negatives), sensitivity (proportion of positives correctly 199 

identified) and specificity (proportion of negatives correctly identified). These 200 

parameters are calculated as follows (Morais and Lima, 2017): 201 

      (4) 202 

       (5) 203 

       (6) 204 

where  stands for true positives;  for true negatives;  for false positives; and  205 

for false negatives. 206 

 207 

3. Results and Discussion 208 



10 

 

3.1. NIR spectra 209 

The raw FT-NIR spectra obtained from all macadamia kernels and the average 210 

spectra from each quality attribute class can be seen in Figure 2. It was not possible to 211 

observe spectral differences between the quality attributes when all macadamia kernels 212 

were assessed (Figure 2A). On the other hand, the mean spectra were quite different for 213 

each defect category (Figure 2B), especially at the wavelength 1,900 nm to 2,500 nm. 214 

The FT-NIR spectra presented absorption bands at 1,200 nm, which are related 215 

to CH stretch second overtone (Cozzolino et al., 2005), while those at 1,700 – 1,800 nm 216 

are associated to the first overtones of CH stretching vibrations of –CH3, –CH2– and –217 

HC=CH (Armenta and La Guardia, 2007). Absorption bands at 1,350 – 1,600 nm and 218 

1,950 nm and 2,100 nm are related to the presence of glucose, sucrose, and fructose 219 

(Lanza and Li, 1984) and immature kernels have higher sucrose and reducing sugar 220 

contents than fully mature kernels (Wall, 2013). In Figure 2B can be seen that at 1,350 221 

– 1,600 nm the immature kernels exhibit a higher absorption intensity, since maturity is 222 

inversely related to sugar content (Ripperton et al., 1938). 223 

The wavelength region situated at 2,200 – 2,500 nm is mainly related to the 224 

oxidation and hydrolytic degradation of lipids (Cozzolino et al. 2005). It is possible to 225 

observe that the immature kernels, classified as kernel which is misshapen, abnormally 226 

small or partially aborted, including shriveled and shrunken kernels (SAMAC, 2016) 227 

present a lower absorption band (2,200 nm - 2,500 nm) (Figure 2B). This result might 228 

be due to the fact that maturity is correlated with oil content (Cavaletto, 1985), 229 

consequently with less lipid degradation. 230 

3.1.1. Model development 231 
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To correlate the FT-NIR spectra to the quality categories, discriminant 232 

classifications based on PLS-DA and GA-LDA were used and compared and evaluated 233 

in terms of sensitivity, specificity, accuracy, separately for each category. 234 

Regarding pre-processing, SNV lead to best results using PCA-LDA, resulting 235 

in an accuracy of 68 % and a specificity of 97 % for immature kernels (Table 1). The 236 

accuracy shows the proportion of samples correctly grouped, while specificity 237 

represents the probability of a sample without the desired characteristic to be given a 238 

negative test result (Amodio et al., 2017). However, the sensitivity presented low 239 

values (67 %), and this parameter describes the model ability to correctly recognize 240 

samples belonging to a class (Ballabio and Consonni, 2013). For example, if none of 241 

the marketable kernels were classified as other class (FN is equal to zero), the 242 

sensitivity for the marketable kernels class would have been equal to 100 %. 243 

 Cannedu et al. (2016) classified marketable macadamia kernels in relation to 244 

non-marketable kernels using PLS-DA and reported percentages of 88 % for calibration 245 

and 87 % for prediction. These results were inferior than what we obtained, probably 246 

because we used more samples (n = 300) than Cannedu et al. (2016) (n = 100). 247 

Therefore, the inclusion of more data into the dataset improved the robustness and 248 

increase the classification accuracy. 249 

Marketable kernels and kernels with defects (immature, insect damage, mold, 250 

and discoloration) could be discriminated from each other using GA-LDA (Figure 3). 251 

The accuracy and specificity of GA-LDA for marketable kernels achieved a value of 252 

97.8 % and 100 %, respectively (Table 2). 253 

To perform the GA-LDA, some of the wavelengths were selected (Table 3). 254 

This selection was based on compounds of particular interest, e.g., 1,020 nm and 1,173 255 

nm, representing the C–H groups from lipids; 1,485 nm and 1,789 nm, related to the 256 
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first overtone of stretching and anti-symmetric O–H bond and second overtone of 257 

stretching O–H bend, respectively. Absorption bands at the wavelength near 1,450 and 258 

1,940 nm are related to the presence of water in foods (Moscetti et al., 2014) and this 259 

explains why the wavelengths 1,485 nm, 1,975 nm and 1,987 nm were selected by GA.  260 

It is possible to observe that the kernels with discoloration had a higher 261 

moisture content than the others (Figure 2B), and these moisture contents correspond to 262 

water activities (aw) greater than 0.8 at which browning reaction rates are high (Wall, 263 

2013), and maintaining nuts-in-shell at high moisture content can cause discoloration 264 

(Walton et al., 2013). 265 

3.2. TD-NMR  266 

 The typical curves of the CPMG decays for the different defects found in 267 

macadamia kernels can be seen in Figure 4. It can be observed that kernels with insect 268 

damage presented a faster settling time compared to the others, whereas the kernels with 269 

presence of fungi (moldy) showed the slower signal decay (Figure 4). 270 

 The intensity of the TD-NMR signals from relaxation (our case) and diffusion 271 

measurements is related to the water content related to water status, water 272 

compartmentalization and molecular mobility in the food sample (Kirtil et al., 2017). In 273 

order to evaluate the influence of the water content on the nutrient content of the food, it 274 

is important to note that there are variations in the moisture content of the kernels, since 275 

these moisture contents correspond to water activities at which microbial growth rates 276 

are high (Wall, 2013). This explains the fact that moldy kernels have a higher moisture 277 

content. 278 

 In Figure 5 it is possible to observe that there was not a clear separation 279 

between the defect classes. However, in Figure 5A there was a tendency of separation 280 

between the good and immature kernels. Probably because there are differences in the 281 
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decay time between these classes (Figure 4), with showed that the most rapid decay is 282 

due to solid components, mainly composed of proteins and carbohydrates (Prestes et al., 283 

2007) and immature kernels present a higher carbohydrate concentration, represented by 284 

sucrose and fructose higher than mature kernels (Wall, 2013). 285 

3.2.1. Model development 286 

The best TD-NMR classification models were obtained using the PCA-LDA and 287 

GA-LDA without pre-processing the signals (Table 4). Using PCA-LDA, it was 288 

possible to achieve 86 % accuracy for the training set and 83.3 % for the validation set 289 

to classify kernels with insect damage. On the other hand, the GA-LDA analysis 290 

obtained 64 % for the calibration set and 100 % for the validation set, allowing the use 291 

of this model to classify kernels with insect damages. 292 

 TD-NMR has been used to classify other oleaginous produces including nuts. 293 

Di Caro et al. (2017) studying not damaged and moldy hazelnuts kernels highlighted 294 

that NMR might be used to discriminate oils extracted from both kernel classes. Di Caro 295 

(2018) also reported that using NMR was possible to obtain values of 97 % for 296 

sensitivity and 81 % for specificity to classify in-shell damaged hazelnuts. Therefore, 297 

NMR might be a useful analytical tool for quality control in nut industry. 298 

3.3. NIRS versus TD-NMR  299 

The results obtained from both techniques for the development of the 300 

classification models for macadamia kernels quality defects can be seen in Table 1, 2, 301 

and 4. Overall, the NIRS showed better classification capability as higher values of 302 

accuracy were obtained using GA-LDA models. The lower performance of the 303 

classification models developed using the TD-NMR signals might be related to the 304 

number of samples, as just the kernels harvested in June 2017 were used. 305 
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NIRS and TD-NMR present many similarities as they are fast non-destructive 306 

analytical methods, do not need sophisticated sample preparation, and the results can be 307 

collected, processed, and stored directly in a microcomputer (Colnago, 1996; Pasquini, 308 

2003). However, when it comes to NMR spectroscopy, high cost is normally considered 309 

as one of the most serious drawbacks and this technique requires special skills to 310 

interpret the spectra acquisition (Xu et al., 2015). Another limitation of NMR 311 

spectroscopy is the insensitivity to minor fat component detection (Kucha et al., 2018). 312 

These suggest that, due the fact that NIRS is useful for detecting components with up to 313 

0.1 % concentration (Xu et al., 2015) and NMR presents lower sensitivity, NIRS models 314 

presented more satisfactory results.  315 

 316 

4. Conclusions 317 

NIRS and TD-NMR combined with chemometric methods proved to be 318 

powerful tools to classify macadamia kernels based on their quality defects. However, 319 

NIRS out-performed TD-NMR based on the higher accuracy results. 320 

NIRS and TD-NMR spectroscopy can be successfully used to evaluate the 321 

quality of unshelled macadamia nuts and have potential to improve the existing 322 

postharvest techniques used in the macadamia industry. 323 

 324 
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 433 

Tables  434 

Table 1. Values of accuracy, sensitivity and specificity to classify macadamia kernels 435 

based on quality defects using PCA-LDA and NIRS.  436 

Classes   1 2 3 4 5 

Pre-Processing 
      

Raw AC(%) 88.9 84.4 75.6 82.2 75.6 

SENS(%) 88.9 66.7 44.4 44.4 22.2 

SPEC(%) 88.9 88.9 83.3 91.7 88.9 

SNV AC(%) 80.0 68.9 88.9 75.6 75.6 

SENS(%) 66.7 55.6 55.6 11.1 33.3 

SPEC(%) 83.3 72.2 97.2 91.7 86.1 

2nd Derivative AC(%) 82.2 73.3 86.7 88.9 75.6 

SENS(%) 66.7 44.4 77.8 66.7 11.1 

SPEC(%) 86.1 80.6 88.9 94.4 91.7 

SNV= standard normal variate; AC= accuracy; SENS= sensitivity; SPEC= specificity. 437 

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature 438 

kernels; 4=kernels affected by mold; and 5=kernels with insect damage. 439 

440 
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 441 

 442 

Table 2. Values of accuracy, sensitivity and specificity to classify macadamia kernels 443 

based on quality defects using GA-LDA and NIRS. 444 

Classes   1 2 3 4 5 

Pre-Processing 
      

Raw AC(%) 86.7 82.2 86.7 86.7 82.2 

SENS(%) 66.7 66.7 55.6 66.7 55.6 

SPEC(%) 91.7 86.1 94.4 91.7 88.9 

SNV AC(%) 97.8 84.4 88.9 91.1 84.4 

SENS(%) 88.9 88.9 55.6 77.8 55.6 

SPEC(%) 100 83.3 97.2 94.4 91.7 

2nd Derivative AC(%) 91.1 75.6 84.4 86.7 68.9 

SENS(%) 66.7 44.4 44.4 55.6 55.6 

SPEC(%) 97.2 83.3 94.4 94.4 72.2 

SNV= standard normal variate; AC= accuracy; SENS= sensitivity; SPEC= specificity. 445 

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature 446 

kernels; 4=kernels affected by mold; and 5=kernels with insect damage. 447 

448 
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 449 

 450 

Table 3. Selected variables for GA-LDA to classify macadamia kernels using different 451 

pre-processing. 452 

Pre-processing Selected variables (nm) 

Raw 882; 886; 946; 990; 1171; 1395; 1429; 1511; 1622; 1664; 1942; 

1979; 2075; 2187; 2260; 2328 

SNV 866; 1020; 1173; 1280; 1485; 1578; 1789; 1975; 1987; 2083; 

2170; 2277; 2300; 2388; 2451 

2nd Derivative 894; 898; 1078; 1251; 1335; 1436; 1488; 1952; 1964; 2126; 

2328; 2356 

SNV=standard normal variate   453 

454 
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 455 

Table 4. Values of accuracy to classify macadamia kernels based on quality parameters 456 

using PCA-LDA, GA-LDA and TD-NMR spectroscopy. 457 

Classes   1 2 3 4 5 

Pre-Processing 
      

Nil  

PCA-LDA      

Training (%) 64.3 35.7 42.9 85.7 64.3 

Validation (%) 16.7 33.3 16.7 66.7 83.3 

GA-LDA      

Training (%) 64.3 50.0 35.7 64.3 50.0 

Validation (%) 66.7 16.7 66.7 66.7 100 

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature 458 

kernels; 4=kernels affected by mold; and 5=kernels with insect damage. 459 

460 
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 461 

Figures 462 

 463 

Figure 1. Macadamia kernels quality defects: 1=good, marketable kernels without 464 

defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels affected by mold; 465 

and 5=kernels with insect damage. 466 

467 
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 468 

 469 

 470 

Figure 2. Raw NIR spectra (a) and average NIR spectra (b) of macadamia kernels. 471 

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature 472 

kernels; 4=kernels affected by mold; and 5=kernels with insect damage. 473 

474 
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 475 

 476 

 477 

Figure 3. Discriminant function (DF) plot of PCA-LDA and GA-LDA with raw NIR 478 

spectra of macadamia kernels, SNV and 2nd derivative Savitzky-Golay. 1=good, 479 

marketable kernels without defects; 2=kernels with discoloration; 3=immature kernels; 480 

4=kernels affected by mold; and 5=kernels with insect damage. 481 

482 
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 483 

 484 

Figure 4. Typical CPMG decay curves of macadamia kernels with different quality 485 

defects. 1=good, marketable kernels without defects; 2=kernels with discoloration; 486 

3=immature kernels; 4=kernels affected by mold; and 5=kernels with insect damage. 487 

488 
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 492 

 493 

 494 

Figure 5. Discriminant function (DF) of PCA-LDA (A) and GA-LDA (B) with raw 495 

TD-NMR spectra of macadamia kernels. 1=good, marketable kernels without defects; 496 

2=kernels with discoloration; 3=immature kernels; 4=kernels affected by mold; and 497 

5=kernels with insect damage. 498 

 499 
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