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Abstract  

 
A series of reduced scale emulations of standard fires in a 2 m3  enclosure have been 

developed for studies at laboratory scale enabling useful comparison and correlation 

with full scale EN54/7 and UL268 test fires. This makes study of standard test fire 

conditions and products substantially more accessible. The reduced scale test fire 

emulations have smoke obscuration characteristics matched to the fire standards and 

show acceptable matching of experimental CO levels 

 

Sensor, fire detector, and analytical studies have been carried out on test fires in the 

2 m3 enclosure and in a full scale test room. Protocols were developed for capture of gas 

and vapours from fires on absorbent media and their subsequently desorption and 

analysis by GC/MS techniques. A data set of GC chromatograms has been generated for 

full and reduced scale test fires and for a number of non standard fire or false alarm 

related process including overheating of cooking oils and toasting bread. Analysis of 

mass spectrometry ion fragmentation spectra has been carried out and a wide range of 

products identified. Products occurring for a range of different fires include propene, 

benzene, and some polyaromatics. 

 

The value of the scaled test fire emulations has been demonstrated by monitoring 

response of a range of sensors, detectors and instruments including electrochemical gas 

sensor, experimental and conventional light scattering smoke detectors, and ion 

mobility measurement equipment (FAIMS).  

 

The study has provided information on fire characteristics and products to inform future 

research and development on fire detection technologies. 
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INTRODUCTION  
 
This study is directed at characterising airborne emissions of fires (e.g gas, aerosol, 

identities, concentrations, time evolution) at the early stages, relevant to detection. A 

primary target is characterisation of standard test fires used for detector approvals (BS 

EN 54-7:2001 [1] and UL 217 [2], [3]) but interest extends to scenarios beyond test 

standards including electrical pyrolysis events, and identified false alarm stimuli (e.g. 

tobacco smokes, cooking fumes). While products from well developed fires have been 

well documented, relatively little research has been directed at identifying products 

other than smoke and CO from early stage fires or the standard test fires. This is an 

impediment to rational innovation in fire detection. 

 

When conceived it was envisaged that the project would be primarily directed at 

characterising fire gases. However aerosol (smoke) generation is an important aspect of 

nuisance fires and a major factor in their detection, and many possible fire gases may be 

involved in exchange with smoke particles. The study therefore includes some 

measurements related to smoke detection and characterisation. 

 

Modern fire detection systems are commonly based on measurements of one or more of 

heat, smoke, or CO emissions often with fuzzy logic algorythms. Current fire detection 

systems are in fact quite effective in providing alarms for most real fire scenarios. 

However even with combinations of these measurements avoidance of false alarms can 

require alarm thresholds to be set higher than may be desirable. This arises from the 

range and variability of real fires, and of false alarm stimuli such as dust, mists, steam, 

engine or cooking fumes, and heat from controlled source. In principle this situation 

could be improved if more fire specific target measurements could be identified. This 

study is aimed at determining whether any such targets exist and can be identified, and 

in particular at investigating gas and vapour emissions from early stage fires as potential 

targets. 
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Organisation of Study and Thesis 
The investigation involves a number of stages covered in chapters of this thesis. 

 

Chapter 1 addresses the background and existing knowledge base on fire, fire 

development, fire chemistry and products, and fire detection. This background review 

includes reference to fire product types (smoke particles, gasses/vapours), and false 

alarm stimuli as their effects on the fire detection industry and detection products. The 

operation of conventional detectors is covered along with the means for detector 

validation (test fires). 

 

Chapter 2 presents fire product measurement means and specific sensing and detectors 

and systems used in this study, with particular emphasis on application of GC/MS to 

gas/vapour analysis. Other detectors and analytical systems are introduced with some 

detail on their use in the study. The test environments used are described including the 

full scale standard fire test room along with introduction of issues involved in emulating 

at reduced scale a series of standard detector validation test fires, and some false alarm 

stimuli. Operating protocols for the sensing and analytical systems are provided. 

 

Chapter 3 deals with the detail of generating reduced scale emulations of test fires in a 

2 m3 chamber including description of fuels, and equipment for containment, and means 

of ignition. 

 

Chapter 4 presents a subset of the test results for the series of reduced scale test fires 

and some non-standard fires and false alarm stimuli and with results of a short study 

with full scale test fires. The parameters covered in chapter 4 include measurements of 

optical obscuration by smoke (conventionally used to define validity of test fires), 

measurements of some gases by electrochemical or IR systems ( CO, oxidisable gases, 

CO2, O2 ), and GC elution time plots from the GC/MS system. Results for multiple tests 

of each type are presented. 

 

Chapter 5 covers analysis of the GC/MS results including identification of mass 

fragments for peaks from elution plots for examples tests, and where appropriate 

indication of the molecular species present. 
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Chapter 6 covers results from application of some supplementary analysis systems to 

scaled or full sized tests. These include: 

� Optical scatter measurements from conventional and experimental detectors over 

near infrared and visible blue wavebands for smoke in reduced and full scale 

tests.  

� Particle size analysis using impactor measurements for smoke in reduced scale 

tests.  

� FAIMS measurements for vapours from full scale fire tests and reduced scale 

emulations in a smoke tunnel. 

 

Chapter 7 includes summary and some further analysis of the results and presentation 

of conclusions. 
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CHAPTER 1 BACKGROUND AND OVERVIEW 

1.0 History and impact of fire detectors and detection 
Unwanted fires are dangerous and destructive events that are costly in terms of both 

lives and property. Since the mid 1970s there has been an increase in the use of 

automated fire detection systems [4]. Automated fire detection systems, smoke 

detectors in particular, have been credited as the single most influential technological 

advance in reducing the number of fire deaths [5]. From a commercial standing they 

represent a cheap and effective way to prevent loss of property and materials by early 

detection of fire especially in unmanned remote facilities.  

 

Industrialists looking to protect their property facing spiralling financial losses first used 

fire detectors. Before automated fire detection systems, companies relied on roaming 

fire watchmen. As population centres increased the areas which these watchmen would 

patrol would grow larger and larger. Early watchman had to detect and personally raise 

a response from typically volunteer/part time fire fighters in the event of fire. The 

introduction of the telegraph made communication easier, but it was not until 1863 

Alexander Ross developed the first automated fire detector. This was incorporated a 

self-restoring bi-metallic heat detector marketed as the "Watkins Thermostat". The 

Underwriters Bureau of New England endorsed this [6]. The Underwriters Bureau like 

the equivalent Fire Officers Committee (FOC) in the UK was established in the 1800s. 

Both organizations were comprised of mainly representatives of most of the major fire 

insurers in the UK and USA. The main purpose of both organizations was to set 

insurance tariffs for various classes of trade. The FOC began publishing codes of 

practice and these codes quickly became established the world over as best practice for 

fire safety. Organizations complying with these codes would receive a reduction in 

insurance costs. When the FOC and Underwriters Laboratories (UL) began approving 

fire detection systems, the purpose for the FOC never really changed from the initial 

conception. As result the published codes focused more on the loss of property and 

materials rather than the loss of life. This began to change in the UK when the British 

Standards Institution (BSI) issued their codes of practice in 1951 CP 327.404/402/501 

where protection of life became a priority, and where the specialist nature of fire 

detection systems was finally fully recognized. [7] 
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1.1 Fire Processes and Properties 
Fire, is understood as sustained oxidative process operating on a fuel with emission of 

heat conveniently and is described with reference to the fire triangle (Figure 1) which 

presents the components (fuel, oxygen, and heat) 

required for starting and sustaining fire. 

At early stages of fire, heat may be supplied as     

an ignition source such as overheating electrical 

circuit, spark, or existing flame (match). Fires may  

be flaming where gaseous fuel components react 

though they may originate from vaporisation, 

pyrolysis or partial oxidation of solid or liquid fuels. 

Smouldering fires involve reaction directly in the body of usually porous solid fuels. 

For the purposes of this thesis the interest is fire, combustion and flame processes 

related primarily to unwanted or nuisance fires rather to controlled combustion in 

heating equipment and engines, and interest is most particularly in the early stages 

where fires may not have yet reached a self sustaining condition. Thus pyrolysis which 

may lead to fire but is essentially primary break down of fuel by heat is included. 

 

Fire processes generate products which include heat and materials generated by the 

action of heat and the oxidative reactions on the fuel which include full and partial 

oxidation products, particulates and condensates (smoke). These products may form the 

basis for fire detection. A key aspect determining which fire products are formed is the 

type of combustion. 

1.1.1 Types of combustion in fires (flaming, smouldering, stoichiometry) 

Self-sustaining fires may be divided into smouldering and flaming modes though fires 

may switch between these modes. 

 

In flaming combustion gaseous fuel (or at least fuel dispersed in the air) undergoes 

rapid oxidation generating sufficient heat to sustain reaction and generally to produce 

radiation making the flame visible [8]. This occurs with a gaseous fuel or in gaseous 

fuel produced above the surface of a solid or liquid fuel by pyrolysis or evaporation of 

that fuel.[9] 

Figure 1 Triangle of 
combustion 
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Smouldering combustion occurs at surfaces on or within a porous fuel body. 

Smouldering combustion can propagate in porous materials if they are amenable to 

transport of gases (fuel and oxygen). Porous bodies may be relatively insulating 

reducing heat loss from the fire site allowing slow but self-sustaining growth of the fire. 

Gas borne pyrolysis products from a smouldering fire may eventually become involved 

in generation of a flaming fire. 

 

Pyrolysis process on a solid fuel maintained by an external heat source may proceed in a 

way similar to a smoulder fire. They may terminate if the heat source is removed or 

develop to smouldering or flaming fires. 

 

Another difference in these forms of combustion is the temperatures involved. In 

flaming combustion the temperature of the flame can be as high as 1000oC or more 

whereas sustained smouldering combustion generally occurs at around 600oC.  

 

In statistics published by the NFPA(National Fire Protection Agency) [10] they 

predicted that 55% of deaths associated with fires occur due to smouldering fires 

because these involve oxygen supply limited combustion with generally incomplete fuel 

oxidation and produce a great deal of toxic carbon monoxide. In addition they are very 

difficult to detect at an early stage as smoke aerosol generation is limited and may be 

filtered out by the fuel body or surrounding material. Further the restricted thermal 

output from smouldering fires can limit formation of buoyant plumes in the surrounding 

air and consequently not facilitate transport of fire products to detectors[11] 

 

Combustion products from fires depend on the reaction stoichiometry i.e. whether 

sufficient oxidant is available in hot reaction zones to complete reaction to fully 

oxidised products (CO2 and H2O for simple hydrocarbons and cellulosics) as indicated 

for a stoichiometric oxidation in equation 1 below;  

 

CxHy  +  (x+(y/4)) O2    x CO2  +  y/2 H2O    (1) 

 
Equation 1 Stoichiometric oxidation of hydrocarbon 
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In complete combustion where there is sufficient oxygen present C and H from the fuels 

can be oxidized entirely. Entrainmnet of air may introduce other products into the 

plume and at sufficiently high temperatures nitrogen from the air may also be involved 

in formation of NOx species as minor products. 

 

Oxygen may be abundant but local concentrations within fires influence the products 

generated. Controlled mixing, achieved in efficient burners or incineration equipment, 

may not occur in nuisance fires. Although complete combustion may occur in some 

flaming fires, both smouldering and flaming fires can lead to incomplete combustion. 

The degree of combustion will affect the range of products, which may be observed. 

When oxygen deficient conditions occur within the fire a wide range of products can 

potentially occur but generation of significant amounts of carbon monoxide CO is 

generally observed [12] and CO to CO2 yield ratios are to some extent characteristic of 

fire stoichiometry and fuel and types [13 ][14] 

 

1.1.2 Development of Fires 

Development of flaming fires may be divided into a series of stages. Where fuel and 

oxidant (air) are present, ignition generally involves some energetic input eg,  a flame or 

glowing ember, heating (e.g. electrical, frictional) or spark. Ignition in some fires in 

porous fuel bodies e.g coal dust, organic liquid contaminated rags, can arise 

spontaneously due to initially slow exothermic reactions accelerating as heat build up in 

thermally insulating conditions.[15] 

 

Ignition processes have been examined in the literature and a homogeneous system of 

ignition related to the collision theory of molecules developed by Semenov [16]. 

Heterogeneous ignition theory was proposed by Frank-Kamenetskii [17] and essentially 

requires an outside body to be involved in ignition, e.g. a match or other heat source. 

Certainly for uncontrolled nuisance fires the ignition events or inputs are unplanned and 

undesired and may be too small or obscured to provide useful detection targets in 

themselves.  

 

Following ignition there are various stages of fire development. For solid fuels such as 

wood or polymer, development of a flaming fire involves a series of distinct but 
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overlapping stages. These include preheating distillation or gasification, and char 

formation. The fire progresses by a feedback process where heat from the existing 

reaction passes by radiation, conduction or convection to the fuel bed generating mobile 

reactive products, which feed and maintain the fire. If insufficient heat transfer occurs to 

the fuel, or suitable fuel becomes unavailable then the fire dies out. The type of fuel and 

the environment will dictate how the fire develops. Figure 2 shows the components in 

the development of a flaming fire on a solid fuel such as wood or polymer. In some 

cases char formation may not occur where a polymer undergoes simple thermal 

depolymerisation to inflammable vapours and then the situation is akin to that for a 

flammable liquid fire where evaporation of the liquid provides gaseous fuel for the 

flame. 

 
Figure 2 Overview of typical processes occurring in the early stages of polymer 

combustion. 
 

In the preheating stage, which may be driven by some external heat source or existing 

fire, vapours and water are driven off from the fuel by a distillation/thermolysis process, 

and at this stage typically include quite large molecular products forming smokes and 

generating the odour commonly associated with the burning fuel. The preheating stage 

is a point where a great deal of energy is lost through the evaporation of moisture and 

vapours and in some cases conduction through the fuel. This is a major energetic hurdle 

for combustion. The preheating stage may proceed until the fuel is heated to a point 

referred to as the flash point. At the flash point the vapours above the fuel have reached 

sufficient concentrations and temperature to react rapidly with oxygen in the air 

generating a flame, which will be maintained if sufficient fuel vapours continue to be 

supplied.  
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Gasification occurs when there is sufficient heat to start decomposing larger molecules 

thermally. The resultant products are typically smaller and more volatile. Gasification 

typically involves the making and breaking of covalent bonds and this involve either 

consumption or generation of energy (endothermic and exothermic reactions). Where 

oxidation reactions occur as part of the gasification this will normally result in heat 

release (exothermic). 

 

An important stage for many fuels is the formation of char [18], a carbon structural 

form that protects the surface of the fuels, helps retain heat and provides a catalytic 

surface at which gasification/ oxidation reactions can proceed at an accelerated rate. The 

formation of the char may precede the production of some of the more flammable 

products and provides an interface in which oxidant may reach and react with the fuel 

molecules. 

 

In the development of combustion reactions involving oxidant and the fuel leading to a 

fire, the oxidant is typically oxygen but other oxidants may support combustion e.g. 

fluorine, nitrates etc. For the mass of nuisance fires oxygen is the oxidant due to its 

abundance in the atmosphere and the relative ease of formation of dioxygen based free 

radicals, which can be involved in development of free radical reactions prevalent in 

flaming combustion. 

 

1.1.3 Flames and free radical chemistry 

A flame is a region where gaseous fuel reacts rapidly with oxidant gas (oxygen). Flame 

form and luminosity depends on the flow and mixing of reactants. Hot oxygenated 

flames are characterised by molecular radiation while incandescence of particulates 

generally generated in oxygen deficient regions yields broadband, often yellow, 

emissions. The prevailing theory regarding development of gas phase combustion and 

flames is the free radical chain reaction theory. This is explained in detail in a number 

of academic texts [19,20]. Free radicals having unpaired electrons represent higher 

energy states are much more reactive than stable molecules. The higher energy means 

reactions will proceed via lower energy pathways than are available for combinations of 

more stable molecules. When free radicals react with an electronically stable molecule 

then the process generally generates one or in some cases more than one new free 

radicals. These types of reactions are referred to as propagation, branching or initiation 
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reactions. When two free radicals react to produce an electronically stable product this 

is referred to as a termination reaction. Free radical propagation may also be terminated 

by interaction of radicals with solid surfaces including smoke. 

 

When reactions form products with release of energy (exothermic reactions) this energy 

may be fed back into the system to drive additional reactions. A key feature of a fire is 

whether it is self sustaining and depends on the combination of continuing availability 

of fuel and oxidant, energy release and relative rates of free radical chain initiation, 

propagation and branching reactions, and of chain termination reactions. 

 

Lilly  [21] gives an overview of the combustion and ignition processes important 

reactions for the ignition of hydrogen in air. The corresponding processes for a 

hydrogen flame are illustrated in equation 2: 

 

 H2  +  O2        2 OH* Chain initiation 

 

 OH* + H2       H*  +  H2O Chain propagation 

 

 H*  +  O2        OH*  +  O* Chain branching 

 O*  +  H2        OH*  +  H* Chain branching 

 H*  +  H*        H2  Chain termination (homogeneous) 

 H* + O2 + M  H2O + M Chain termination (heterogeneous) 

 
Equation 2 Chain Reaction Stages 

 

For hydrocarbons and other carbon containing fuels, including products of solid fuel 

pyrolysis, the processes are similar but more complex involving a wide range of free 

radical species [22]. 

 

Carbon containing free radicals, especially in oxygen depleted conditions can be 

involved in polymerisation processes generating larger molecules and smoke,[23] and 

peroxy radicals (R- or H-OO*  not indicated above) have been reported to be involved 

[24],[25]. 
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1.2 Fire Products (airborne materials) 
 
Fire products is a term used to describe the material produced by oxidative combustion 

of a fuel. These include vapours, particulates, smoke, decomposition products, gases 

and water.  

1.2.1 Particulate (Smoke) 

Particulates are formed during incomplete combustion or organic fuels. The type of 

smoke depends both on fuel type and the type of fire. Non flaming conditions as in 

smouldering or fuel pyrolysis generates vapours which include higher molecular weight 

species which if they escape the combustion zone cool and condense into fine droplets 

forming a mist or usually pale or grey smoke, with particle sizes of the order of ~1 µm. 

 

Particulates from flaming fires are generally solid material resulting from pyrolysis and 

incomplete combustion with relatively high carbon content though usually lacking a 

clear graphitic structure. Polyaromatics and polyacetylene particles are believed to be 

precursors that agglomerate to form small particles, which may be 0.1 µm or less the 

smoke appears black [26]. 

 

Both white and black smokes may absorb some of the lower molecular weight volatile 

materials and this accumulation of other components is potentially a mechanism for the 

loss of many of the combustion gases available for detection. Benzene and the other 

PAH components observed in early gases are thought to be lost through absorption onto 

these particles.  

 

Measurements to quantify smoke generation other than particle collection methods 

include smoke opacity measurements, and effects on conductivity of ionised air. Both 

smoke obscuration and ion mobility effects form the basis mechanisms used 

characterise fires and define acceptance criteria for standard fires. 

 

1.2.2 Gases and Vapours 

Full combustion of simple organic fuels leads predominantly to formation of CO2 and 

H2O. In investigations aimed at understanding the properties of materials, which may 

burn, measurement of these species, and particular of CO2 are required. However both 
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CO2 and H2O are present at substantial levels in normal air and those levels, in confined 

spaces at least, vary for reasons quite unconnected to the incidence of nuisance fires. 

 

Oxygen limitation to the combustion is almost invariably present in part of any nuisance 

fire and so products of incomplete combustion are to be expected. Carbon monoxide 

CO has been identified in a wide range of nuisance fire scenarios although there are 

some cases where early generation can be quite low (overheating electrical circuits 

causing pyrolysis of polymers in PCBs and some other components). Jackson and 

Robins studied the generation of CO [12]. CO is considered the primary precursor to 

CO2 formation by a free radical reaction with OH* and any fire region where supply of 

OH* is depleted is likely to lead to survival and release of CO. Background 

concentrations of CO are usually 1ppm or less, although tobacco smoking and vehicle 

emission can increase this, though rarely beyond 10 ppm. Levels of CO of 30 ppm or 

more are considered in the fire detection industry as good indicators of fires. Given the 

toxicity of CO, where exposure can result in death quite rapidly, detection of levels 

above ~200 ppm even if not related to nuisance fires, can be considered of real value. 

 

It has been suggested that hydrogen might be a significant fire product and useful 

detection target. Hydrogen is present in the environment with ambient levels in the 1-

5ppm levels. Some free radical termination processes could at least conceivable lead to 

hydrogen generation but evidence for hydrogen as a combustion gas away from the fuel 

bed is mixed. The group involved in the study by Jackson and Robbins had high 

sensitivity selective hydrogen sensors available (Pd gate FET devices) and reported 

significant levels in some fires, but they concluded that levels were not sufficiently high 

or common across fire types to form a useful detection target. Pfister [27] and Amamoto 

[28] carried out further tests in wooden houses where they determined that hydrogen 

was present at up to 20ppm levels. This work indicated hydrogen response in large 

building fires seemed to be faster than for CO and CO2. However in small laboratory 

tests it was found the response varied, being largest in under ventilated conditions and 

as the temperatures increase. 

 

Other gases have bee identified as fire products, especially where they relate to toxicity. 

Some such as HCN with elements present other than C, H, and O have been 

significantly studied in relation to occupant survival. HCN can be formed from 

incomplete combustion of nitrogen containing polymers such as polyurethanes. Given 
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that fuels containing significant non C,H,O content such as S, Cl constitute only a 

subset of available nuisance fire fuels, their utility as detection targets is limited. It is 

detection of a fire that is needed rather than fuel or fire classification, and any useful 

detection target must be general enough to be generated irrespective of the presence of 

non C,H,O fuels. 

 

The range of volatile compounds which potentially could be generated by the 

combustion, pyrolysis, and evaporation of hydrocarbons, cellulosics, and other C,H,O 

containing fuels is very wide. The gases produced from fires have been studied in some 

detail driven by the desire to investigate the toxicity of smoke [29]. Some of the gases 

have key roles in the early combustion process and others lead to the formation of other 

fire products including soot and fire vapours. Some studies have used IR techniques to 

identify products but while this has worked under conditions where products are formed 

at high concentrations e.g. some cone calorimeter experiments for material 

characterisation, at low concentrations to be expected early in fire growth the data 

reported tends to be limited to recognition of presence of C-H, or C-C bonds without 

identifying particular species. [30] 

 

A group of candidate target gases is provided by a GC/MS study of cellulose pyrolysis 

in air and nitrogen at temperatures from 400oC to 800oC reported by Sakuma [31]. 

Those recorded as appearing at >3mg/g cellulose at 500oC in air are reported in table 1.  

Candidate target gases in Cellulose (500oC) Observed conc.(mg/g) 

Acetaldehyde 15.7 

Acrolein 20.8 

3-Buten-2-one 3.7 

Furan 4.6 

2-Furaldehyde 3.4 

Furan-2-5-dialdehyde 5.5 

2-Buten-4-olide 3.6 

Acetic Acid 4.8 

5-hydroxymethyl-2-furaldehyde 7.8 

1,4:3,6-Dianhydro α-D-glucopyranose 5.7 

Table 1 : Gas concentrations reported in the literature from cellulose pyrolysis study at 
500oC [31].   
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At 800oC those components were largely absent but aromatic hydrocarbons became 

significant (table 2).  

          

Candidate target gases in Cellulose 

(800oC) 

Observed conc.(mg/g) 

Benzene 14.6  

Toluene 4.9  

Table 2 : In the pyrolysis study [31] only 2 gases were observed in high concentrations 
at temperatures above 800oC, which is consistant with other observations .    

   

It is not clear that the data presented by Sakuma is a full inventory and the absence of 

some smaller molecules may reflect an artefact of the analytical system. Many of the 

identified products have high molecular weights and will have low volatility and as such 

are likely to be unavailable for gas sensing due to condensation or absorption on smoke. 

 

There is a mass of literature identifying generation of polyaromatics in smokes and even 

within fames of simple hydrocarbons. Much of this literature motivated by health 

concerns concentrates on tobacco smoke but the products are clearly more widespread. 

Many measurements of combustion-generated polyaromatics involve fluorescence 

detection. Some laser induced fluorescence (LIF) measurements have been applied in 

free air, flames, and exhausts from combustion sources. Figures 3a and 3b below are 

from a web site maintained by Zizak [32]. 

 
Figure 3 Polyaromatics formation in combustion identified by laser induced 

fluorescence. Figure	  3a	  fluorescence	  shift	  PAH	  size,	  and	  3b	  LIF	  measurements	  on	  Fiat	  
exhaust 

 

While the mass of measurements on smoke have first involved liquid extraction of the 

polyaromatics. Pinnick [33] has reported direct measurements of fluorescence on 

tobacco smoke ascribed to polyaromatics. 
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Acrolein (2-propenal) and has an unpleasant “burnt” odour and has been identified as a 

product from burning fossil fuels and cigarettes [34] It has been identified as one of the 

possible fire components that can be detected with MEMS electronic nose arrays such 

as the Karlsruhe micronose Kamina [35] 

 

A study [36] of wood stove emissions, perhaps more relevant to flaming and relatively 

well ventilated conditions indicated formaldehyde, acetaldehyde, and acetone as most 

significant products, though acrolein, propanal, crotonaldehyde, and 2-butanone were 

indicated as of significance and reported to be present from cited work. 

 

Characteristic products relating to biomass burning were investigated by Simoneit [37] 

but concentrated on larger molecular weight species and in particular leavoglucosan, for 

which low volatility is an impediment to sensing in the gas phase. 

 

1.3 Heat Release and Product transport 
 

Heat is generated by the exothermic oxidation reaction in a fire. Its release from fires is 

evidenced in two major aspects of fire. Heat is released as radiant energy. This may be 

broadband from surfaces including fuel and non-gaseous products (smoke, embers), and 

as specific bands e.g. from hot CO2 at ~4.3µm. This and some other wavebands are used 

in specialised flame fire radiation detectors. Heat is also released by conduction through 

air and particularly non-gaseous phases, including fuel beds, and particularly by 

convection in fire plumes. Energy transferred to product particulates and gases produces 

a fire plume, the extent of which depends on buoyancy forces arising from density of 

hot gases being lower than that of the surrounding air. 

 

One of the definitions of a fire compared to non-fire event is based on thermal balance.   

The thermal balance is an assessment of the energy requirement to volatilize more 

reactants from the bulk fuel and the energy lost to the environment compared to the 

energy produced in the system (equation 3).  

E < Ereaction – (EVol + Erad + Econv) (3) 

Equation 3	  Thermal	  energy	  balance  
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Ereaction is the thermal energy available in the system from the reactions in the 

combustion zone. E is the energy required to sustain combustion, EVol is the energy 

required to volatilize the fire products, Erad and Econv are energy losses from radiative 

and convection heat sources.  

 

If reactions produce more energy than is lost, then the fire develops and is self-

sustaining if not then self-extinction can occur.  

 

As fires develop and produces heat at an increasing rate, which is transferred into the 

plumes, the plume is accelerated upwards away from the fuel bed.  Plume transport has 

been the subject of much research and fire model development, including use of 

computational fluid dynamics (CFD) codes. It is common practice to locate fire 

detectors on the ceiling protected areas. This is based on the simple principle that heat 

rises, or in more depth, on the assumption that when fires develop they produce more 

heat energy and this is transmitted into the plumes that is then accelerated upwards 

away from the fuel bed. Relationships have proposed for plumes linking rate of heat 

output from a fire to variation of temperature with height. Some of this material is 

summarised by Drysdale [38] Simplifying assumptions may be made and applicability 

of these expressions to weak plumes near onset of fire and especially for obscures 

smouldering sources, nevertheless such expression can provide some guidance relevant 

to scaling of fire tests. Temperature with a plume falls as the plume rises due partly to 

entrainment of adjacent air and formulae reproduced by Drysdale for ceiling mounted 

temperature sensors indicate a relationship of the form (equation 4). 

 

Qa  = c. �T.H2.5
 (4) 

Equation 4 Drysdale equation for ceiling mounted temperature detectors 
 

Where Qa is heat output rate required for alarm, �T is a temperature rise at a detector, 

and H is the height from the fire source. This impacts on time for detection. If detection 

for a room 2 m high requires ~ 100 watt source, a 4m high room requires ~ 600 watt 

source.  
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1.4 Earlier Studies on Fire development and products relevant to 
Detection 
 
Prior work [39] [40] [41] and the existing literature relating to fire detection  [42] 

provides a significant mount of information on physical characteristics of smoke and a 

little on gases, especially carbon monoxide  [43] but little useful for identifying organic 

vapours which may be potential detection targets. Much more information has been 

available for well-established fires and controlled combustion situations 44but its 

relevance to the early stages of fire important for successful detection is not established. 

A project aim is to reveal information on chemical species evolution from incipient/ 

early stages fires. Such information may determine whether it is practical to 

differentiate between various fire types and false alarm events e.g. cooking toast. In 

addition to deployment of smoke detectors and a limited range of gas sensor systems the 

work is intended to help identify other species present, particularly by application of 

GC/MS to collected sample. 

 

The issue of fire source identification and more commonly false alarms has cost and 

safety impacts on fire detection, on detector manufacture and installation companies, 

their customers, and not least on the fire service, the resources of which are significantly 

impacted by the rate of response to invalid alarms. Intelligent selection and deployment 

of sensors has been impeded by poor information on relevant fire product 

characteristics. 
 

The progress of developed fires and the products generated have been widely studied as 

they are of importance to building and occupant survival. Whilst ignition in controlled 

conditions as in gaseous fuel streams and in engines is well researched and understood, 

the issues for very early stage nuisance fires relevant to detection is less well covered. 

Toxicity studies of fire products and smoke related to survival and escape has driven a 

great deal of research on specific fire gases. However much of this is limited to 

concentrations having physiological effects [45]. There also has been some interest in 

gases evolving in the early stages of fire, but only for specific gases [46]. Some of these 

gases including CO, HCN are used as indicators of fire gas toxicity while CO/CO2 ratio 

[47] provide an indication of fire type/oxygen depletion. Limitations in the range of 

products identified have arisen from use of sensors of low or limited specificity and 

only very limited use of spectroscopic methods capable of identifying species at low 

concentrations. Further components present at the early stages of fire development may 
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be consumed in secondary combustion reactions or absorbed onto surfaces or into 

aerosols (smoke) [48][49]. 

 

For example small organic molecules such as acetone may be generated as initial 

products in hydrocarbon oxidation or fuel pyrolysis but then may be fully oxidised to 

CO2 and H2O or may be precursors in further reactions forming larger molecules, which 

may include polyaromatics (PAH), which can then react or condense into soot particles. 

 

A study of fire gases from reduced scale fires which included GC/MS analysis was 

carried out under a European programme and some results published by Persau [50]. 

The programme was principally directed at gas sensing of fires using conducting 

polymer based sensors and contains only selective information on the range of 

molecular species found. FTIR measurements did indicate presence of acetic acid, 

ethanol, formaldehyde, ethane, and toluene. A series of more complex molecules were 

indicated as markers for some specific fires/combustion sources. 

 

There have been many studies on fire products from relatively well controlled sources 

including diffusion flames on gaseous fuels. Smith [51] proposed a model that was 

intended to reliably predict major gas yields with time. Their model, based on the 

turbulence in a diffusion flame, predicted that the gas evolution of the major species 

(CO2, O2, CO) vary dependent on both the heat release rate and turbulent mixing 

component of plumes.  

 

1.5 Fire Detection Technology and Testing 
The range of fire products allows different methods to be considered for fire detection. 

Primarily fires have been detected by heat, presence of smoke, presence of gas, and 

radiative emissions. Whatever the form of detection, all detectors must be able to access 

some fire output and detect a signal indicative of a fire. There have been a range of good 

reviews on the subject including the 30 year review published by the Boston deputy fire 

chief Joseph Fleming. [52] 

 

Fires detection relies on measurement of some emission from the fire source. This may 

use radiation from the fire/flame, or the temperature or constituents (smoke, gases) of 

the surrounding air body or fire plume. Flame detection by means of radiation from hot 
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gases (especially CO2 at ~4.3 µm) is a specialised area relevant to the protection of 

specific installations (oil processing and storage plant) and not covered in this study.   

 

For detectors responding to material fire products (smoke, gases) there is a requirement 

that these products transfer to a detection site. This is overwhelmingly a matter of air 

movement or convection. Diffusion although aiding local transport is ineffective alone 

in providing timely response over more than cm distances. The main mechanism of 

transport in fire plumes is convection. In air the movement of particulates by diffusion 

is extremely limited. Local diffusion may occur within the plume, and in the case of 

some gasses, this can mean specific components may transfer locally from the plume 

(especially for small mobile gases such as CO or CO2).  

 

Flaming fires are often detected earlier because the fire products are rapidly transmitted 

to the detector, as the fuel typically has a greater rate of energy output capable of 

powering a buoyant plume. Smouldering fires are more difficult to detect because a 

plume may not develop or is slow moving because of the low rate of energy input.  

 

The location of typical fire detectors, according to common practice is to place detectors 

on the roof of the protected area. This is based on the simple principle that heat rises 

due to effects on air density. 

 

Detectors for protection of most commercial and residential properties rely on detection 

of one or more of temperature, smoke, and gases, particularly CO. Heat (temperature) 

sensors, most usually based on thermistors in modern products are more widely 

deployed, have high reliability and low susceptibility to generation of erroneous signals 

(false alarms) but generally require that a fire source becomes relatively well developed 

before it can be detected. They are useful in specific sites where temperatures are 

normally closely controlled e.g. for computer server rooms where detection of very 

small changes in temperature is adequate, with one such system having been developed 

by Ericson (monitoring temperature in controlled environments [53]). Temperature 

detectors are not considered the best choice in the domestic or general work 

environments unless other detectors (smoke, gases) are prone to generate false alarms 

e.g. in kitchens. 
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Some locations require installation of specific types of detectors. These include optical 

obscuration detectors for smoke where long path lengths are available, as in atria, and 

aspirated systems where air sampling flows are piped to very sensitive detectors 

(usually for smoke particulates).  However the overwhelmingly most important and 

widespread industrial and residential fire detection systems are the point detectors, 

usually ceiling mounted. Predominantly these employ smoke detection technologies, 

though the use of CO sensing for fire detection is becoming more widespread. It is 

becoming commonplace for point detectors to combine at least two (smoke and 

temperature) sensors, and often three, (smoke, CO, and temperature) sensors and to use 

combinations of signals, and rates of change, to recognise fire conditions and generate 

alarms. 

 

The smoke sensors used in point detectors are normally “ionization” detectors, or 

optical detectors as described below. Although detection using gases other than CO has 

been proposed for some specialised environments, the mass of point detectors using 

detection of fire gases rely on CO detection technology. 
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1.5.1 Ionization Smoke detectors 

Figure 4 represents an ionization device, and the ionization chamber function as 

described by Litton [54]. 

 

 

 

 

 

 

 

 

 

 

 

Ionization detectors presently are the cheapest type of smoke detector. Each has a small 

(~ 0.2 mg) radioactive source emitting alpha particles (Americium 241). The detector 

comprises a chamber where the alpha particles cause ionization of the air furnished with 

electrodes passing a current through that air. The detection chamber has openings 

allowing ingress of air, and smoke in the case of fire. Smoke particles pick up 

ions/charge from the air and being very much more massive than the original ions this 

decreases the current through the air. It is this decrease in current, which stimulates an 

alarm. In practice there are usually two ionisation chambers where smoke cannot enter 

the second reference chamber and the electronic sensing of the decrease in current in 

one in response to smoke ingress is sensed as a differential effect on the electrode 

potentials. 

 

Ionization devices are known to respond rapidly to fast developing flaming fires that 

give off dark grey and black smokes [55]. They are sensitive to particle numbers and 

respond well to very small particles (< 1 µm ). Commercial devices achieve adequately 

high sensitivity at the cost of low dynamic range and are susceptible to false alarms. 

There are also environmental concerns about the disposal of the Americium. In itself it 

is not a major pollutant but it is radioactive with a half-life of 470 years. In conjunction 

with other detectors and controlling algorithms ionization devices have a role in 

Figure 4 (a) cut a way of a typical detector.  
4 (b) ionization chamber in the clear state. 
In this state the ionization source ionizes 
the gases in the air generating a current 
between the two plates unit. 
	  
4(c) particulates (smoke) from a fire 
absorb/ take up charge from ionized gases. 
The lower mobility of the relatively 
massive (as compared to molecular) 
particles results in less current flowing 
which triggers an alarm. 
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commercial devices [56], but their susceptibility to false alarms and issues with 

deployment of radioactive sources mean that they are becoming less favoured in 

commercial establishments at least. 

 

The high incidence of fires attended where such devices have been disconnected show 

these devices are prone to false alarms and it is argued that ionization smoke detectors 

do not provide a sufficient level of survivability in domestic environment as they 

respond slowly to smouldering fires.  In 2006 a court in Indianapolis prosecuted First 

Alert and BRK awarding a family $2.8 million damages because the ionization smoke 

alarm did not give the advertised levels of protection [57]. 

 

1.5.2 Optical Smoke detection devices 

When light is incident on a particle it can either be absorbed, reflected, refracted and 

diffracted. If the light incident on the smoke particle is of a sufficiently larger 

wavelength than the size of the particles then all modes of reflection can be observed. 

When the wavelength is of a similar size to the smoke particles then the different 

mechanisms of reflection cannot be differentiated and so is referred to as scatter.  

 

Measurements of smoke density may be made either by measurements of obscuration 

(attenuation of a light beam passing through the smoke) or by measurement of light 

scattering by smoke. The obscuration measurement range appropriate to fire detection 

requires significant path lengths ( ~ 1 m) and the method is not well suited to compact 

point detectors (available light path of a few cm). It has niche applications in real 

detection scenarios but is routinely deployed as a standard method for validating test 

fires as indicated in a section below. Although light scattering can contribute to 

attenuation of light beams, the physics of light absorption and scattering are different 

and while correlations may be established for particular smoke sources no rigorous 

mathematical conversion exists.  

 

Light scattering by smoke is well suited to compact point detectors. While 

measurements of light scattering by particulates are an established way of characterising 

such materials with a developed theoretical base (Rayleigh and Mie scattering), these 

theories and corresponding mathematics are probably of limited utility at the 

concentrations relevant to smoke detection where a significant measurement volume is 
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employed, multiple scattering for is probable, and particle sizes and shapes are 

uncontrolled. Nevertheless optical scatter based point type smoke detectors are firmly 

established as reliable devices for fire detection [58]. Below is a diagrammatic 

representation of an optical scatter type point detector (figure 5). 

 

 
Figure 5 Optical Scatter Detector layout – 5a) Plan view, 5b) side view. 

 
 The chamber has vents 1 allowing air to pass to the interior and a detection volume 2 

defined by intersecting regions illuminated by LED 3 and the field of view of 

photosensor 4 

 

Light from LED 1 passes though detection volume and in the absence of smoke most is 

absorbed or scattered by the chamber walls with little falling on the photosensor 

positioned off of the beam line. When smoke enters the detection region, part of the 

light from the LED is scattered towards the photosensor with resultant increase in 

sensor signal. Conventionally the LED is operated in a short pulsed mode (<1ms every 

~5 seconds). Until recently LEDs emitting in the near IR (~850 nm) were used but there 

are some moves towards (additionally) using blue LEDs (~465 nm) as it has been 

suggested on the basis of some experimental work and Mie scattering theory that this 

may give size discrimination capability [59].  

2 

4 

3 

1 

4 

3 

Fig. 5a 

Fig. 5b 
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Design of the housing around the detection region is crucial to enable smoke ingress 

without allowing interference from external lights. Sometimes marketed as “toast proof”  

[60] optical scatter devices are most sensitive to pale or grey smokes, which are 

typically smokes produced by pyrolysis or from smouldering e.g. from smouldering 

sources like fabrics. A feature of the optical scatter devices is that Mie theory suggests 

different smokes respond differently depending on the size, shape, and refractive index 

of the smoke particulates. 

 

1.5.3 Temperature sensors  

Point heat detectors monitor the changes in the ambient temperature via at least one 

thermistor or other temperature sensor. Paired detectors in and out of ambient airflow 

may be used to counter issues with slow changes in ambient temperatures triggering 

false alarms. Alarm criteria for temperature sensor based fire detectors fall into two 

categories. Fixed-point detectors can be triggered if the temperature rises above a preset 

value. Common temperature thresholds range from 47-58oC. Rise of heat (RoH) 

detectors respond to a rapid rise in temperature above baseline. The rate of increase 

typically needed by a RoH alarm is typically between 6.7-8.3oC min-1. Common 

environmental effects that are associated with false alarms do not influence temperature 

sensors; dust, insects etc. They can respond to nuisance sources such as opening ovens, 

heat ducts or steam. 

 

The use of heat detectors as a primary mechanism to detect fires is not favoured in 

residential properties and hotels. Temperature sensors used in these situations will 

typically invoke an alarm response to a fire, but the size and type of a fire required to 

produce a temperature change sufficient to invoke an alarm is often substantial and may 

not be sufficiently early to ensure survival of occupants. Temperature sensors are 

widely deployed where smoke sensors are prone to false alarms or where their exposed 

components are subject to damage by the environment (marine use). They are routinely 

included with smoke detectors as back up or use in combined sensor alarm algorithms. 
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1.5.4 Carbon monoxide gas sensors 

The first commercial CO fire detector was released in 1999 by ADT. Electrochemical 

sensors typically sense CO concentration by an oxidation process. 

 

CO sensors can react promptly to slow developing smouldering fires involving carbon 

rich fuels. Although in fires the main mechanism of transport of fire products is 

convection, because CO is a highly mobile gas it is thought it is able to diffuse quickly 

to point detectors. This means CO can move ahead of the plume and provide rapid fire 

detection. This is particularly useful in slow developing or low energy fires.  

 

The use of CO gas sensors in fire detectors is governed by BS ISO 7240-8:2007  [61]. 

CO sensors however are not the most rapid to respond rapidly to flaming fires. They 

have some susceptibility to false alarms from environmental factors involving release of 

oxidisable vapours, though for moderately short term emission events this issue is 

effectively dealt with by including of activated carbon filters as in the Honeywell 6th 

Sense electrochemical CO sensors widely employed in fire detection systems. Processes 

which actually generate CO such as cigarette smoking and operation of combustion 

equipment or engines in poorly ventilated spaces can give rise false alarms as can 

emissions of other small easily oxidised hydrocarbons (acetylene, ethane). 

 

Electrochemical CO sensors of the type widely used in fire detection operate by 

monitoring the current corresponding to the oxidation of CO molecules that diffuse to 

the sensing electrode. The cells are run in amperometric mode and the current is 

proportional to the diffusion-limited rate of CO molecule arrival at the electrode. CO is 

consumed by the reaction, which may be written as (equation 5):  

 

 

  CO  +  2H2O    CO2  +  2 H+  +  2 e-
   (5) 

Equation 5 Overall Oxidation Reaction for CO in Electrochemical Cell 
 

Each CO molecule oxidised to CO2 provides two electrons to the external circuit. Water 

and hydrogen ions are in the cell electrolyte. Figure 6 is a diagrammatic representation 

of a two electrode (sensing and counter) electrochemical CO sensor employing platinum 

electrodes and a sulphuric acid electrolyte. The sensing Pt electrodes consist of 
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Platinum black adjacent to a gas permeable PTFE membrane not wetted by the acid 

electrolyte. 

 
Figure 6 Diagrammatic representation of electrochemical CO sensor. 

 

 

CO diffusion to the electrode is limited by the small orifice at the top of the cell and 

filter structures and the dimensions of these components effectively set the sensitivity, 

~45 nA/ ppm CO for the Honeywell 6th Sense devices. 

 

1.6.5 Multi criteria Fire Detectors 

These newer types of detection system look to offer the best possible combination of 

increased sensitivity to actual fires while reducing the incidence of false alarms. They 

take in data from more than one source (e.g. carbon monoxide, optical scatter, 

temperature) and applying these inputs in suitable algorithms can generate more 

discriminatory alarms. A variety of simple and complex algorithms have been applied 

by commercial detector system producers and this has included some use of fuzzy logic. 

 

Recently Cleary [62] performed a study, investigating the potential improvements 

observed in   response time and the response to false alarms using dual ionization/photo 

detectors compared to individual ionization and photo detectors.  The dual detectors 

used an OR logic algorithm where the alarm would be triggered if either the photo optic 

or the ionization detector reached their alarm thresholds. The devices were tested in two 

different settings using simulations of real fires rather than full or reduced scale 

 
Activated carbon 
filter Platinum 

black 
electrode on 

porous gas 
permeable 

PTFE 
membrane 
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standard tests. The study also reported on a small study carried out by the NRCC in 

2003  [63] using off the shelf dual detectors. 

 

The finding of the study was not conclusive. In some instances improvements in time to 

alarm were observed, but often the standard error encountered in measuring the time to 

alarm was comparable to of the actual measurement. The size of this error may be 

related to the relatively small sample size but often the fires being detected comprised of 

a mixture of fuels and combustion processes (e.g. smouldering and flaming 

combustion). In some of the tests there was also some uncertainty as to the sensitivity of 

the component types of the combined detector.  

 

The present study while including use of some multifunction detectors is set up to 

access individual sensor responses and is not aimed directly at validating multi-criteria 

operation or algorithms used for this purpose. 

 

1.5.6 Use of fire detectors in this study.  

The study is primarily directed at applying analytical techniques, especially GC/MS, to 

characterise fire products. However to aid future possible correlation of the results with 

practical existing detector devices it was deemed appropriate to include a series of 

standard commercial detectors as produced by TYCO and operate these with a system 

designed to emulate operation of a fire panel and output the data to Excel readable files. 

The detectors have been used to investigate and validate the behaviour of the scaled fire 

emulations but are also used as tools to investigate the behaviour of standard and non 

standard fires. 

 

The outputs from the sensors incorporated in the detectors are provided as 8 bit digital 

outputs and the standard detector types used were TYCO MX system 801 series 

detectors as below: 

 

801PH – Optical scatter (850nm), and temperature (thermistor) outputs. 

801PC – Optical scatter (850 nm), temperature (thermistor), and CO outputs. 

801I – Ionisation smoke detectors. 
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Additionally some experimental detectors were used which were constructed using 

modified 801 series units and providing outputs to the same panel simulation and data 

storage based equipment. These units included device with different LEDs and 

photosensors to allow scatter measurements at different wavelength, including blue 

LED emissions (465 nm). Some devices incorporated both blue and standard NIR (850 

nm) and blue (465 nm) in the same detector addressing the same detector volume. 

Additional single Led devices were used to supply scatter information on a longer NIR 

wavelength (1070 nm), and a near UV wavelength (370 nm). 

 

A further 801 series unit was converted to give %RH output and another as a 3 channel 

A to D unit allowing some analogue signals to be converted and stored on the same log 

files as the data from the standard 801 series devices. 

 

The dynamic range within the 8 bit output for the CO detectors in 801PC devices 

covered the range from 0 to a maximum of ~120 ppm CO. One unit was converted so 

that the CO output dynamic range was extended up to ~400 ppm. 

 

Before supply for use in equipment at UCLan (Preston), 801 series were checked and 

calibrated at the TYCO laboratory in Sunbury. CO calibration was carried out using 

calibrated CO in air supplied by BOC or Air Liquide and where appropriate a gas 

blender unit (Signal Model 821). Temperature sensor operation was checked in a heat 

tunnel at a relatively slow (noC/min.) temperature rise. Operation of optical scatter 

devices was checked using a smoke tunnel and joss sticks as smoke sources.  

1.6 False Alarms and Detection Reliability. 
 

Fire detection systems are not infallible. As recently as 1986 one researcher, Cooper 

[64] stated fire detection systems simply did not work, and the belief that fire detectors 

were unreliable and only useful as a supplement to a watchman system to compensate 

for failings in building design was common only 20 years ago. Improvements in 

standardized testing and codes of practice regarding both the installation and 

manufacture along with changes in government legislation have improved performance 

and perception and seen widespread deployment of alarm systems, but nevertheless 

incidence of false alarms remains high. 
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According to 2006 UK fire statistics [65] of all fire emergency calls responded to, 65% 

or 283,800 were false alarms, which could be directly attributable to automated fire 

detection systems. In greater Manchester alone in 2007 of the 13,500 emergency calls 

initiated by automated fire detection systems only 60 required the deployment of 

equipment [66]. The Chief of Greater Manchester fire services stated his force spent 

97,000 man-hours responding to false alarms in 2007.  This has a cost .The example in 

greater Manchester in 2007 cost the taxpayer more than £2,000,000, and there were 

additional losses due to by disruption to business. More importantly it costs finite 

resources, while units are responding to false alarms they cannot also be attending real 

fires where lives are at risk.  

 

Importantly false alarms reduce confidence in fire alarms and can lead to users 

becoming complacent, ignoring fire alarms or simply turning alarms off. Assuming 

alarms to be false alarms is dangerous; and in some cases it can be catastrophic. 

Edwards [67] highlights the issues of complacency around false alarms at Faslane and 

Coulport, two of the UKs Naval facilities that host the nuclear warheads for the UK 

trident deterrent. 

 

Most fire authorities and local councils give advice to reduce false alarms [68]. Such 

steps include regular maintenance of alarms, proper sighting of alarms away from 

sources of dust and steam, not allowing smoking near detectors etc. Advice also 

includes not leaving cooking oil unattended, though that is as much about avoiding real 

fires. While cooking oils and fumes can produce false alarms [69], equally unattended 

cooking oil can very quickly become a real fire. 

 

A false alarm is defined by the Colins dictionary as: 

Noun a needless alarm given in error or with intent to deceive, or an occasion on which 

danger is perceived but fails to materialize. 
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There a number of scenarios that may result in a false alarm. These include ; 

1. Pollutants in the air setting off smoke detectors;  

2. Extremely high temperatures (from equipment or weather effects) setting off 

heat detectors;  

3. Vandalism or malicious acts;  

4. Errors in using the system;  

5. The equipment being faulty or poorly maintained; 

6. Fire detectors or red ‘break glass’ boxes being in the wrong place; and  

7. The fire-detection system not being appropriate for the building or how it is 

used; 

8. Inappropriate activities in protected areas such as cooking, toasting outside 

kitchens.  

 

Figure 7 shows that despite technical improvements, a rising proportion of the false 

alarms are ascribed to apparatus malfunction. Greater system complexity may play a 

role in the increase in  false alarms from automated fire detection systems (more things 

to go wrong). Nevertheless there are issues relating to how the detectors detect fires. 

 

 
Figure 7 10 year survey of the causes of false alarms in the UK looking at the source of 

the call outs which were discovered as false alarms. (Source UK GOV figures)  
 

Some of the most common sources of false alarms are cooking fumes, smoking, 

dust,burning toast [70], steam and other aerosols. The positioning of detectors, and 

Apparatus 
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selection of detector types can eliminate some of these sources, but can also increase 

true detection times and reduce protection. Some sources of false alarms e.g cigarette 

smoking, may reduce as society changes and different pactices become more or less 

accepted.  However eliminating specific sources does not overcome the issue that the 

detectors employ what can be relatively non-specific sensors [71]. 

 

Standards that have been established for validation of fire detectors try to elminiate 

factors limiting detector response.  (e.g. EMC interference effects, protection from some 

larger objects entering detection volumes), but there is no general agreement on 

defining tests against false alarm stimuli. There has been some research and generation 

of literature, especially in relation to fumes generated by cooking [72] but generally 

work has gone no further than that.  

 

Part of the problem is being able to replicate false alarm stimuli under laboratroy 

conditions . For example steam is a potential false alarm signal. Hoteliers often compain 

that steam from showers in particular invoke a large number of false alarms. However 

steam induced false alarms have often proven dificult to reproduce in the laboratory but 

recent work has led researchers to believe the type and persistance of steam droplets is  

dependant on local environmental condition, ventilation, and availability of condensing 

surfaces. [73] 

 

So this highlights an issue in the proposed work . In presenting data on some scale 

simulation of false alarm stimuli as well as real or potential fires, the results were 

largely limited to measurements using sensors conventionally applied in detection and 

give a little insight as to means that would enable discrimination between true and false 

alrm conditions 

1.6.1 Cooking fumes  

 
Cooking related incidents are amongst the most signicant false alarms leading to fire 

services call outs. Xie [74]performed a study, using FE/DE (section 1.8.1) to investigate 

responces of common detector types to cooking fumes establising that ionization 

detectors were most prone to false alarms though optical scatter devices can not 

reasonably be described as immune to cooking based stimuli. Cooking produces smoke 
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particulates, vapours and gases which depend on the food being cooked and mode of 

cooking, or over cooking. and the method of cooking.  

 

Gas burners, and to a lesser degree electrical hobs, have associated with formation of 

NOx gases whichfrom a background of 0.2- 0.5ppm can rise with a 4 ring kitchen gas 

burner to 1-3ppm [75] . 

 

Example cooking processes identified as causing false alarm issues are toasting, and 

heating of cooking oils and fats. Cigarette smoking is a further known false alarm cause. 

 

1.6.1.1	  Toasting	  	  	  
 
Toasting bread can produce a number of products, both vapour and particulates. 

Overheating especially of crumbs on toaster elements can lead to more extreme effects 

and triguring of alarms particulary for ionization detectors. 

 

Toasting involes dehydration, caramalization, mailard browning reactions and 

eventually oxidation. Bread is mostly made up of carbohydrates (starches and some 

cellulose), simple sugars and proteins. Caramalisation involves the direct themal 

decomposition of sugars above 120oC and may contribute to the formation of 

polyaromatic hydrocarbons along with simple combustion products that are formed by 

the stepwise oxidarive thermal decomposition of the sugars. 

 

1.6.1.2	  Cooking	  oil	  	  
 
All cooking oils are trigycerides where gylcerol is attached three long hydrocarbon 

chains (fatty acids). As the temperature increases the oil is subject to oxidation and 

polymerisation reactons and liklihood of ignition and progression to a real fire 

increases. Oil chemistry affect the progress of reactions and the temperature at which 

smoke generation occurs (smoke point) as indicated in table 3 below  
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Type of 
Fat/Oil 

Typical 
Saturated fat 

content 

Typical 
Monosaturated 

fat content 

Typical 
polyusaturated 

fat content 

Smoking 
point 

Butter 66% 30% 4% 150 
Lard 41% 47% 2% 138-201 

Coconut Oil 92% 6% 2% 177 
Corn Oil 13% 25% 62% 236 
Olive Oil 

(Extra Virgin) 
14% 73% 11% 190 

Olive Oil 
(refined) 

14% 73% 11% 225 

Sesame Oil 14% 43% 43% 232 
Sunflower Oil 11% 20% 69% 246 

Table 3 Smoke points of typical oils and fats  [76] 
 

1.6.1.3	  Cigarettes	  	  
 
Because of the health concerns cigarette smoke is probably the most wildly researched 

of all the environmental smoke with estimates of the numbers of identifiable 

compounds greater than 2000. Amid other aromatic species, presence of 

Benzo{�}pyrene was identified by Copper and Lindsey [77] 

 

1.7 Detector Validation, Standard Test fires 
 

Series of standard fire tests have been developed for functional validation of detectors. 

While these fires are not grossly unrepresentative of real fire scenarios they are 

constrained by a need to carried out rapidly and reproducibly. This probably means they 

may not adequately cover conditions corresponding to slow growth smouldering fires. 

 

All the standard tests have specific requirements with respect to fuel types, quantities, 

test room dimensions and conditions. Further individual test validity has to be 

confirmed by measurements of smoke with instruments of defined type and location. 

Most generally the specified test equipment employs optical obscuration, with 

characteristics of light source, photosensor, and separation provided in the standards. 

These provisions differ between standard bodies e.g. UL268 require a specific 

incandescent light source while the EN54/7 standard specifies a near infra-red source 

(LED). Specialised ionization based smoke detectors (MICs) may also be specified. 
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These function broadly in the same way as commercial point type ionization smoke 

detectors but have induced air flow and narrowly defined geometric constraints. They 

have a wider effective dynamic range than commercial ionization detector devices. 

 

Although MICs are deployed at many standard test houses and one is in use for 

operation in a smoke tunnel at the TYCO R&D laboratory in Sunbury, their relative 

expense and operational requirements meant that one was not available for deployment 

at UCLan. 

 

Smoke measurement by optical obscuration requires a light path from source to 

photosensor.  Photosensor output when there is clear air and no obstruction in the light 

path corresponds to 100% transmission (0% obscuration), while complete obstruction of 

the light path corresponds to 0% transmission (100% obscuration). The devices 

specified are expected to give a linear output between transmission and photosensor 

output and that is assumed correct i.e. 2 point calibration is deemed adequate.  The 

UL268 standard specifies an incandescent bulb and a selenium photoresistor sensor. 

These are archaic devices, and the selenium devices difficult to source. No doubt this 

system will be replace at some point and no attempt was made to emulate it in this study 

at UCLan. The wavelength of the light used in BS EN 54-7 has the following 

requirements;  

1. At least 50% of the radiated power shall be within a wavelength range from 

800nm to 950nm.  

2. Not more than 1% shall be in the wavelength range below 800nm.  

3. Not more than 10% shall be in the wavelength range above 1050nm. 

 

The requirement are met readily available LED sources and well matched Silicon 

photodiode detectors which are essentially similar to those used in most commercial 

optical scatter smoke detectors. 

 

The standards differ in the way the photosensor output is processed to yield a parameter 

taken as the measure of density of fire aerosols in the detector light path. BS EN54/7 

uses units dB/m and UL 268 % Obscuration per foot. The Beer Lambert Law is 

assumed to apply for light passing through smoke and mathematically these parameters 

are interconvertable. However, where differently specified light sources and sensors are 



51 
 

used, as for the EN and UL standards) the values even for identical smokes will not 

necessarily correspond exactly.  

 

The BS-EN standard characterizes the optical properties using an absorbance index of 

the smoke aerosol measured in the path length of the detector.  

 

The absorbance index is designated m is measured in dB m-1, and defined by the 

expression:  

 

m = (10.log(Po/Ps))/d  (6) 

Equation 6 Expression for absorbance index (m) d is the optical path length in meters 
(m), Po is the radiated power received without smoke aerosol, Ps  is the radiated power 

received with smoke aerosol 
 

The ratio Po/Ps is 1/Ts  where Ts is the fractional transmission which is calculated from 

the photosensor output by the expression: 

 

Ts = (vs-vb)/(vc-vb)        (7) 

Equation 7 Expression for fractional transmission vc is photosensor output for clear air, 
vb is photosensor output with light path blocked, and vs is photosensor output with 

smoke between source and photosensor 
 

UL standards describe the optical properties of the aerosol in terms of the optical 

density per unit length, defined by the expression: 

 

OD  =  (log(Po/Ps))/d        (8) 

Equation 8 Optical density calculation of smoke density. OD is optical density per unit 
length, d is the optical path length, Po is the radiated power received without smoke 

aerosol, Ps is the radiated power with smoke aerosol.  
 

Common  usage for the UL standard in particular allows expression of smoke density in 

a more immediately understandable units, % obscuration per unit length (usually per 

foot in the usage in USA, but per metre is commonly used). In this study smoke 

densities will normally be expressed as % obscuration/metre and conversion to this unit 

of values expressed as the absorbance index m in dB/m and optical density per unit 

length OD (as in the standards) is by the expressions below. 
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Converting %Obsc/ m (% Oobscuration per meter) from  m dB/m  

 

%Obsc/m  =  100.(1-10(-m/10))  (9) 

Equation 9 Expression to convert %Obsc/m from m 
 
Converting %Obsc/m from optical density per metre (ODm) 

 

%Obsc/m  = 100.(1-10(-ODm /100))   (10) 

Equation 10 Expression to convert obscuration per meter (%Obsc/m) from optical 
density per meter ODm 

 
Converting Optical density per foot (ODf ) to %Obsc/m 

 

%Obsc/m  = 100.(1-10(-0.3048.ODf /100))            (11) 

Equation 11 Expression to convert obscuration per meter (%Obsc/m) from optical 
density per foot (ODf ) 

 
  
For experimental work where fractional transmission Ts is obtained from beam sensor 

measurements with path length d metres using equation 9 above, conversion from 

obscuration (%Obsc/m) to transmission is by the expression 12; 

 

Obs. %/m  =  100.(1-10(d-1. log Ts ))  (12) 

Equation 12 Expression converting %Obsc/m from fractional transmission Ts 
 
For the ionization type (MIC) smoke sensors, a dimensionless parameter y is used to 

quantify the fire aerosols.  This parameter y is calculated from the MIC ion current 

values using the expression: 

 

y  =  (Io/I) – (I/Io) (13) 

Equation 13 Expression for the calculation of the dimensionless parameter y where Io is 
the chamber current with clear air and I with smoke aerosol 

 

Normal ionization type fire detectors may be calibrated against a MIC but normally 

have a lower dynamic range. In forced airflow there is fairly good correspondence with 

MIC output, but this may not remain true where smoke entry to the detectors is not 

aided by such flow. Parameter y relates the concentration of the particles (Z) and the 
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average particle diameter (d) and a chamber constant (�  ) appropriate for the MIC used 

as indicated in expression below reproduced from BS EN 54-7:2001.  

 

Z . d  =  η . y    (14) 

Equation 14 Expression connecting the y parameter to the concentration of particulates 
(Z) and the average particle diameter (d) in a specific chamber. 

 
In addition to y and m, temperature and air flow are monitored throughout standard fire 

tests as these have an impact on the flow of smoke in the test rooms and need to be 

within set bounds for a valid test. The temperature output and the stability of the air are 

monitored as they. The temperature should be between 18-28oC and the temperature 

difference between the top and bottom of the room must be no more than 2oC. 

 

1.7.1 Standard Test Fires 

 

Standard methods have been established to ensure that each fire detection system on the 

market will respond in a predictable way in an actual fire. The two standards of greatest 

international significance are BS EN 54-7 and UL268. There are others such as 

AS1603[78] and AS3786 9 [79] from Australia and standards that relate specifically to 

the construction and installation of fire detectors BS5839 [80]. 

 

In the past there were standards for the testing of ionization and optical devices  

(Underwriters Laboratory UL 167), (Underwriters Laboratories UL 168). The problem 

with using many standards is it becomes increasingly complicated for the end user and 

allowed product manufacturers to pick and choose which standards to test their devices 

against.  
 

There have been a number of reviews based on the standard fires. Grosshandler [81] 

carried out a detailed study of measurements and candidate signatures for early fire 

detection in 1995 but methods applied did not include GC based gas characterisation 

techniques. 

 

The standards incorporate or define a number of test fires which use a number of 

different fuels burning in different conditions to assess the response of the detectors as 

indicated in table 4 below. 
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Standard Test identification Fuel Type of combustion 

UL 268 Test A 

Test B 

Test C 

Paper 

Wood 

Heptane/toluene 

Smouldering 

Flaming 

Flaming 

BS EN 54 TF2 

TF3 

TF4 

TF5 

Wood 

Cotton 

Polyurethane 

Heptane/toluene 

Smouldering 

Smouldering 

Flaming 

Flaming 

Table 4 List of current standards and test fuels 
 

The environments for test fires are defined (test rooms – below), as are the fuel 

quantities and their arrangement, and means of ignition. Test fire outputs are primarily 

defined in terms of smoke production as measured by optical absorption and MIC 

ionization sensor response. 

 

The tests and choice of fuels employed in standards varied somewhat as the standards 

were developed and some other “standard fires” have gone out of regular use e.g. TF8 

smouldering fabric. Some of the changes have come from the desire to amalgamate 

similar standards into a simpler uniform testing regime. Standards do exist for other 

markets although there have been moves to achieve conformity between standards. 

 

The choice of the fuels has in some cases come under in for some criticism as not being 

representative of fires encountered in real scenarios. While such claims can be justified, 

test fires need to be fairly simple to set up, of relatively short duration, and show good 

reproducibility. The smouldering test fires are rather artificial as the development of 

true smouldering fires within porous beds can take hours to develop and exhibit low 

reproducibility. None of the standard fires used to validate fire detection systems use 

multi fuel systems, and do not represent fires that flash over, though conditions for such 

should not occur before detection by standard well sited detectors.  

 

The present standards incorporate or define a number of test fires indicated in Table 2 

above which use a number of different fuels burning in different conditions to assess the 

response of detectors. Short descriptions of BS EN54/7 fires T2,T3,T4 and T5, and 

UL268 fires A,B, and C derived from those standards are provided below. Test fire 



55 
 

outputs are primarily defined in terms of smoke production as measured by optical 

absorption and MIC ionization sensor response. 

 

Quantities in the descriptions below have been converted to metric units and optical 

densities to obscuration %/m where the standards used other units. 

 

BS EN54/7 Test TF2 – Wood smouldering (more correctly pyrolysing)  

Fuel – 10 dried beech wood sticks (5% moisture content) each 75x25x20 mm arranged 

on hotplate as in Figure 8 a. Hotplate is 220 mm diameter 2 kW hot plate with 

concentric grooves (2mm deep, 5 mm wide) controlled to heat from ambient to 600oC in 

11 minutes. 

End of test m = 2 dBm-1 = 36.9 % obs./m. Validity bounds as shown in Figure 8 b 
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Figure 8 (a) TF2	  hot	  plate	  and	  wood,	  and	  (b)	  BS	  EN54/7	  TF2	  Obscuration	  limits	  
 
BS EN54/7 Test TF3 – Cotton wick smouldering 
Fuel – 90 pieces of braided cotton wick each 80 cm long and weighing 3 g. The wicks 

are fastened to a 10 cm50 diameter ring and suspended 1m over a non combustible plate 

as indicated in Figure 8 a 

Ignition – lower end of each wick ignited by a flame so that the wicks continue to glow. 

Any flaming wick is blown out. Test starts when all wicks are glowing. 

End of test m = 2 dBm-1 = 36.9 % obs./m. Validity bounds as shown in Figure 9 b 

 



56 
 

!

"

#!

#"

$!

$"

%!

%"

&!

! $!! &!! '!! (!!

!
"#
$%
&'
()*
+,
-
./

#0$*+1#

234,,5)/)(#,6*&,!"#$%&'()*+,70&#%#,()/0

)**+,-./)01

2/3+,-./)01

!
O

bs
cu

ra
tio

n 
pe

r m
et

er
 (%

O
bs

c/
m

)

Time (seconds)

 
Figure 9(a)	  TF3	  Wick	  arrangement,	  and	  (b)	  BS	  EN54/7	  TF3	  Obscuration	  limits	  

 
BS EN54/7 Test TF4 – Flaming polyurethane foam 

Fuel – soft polyurethane foam, 0.02 g cm-3. 3 mats 50x50x2 cm placed on top of each 

other on an aluminium foil base with edges folded to form a tray. 

Ignition – ignite with flame at corner of lower mat. A small quantity of methanol may 

be used as an aid. 

End of test m = 1.73 dBm-1 = 32.9 % obsc/m. Validity bounds as shown in Figure 10. 
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Figure 10 BS EN54/7 TF4 Obscuration limits 

 
BS EN54/7 Test TF5 – Flaming liquid (heptanes) 

Fuel – 650 g of n- heptanes mixed with 3% toluene by volume in a square steel tray 

330x330x50 mm. 

Ignition – by flame or spark 

End of test m = 1.24 dBm-1 = 24.8 % obs./m. Validity bounds as shown in Figure 11. 
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Figure 11	  BS	  EN54/7	  TF5	  Obscuration	  limits 

 
Unlike the BS EN54/7 standards, the UL268 definitions of the fires do not generally 

incorporate useful graphical representations of bounds for obscuration versus time. Plots 

deriving from the descriptions are included below but are only interpretations of the 

descriptions provided. The obscuration values for the UL268 and EN54/7 test are based 

on differently defined measurement systems. A direct comparison does not appear to 

exist in the open literature. As the UL268 system employs an incandescent source 

extending into the visible region, it will probably yield higher obscuration values for 

most smokes than the EN54/7 system operating in the near IR. 

 
UL 268 Test A – Paper smouldering (may go to flame) 

Fuel - 42.6 g of shredded newsprint (6-10 mm by 25.4 to 102 mm) tamped into thin 

steel open ended cylinder (102 mm diameter, 305 mm height) to fill lower 2/3, and with 

a hole 25 mm diameter through the centre of the packed paper. Cylinder base supported 

900 from floor. 

Ignition – spark probes at base 

Profile- Test duration 4 minutes. Flame breakthrough 1-3 minutes.  First smoke peak 

(smoulder)  at 1-3 minutes 64-78% obs./m . Maintain obscuration for 20-30 sec at > 

12.5 % obs./m. Second peak (flame) not to exceed 37 % obs./m. 

Validity bound interpretation is shown in Figure 13. 
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Figure 12 UL268	  fire	  A	  Obscuration	  limits	  

 
  
UL 268 Test B – Wood flaming 

Fuel – 3 layers fixed at right angles of 6 pieces of dried Douglas fir wood 

(19.1x19.1x152 mm), overall dimensions 152x152x64 mm). Supported on ring 900 mm 

from floor. 

Ignite – by flames from 4 ml denatured alcohol in small dish 89 mm below wood. Spark 

probe to ignite alcohol. 

Profile – Test duration 4 minutes. Smoke arrival at ceiling detectors 80-120 sec, >12.5 

% obs./m for at least 60 seconds, and not exceeding 46 % obs./m. Flame breakthrough 

150-190 seconds. Validity bound interpretation is shown in Figure 13. 
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Figure 13 UL268 fire B Obscuration limits 
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UL 268 Test C – Flammable liquid fire 

Fuel – 75% heptane, 25% toluene mix in a 158 mm diameter, 32 mm deep steel pan 

supported 900 mm from floor. Fuel quantity to be sufficient to generate a smoke 

obscuration peak between 19.5 and 35.7 % obs./m within a 40 to 240 seconds period 

from ignition. (Fuel volume not stated in standard but believed to be ~40 ml [82].  

Ignition - by spark igniter in vapour over pan. 

 

Profile – Test duration 4 minutes. Obscuration of 19.5 and 35.7 % obs./m within a 40 to 

240 seconds period from ignition, not exceeding 36.7 % obs./m. 

Validity bound interpretation is shown in Figure 14. 
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Figure 14 UL268	  fire	  C	  Obscuration	  limits	  
 

 
In addition to fuels, the test fire definitions cover the test environments and detector 

positioning and those details for test fires are defined below under test rooms 

 

1.7.2 Standard fire test rooms  

Standard test rooms are of sufficiently large scale to allow the development of fires to a 

condition, which is comparable to unwanted fires in the work place. The rooms are 

provided with ventilation means but there is minimal airflow during tests. The detectors 

are located at a distance from the fire to represent a transmission distance comparable to 

that found in common room fires. Figures 15 and 16 represent the room dimensions of 

standard rooms in the BS EN 54-7 standard and UL 217/268 standard.  
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Figure 15  Diagram of a standard fire test room taken from BS EN 54-7 (2001)[1].  

 
The above diagram shows the location of the fire sources (1) and the location of 

detector placement. Detectors are placed at equidistant points along the arc of the 60o 

cone 3m away from the fire source  
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The dimensions illustrated on the diagram are the typical length and width of the 

standard rooms. The height of the standard room is 4 m. 

 
Figure 16 Diagram of the standard room taken from the description in UL-268 [3].  

 

The room dimensions (not illustrated)  are:  11 x 6.7 x 3.0 m (length x width x height) 

The test fire is located 2.13m from the rear wall and 3.4m from the side walls . The fuel 

is elevated 0.9 m   from the floor for test B and C and 0.2 m from the floor in test A.  C 

is a light assembly, D is a photocell used for optical density measurements. E is a MIC, 

F and G are the test panels for locating the fire detectors. S is the air supply and V are 

ventilation points used to clear the room after the test. 

 

1.8 Reduced scale testing and modelling  
 

This work does include some measurements employing full-scale test rooms but these 

are not readily accessible and use at test houses involves considerable costs (~£1000/ 

day at BRE) [83]. This study predominantly involves measurements at conveniently 

reduced scales requiring development of suitable reduced scale versions of fire tests. 

 

As indicated earlier transport in fire plumes depends on source size (power) and 

chamber dimensions (distance to ceiling and detectors).  It was not the purpose of the 
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present study to significantly investigate scaling issues but to generate convenient scale 

fires having smoke output characteristics (obscuration versus time) similar to those 

specified for standard test fires. Reduced scaling inevitably affects fire source size and 

character as greater surface to volume ratios tend to proportionately greater heat loss 

rates, sometimes affecting stability and form of fire, and presumably products [84]. 

Further reduction in source to sensor distances can potentially affect transport times and 

progress of secondary processes such as aggregation of products into smoke particles, 

and mixing with surrounding air. Setting up reduced scale systems for fire 

characterisation has a long history, some aspects of which are covered below.  

 

There has always been a problem in predicting the fire aerosol composition from small-

scaled tests. The drive behind scale modelling has been a driven by an interest in 

measuring the toxic components expected in a fire aerosol [85]. The most significant of 

which is carbon monoxide. In a study Barbrauskas [86] examined a series of bench 

scale tests looking at the production of carbon monoxide. He concluded that the 

predicted values of CO from most reduced scale tests significantly over estimated its 

concentration when translated to larger scale tests. However Barbrasuka study was 

concerned with developed fires. They stated that the small bench scale fires where most 

comparable to early stage fires of larger scale fires, because the amount of fuel 

compared was similar. 

 

1.8.1 FE/DE (Fire Emulation/Detector Evaluation) device 

 

The concept of the FE/DE (Fire Emulation/Detector Evaluation – figure 17) device was 

first proposed by Grosshandler [87] and work soon started at NIST to develop the 

apparatus. The FE/DE is commonly seen as a loop or open pipe typically between 0-3-

0.6 X 0.3-0.6 m cross sectional area with an internal volume around 2 m3. The FE/DE is 

described in detail  [88] and has been used in many investigations into early smoke 

determination. The FE/DE works by passing air through the tunnel at variable speeds 

over a test section containing detectors and other relevant measuring equipment. Into 

the air stream smoke from a fuel source can be added. The humidity and temperature of 

the air can be controlled through the addition of water vapour, through a water jet, and 

electronic heaters. In addition other conditions in a fire can be emulated by adding 

particulate dust and other gases depending on the model used. The Honeycomb in the 
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FE/DE is used to ensure a flat or controlled flow of the smoke over the test section. This 

allows a flat flow of smoke over the detectors.  

 

 
Figure 17 Schematic diagram of the FE/DE equipment described by Grosshandler  

 

While the output from the FE/DE has shown to be able to emulate many fire conditions 

in terms of detector response, the artificially ventilation/airflow can certainly affect how 

fuels burn. It was felt that it would be better to keep to a simpler firebox structure for 

the present study with fuel ventilation and product distribution controlled by buoyancy 

driven convective processes as for the standard fires. Some measurements in this study 

were performed using a recirculating smoke tunnel (chapter 2), which in character may 

resemble some aspects of the FE/DE unit though without most sophisticated analytical 

kit. It was observed that shielding fuel from the direct airflow was in some cases 

required to produce smoke levels comparable to those seen for fires without forced 

ventilation. 

 

1.8.2 Cone Calorimeter. 

There are a number of other experimental methods that try to characterise fire in terms, 

gaseous products (CO, CO2, H2O), smoke particulates and other components. Many of 

the small scale investigations into fires have been carried out on the cone type devices 

where a radiant source is used to pyrolyse and in some cases ignite the fuel. While these 

studies can cover early stages of pyrolysis which may correspond to how some nuisance 

fires start, the geometry and air flow arrangements are rather specific. While much is 
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learnt about flammability characteristics and toxic gas generation, cone experiments are 

not easily related to many early stage fires and the standard fire tests. 

 

1.8.3 The NBS smoke box 

The NBS smoke box is a device that has been utilized as a method of generation of 

smoke in studies of for a range of fuels. The NBS smoke box, which can enclose a cone 

heater, comprises a sealed stainless steel box with provision for fire product monitoring 

e.g. obscuration meter. The box has an internal volume of approximately 0.5m3 

 

Gases are kept under a moderate positive pressure and use of heated chamber walls is 

intended to prevent loss of gases and particulates by deposition on the surfaces. While 

this system ensures maintenance of mixture of the gases formed so that they may be 

collected, the confined geometry and heating again do not emulate conditions in the 

standard fire tests or many real nuisance fires where air entrainment is significant. 

 

1.8.4 Computer models  
Computerized modelling has been widely applied to the fire situation, most particularly 

characterising the mass transport aspects. However they are mainly applicable to 

relatively well developed fire situations where the boundary conditions can be well 

defined. Theory has been developed relating energy output and fuel to combustion. 

However most of this theory relates to fully developed fires and therefore may not apply 

to early stage fires, and small real fires may deviate considerably from characteristics 

indicated by computational modelling theory [89]. While it is certainly to be expected 

that computational models can be applied to the modelling of plume transport and its 

effects on detector performance, that is dependant on the reliability with which source 

characteristics can be defined. Olenick and Capenter [90] provided a good review of all 

the available programs. The major issue with application of computer modelling to fires 

near their inception is difficulty in specifying the progress of processes involved in 

ignition and variability in early stage growth. While there may be possibilities to 

improve scaling experiments based on application of computational methods this route 

was not followed in the present study. 
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1.9	  Methods	  of	  Analysis	  	  
 

There are numerous standard methods for the analysis of contaminants and fire aerosols 

in the literature. Some are included in this study. However those generally applied in the 

past have not generally been capable of specifically identifying compounds present in 

vapours or aerosols at the concentrations present in the early stages of combustion. 

Fire products become dispersed in the air and in many cases application of analytical 

methods requires some sample collection and concentration of the material. Factors 

affecting sampling and validity of subsequent analysis include solubility, volatility, 

reactivity of analytes and the sensitivity of the proposed analytical method.  

1.9.1 Particulate sizes  

There have been a number of studies examining the properties of smoke. Particulates in 

smoke are important in detection by light absorption and scattering, and mobility effects 

in air ionization based detectors. 

 

Different types of smoke produce different types and sizes of particulates and this is 

expected to be a cause of known differences in sensitivity of conventional detector types 

to different fires. 

 

Work carried out by Weinert et al [91] showed that the particle sizes varied with the 

type of fuel and the type of combustion. It also demonstrated that the properties 

identified for smokes are affected by the different measurement techniques applied. 

Weinert measured the sizes of particulates from different types of fires using an optical 

particulate counter (OPC - an active cavity laser scattering cell and focused jet of 

particles) and a cascade impactor to determine the particle's number size distribution. 

The cascade impactor principle is illustrated in Figure 18 below. 
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 Figure 18 Cascade Impactor Principle (a) single stage, (b) series 
 

The cascade impactor comprises of a series of size exclusion filters, which separate 

particulates on the basis of the aerodynamic diameter whereby the higher momentum of 

more massive particles allows them to cross the air stream at a bend while less massive 

particles are carried onwards.  

 

1.9.2 Gas/Vapour Measurements 

Gas sampling can be performed on a continuous or batch basis. Continuous sampling 

includes direct exposure of sensor systems to the sample environment or to aspirated 

gas flows. Typically direct sensing systems can include complex systems like FTIR 

systems and FAIMS devices to simple NDIR and electrochemical and other gas sensors. 

As long as sensor sensitivity is adequate to cover the concentration range without 

significant sample processing, continuous sampling is preferable and may approach real 

time monitoring of target species. Sensor response times and measurement chamber 

volumes, as in much FTIR or NDIR kit, can introduce systematic response delays. 

However examination of mixtures or low concentrations may yield signals which can be 

weak and/or complex so that resolution into individual species is not possible. Under 

these circumstances, batch sampling to concentrate is indicated, and allows application 

of chromatographic separation processes.  

 
Technique suitability depends on the stability of the target analyte, analysis technique, 

and storage requirements (whether sample can be immediately transferred to an analysis 

system or needs to be retained for later measurements). For vapours in smoke arising 

from relatively hot sources but mixing with cool entrained air, vapours are expected to 

be subject to condensation, and agglomeration/ absorption onto smoke particles or 

     
(a) Single stage   (b) multi stage with jet geometry varied 
more massive captured 
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losses onto surfaces.  Application of instrumental methods requiring well controlled 

inputs, such as GC/MS, tends to favour batch type processing where most conveniently 

a series of collected samples are presented for analysis. Some difficult to absorb gases ( 

e.g. CO, H2) or reactive / unstable gases (NOx) are best dealt with by direct sensor 

measurements or grab bag sampling. However for the range of hydrocarbons and 

partially oxidised hydrocarbons fire products expected from earlier work is appropriate 

for collection on absorbent media for later desorption and analysis. 

 

1.9.3 Gas sample collection by absorbent media 

Although previous work on early stage fires has shown significant elevations (>10 ppm) 

of CO concentration generally observed [5] and CO2 and H2O generation, if not 

concentration change, must in most cases be substantial, other products may be present 

in the environment in very low concentrations. These concentrations are often lower 

than the limits of detection of analysis devices such as GC-MS so sample pre-

concentration is necessary. There are three main methods of pre-concentration: 

absorption into liquid/ extractant phase, cryogenic collection, and absorption onto a 

solid sorbent from which material may thermally desorbed. Cryogenic methods have the 

disadvantage that considerable amounts of water are condensed with the sample. 

Adsorptive methods, such as the use of absorbent liquids or solid liquid phase 

extraction, where samples must be desorbed from the collection medium with a solvent, 

liquid or gas present different problems of contamination. Thermal adsorbent trapping, 

where a sample is collected on a collection matrix (e.g. absorbent resins) at a specific 

temperature and then desorbed at a different temperature is attractive for fire gas 

analysis as the actual degree of sample handling is quite small.  

 

Figure 19 illustrates operation of sorbent tubes. Species from gas pumped through the 

sorbent material packing are captured on the packing. The tube can be stored at low 

temperature retaining the absorbed material. When a clean gas flow (eluent) is passed 

through the tube and the temperature raised the trapped gases are released. If the 

temperature rise is moderate then some resolution of the products may be achieved at 

this stage. At higher temperatures all products come off with little separation.  
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a) 

 

 

 

b) 

 

 

 

 

 

c) 

 

 

 

 

 

Figure 19	  Sorption	  Tube	  operation – a) vapour capture, b) desorption with some 
resolution, c) desorption of concentrated sample without resolution. 

 

 

Choice of sorbent affects the range/ type of gases, which are absorbed, and readily the 

sample can be recovered for analysis. These can be described as the adsorption and 

desorption parameters and are different for every kind of resin used. Guidance data is 

available for a number of commercially available sorbents indicating species which 

maybe absorbed and desorbed and suitable sorption tube loadings, gas flows, and 

temperatures. 

 

There are many of commercially available resins and with composites and multiple 

resin columns the number of products can be listed in the hundreds. They can be 

broadly grouped as molecular sieves, graphitized carbon black and porous organic 

polymers. Several publications have looked at the advantages and disadvantages of 

different types of resins and absorbents. Tenax is a very popular absorbent and is 

recognised as the material of choice in standard methods for environmental gas analysis 

[92][93]. It is a porous hydrophobic polymer based upon the 2,6 diphenylene oxide.  It 
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has been specifically developed for the sampling of volatiles and semi volatile 

components form air and other matrices. It has low water affinity and is useful in a wide 

range of environments where moisture can be an issue especially with graphitised 

resins.  

 

Because Tenax has a limited range of compounds for which it shows useful absorbent 

properties it is common to co-package or layer with other material [94] to extend the 

range of analytes that can be trapped. Common materials used to complement Tenax are 

molecular sieves such as Carboxen 1000. This gives a wide potential of collectable 

volatile materials from C1-C15.   

 

An issue with using carbosieve resins like carbotrap 1000 is that they collect water [95] 

which can interfere with analysis in a number of ways. It can decrease the safe sampling 

volume[96], and lead to interactions on the resin. For some sorbants moisture is bound 

only lightly and is removable by a purge of dry gas. Resins such as Tenax and 

Chromosorb 103 have very low affinity for water (typically < 5mg.g).  

 

1.9.4 Gas chromatography  

Gas chromatography comprises of two complementary techniques that may be used to 

identify components based on their masses and volatilities. It has been long established 

as a technique for the separation of volatiles in the gaseous phase, which do not 

thermally decompose and for a long time was the gold standard in analytical techniques. 

Broadly it consists of injecting a short pulse of analyte mixture within an eluent stream 

down a column containing or coated with an absorbent medium, the stationary phase. 

Differences in binding between different species and the stationary phase result in 

different transit times through the column and hence separation.  

 

The phenomenon of band dispersion in chromatography columns is understood in terms 

of the rate theory. Transfer of an analyte between the mobile and the stationary phase 

tends to a local equilibrium concentration ratio between the phases as indicated by 

equation 15. 
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Kc   =   Cs/Cm    (15) 
 

Equation 15 Rate theory equation (Kc is the equilibration constant for the interaction of 
the analytes in gas chromatography. Cs is the concentrations of the analyte in the 
stationary phase and Cm is the concentration of the analyte in the mobile phase). 

 

Flow of the mobile phase disturbs this equilibrium and the analyte progresses down the 

column with the rate of movement being greater for species which bind less strongly to 

the stationary phase (lower Kc) and hence for gas chromatography exhibit higher vapour 

pressures in the column. 

 

Measurement of the separation requires a means of determining how long each analyte 

species takes to transfer through the column. This is achieved by having a detector 

responsive to presence of any of those species at the end of the column. Elution or 

retention time for a particular species is the period between the sample injection and 

detection of that species at the end of the column. With many detectors (gas 

conductivity, flame ionisation) there is little or no information on species identification 

and further means such a using samples consisting of or spiked with know species may 

be required to aid species identification. Connecting an inlet to a mass spectrometer 

(MS) to the GC column end and feeding a portion of the flow to the MS provides both a 

general species detection means (total ion current) and a means of identifying 

components from the resulting mass/charge ratio spectrum of ion fragments. 

 

1.9.4.1	  GC-‐MS	  instrumentation	  	  
Once the samples elute in GC/MS they then enter into the mass spectrometer. There is a 

great deal of literature covering the background of mass spectrometry [97]. The 

components of the GC/MS are shown in Figure 20. 
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 Figure 20 Schematic diagram of GC-MS system taken from [98] 

 

The ionization source is within an evacuated chamber and the most popular form 

employs electron ionization of gaseous molecules as represented in Figure 21. Here the 

molecules are impacted by accelerated electrons, which transfer the energy from the 

electrons to the molecular particles. This energy transfer is more than sufficient to 

ionize the molecules. The excessive energy is absorbed exciting the ions to higher 

energy levels and initially there is little secondary ionization. As these energy levels 

return to normal there is a release of energy that can be of the order of chemical bonds 

resulting in fragmentation. This generates a series of daughter ion mixtures. Included in 

these mixtures are the parent ion, and both positive and negative ions. Negative ions are 

collected in an anode trap and an electrical field accelerates the positive ions into the 

analyser.  These fragmentation patterns are dependent on the original structure of the 

molecule and can be used to identify analytes. There is much literature on the 

identification of molecules from their fragmentation patterns and some reference to that 

and the principles involved will be made within the body of this thesis.[99] 
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Figure 21 Schematic of electron ionization mass spectrometry source  

 

When the ions enter the analyser part of the instrumentation they are focused by a series 

of magnets. In a quadrapole instrument there are four rods that are equidistant and held 

in a square orientation. The internal radius of the rods equals the smallest radius of 

curvature of the hyperbolic path taken by ions (Figure 22). Those ions that do not 

follow this path are absorbed and do not reach the detector. By sweeping the 

frequencies, specific ions of particular mass to charge ratios (m/Z) can be allowed to 

pass. Alternatively the instrument can be held at a particular frequency to deliver a high 

sensitivity analysis of particular masses. 

 
Figure 22 Diagram showing the path of created ions through quadrapole GC-MS  

 

The detector is typically a photomultiplier cell which possesses a phosphor surface. 

When an ion impacts on this surface the energy is translated into light and this optical 

emission is detected and the signal is recorded on a data logger. 
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1.9.5  Infra-Red Spectroscopy (NDIR, FTIR) 

Infra-Red (IR) spectroscopy relies on measurements frpm absorption of radiation 

(mainly in 2.5–25 µm range) corresponding to primarily vibrational energies associated 

with chemical bonds. IR absorption generally follows the Beer Lambert Law (equation 

16) and so concentration can be linearly related to absorbance. 

 
ln(Io/I)  =  -α C L   (16) 

 
Equation 16 Beer Law governing optical absorption  

 
Where Io is intensity in the absence of the absorbing species, and I intensity with it 

present,  α is absorption coefficient, C concentration of the species, and L path length. 

 

The absorption pattern may provide a “finger print” identifying molecular species but as 

peaks may be relatively broad, this can be compromised if concentrations are low or 

samples contain mixtures. This can be the case for fire products. Selection rules do not 

allow IR absorption for totally symmetric bonds and so the main components of air (N2, 

O2) do not interfere with IR monitoring. IR measurements have been used widely where 

relatively high concentrations can be achieved; For example, characterising products 

from fire testing of materials in cone calorimeters. However their utility at levels 

appropriate for early stage fire detection is limited. A number of studies have been 

undertaken but while the data may be relied on to measure concentrations of CO2, CO 

(possibly less reliably), H2O, and in some cases HCN, under the dilute conditions 

relevant to fire detection it may show the presence, but generally not identity, of 

molecules having C-H and C-C bonds. 

 

There are a range of IR based measurement techniques which can be applied to gases 

including dispersive methods (grating based scanned wavelength or more modern FTIR 

(Fourier transform IR)) where a range of wavelengths are covered and non dispersive 

methods NDIR where filters provide wavelength selection (figure 24). 

 

Whichever method is used the quality of information gathered depends on the 

absorption coefficients, path lengths and concentrations being able to yield sufficient 

absorption levels and on ensuring that any absorption peak overlaps can be dealt with. 

After some initial consideration of the options and in view of the known limitations, it 

was decided that IR measurements on gases within the present study would not employ 
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FTIR, but be limited to determination of CO2 and CO concentrations using NDIR 

equipment of the sort represented in simplified form in Figure 23 below.  Real units 

may employ reflectors to increase path length, reference paths, and chopped or 

modulated sources. 

 

 
 
 
 
 
 
 
 
 
 

	   Figure 23	  NDIR	  system	  for	  measurement	  on	  gas	  
 
 

1.9.6 Ion Mobility Spectrometry – IMS and FAIMS  

Ions formed in air by interaction of gas molecules with an ionization source have a 

mobility characteristics dependent on the ion size and structure, including whether or to 

what extent they bind to other molecules, especially H2O. In principle the process is 

similar to that used in an ionization smoke detector, but much more sophisticated 

equipment is required to enable one to distinguish between molecules rather than just 

between molecules and relatively massive smoke particles. Measurements based on this 

mobility can yield spectral information and it can under some circumstances be possible 

to infer some species identity or broader characteristics. Although Ion mobility 

spectrometry (IMS [100] and its variant FAIMS [101]) yields information relating to the 

mobility of ions, this is complicated by the presence of air. It is not possible to directly 

determine molecular structure from ion mobility spectra as is possible to do using mass 

spectrometry carried out under vacuum conditions. 

 

IMS is a relatively simple separation technique and comprises of an ionization source 

[102], a drift tube and ion detector plate. The sample gas is passed through the 

ionization source and pulsed via a signal clipper into the drift tube where they enter a 

flow of supporting gas. A field is applied along the length of the drift tube and ions of 

different mobility have different tube transit times. Conceptually conventional IMS may 

be likened to time of flight mass spectrometry, however the way the ions are formed, 
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environment, and mechanism of dransit differ hence ion mobility spectra are quite 

different. 

 

High field asymmetric ion mobility spectroscopy (FAIMS) is gaining popularity as an 

analytical tool. As for conventional ion mobility spectrometry (IMS) the method is 

applicable at normal atmospheric pressures. It differs in field strengths and the modes in 

which they are applied and this results in rather different spectral separations and 

crucially scope for device miniaturisation. FAIMS was first developed in Russia with 

further development in Canada, the USA, and UK. This has resulted in improvements in 

device geometry and some development of microengineered units. FAIMS may be 

applied either for direct measurements on an environment via a filtered input or as a 

detector attached to a GC column.  

 

There have been some studies on fire gases relevant to detection using ion mobility 

techniques but the material available in the open literature is rather sparse. This may 

reflect secrecy issues related to real or potential use of IMS and FAIMS in detection of 

warfare agents. A FAIMS unit produced by Owlstone in Cambridge UK based on a 

microengineered silicon electronic filter structure was made available for measurements 

at a late stage in the present study. 
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CHAPTER 2 EXPERIMENTAL METHODS 
 

2.0 Fire enclosures  
A target of the work was to characterise gas emissions for early stage fires under 

conditions where those products could be transported to detectors in real room size 

environments. In particular to characterise those products for examples of the standard 

fire tests used for validation of detectors. Practical and cost considerations required that 

measurement methods be developed on reduced scale fires and enclosures. The testing 

in this study was carried out predominantly in a laboratory scale custom-built 2 m3 box 

and a full scale BS EN54/7 standard fire testing room (at BRE Watford). Some early 

testing was carried out in a NBS smoke chamber (Standard Smoke Density Chamber 

ISO 5659), and further work and some sensor calibration in a smoke tunnel at TYCO 

Sunbury. 

2.0.1 NBS Smoke Chamber 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Example image of an FTT supplied smoke chamber. Image is taken from the 
FTT web catalogue 

 

The initial work in laboratory scale chamber investigations was carried out in a 

commercially available FTT (Fire Testing Technologies) NBS smoke chamber installed 

at Bolton University (figure 24). This unit contains the ISO 5659 cone radiant heater for 

the burning of samples. The internal dimensions of the FTT NBS smoke box 

experimental chamber are 914 x 914 x 610 mm, a volume of 0.51m3 
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2.0.2 Fire source samples for NBS chamber 

The samples used in the NBS smoke chamber consisted of dried untreated 3 ply 

plywood cut into 75 x 75 x 5mm squares. The samples were wrapped in foil on 3 sides 

and placed in a sample holder leaving an area of 65 x 65 mm exposed to a radiant flux 

in a cone heater delivering fluxes of 11, 25 and 50kW using a heat source calibrated on 

a daily basis. The sample mass was monitored before and after analysis. 

This equipment was suitable for preliminary work only as the chamber size and normal 

mode of operation were unsuitable for emulation of any of the standard fires. The 

preliminary tests in the NBS enclosure involving wood pyrolysis could not be 

considered a reasonable emulation of EN54/7 TF2 but did allow some exploratory work 

sensor and fire detector operation and on sample collection, use of absorbent media, and 

GC kit operation. 

 

The NBS smoke box has a range of fixtures suited more to setting up small fires for 

toxicity testing. The inbuilt cone heater could not be operated at less than 11 kW 

dimensions and as a result there was far too much energy in the system and the 

production of smoke was far too quick. The heated walls and the recirculation of the 

combusted air through the cone resulted in strong forced convection and lack of cool air 

for entrainment into smoke. While it would be possible to turn off some functions, the 

small size of the enclosure was regarded as introducing excessive scaling issues and so 

construction of a larger chamber was planned. This was progressed after the study 

moved from Bolton University to UCLan. (Preston). 

2.0.3 Data monitoring in NBS smoke chamber   

Data was monitored in real time using inbuilt monitoring devices. These included 

optical obscuration and mass loss. In addition TYCO fire detectors were used to 

monitor carbon monoxide concentration (CO), temperature, and smoke density by 

optical scattering (all by standard 801PC detectors) and smoke density by effects on 

conduction in ionised air (801I detector). 

 

In-built data handling for the NBS equipment was supported by the FTT supplied 

software. The TYCO detector operation and data handling was performed in real time 

usually with 5 second polling interval by a TYCO MX panel simulator box with 
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associated software and PC. The TYCO propriety software used (TMenu) operates in 

DOS and generates log files of the 8bit outputs from the detectors, which can then be 

processed in Excel. 

 

The system was transferred to UCLan and with some additional detectors used there and 

in fire tests at BRE. 

 

2.0.4 Collection and analysis of air samples from NBS chamber  

Samples were collected using Tedlar bags with an Airbus ABD 0031 gas sampling 

system. In this system gas is drawn from the fire chamber by a differential pressure 

system involving enclosure of a deflated Tedlar bag within a box that can be evacuated 

by a vacuum pump. As the box is evacuated air is drawn into and inflates the Tedlar 

bag. Gas lines to the smoke chamber were attached to both 6 and 12 litre Tedlar bags 

and gases collected during fire tests.  Filling of Tedlar bags from the smoke box took 

60-90 seconds. 

 

Tedlar bag contents were subsequently slowly pumped out through absorbent resin 

(AR) tubes to absorb the fire product vapours. The absorbent resins used included 

activated carbon (75mg), Tenax (100mg) and chomosorb III (75mg) and Carboxen 1000 

(75mg). For GC analysis the sample tubes were desorbed using a Chromopack thermal 

desorption cold trap (TDCT) injection system linked to a Pye Unicam PU4500 gas 

chromatogram (GC) using flame ionization detection (FID) as a detection device. 

 

While there was initially some continuation of sample collection using Tedlar bags at 

UCLan., sample storage issues with this method requiring simultaneous operation of 

fire tests and GC/MS equipment favoured a change to a more convenient system of 

direct collection of fire gases onto absorbent media filled tubes. The original work with 

samples from the NBS enclosure indicated that Tenax was the absorbant of choice as 

poor results were obtained with Carboxen 1000. However that was based on the GC 

column in use with the Pye Unicam PU4500 at that time, and later work at UCLan 

involved identification of a column characteristics more suited for use with Carboxen 

material. 
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2.0.5 GC Analysis Conditions for PU4500 at Bolton.  

GC operation is described in more detail for a GC/MS system at UCLan later in this 

chapter (section 2.2). Conditions used for the PU4500 for the preliminary work carried 

out at Bolton University are given in table 5.  

 

The column used for the analysis was an Alltech Heliflex AT column (length 30 m, 

internal diameter 0.32 mm, and coating thickness 1 µm). The Alltech Heliflex AT 

column is a 100% dimethylpoysiloxane coated capillary column used as a general-

purpose analytical column. The stable range of the column is -60 to 350oC, and as it has 

a non-polar coating analytes are eluted in accordance to boiling temperatures.   

Parameter  Set Point  

Injector Temp 50oC  

Detector Temp 120oC  

Initial column 

temperature  

40oC 

Initial hold time  15min 

Gradient  4oC/min 

Final Temperature  120oC  

Final hold time  5 minutes  

Table 5 Conditions for Pye Unicam PU4500 for initial GC work at Bolton with a 
Heliflex GC column as used for fire gases collected on Tenax sorption tubes 

 

The carrier gas used on the PU4500 system was high purity helium with a flow rate of 

1ml min-1. Samples were analysed using a flame ionization detector (FID).  
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2.1 TYCO Smoke Tunnel 
 
A smoke tunnel with air recirculation at the TYCO laboratory in Sunbury was employed 

in this study for smoke detector calibration and some further tests. Figure 25 is a 

labelled photograph of the tunnel. The chamber dimensions and airflow direction are 

shown diagrammatically in Figure 26. Although airflow could be varied it was set at 0.2 

m/s for all tests in this study. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 TYCO Smoke Tunnel photograph 
 

 

 

 

 

 

Figure 26 TYCO smoke tunnel dimensions 
 

2.1.1 Smoke Tunnel data monitoring  

The smoke tunnel was fitted with detector bases for TYCO detectors which could be 

coupled to a MX panel simulator box and computer (PC not shown in figure 26) 

allowing output from 801 series detectors (8 bit digital with polling interval normally 
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set to 5 seconds) to be collected and stored as data files which were subsequently 

processed in Excel. The smoke tunnel was also equipped with MIC ionization detector 

(not visible in photograph) and an optical absorption meter with design characteristics 

close to the BS EN54/7 specification. Unlike the designs used in standard test fire 

rooms, the tunnel absorption meter has light source and photo-detector on the same side 

of the tunnel and a retro-reflector on the opposite side of the tunnel so path length is 

twice tunnel width. Output from these units was converted to via a PICO Technology 

Ltd ADC-16 to allow recording as data files on a PC. 

 

Within this study the smoke tunnel at TYCO Sunbury was primarily used for smoke 

response calibration/ validation work on standard MX series commercial smoke 

detectors (types 801PC, 801PH, and 801I) and experimental variants based on those 

designs. 

 

The smoke tunnel was also used for tests using the Owlstone FAIMS equipment 

following its transport to Sunbury from UCLan. (Preston) for the May 2010 standard 

fire tests at BRE. Details covering the FAIMS equipment, test procedures, and results 

are provided in chapter 6. 

 

2.1.2 Equipment and Calibration Procedures at TYCO Sunbury 

TYCO supplied standard and non-standard smoke detectors and some sensor devices 

and ancillary equipment for use in the study. This equipment was primarily utilised at 

UCLan. In the fire test room at BRE but visits to the TYCO Fire Protection Products 

R&D facility at Sunbury were used to carry out checks and calibration runs on devices 

along with TYCO staff using facilities at that site including a re-circulating smoke 

tunnel, a small heat tunnel, and a CO sensor calibration system. The CO calibration 

system used certified (< than 1% error) bottled CO in artificial air with a gas blender 

(Signal Model 821 Gas divider) mixing with cleaned air (from Signal AS80 Air 

Purifier) to give selectable concentrations at 10% intervals relative to the CO/air bottle.  
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2.2	  UCLan	  fire	  Chamber	  	  
 
Although a target of the work was to characterise fire gas emissions on full-scale 

standard fires, availability and cost of standard test room facilities required that method 

development and a body of measurements be carried out at a more convenient smaller 

scale. Dimensions of a 2 m3 box structure (1 m2 base, 2 m. height) were selected as 

practically convenient. A series of experiments were conducted to determine behaviour 

of the smoke in the box and to identify suitable scaled fire sources to emulate behaviour 

of standard full-scale fire tests.  All the fire test experiments at UCLAN were carried 

out in the in-house constructed enclosure illustrated in Figure 27, which was constructed 

from a frame of welded angle iron with extension legs added (500mm) along with 

coasters to make the entire enclosure mobile. Sheets of standard 10mm plasterboard 

were slotted into the four sides of the frame (1000 x 2000 mm) and held in place by the 

base (1000 x 1000mm) before being sealed in place. 

 

The diagram of the smoke chamber roof displays the location of the optical bench meter 

(path length 691mm), and the location of the TYCO fire detection units. The sensors are 

positioned on a 60o arc at the front of the smoke chamber. The smoke chamber floor 

diagram shows the fire source location 200 mm from the back of the smoke chamber 

The roof was constructed to allow access to the sensor locations and allow easy 

cleaning. The roof was constructed of two layers of plasterboard to aid disassembly and 

cleaning and for convenience in attaching sensors, fire detectors, and gas aspiration 

lines. 

 

To clear the experimental chamber between experiments an extraction point was cut 

centrally into the rear wall 1500mm from the base of the chamber. A 35W centrifugal 

shower fan kit was connected (ex Screwfix). The extraction rate of the fan was 110m3 

per hour (1.8m3 per minute). The chamber is designed to not be entirely airtight so 

changes in pressure can be accommodated. 
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Figure 27 Design of UCLan. in-house fire test enclosure 
 

 

A 600 x 600mm inspection opening was cut into the front wall of the smoke chamber 

with the bottom of the opening located 800mm above the chamber floor. A dense foam 

rubber door seal was put in place surrounding the opening on the outside of the 

enclosure. A removable door/ inspection hatch comprising a 10mm thick clear 

polycarbonate sheet was held in place over the opening by two beams. The beams were 

designed to be located on threaded bolts fixed to the chamber walls so that tightening 

wing nuts on the bolts forced the beams to push the polycarbonate sheet onto the foam 

rubber producing a stable air tight seal over the opening. 

 

All walls were internally treated with a PVA type plasterboard sealant, and then painted 

with low VOC heat resistant paint, and layers of commercial white matt paint. In 

between tests the chamber is cleaned out using dry micro fibre cloths. When smoke 
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deposits built up to the point they could not be removed using this method an additional 

layer of paint was added. This was only done between series of experiments to reduce 

variance factors 

 

2.2.1  UCLan enclosure Sensor, Detector, and Sampling locations 

Positions for detectors, sensors, and sampling at the roof of the UCLan 2 m3 enclosure 

were as indicated in Figure 28. The TYCO devices 39,211, 17, 209 and 100 were 

positioned in equally spaced locations on the roof of the enclosure at least 150 mm 

away from any adjacent devices or the side/rear walls of the enclosure. The devices 3 & 

9 were located on the sidewalls of the enclosure 200mm from the roof and 300mm from 

the rear wall of the enclosure. Device 5 was located outside the box and was used as a 

control reference. The remaining devices were TYCO experimental devices and 

positioned on the rear wall 200mm from the roof and at equally spaced points along the 

wall.  Adjacent devices were located at least 150mm apart and 150mm from the 

sidewalls. 
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Figure 28 Schematic of the device layout on the roof the UCLan fire enclosure. 

Spacing:- a= 150 mm, minimum detector base to wall b = 200mm 
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The key in Figure 28 shows the locations of the other measuring devices. The NDIR 

sample line was centrally located in the ceiling and sampled gases at 2l min-1 through a 

6mm OD flexible Teflon tube (0.25mm WT). The electrochemical sensors were 

positioned equal distances (150mm) from the NDIR sampling point and along the 60o 

sampling arc . The 7EtO cell passive sampled the gases where as the 7HYT sensor has a 

small computer-cooling fan attached to aid aspiration. Finally 4 equivalent sampling 

ports were cut close to the TYCO devices to allow for the collection of fire gases onto 

the sorbent resins. These also used 6mm OD Teflon sampling tubes sampling at a rate 

of 70-120ml min-1. Assessments were made using joss sticks to ensure the proximity of 

the sampling ports did not adversely affect the gas flow to the detectors.  

 
The fire detectors used were based on TYCO’s MX 800 series BS EN 54 compliant fire 

detectors as indicated in table 6. The output from the detectors monitored with MX data 

recording system consisting of a panel emulator, associated software and PC. Many of 

these devices and the panel simulator were used both at UCLan and for full-scale 

standard test fires performed at BRE, Watford.  

 

Detectors are arranged on a common power and communication loop connected to the 

MX panel emulator. Over 100 detectors may be connected to the communication loop. 

Generally the loop used with the enclosure comprised of 7 standard detectors with 5 

detectors arranged on the ceiling of the UCLan fire enclosure as indicated in Figure 28. 

Additional detectors could be located on bases located on the interior sidewalls of the 

enclosure 200mm from the roof and directly adjacent to detectors at the end of the roof 

arrangement. 

 

In addition to the standard detectors for many of the tests 5 non-standard fire detectors 

were connected to the loop and located at supplementary detector bases near of the front 

of the fire enclosure 300mm from the roof with 150 mm between detector bases.  

 

Following each test the smoke was evacuated and the fire debris was weighed. The 

sampling system was cleaned and replaced where appropriated and the walls of the fire 

enclosure were cleaned between tests and prior to new tests the temperatures were 

allowed to equilibrate.  
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2.2.2  UCLan Enclosure - Airflow  

The Airflow in the fire enclosure was monitored using a calibrated hot wire anemometer 

between fire tests. Flow was checked at locations 200mm from the floor, at mid height, 

200mm from the roof, at centre and near walls (up to 18 locations) New tests were  

carried out when all measurements showed airflows less than 0.1 m s-1. Data was 

recorded thoughout each of the fire tests (not presentented) with the average and 

maximum values noted.The values were not presented as the airflow was primarily a 

pretest check and during the tests the airflow was never greater than 0.2ms-1. 

 

2.2.3 UCLan Enclosure Hot plate  

BS EN54/7 test fire TF2 involves heating wood on a hot plate. Similar arrangement was 

required for use in the UCLan enclosure for reduced scale emulations of TF2 and for 

some other tests (heating electrical PCB, PVC insulated wire, and cooking oil). The hot 

plate used in the final versions of the scaled fire tests was a commercially available 

single (1100kW) hot plate, the surface of which (diameter = 75mm) was formed with 

2mm grooves. The heating rate as measured using a thermocouple in contact with the 

hot plate was 11oC per minute. 

 

2.2.4 UCLan Enclosure Spark generation ignition source  

A spark generator source was constructed with step up transformer, control circuitry and 

shielding. Two prepared copper electrodes across which a spark could travel provided 

the ignition source. The copper electrodes are placed close to a fuel source within the 

scaled fire enclosure and allowed remote ignition of test fires. It was primarily used in 

rapid onset fires including heptane pool fires (TF5 type fire and UL268 fire), methanol 

fires, smouldering and flaming paper fires and flaming polyurethane foam fires. 

 

2.3 Detectors employed 
Optical scatter and ionization type smoke detectors provided for use in this study were 

either standard MX series units or variants produced by modification of MX series 

detectors. TYCO MX series detectors are configured to convert output from 

incorporated sensors to a 8 bit digital form. The digital output is transferred via a two 
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wire common power and signal loop, which can carry multiple devices (up to 200 

standard unit). Response is collected in Excel readable log files. The log files record 

time and sensor bit outputs and each device on a loop is identified by an address (0 to 

255) and unique serial number. The standard detectors are types 801PC, 801PH, and 

801I: 

� 801PC: Commercial device with sensors for three detection channels (optical 

scatter, carbon monoxide, and temperature). The optical scatter uses an IR 

wavelength (~850 nm) LED 

� 801PH: Commercial device with two detection channels (optical scatter and 

temperature). The optical scatter channel uses an~850 nm LED as for 801PC but 

with higher (~x 3) sensitivity setting. No unmodified versions of this device type 

were in regular use for this study. 

� 801I: Ionization type smoke detectors supplied with normal high sensitivity 

commercial product setting. These units operate by measuring ion current in air 

ionized by Am241. Smoke particles bind to ions and being relatively massive 

compared with the gaseous species are less mobile reducing the ion current. 

These units operate on the same principle as the MIC devices included in fire 

test standards but without aspirated airflow and with narrower dynamic range 

covered within the bit output limits. A device modified to give a wider dynamic 

range was employed in the later BRE tests. 

 

Non standard optical scatter detectors were generally based on 801PC or 801PH devices 

incorporating one or more LEDs covering wavelengths other than or addition to the 850 

nm (near IR) of standard devices. The standard 801PC and PH devices employ silicon 

photodiodes provided with optical wavelength filtering built into the packaging. All the 

non standard devices, including those with blue or UV LEDs, also employed silicon 

photodiodes but of types selected to pass relevant wavelengths. These devices were 

constructed to allow monitoring of scattering at different wavelengths as this may be 

expected to depend on particle size and type. In general the theory of Mie scattering 

suggests smaller particles should increase scattering at shorter wavelengths. Fire smokes 

may consist of a broad rage of sizes so the effects were not necessarily expected to 

predictable. These special devices were supplied from TYCO Sunbury and included 

devices with LEDs operating at ~465 nm (blue), 850 nm (near IR – standard), 1070 nm 

(near IR – longer than standard), and 370 nm ( UV). 
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Two of the special devices produced by TYCO and employed in this study use light 

sources which are combined blue (465 nm) and near IR (~850 nm) emitters so that the 

same optical test volume is addressed by both wavelengths. One device (address 32, 

type BIR) has blue and IR led chips together in the same optical pack, while the other 

(address 12, type Phosphor) has a blue (465 nm) LED loaded with a phosphor which 

emits near IR (predominantly ~850 nm) when excited by blue light. These units use 

time based filtering to separate out photodiode signals arising from the blue and IR 

emissions and scattering. 

 

Detectors linking to the MX801 logging system used in this study are summarised in 

table 6 below. 
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MX 

Address 

Serial 

Number 

Model/ 

type 

 

Further Information 

3 12019CBCE 801PC Standard type – NIR scatter, temperature, CO 

6 12019CC56 801PC Standard type– NIR scatter, temperature, CO 

9 92019CC09 801PC Standard type– NIR scatter, temperature, CO 

102 120049EA8 801PC Standard type– NIR scatter, temperature, CO 

117 12019CC2E 801PC Standard type– NIR scatter, temperature, CO 

39 12019CC11 801PC Standard type. – NIR scatter, temperature, CO 

Generally wall mounted in UCLan enclosure. 

17 1200C0C9C 801PC 

modified 

With extended CO range (> 400 ppm). 

Standard NIR scatter, temperature 

1 120049F36 801PC 

modified 

With unfiltered CO cell, Zellweger, Part No. 

2119B1003. Standard NIR scatter, temperature 

209 92019301A 801I Standard Ionization type 

210 8006FBE8 801I 

modified 

Ionization type with ~6x extended dynamic 

range. 

211 820044C2D 801I Standard Ionization type 

32 20382815 BIR special dual LED IR and blue 

12 20382805 Phosphor blue LED and IR phosphor device 

170 9200002A4 801PH blue 

LED 

blue LED in 801PH detector type package 

38 12019CC13 801PC UV 

LED 

UV LED (370nm) in 801PC detector type 

package 

47 12019CBFF 801PC 

longer NIR 

LED 

IR LED (1070nm) in 801PC detector type 

package 

100 920000266 801PH 

modified 

Humidity sensor replacing optical in 801PH, 

provided with min-fan. 

135 8000060 801PC 

modified 

801PC converted to give bit outputs from 3 
analogue 

inputs to MX log. Chan. av0 and av1 used for 
7ETO 

and 7HYT cells. 
Table 6 Summary of MX 801 Detectors and Variants 
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2.3.1 Calibration of Optical Scatter devices.  

Unlike optical obscuration where span can be unequivocally set by measurements in 

clear air (0% obscuration) and completely blocked (100% obscuration), optical scatter 

device sensitivity is dependant on device geometry, LED and photodiode choice and 

amplification settings, and finally the nature of the smoke. There are really no absolute 

scattering standards which may be employed for optical scatter fire detectors. Function 

and stability checks on devices can however be carried out by recording detector 

response to reproducible aerosols under reproducible air flow conditions. This is 

achieved at TYCO Sunbury using fan driven smoke tunnels with aerosol or smoke from 

a generator or reproducible combustion source. Devices for this study were “calibrated” 

using smoke from 5 smouldering joss sticks (taken from a large stock held for this 

purpose) and an air flow of 0.2 m./sec. using the in-house smoke tunnel described 

above. Calibration runs were performed before devices were supplied to UCLan. At 

about mid point and the end of the study. For most calibration runs reproducibility of 

the test was checked by including a “gold standard” reference optical scatter detector 

held at TYCO Sunbury for checking other reference devices used in setting levels for 

factory production testing. In some runs measurements of optical absorption and MIC 

output were also collected. Results from a typical run carried out under the standard 

conditions are presented in Figure 29 below showing response with time as smoke 

levels increase for a standard 801PC detector, a “gold standard” detector held for quality 

control purposes at TYCO Sunbury, and Obscuration %/m calculated from the tunnel 

obscuration meter output.  
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Figure 29 Standard detector calibration run using joss sticks in TYCO smoke tunnel.  

 
The image on the left is the responses versus time as smoke increases. The image on the 
right is the 801PC (address 3) optical scatter channel output change versus obscuration. 
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Response versus obscuration is shown above as bit output minus the pedestal value (bits 

output for clean air). 

 

At UCLan additional validation/ stability testing was carried out at monthly intervals 

using 5 smouldering joss sticks (same batch as used at TYCO Sunbury) in the UCLan 

Reduced scale enclosure described below but with a large office fan operated in the 

enclosure to provide good mixing and smoke transport. Device outputs were checked 

against previous measurements and response of a secondary standard detector used at 

UCLan only in these stability test runs. 

2.3.2 Electrochemical sensor response calibration  

The majority of electrochemical gas sensors used in the study were supplied and 

initially calibrated at TYCO Sunbury and then periodically recalibrated at both Sunbury 

and more frequently at UCLan Preston. Honeywell 6th Sense CO sensors (originally 

developed and marketed by Zellweger before acquisition by Honeywell) are 

incorporated in 801PC detectors supplied for the project and these were calibrated in the 

detectors i.e. corresponding detector outputs calibrated. One further 6th Sense CO sensor 

was provided for operation outside of a detector operated with a potentiostat and 

calibrated as described for the 7ETO electrochemical cell below. 

 

One 801PC detector (addr. 1) used in a limited number of tests did incorporate a 3 

electrode Zellweger CO (H) sensor cell, Part No. 2119B1003, which is geometrically 

very similar to the 6th Sense CO sensors and believed to contain similar electrode 

materials but no activated carbon filter. Operated in 3 electrode mode this unit has a 

sensitivity of ~100 nA/ppm CO. When operated in an 801PC detector in 2 electrode 

mode (reference electrode not connected) as for the standard 6th Sense cells, the CO 

response is approximately halved leading to CO channel detector sensitivity very 

similar to the standard 801PC units.  

 

Two further detectors purchased by TYCO from City Technology were supplied for use 

in the study. These were a hydrogen sensor 7HYT, and an ethylene oxide sensor 7ETO 

and performance was checked at TYCO Sunbury before supply to UCLan. Using 

potentiostat circuits based on designs provided on the City Technology website or a 

Sycopel Scientific Ltd Ministat 251 Precision Potentiostat. 
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Both are 3 electrode designs with sensing, counter and reference electrodes. The 7HYT 

device is operated with sensing and reference electrodes held at the same potential (zero 

bias). The 7ETO device is operated with sensing electrode held 300 mV positive with 

respect to the reference electrode. 

 

The 7ETO device was purchased on the basis that the City Technology data sheet 

indicates that although it is produced as an ethylene oxide sensor, it shows a wide cross 

sensitivity to other oxidisable gases. Testing of the 7ETO device at it is expected to 

show non selective response to a wide range of oxidisable gases.   

 

2.3.3  CO sensors in 801PC devices 

The study included measurements of CO from test fires and other sources using 

electrochemical gas sensors. Primarily this was carried out using 801PC fire detectors 

incorporating electrochemical CO sensors (Honeywell 6th Sense).  These are 2 electrode 

devices with a working (sensing) electrode and a counter/ reference electrode as 

described in chapter 1.  

 

The Honeywell 6th Sense CO detectors are engineered to show very little response to 

most potential interferants such as organic vapours at least partly because they 

incorporate activated carbon filters to prevent such species reaching the sensing 

electrode. It has a nominal range of 0-500ppm and technical information on 

performance and operations is available from the City Technologies (Honeywell) data 

sheet [103]. Cross sensitivity data from the sensor manufacturer is included below as 

table 7. Checks carried out at TYCO Sunbury also showed that response by these 

sensors to hydrogen is not only relatively low but also transient so that for slow growing 

fires at least (smouldering types) even if hydrogen is present it may not affect CO 

readings significantly. 
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Gas Concentration 

used (ppm) 

Reading (ppm 

CO) 

Gas Concentration 

used (ppm) 

Reading (ppm 

CO) 

CO 50 50 CH2CH2 100 85 

H2S 10 38 CO2 5000 0 

SO2 2 1 NH3 50 0 

NO2 3 -1 CH4 5000 0 

Cl2 2 <2 CH3CH2OH 40 12 

H2 100 10    

Table 7 Cross sensitivity table taken from Honeywell data sheets.  
  
The 801PC detectors incorporate circuitry which acts as a potentiostat maintaining zero 

potential between the electrodes and converts the current which passes as CO is 

oxidised at the working electrode to a bit output. Standard construction 801PC devices 

have an output of 2 to2.5 bits/ppm CO giving a dynamic range of ~100 ppm. Units 

generally have a pedestal (zero CO) value of ~22-30 bits and a maximum output of 255 

bits. One device (address 17) was converted to lower sensitivity to give a dynamic range 

of ~500 ppm CO and much of the data presented is derived from that device. 

 

The detectors were checked and calibrated at TYCO Sunbury before supply to UCLan 

and ~mid way and at the end of the study using certified (< than 1% error) bottled CO in 

artificial air supplied by Air Liquide (original bottle 411 ppm, later bottle 416 ppm) and 

a gas blender (Signal Model 821 Gas divider – recalibrated annually by manufacturer) 

mixing with cleaned air (from Signal AS80 Air Purifier which passes pumped air over 

heated Pt to remove any oxidisable material) to give selectable concentrations at 10% 

intervals relative to the CO/air bottle. Some further checks were carried out directly 

with certified 36.5 ppm (< than 1% error) CO in artificial air supplied by BOC which 

gave results consistent with the gas supplied by the blender. Little change in sensitivity 

was found over the period of the study. 

 
Figure 30 shows test results for the extended CO range 801PC device. 
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Figure 30Extended CO range 801PC calibration. (Left) Is a measurement versus time 

(Right) Is the response versus CO concentration in air 
 

The CO response for 801PC smoke detectors, and for the NDIR CO measurement 

system was checked at approximately weekly intervals at UCLan using controlled 

volume feed from bottled gas (CO/CO2 mix from BOC 6000ppm/4%) into the 2 m3 

enclosure with fan assisted mixing. 

 

2.3.4  Electrochemical sensor for hydrogen 7HYT  

The City Technologies hydrogen sensor (7HYT) was used both with and without fan 

aspiration of air to the sensor to monitor hydrogen concentrations during experiments 

both at UCLan and at BRE. It has a nominal range of 0-1000ppm with a resolution of 

2ppm under normal operating conditions. The 7HYT sensor has known but limited 

cross sensitivity to a range of gases including carbon monoxide as indicated in the table 

below reproduced from the device data sheet. Initial measurements at TYCO Sunbury 

confirmed response to hydrogen (generated electrochemically in a ~20 litre Perspex 

enclosure) was as given in the data sheet ~30 nA/ppm and the TYCO CO calibration 

confirmed that cross sensitivity to CO was low (<5% of hydrogen response) as indicated 

cross sensitivity information taken from the device data sheet reproduced as table 8 

below. 
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Gas Concentration 

used (ppm) 

Reading 

(ppm H2 

equivalent) 

Gas Concentration 

used (ppm) 

Reading 

(ppm H2 

equivalent) 

CO 300 0<X<60 CH2CH2 100 80 

H2S 15 <3 NO2 5 0 

SO2 5 0 HCN 10 3 

Cl2 1 0 HCl 5 0 

NO 35 10    

Table 8 Cross sensitivity of the 7HYT cell as derived from CiTi technology product 
data sheet. Values correspond to the unmodified cell without the zorflex filters  

 

To reduce the cross sensitivity vapours in smoke the 7HYT was placed behind a filter of 

Zorflex activated carbon cloth (Calgon) when used for fire tests.  Once transferred to 

UCLan. the 7HYT hydrogen sensors were calibrated on a monthly basis using a 2-point 

(0 and 500 ppm) measurement based on high purity bottled hydrogen injected into a 

chamber containing a mixing fan. Output from the potentiostat across a 5000 Ω 

measuring resistor remained close to 75 mV, in line with data sheet response of 

30 nA/ppm. 

 

 
 
 

 
 
 
 
 
 
 
 

Figure 31 The figures show the response of the 7HYT sensor (V) to the increasing 
levels of hydrogen 

2.3.5  Electrochemical sensor for oxidisable gases (Ethylene oxide sensor) 
7ETO 

The 7ETO device was purchased on the basis that the City Technology data sheet 

indicates that although it is produced as an ethylene oxide sensor, it shows a wide cross 

sensitivity to other oxidisable gases as indicated in table 9 derived from the cell data 

sheet. 
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Gas Concentration 

used (ppm) 

Reading 

(ppm Et2O 

equivalent) 

Gas Concentration 

used (ppm) 

Reading 

(ppm Et2O 

equivalent) 

CO 200 80 CH3CH2OH 100 55 

C7H8 100 20 CH3COCH2CH3 100 10 

Table 9 Cross sensitivity of 7EtO cell derived from manufacturers data sheet 
 

The unit was calibrated both at TYCO Sunbury and at UCLan. Using CO and responses 

in fire tests are expressed as “equivalent CO ppm” and should be the sum of signal 

arising from CO and that from other oxidisable gases such as simple and partially 

oxidised hydrocarbons. Tests carried out did not include measurements of relative 

sensitivities to organic species and CO but the data sheet information indicates that will 

be very dependant on structure. It is likely that sensitivity will be particularly high to 

small easily oxidised molecules such aldehydes and unsaturated hydrocarbons. 

 

Unit calibration at TYCO employed the equipment described earlier and as used for CO 

testing of 801PC detectors. Figure 32 shows response to CO of the 7ETO cell coupled 

via potentiostat and buffer to one channel of a modified MX detector (address 135, 

801PC modified to provide 3 A to D channels). 
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Figure 32 CO test of 7ETO sensor linked to MX device (left) Measurements versus time 
(right) Response versus ppm CO in air 

 
This unit was used at UCLan and at BRE. The sensor output was calibrated against 

known CO concentrations from CO/CO2 calibration gases  (BOC 6000ppm/4%) in the 

scaled fire enclosure) on a weekly basis and monitored for variation. All results from 

the 7EtO device are reported as ppm equivalence of CO concentration.  
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2.3.6  Electrochemical Oxygen Sensor Citicel 2FO 

Oxygen concentrations within the UCLan 2 m3 enclosure was measured using a 2FO 
selective oxygen sensor produced by CiTiceL which was used and calibrated at UCLan 

only. This device has a current output related to oxygen content of gas by  

Equation 17 below. When new the device gave ~0.4 mA in normal air and this declined 

only slowly during the period studied. 

 
S  =  K.ln(1/(1-C)) (17) 

 
Equation 17  Calculation of the oxygen gas concentration using the 2FO oxygen cell. 
 
Where S is signal, C is oxygen concentration expressed as a fraction i.e. 0.209 for air, 

and K a proportionality constant determined by calibration.  

 

Output was monitored by a DVM across a load resistor (50 Ohm) resistor (giving ~20 

mV in air). During tests the values were recorded manually as variations were small and 

changes were not rapid. 

 

The 2FO electrochemical cell has a bulk flow cap to reduce interference from sudden 

fluctuations of pressure, and an operational range of 0-25% O2. To check for changes in 

sensitivity the unit was calibrated on a monthly basis using high purity nitrogen (BOC) 

and air as 0 and 20.9% oxygen. 

 

2.3.7 Fire Detector Temperature sensor Calibration  

801PC and 801PH devices and some of the variants used for this study incorporate 

thermistor devices for temperature measurements and provide output in bit form. The 

temperature response of each device was calibrated before supply to UCLan in flowing 

air in a heat tunnel at TYCO Sunbury and in house method, recording bit output 

response during a 3 oC/minute temperature ramp. Figure 33 shows a plot produced from 

an example record. Temperature sensitivity for these devices is very stable. 
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Figure 33 Example 801PC temperature channel calibration 
 

At UCLan, validation of detector temperature sensor response was carried out on a 

continuing basis by referring the devices temperature response to that of a K type 

thermocouple itself checked periodically with ice (0oC) and steam above boiling water 

(100oC). 

2.3.8  UCLan Enclosure NDIR for CO and CO2 

A general introduction to the application of the IR techniques and particularly NDIR 

was provided in chapter 1. A dual fixed wavelength NDIR device (Unicam 22PU 

NDIR) was used with the UCLan 2 m3 enclosure to monitor the carbon monoxide and 

carbon dioxide concentrations in the fire gases. Gas input to the NDIR system was from 

a fixed sampling point in the roof of the fire enclosure. As the NDIR system uses an 

aspirated sampling pump care was taken to ensure sampling did not interfere with the 

smoke transport to sensor/ detector locations. 

 

The NDIR device sampled at a rate of 2 l min-1 with a sampling time of 15 seconds. The 

sample path length was 10 mm. High purity nitrogen gas was used to provide a 

reference zero value and this was checked on a daily basis using the inbuilt instrument 

validation system. The span was checked on a daily basis using a maximum value was 

supplied by calibration CO/CO2 gas. 
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An additional validation in the UCLan enclosure was carried out each week. This 

involved measuring the response of the CO and CO2 channels to 10 litres of CO/CO2 

(6000ppm/4% in air) calibration gas fed into the enclosure at a rate of 1.7 litre min-1 (for 

353 seconds). A fan was used to ensure the calibration gas was adequately mixed in the 

2 m3 enclosure to give 30 ppm CO, 0.02% CO2. After gas injection and mixing the 

instrumental readings for the CO/CO2 levels were monitored until the levels reached a 

plateau. 

 
 
 

 

 

 

 

 

 

Figure 34 The figure shows the validation checks used for the NDIR device in the 2m3 
UCLAN fire chamber , The values are averages of regular checks (n=13)  

 

2.3.8.1	  	  UCLan	  Enclosure	  Calculation	  of	  CO/CO2	  yield	  by	  NDIR	  	  
The NDIR gives us a convenient method for defining yield and ratios of CO and CO2 

formed in fires. The Ratio is expected to vary depending on fire type and the degree of 

fire development and may also be informative with respect to nuisance sources.  

If at a given time CO concentration = a ppm, and increase in CO2 concentration = b 

ppm. 

 

Then CO/CO2 ratio  =  a/b   (assuming volume ratios used for ppm definition equate to 

molar ratios, which should apply well for these gases in air at atmospheric pressure. 

Using ppm values averaged over the test duration to calculate CO/ CO2 may provide a 

value generally characteristic of fire type.  Calculations based on a series point of time 

ppm values and yielding the corresponding ratios may be taken as indicative of fire 

condition development. 
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One may attempt to calculate yields of CO and CO2 from combustion based on weights 

of fuel before and after fires but the validity of that depends on the degree of gas mixing 

in the enclosure, a feature not controlled in these fire test emulation experiments. Values 

are not therefore presented. 

 

2.3.9 UCLan Enclosure Humidity sensors  

Humidity sensor : The moisture changes in the enclosure were monitored using a 

humidity sensor device (HONEYWELL HUMIDITY SENSOR, 2.54MM, SIP , HIH-

4000-001, Farnell stock code 1187547) which was coupled into a modified TYCO 

801PH fire sensor (addr. 100, ser.no920000266) where the photo-sensor input is 

replaced by humidity sensor input. This allowed humidity sensor output to be monitored 

and logged in bit form simultaneously to the same files produced for the TYCO smoke 

detectors. A miniature fan (25x25x10mm, NMB, 1004KL-01W-B40-B00, Farnell stock 

code 1545794) was mounted into the detector cover to produce a significant airflow 

over the sensor, as response was otherwise excessively slow. 

 

A three point validation of the humidity sensor range was performed using conditions 

corresponding to 0% RH, 41% RH and 100% RH (dry bottled air, and air bubbled 

through fine frit in salt solution and pure water). Using these values a response chart 

(figure 35) was constructed from which humidity readings could be calculated.  
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Figure 35 Example of three-point calibration curve used for the analysis of humidity 
data Conversion of RH % to ppm values based on temperature and literature tables. 

 

2.3.10 UCLan Enclosure Optical Density measurements 

The BRE test room is equipped with on Obscuration measurement system as required 

by BS EN54/7. Such commercially produced equipment was not available for the 

UCLan measurements so an in house built obscuration detector was constructed for 

incorporation into the enclosure using an 890 nm IR LED (10o viewing angle) and a 

receptor separated by a 0.691m path length. The LED and photosensor were chosen to 

meets the specification of a light source from the BS-EN 54 standard – as below 

The wavelength of the light was selected so it has the following specifications;  

4. At least 50% of the radiated power shall be within a wavelength range from 

800nm to 950nm.  

5. Not more than 1% shall be in the wavelength range below 800nm.  

6. Not more than 10% shall be in the wavelength range above 1050nm. 

 

Prior to each test the obscuration device range was checked by measuring the output in 

free air and completely obscured by a non trans-missive sheet.  

 

The analogue output from the unit was linked via a buffer amplifier to a TYCO 801PC 

detector (address 135) converted to provide A to D function so that it could be 

simultaneously logged onto the same data files containing the output of TYCO smoke 

detectors. The bit output for the system is linearly related to photosensor output and 

covers the full range between 0 and 100% transmission. The bit output is converted to 

Obscuration (%Obsc.m-1) using the path length 0.69 m using the expressions below;  
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 Output fully obscured   =  a bits  (typically 4 bits) 

 Output for clear air   = b bits (typically 155 bits) 

 Output for a smoke level  = c bits 

  

Transmission Fraction through smoke = Ts = (c-a)/(b-a)  (18) 

Equation 18 Calculation of the transmission fraction of light through smoke. 
 

For a path length m. 

Obscuration as %Obsc.m-1  = 100 x (1-Ts
1/d)  (19) 

Equation 19 Calculation of the obscuration per meter (%Obsc.m-1) for any path length 
(d) from transmission measurements. 

 

So for UCLan obscuration unit path length = 0.691 m 

 

Obscuration as %Obsc.m-1  = 100 x (1-Ts
1.447)  (20) 

Equation 20 Calculation of the obscuration per meter %Obsc.m-1 for the UCLan device 
 
System stability, particularly under low smoke obscuration conditions. Table 8 below is 

a random selection of bit output values collected at the instrument calibration stage 

carried out before test fire emulations in the UCLan enclosure.  

Sample 100% 0% 

1 154 4 

2 156 4 

3 154 4 

4 161 4 

5 158 4 

6 164 4 

7 152 4 

8 154 4 

9 151 4 

10 160 4 

Table 10 Output for randomly selected obscuration device measurements 
 

A significant issue was signal to noise which was particularly significant at low 

obscuration levels.While the output when obscured (low light) is stable, it is clear that 

there is significant variation under clear air conditions amounting to up to ~13 bits 

(from column 2 of Table 8) corresponding to an obscuration range of ~12 %/m.  Taking 
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multiple measurements reduces the “noise” and clear air bit values tend to cluster 

around 155 bits. Some variation in performance was observed related to stability of the 

optical obscuration detector arising from the use of a battery to power the unit but this 

element was largely dealt with by the 2-point calibration being carried out before each 

test. Smoothing during actual smoke measurements when smoke levels are changing is 

more complex and inevitably introduces some effects on time response for obscuration 

measurements. The data was smoothed using a post processing Savitsjy-Golay filter. 

The Savizky-Golay[104]  smoothing filter is essentially a local polynomial regression 

fit that works in similar way to moving averages, but retains the features of distribution 

such as the minima and maxima that can be sometimes otherwise lost using other 

smoothing techniques.  

 

To check the response of the optical device is linear over the entire range of the light 

span two filters (Neutral density filters supplied by Omega Optical) were used to 

measure the optical response at specific obscuration. These were listed as 0.3 and 0.8 

obscuration filters. Measurements using the UCLan obscuration device resulted in 

optical transmission decreasing by 68± 4% and 20±3 % respectively. 

 

2.4 Gas collection, chromatography, and analysis - GC/MS system  
Collection of gases/vapours using absorbent media and application of GC and GC/MS 

to measuring and identifying such products was introduced in general terms in 

chapter 1.  Section in this chapter deal with the actual sample collection processes 

employed at UCLan and at fire tests at BRE Watford, and the procedures for GC/MS 

measurements on those samples at UCLan. 

 

2.4.1 Collection of Fire Gases on Absorbent Media  

Samples of fire gases were collected onto absorbent media in sample tubes for 

subsequent GC/MS analysis. Unless otherwise stated, the sampling point was located in 

the centre of the fire enclosure roof. Figure 36 shows a schematic of the sampling 

arrangement.  

 



104 
 

 
Figure 36 Diagrammatic representation of fire product sampling set up for fire 

enclosures. The 1-micron filter is to remove particulates. 
 

Connections were made with 6mm Teflon coated plastic tubing. To prevent the build up 

of adsorbed vapours from fires in the sampling arrangement the tubing was replaced or 

cleaned on a daily basis during testing or on changes of fire type. Tubing was cleaned 

by flushing with clean water and methanol and then blown dry. 

 

Filters used were Whattmans 0.1 micron filters (polydisc TF 0.1µm), inspected between 

fire tests and replaced if filter was being substantially darkened or every 50 tests (sooner 

in the case of contamination). The filter was also changed whenever the fuel type was 

changed.  

 

The sample tubes used were 110 mm long with a diameter of 6mm OD and 4mm ID. 

Tenax sample tubes were packed with 135mg of 60:80 mesh Tenax TA, and Carboxen 

sample tubes were packed with 500mg of 60:80 mesh Carboxen 1000.  

The sampling rates for these different materials were:  

 

� For Tenax sample tubes    70 ml min-1 

� For Carboxen sample tubes  120 ml min-1  

 

Flows were set with a mass flow controller and mains powered pump unit capable of 

providing smoothed flow rates up to 2000 ml min-1. 

 

Resins were conditioned prior to use in accordance to the manufacturers guidance  

[105]. Between sample collections the absorbent containing sample tubes were 

cleaned/conditioned using a shorter conditioning process (15minute in helium flow at 

320-350oC for Tenax and 280oC for Carboxen). 

 



105 
 

Equipment, components, and methods can introduce sampling variation which may 

need to be controlled or monitored by the operator. Although each sample tube provided 

by a commercial source has been tested for conformity in the amount and packaging of 

the material, variations within the sets of sample tubes used may confer variability to 

the data set through slight changes in the way the absorbent surface is made available to 

the analytes or packing differences affecting flow resistance and so changes in pressure 

and/or flow during collection or desorption. To allow systematic effects of this type to 

be identified a system of sample tube tracking was used. Each of the sample tubes 

supplied from Sigma Aldrich is supplied with an identifying serial number and other 

sample tubes were etched with a glass-engraving pen and given in house identification 

numbers. Each sample tube was labelled and catalogued so the response could be 

monitored historically. This allowed sample tube use to be tracked between experiments 

and linked to individual tests and GC/MS runs. 

 
On a 3 month cycle each sample tube is checked using a standard injection. The 

standard injection was part of a validation check. For Carboxen samples 1ul of 2 

Propanol was injected directly onto a clean 500mg Carboxen sample resin trap that was 

then desorbed under normal test conditions .In the case of Tenax samples 1ul of n-

heptane (ex sigma GC purity standard) onto a Tenax sample tube. It was noted that for a 

given test type, greater GC reproducibility was seen when the same sample tube was 

used as compared to when samples were collected on different tubes. Each tube can be 

used for 50 samples before either being replaced or cleaned out and repacked with a 

new absorbent material charge.   

 

The tubes were checked for background/carryover between samples repeating the 

analysis program with the cleaned/conditioned tube in place of a sample tube and the 

background levels assessed. If carryover was observed then the tube was subjected to an 

additional cleaning procedure and if persistent contamination is observed then the 

sample tube is replaced.  

 

Collected samples were analysed within 24 hours of collection where possible. Samples 

that needed to be stored were kept in sealed storage tubes at 4oC for up to 3 months.  
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2.4.2 Gas chromatography - Injection 

GC analysis requires injection of a small volume of sample into a carrier gas stream 

(eluent) which carries it onto the column for separation by partition between the fluid 

and stationary phases which affects the column transit time (retention time) for a 

chemical species.  Separation quality depends on the injection process and a number of 

variants exist. Injection via a cooled trap and direct injection were both examined. 

 

Samples on the Trio 2000 system were injected onto the 5890 GC using a CDS 

pyroprobe thermal desorption system . There are two modes in which the pyroprobe can 

operate . Either into a trapping mode where sample is concentrated onto a trap and then 

desorbed from that trap onto the GC column, or it can be operated in a direct mode 

where the sample is directly desorbed onto the GC column without a trapping stage. 

 

2.4.2.1 GC Thermal Trap Injection 

The TDCT (thermal desorption cold trap) system uses an oven to heat the sorption tube 

loaded with sample to induce material to be desorbed into non reactive carrier gas flow 

(Helium). The duration of the heating of the sample is described as desorption time. A 

section of capillary between the sample sorption tube and the beginning of the GC 

column is cooled with liquid nitrogen cooled nitrogen gas to condense and concentrate 

the sample gases into a small injection slug. Following the desorption period the 

capillary is rapidly heated with an induction heater and the vaporised sample flushed 

onto the column. Once on the column the sample is eluted in accordance with the 

conditions and chromatographic conditions of the GC. 

 

The TDCT thermal trap injection system is illustrated in Figure 38 below. 
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Figure 37 Schematic for the TDCT injection system. The diagram shows the system in 

load (a) and injects modes (b) 
 
37a shows an arrangement where the sorption tube is loaded into the heater while carrier 

gas alone passes into the GC. 37b corresponds to injection conditions where sample first 

collected at the cold capillary is then injected into the flow onto the GC column when 

the cooled capillary is heated. 

 

The carrier gas flow rate used for the sample through the TDCT was 6ml min-1, which 

was put though a split injection system (not shown in figure) to reduce the on column 

flow to 1ml min-1. Setting used are shown in Table 11 below: 

Pre cool 

time 

Trap cooling 

temperature 

Desorption 

time 

Desorption 

temperature 

Injection 

time 

5 min -100oC 10 min 280oC 3 minutes 

Table 11 Program settings for the TDCT injection system 
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2.4.2.2  GC Direct Injection 

In direct mode the sample is directly desorbed onto the GC column without a trapping 

stage. This is represented diagrammatically in Figures 38 a, b, and c below. 

 

 
 

 

 

 

 

 

 

 

       

 Figure 38a  Direct injection system 
Ready Position 

	  
Direct injection for pyroprobe 
CDS5200 injection system.  
 
The system in ready position purges 
the trap at the rest temperature and the 
split from the injection system flows to 
waste.  
	  
	  
	  

Figure	  38	  c	  	  	  Inject	  Position	  
	  
Direct	   injection	   for	   pyroprobe	  
CDS5200	  injection	  system	  	  
In	   inject	   mode	   the	   carrier	   gas	  
direction	   is	   reversed	   and	   flows	  
through	   the	   heated	   trap	   and	   injects	  
the	   desorbed	   sample	   onto	   the	   gas	  
chromatographic	   column.	   After	   the	  
injection	   the	   system	   returns	   to	   a	  
ready	  state	  
 

Figure	  38	  b	  	  	  Load	  Position	  
	  
Direct	   injection	   for	   pyroprobe	  
CDS5200	  injection	  system	  	  
	  
The	   load	   position	   redirects	   the	   flow	  
away	  from	  the	  trap	  and	  the	  sample	  is	  
heated	   at	   a	   controlled	   rate	   to	   the	  
desorption	   temperature.	   Carrier	   gas	  
flows	  to	  the	  column	  and	  to	  waste.	  
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After trials to establish the best method and with some modification of the injection 

system it was decided that a direct injection protocol would be adopted for samples 

collected onto absorbent traps from the fire enclosure. The conditions selected are as 

shown in Table 12 

 

 Rest 

temperature 

Desorption 

temperature 

Desorption time 

(min) 

Injection time 

(min) 

Carboxen trap 40oC 250oC 4.00 0.5 

Tenax trap 40oC 320oC 4.00 0.5 

 
Table 12 Sample desorption parameters on the CDS5200 pyroprobe system 

 

2.4.3  5890 Series II GC-MS  

A series of experiments were used to optimise the GC conditions on the 5890 system. A 

smaller bore column meant lower flow rates could be used and the detection method for 

this GC system was a trio mass spectrometer. The 5890 series II can be programmed in 

a more advanced way to allow multi stage elutions.  

 

During the course of the tests it was found that using the same column for samples 

collected on Carboxen and on Tenax did not provide satisfactory performance and so 

the procedures were modified to employ a different column with each. 

2.4.3.1	  GC	  Column	  1	  –	  for	  samples	  on	  Tenax	  
Column 1 used for samples absorbed on Tenax was a Varian WCOT fused silica (length 

50 m, I.D. 0.25mm) CP SIL 5 CB low bleed/MS column. The CP SIL is 100% 

dimethylpolysiloxane stationary phase and separates components almost 100% based on 

the boiling temperatures of the analytes . The carrier gas was high purity helium set to a 

flow rate of 0.72ml/minute. The column conditions chosen are given in Table 13. 
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Parameter  Set Point  

Injector Temp 180oC  

Initial column 

temperature  

40oC 

Initial hold time  5min 

Gradient A  

      Gradient ramp  5oC/min 

      Final temperature  90oC/min 

      Hold time  0 min 

Gradient B   

      Gradient ramp  10oC/min 

      Final temperature 190oC/min 

      Hold time  0 min  

Gradient C   

      Gradient ramp  20oC/min 

      Final temperature 290oC/min 

      Hold time  10 minutes  

Final run time  40 minutes  

Cooling time   5 minutes  

Table 13 Temperature program used on the 5890 Series II gas chromatogram to 
examine the desorbed samples from Tenax absorbent resin traps. 

 

2.4.3.2	  GC	  Column	  2	  –	  for	  samples	  on	  Carboxen	  
The second column used was a CP-PoraPLOT Q GC column supplied by Varian. The 

CP-Portaplot column (length 30m, I.D. 0.32 µm) uses a stationary phase bound to an 

open porous polymer, which allows for the analysis of a large range of volatile 

components. The carrier gas flow rate is set to 1ml/min and the column conditions used 

are outlined in Table 14. 

 



111 
 

 

Parameter  Set Point  

Injector Temp 50oC  

Detector Temp 120oC  

Initial column 

temperature  

40oC 

Initial hold time  15min 

Gradient  4oC/min 

Final Temperature  120oC  

Final hold time  5 minutes  

Table 14 The temperature program used to examine volatile samples collect on 
Carboxen traps. The Carboxen samples are eluted at lower temperatures than used for 

Tenax samples. 
 

2.4.4 Mass spectrometry: VG Trio 2000 conditions.  

The MS detector used for the experiments on samples produced at UCLan and BRE was 

a VG Trio 2000. The source temperature was set to 180oC. The data acquisition is in 

continuous centroid scan mode and scanning. A full scan took 0.1 second with a scan 

time of 0.3 seconds. There was no solvent deal built into the method.  

 

The mass range analysed is between 25-250m/Z. The instrument is run in the positive 

electron ionization (EI+ve) mode with electron ionization energy of 70eV. 

 

The Trio was serviced annually and calibrated as part of that process. On a daily basis 

the tuning gas checked using reference material as the standard. 

 

Compound identification analysis using the mass fragment spectra corresponding to GC 

peaks was carried out using Wiley/NIST compound library visualised using mass lynx 

software, in part taking the automated best match candidates, and in part by visual 

examination informed by the NIST library. Compound identification is covered along 

with presented experimental data in chapter 5.. 
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2.4.5 Measurements relating quantities of collected material to GC/MS 
data  

 

It was desirable to gather not only information on the identity/ molecular size of 

materials collected on the absorption tubes, but also some value that could indicate 

quantities so that concentrations in the smoke could be estimated. The amount of 

material is important in determining if individual components are worth studying as 

potential targets for fire detection. In order to relate GC/MS data to quantities of 

material generated in tests and aspirated to absorbent tubes it was necessary to check the 

reproducibility of the absorption, desorption and GC operation. 

 

Use of an internal standard to validate the amount of material on the column was 

considered as allowing calculation of the approximate the amounts of material present 

in the smoke.  Early experiments were hampered by the large degree of variability of the 

samples, both in terms of the types and amounts of specific analytes captured.  It was 

felt that arranging a marker dosing protocol for the UCLan enclosure or the aspiration 

line to absorbent tubes was not straightforward and that using an internal standard was 

not a reliable method. Alternative arrangements were made to check on absorbent tube 

loading and resultant GC/MS spectra. 

 

A series of experiments were carried out involving dosing measured amounts of known 

compounds onto absorption tubes and then carrying out GC/MS analyses to validate 

absorption tube performance and further to determine relationships between analyte 

loading on tubes and resultant GC/MS elution peaks.  

 

The absorption tube validation schedule involved tests (using 1 µl injections of n-

hexane for Tenax tubes and 2-propanol for Carboxen tubes ) to determine run to run 

reproducibility for individual tubes (validation stage A) and check for any changes 

arising from ageing or use (validation stage B). 

 

Further tests with a wider range of volatile compounds and a range of dosing levels 

were carried out to provide a more general guide to the relationships between absorbent 

tube loading and GC/MS peak areas. 
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Transfer of measured amounts of analyte to the absorbent tubes was carried out by 

injection with a micro-syringe through a sealable opening in a sample chamber onto a 

cotton pad within a system allowing air to be drawn through the pad and then pass 

through the absorbent tube. 

 

A form of the system for transferring materials via the cotton pad is represented 

diagrammatically in figure 39 below with provision in some tests for air recirculation 

through the pump: With the sample loop was set up as indicated in figure 39, an 

injection of 1.0 µl of the sample liquid was onto the cotton bed and the pump started 

with the air flow set to 78ml/min. Flow was continued for 15 minutes and the sample 

tube out and subsequently subjected to the relevant standard desorption and GC/MS 

protocols. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39 Schematic of transfer of sample injected onto cotton wad in sample chamber 

to sorption tube. 
 
Total volume ~74 ml (pump, chamber, tubing, absorbent tube). 
 
 

2.4.6 Absorption tube Validation Schedules  

Validation schedule A was a process to check operation of a new or newly filled 

absorbent tube. Validation schedule B was to check on stability of performance. For 

Tenax tubes the injected dose was 1 µl of n- hexane and for Carboxen it was 1 µl of 2-

propanol. 

Pump 

Sorption tube 

Particle 
filter 

Sample chamber 
with cotton wad 

Heatable (to 80oC) 

Flow Regulator 
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Validation A involved use of 6 repeat injections to establish the typical response for the 

selected tube. Acceptable performance validating an absorbent filled tube for fire test 

measurements was taken as GC/MS peak area for each of the 6 tests being within 95% 

of the sample mean. Table 15 shows results for representative successful validation A 

tests for a Tenax tube and a Carboxen tube. 

 
 

Tenax (n-hexane) 
validation A  

Carboxen (2-propanol) 
validation A  

 Peak area % Mean   Peak Area % Mean 
1 3491724 102 1 4767991 97 
2 3290942 96 2 4840402 98 
3 3590918 105 3 5134174 104 
4 3388567 99 4 5097223 103 
5 3395367 99 5 4738220 96 
6 3329091 97 6 4990550 101 

Mean  3414435  Mean 4928093  
 

Table 15  Examples of validation A injection for Tenax and Carboxen tubes 
 

Validation B applied to each sorbent tube after the validation A standard had been met 

was a validity check on stability of the response which was carried out on a monthly 

basis (or more often if required). The validation B check for a tube involved three 

injections and the responses were checked against the standard established by validation 

A for that tube. To be compliant the GC/MS peak area for each validation B injection 

was required to differ by no more than 5% from the mean for the two injections and by 

no more than 10% of the mean value from validation A (tube standard). 

Table 16 shows results for representative successful validation B tests for a Tenax tube 

and a Carboxen tube. 

 
Tenax (n-hexane) 

Sample B 
Carboxen (2-Propanol) 

Sample B 
 Peak Area %Mean 

(B) 
%Mean 

(A) 
 Peak Area %Mean 

(B) 
% Mean 

(A) 
1 3530271 101 104 1 5011692 102 102 
2 3525049 100 103 2 4597446 100 93 
3 3498071 99 102 3 4783199 98 97 

Mean 3525049  Mean 4897446  
 

Table 16 Examples of validation B injection results for Tenax and Carboxen tubes 
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Where validation B results for a tube were significantly different from the validation A 

value (±10%) or the validation B results showed significant variance (mean ±5%) then 

additional injections were run to a maximum of 6. If deviation from standard was 

confirmed the tube was taken out of use. If not suffering any obvious physical damage 

the tube was usually cleaned and refilled before submitting once more to the validation 

A protocol. 

 
Difficulties with reproducibly dispensing the small sample volume (1 µl) injection may 

be responsible for introduction of a significant amount of variation seen in measurement 

repetitions. 

 

2.4.7 Column loading measurements appropriate for Tenax samples 

The types of material captured onto Tenax represent the larger less volatile range of 

compounds. The commercially available grob II standard from Sigma Aldrich contains 

species which may be taken as representative of this range though not necessarily 

matched to any fire products. The materials could be injected direct to the Tenax tube 

and then desorbed to the GC column. A series of three increasing amounts of material 

were applied to the sorption tube (2,5, 7µl) providing the loadings indicated in table 17 

below: 

 
Analyte Concentration 

in standard 
(µg/mL) 

 

Mass of analyte injected onto column(µg) 
2µL 5µL 7µgL 

n-decane 280 0.56 1.4 1.96 
2,6-dimethylaniline 320 0.64 1.6 2.24 
2,6-dimethylphenol 320 0.64 1.6 2.24 
methyl decanoate 420 0.84 2.1 2.94 

methyl dodecanoate 420 0.84 2.1 2.94 
methyl undecanoate 420 0.84 2.1 2.94 

Nonanal 400 0.8 2 2.8 
1-octanol 360 0.72 1.8 2.52 

n-undecane 280 0.84 2.1 2.94 
 

Table 17 The amount of each analyte introduced in each injection based upon 
published concentrations of analyte in grob (II) standard.  

 
 
An example GC plot corresponding to a 2 µl injection of grob (II) standard is shown 
below as figure 40.   
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Figure 40 Gas chromatogram from 2µl injection of grob (II) standard onto Tenax 

sample tube, which was thermally desorbed as described. Vertical units are arbiary units 
representing the current ftom the PM tube . 

 
GC/MS ion current output values result from a series of instrument settings and is based 

on multiplier response and amplification factors. The scale is essentially arbitrary but 

for a well-maintained unit should be relatively stable for a give operational mode. Peak 

areas calculated from such plots are in units of the current scale (arbitrary units and the 

time scale (minutes)). 

 
Injected moles data derived from Table 15 (masses/ molecular weights) plotted against 

peak area values derived from GC/MS plots for the 2, 5, and 7 µl injections yields 

Figure 41 below. 
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Figure 41 Plot of moles of the measured analytes contained in injected volume of the 

test mixture (Grob II standard) against peak area for each species. 

2.4.8 Column loading measurements appropriate for Carboxen samples 

A series of experiments was carried out to determine a relationship between the GC/MS 

peak areas of analytes captured in a Carboxen sorption tube and the tube loading. Single 

injections of known amounts of specific analytes were placed into the sample vapour 

trap (Figure 39) on a solid support (cotton wad). The sample chamber was held at 80oC 

for 15 minutes while the air was circulated using a flow controlled pump at 100 ml per 

minute to equilibrate. At each loading the 500mg Carboxen resin tube was tested as 

described above for normal fire test samples. 
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Injected mole values for each species calculated from the injected volumes, liquid 

densities and molecular weights are plotted against peak area values derived from 

GC/MS plots for the 5, 10,15, and 20 µl injections yields figure 42 below. 

Figure 42 Plot of moles of the measured analyte injected into the vapour trap and 
absorbed on Carboxen versus the GC/MS peak areas for each species. Peak area is an 

arbitrary value used frm an integral of the total ion current.  
 
It is necessary to assume that loss of material from the injected volumes (5, 10,15, and 

20 µl) is not gross, or at least consistent with that occurring in fire gas captures 

experiments. Weighing the cotton support before and after each injection checks the 

assumption that the entire sample is vaporised. It is also assumed that 15 minutes is 

sufficient time to achieve equilibration and transfer. The volume of the vapour trap 

including the connections is 74ml.  
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Each of the points in the plot shown as Figure 42 is an averaged value based on 5 repeat 

injections. The error in these injections is measured (RSD <6%). These compounds 

were selected to be representative of the types of gases seen in the analysis as a small 

hydrocarbon, alcohol and aldehyde. Time and availability of appropriate standard 

material mean there were only a few analytes being studied. This was to establish a 

general indication of scale rather than a reliable calibration allowing the GC/MS data to 

be converted to concentrations of gases in the air pumped through the absorbent tubes. 

 

Figures 41 and 42 indicate a linear relationship with loading and the GC peak area. 

2.4.9 Other GC/MS system Validation Checks 

The trio 2000 system was serviced at least once a year, and the mass ranges calibrated 

against a standard. On a daily basis the mass tuning was checked using an internal 

standard Heptacosafluorotributylamine m/Z 69,212,507, 649 and compared to standard 

values .  

 

2.5	  Full-‐scale	  fire	  test	  room	  (BRE)	  –	  Detector/Sensor	  Deployment	  
Standard test rooms are designed to allow validation testing of fire detectors with 

standard test fires. They are of sufficiently large scale to allow the development of fires 

to a condition comparable to unwanted fires in the workplace. The rooms are ventilated 

between fires but during tests there is minimal induced airflow in the room to avoid 

complications with gas and smoke transport issues. The Building Research 

Establishment Ltd, Watford,( BRE) has a test room used in this study shown as Figure 

43 below with location of addition detector sites used in some tests and locations of the 

BRE MIC inlet and BRE Optical Obscuration unit. 
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Figure 43 Diagram of the BRE Watford BS EN 54-7compliant fire test room showing 
actual room dimensions, fire source position, and detector locations. 

 
The standard room is 4 m high and dimensions illustrated are those for the BRE 

Watford test room and within the ranges specified by BS EN54/7. 

 

16 equivalent sampling/detector location ports are located on the ceiling at equidistant 

points along a 60-degree arc on a 3m radius circle centred above the fire site. The centre 

section of the primary arc is used as the location for the BRE obscuration meter and 

aspiration point for the BRE MIC unit. For normal commercial detector validation fire 

testing purposes only that arc is used but the second arc is considered adequate for 

supplementary tests. Sample ports are grouped into banks of 4 across the outer 20 

degrees of each arc. A range of standard and non-standard TYCO fire detectors and 

electrochemical H2 and oxidisable gas sensors (City technology 7HYT and 7ETO types) 

were located at sampling points along the arcs. The detectors were fitted to standard 

ceiling mount bases and the electrochemical cells suspended about 10 cm below the 

ceiling.  Pumped sampling lines for collection of gases/vapours on sorption tubes for 

subsequent GC/MS analysis were fed into sampling port locations, taking care that 

inlets were far enough from detectors to avoid causing smoke transport issues. For the 

 

3 

4 

5 

1/ Primary Detector Arc on ceiling 2/ Fire source (floor centre) 
3/ Supplementary Detector Arc 4/ MIC inlet 
5/ Obscuration unit (suspended below ceiling) 

11m 
m 

7 m 

Height 
4 m 
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second BRE tests a further inlet line through one port in the secondary arc was provided 

for input to an Owlstone FAIMS unit incorporating its own pump. Aspiration tubes for 

BRE MIC, for sorption tubes for GC/MS, and for FAIMS equipment were position so 

as not to significantly interference with room conditions or airflow adjacent to other 

detectors or sensors. 

 

Samples for GC/MS were captured on Tenax and Carboxen absorption tubes using flow 

controlled pumps as for the reduced scale test in the UCLan 2 m3 enclosure and 

described earlier. Samples were collected over the complete duration of the test (from 

before ignition to end of test based on BS EN54/7 specification). 

 

In the later BRE tests additional sampling of smoke particulates onto a glass fibre filter 

was carried out with a pumped system located ~ 1m from fire sources. This smoke 

aspiration was not started until each fire test was complete and continued during the 

room air clearing stage. These smoke particulate samples were collected for 

fluorescence measurements directly on the smoke material. Measurements on samples 

of this type carried out at UCLan and at the University of Central London indicated that 

background fluorescence from the filters was too high to allow useful analysis. Some 

further work on collection of smoke particulates by impingement on low fluorescence 

microscope slides was started but is not reported within this thesis. 

 

The TYCO devices used were a selection of 801PC (3 measurement channel devices – 

smoke by 850 nm photo scattering, CO, and temperature), and 801I (1 measurement 

channel device - smoke by effect on ion current through air ionised by Am241 source), 

and other experimental units as described in earlier. The TYCO detector operation and 

data handling was performed with a TYCO MX panel simulator box with associated 

software and PC. 

 

Smoke density was monitored by BRE equipment defined in BS EN54/7, consisting of 

an optical obscuration meter and pumped ionisation type detector (MIC). Outputs from 

the BRE units were recorded for all tests at 1-second intervals and data files provided by 

BRE staff. Humidity and temperatures in the room are monitored prior to and 

throughout the testing. After each test smoke is evacuated using built in air conditioning 

ventilation systems. These are also used to ensure the room temperature is even in the 
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test room to reduce stratification effects, particularly exclusion of fire products from the 

roof area which may occur if a layer of warmer air exists there before the fire starts. I  

 
All the full-scale tests referred to in this project were carried out using the BRE test 

room in February 2009 and in May 2010. All BRE measurements were compliant with 

BS EN 54/7:2001. Measurements with TYCO detectors and non standard measurements 

performed at the BRE tests (e.g. hydrogen, and oxidisable gas sensing by 

electrochemical sensors and sampling for GC/MS etc.) were performed in accordance 

with methods developed at reduced scale with sampling as described above.  

 

The BRE fire test room is constructed with a second room above it providing access to 

the detector or sensor mounting ports and facility for setting up instrumentation. Figure 

44 below represents a plan of that room showing detector and sensor locations for the 

tests at BRE in May 2010. The tests carried out in February 2009 involved less 

detectors, which were predominantly sited at the ports adjacent to the BRE instruments 

(Obscuration unit and MIC). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 44 Equipment	  lay	  out	  in	  room	  over	  BRE	  test	  rooms	  for	  tests	  in	  May	  2010	  
 

Numbers are MX type 
detector addresses. 
BRE kit - optical 
obscuration and MIC 
EC cells Ethylene oxide 
and Hydrogen sensors. 
Currents monitored via 
high impedance buffer to 
MX device addr.135 
acting as A to D converter 
providing 8 bit output to 
MX detector data files. 

38   1   17 BRE 
kit 3   210   12 

170   32   47   100 

Pump and 
tubing to soot 
particle 
collection filter  
 

FAIMS 

9   209 

GC sampling 

EC cells 
linked to 
135 

     Table 

door 
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The detector and sensor devices deployed in this BRE test are selected from the same 

group used with the UCLan enclosure, but additional equipment deployed includes the 

BRE MIC and Optical Obscuration meter, and a FAIMS instrument supplied by 

UCLan. The UCLan NDIR system for CO and CO2 measurement, and the obscuration 

unit, which is built into the UCLan enclosure, were not deployed at BRE.  

 
The detectors linked to the TYCO MX series panel simulator are listed below as table 
18. 
 

MX 
Address 

Serial 
Number 

Model/ 
type 

 
Further Information 

3 12019CBCE 801PC Standard type – NIR scatter, temperature, CO 
9 92019CC09 801PC Standard type– NIR scatter, temperature, CO 
17 1200C0C9C 801PC 

modified 
With extended CO range (> 400 ppm).  
Standard NIR scatter, temperature 

1 120049F36 801PC 
modified 

With unfiltered CO cell, Zellweger, Part No. 
2119B1003. Standard NIR scatter, temperature 

209 92019301A 801I Standard Ionization type 
210 8006FBE8 801I 

modified 
Ionization type with ~6x extended dynamic 
range. 

32 20382815 BIR special dual LED IR and blue 
12 20382805 Phosphor blue LED and IR phosphor device 
170 9200002A4 801PH 

blue LED 
blue LED in 801PH detector type package 

38 12019CC13 801PC UV 
LED 

UV LED (370nm) in 801PC detector type 
package 

47 12019CBFF 801PC 
longer NIR 
LED 

IR LED (1070nm) in 801PC detector type 
package 

100 920000266 801PH 
modified 

Humidity sensor replacing optical in 801PH, 
provided with min-fan. 

135 8000060
  

801PC 
modified 

801PC converted to give bit outputs from 3 
analogue inputs to MX log. Chan. av0 and av1 
used for 7ETO and 7HYT cells. 

Table 18 Summary of MX 801 Detectors and Variants 

2.6	  Standard	  Fire	  Tests	  
The most commonly applied standard test fires defined under EN54/7 and UL 268 were 

described in chapter 1. The EN54/7 fires were the basis of most of the measurements in 

the full scale test room at BRE. Both EN54/7 and UL268 test fires were used as the 

basis for emulations at reduced scale at UCLan. 
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2.6.1 Standard EN 54/7 Fire Tests in full scale test room (BRE) 

The standard test fires carried out at both visits to the test room at BRE Watford were 

EN54/7 test fires TF2 (wood pyrolysis), TF3 (smouldering cotton wick), TF4 (flaming 

polyurethane foam) and TF5 (flaming heptane pool). Quantities, ignition procedures, 

and smoke density acceptance criteria were as defined in EN54/7 and described in 

chapter 1. 

 

2.6.2 Additional fire tests in BRE full scale tests 

Additional fires not included in usual EN54/7 set but defined by other standards were 

performed in the earlier BRE test (flaming Decalin, and Smouldering Cotton towel 

(sometime TF8)). No results are presented because the fires were not repeated in later 

full scale fire tests but comented on here to represent the other fires that were carried 

out. 

 

2.6.2.1.	  Decalin	  pool	  fire.	  (first	  BRE	  test	  only)	  
Decalin, a heavy hydrocarbon C10H18 (Decahydronaphthalene), is used as an industrial 

solvent for resins and fuel additive. Samples in full scale tests were prepared by 

measuring out 170g of decalin into a 120 x 120 x 20 mm steel dish with 5g of ethyl 

alcohol used as an ignition promoter. Decalin burns with a very heavy black smoke and 

orange flame.  
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CHAPTER 3   SCALING OF FIRES – ISSUES AND 
MEASUREMENTS 

 

3.1 Practical and theoretical basis for scaling test fires 
 

A major target of this study is to characterise the products from the standard fires used 

for detector validation. Ideally this would be done on full scale test fires in the 

appropriate fire rooms. However these facilities are large and access is expensive 

(~£1000/ day in 2008) and this limits their availability. Although some measurements 

and sample collection was always envisaged as part of the study, it was never expected 

that this could represent a large part of the work. In order to develop the measurement 

and sensing methodologies and gather a substantial body of data it was considered 

necessary to arrange for tests at a more convenient reduced scale. A significant issue 

then arises concerning how to scale the test components and what the target criteria for 

reduced scale tests should be. The early measurements carried out at Bolton University 

using the NBS smoke box indicated that using a chamber of that size (0.5 m3) would 

introduce real difficulties in generation reduced scale emulations of the standard fires. It 

was therefore decided that a fairly substantial fire enclosure was needed, although still 

somewhat constrained by available laboratory space. Dimensions for a test enclosure 

2 m high on a 1 m square base were selected as practically convenient and as allowing a 

height for plume rise not too grossly less than the 3 and 4 m heights used for the UL and 

EN54/7 test rooms. While lateral dimensions may not be insignificant, consideration of 

the literature on fire plumes suggested that height was more important.[106] 

 

Scaling of fires has long been a goal of fire researchers for a variety of reasons. The 

variety of sizes and locations unwanted fires means studying them in situ is both 

dangerous and prohibitively expensive. Fires can be extremely complex involving 

differential conservation equations involving mass, momentum, and energy, and 

definition of appropriate boundary conditions [107] and this makes computerized scaled 

models approximate at best. The trade offs often encountered in scaling work are 

illustrated by the compressive review of the theoretical factors provided by [108] which 

more than 28 dimensionless factors were identified to address the scaling problem. 
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Simpler approaches were taken by [109] and  [110] but the applicability of much of the 

work to early stage fires and detection is not well established. 

 

Expressions relating to fire product transport were considered when developing reduced 

scale tests but the purpose of this study was not to progress modelling of fires and fire 

scaling. The scaling work was directed at establishing practical reduced scale fires for 

the UCLan 2 m3 enclosure that would be useful emulations of the full scale tests for 

analysis and for sensor and detector testing. 

 

Fire detectors in real applications are generally mounted on ceiling locations on the 

basis that warm fire products rise and crucially because ceilings provide convenient 

sites where detectors are less likely to suffer physical interference, abuse or accidental 

damage. Fire site to detector distances will most generally be several metres as for the 

standard fire tests. Transfer of fire products (heat smoke, gases) to detectors remote 

from the fire source must be brought about primarily by convective processes and in the 

absence of externally forced convection that depends on the buoyancy forces resulting 

from gas density reducing with rising temperatures near the fire site. There has been 

much study of the fluid mechanics of fire plumes though little has been directed towards 

the detection issue. Based on a study of moderate to large fires Alpert [111] generated 

the equations 21 and 22 below for the temperature rise at ceilings above a fire and at 

radii about that point. 

 

Tmax  - To   =   5.38 x (Qc /r)2/3 / H (21) 

Equation 21 Temperature rise from ceilings when r > 0.18 x H 
 
 Where Tmax  is maximum gas temperature near a ceiling of height H metres for a fire of 
intensity Qc M.Watts at a distance r metres from the point above the fire where 
r > 0.18 x H, and where To is the initial ambient temperature. 
 
For r < 0.18 x H the Alpert indicated an alternative expression 

 

Tmax  - To   =   16.9 x Qc
2/3 / H5/3 (22) 

Equation 22 Temperature rise from ceilings when r < 0.18 x H  

 

Drysdale [112] reproduces the above expressions and rearranges them to apply to the 

issue of fire size required to activate a ceiling mounted temperature sensor based fire 

detector producing equations 23 and 24 below. 
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For r > 0.18 x H, the minimum fire intensity Qmin require to activate an alarm 

responding at temperature TL is: 

 

Qmin   =   r x (H x (TL – To)/5.38)3/2 (23) 

Equation 23 Minimum fire intensity r > 0.18 x H. Where Qmin is the minimum fire 
intensity r is the fire radii, (TL – To) is the temperature change from origin to detector, H 

is the room height . 
 

and for r < 0.18 x H the expression becomes: 

Qmin   =   ((TL – To)/16.9)3/2 x H5/2 (24) 

Equation 24 Minimum fire intensity r < 0.18 x H 
 

While the expressions are developed only for heat measurement detectors their 

application where other detectors are used is reasonable given that the same convective 

processes carry heat, smoke and gases from fire source to ceiling. The temperature rises 

for the standard test fires are not specified but temperatures at the detection points in 

fire test rooms are routinely measured and Table 19 below provides some example 

results derived from data files supplied by BRE staff for test fires carried out for TYCO 

in the fire test room at BRE Watford. 
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Test Description Limit 

dB/m 

Min.T 
oC 

Max.T 
oC 

ToC 

at 

dB/m 

limit 

ToC 

at 

dB/m 

=0.5 

ToC 

at 

dB/m 

=1 

ToC 

at 

MIC 

y =1 

ToC 

alarm 

range 

TF2 Pyrolyse 

wood 

2 19.6 20.1 20.0 19.9 19.8 19.9 0.3 - 

0.4 

TF3 Smoulder 

cotton 

2 19.6 20.2 20.1 19.8 19.8 19.8 0.2 – 

0.4 

TF4 Flaming 

PU foam 

1.73 20.4 41.1 41.0 25.2 31.0 22.0 2 – 20 

TF5 Flaming 

Heptanes 

1.24 19.5 88.2 77.8 40.1 67.0 29.5 9 - 20 

TF1* 

~UL 

B 

Flaming 

wood 

2* 20.5 70.6 22.5 20.6 21.3 31.4 0.1 - 2 

Table 19 Detector ceiling arc temperatures for tests in BS EN54/7 room at BRE 
*flaming	  wood	  fire	  according	  to	  rarely	  used	  EN54	  definition	  similar	  to	  UL	  268	  fire	  B.	  

 

This provide some target temperature rises which might be applied in 23 and 24 along 

with room and reduced scale enclosure dimensions to calculate heat output rates 

corresponding to alarm conditions in the room and enclosure. The ratio of these heat 

output rates may be indicative of the fire source scaling that should be applied. On the 

basis of the values shown in / above it was considered worth calculating fire outputs 

rates test room and reduced scaled fire enclosure dimensions for temperature rises of 

0.2, 2, and 10oC. Results for the dimensions for BS EN54/7 and UL268 rooms and the 

UCLan enclosure are provided in Table 20 below.  
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Chamber H 

m. 

r 

 m. 

Td 

oC 

To 

oC 

Eq.3  

MW  

Eq.4 

MW 

EN/box 

ratio 

factor 

UL/box 

ratio 

factor 

EN54/7 room 4 3 20.2 20 0.172    

UL268 room 3 5.3 20.2 20 0.197    

UCLan Box a 2 0.2 20.2 20  0.007 24 27 

UCLan Box b 2 0.6 20.2 20 0.12  14 16 

EN54/7 room 4 3 22 20 5.440    

UL268 room 3 5.3 22 20 6.242    

UCLan Box a 2 0.2 22 20  0.230 24 27 

UCLan Box b 2 0.6 22 20 0.385  14 16 

EN54/7 room 4 3 30 20 60.82    

UL268 room 3 5.3 30 20 69.79    

UCLan Box a 2 0.2 30 20  2.575 24 27 

UCLan Box b 2 0.6 30 20 4.301  14 16 

Table 20 Calculated values of fire power requirements and ratio factors for 0.2, 2,and 
10oC temperature rises at detector positions in EN54/7 and UL268 rooms, and UCLan 

enclosure. 
 
For the UCLan enclosure distances (r) across the chamber roof of 0.2 and 0.6 metres 

were used. Only equation 18 is used for the fire test rooms but equations 23 and 24 are 

applied as appropriate for r values for the UCLan enclosure. 

 

 Conveniently as indicated in Table 20 above the calculated ratios for heat output rates 

for rooms and enclosures do not depend on the value entered for temperature rise. This 

simply arises from the temperature difference entering both expressions 23 and 24 in the 

same form. Whether this insensitivity to temperature difference holds true for real fires 

of interest is uncertain. Although Drysdale applies the expressions derived from the 

work by Alpert to fire detection, the expressions are based on work with fires and 

dimensions generally larger than the standard test fires. Thus extrapolation to smaller 

fires and fires where heat output rates are not fixed may not be justified. Certainly heat 

output rates of the type shown in Table 21 below as published by Grosshandler [113] 

for standard test fires does not appear to be consistent with corresponding calculated 

values shown in Table 20. 
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Test fire  Consumption rate 

(g/second) 

Average heat release rate  

TF2 – Smouldering wood  0.11 5.6kW 

TF3 – Smouldering cotton  0.19 2.3kW 

TF4 – Burning Polyurethane 1.2 3.2kW 

TF5 – Burning heptane 3.1 30kW 

UL A – Newsprint 0.18   3.2kW 

UL B – Dry fir wood 2.5 52kW 

Table 21 Published Heat Release Rates for Standard Test Fires 
  

Nevertheless the scaling ratios indicated in Table 20 where the ratio factors suggest that 

sources in the UCLan enclosure should have power outputs ~10 to 30 times lower than 

those used in standard fire test rooms provided a starting point for consideration of 

reduced scale source generation. This was certainly likely to be better than simply 

taking the room to enclosure volume ratios (> 100) as a starting point. Heat output ratios 

must be related to the size of fire source but whether that is better indicative of fuel 

volume or fuel area is not immediately clear and likely to depend on fire type. 

 

In addition to the amount of fuel required for reduced scale tests there is the issue of the 

geometrical arrangement of the fuel, provisions to control excessive heat loss by 

conduction or radiation from small fuel bodies and means of ignition. These issues were 

not considered to be theoretically tractable within the scope of this study. Therefore the 

procedure adopted was simply to try out what seemed appropriately scaled sources and 

modify in the light of their performance i.e. whether the fires could be ignited, continue 

to develop without self extinguishing, and generated an appropriate amount of smoke.  

 

This last point relates to the method chosen to determine whether the scaled fires were 

to be considered reasonable emulations of the full-scale tests. As the qualification 

criteria for standard test fires are, or may reasonably be converted to, obscuration versus 

time plots as presented in chapter 1, it was decided that the reduced scale emulations of 

those fires should meet the same obscuration versus time characteristics. This does 

dictate that source sizes are sufficient to maintain the combustion process over the test 

period i.e. scaling should reduce rate of combustion not just total product yields. 
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An optical obscuration measurement unit was available at the start of the study at 

Bolton University but unfortunately it proved impossible to arrange transfer of the 

equipment to UCLan. An obscuration unit was constructed in house at UCLan but did 

not become available until some considerable time after test work on the UCLan 

enclosure had started. Therefore initial test fire scaling studies at UCLan employed 

TYCO optical scatter detectors (801PC type) using calibrations against obscuration with 

joss stick smoke carried out in the TYCO Sunbury smoke tunnel. This was known not 

to be satisfactory as the relationship between obscuration and scattering changes with 

smoke type. However it allowed scaled test fire development to proceed to generate 

preliminary fire designs and protocols. Once the UCLan obscuration unit became 

available these preliminary scaled test fires were re-evaluated and where appropriate 

modified to provide the requisite absorption versus time characteristics. 

 

3.1.1 Selection of test fire and detector sites in UCLan enclosure 
For standard test fire rooms the distances to walls are relatively large and so effects of 

walls on fire development and fire product transfer should be small. The walls of the 

UCLan enclosure are necessarily closer to the fire sources position and to the detector 

positions. The detector positions within the UCLan enclosure were selected at the 

design stage and a preliminary fire source location also designated. It was desirable to 

establish whether there were systematic differences between sensitivity for different 

detector positions and what effect fire source position might have. 

 

A series of experiment were carried out to evaluate effects on smoke transport. In 
particular these experiments examined the effect of the side and corner effect on smoke 
movement. The floor of the enclosure was marked up as 10 by 10 grid of 10 cm squares 

as indicated in  

Figure 45 below. Each intersection of lines on the grid, other than with the walls, 

defines one of 81 test positions identifiable by a number-letter combination. Groups of 5 

standard 7cm length joss sticks (as used for calibration work in the TYCO Sunbury 

smoke tunnel) were loosely bound with wire to constructed joss stick wads to use as 

smouldering smoke sources. Each experiment consisted of placing a smouldering wad 

onto one of the test positions. Each wad was burnt for 1200 seconds and responses 

recorded for the optical scatter channels of seven 801PC detectors located in 7 locations 

of the standard loop as described in chapter 2 section 2.1.5 and following. 
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Figure 45 Test position grid on UCLan enclosure base showing source locations for 

incense wad experiments. Each point is 10 cm from the adjacent points and 10 cm from 
any of the side walls. 

 

The joss stick wads used and test duration was selected do that tests were completed 

before any detector outputs reached 255 bytes (maximum for the 8 bit A to D 

conversion in the detectors) and response values calculated by subtracting the pedestal 

values (bytes outputs for clean air) and then corrected for relative sensitivity of 

detectors based on TYCO smoke tunnel calibration tests. Responses for an individual 

test could then be converted to % of maximum response value for the detector group 

and data for an example run in that form is shown in Figure 46 below. 
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Figure 46 Example optical scatter responses from 7 TYCO fire detection devices to joss 
stick wad smoke for source location 5b. The data is from repeated (n=3) experiments. 
 
Sensitivity corrected responses over the whole of each 3 tests for each of the 81 source 

positions were summed and averaged over test duration to give a detector response 

value for each position. Dividing individual position value by the maximum value and 

multiplying by 100 calculated a % detector response for each position. Figure 47 

summarises results of such measurements and calculations. 

 
Figure 47 A graphical representation of the effectiveness of smoke generation/ transfer 
to detectors from each source site. 
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The source locations identified by number and letter combinations are represented on 

the plane defined by x and y axes. The % detector response calculated as described 

above is shown in z ordinate direction as an array of columns. Each column height is 

representative of an average value from repeat experiments (n=3). All readings were 

taken over a period of 10 days and the temperature difference between the roof and 

floor of the enclosure monitored before each test to check ∆T < 1oC. 

 

It was apparent form results of the type shown in Figure 47 that responses were only 

significantly reduced when the joss wad source was positioned close to the walls. This 

confirmed that the source the provisional designation of the source position as shown in 

chapter 2 was satisfactory and that was used throughout the study. 

 

3.1.2  Air Temperature Effects on UCLan Enclosure tests 

A phenomenon sometimes seen in fire enclosures, particularly for weak plume sources 

is stratification whereby the fire plume is prevented from reaching the ceiling. This is 

ascribed to presence of a temperature gradient in the enclosure with a layer of warmer 

air at the ceiling. This interferes with the buoyancy driven rise of a fire plume that relies 

on the plume temperature being higher and density lower than that of surrounding air. 

This issue is the reason the definitions for the standard fires specify limits on 

temperature differences in fire rooms, and it is to be expected that the same must apply 

to reduced scale enclosures. The physical limitation of the air in the  enclosure  is its 

equivalent buoyancy. In order to evaluate this effect a series of experiments were 

carried out to examine the impact of temperature differences in the UCLan enclosure on 

smoke transport. 

 

Joss stick wads, as described in section 3.2, we placed 200 mm from the back and 

500 mm from either of the walls of the fire enclosure and the smoke production 

measured on the optical scatter channel of an 801PC device (address 39) located at the 

central position of the primary detector arc connected into the MX system detector 

monitoring loop. 

 

Measurements were carried out under two conditions defined by the difference between 

the roof and floor (∆T) of the chamber being <1oC (first condition) or >1oC (second 

condition), and repeated 3 times for each condition.  
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Results are shown below in figure 48. It is clear that smoke levels detected for the 

second condition are significantly lower which is to be expected if the buoyancy driven 

rise of the smoke plume is impeded by a temperature and hence density gradient. This is 

a fairly extreme test of the effect as heat output from even 5 joss sticks is very low and 

so the buoyancy forces are likely to be correspondingly weak. Nevertheless it indicates 

the need to specify a low start of test temperature difference for valid tests. Ensuring the 

temperature difference is very much lower than 1oC is difficult in a general laboratory 

situation so for practical reasons the specification was set at 1oC for this study. The 

scaled fire sources used generally have a greater heat output than 5 joss sticks and so 

that limit is hopefully adequate.  

 
Figure 48 Effect of floor to ceiling temperature differences on joss stick wad tests in 

UCLan enclosure 

3.2 Scaling requirements of specific fires (fuel geometry)  
 

Provision of reduced scale emulations requires use of at least broadly similar fuels and 

fuel arrangements to those used in the full-scale standard test fires. The geometry of a 

fire source can significantly affect fire ignition requirements and maintenance/growth of 

the burn, and hence the quantity and mode of heat release and smoke production. 

Maintenance of a burn generally involves feedback to solid or liquid fuels of part of the 

heat generated to produce the required combustible vapours or gases. Fire size and 

geometry can affect this feedback and radiation, conduction, and convection can for 

small fires increase the proportionate heat loss from the fire bed. These effects, or at 
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least their relative importance, can be quite specific to the different fires and so some of 

the relevant material is dealt with for each individually in following subsections. 

However numerous texts have covered the subject  [114][115] and some key factors are 

summarized below: 

 

1. Ignition flux: Where ignition involves a significant heat flux (electrical heater, 

starter flame source) reducing the scale of fires has to be accompanied with a 

reduction, as far as practical, of the heat flux from ignition source.  

2. Geometry of fuel: Burning characteristics of fires are also influenced by the 

thickness and geometry of fuels. The size of the fire affects how the fuel retains 

heat. Smaller bulk samples tend to have a greater surface area to volume ratio 

and larger bulk samples and can lose heat to the atmosphere quicker than larger 

bulks. Excessive heat loss at the point of ignition can either slow the time to 

ignition or prevent ignition entirely.  

3. Fire containers/enclosures. Fires are influenced by the size, shape and 

geometry of the container in which they burnt as they can influence gas flow, 

local temperatures and heat exchange by radiation and conduction. Whether the 

more distant enclosure walls of reduced total air volume can affect very early 

stages of fire development may be doubted but generally a fire in a small 

enclosure can make the environment hotter than the for a larger room and this 

ultimately affects the combustion processes and mechanisms. 

 

3.2.1 Scaled wood cribs (UL268 fire B emulation) 

Wood cribs, a simple (minimal) arrangement for which is represented in Figure 49, are 

typically used to study flaming wood conditions. 
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Figure 49 Example wooden crib schematic 

 
The geometry of wood cribs has been extensively studied  [116][117] Development of a 

wood crib fire requires significant heat retention within the core of the structure, and 

this depends on component dimensions and the packing and dimensions of the crib. If 

heat is lost from the centre too quickly, the fires can change from flaming to 

smouldering or even extinguish [118]. If the wood components are too thick then the 

heat required for ignition and to sustain the fire will be insufficient. 

 

When scaling down the wood crib fires, the main problem encountered was keeping the 

wood alight. In the full scale fire the internal region of the crib is surrounded by enough 

wood surface to maintain feedback of heat. Heat is transferred away from the flame at a 

relatively slow rate while sufficient the fuel is available to allow progressive growth. 

Scale reductions affect the thermal thickness of the wood crib and it was observed that 

while the sample could be lit in the crib centre of the crib, rapid heat loss caused 

prevented fire development. To overcome this issue, the use of a loose foil mini 

enclosure around the wood crib was developed. This reflects a portion the lost heat back 

into the crib enabled creation of scaled fires which had a long enough burn times to 

produce the smoke in the appropriate quantities over a time span comparable to that of 

the standard fire.  

 

3.2.2  Scaled smouldering wood (BS EN54/7 TF2 emulation)  

It is reported that [119] smoke production properties of smouldering, or rather 

pyrolysing, wood are related to the surface area exposed to the heat source. This formed 

the basis of the scaling experiments where size and number of wood pieces were 

arranged on a small heater plate maintaining as far as possible the radial arrangement of 
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the standard fire. These tests confirmed that the smoke production rate was primarily 

influenced by the surface area of wood contacting the heater surface while duration 

depended total amount of wood, and hence thickness. 

 

Attempts were made to produce reduced scale heater plates for this test using cartridge 

heaters and metal blocks. However repeated failure of these devices led to adoption of a 

commercially available small cooking hob plate (~75 mm diameter) but with 

temperature limited to 250oC to avoid excessive heat output whilst adequate to generate 

wood pyrolysis product smoke. 

3.2.3   Scaled smouldering cotton fire (BS EN54/7 TF3 emulation) 

The BS EN54/7 standard describes an arrangement of 80 30cm long cotton wicks 

suspended together in a ring, which effectively produces a self-burning chimney. This is 

illustrated in  

 

 

 

Figure 50 below where ring and flat arrangements are shown. The flat arrangement 

results in an uneven burning rate while in the ring orientation heat is retained round the 

ring with transfer between adjacent wicks.  

 

 

 

 

 

 

 

 

 

 

 
(a) Ring arrangement  (b) Flat arrangement 
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Figure 50 Orientation of cotton wick samples in a self-burning chimney orientation (a) 

and a flat open orientation (b). 

 

The symmetry of the ring arrangement promotes burning at a uniform rate and the 

induced convection in the self-burning chimney draws air across the wick end 

combustion zone increasing the rate of burning as compared to that of isolated wicks. 

The enhancement of air supply may also affect the combustion processes, efficiency, 

and product mix. 

 

It was clear therefore that a scaled test should if possible retain the ring geometry. 

Scaled fire development experiments consisted of reducing ring dimensions and the 

number and thickness of cotton wicks used until a reasonable match to the standard 

obscuration versus time specification was achieved. 

3.2.4 Scaled flaming liquid fires (EN54/7 TF5 and UL268 fire C 
emulations) 

The fuel and the container, which defines the pool dimensions, define the flaming liquid 

fires. Pool fires function in a particular way with the fuel in a in a pool tending to burn 

as a cone where the outsides of the cone are exposed to an entrained air stream and can 

burn in a oxygen rich environment. However air and oxygen penetration into the flame 

cone interior is impeded and although overall there may be excess oxygen available, the 

interior of a pool fire can burn in an unventilated fashion. A key aspect of pool fires is 

the smoke point, which is the point at the top of a flame where the conditions are most 

favourable for smoke production. The factors affecting this are quite complex and the 

size and shape of the fuel bed (pool) has a significant impact on this. In the initial stages 

of a fire the surface area of a fuel bed has a dominant affect on the smoke point  [120] 

controlling the rate of combustion and affecting the mode of combustion. As the fire 

develops the depth of the fuel bed becomes important. [121] Normally the fuel 

container will determine the dimensions of the fire. However if the depth of the fuel bed 

is close to the depth of the container then the vapours may extend beyond the physical 
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confines of the container and the surface area would be larger for the initial stages of 

combustion  [122][123]. 

 

As the pool area is crucial to the size and power output of a liquid fire, it was considered 

reasonable to start the scaling process by adjusting the pool area in line with the energy 

release rate scaling factor indicated in Table 20. The emulations developed for the BS 

EN57 and UL268 fires used the liquid compositions specified in the standards. As spark 

ignition could be used, heat output from the ignition system was not considered as 

sufficient to influence plume transport. 

 

3.2.5 Scaled Polyurethane foam fire (BS EN54/7 TF4 emulation) 

The standard TF4 tests involve progressive burning across horizontal PU sheet material. 

The same geometry is appropriate for the scaled fire. It appeared likely that the power 

output would be related to the length of the burning line and depth of foam and the 

duration to the distance the fire traversed across the sheeting. The fire beds were 

constructed with pieces of PU foam cut and laid down to overlap so that width and 

length could be set. Initially the width was cut down from the TF4 specified 50 cm in 

line with the factors indicated in Table 20. By modifying piece size, numbers, and 

overlap arrangements it was possible to produce fires matching the TF4 obscuration 

versus time specification. 

 

3.2.6 Scaled flaming paper fire (UL268 fire A emulation) 

The standard UL268 test defines a container with loosely packed shredded paper. 

Designs of reduced emulations adopted as similar geometry and small methanol fire to 

aid ignition. The quantity of shredded paper and pack aspect ratio (height to width) was 

varied until a reasonable match to the target obscuration characteristics was achieved. 

 

3.3	  Tests	  at	  scales	  appropriate	  to	  2	  m3	  UCLan	  Enclosure	  

The process of adjustment of fuel quantities, arrangements, and containment was 

continued until emulations were developed showing reasonable matches to the smoke 

obscuration versus time characteristics to the standard fires (BS EN54/7 TF2, TF3, TF4, 

and UL268 fires A,B, and C) using the in house built obscuration unit in the UCLan 
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2 m3 enclosure. These standard fire emulations are described individually below. 

Obscuration and some other characterisation and analysis data for many repeat burns of 

these fires are presented in Chapter 4, which also contains corresponding results for 

full-scale tests, carried out at BRE. 

 

In addition to the standard fires a number of other fire/ false alarm stimuli tests were 

designed at scales appropriate for measurements in the UCLan enclosure and those tests 

are also described below.  

 

3.3.1 Standard Test Fire Emulations for 2 m3 UCLan Enclosure 

The BS EN54/7 and UL 268 standards provide descriptions of standard fire tests 

summarised in chapter 1 with defined test room dimensions and fuel quantities, 

arrangements and ignition processes. Validity of individual test runs for these fires are 

defined in terms of the evolution and measurement of smoke usually by optical 

absorbance. The test fire scaling work of this study designed to provide emulations of 

test fires with the UCLan 2 m3. Enclosure identified reduced size fire sources where 

optical obscuration evolution matched the standard defined test fire validation 

characteristics. The reduced scale test fires described below were used in the UCLan 

enclosure for generation of fire products for gas sensing, GC/MS sampling, and detector 

studies. 

3.3.2 Smouldering wood (BS EN54/7 TF2 scaled emulation) 

Untreated non-resinous pine, free from knots or pitches was dried in an oven for 48 

hours. Samples were cut from larger lengths into 20 x 10 x 10 mm wood blocks each 

weighing approximately 0.66g. Three blocks were arranged in a radial pattern on the hot 

plate (as shown in Figure 51). 

Heater block 

10mm

10mm

20mm
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Figure 51 Schematic diagram showing the location and size of the wood blocks used in 
the scaled smouldering wood experiments. 
 

The hot plate (~75 mm diameter) was heated to a temperature of 250oC. At this 

temperature the wood will smolder but not ignite. If glowing combustion is observed 

the experiment was abandoned. 

 

Gas samples are collected on a single sorption tubes for 240 seconds (sampling was 

started at 60 and concluded at 300 seconds). Data was recorded for gas sensors and 

smoke detection/ measurement systems as described elsewhere and the test validity 

checked against optical absorbance characteristics based on the relevant standard.  Fires 

are allowed to progress until the fuel was consumed or 600 seconds had elapsed.  

 

Following these and other fire enclosure tests the enclosure was ventilated by operation 

of a small exhaust fan until cleared of smoke and CO. Once safe to do so the remnants 

of the fuel are collected and weighed, gas absorption sampling tubing replaced or 

cleaned where appropriate, and temperatures allowed returning to acceptable limits 

before further testing. 

 

 

3.3.3 Burning wood (UL268 fire B scaled emulation) 

 

 
Figure 52 Schematic diagram of the construction of wood cribs used in the scaled 
burning wood experiments. 
 

Wood was sourced and prepared as for the smouldering wood test (TF2 emulation) but 

cut to 60 x 15 x 5 mm strips and built into wooden cribs as shown in Figure 52. 
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The wooden crib was placed onto a small mesh platform 10 mm from the fire enclosure 

floor centrally within an open topped foil box 75 x 75 x 30 mm newly constructed prior 

to testing. The foil box with crib was positioned so that the centre of the wooden crib 

was 200mm from the rear fire enclosure wall and 500mm from either of the sidewalls. 

A small fireproof bowl (30 x 30 x 6 mm) was placed under the mesh and 1ml of 

methanol was added to act as an ignition source 30 seconds prior to testing. The spark 

generator probes were positioned near the methanol and after commencing sensor/ 

detector operation/file recording the ignition spark was fired over the fuel bed for 5 

seconds or until ignition was achieved. 

 

Measurements and gas sampling was carried out over 60-300 seconds dependant on 

how the fire progressed. The fires were allowed to progress for 600 seconds or until the 

fire exhausts the fuel supply. 

 

3.3.4 Smouldering cotton (BS EN54/7 TF3 scaled emulation) 

 

  
Figure 53 schematic diagrams of the cotton samples used in the scaled smouldering 

cotton fire experiments. 
 

 The Anemometer is used to monitor the airflow in the enclosure during each 

experiment. 
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TYCO provided untreated unbleached cotton wick. Samples for testing were prepared 

by cutting 14 equal 8 cm long lengths and attaching them with wire in a loop no more 

than 3mm apart. Once completed the loop was approximately 110mm in diameter. The 

total weight of the samples was approximately 7.5g.  

 

The cotton sample was attached to retort stand as shown in Figure 53 and the stand 

positioned so that the center of the loop of cotton strands was 200mm from the rear wall 

of the enclosure and 500mm from each of the sidewalls. After commencing sensor/ 

detector operation/file recording, all of the strands were ignited using a small butane 

flame lighter and then blown out so any flaming was terminated but glowing 

combustion was seen to continue at the tip of all strands. Fire gas sampling was 

continued for 60-300 seconds, and the wicks then permitted to burn to completion. 

3.3.5 Burning polyurethane (BS EN54/7 TF4 scaled emulation) 

 

 

 

 

 

 

 

 

 

 

 

Figure 54 Schematic diagram of the arrangement of samples burnt in the scaled burning 
polyurethane fires. The diagram also shows the location of the fire retardant 

polyurethane used in the mixed fuel sample tests. 
 

 

Untreated E18/Grey polyurethane foam sheets (500 x 500 x 25 mm) were sourced from 

Custom Foams [124]. Five sections of foam (50 x 60 x 25 mm) weighing 5 g were cut 

from the stock foam sheet and placed upon a foil tray 300 x 70 x 10 mm in a pattern as 

shown in figure 54. Each of the foam blocks except the first was overlaid at one end by 

12 mm as indicated in Figure 55. This was to give an overall length of 250 mm for the 

sample train. This was positioned in the fire enclosure as indicated in Figure 55 with the 
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long axis of the sample train 500 mm from sidewalls and the rear end of the sample 

100 mm from the rear wall. 

 

1000mm

1000mm
500mm500mm

250mm

100mm

Front

Back 

Polyurethane sample train
Foil tray

Direction of 

flame flow 

 
Figure 55 Schematic diagram of the polyurethane sample placement in the scaled fire 

enclosure test box 
 

To examine the effect of fire retardancy on the fire gases collected a mixed fuel sample 

was produced where 8mm of blue commercially available halogen blown fire retardant 

foam was placed on top of the standard E18/Grey foam blocks in the same orientation 

as described. A mixed fuel bed was required to ensure combustion of the fire retardant 

foam. 

 

Fire gas samples were taken over a period of 0-240 seconds. Samples were allowed to 

burn to completion.  

 

3.3.6 Burning pool fire: Heptane: Toluene 97:3 (BS EN54/7 TF5 scaled 
fire)  

A bulk fuel sample supply was prepared by mixing 970 ml of heptane with 30 ml of 

toluene (ex Sigma) and stored in a 1-liter volumetric flask. The fuel was mixed 

thoroughly prior to each test. A mixed sample (8 ml) was placed into an open topped 

welded steel container with the dimensions 70 x 70 x 30mm which was placed on the 

fire enclosure floor so that the centre of the container was located 200 mm from the rear 

wall and 500 mm from either of the sidewalls. The sample was placed in the fire 

enclosure no more than 30 seconds prior to the beginning of the test to prevent the build 

up vapors from the fuel.  
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The fuel is ignited using the spark generator. Fire gas samples were collected over a 

period of 0-240 seconds. The fuel was allowed to burn to completion, and all the fuel 

was consumed in the fire tests. 

 

3.3.7 Flaming liquid fire II: Toluene:Heptane (75:25) (UL268 fire C 
emulation)   

A bulk fuel sample supply was prepared by mixing 750 ml of heptane with 250 ml of 

toluene (ex Sigma) and stored in a 1-liter volumetric flask. The fuel was mixed 

thoroughly prior to each test. A mixed sample (3ml) was placed into an open topped 

round bottom circular container (diameter 30mm depth 40mm). Which was placed on 

the fire enclosure floor so that the centre of the container was located 200 mm from the 

rear wall and 500 mm from either of the sidewalls. The sample was placed in the fire 

enclosure no more than 30 seconds prior to the beginning of the test to prevent the build 

up vapors from the fuel. 

 

The fuel was ignited using the spark generator at the start of each test and fire gases 

collected for 240 seconds. The fuel was allowed to burn to completion and all the fuel 

was consumed in the fire tests. 

 

3.3.8 Smouldering paper (UL268 fire A emulation)  

The fuel source for these experiments was 3 g of newspaper (48 g m-2) or 3 g of office 

paper (80 g m-2) shredded in lengths of 15-30 x 10-20 mm. This was roughly packed 

into a container around a spacer in an arrangement shown in  

Figure 56(b).  The container was welded steel box (60 x 60 x 250 mm) with a wire mesh 

platform 10 mm from the base and ventilation slots drilled into the sides  

Figure 56 There was also a small fireproof bowl in the base of the container, which held 

1ml of fire promoter (methanol).  
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Figure 56 schematic diagrams of the scaled burning paper fire apparatus. (a) Is plan 
view of mesh support and (b) illustrates the packing of sample with open channel up 

through centre . (c) Is a side view of container showing mesh location. 
 

To begin the tests the container with the paper and promoter was positioned so that the 

center of the container was 500 mm from either sidewall of the fire enclosure and 

200 mm from the back wall and the spark generator was positioned to provide a spark 

across the surface of the promoter. The test began when white smoke was observed at 

the top of the container. If flames, from either the promoter or from flaming 

combustion, were observed, then the test was abandoned. 

 

Samples were collected for 240 seconds between 60-300 seconds. Fires were allowed to 

proceed until the fuel is consumed or 600 seconds has passed from the beginning of the 

test.  

 

250mm

60mm

10mm

Mesh platform

(a) (b)

60mm

60mm

 
(c) 
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3.4 Non standard fire and nuisance source tests in UCLan enclosure. 
 

3.4.1 Burning pool fire III: Methanol   

The fuel used was commercially available analytical grade methanol. The test sample, 

8ml of methanol, was placed into an open topped welded steel container 70 x 70 x 

30 mm and this was positioned so the centre of the steel container was 200 mm from the 

rear wall and 500 mm from both of the side walls. 

 

The sample was placed into the fire enclosure no sooner than 30 seconds prior to the 

start of the test. The fire conditions were monitored using the sensors and detectors in 

the fire enclosure. Fire gases collected for 240 seconds at a rate appropriate for the 

resins.  

 

3.4.2 Electrical fire scenario 1: Overheated plastic coated wire  

A 3 core electrical wire sourced from RS components (RS component No. 

5093CSL005) was cut into 23 cm lengths corresponding to a sample weight of 10 g. 

The sample was placed in an aluminium foil tray (50 x 50mm) and then onto the centre 

of a hotplate (as used for TF2 emulation). The hotplate was located into the fire 

enclosure so that the wire was 200mm from the rear wall and 500mm from either of the 

sidewalls.  

 

The wire was then heated progressively from ambient to 300oC at 11oC per minute.  

Gases were collected on a Carboxen resins only. Samples were captured for 240 

seconds from 90 – 360 seconds. Experiments were concluded after 420 seconds and the 

sample was allowed to cool then reweighed.  
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3.4.3 Electrical fire scenario 2: Overheated printed circuit boards.  

Circuit boards were sourced from IT supplies (ex. computer populated hard drive 

daughter boards). The circuit boards were populated with a range of components and 

were cut into roughly equal sizes (40 x 40 mm) and sample weights 6.5 g. All samples 

were weighed prior to and following each test. 

 

The samples were treated in the same way as the heated wire samples. Fire conditions 

and samples were monitored and collected as described elsewhere.  Sample weights 

were monitored before and after testing.  

 

3.4.4 Nuisance false fire alarm scenario 1: Toasting Bread 

A commercially available domestic 2-slice toaster was positioned in the UCLan test 

enclosure 200 mm from the back wall and 500 mm from the sidewalls. A single slice of 

thick white bread (118 x 112 x 8 mm) was selected as a fuel source. The bread was 

purchased freshly prior to each test.  

 

The toaster was monitored on the highest setting and was found to heat the bread for 4 

minutes at a temperature of 250oC. Initially the bread was put through a single cycle of 

heating at this highest setting but this did not generate alarm signals with any of the 

standard (801PC or 801I) TYCO fire detectors located in the enclosure. Therefore the 

toasted bread was put through a second, third and forth cycles to simulate a 

malfunctioning toaster or reheated toast.  

 

The bread was weighed prior to and following each stage of toasting and monitored for 

weight loss. Conditions in the scaled fire enclosure were monitored using the detectors 

and sensors as described, and samples were collected on Carboxen and Tenax samples 

for 240 seconds corresponding to the toasting process.  
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3.4.5 Nuisance false fire alarm scenario 2: Overheating cooking oils. 

A selection of cooking oils and fats were studied in this experiment. The fuels included;  

 

� 10g of sunflower oil.  

� 10g of lard  

� 10g of extra virgin olive oil.  

 

The density provided in the literature  [125] for each fuel is approximately 0.918 g cm-3 

giving a volume of ~11 ml. Each sample was transferred into a 60 x 60 x 30 mm welded 

steel container (wall thickness 3.4 mm). The container was placed on the hot plate, 

positioned so that the centre of the container was 200 mm from the rear wall and 

500 mm from either of the sidewalls of the fire enclosure. 

 

The hot plate was heated at a rate of 11oC min-1. The temperature of the oil was 

monitored using a type K thermocouple and the heating continued to the smoking point 

of the oil.   

 

The smoking point for the various oil provided in the literature and confirmed by 

experimental observation are:  

 

� Vegetable oil. 250oC 

� Lard 190oC 

� Extra virgin olive oil 290oC.  

 

Because each type of sample has different heating properties the gas-sampling regime 

were modified in accordance with the smoking point of the fuel. Given the differing 

sample properties in terms of the smoke point, the gas sample was collected over 240 

seconds to collect the main period of smoke production.  

 

Special care had to be taken with these fires as the smoking point is very close to the 

flash point for some of the fuels and any test, which resulted in flaming combustion, 

was abandoned.  
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3.4.6 Nuisance false fire alarm scenario 3: Cigarette smoke  

Simple portable smoking simulation equipment was provided for evaluation of cigarette 

smoke in the fire enclosure. The unit represented in Figure 57 was designed and 

constructed at TYCO Sunbury and holds cigarettes at the filter with a foam rubber seal. 

The unit incorporates a manifold accepting up 8 cigarettes with the manifold inlets 

leading to a common chamber which was connected to a small fan based air pump. 

Electrical control (not shown in Figure 57) allowed pump duty cycle to be adjusted to 

simulate smoking and manifold entrances not in use were sealed with adhesive tape. 

Pump

+

Sample ports

9V

Smoking frame 

Vent

Air flow

 
Figure 57 Schematic of the smoking machine used in the scaled fire enclosure. The 

diagram shows a single occupied sample port of the 8 available. 
 
The unit was designed for up to 8 cigarettes in any one test (appropriate for small room 

tests), but following a series of evaluation experiments in the UCLan 2 m3 enclosure it 

was found that one cigarette gave an appropriate amount of smoke for measurements. 

Smoke can come directly from the burning cigarette end (mainly when air is not being 

drawn through) and from the pump exhaust (when air is drawn). Some smoke is 

certainly lost on internal surfaces of the manifold and pump but this is presumed not to 

be too dissimilar to the situation with a human smoker. 

 

The sample used for the UCLan enclosure test was a single normal strength cigarette 

(JPS 10mg nicotine), which held in vertical orientation by the manifold entrance seal. 

The unit was placed in the fire enclosure at 200 mm from the rear of the fire enclosure 

and 500 mm from the sidewalls. At the start of the test the cigarette was lit and the 

pump started. Once started the pump was activate for 5 seconds in every 20 second 

interval. Each time the pump was active, smoke was drawn through the cigarette and 

pumped into the fire enclosure. When the pump was not active smoke rose directly from 

the smouldering cigarette. As a result the smoke collected in the fire chamber was 

comprised of mainstream and side stream smoke.  
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The cigarette was weighed prior to and following testing. Test conditions were 

monitored using the sensors and detectors in the fire enclosure and gases were collected 

on Carboxen and Tenax sampling tubes for 240 seconds. There are however 

documented problems with the collection of tobacco smoke on solid phase material, 

including the formation of tar films over the surface of absorbents and rapid degradation 

of components captured by secondary reactions [126].   

 

3.8  Practical and Calculated Scaling of Standard Fire Tests 
 

The scaling ratio calculation results presented in Table 20 indicated that the standard 

test fire heat outputs should be reduced by a factor of ~10 to 30 when scaled down for 

the UCLan 2 m3 enclosure. It was unclear what that meant in terms of fuel quantity. It 

was considered that the fuels and fire structures might scale to power either with fuel 

volume or mass or with fuel surface area. No exact correspondence is to be expected but 

it is interesting to examine the scaling factors corresponding to the actual test fire 

emulations described above to see whether they fall within the calculated range. 

 

Table 22 above shows values for the fuels in full and reduced scale versions of the 

standard fires. The fuel components column provides dimensions for the solid fuels and 

volumes and total surface areas are calculated from those. For the liquid fuels the 

surface area is taken as that exposed when in the container pan used for the burns. The 

factors shown in the two columns on the right hand are calculated from volumes or 

masses and areas for the full and reduced scale fires and are presented in the rows 

corresponding to the relevant full scale fires. Several of the scaling factor values do fall 

within the 10-30 range but not all and the agreements and deviations are present in both 

the quantity and area columns. The values for the crib fire are well outside the predicted 

range, which may reflect the geometrical complexity of that kind of fire. 
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Fire title 

 

Fuel/ Type 

 

Fuel 

Components 

Volume 

or mass 

cc or g 

Surface 

area 

cm2 

 Volume 

or mass 

factor 

 

Area  

factor 

Standard 

TF2 

Wood 

smoulder 

10 off 

7.5x2x2.5 cm 

50 cc 775  8 26 

Standard 

TF3 

Cotton wick 

Smoulder 

90 off 80 cm (3 

g each) 

270 g 10800  36 96 

Standard 

TF4 

Polyurethane 

foam 

3 sheets 

50x50x2 cm 

15000 cc 8100  40 27 

Standard 

TF5 

Flaming  

Heptane 

650g (943 ml) 943 cc 1089  118 22 

Standard 

UL A 

Shredded  

Paper 

43 g 

 

43 g   7  

Standard 

UL B 

Wood flame 

Crib 

1.91x1.91x15.2 

cm 6 off 

333 cc 741  4 3 

Standard 

UL C 

Flaming  

Heptane 

40 ml 40 cc 200  13 29 

TF2 

emulation 

Wood 

smoulder 

3 off 

  2x1x1 cm 

6 cc 30    

TF3 

emulation 

Cotton wick 

Smoulder 

14 off 8 cm 

(0.5 g each) 

7 g 112    

TF4 

emulation 

Polyurethane 

foam 

5x6x2.5 cm 

5 off 

375 cc 300    

TF5 

emulation 

Flaming  

Heptane 

8 ml 8 cc 49    

UL A 

emulation 

Shredded  

Paper 

6 g 6 g     

UL B 

emulation 

Wood flame 

Crib 

6x1.5x1.5 cm 

6 off 

81 cc 243    

UL C 

emulation 

Flaming  

Heptane 

3 ml 3 cc 7    

Table 22 Fuel Quantities for Standard Test Fires and UCLan Emulations showing 
Quantity and Area Factors 
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CHAPTER	  4	  DATA	  PRESENTATION	  

4.0	  Chapter	  overview.	  	  
Measurements described in chapters 2 and 3 on the reduced and full-scaled standard 

fires have generated a substantial amount of data on sensor and detector responses and 

samples for GC/MS analysis. The main purpose of this chapter is simply to present  

each of the test types (standard and non standard) a summary of characterisation data 

(optical obscuration %/m), with some corresponding gas sensor measurements (CO and 

other electrochemically oxidizable gases, CO2 generation and O2 consumption), and the 

corresponding GC/MS output presented as Ion Current versus retention time plots. 

Analysis of the GC/MS data identifying mass fragments and gases is not included in 

this chapter but follows in chapter 5. 

 

The measurement of optical obscuration allows individual tests to be checked against 

the defined BS EN54/7 and UL268 test fires. The results shown in this chapter represent 

all of the standard fire and non-standard fire scenarios tested in the scaled fire enclosure, 

and additionally some data gathered for standard fires performed in the BRE fire test 

room. 

 

In section 4.1 of this chapter, the fire data presented falls for each of the standard test 

fire emulations type into three data sets covering optical obscuration, CO and other 

oxidizable gases, and the major combustion related gases (CO2 and O2). In each test 

type, the results presented are for 6 examples of the scaled fire, each of which scaled 

fire experiments were carried out under the same controlled conditions, as described in 

the experimental description for each fire in chapter 3.  

 

In section 4.2 a limited set of sensor measurements are presented for the BRE full-scale 

standard test fires along with some of the corresponding reduced scale emulation data. 

In section 4.3 sensor measurements are presented for non-standard fire tests carried out 

in the UCLan 2 m3 enclosure. A summary of sensor measurements and fire data is 

provided in tabular form in section 4.4. 

 

The final sections of this chapter, 4.5 onwards, comprises a series of gas chromatogram 

plots generated from samples collected on absorption tubes and desorbed into GC/MS 

equipment as described in chapters 2 and 3. The primary output from the GC/MS 
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equipment (Ion current versus retention time) is displayed as gas chromatogram plots. 

GC chromatograms deriving from Carboxen and Tenax absorption tubes are presented 

for each of the reduced scale (UCLan 2 m3 enclosure) standard type test fires. However 

for some of the non standard tests only Carboxen tube related data is presented. 

 

Hydrogen and relative humidity (%RH) data channels were also recorded throughout 

these experiments but the values are not presented. 

 

In a fire where hydrogen containing fuels (most organics including all tested here) are 

burnt, water vapour is generated. Generally water vapour generation will correspond to 

the CO2 increase and O2 depletion. However while output from humidity measurement 

equipment was not inconsistent with such parallels, there were issues with the relatively 

poor sensitivity and response time of the humidity sensor employed. The relative 

humidity sensors used were not sufficiently accurate to allow good measurements of the 

small changes in humidity observed for small-scale fires.  In view of these issues and 

expected correspondence with oxygen and CO2 measurements, humidity sensor 

measurements were not continued throughout the study and results are not presented 

here. 

 

The possibility of hydrogen generation in fires and its detection as a fire signature 

species was considered of significant interest at the start of this study. Hydrogen has 

been well-documented as a combustion product gas and some papers have reported 

hydrogen detection at concentrations which were low but above normal ambient levels 

as discussed in chapter 1 (Jackson and Robbins [127], Pfister[128] and Amamoto[129] 

.) However, throughout all of the tests in this investigation, the hydrogen concentration 

levels were either inconsistent or not detected. When hydrogen was detected it was 

always at less than 5 ppm, which is not dissimilar to some reported ambient background 

concentration level. Also hydrogen was detected in less than 10% of any particular type 

of fires making it of dubious value as a detection target. The actual measurement data is 

therefore not included in this presentation of data. 

 

Some smoke detection data from output of optical scatter type detectors is presented in 

a later chapter, and there was an intention to include ionization detector output data. 

However examination of the output from the commercial ionization detector devices 

revealed that it was of little value due to the very limited dynamic range of such 
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devices. The significance of this limitation on the ionization detector outputs was not 

fully realized until near the end of the study and although a wider range device was 

deployed for a few measurements it was not felt that sufficient reliable information 

could be presented covering the range test fire conditions. 

4.0.1 Obscuration data  

The data of the greatest interest to our scaling experiments is the obscuration 

information. The obscuration data represents a convenient and direct method of 

comparing our scaled fires with an equivalent full-scale standard fire. Full scale fires 

tests under BS EN, UL and other international standards for fire detection, are 

established and documented fire events, as described previously, and offer a basis for 

setting smoke levels for tests on non-standard fires or nuisance sources.  An obscuration 

of 20-30 % per meter is typical for a standard fire, and that value is used as a benchmark 

figure for the non-standard events. e.g. overheated electrical components, overheated 

cooking oil, toasted bread, and cigarettes.  

 

All obscuration data presented in the first section of this chapter are data collected from 

the optical bench device installed in the roof of the fire enclosure. All data is plotted as 

% obscuration per metre versus time. Obscuration % per metre is calculated as 

described in chapter 2. Where appropriate the standard limits of compliance are also 

displayed on the graph taken from BS EN 54-7. The limits displayed on the scaled UL 

test fires are derived from UL268 but the limit conditions cannot be identified as fully in 

accordance with the standard and should be used for guidance only. This arises partly 

from the somewhat obscure descriptions given in the UL standards and the use of 

differently specified, and archaically designed, obscuration measurement equipment. 

For initial studies of smoke generation from reduced scale fire test, optical scatter 

channels of TYCO commercial devices (801PC type) were used. These devices had 

been calibrated under reproducible conditions in the TYCO Sunbury smoke tunnel with 

joss stick smoke and the output related to obscuration data for the same smoke. 

However it was known that different smoke types result in different scatter to 

obscuration relationships and so this could only be used as an initial guide until the 

UCLan obscuration kit was brought into service. All the data on obscuration presented 

in this chapter, other than for measurements at BRE, is based on the output from the 

obscuration measurement equipment constructed at UCLan to match the BS EN54/7 
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specification. Obscuration data from the BRE tests was as measured by their BS 

EN54/7 compliant unit. 

 

4.0.2 Oxidizable gases 

The oxidizable gases data derives from measurements collected from the 

electrochemical 7EtO and CO sensors linked to the TYCO MX system data channels. 

The detector responses were converted on the basis of calibration runs against bottled 

reference CO concentrations carried out as described in chapter 2. The relatively 

selective CO channel of 801PC detectors (based on Honeywell “6th Sense” sensors) was 

converted to the CO concentration in ppm. The 7EtO cell output was similarly 

converted to a CO ppm scale but response in the tests will be to both CO and other 

gases oxidizable at the 7EtO device-working electrode. So while response is expressed 

to an equivalent CO ppm level it cannot be taken that this is a CO concentration or that 

the concentration of other gases can be expressed in ppm. To do the later would require 

knowledge of gas identities and a separate response calibration against of such gases. 

 

In the UCLan scaled chamber we measured the CO both with electrochemical sensors 

and NDIR devices. There is debate as to the most suitable method of measuring the CO 

levels in fire products but in this study we found there was generally fair agreement in 

terms of the magnitude of the gas concentrations observed. Figure 58 shows the CO gas 

concentration as measured by NDIR measurement cell and electrochemical sensor 

(TYCO 801PC extended CO range device addr. 17) in three fire experiments (repeats of 

scaled smouldering cotton fire (TF3)). 
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Figure 58 Measurements of CO by electrochemical (6th Sense Cell) and NDIR systems. 
The selected test involves 3 reduced scale TF3 type smouldering cotton experiments 
 

There does appear some difference in response but that may reflect the different 

sampling arrangements and response time. The sampling response time for the NDIR 

unit depends on flushing time for the measurement cell and it was felt that the sampling 

regime for the electrochemical cells was more representative of real fire detection 

conditions and with a shorter effective measurement time that it gave a fuller picture of 

the rapidly changing concentrations of the gases in the fire enclosure. The 

electrochemical CO cell sampling rate could also be matched to the 7EtO devices 

directly as their outputs were sampled at the same (5 second) poling interval set on the 

MX system panel simulator equipment.  

 

The axis on the charts give values of gas concentrations in ppm. These values are 

calculated against the calibration values and represent the response to a known value of 

carbon monoxide.  For the 7EtO device the responsiveness to CO is indicated in the 

manufacturers information sheet is consistent with the data from calibration versus 

bottled gas standards. 

 

4.0.3 Major Combustion Related Gases (CO2 and O2)  

The term “combustion gases” as used for presentation of results below represent the 

increase in CO2 and the depletion in O2.  
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The CO2 was measured using a channel on the NDIR unit and the O2 by an 

electrochemical cell as described in chapter 2. In these tests the sampling rates of the 

CO2 and O2 measurements were matched at 15 second intervals. 

 

Expressions for stoichiometric combustion of hydrocarbons and other simple organic 

fuels link together CO2 generation and O2 consumption but there may not be a very 

direct link in the combustion gas measurements as presented here. Differences in fuel, 

combustion stoichiometry, and the effects of mixing with surrounding air are likely to 

obscure the connection. 

 

The combustion gases data is presented as a percentage concentration increase or 

decrease versus time. 

4.1	  Sensor	  Data	  Summary	  for	  Emulations	  of	  Standard	  Test	  Fires	  
 
Below plots are provided summarising the primary data for replicates of each of the 

standard test fire types showing in order obscuration, CO and oxidizable gases, and 

major fire related gases CO2 and O2. 
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4.1.1 Scaled Smouldering wood (BS EN 54/7 TF2 Emulations) 
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Figure 59 Obscuration versus time for 6 replications of TF2 (wood pyrolysis) 
Emulations in UCLan 2 m3 Enclosure  
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Figure 60 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of TF2 (wood pyrolysis) Emulations in UCLan 2 m3 Enclosure 
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Figure 61 Changes in CO2 and O2 concentrations versus time for 6 replications of TF2 
(wood pyrolysis) Emulations in UCLan 2 m3 Enclosure 
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4.1.2 Smouldering cotton (BS EN 54/7 TF3 Emulations)  
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Figure 62 Obscuration versus time for 6 replications of TF3 (cotton smoulder) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 63 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of TF3 (cotton smoulder) Emulations in UCLan 2 m3 Enclosure 
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Figure 64 Changes in CO2 and O2 concentrations versus time for 6 replications of TF3 
(cotton smoulder) Emulations in UCLan 2 m3 Enclosure 
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4.1.3 Burning Polyurethane Foam (BS EN 54/7 TF4 Emulations) 
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Figure 65 Obscuration versus time for 6 replications of TF4 (Polyurethane foam burn) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 66 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of TF4 (Polyurethane foam burn) Emulations in UCLan 2 m3 Enclosure 
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Figure 67 Changes in CO2 and O2 concentrations versus time for 6 replications of TF4 
(Polyurethane foam burn) Emulations in UCLan 2 m3 Enclosure 
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4.1.4 Burning pool fire - Heptane (BS EN 54/7 TF5 Emulations) 
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Figure 68 Obscuration versus time for 6 replications of TF5 (Flaming Heptane) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 69 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of TF5 (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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Figure 70 Changes in CO2 and O2 concentrations versus time for 6 replications of TF5 
(Flaming Heptane) Emulations in UCLan 2 m3 Enclosure  
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4.1.5 Burning pool fire - Heptane (UL268 fire C Emulation)  
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Figure 71 Obscuration versus time for 6 replications of UL fire C (Flaming Heptane) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 72 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of UL fire C (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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Figure 73 Changes in CO2 and O2 concentrations versus time for 6 replications of UL 
fire C (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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4.1.6 Burning Paper (UL268 fire A Emulation) 
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Figure 74 Obscuration versus time for 6 replications of UL fire A (Burning Paper) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 75 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of UL fire A (Burning Paper) Emulations in UCLan 2 m3 Enclosure 
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Figure 76 Changes in CO2 and O2 concentrations versus time for 6 replications of UL 
fire A (Burning Paper) Emulations in UCLan 2 m3 Enclosure 
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4.1.7 Flaming wood  (UL268 fire C Emulation) 
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Figure 77 Obscuration versus time for 6 replications of UL fire B (Flaming Wood) 
Emulations in UCLan 2 m3 Enclosure 
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Figure 78 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications of UL fire B (Flaming Wood) Emulations in UCLan 2 m3 Enclosure 
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Figure 79 Changes in CO2 and O2 concentrations versus time for 6 replications of UL 
fire B (Flaming Wood) Emulations in UCLan 2 m3 Enclosure 
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4.2	  Standard	  Fire	  Tests	  at	  BRE	  and	  UCLan	  Emulations:	  -‐Sensor	  Data	  Plots	  
Charts below are provided summarising the sensor data for a series of the BS EN54/7 

test fires carried at BRE Watford shown with a selection of corresponding data collected 

for emulations in the UCLan 2 m3 enclosure. Only data on obscuration and CO gas 

levels is presented. 

4.2.1 Smouldering Wood BS EN54/7 TF2 (BRE full scale and Emulations) 

Smouldering wood (TF2)  
 
 

Figure 80 Obscuration 
versus time for standard TF2 

(wood pyrolysis) at BRE (2 runs) and 
Emulations in 

UCLan 
2 m3 

Enclosure 
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Figure 81 Carbon Monoxide (CO) versus time for standard TF2 (wood pyrolysis) at 

BRE (2 runs) and Emulations in UCLan 2 m3 Enclosure 
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4.2.2 Smouldering Cotton BS EN54/7 TF3 (BRE full scale and 
Emulations) 

 
 

 
 

 
 
 
 

Figure 82 Obscuration versus time for standard TF3 (smouldering cotton) at BRE (2 
runs) and Emulations in UCLan 2 m3 Enclosure 
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Figure 83 Carbon Monoxide (CO) versus time for standard TF3 (smouldering cotton) at 

BRE and Emulations in UCLan 2 m3 Enclosure 
 

 

 

 

 

 

4.2.3 Polyurethane foam burn BS EN54/7 TF4 (BRE full scale 
and Emulations) 
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Figure 84 Obscuration versus time for standard TF4 (Polyurethane foam burn) at BRE 
and Emulations in UCLan 2 m3 Enclosure (Polyurethane foam burn) at BRE 
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Figure 85 Carbon Monoxide (CO) versus time for standard TF4 (Polyurethane foam 

burn) at BRE and Emulations in UCLan 2 m3 Enclosure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.4 Flaming Heptane BS EN54/7 TF5 (BRE full scale and Emulations) 
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Figure 86 Obscuration versus time for standard TF5 (flaming heptane) at BRE and 

Emulations in UCLan 2 m3 Enclosure 
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Figure 87 Carbon Monoxide (CO) versus time for standard TF5 (flaming heptane) at 

BRE and Emulations in UCLan 2 m3 Enclosure 

4.3	  Sensor	  Data	  Summary	  for	  Non-‐Standard	  Tests	  in	  UCLan	  2	  m3	  

Enclosure	  
Below plots are provided summarising the primary data for replicates for a series of 

tests carried out in the UCLan enclosure for sources other than covered in the standard 

based tests. Except as noted in each subsection, the results for each of the test types are 

shown in the order obscuration, CO and oxidizable gases, and major fire related gases 

CO2 and O2, 

 

 

 

4.3.1 Overheating Printed Circuit Boards (PCB) in UCLan Enclosure 
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 Figure 88 Obscuration versus time for 6 replications for Overheated PCBs in UCLan 

2 m3 Enclosure 
 
 
 
 

 
 
Figure 89 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications for Overheated PCBs in UCLan 2 m3 Enclosure 
 

Major Combustion Gases  
 

Only very low levels of CO2 and O2 change were detected so the chart is not displayed 

here. 
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4.3.2 Burning Mixed Polyurethane Foams in UCLan Enclosure 
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Figure 90 Obscuration versus time for 6 replications of mixed Polyurethane foam burns 

in UCLan 2 m3 Enclosure 
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Figure 91 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 

replications of mixed Polyurethane foam burns in UCLan 2 m3 Enclosure 
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Figure 92 Changes in CO2 and O2 concentrations versus time for 6 replications of mixed 

Polyurethane foam burns in UCLan 2 m3 Enclosure 
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4.3.3 Overheating Polymer Coated Wire in UCLan Enclosure 
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Figure 93 Obscuration versus time for 6 replications for Overheated Polymer Coated 

Wire in UCLan 2 m3 Enclosure 
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Figure 94 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 
replications for Overheated Polymer Coated Wire in UCLan 2 m3 Enclosure 

 

Major Combustion Gases  

Only very low levels of CO2 and O2 change were detected so the chart is not displayed 

here. 
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4.3.4 Overheating Cooking Oils in UCLan Enclosure 
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Figure 95 Obscuration versus time for Overheating of a range of Cooking Oils (3 

replications each) in UCLan 2 m3 Enclosure 
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Figure 96 CO and oxidizable gas (by 7EtO) concentrations versus time for Overheating 

of a range of Cooking Oils (3 replications each) in UCLan 2 m3 Enclosure 
 

Major Combustion Gases  

Only very low levels of CO2 and O2 change were detected so the chart is not displayed 

here. 
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4.3.5 Cigarette Smoking in UCLan Enclosure 
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Figure 97 Obscuration versus time for 6 replications of Cigarette Smoking Tests in 

UCLan 2 m3 Enclosure 
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Figure 98 CO and oxidizable gas (by 7EtO) concentrations versus time for 6 

replications of Cigarette Smoking Tests in UCLan 2 m3 Enclosure 
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Figure 99 Changes in CO2 and O2 concentrations versus time for 6 replications of 

Cigarette Smoking Tests in UCLan 2 m3 Enclosure 
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4.3.6 Bread Toasting and Re-Toasting in UCLan Enclosure 

 

Figure 
100  Obscuration versus time for 3 replications for Toasted and Re-Toasted Bread in 

UCLan 2 m3 Enclosure 
 
 

 
Figure 101  CO 

and oxidizable 
gas (by 7EtO) 

concentrations versus time for 3 replications for Toasted and Re-Toasted Bread in 
UCLan 2 m3 Enclosure 

 
 
Major Combustion Gases  
 

Only very low levels of CO2 and O2 change were detected so the chart is not displayed 

here. 
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4.4	  Summary	  of	  parameters	  for	  reduced	  scale	  fires	  	  
The summaries in the following tables are tabulated key fire properties presented for 

discussion and ease of comparison. Mass loss is a calculation of the amount of fuel 

consumed during the fire tests. This was calculated by measuring the fuel prior to and 

following experiments. The peak CO and 7EtO levels are measured electrochemically 

and represent the maximum amount of material produced in each of the fires. The 7EtO 

measurement includes CO as well as other oxidisable gases, and the difference between 

the measurements from the CO and 7EtO cells is a measure of the presence of organic 

gases and vapours. 

Fuel Smouldering 

wood (TF2) 

Smouldering 

cotton (TF3) 

Flaming 

polyurethane 

(TF4) 

Flaming pool 

fire (TF5) 

Mass loss (g) 1.1±0.2 4.8±0.3 6.9±0.2 8.0* 

Peak CO (ppm) 12±4	  

	  

258±114	   31±15	  

	  

22±5	  

7EtO response (ppm 

CO equiv) 

	  

161	  ± 57	  

	  

814	  ±170	  

	  

111±41	  

	  

92±43	  

Maximum 

obscuration (% m-1) 

	  

26± 9	  

	  

30	  ± 9	  

	  

29±5	  

	  

29± 4	  

Table 23 Properties from the scaled fires based on the BS-EN 54-7 standard fired 
carried out in the UCLan enclosure.  * Represents a pool fire which used an accurately 

measured volume which is consumed during the experiment 
 

Fuel Fire A : 

Smouldering paper  

Fire B : 

Flaming wood  

Fire C : Flaming 

heptane 

Mass loss (g) 3 ± 0. 4.6 ± 0.2 3.0* 

Peak CO (ppm) 159	  ±55	   175	  ± 92	   78	  ± 27	  

7EtO response (ppm 

CO equiv)  

398	  ± 133	   443	  ± 145	   243	  ± 101	  

Maximum 

obscuration (% m-1) 

34	  ± 8	   15	  ± 3	   29	  ±12	  

Table 24 Properties from the scaled fires based on the scaled UL268 standard fires 
carried out in the UCLan scaled fire enclosure.  
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Fuel Polyurethane 

with flame 

retardant 

Printed 

circuit 

boards  

PVC heated 

wire  

Methanol  

Mass loss (g) 1.1 ± 0.2 4.8 ± 0.3 6.9 ± 0.2 8.0* 

Peak CO (ppm) 12	  ± 4	   258	  ± 

114	  

31	  ± 15	   22	  ± 5	  

7EtO response 

(ppm CO equiv)  

	  

161	  ± 57	  

	  

814	  ± 

170	  

	  

111	  ± 41	  

	  

92	  ± 43	  

Maximum	  

obscuration	  (%	  m-‐1)	  

	  

26	  ±	  9	  

	  

30	  ±	  9	  

	  

29	  ±	  5	  

	  

29	  ±	  4	  

Table 25 Properties from the scaled fires based on the scaled non-standard polymer 
based fires carried out in the UCLan enclosure 

  
Fuel Heated vegetable 

oil 

Heated olive oil  Heated 

fat  

Mass loss (g) 3.2 2.9 2.1 

Peak CO (ppm) 102	  ± 24	  

	  

58	  ± 14	   39	  ± 19	  

	  

7EtO response 

(ppm CO equiv)  

397	  ± 87	   99	  ±270	   55±19	  

	  

Maximum 

obscuration (% m-1) 

29	  ± 9	   55	  ± 9	   69	  ± 4	  

Table 26 Properties from the scaled fires based on the scaled non-standard sources 
based on cooking fuels used as false alarm scenarios. All measurements were based on 
the small scale fires carried out in the UCLan enclosure. For comparison the values are 
measured at 450 seconds.  
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Table 27 Properties from the scaled fires based on the scaled non-standard sources 
based on the progression of toasting used as false alarm scenarios. All measurements 
were based on the small-scale fires carried out in the UCLan scaled fire enclosure. 
Smoke from the toaster was a thick and rapidly developing grey white smoke.   
 

4.4.1	  Change	  in	  temperatures	  	  
Temperature changes over the course of the experiments are illustrated in chart below. 

The change in temperature was measured using the built in sensors of the TYCO 

devices. The chart shows an average temperature change in a range of different fire 

examined in the UCLan fire enclosure.   

 
Figure 102 Example changes in temperature for a range of fuels examined in the UCLan 
scaled enclosure.  

 
 

Fuel 1st toast  2nd toast   3rd toast  

Mass loss (g) 7.9 ± 0.8 6.9 ± 0.8 4.5 ± 0.8 

Peak CO (ppm) 2	  ± 1	   16	  ± 1	   14	  ± 1	  

EtO response (ppm 

CO equiv)  

	  

11	  	  ± 1	  

	  

107	  	  ± 17	  

	  

56	  ± 19	  

Maximum 

obscuration (% m-

1) 

	  

2.3±0.9	  

	  

89	  ± 9	  

	  

89	  ±10	  
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4.5	  GC-‐MS	  Data	  (GC	  Chromatograms)	  
This section of chapter 4 presents the GC/MS results for the range of fire tests covered 

in previous sections displayed as ion current versus retention time chromatograms. The 

GC-MS traces can generally be related to the sensor records in earlier sections by test 

name and number i.e. for a given test type, GC-MS traces 1-6 relate directly to the 

correspondingly numbered test records for sensor responses above unless otherwise 

stated . Because of the problems encountered using dual samples the Tenax samples 

labelled 7-12 are taken from separate fires that were carried out under the same 

conditions as fires 1-6.  

 

In the GC/MS, the GC column separates compounds so that different compound transit 

the column at different speed and so reach the column exit with different retention (or 

elution) times. Compounds leaving the column exit are detected by the MS unit which 

displays an ion current value. This ion current is essentially on an arbitrary scale not 

readily converted to actual ion current through MS or readily to compound 

concentration. Ion current is expected to rise with the concentration of compound 

leaving the column but as different compound generate different numbers of ion 

fragments, a simple ratio between ion current and concentration is not expected to be 

maintained over a range of compounds. For each test run, the values of ion current are 

recorded through the GC retention time (at ~1.1 second intervals for the equipment and 

settings used for this work). For convenience in displaying multiple GC traces, % ion 

intensity values were calculated for each run and then displayed offset on the y axis. 

The parameter % ion intensity is calculated as indicated below: 

 

Ion current value recorded for nth time interval = In 

Mean ion current value Iav  = (Sum of all In for n = 0 to Nmax ) / Nmax (25) 

for nth time interval, % ion intensity = 100 x In / Iav 

Equation 25 Ion intensity in GC plots 
 

For presentation of multiple GC traces, the % ion intensity values are displayed on the y 

axis offset by amounts convenient for the clarity of display. The plots for each test 

series are intended to show the form, and consistency or variability of the 

chromatograms rather than data suitable for numerical interpretation. Conclusions to be 

based on these figures should not extend beyond comparison between samples within a 

set. Some degree of variability can be explained by a small sample shifts resulting from 
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changes in component or instrumentation characteristics or configuration, or protocols. 

A fuller data interpretation for typical plots from each test type is presented in chapter 5.  

 

The figures are for comparison and do show trends in common gases and more 

conventionally the degree of variability between samples. Where possible data is shown 

for both the samples collected on Tenax sample eluted from CB5-low MS column and 

samples collected on the Carboxen samples eluted on the poroplot Q columns. Late in 

the project it was decided that the gases of interest would most likely be the low MW 

samples so for some of the non standard fire samples only Carboxen/poroplot Q data 

was recorded.  

 

The data presented first (sections 4.6.1 to 4.6.7) is for samples collected on Carboxen 

and Tenax during emulations of standard EN54/7 and UL 268 test fires carried out in 

the UCLan 2 m3 enclosure. 

 

A series of chromatograms derived for samples collected on Carboxen at the EN54/7 

standard tests at BRE are presented in section 4.7 and these are reproduced in greater 

detail in chapter 5.  

 

GC data from samples collected for non-standard tests conducted in the UCLan 

enclosure is presented in sections 4.8 onwards. These are for Carboxen absorbed 

samples only except for some measurements for toasted bread. This GC data series does 

not include a replication series for burning cigarettes as very complex poorly 

reproducible chromatograms were found for this source. 
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4.6	  GC	  Chromatograms	  for	  UCLan.	  Emulations	  of	  Standard	  Fires	  

4.6.1 Scaled  Smouldering wood (EN 54/7 TF2 Emulations)   
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Figure 103 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications of TF2 (wood pyrolysis) Emulations in UCLan 2 m3 Enclosure 
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Figure 104 GC/MS Chromatograms for material from Tenax tubes used for 6 
replications of TF2 (wood pyrolysis) Emulations in UCLan 2 m3 Enclosure 
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4.6.2 Smouldering cotton (EN 54/7 TF3 Emulations)  
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Figure 105 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications of TF3 (cotton smoulder) Emulations in UCLan 2 m3 Enclosure 
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Figure 106 GC/MS Chromatograms for material from Tenax tubes used for 6 
replications of TF3 (cotton smoulder) Emulations in UCLan 2 m3 Enclosure 
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4.6.3 Burning Polyurethane Foam (BS EN 54/7 TF4 Emulations) 
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Figure 107 GC/MS Chromatograms for material from Carboxen tubes used for 6 
replications of TF4 (Polyurethane foam burn) Emulations in UCLan 2 m3 Enclosure 
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Figure 108 GC/MS Chromatograms for material from Tenax tubes used for 6 
replications of TF4 (Polyurethane foam burn) Emulations in UCLan 2 m3 Enclosure 
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4.6.4 Burning pool fire - Heptane (BS EN 54/7 TF5 Emulations) 
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Figure 109 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications of TF5 (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
 

 
Figure 110 GC/MS Chromatograms for material from Tenax tubes used for 6 
replications of TF5 (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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4.6.5 Burning pool fire - Heptane (UL268 fire C Emulation)  

 

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

%
 Io

n 
In

te
ns

ity

Retention time (minutes)

UL268 Hep 1
UL268 Hep 2
UL268 Hep 3
UL268 Hep 4
UL268 Hep 5
UL268 Hep 6

 
Figure 111 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications of UL fire C (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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Figure 112 GC/MS Chromatograms for material from Tenax tubes used for 6 

replications of UL fire C (Flaming Heptane) Emulations in UCLan 2 m3 Enclosure 
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4.6.6 Burning Paper (UL268 fire A Emulation) 
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Figure 113 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications of UL fire A (Burning Paper) Emulations in UCLan 2 m3 Enclosure. Also 
shows results for green paper of type that may be found in washroom litterbin. 
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Figure 114 GC/MS Chromatograms for material from Tenax tubes used for 6 
replications of UL fire A (Burning Paper) Emulations in UCLan 2 m3 Enclosure 
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4.6.7 Flaming wood  (UL268 fire B Emulation) 
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Figure	  115	  GC/MS	  Chromatograms	  for	  material	  from	  Carboxen	  tubes	  used	  for	  6	  
replications	  of	  UL	  fire	  B	  (Flaming	  Wood)	  Emulations	  in	  UCLan	  2	  m3	  Enclosure	  

 

 
Figure 116 GC/MS Chromatograms for material from Tenax tubes used for 6 

replications of UL fire B (Flaming Wood) Emulations in UCLan 2 m3 Enclosure 
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4.7	  GC	  Chromatograms	  for	  EN54/7	  fires	  conducted	  at	  BRE	  
The GC chromatograms below are for samples collected on Carboxen absorption tubes 

at full scale fire tests carried out in the test room at BRE Watford in May 2010. 

As only there is only one plot for each test, ion current (arbitrary units)was not 

converted to ion intensity scale as for the groups of UCLan enclosure tests. 

It is apparent that the forms of the chromatograms for samples from the BRE tests do 

not show a close resemblance to corresponding tests in the UCLan enclosure. 

 

 

 

 

 

 

 

 

 
	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

TF3	  at	  BRE	  

 
Figure 118 GC/MS Chromatograms for material from Carboxen tube used EN54/7 TF3 
(smouldering cotton) fire at BRE 

	  

	  

TF2	  at	  BRE	  

Figure 117 GC/MS Chromatograms for material from Carboxen tube used 
EN54/7 TF2 (smouldering wood) fire at BRE 
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TF4	  at	  BRE	  

 
Figure 119  GC/MS Chromatograms for material from Carboxen tube used EN54/7 TF4 

(Polyurethane foam burn) fire at BRE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

	  

TF5	  at	  BRE	  

Figure 120 GC/MS Chromatograms for material from Carboxen tube used 
EN54/7 TF5 (Flaming Heptane) fire at BRE 
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4.8	  GC	  for	  Non-‐Standard	  Tests	  in	  UCLan.	  Enclosure	  

4.8.1 Burning Mixed Polyurethane Foams in UCLan Enclosure 
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Figure 121 GC/MS for material from Carboxen tubes used for 3 replications of mixed 

Polyurethane foam burns and a TF4 Emulation in UCLan 2 m3 Enclosure 
 

 

4.8.2 Overheating PCBs in UCLan Enclosure 
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Figure 122 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications for Overheated PCBs in UCLan 2 m3 Enclosure 
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4.8.3 Overheating Polymer Coated Wire in UCLan Enclosure 
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Figure 123 GC/MS Chromatograms for material from Carboxen tubes used for 6 

replications for Overheated Polymer Coated Wire in UCLan 2 m3 Enclosure 
 

4.8.4 Overheating Cooking Oils in UCLan Enclosure 
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Figure 124 GC/MS Chromatograms for material from Carboxen tubes used for 

overheating Cooking Oil tests in UCLan 2 m3 Enclosure 
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4.8.5 Bread Toasting and Re-Toasting in UCLan Enclosure 

As described in chapter 3, experiments on toasting single slices of bread were carried 

out in a commercially available domestic toaster and as a single toasting operation did 

not yield sufficient smoke to cause any detector alarms, each slice was subjected to a 

second and third toasting operation. Samples were collected on absorbent media for 

each toasting and Figure 126 below shows the results for GC of Carboxen absorbed 

samples from 1st, 2nd, and 3rd toastings on three slices of bread. It was apparent that 

water emissions from the bread were a significant factor and further tests were carried 

out where the content of the absorption tubes was dried by passing through dry nitrogen 

for 15 seconds. Figure 126 shows GC results for 2nd toasting of six slices where the 

Carboxen containing absorption tubes for three had been treated as normal (not dried) 

and for another three which had been subjected to the drying process. 

Figure 127 shows results for Tenax absorption tubes used for sample collection from 2nd 

toasting of six slices. 
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Figure 125 GC/MS Chromatograms from Carboxen tubes used for  1st 2nd, and 3rd 

Toasting operations replicated with 3 bread slices in UCLan 2 m3 Enclosure 
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Figure 126 GC/MS Chromatograms from Carboxen tubes used for 2nd Toasting 
operation in UCLan 2 m3 Enclosure, with drying applied to absorbent media for slices 

4, 5, and 6 
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Figure 127  GC/MS Chromatograms for Tenax tubes used for 6 replications of 2nd 

Toasting of Bread Slices in UCLan 2 m3 Enclosure 
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CHAPTER	  5	  INTERPRETATION	  OF	  GC-‐MS	  RESULTS	  
 

5.1	  MS	  Spectra	  Analysis	  Processes	  
 

The GC/MS chromatograms yield retention time peaks, which if well defined against 

background may correspond mainly to a single species or at least a non complex 

mixture. A number of techniques can be applied to mass spectrometer spectra to derive 

information from the spectra as to the amounts and identities of the species separated by 

GC. Selecting a well-defined elution peak and viewing the corresponding mass/ charge 

spectrum can allow identification of species from the ion masses and fragmentation 

pattern. This section briefly covers how methods applied to the MS data acquired in this 

study and how produced the species identifications shown in tables provided for a 

number of fire tests. Further the section covers why some elution peaks were not 

susceptible to analysis and so have not been labelled or discussed in detail. 

 

Firstly some of the terms used in this chapter and that are prevalent in the literature are 

covered. Figure 128 represents a typical mass spectrum providing a visual 

representation of a probability distribution of ions arising from one source species.  
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Figure 128 Example chromatogram  
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The axes are the mass to charge ratio of the ions and the relative intensity of the total 

ion current. 

 

Given that all the experiments in this study were carried out in typical electron 

ionization conditions (-70eV), then it is normal to expect to see only singular charged 

ions so m/Z is taken used as the mass of the ion. 

 

The other terms used in figure 128 and in tables within this chapter are the base ions and 

the mass ions.  

 

The mass ion is the parent ion of the molecule being analyzed. These are typically the 

largest ion though in EI spectra the mass ion commonly not seen in high abundance as 

the parent is decomposed in the ionization process. This is particularly true where the 

analyte molecule contains oxygen or other hetero ions as decomposition into fragments 

is more energetically favorable. This study involves oxidation of hydrocarbons and so 

compounds containing oxygen molecules are to be expected. However based on the 

range of processes and pathways in fuel pyrolysis and combustion it is also to be 

expected that a range of saturated and unsaturated hydrocarbons may present. 

 

The base ions represent the most common fragment favorably produced in the 

ionization process. The base peak provides information about the type of analyte 

present. Where the base peak is the same as the mass peak then the parent ion is 

typically a heterocyclic or conjugated system, which is difficult to ionize. 

 

The occurrence of particular ions and distribution in spectra also give clues as to the 

typical composition of an unknown by the size and regularity of the transitions. For 

example:  
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� Clusters between m/Z 36-43 are indicative of 3 carbon groups in fuels consisting 

mostly of carbon and hydrogen. 

� Fully saturated hydrocarbons are indicated by mass ions at 15 (CH3) 29 (C2H5), 

43(C3H7), 57(C4H9) etc.  

� Molecules with benzene at the core will typically produce an ion at 77 and 

51m/Z, which corresponds to phenylium ion and resulting loss of acetylene. The 

addition of Alkyl chains to the benzene core will result in a major peak at 

91m/Z, which is a mixture of benzylium and tropylium structures. The loss of 

the alkyl chain in this instance results in a fragment at 65m/Z. 

� Transitions of 15m/Z units is indicative of the loss of a CH3 group, a difference 

between two ions of 29m/Z units would indicate the loss of a C2H5 ion etc . 

Small mass losses may be explained by occurrence of simple rearrangements.  

 

The formation of fragments occurs as a result of one of 5 fragmentation rearrangements 

that occur following ionization as proposed by McLafferty [130] proceeding in 

accordance to specific energy rules [131]. There are however impossible or forbidden 

transitions that do not correspond to the loss of any reasonable fragments from a given 

species. The presence fragments corresponding to apparently forbidden transitions, 

especially between prominent mass peaks, suggest there is a mixture of analytes. Where 

there are mixtures of more than a few co eluting analytes it is very difficult to obtain a 

positive identification for any of the components and this is a major issue in fire gases 

analysis, especially for the larger molecular weight samples where significant co-elution 

of captured species occurs. 

 

There are a number of tools available to aid GC/MS analysis. The main methods used in 

this chapter involved library matching using the NIST 05 [132] data library, software 

manipulation with AMDIS [133], elemental mass analysis, fragmentation analysis, 

isotope analysis and examination of the structural properties. 

 

5.1.1 Unlabeled and unknown peaks  

The initial peak in the chromatographs equivalent to the dead volume are unretained 

components. In the Tenax fire analysis samples the unretained peak make up many of 

the gases (<C6). This is the cut off for the resin and consists of permanent and semi 
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permanent gases, although Tenax is has a very low affinity for moisture. Carboxen 

samples on the poroplot Q column have a lower cut off (<C2) but the permanent gases 

are too volatile to be resolved at normal operating conditions. Cryo focusing may have 

allowed us to look closer at the high volatility gases, many are already known and well 

studied in fire systems (e.g. CO/CO2), but in the case of Carboxen samples would have 

provided more problems in terms of the removal of moisture.  

 

Results presented for bread toasting shows how moisture can significantly affect the 

chromatograms and the ability to identify components in smoke. This can be countered 

by some post sampling manipulation including passing dry gas through the resin. 

 

Given the range of possible mixtures arising in uncontrolled and incomplete combustion 

processes, the occurrence of elution peaks yielding MS spectra that cannot be 

reasonably de-convoluted to provide identification is not surprising. Background, 

contamination and artifact peaks and mixtures are responsible for these peaks. However 

ion mass ranges observed at least put some limits on the likely range of components 

Simple mixtures and samples with significant background contamination can be 

resolved using mass spectra tools such as AMDIS.  AMDIS (Automated Mass 

Deconvolution and Identification System) is an automated program provided by NIST 

as an compliment to their mass spectra tools which is an advanced library matching. 

AMDIS scans and removes a mathematical algorithm that relates to the background in 

any given spectra. AMDIS then matches the resultant spectra with the NIST library. 

AMDIS was used extensively in the analysis of Tenax samples. 

 

5.1.2 Library matching acquired spectra  

Where peaks are not too difficult to resolve a library matching procedure may be used 

as follows. This is used for identification of some of the major components of standard 

and non standard fires.  Library matching is one of the most commonly utilized tools in 

mass spectra analysis. Because mass spectra are generated in standard conditions under 

a high vacuum a series of standard libraries of spectra for compounds has been 

generated and distributed by standards, instrumentation and publishing organizations. 

The library used for this study was the Wiley NSIT 05 library but others are available. 
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Library matching works by describing the molecule mathematically based on the 

intensity of the largest peaks. The mathematical expression is then compared to the 

unknown, and the match is rated to how close the unknown is to the standard. The 

unknown is then ranked by two values the F, or forward fit number and the R or reverse 

fit number. The F fit is a measure of how well the unknown fits into the standard spectra 

and the R fit is a measure of how well the standard fits in the unknown spectra. The R 

fit is sometimes preferentially used in complex mixtures because it discounts more of 

the background.  

Most of the discussion thus far has focused on the identification of the components 

observed in the low mass range. The same principles were used for the Tenax samples 

and the data is presented in the tables in chapter 5. Library matching is more important 

for larger molecules as the spectra become more and more complex, especially in 

mixtures.  

 

5.1.3 Mass analysis  

Mass analysis is based on the exact masses of the elements concerned. By knowing the 

exact mass of an ion the elemental composition or empirical formula can be derived. 

Typically there are calculators [134] that can be used to calculate the formula based on 

known information of masses and expected composition. For example we consider the 

fuels used in TF3 fires have a composition of C, H and O. Using this information the 

mass ion the chromatograph displayed as peak V may be identified with benzene.  

 

The exact mass of the peak listed at 78m/Z taken from the instrument listing is 78.118. 

The elemental composition calculated from this mass can be calculated as the 

possibilities in table 28 below: 
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Elemental composition PPM 

C H O 

6 6 0 271.0 

5 6 1 714.1 

4 2 2 1157.3 

3 4 1 456.8 

2 0 2 900.0 

0 8 3 1343.2 

Table 28 Elemental analysis based on the exact masses of the elements involved in the 
potential structure 78 m/Z ion in peak C . The best match is C6H6 with the smallest 
deviation from the theoretical mass. The PPM in this case does not relate to gas 
concentration but is a parameter related to the deviation of the measured mass from the 
expected mass.  
 

With information available on the empirical formula further information may be derived 

concerning the number of saturations. If the number of hydrogen atoms in a 

hydrocarbon (x) can be expressed as ; 

x = 2n+2-2Ni          (26) 
Equation 26 Where Ni is the number of saturations and n is the number of carbons. 

 
 

This can be rearranged to give:  

Ni = (2n+2-x)/2 (27) 
Equation 27 re-arrangement of equation 26 

 
Hetero atoms like oxygen and sulfur both replace hydrogen atoms and reduce the 

hydrogen by the same effect and so do not factor into the calculations. Substituting the 

values from table 26 in equation 26 generates the results shown in Table 28.  

 

Empirical formula Number 

Carbon 6 

Hydrogen 6 

Number of saturations (Ni) 4 

Table 29 Calculated number of saturations + ring structures in the empirical formula 
derived from the analysis of the exact mass in table 4 using the formula 

 
 

With this additional information the proposed identification can be referred back to the 



201 
 

library match and this can be used to validate the observations. Ni 4 is equivalent to 3 

saturations and 1 ring structure or numerical algorithm thereof, which is not conclusive 

evidence the peak identified as peak V is benzene but is consistent given the other 

evidence. Linear C6H6 molecules with two triple bonds or one triple bond and two 

double bonds can meet the criteria but are less likely and more reactive candidates. 

 

5.1.4 Fragmentation analysis  

The formation of fragments occurs as a result of one of 5 fragmentation rearrangements 

that occur following ionization. These are most commonly associated with McLafferty 

[135] and proceed in accordance to specific energy rules.  

 

Looking at the chromatograms, one of the more common peaks occurs around 31 

minutes has been identified as peak V, benzene in the scaled BS EN standard fires and 

several of the other scaled fires and in the full scale fire room tests. Comparing the 

acquired spectrum from TF3 fire, the ions represent specific transitions in an ionization 

fragmentation reaction. For benzene the fragmentation reaction is given in figure 129. 
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Figure 129 Fragmentation pattern for benzene 
 

 

5.1.5 Isotope analysis  

Sometimes the library match throws up matches, which we struggle to explain. For 

example the peak identified as peak D in TF2 fires produces a strong sulfur dioxide 

identification match (figure 130). Given what we know of the wood used in the 

experiment it is unlikely to be an element produced by the thermal decomposition of the 

fuel. The immediate response was it could quite simply be contamination but we took 

several steps to eliminate any potential contamination root. These included changing the 

collection resin, sample tubing and other checks. But it was found that it only appeared 

in specific fuel tests and it was a persistent peak in the analysis of those fuels. Therefore 

we considered it could be an oxidation of environmental sulfur.  

 

We can check the identity of the peak be examining the isotope ratio. Each ion is related 

to the mass of the elements that it is composed of. In some cases elements are present in 
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more than one isotope such sulfur which is present in 32S  and 34S. Using this in sulfur 

dioxide we would see peaks at 64 (32S + 16O + 16O) and 66 (34S + 16O + 16O) in 

approximate 97:4 ratio.  

 

 
Figure 130 Example of chromatogram taken from flaming polyurethane fire peak 

 
 
 

Examining the intensity of the ions in the spectra at 64 and 66 the ion ratio is given as 

95.9:4.9 , which is comparable to the desired ratio in the limitations of the measurement 

equipment .  

 

 

5.2	  Analysis	  of	  GC/MS	  from	  Test	  Fires	  
 

The purpose of this chapter is to identify the key components identified from each fire 

conditions studied both in the scaled fire enclosure at UCLan and where appropriate in 

other environments including full scale fire experiments at BRE.  

 

As shown in chapter 4 there are some fires, which seem to show a great deal of 

reproducibility with clear patterns being observed. In other experimental conditions 

there is an apparent lack of commonality between fires and the purpose of chapter 4 was 

to highlight these patterns or lack there of.  
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In this chapter a single representative chromatogram is presented for each fire condition 

along with some identification of components. Where appropriate each fire condition is 

represented by two chromatograms for large and small fire components. The small 

components were captured on Carboxen 1000 air sampling tubes and eluted onto a 

poroplot Q column and these represent the gases we had the most interest.  The 

Carboxen results are presented first in section 5.3 and the Tenax results are presented in 

section 5.4. 

 

5.3	  Examples	  of	  Carboxen	  and	  poroplot	  Q	  chromatograms	  	  	  
This section presents chromatograms from different test fires and tabulated data 

showing masses of major ions corresponding to identified and labelled GC peaks. 

Unlabelled peaks are typically unresolved and suffer from high background levels and 

are therefore not discussed further.  

 

The methods used for identification of each best match as described in section 5.1. 

Where possible within a section common gases share common identification letters. For 

example for the TF2 fire, peak H has the best match of furan, and this is also true for 

TF3 fires. However the nomenclature does not carry between sections because of the 

large number of components. The tables hold the mass ions of the most dominant 

species identified in the peaks labelled. Unlabelled peaks are typically unresolved and 

suffer from high background levels and are therefore not discussed further.  
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5.3.1  BS EN 54-7 Standard fires – products captured on Carboxen 

 

5.3.1.1.	  Smouldering	  wood	  (TF2	  Emulation)	  
 

 

 

 

 

 

 

 

 

 
Figure 131 Representative chromatogram for Carboxen captured sample from 

smouldering wood TF2 emulation in UCLan enclosure.  Corresponds to sect. 4.6.1, 
TF2-2. 

 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 45 40,32,28,18 Unretained  
B 41 44,43,29,28,15 Propene  
C 44 46,45,31,29,27 Ethylene oxide 
D 64 66,48,32,28 Sulphur dioxide 
E 28 44,32,31,14 Acetaldehyde 
F 41 56,55,53,51,39,28,19      Cyclobutene 
G 68 80,64,56,53,49,41,39,30,29,28,19 Unknown 
H 41 68,40,39,38,32,28 Furan 
I 43 93,72,53,52,51,43,42,29,26,19,16,15 Butanal * 
J 43 58,42,29,28,2726,19,16,15 Acetone  
K 28  58,43,32,15 Propene oxide 
L 43 74,59,46,45,29,15 Methyl acetate 
M 78 79,77,52,51,50,39 Benzene 

Table 30 The Mass ions corresponding to peaks A-M from the chromatogram for 
smouldering wood fire (TF2 Emulation) displayed in Figure 131 . 
 

	  
	  

TF2	  

Emulation	  
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5.3.1.2	  Smouldering	  cotton	  (TF3	  Emulation)	  
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 132 Representative chromatogram for Carboxen captured sample from 
smouldering cottonwood TF3 emulation in UCLan enclosure.  Corresponds to sect. 

4.6.2, TF3-4. 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 28 47,45,46,44,43 Unretained 
N 41 43,42,40,39,27 Cyclopropane 
B 41 44,43,39,40,15 Propene 
O 41 40,39,27,26,12 11 1,2-Propadiene 
P 41 56,55,39,28,27 Butene 
H 41 68,41,39,27 Furan 
Q 56 55,53,37,29,28,27,19 2-Propenal 
I 28 72,53,52,51,43,29,26,16 Butenal * 
J 43 58,42,29,27,16 Acetone 
R 82 83,81,53,39,27 2 Methyl furan 
S 87 68,67,45,44,42,41,39,27,26,16 2-Butanoic acid* 
M 54 79,77,52,51,50,39 Benzene 

Table 31 The peaks IDs in the table represents the mass ions corresponding to the peaks 
A-O from Figure 132 

 
 

	  

	  

TF3	  

Emulation	  
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5.3.1.3	  Flaming	  Polyurethane	  (TF4	  Emulation)	  
 
 

 

 

 

 

 

 

 

 

 

 

Figure 133 Representative chromatogram for Carboxen captured sample from 
polyurethane foam burn TF4 emulation in UCLan enclosure.  Corresponds to sect. 

4.6.3, TF4-3. 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 28 45,47,46,44,43 Unknown 
N 41 43,42,40,39,27 Cyclopropane 
D 64 66,48,32,28 Sulphur dioxide 
T 16 40,26,17 Unknown 
H 41 68,41,39,27 Furan 
I 56 55,53,37,29,28,27,19 2-Propenal 
J 43 58,42,29,27,16 Acetone 
U 43 74,59,51,29,16 Acetol 
V 46 45,44,29,18 Formic acid 
R 82 83,81,53,39,27 2 Methyl furan 
M	   78	   77,52,51,50,	   Benzene	  
Table 32 The peak ID corresponds to the peaks in the chromatogram shown in 

Figure 133, relating to the scaled flaming polyurethane fire (TF4) 
 

 

TF4 
Emulation 
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5.3.1.4	  Flaming	  heptane	  (TF5	  Emulation)	  	  
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
Figure 134 Representative chromatogram for Carboxen captured sample from flaming 

heptane TF5 emulation in UCLan enclosure. Corresponds to sect. 4.6.4, TF5-2. 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 28 45,47,46,44,43 Unretained 
D 64 66,48,32,28 Sulphur 

dioxide 
H  41 68,39,27 Furan  
I 29 56,55, 39,38,37,29,27 2-Propenal 

W 43 70,58,55,42,32,28 Unknown 
X 28 72, 68,67,57,55,43,42,41,32 Pentane 
M 54 79,77,52,51,50,39 Benzene 
Y 29 71,57,56,41,32,28 Unknown  
Z 28 72,68,67,57,55,43,42,41,39,32,29,27 2-Butanal 
Table 33 The peak ID corresponds to the peaks in the chromatogram shown in 

Figure 134, relating to the scaled flaming pool fire  (TF5) 
  

 
TF5 

Emulation 
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5.3.2 UL268 Scaled fires – products captured on Carboxen 

 

5.3.2.1	  Smouldering	  paper	  fires	  	  (UL268	  fire	  A	  Emulation)	  
 

 
Figure 135 Representative chromatogram for Carboxen captured sample from paper fire 
UL268 fire A emulation in UCLan enclosure.  Corresponds to sect. 4.6.6. The paper 
used in this experiment was sourced from the local UCLan free newspaper and the 
paper density was given as 48gsm. The peaks A-P are identified in table 32.  

 
Peak 
ID 

Base 
Peak  

Other mass ions (m/Z) Best match  

A 60 44,32,30,28 Unretained  
B 41 44,42,40,39,38,27 Propene 
C 48 66,64,50,32 Unknown 
D 19 66,64,48,39,32 Sulphur dioxide 
E 44 43,42,41,30,29 Propane 
F 31 56,55,41,39,32,29 Butene 
G 39 69,68,54,42,40,29 Furan 
H 56 55,37,29,28,27,26 2-Propenal 
I 78 76,63,52,52,50,44,39,38,32,27 Butadienykacetylene 
J 41 70,69,42,40,39,38,37,29 Methyl propenal  
K 82 81,54,53,43,39,38,29,28,27 2-Methyl furan 
L 55 82,81,70,53,39,27 Unknown 
M 78 86,77,48,52,51,50,39,30,29 Divinylacetylene 
O 78 77,58,52,51,50,39,30,29 Benzene 
P 41 69,41,39,29 Unknown 

Table 34 The peak ID correspond to the peaks in the chromatogram shown in Figure 
135, relating to the scaled representation of the smouldering paper fire based on the 

UL268 standard fire  (Fire A) 
 
 

 
UL 268 
Fire A 

Emulation 
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5.3.2.2	  Flaming	  wood	  fire	  (UL268	  fire	  B	  Emulation)	  
 

 
Figure 136 Representative chromatogram for Carboxen captured sample from flaming 

wood UL268 fire B emulation in UCLan enclosure.  Corresponds to sect. 4.6.7. 
 
 
 

Peak ID Base 
Peak  

Other mass ions 
(m/Z) 

Best match  

A 44 28,22 Unretained 
Q 41 42,40,39,27,26 Cyclopropane 
E 41 42,40,39,38,37 Propene 
O 78 77,52,51,50 Benzene 

Table 35 The peak ID correspond to the peaks in the chromatogram shown in 
Figure 136, relating to the scaled representation of the flaming wood fire described in 

the UL268 standard (Fire B) 
 
 
 

UL268  
Fire B 
Emulation 
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5.3.2.3	  Burning	  pool	  fire	  :	  Heptane	  (UL268	  fire	  C	  emulation)	  
 

Figure 137 Representative chromatogram for Carboxen captured sample 
from flaming heptane UL268 fire C emulation in UCLan enclosure.  

Corresponds to sect. 4.6.5.The ion represented in the peaks A-N 
are depicted in table 35 

 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 44 45,47,46,44,43 Unretained 
D 64 66,48,32,28 Sulphur 

dioxide 
R 68 44,43,42,26,15 Ethylene 

oxide  
S 28 46,45,28,17,16 Formic acid  
E 29 45,44,42,41,39,29,18 Propane 
G 39 69,68,54,42,40,29 Furan 
H 28 56,55,41,40,29,27,26 2-Propenal 
T 43 58,42,49,29,27,16 Acetone 
U 28 72, 68,67,57,55,43,42,41,32 Pentane 
O 78 77,58,55,42,41,40,32,28 Benzene 
V 44 102,98,77,63,52,51,28 Unknown 
X 64 72,68,67,57,55,43,42,41,39,32,29,27 2-Butenal 

Table 36 The peak ID corresponds to the peaks in the chromatogram shown in 
Figure 137, relating to the scaled representation of the flaming pool heptane fire of the 

UL268 standard fire (Fire C) 
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5.3.3 Full scale BS EN 54 Fire tests– products captured on Carboxen 

 

5.3.3.1	  Smouldering	  wood	  (TF2)	  	  
 
 

 
Figure 138 Chromatogram for Carboxen captured sample from smouldering wood TF2 

fire at BRE. 
 
The sample collected included a series of small peaks that are included in the magnified 

section, highlighting the above baseline significance.  

 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 29 28,40,32,18 Unretained 
B 31 31,32,29,15 Methanol  
C 29 44,43,42,15,28 Acetaldehyde 
D 68 42,40,38,27,29 Furan  
E 43 60,45.42.29.15 Acetic acid 
F 78 77,58,55,42,41,40,32,28 Benzene 
G 74 75,73,55,56,57,45,30,29,58 Propionic acid  

Table 37 Identified components from the spectra shown in figure 138 taken from the 
full scale BRE smouldering wood fire (TF2)  . 

 
In the magnified section there are a series of small gases that could be clearly observed 

above the baseline which are identified here.  
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5.3.3.2	  Smouldering	  cotton	  fire	  (TF3)	  
 
 

 
Figure 139 Chromatogram for Carboxen captured sample from smouldering cotton TF3 

fire at BRE. 
 

The magnified section between 22 and 28 minutes show the minor hydrocarbon peaks 

present in the cotton smoke.  

 
Peak ID Base peak Other mass ions (m/Z) Best match 

A 32 28,40,32,18 Unretained 
H 41 44,42,40,39,38,27 Propene 
I 64 66,48,32,28 Sulphur dioxide 
B 31 32,29,15 Methanol  
C 29 44,43,42,15,28 Acetaldehyde 
J 31 45,44,43,29,27 Ethanol 
K 41 40,39,27,28,18,15,14 Acetonitrile 
M 43 58,42,29,27,16 Acetone  
N 29 46,45,44,43,28,17,16 Formic acid 
E 43 60,45,44,42,41,29,15 Acetic acid 
O 43 88,73,70,61,45,29,27 Ethyl acetate 
P 41 42,45,60,29,15 Unknown 
F 78 77,58,55,42,41,40,32,28 Benzene 

Table 38 Identified components from the spectra shown in Figure 139 taken from the 
full scale BRE smouldering cotton fire based on the BS EN 54 standard fire (TF3).  
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5.3.3.3	  Flaming	  polyurethane	  (TF4)	  	  
 

 
Figure 140 Chromatogram for Carboxen captured sample from polyurethane foam burn 

TF4 fire at BRE 
  
The gases were collected on Carboxen sample tubes and the section between 15 and 31 

minutes was expanded to show the above baseline significance of the peaks A-F and N. 

 
 

Peak ID Base peak Other mass ions (m/Z) Best match 
A 28 28,40,32,18 Unretained  
B 31 32,29,15 Methanol  
C 29 44,43,42,15,28 Acetaldehyde 
D 68 42,40,38,27,29 Furan  
N 29 46,45,44,43,28,17,16 Formic acid 
F 78 79,77,52,51,50,39 Benzene 

Table 39 Identified components from the spectra shown in Figure 140 taken from the 
full scale BRE flaming polyurethane based on the standard BS EN 54 fire (TF4). 
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5.3.3.4	  Flaming	  heptane	  pool	  fire	  (TF5)	  
 

 
Figure 141 Chromatogram for Carboxen captured sample from flaming heptane TF5 

fire at BRE . 
  

The magnified section between 11 minutes and 31 minutes represent the minor 

components captured during the test. 

 
 

Peak ID Base peak Other mass ions (m/Z) Best match 
A 41 40,32,18 Unretained 
B 31 32,29,15 Methanol  
C 29 44,43,42,15,28 Acetaldehyde 
J 31 45,44,43,29,27 Ethanol 
N 29 46,45,44,43,28,17,16 Formic acid 
E 43 60,45.42.29.15 Acetic acid 
G 74 75,73,55,56,57,45,30,29,58 Propionic acid  

Table 40 The identified components from the spectra shown in Figure 141. 
 
The chromatogram is representative of the gases collected from a full-scale fire test 

based on the BS-EN 54 TF5 flaming heptane fire. 
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5.3.4 Non-Standard fires  with polymer fuels– products captured on 
Carboxen 

 

5.3.4.1	  Overheated	  Printed	  circuit	  boards	  	  

 
Figure 142 Representative chromatogram for Carboxen captured sample from PCB 
heated on hotplate in UCLan enclosure.  Corresponds to sect. 4.8.2.The peaks are 

identified in table 41. 
 

Peak 
ID 

Base 
Peaks 

Other ions (Fragments) Best match 

A 43 40,32,28,18 Unretained  
B 64 66,48,32,28 Sulphur dioxide 
C 43 128,99,85,71,70,57,56,55,43,41,39,29,28,27 Unknown 
D 117 131,132,102,78,77,74,63,62,52,51,50,39,27 1-phenyl,2-butene 

E 134 133,117,107,91,89,79,78,77,66,65,51,43,39, 
27 

2-Chloro-1-
phenylacetylene 

F 43 58,55,43,41,39,29,27,18 Butane 

H 121 136,122,107,103,93,91,77,63,60,56,43,42, 
41,39 

Methyl 2-
chlorobutyrate 

I 94 66,65,55,53,50,47,40,41,39,38 Phenol 
G 43 86,60,28,15 Unknown 

 
Table 41 The table represents the data from the peaks identified in the spectra shown in 

Figure 142. 
 



217 
 

5.3.4.2 PVC	  Wire	  	  
 

 
Figure 143 Representative chromatogram for Carboxen captured sample from PVC 

covered wire heated on hotplate in UCLan enclosure.  Corresponds to sect. 4.8.3. The 
peaks from this chromatogram are identified on table 42. 

 
 
Peak 
ID 

Base 
Peak  

Other mass ions (m/Z) Best match  

A 16 46,45,44,28,22,12 Unretained 
B 64 66,48,32,28 Sulphur dioxide 
I 41 40,39,27,26,12 11 1,2-Propadiene 
J 60 36,35,26,25,24 Chloroethyne 
K 29 44,43,29,16 Propane 
L 41 56,55,39,32,29,28,27 2-Butene  
M 54 53,51,50,39,32,28,27,26 Acetone  
N 42 78,68,53,51,50,43,42,41,39,32,29,27 n-Propyl chloride 
O 39 68,67,53,41,40,38,37,29,18 2 Butynal  
P 43 72,71,57,56,42,41,39,29,27,18 2 Methyl butane 
Q 78 77,52,51,39,32,28 Benzene 
R 64 72,68,67,57,55,43,42,41,39,32,29,27 2-Butenal 

Table 42 This table shows the mass ion data collected from analysis of the spectra 
shown in Figure 143. 
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5.3.4.3	  Mixed	  Polyurethane	  	  

 
Figure 144 Representative chromatogram for Carboxen captured sample from a flaming 

polyurethane foam fire in UCLan enclosure. 
 
The fire was arranged as TF4 emulation but with 25% of fuel being fire retardant.  

Corresponds to sect. 4.8.1, PU+FR-2.The peaks from this chromatogram are identified 

on table 43. 

 
Peak ID Base 

Peak  
Other mass ions (m/Z) Best match  

A 44 46,45,32,28,22,26 Unretained 
S 41 44,42,40,39,38,27 Propene 
B 64 66,48,32,28,28 Sulphur dioxide  
T 64 66,50,48,32,28,18 Unknown 
U 29 44,43,42,41,32,31,18,16,15 Acetaldehyde 
V 28 68,42,40,39,38,37,32,29,18,14 Furan 

      W 41 78,77,61,58,43,42,39,28,15 Propene-2-
chloro 

X 36 78,77,76,48,35,34,29,27,18 1 Propene-1-
chloro 

Y 60 74,59,46,45,43,41,29,28,18,15,14 Butanoic acid 
Q 45 82,81,78,72,53,39,27,18,15 Benzene* 
Z 63 82,81,78,77,76,65,64,62,52,41,39,28 Dichloro-1,2-

propane 
1 43 86,60,28,15 Unknown 

Table 43 Table of the mass ions and potential identifications from the flaming mixed 
polyurethane fires. These peaks correspond to the peaks shown in the Figure 144. 
 
*The Benzene peak in this spectra is difficult to resolve from the background and co-

eluting compounds but there is enough evidence to suggest an identification on the base 

of retention time, presence of dominant ions and library matching compared with other 

samples,  
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5.3.5 Non-Standard Fires –cooking oils -products on Carboxen 

 
The fumes from cooking oils and fats and cooking in general can be a significant cause 

of false alarm signals. There are many different kinds of cooking oils and this study 

looked at three of the most common types to check whether the gasses from overheating 

were common or differed. 
 

5.3.5.1	  Vegetable	  oil	  	  
 

 
 
 

 
 
 

 
 
 
 
 
 
 

Figure 145 Representative chromatogram for Carboxen captured sample from 
overheated vegetable oil in UCLan enclosure.  Corresponds to trace in sect. 4.8.4, 

The labelled peaks A-K are described in table 44. 
 

Peak ID Base Peak  Other mass ions (m/Z) Best match  
A 44 46,45,43,28,22,17,13 Unretained 
B 41 70,43,42,40,39,38,27 2-Methyl Propen-

1-one   
C 41 44,42,40,39,38,27 Propene 
D 41 56,55,53,50,39,32,29,28,18,15,14 Butene 
E 68 69,42,40,38,39,37,34,29 Furan  
F 56 57,55,53,52,40,39,38,37,36,29,28,27 2-Propenal 
G 43 72,71,57,56,42,41,39,29,27,18 2 Methyl butane 
H 82 83,81,54,53,39,28,27 2 Methyl Furan 
I 56 84,83,70,69,55,43,42,41,39,29,27 Hexene 
J 78 77,64,53,39,29 Benzene 
K 43 72,71,60,57,42,41,32,29,27,18,15 2 Methyl Furan 

Table 44 These ions represent the peaks from the chromatogram traces identified in 
Figure 145, are the most dominant ion patterns in each identified peak. 
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5.3.5.2	  Olive	  Oil	  	  
  

 
Figure 146 Representative chromatogram for Carboxen captured sample from 

overheated olive oil in UCLan enclosure.  Corresponds to trace insect. 4.8.4. Ions 
corresponding to the peaks A-N are represented in table 45. 

 
Peak ID Base Peak  Other mass ions (m/Z) Best match  

A 44 46,45,43,28,22,17,13 Unretained 
B 29 44,42,40,39,38,27 Propene 
L 64 66,48,32,28,28 Sulphur dioxide  

D 41 70,43,42,40,39,38,27 2-Methyl Propen-1-one   
L 41 56,55,39,29,28,27,26 2- Butene  
M 54 53,51,50,39,28,27,26 2 Butyne 
N 43 58,42,41,29,28,27 Isobutane 
E 68 69,42.40,39.38,29,28,27,26,25 Furan  
F 29 58,57,28,27,26 2-Propenal  
G 43 72,71,57,56,42,41,39,29,27,18 2 Methyl butane 
Q 41 71,70,69,55,43,42,40,39,38,29 2-Methyl-2-Propenal 
H 82 83,81,54,53,39,28,27 2 Methyl Furan 
P 56 84,69,55,42,41,39,29,27 Cyclohexane 
I 57 86,71,56,43,42,41,39,29,27 Hexane 
J 78 79,77,52,51,50,39,38 Benzene 

 
Table 45 These ions represent the peaks from the chromatogram traces identified in 

Figure 146 are the most dominant ion patterns in each identified peak. 
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5.3.5.3	  Solid	  Cooking	  fat	  (lard)	  
 
 

 
Figure 147 Representative chromatogram for Carboxen captured sample from 

overheated cooking fat in UCLan enclosure.  Corresponds to trace in sect. 4.8.4. The 
peaks A-J are described in table 46. 

 
 
Peak ID Base 

Peak  
Other mass ions (m/Z) Best match  

A 44 45,46,43,28,22,17 Unretained 
B 41 70,43,42,40,39,38,27 2-Methyl Propen-1-

one   
L 64 66,50,58,32,18 Sulphur dioxide 
R 29 44,43,42,15,28 Acetaldehyde 
D 43 56,55,53,50,39,32,29,28,18,15,14 Butene 
F 29 56,55,53,39,38,37,29,28,27,26,25 2-Propenal  
G 43 72,70,57,55,42,41,39,29,27 2 Methyl butane 
S 44 72,71,57,43.42,41,39,29,27,26.16 Butenal 
I 57 86,70,60,58,57,56,45,42,41,29,27,18 Hexene 
J 78 77,76,64,57,42 Benzene 

 
Table 46 These ions represent the peaks from the chromatogram traces identified in 

Figure 147, are the most dominant ion patterns in each identified peak. 
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5.3.6 Toasting Bread  

5.3.6.1	  Progression	  of	  toasting	  	  
 
Experiments on the progression of toasting were to determine the vapours present as the 

bread progressed through stages of toasting to burnt, and identify changes as the toast 

becomes more carbonized as indicated in Figure 148 

 

Figure 148 Images of toast representing 0-3 toasting experiments 
	  

Example results for experiments conducted in the UCLan enclosure with Carboxen 

sample tubes are presented below. No steps to reduce the moisture in samples for the 

first three experiments and consequently a peak around 10 minutes swamps many of the 

minor components.  

 

The following chromatograms (figure 149-151) in the progression of toasting 

experiments represent the different stages of toasting discussed in chapter 2 .The initial 

stage of toasting rarely produces a fire signal and the types of gasses collect are thought 

consistent with dehydration. Where moisture has been left in the sample tubes it 

demonstrate how large signal water can be in many of the fires compared to the other 

components.  

 

Results for pure nitrogen dried sample are presented in Figure 152. 
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Progression of toasting: 1st toasting 

 

 

 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 149 Representative chromatogram for Carboxen captured sample from first 
toasting of bread slice in UCLan enclosure.Peaks A-E are described in table 47. 

 
 

Peak ID Base Peak  Other mass ions (m/Z) Best match  
A 18 40,32,28,14 Unretained  
B 64 66,48,32 Sulphur dioxide/Water 
C 44 46,45,31,29,27 Ethylene oxide 
D 31 45,44,43,29,27 Ethanol 
E 43 60,45,44,42,41,29,15 Acetic acid 

Table 47 These ions represent the peaks from the chromatogram traces identified in 
Figure 149, are the most dominant ion patterns in each identified peak 
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Progression of toasting: 2nd toasting  
 
 
 

Figure 150 Is a representative chromatogram for 
Carboxen captured sample from second toasting of 

bread slice in UCLan enclosure. Peaks A-F are 
described in table 48. 

 
 

Peak ID Base Peak  Other mass ions (m/Z) Best match  
A 18 40,32,28,15,16 Unretained 
B 41 44,42,40,39,38,27 Propene 
C 31 45,44,43,29,27 Ethanol 
D 45 56,55,46,44,39,38,28 Oxalic acid 
E 43 60,45,44,42,41,29,15 Acetic acid 

Table 48 These ions represent the peaks from the chromatogram traces identified in 
Figure 150, are the most dominant ion patterns in each identified peak. 
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Progression of toasting: 3rd toasting  
 
 

 
 
Figure 151 Is a representative chromatogram for Carboxen captured sample from third 

toasting of bread slice in UCLan enclosure.. Peaks A-J are described in table 47. 
 

Peak ID Base Peak  Other mass ions (m/Z) Best match  
A 32 40,39,28,27,18,17,16 Unretained 
B 44 46,45,31,29,27 Ethylene oxide 
F 43 56,5,50,39,32,29,28,18,15,14 Butene 
D 31 45,44,43,29,27 Ethanol 
I 43 58,57,28,27,26 2 Propanal 
J 68 69,42.40,39.38,29,28,27,26,25 Furan  
G 43 58,42,29,27,16 Acetone  
H 82 83,81,70,54,53,39,28,27 2 Methyl Furan 
E 43 60,45,44,42,41,29,15 Acetic acid 
K 78 79,77,64,52,51,50,39,38 Benzene 

 
Table 49 These ions represent the peaks from the chromatogram traces identified in 

Figure 151, are the most dominant ion patterns in each identified peak. 
 
 
As the effect of water was particularly evident on the GC/MS chromatograms for toast, 

measurements were also carried out on samples where the Carboxen was dried by 

flushing through with dry nitrogen before carrying out desorption and GC analysis.  
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Bread 2nd toasting, Carboxen dried by gas flow 
 

 

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

Figure 152 Is a representative chromatogram for Carboxen captured sample from 
second toasting of bread slice in UCLan enclosure. 

 
 This chromatogram is for absorption tube contents flushed with dry nitrogen before 

GC. Was collected . Peaks A-L are described in table 50. 

 
Peak ID Base Peak  Other mass ions (m/Z) Best match  

A 28 40,32,28,14 Unretained 
B 41 44,42,40,39,38,27 Propene 
C 64 66,48,30 Sulphur 

dioxide 
D 44 43,42,29,28,27 Propane 
E 56 57,55,38,37,36,29,28,27,26,25 2-Propenal 
F 43 59,58,42,41,40,39,38,37,27,26,16,15 Acetone 
G 43 60,45,42,29,18,17,15 Acetic acid 
H 43 72,54,41,39,29,27 Pentane 
I 82 81,54,53,51,50,43,39,27 3 Methyl 

Furan 
J 78 77,76,64,52,51,50,39,38 Benzene 
K 45 73.72.70,69,60,43,42,41,39,27  Butanal 3-

Hydroxy 
L 64 72,68,67,57,55,43,42,41,39,32,29,27 2-Butenal 

Table 50 These ions represent the peaks from the chromatogram traces identified in 
Figure 152, are the most dominant ion patterns in each identified peak 
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 5.3.7 Methanol Flaming Liquid Fire 

 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
Figure 153 The figure represents those components captured and eluted from Carboxen 

sample tubes. Peaks A-H are described in table 51. 
 
Despite burning for the most part with clean blue flame the burning methanol fire 

clearly did produced fire components other than CO2 and water. 

 
 
Peak 
ID 

Base Peak  Other mass ions (m/Z) Best match  

A 28  40,32,29,28,14 Unretained 
B 64 66,48,32 Sulphur dioxide 
C 31 32,29,15 Methanol  
D 41 56,55,39,29,28,27,26 2- Butene  
E 68 69,42.40,39.38,29,28,27,26,25 Furan  
F 43 59,58,41,40,39,37,27,26,16,15 Acetone 
G 43 60,45,29,18,15 Acetic acid 
H 78 77,52,51,50,39,38 Benzene 

 
Table 51 These ions represent the peaks from the chromatogram traces identified in 

Figure 153, are the most dominant ion patterns in each identified peak. 
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5.3.8 Non standard smouldering paper   

 
 

 
 

 
 
 
 
 
 

 
 

 
 
 
 

 
 

Figure 154 Representative chromatogram for Carboxen captured sample from green 
paper (wash room hand towel type) under conditions as for UL268 fire A emulation in 

UCLan enclosure . The peaks are described in table 52. 
 
 

Peak ID Base 
Peak  

Other mass ions (m/Z) Best match  

A 28 60,32 Unretained  
B 29 44,43,41,39,28,27,15 Propane 
C 29 48,44,43,30,29,16 Unknown  
D 32 57,56,55,41,32,31 Unknown 
E 68 69,40,39,29 Furan  
F 56 55,39.38.37.36.28,27,26 2-Propenal 
G 29 46,45,44,28,17 Formic acid 
H 41 70,42,40,39,29,27 Methacrolein 
I 82 81,54,53,39,28,27 2 Methyl Furan 
J 82 70,65,55,53,27 Unknown 
K 41 70,69,42,39,38,29,27 2-Butenal 
L 78 77,64,53,39,29 Benzene 
M 70 69.41.39,27 Unknown 

 
Table 52 These ions represent the peaks from the chromatogram traces identified in 

Figure 154, are the most dominant ion patterns in each identified peak. 
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5.3.9 Cigarettes 

There is a very extensive literature on identification and measurement of components of 

cigarette smoke. However analysis involving direct collection on absorbent media is 

recognized to be difficult as solid media as used in most environmental sampling and in 

this study, rapidly becomes poisoned by the light tar associated with cigarette smoke. It 

was found in this study that cigarette smoke generated complex and poorly reproducible 

GC/MS chromatograms, for both Carboxen and Tenax absorption, though particularly 

for the former. It was not considered useful for this document to include an example 

trace for cigarette smoke captured on Carboxen. 

 

5.4	  Example	  chromatographs	  from	  Tenax	  samples	  	  
 
This section presents chromatograms from different test fires collected on Tenax,  and 

tabulated data showing masses of major ions corresponding to identified GC peaks. 

The way the data is presented for the Tenax samples is slightly different from the 

Carboxen samples. The main reason behind this is that a range of relatively large and 

complex molecules are captured on the Tenax samples often giving ill defined peaks 

while for the Carboxen samples a series of simpler and more clearly resolved 

compounds are collected. Instead of labelling each of the peaks, peaks are identified by 

their retention times. Where possible product identities are suggested but the complexity 

of the samples with unresolved mixtures makes identification rather problematic. Where 

the peaks cannot be accurately identified or resolved the major mass ions are presented 

for information.  
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5.4.1 Scaled EN 54 fires at UCLan – products captured on Tenax 

5.4.1.1	  Smouldering	  wood	  (TF2	  Emulation)	  	  

 
Figure 155 Representative chromatogram for Tenax captured sample from smouldering 

wood TF2 emulation in UCLan enclosure. 
 

Retention 
Time 

Base 
peak Other ions (Fragments) Best fit Match  

5.1 43 83,74,60,45,44,43,42,32,31,29,28 3-Butan-2-one 
7.9 29 88,74,73,44,43,42,39,31,29,28,27 3 Butene 1-2-Diol  
8.6 43 85.84,55,54,42,29,15 2(5H) Furanone 

10.6 72 58,57,56,43,41,39,39.29,27 3-Furaldyhyde 
11.8 98 97,81,70,69,53,52,51,50,49,42,41,39,31,29,27 2-Furan Methanol 
13.2 67 96,91,84,81,70,68,67,57,55,53,44,43,42,41,39,29  

14.2 70 107,100,85,44,43,42,41,39.73,29,27 3 Methyl 2 Cyclopenten-
1-one 

15.9 43 130,110,109,101,96,81,73,67,57,53,51,43,29,27 2 Methyl 1-Propene-1-
one 

18.1 60 121,,113,112,87,73,69,57,56,55,45,43,42,41,39  
19.9 81 124,109,65,63,53,52,51,39,27 Mequinol 
22.9 138 123,107,95,77,67,66,65,55,53,51,41,39 Unknown 

22.0 41 138,126,110,97,81,73,71,69,68,55,53,51,50,42,41
,39,38,31,29,27 Unknown 

25.2 137 152,122,109,94,91,79,77,65,55,53,51,43,41,39,29 Unknown 
26.1 150 166,135,107,91,89,79,78,77,65,63,55,53,51,43,39 Unknown 

27.0 164 149,137,133,131,121,105,104,103,93,91,79,78,77
,65,64,63,55,51,43,41,39,27 Unknown 

28.0 151 164,152,137,123,109,91,81,79,77,65,63,55,53,52,
51,50,39,38,29,27 Unknown 

29.3 164 149,137,133,131,121,115,103,102,91,77,65,63,55
,53,51,43,39,27 Unknown 

30.8 137 180,122,,94,77,65,64,51,43,39 Unknown 
32.0 151 194,180,123,108,97,77,74,65,55,52,51,43,41,39 Unknown 

33.4 137 190,182,175,163,147,137,123,124,106,105,94,91,
79,77,65,55,53,51,43,39,31,27 Unknown 

35.0 178 190,189,163,161,147,145,135,124,118,117,109,1
07,105,91,89,78,77,65,63,61,55,51,39,29,27 Unknown 

39.2 43 239,227,213,199,185,171,157,143,129,115,111,1
01,97,87,85,83,72,71,69,60,57,55,45,43,41,39,29 Unknown 

Table 53 These ions represent the peaks from the chromatogram traces identified in 
Figure 155, are the most dominant ion patterns in each identified peak. 
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5.4.1.2	  Smouldering	  cotton	  (TF3	  Emulation)	  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 156 Representative chromatogram for Tenax captured sample from smouldering 
cotton TF3 emulation in UCLan enclosure. 

 
 
Retentio
n Time 

Base 
peak Other ions (Fragments) Best fit Match  

5.0 43 79,78,77,42,32,31 Benzene 
7.8 29 58,57,42,31,27 Unknown 
8.3 43 102,44,42,32,31 Unknown 

10.4 96 97,71,67,53 ,41,40,39,38,26 Unknown 
11.1 98 97,81,70,69,53,52,51,50,49,42,41,39,31,29,27 2-Furan Methanol 
12.7 55 86,84,54,42,41,39,29,28,27,26,  
13.9 98 111,110,109,98,85,70,57,50,43,42,39,29 Furfural 
15.3 53 99,98,70,69,56,55,43,42,41,39,28,27,26 5 – Methyl furanone 
17.6 112 84,83,69,56,55,43,41,39,28,27 Unknown 
20.2 41 132,131,98,82,70,57,55,43,29,27  

25.1 121 132,131,115,104,103,95,89,78,77,76,63,57,51,50,39,
27,26 

3-Phenyl-2-Propen-1-
ol 

22.0 28 128,115,70,69,57,55,43,42,41,29 Unknown 
22.9 69 144,114,98,86,70,57,41,39,31,29 Unknown 
23.1 41 131,126,97,82,69,57,43,41,39,29 Unknown 
23.4 57 170,146,145,94,85,77,71,43,41,29 Unknown 
27.2 71 173,143,98,89,83,56,55,43,41,27 Unknown 
27.5 71 173,143,89,71,57,56,55,43,41,28 Unknown 
27.8 154 155,153,152,77,76,64,63,51,50,39 Biphenyl 

30.2 169 168,167,165,153,152,139,121,111,94,83,69,63,54,51,
39 Diphenylmethane 

30.4 60 144,98,97,73,70,60,57,43,42,29 Unknown 
32.5 71 243,159,155,111,83,56,55,43,41,27 Unknown 
34.8 178 179,177,176,152,151,89,88,76,57,43 Anthracene 
Table 54 These ions represent the peaks from the chromatogram traces identified in 

Figure 156, are the most dominant ion patterns in each identified peak. 
 
 



232 
 

5.4.1.3	  Flaming	  polyurethane	  (TF4	  Emulation)	  
 

 

 

 

 

 

 

 

Figure 157 Representative chromatogram for Tenax captured sample from polyurethane 
foam burn TF4 emulation in UCLan enclosure.  Corresponds to sect. 4.6.3. TF4/12. 

Retentio
n Time 

Base 
peak Other ions (Fragments) Best fit Match  

2.7 32 44,40,34,30,29,28 Unretained  
3.1 27 72,68,67,58,57,56,55,43, 29,28,27,26 Unknown 
3.8 55 86,70,43,27 Unknown 
3.9 44 72,57,43,42,41,39,29,27 2-Buten-1-ol 
4.0 41 84,72,69,56,55,43,44,39,29,27 Hexene 
5.3 71 86,56,55,45,43,42,41,39,29,27 Furan, tetrahydro-2-

methyl- 
5.7 57 58,45,44,41,39,29,27 Pentenal  
6.0 41 98,86,83,71,70,69,57,56,55,43,42,39,31,29,28,27 Unknown 
6.3 100 98,71,57,43,41,29,27,24 Unknown 
9.2 100 82,72,67,57,56,45,44,43,41,40,29,27,19 Hexenal 
9.5 112 85,83,70,69,57,56,55,43,41,39,29,27,26 Octene 

17.8 112 124,97,84,83,69,56,55,43,42,41,39,29,27 Unknown 
19.8 109 124,81,65,63,53,52,51,39,38,37,27 Unknown 
22.9 138 168,140,138,123,107,95,85,79,78,77,69,68,67,66,65,55

,53,51,41,39,29,27  1 Dodecene 

25.2 132 182,125,112.111,98,97,85,84,83,71,70,69,56,55,54,43.
41,39,29,27 Cis - tridecene 

26.6 150 166,135,91,90,79,78,77,65,63,53,51,39,27 Unknown 
27.8 164 173,149,138,137,133,131,121,104,103,91,85,77,65,55 Unknown 
28.1 43 140,125,112,111,98,97,83,82,70,69,67,57,55,54,43,41 Unknown 
29.2 164 164,149,137,133,131,121,103,91,77,65,55,53,51,43,41,

39,27 Unknown 

29.9 151 166, 123,108,80,77,73,65,60,43,29 Unknown 
30.4 41 211,180,151,137,125,111,97,83,69,57,55,43,29,27  
30.9 137 180, 122,105,94,77,66,65,51,43,39   9H-Fluorene, 2-

methyl- 
32.1 109 190, 180,123,108,91,83,74,55,43,41,29 5,9-Tetradecadiyne 
33.5 137 190, 182, 

175,164,149,122,107,94,91,77,65,55,51,43,39,31,27 
Cyclopropa[b]anthrace

ne 
Table 55 These ions represent the peaks from the chromatogram traces identified in 
Figure 157, are the most dominant ion patterns in each identified peak. 
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5.4.1.4	  Flaming	  pool	  fire	  (TF5	  Emulation)	  	  
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 

Figure 158 Representative chromatogram for Tenax captured sample from flaming 
heptane TF5 emulation in UCLan enclosure.  Corresponds to sect. 4.6.4 .  TF5/7. 

 
Retentio
n Time 
(min) 

Base 
peak 

Other ions (Fragments) Best fit Match 

4.3 44 28,22 Unretained 
7.1 43 100,71,57,42,41,39,29 Hexene 
8.4 91 92,65,63,51,50,45,39 Pentenal 

10.6 71 114,55,56,43,39,29 Benzoic acid 
12.8 57 128,99,94,66,65,41,39 Unknown 
14.6  98,74,73,61,57,56,55,45,43,42,41,39,29 Hexanoic acid 
16.7 41 42,40,39,38,37 Unknown 
34.8 178 179,177,176,152,151,89,88,76,57,43 Anthracene 
Table 56 These ions represent the peaks from the chromatogram traces identified in 

Figure 158, are the most dominant ion patterns in each identified peak 
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5.4.2 Scaled fires based on UL268 standard fires – products captured on 
Tenax 

5.4.2.1	  UL268	  Fire	  A	  Emulation	  –	  Burning	  paper	  	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 159 Representative chromatogram for Tenax captured sample from burning 
paper UL268 fire A emulation in UCLan enclosure.  Corresponds to sect. 4.6.6. 

 
Retentio
n Time 

Base 
peak Other ions (Fragments) Best Fit  

4.0 29 57,45,43,41,31,29 Unretained 
14.4 103 76,75,51,50 Benzonitrile 
20.1 43 116,85,82,70,69,57,43,41,39,29 Unknown 
20.5 128 142,102,98,74,64,51,43,39,29 Napthalene 
21.0 110  144,98,85,81,69,64,57,41,29,27 Unknown 
21.3 41 126,120,109,97,69,53,39,31,29,27, Unknown 
23.7 150 135,107,77,65,63,53,52,51,39,27 Unknown 
25.6 151 152,137,123,109,81,65,63,53,51,39 Vanalin 
26.9 164 149,137,131,121,103,91,77,65,55,39 Unknown 
27.6 152 153,151,150,126,76,75,74,63,51,50 Acenaphthylene 
28.5 137 180,122,94,77,66,65,51,43,39 Unknown 
28.8 43 168,139,115,102,98,73,70,60,57,29 Unknown 
31.1 137 182,165,149,122,107,91,77,65,51,39 Unknown 
32.7 178 161,147,135,124,118,107,89,77,63,51 Unknown 
33.4 43 204,185,164,149,137,129,73,60,41,29 Unknown 
34.2 178 179,177,176,152,151,89,88,76,57,43 Anthracene 
37.0 43 213,185,129,97,83,73,69,60,57,56,43,41,29 Pentadodecanoic acid 
37.5 204 205,203,202,102,101,89,88,76,63,51,39,28 Unknown 
37.9 134 206,177,167,166,139,107,79,57,41,29 Unknown 
39.3 202 203,201,200,174,101,100,88,87,75,74 Pyrene 
40.2 202 203,201,200,174,101,100,88,87,75,74 Fluoranthene 
Table 57 These ions represent the peaks from the chromatogram traces identified in 

Figure 159, are the most dominant ion patterns in each identified peak. 
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5.4.2.2	  UL268	  Fire	  B	  Emulation–	  Flaming	  wood	  	  	  
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
Figure 160 Representative chromatogram for Tenax captured sample from flaming 
wood UL268 fire B emulation in UCLan enclosure.  Corresponds to section. 4.6.7. 
 
Retention 

Time 
Base 
peak Other ions (Fragments) Best Fit  

2.69 32 44,40,29,28 Unretained 
19.10 43 71,45,44,42,41,27 Pentane 
19.77 68 116,98,97,96,70,53,42,41,39,29 Heptene 
22.88 128 129,127,126,102,77,75,64,63,51,39 Napthalene 
25.72 142 141,122,115,89,75,71,63,58,51,39 Naphthalene, 2-methyl- 
25.93 150 151,135,107,91,77,63,53,51,39,27 Unknown 
26.17 142   143,141,139,115,89,71,63,58,51,39 1H-indene, 1-ethylidene- 
27.71 154 155,153,152,77,76,64,63,51,50,39 Biphenyl 
29.53 152 153,151,150,126,76,75,74,63,51,50 Acenaphthylene 
30.16 153 168,167,154,126,76,75,63,51,50,39 Unknown 
32.46 166 167,165,139,83,82,71,63,55,43,41 Fluorene 
36.46 178 179,177,176,152,151,89,88,76,57,43 Anthracene 
41.50 202 203,201,200,174,101,100,88,87,75,74 Pyrene 
41.89 202 203,201,200,174,101,100,88,87,75,74 Fluoranthene 
42.47 202 218,203,201,200,174,101,100,88,87,76 Unknown  
Table 58 These ions represent the peaks from the chromatogram traces identified in 

Figure 160, are the most dominant ion patterns in each identified peak. 
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5.4.2.3	  UL268	  Fire	  C	  Emulation–	  Flaming	  pool	  fire	  	  	  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 161 Representative chromatogram for Tenax captured sample from flaming 
heptane UL268 fire C emulation in UCLan enclosure.  Corresponds to sect. 4.6.5. 

 
 
Retentio
n Time 

Base 
peak Other ions (Fragments) Best Fit  

1.3 48 44,40,39,28,18 Unretained 
12.4 55 86,84,54,,41,39,29,26 Unknown 
23.0 128 129,127,126,102,77,75,64,63,51,39 Napthalene 
23.9 132 107,77,65,63,39,27 Unknown 
25.4 132 125,112,98,97,85,84,83,71,70,69,65,43,41 Unknown 
26.0 151 152,137,123,109,81,65,63,53,51,39 Vanalin 
30.3 153 168,167,154,126,76,75,63,51,50,39 unknown 
35.2 178 179,177,176,152,151,89,88,76,57,43 Anthracene 

Table 59 These ions represent the peaks from the chromatogram traces identified in 
Figure 161, are the most dominant ion patterns in each identified peak. 

 
 

	  

	  

	  

UL268	  fire	  C	  emulation	  
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5.4.3 Other fires 

5.4.3.1	  Toasting	  Bread	  
 

 

 

 

 

 
 

 
 
 
 
 
 
Figure 162  Representative chromatogram for Tenax captured sample from 2nd Toasting 
of bread in UCLan enclosure. 
 
Retentio
n Time 

Base 
peak Other ions (Fragments) Best fit Match  

4.8  82,74,58, Unretained 
6.2 43 100,71,57,42,41,39,29 Hexene 
7.6 43 85.84,55,54,42,29,15 2(5H) Furanone 
9.8 91 92,65,63,51,50,45,39 Pentenal 

10.8 71 114,55,56,43,39,29 Benzoic acid 
12.8 98 97,81,70,69,53,52,51,50,49,42,41,39,31,29,27 2-Furan Methanol 
14.3 103 76,75,51,50 Benzonitrile 
16.7 124 123,95,67,53,51,39,38,37,29 Unknown 
17.4 43 127.82.71.57.44.43.38.29 Unknown 

16.6 137 136,121,107,93,79,68 Unknown 

18.9 97 95,67,68,56,55 Unknown 

19.9 43 71,45,44,42,41,27 Pentane 
23.3 128 129,127,126,102,77,75,64,63,51,39 Napthalene 
24.3 71 173,144,112,97,88,83,56,43,41,27 Unknown 
25.0 43 143,89,71,56,41,29,27 Unknown 
26.6 151 152,137,123,109,81,65,63,53,51,39 Vanalin 
27.9 178 177,173,172,,60,57,55,43 Unknown 
29.0 152 153,151,150,126,76,75,74,63,51,50 Acenaphthylene 
34.4 178 177,152,151,150,97,98,83,70,60,57,55,39 Phenanthrene 

35.8 228 263,262,233,229,227,226,215,184,165,139,128,1
15,102,89,78,77,76,63,51 Benz[a]anthracene 

Table 60 These ions represent the peaks from the chromatogram traces identified in 
Figure 162, are the most dominant ion patterns in each identified peak. 

	  
 



238 
 

5.4.3.2	  Cigarettes	  
As indicated earlier, cigarette smoke generated complex and poorly reproducible 

GC/MS chromatograms (figure 163). An example traces for a Tenax absorbed sample is 

provided below for illustrative purposes but cannot be considered truly representative.  

 

 

 

 

 

 

 
 
 
Figure 163. Example chromatogram for Tenax captured sample from cigarette carried 
out in UCLan enclosure. 
 

The early part of the elution indicated that the complexity of the gas mixture of gases is 

sufficient to render adequate resolution with the systems in use barely possible. With 

over 4000 components reported in cigarette smoke this is perhaps not surprising. 

Analysis of cigarette smoke using solid absorbent media is recognized to be difficult 

due to media becoming poisoned by associated light tars. As indicated above for this 

study, cigarette smoke generated complex and poorly reproducible GC/MS 

chromatograms. 

 

 

5.5	  Summary	  of	  Product	  Identification	  for	  BS	  EN	  54/7	  Test	  Fires	  
 

For the standard scaled fires a series of common gases have been identified using the 

library matching program with gases being assessed as good or poor fits compared to 

the standard spectra from the library. These species and fit parameters are listed in table 

61 below. 

	  

	  

	  

Cigarette	  
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Peak identity  TF2 TF3 TF4 TF5 

F R F R F R F R 

B : Propene 730 901 850 788   769 758 

E : Acetaldehyde 809 893       

H : Furan 855 876 933 897 720 766 777 789 

I : 2 – Propanal    867 803 830 733 959 942 

J : Acetone 906 933 750 775 761 722   

R: 2 Methyl furan   910 899 717 906   

V : Benzene 877 923 902 899 891 901 801 855 

Table 61 Common gasses observed in the scaled standard fires in the UCLan enclosure 
with the library match values presented.  
 
While anything with a match value above 750 is considered a good match, but the 

library match should only be considered as a jumping off point and not a definitive 

identification. Other information which can be obtained from mass spectra where the 

MW <150AMU can help confirmation of an identification. 

 
 
Standard fragmentation spectra for some of the more interesting components are shown 

in Figure 164 below. 
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Figure 164 Example plots of the mass spectra acquired from experimental results 

compared to the GC-MS spectra from standard library taken from NIST web book [136] 
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CHAPTER 6 DISTINGUISHING FIRES WITH 
ADDITIONAL FIRE CHARACTERISTCS  
 

Over the course of this study we have been mostly interested in looking at the identities 

of the fire gases in the early stages of combustion. The main reason for doing so is to 

identify potential targets for new fire detection systems as ways to distinguish between 

different types of fires and non-fires commonly associated with false alarms.  

 

This chapter looks at other fire related characteristics which have been studied in the 

UCLAN scaled fire enclosure, TYCO smoke tunnel and the BRE full scale test rooms. 

These characteristics include particle size analysis and the effect on scatter and ion 

mobility patterns of smoke emissions.  

 

6.1	  Distinguishing	  fires	  by	  scatter	  
 

There has been some work looking at differentiating different types of fire based on the 

light scattering behaviours of smoke particulates. Weinerts [137] group looked at the 

effects of light polarisation on scattering angles from particulates generated from a 

series of flaming and non-flaming fires and nuisance signals (e.g. toast) and concluded 

while it was possible to distinguish between smouldering and flaming combustion, it 

was not possible to distinguish smoke originating from smouldering fires and nuisance 

sources. A study by Keller [138] concurred with Weinerts conclusions, and also 

examined the relationship between fire type and smoke aerosol particle size distribution 

as well as connections to optical scatter. 

 

It is generally considered that the span of smoke particle sizes is comparable with 

wavelength of light over the UV to near IR range and that therefore the most 

appropriate theoretical basis for understanding light scattering by smoke is that for Mie 

scattering. Mie scattering is described in detail in a number of texts [139], but briefly, is 

based on the solution of the Maxwell equations for homogeneous spheres. The 

mathematical formula governing Mie scattering is complex and are most conveniently 

applied in computer program form but generally scattering by smaller particles is 
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expected to increase at shorter wavelengths. The response of optical scatter devices is 

therefore expected to be dependant on particle size and optical wavelength and in 

principle operation at shorter wavelengths should have potential to improve optical 

scatter detection for some smokes where ionisation type devices have been favoured.  

 

Modern optical scatter devices employ LED light sources and silicon photodiode 

sensors. Most such detectors employ LEDs operating in the near infra red region (~800 

-950 nm) as these are established long life products with good stability, are well 

matched to the broad sensitivity peak of silicon photodiodes, and are available at low 

cost. In recent years LEDs emitting in the blue and even near UV regions have become 

commercially available and some optical fire detector products are beginning to be 

supplied which incorporate blue LED technologies. It has been suggested in patents 

[140] and some commercial publications that use of dual wavelengths (blue and IR) 

could improve discrimination between smoke and fire types and between smoke and 

other aerosols which may generate false alarms. Bosh are one of the companies which 

are offering detectors incorporating multiwavelength to the fire detection market. A 

group from Bosh have published supporting literature at the AUBE`09 [141] 

conference. Bergman  published work on a Mie theory based predictive analysis related 

to fire detection devices and a series of experimental tests. There is a little other work 

published in the open literature tending to support claims of improved discrimination 

potential and some exploratory work at TYCO has shown that effects are discernable 

under well controlled conditions as in smoke tunnels [142]  

 

The output levels for optical scatter devices depend on a large number of factors 

including light source type and power, optical sensor responsivity, the geometry of the 

detector chamber and lensing structures, and electronic amplification of the photosensor 

output. A two point calibration check as used for obscuration devices can not be 

employed for optical scatter detectors and so such detectors are generally set up with 

reference to reproducible scatter (smoke) levels and their output signal and consequent 

alarm notification validated against standard fire tests. As part of this study a series of 

optical scatter detectors both conventional (NIR ~850 nm) and modified to use other 

wavelengths (especially blue ~465 nm) were deployed. The work by Bergman indicated 

that different fires could yield discernibly different blue: near IR scatter response ratios 

and the data gathered in this study is analysed to determine whether that could be 

confirmed for fires in the UCLan enclosure and BRE test room. 
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The TYCO conventional and modified devices used are tabulated below (Table 62). 

Table of devices  
Address Ser. No. Type                                      Details 

3 12019CBEE 801PC Conventional NIR 850 nm LED 

9 92019CC09 801PC Conventional NIR 850 nm LED 

12 20382805 experimental 465 nm (blue) LED with NIR phosphor (main 

emission ~870nm) 

17 1200C0C9C 801PC Conventional NIR 850 nm LED 

32 20382815 experimental Dual LED (blue 465 nm and NIR ~850 nm) 

38 12019CC13 experimental Near UV LED (~370nm) 

47 12019CBFF experimental Longer NIR LED (~1070 nm) 

102 120049EA8 801PC Conventional NIR 850 nm LED 

170 9200002A4 801PH Conventional NIR 850 nm LED (higher 

sensitivity setting than 801PC) 

Table 62 List of devices used in the standard fire tests indicting the wavelengths of the 
associated components used in the detectors. 

 
Conventional TYCO optical scatter smoke detectors with near IR LEDs (~850 nm) and 

some experimental devices incorporating blue LEDs (~465 nm) were deployed for fire 

tests in the UCLan fire test box and for tests in the standard test room at BRE. 

Additional devices with LEDs operating in the near UV (~370 nm) and longer near IR 

(~1075 nm) were also deployed. Devices operating with near IR only were constructed 

with silicon photodiodes having inbuilt filters not passing visible light (as in 

conventional detectors to avoid sensitivity to external light). The devices operating with 

blue or UV have similar photodiodes without filtering so that radiation down to about 

320 nm is detected Selections of the detectors in Table 62 were employed for fire tests 

in the UCLan 2 m3 enclosure, in the Sunbury fire tunnel and in the standard fire test 

room at BRE. Measurements of obscuration and gas analyses for most of the same test 

series are provided in chapter 4. Although the devices were deployed for measurements 

on false alarm stimuli (e.g. cooking toast) the material covered in this chapter is limited 
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to the BS EN54/7 BRE test fires (TF2 – pyrolysing wood, TF3 – smouldering cotton, 

TF4 – flaming polyurethane foam, TF5 – flaming heptane) and emulations of those fires 

in the UCLan enclosure, and measurements in the TYCO Sunbury smoke tunnel. 

 

All the optical scatter devices have output collected using the TYCO MX panel 

simulator as 8 bit digital signals (0 to 255 bits) in log files, which are subsequently 

processed in  excel. Each device has a small output, the pedestal value, corresponding to 

clear air (most probably from light scattering/reflection from smoke chamber walls). 

The signal value in presence of smoke is given by the bit output with smoke minus the 

pedestal value (output in clean air), which is expressed in shortened forms as below.  

�  

Device signal =  raw output bytes in smoke – Output bytes in clean air  (28) 

  =   output in smoke – pedestal output     

  =   output – ped.        

Equation 28 Device	  signal	  from	  raw	  output	  and	  clean	  air	  (pedestal)	  value	  
 

As constructed the devices have somewhat different sensitivities, even where devices 

are of same type). This is shown in Figure 165 below which shows an example run with 

joss sticks in the Sunbury tunnel for some of the devices. 
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Figure 165   Response of different types of detectors described in table 62 to  5 joss 
sticks and 0.2m/s airflow in TYCO smoke tunnel. 
 

165 shows composite results from a series of test runs with joss sticks in the Sunbury 

tunnel plotted against the scatter signal for 801PC device address 17 which is taken as a 

reference device for the following data processing. A ratio of response for any device 

may be calculated by the expression below: 

 

Response Ratio  =                  Device signal                     .                               

                               Device signal for standard (add.17)  (28) 

Equation 28 Device	  Response	  ratio	  calculation	  
 

166b shows a plot of Response Ratios for the devices obtained by processing the data 

shown in Figure 166a for the joss stick test in the Sunbury smoke tunnel. 
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Figure 166 Composites of  calibration runs carried out in the Sunbury smoke tunnel 
(a) Signal from the experimental devices plotted versus signal from TYCO device 

(add. 17) 
(b) Ratios of signals (signal for each device / signal for NIR device ( generally add. 

17)) is plotted against the output signal from the standard device ( add. 17) 
 
 

For experimental dual wavelength devices add. 12 and add. 32 which incorporate both 

blue and IR sources in the same chamber the separate blue and IR contributions are first 

calculated from the values on two output channels corresponding to IR and blue 

together and IR alone using factors determined by the circuit design and validated by 

other tests carried out at Sunbury before these units were supplied for use in this study. 

Ratios for blue to IR signals in devices add. 12 and add. 32 are also shown in Figure 

166.  

 

The differences in slope shown in Figure 165 and Figure 166(a) and ratios in Figure 

166(b)are set by the combinations of components used and amplification settings. The 

purpose of this section of the study is to determine whether changes of smoke or aerosol 

type consistently affect the blue or UV to IR response ratios. To aid such comparison 

normalisation factors were determined to adjust the slopes and corresponding ratios to 
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match the values for a standard near IR optical device (type 801PC add. 17) for joss 

stick smoke .i.e. to bring the slopes in Figure 167  together to that of device add.17. 

The determined normalisation factors are given in Table 61 below. 

 

Normalised signals for each device are obtained by dividing the Device Signal 

(equation 27 above) by the device normalisation factor. As applied in excel this is 

calculated from raw data output using the formula: 

 

Normalised bit signal = Integer ((raw bit output – pedestal bit output) 

                                                           normalisation factor + 0.5                      (29) 

 

Equation 29 Excel	  calculation	  normalised	  signal	  values 
 

The corresponding Ratio of Normalised Responses is calculated according to equation  

30 below: 

 

Ratio Normalised Response  =         (30) 

	  

Equation 30 Device	  Response	  ratio	  calculation 
 

 

Values used for data shown in Figures 167 to 185 were determined by applying these 

calculations and the normalisation factors from Table 63 to raw results from a series of 

tests at Sunbury, UCLan and BRE. 

         Normalised bit signal        
Device signal for standard.(add.17) 
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Address Wavelength 

nm 

Device type/description Normalisation 

factor 

3  850 801PC 0.627 

9  850 801PC 0.903 

12 465 Experimental (blue LED) 0.956 

12 840 Experimental (NIR 

phosphor) 

0.829 

17 850 801PC 1 

32 465 Experimental (blue LED) 1.347 

32 850 Experimental (NIR LED) 1.526 

38 370 Experimental (near UV 

LED) 

0.26 

47 1070 Experimental (longer NIR 

LED) 

0.21 

102 850 801PC 0.848 

170 850 801PH 2.031 

Table 63 Normalization factors for each of the TYCO devices used in Figures 165 and 

166 . 

 

The result of applying selected factors to the Sunbury tunnel joss stick test data is 

shown in 167a and 167b below:  
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Figure 167  
a) Composite of calibration runs. The “normalised” signal was plotted versus signal 
from TYCO device (add. 17).  
b) Composite of calibration runs. The ratio of “normalised” output was plotted versus 
signal from TYCO device (add. 17).  
(The ratio of “normalised” signal = normalised signal for device/signal for device 
add.17 ,  equal to 1 if normalisation is perfect) 
 

Values for the ratio of blue or UV to IR signals using data from devices with addresses 

12, 17, 32, and 38 are provided again in Figure 168.It is immediately clear that signal 

ratios vary with smoke level, unsurprisingly showing larger variations at low levels of 

smoke but tending towards steady values at higher smoke concentrations. Linear 

dynamic range on some of the devices (especially the blue/near IR device add. 32) limit 

the range of smoke concentrations over which the data processing can be applied. 
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Figure 168 Multiple calibration values from blue, UV LEDs fire detection devices . The 
ratio of  “normalised” output to the output from a standard TYCO device ( add. 17) 
signals  Vs. standard output  add. 17 
 
Data from a series of BS EN54/7 test fire emulations carried out in the test box at 

UCLan  and the Sunbury smoke tunnel was processed to give outputs normalised to 

device add. 17 in joss stick smoke and the results for collections of such tests (~4-8 for 

each test type) plotted below showing normalised output, ratios of normalised output to 

add. 17 signal, and ratios for the subgroup with blue or UV LEDs, all plotted against 

add.17 signal values. For the UCLan enclosure data, Figures 169-170 are for the TF2 

emulation, Figures 171-172 for the TF3 emulation,173-174 for the TF4 emulation, and 

Figures 175-176 for the TF5 emulation.  

 

A similar process was carried out from data collected from smouldering wood and 

cotton experiments carried out in the Sunbury smoke tunnel and this data is shown in 

Figure 177.  

 

Data from a series of tests in the full scale fire test room at BRE have processed in the 

same way. These tests were BS EN54/7 tests TF2, TF3, TF4, and TF5. Data for the 

individual tests subject to the same normalisation procedure as for the UCLan tests is 

plotted in Figures 178-185.  

 
It is immediately obvious that some of the data in these plots shows much scatter or at 

least wide deviation from what might be expected for simple shifts in relative response 

in going from one fire test to another. Devices with the same construction, LED and 
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photodiode types as the standard device (add.17) often do not track or match its 

response well.  

6.3.1UCLan Smouldering wood (TF2) 
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Figure 169  (a)     (b) 
a ) Multiple TF2 in UCLan enclosure “normalised” signal V. std. signal (add. 17), 
b)  Ratio normalised signal : std. signal ( add. 17) Vs std. signal ( add. 17) 
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Figure 170 TF2 emissions collected during scaled  UCLan experiments .The  Blue, UV 
LEDs detector output is converted into a ratio of “normalised” output: TYCO Standard 
device (add. 17) signals  Vs. Output-Ped from standard TYCO device( add. 17) 
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6.3.2 UCLan Smouldering cotton (TF3) 
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Figure 171  a)     b) 

a) Multiple TF3 UCLan emulations “normalised” signal versus signal from standard 
TYCO device(add. 17), (b)  Ratio of normalised UCLan output data:output from 

standard TYCO device( add. 17) Vs. Standard TYCO device bit-ped output ( add. 17) 
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Figure 172 TF3 emissions collected during scaled  UCLan experiments .The  Blue, UV 
LEDs detector output is converted into a ratio of “normalised” output: TYCO Standard 

device (add. 17) signals  Vs. Output-Ped from standard TYCO device( add. 17) 
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6.3.3 UCLan  Flaming polyurethane (TF4) 
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Figure 173  a)     b) 
a)  Multiple TF4 UCLan emulations “normalised” signal versus signal from standard 
TYCO device(add. 17), (b)  Ratio of normalised UCLan output data:output from 
standard TYCO device( add. 17) Vs. Standard TYCO device bit-ped output ( add. 17) 
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Figure 174 Multiple TF4 emissions collected during scaled UCLan experiments .The  
Blue, UV LEDs detector output is converted into a ratio of “normalised” output: TYCO 
Standard device (add. 17) signals Vs. Output-Ped from standard TYCO device( add. 17) 
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6.3.4 UCLan Flaming pool fire – Heptane (TF5) 
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Figure 175  a)     b) 
a)Multiple TF5 UCLan emulations “normalised” signal versus signal from standard 
TYCO device(add. 17), (b)  Ratio of normalised UCLan output data: output from 
standard TYCO device( add. 17) Vs. Standard TYCO device bit-ped output ( add. 17). 
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Figure	   176	  Multiple	   TF5	   emissions	   collected	   during	   scaled	   	   UCLan	   experiments	   .The	  	  
Blue,	  UV	  LEDs	  detector	  output	  is	  converted	  into	  a	  ratio	  of	  “normalised”	  output	  :	  TYCO	  
Standard	  device	  (add.	  17)	  signals	  Vs.	  Output-‐Ped	  from	  standard	  TYCO	  device(	  add.	  17)	  
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6.3.5 Sunbury smoke tunnel tests 
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Figure 177 Pyrolysing Wood (TF2 emulation in smoke tunnel). (a)“Normalised” signals 
versus signal from add. 17, (b) Ratio “normalised”/ add. 17 versus signal from add. 17 
Smouldering Cotton (TF3 emulation in smoke tunnel). (c) “Normalised” signals versus 
signal from add. 17 (d) Ratio “normalised”/ add. 17 versus signal from add. 17 
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6.3.6	  BRE	  full	  scale	  Smouldering	  wood	  (TF2)	  
   a)      b) 
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Figure 178 Full scale smouldering wood TF2 experiment carried out at BRE  

(a) “normalised” signal versus signal from standard TYCO device(add. 17), 
(b)   Ratio of normalised UCLan output data:output from standard TYCO device( 

add. 17) Vs standard TYCO device (bit-ped) output ( add. 17) 
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Figure 179 An example smouldering wood fire (TF2) data collected during BRE 
experiment . Blue & UV LED detector outputs are converted into a ratio of 
“normalised”output : TYCO standard device (add. 17) signals  Vs. (bit-ped) from 
standard TYCO device( add. 17) 
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6.3.7 BRE Smouldering cotton (TF3) 
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Figure 180a) Full scale smouldering cotton TF3 experiment carried out at BRE 
“normalised” signal versus signal from standard TYCO device(add. 17), (b)  Ratio of 
normalised UCLan output data:output from standard TYCO device( add. 17) Vs. 
standard TYCO device (bit-ped) output ( add. 17) 
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Figure 181 An example smouldering cotton fire (TF3) data collected during BRE 
experiment .The Blue & UV LEDs detector outputs are converted into a ratio of 
“normalised”output : TYCO Standard device (add. 17) signals Vs. (bit-ped) from 
standard TYCO device( add. 17) 
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6.3.8 BRE Flaming polyurethane (TF4) 
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Figure 182 a) Full scale smouldering cotton TF4 experiment carried out at BRE 

“normalised” signal versus signal from standard TYCO device(add. 17), (b)  Ratio of 
normalised UCLan output data:output from standard TYCO device( add. 17) Vs 

standard TYCO device (bit-ped) output ( add. 17) 
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Figure 183 The recorded data collected during BRE a single  experiment flaming 

polyurethane (TF4) fire .The Blue & UV LED detector outputs are converted into a 
ratio of “normalised” output: TYCO Standard device (add. 17) signals  Vs. (bit-ped) 

from standard TYCO device( add. 17) 
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6.3.9 BRE Flaming Pool fire – Heptane(TF5)  
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Figure 184(a) Full scale smouldering cotton TF5 experiment carried out at BRE 

“normalised” signal versus signal from standard TYCO device(add. 17), (b)  Ratio of 
normalised UCLan output data:output from standard TYCO device( add. 17) Vs. 

standard TYCO device (bit-ped) output ( add. 17) 
 
The scatter seen in the results shown in Figures 164 to 185 is substantial and it is 

probable that at least some of this reflects differences in transport to and into detectors 

in different locations. This is always likely to be worst for the UCLan enclosure where 

there is no forced convection as in the tunnel and where detector to detector distances 

constitute a larger proportion of source to detector distance than for the standard test 

room. In reality this confirms that to get a reasonable measure of any wavelength effect 

on response, the measurements need to apply to the same smoke sample i.e. in the same 

detector. It is therefore reasonable to pay greatest attention to the results for devices 

with address 12 and 32 which are so constructed, and particularly to the ratio calculated 

from device signals alone (not involving add. 17 except in use of normalisation factors). 
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Figure 185 The recorded data collected during BRE a single  experiment flaming 

heptane pool fire (TF5)  . Blue & UV LED detector outputs are converted into a ratio of 
“normalised” output: TYCO standard device (add. 17) signals  Vs. (bit-ped) from 

standard TYCO device( add. 17) 
 

Examining the BRE test results in Figures 179-185 one may discern a trend in the 

normalised response ratios for the blue/near IR devices from fire to fire which may 

approximate to: 

 

Normalised response ratio   ~0.6 for TF2 <~0.8 for TF3 < ~1 for TF4 =~1 for TF5. 

 

However the scatter even in these results is such that it would not be possible to rely on 

such data to recognise fire type. The TF2 and TF3 emulations in the Sunbury smoke 

tunnel do not show agreement with results from the BRE tests. This may reflect the 

effects of forced air movement on the fire sources changing the smoke characteristics. 

The UCLan enclosure results are not inconsistent with the BRE tests but there is greater 

spread and again no reliable fire identification could be achieved from such results.  

It is interesting to re-examine the paper by Bergmann in the light of these results. It is 

difficult to determine how much spread was observed in that work but it is clear that as 

there were only moderate changes in ratio between the TF2,TF3, TF4 and TF5 fires. A 

more substantial shift was observed with a burning crib fire (rarely used EN 54  

Standard fire TF1) and it is perhaps unfortunate in retrospect that the emulation of 

flaming wood UL267 test fire was not included in this analysis. However such wood 

crib fires are very easily detected and so not generally considered of very great interest 

to detector development. 

 



261 
 

Overall the multiwavelength optical scatter results indicate that the variability in real 

fire situation may interfere significantly with discrimination. There may be utility with 

respect to some nuisance sources such as steam (not investigated in this study) but there 

are probably better technical solutions available. 

 

 

6.4	  Smoke	  Particle	  Size	  Analysis	  by	  Cascade	  Impactor	  
 

As optical scatter is expected to have some dependence on particle size it is reasonable 

to ascribe at least part of the differences in response to different fires to differences in 

the particulates generated by different fuels and fire types. A series of particle size 

measurements were undertaken as part of the study on the basis that these could 

possibly supplement and perhaps clarify the optical scatter data obtained with smoke 

detector devices described above and establish some independent measure of smoke 

parameters by using a cascade impactor particle size measurement system. The 

operation of cascade impactors for measurement of aerosol particle size distributions 

was described in general terms in chapter 1. 

 

A New Star LLC Series 290 Marple Personal Cascade Impactor developed by 

McCauley based on the Marple and Rubow theory [143] regarding cascade impactors 

was used for these measurements. The impactor is made up of 8 different stages each 

with a stainless steel perforation substrate on which particulates may be collected. The 

impactor aerodynamically separates particles by invoking a flow through the chamber 

accelerating through the 6 radial slots on the initial impactor stage. Particles with 

sufficient momentum will impact on the substrate beneath each slot while smaller 

particles pass to the next stage. The slots get smaller at successive stages, and as the 

flow is maintained at a fixed rate, the jet velocity increases. This allows progressively 

smaller particles to accumulate enough momentum to impinge upon a substrate and be 

removed from the flow. At the end of the different stages all the remaining particulates 

are collected on a built in 0.34 micron filter. 

 

The New Star LLC cascade impactor shown in Figure 186 was available for 

measurements on smoke from fires in the UCLan enclosure. The impactor consists of a 

series of metal filters and stainless steel substrates, which prior to impactor assembly 
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were cleaned with acetone in an ultrasonic bath to remove grease and dust particles. 

After drying each of the substrates was weighed and placed with the respective filter 

stages of the impactor assembly. The impactor was then assembled in accordance with 

manufactures instructions.  

 

A calibrated pump with flow controller was connected to the impactor base and flow 

was set at 2 l min-1. The impactor was then placed in position in the scaled fire chamber 

to capture fire gas plume components from each of the scaled standard and non-standard 

fires described below. Each fire test was monitored in triplicate.  

 

 
Figure 186 Diagram shows how the stages of the cascade impactor are constructed.  

 
The image on the right is an image of a deconstructed LCC cascade impactor. On the 

left is a schematic of the impactor. In the schematic diagram the stage COD is the cut 

off diameter (in micrometers) of each of the substrate filters, which limits the size of the 

particulate populations, which are captured.    

 

Following the collection of samples the impactor is carefully dismantled and each 

substrate is weighed a second time. These weights are then used to calculate the 

differential and cumulative particle size distributions. The particulate populations are 

calculated using the following equations.  

 
Use of cascade impactor data requires knowledge of the cut-points of the impactor 

stages. This depends on the filter structure dimensions and the flow rate but the 



263 
 

equipment manual provides tabulated values reproduced below (Table 64) for the cut 

off point parameter Dp for the design airflow rate of 2 litre/minute used in this work. 

Inlet restrictions are taken as setting an upper limit of 50 µm for collected material.  

A geometric mean value GMD calculated from successive Dp values, is taken as 

representing each collected fraction, (GMD = (Di*Di-1)1/2). 

 

Cut-point Dp is aerodynamic equivalent particle diameter for spherical particle of unity 

mass density in air at 25°C and 1 atm. Soot particle densities and indeed shape may not 

be fully consistent this aerodynamic equivalent specification. However the likely range 

of constituent materials and forms make the density assumption at least not too 

unreasonable. 

 
Stage 

Number 
Dp 
µm 

GMD 
µm 

1 21.3 32.6 
2 14.8 17.8 
3 9.8 12 
4 6 7.7 
5 3.5 4.6 
6 1.55 2.33 
7 0.93 1.20 
8 0.52 0.70 

Table 64 Cut	  of	  Point	  Dp	  and	  Geometric	  Mean	  Diameter	  GMD	  for	  the	  New	  Star	  
Cascade	  Impactor	  with	  2L./minute	  air	  flow	  rate.	  

 
The flow rate, collection times, and weight accumulations allow calculations of mass 

concentration in air (µg m-3 of particles) corresponding to each of the eight size 

fractions. In Figure 187 data for three each of the BS EN54/7 fire emulations carried in 

the UCLan enclosure are plotted as mass concentration versus particle size (GMD value 

µm).  

 



264 
 

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

Co
nc
en

tr
at
io
n	  
µg

	  m
-‐3

GMD	  µm

Smoke	  Mass	  Concentration	  Distribution	  for	  EN54/7	  test	  fire	  emulations
from	  Cascade	  Impactor

TF2_1	  

TF2_2

TF2_3	  

TF3_1

TF3_2

TF3_3

TF4_1

TF4_2

TF4_3

TF5_1

TF5_2

TF5_3	  

 
Figure	  187	  Particulate	  mass	  concentrations	  versus	  size	  For	  BS	  EN54/7	  fire	  emulations.	  

Concentrations are calculated from mass collected on each filter and total air volume 

filtered. 

 

Results for a series of UL268 fire emulations and bread toasting experiments (2nd 

toasting) are shown in Figure 188 below. 
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Figure 188 Particulate mass concentrations versus size For UL268 fire emulations and 
bread toasting 

 
There are many ways of representing particle distributions and the representation, as 

mass concentration versus particle size as above may not be the most informative. 

Continuing with the assumption of spherical particles of unit density allows estimates of 

number concentrations to be calculated for each size interval by dividing mass 

concentration by the mass of a sphere with diameter of the relevant GMD value. 
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Applying this to the BS EN54/7 emulation results produces a distribution shown in 

Figure 190 below where the concentration is expressed on a logarithmic scale.  
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Figure	  189	  Particulate	  number	  concentrations	  versus	  size	  For	  BS	  EN54/7	  fire	  

emulations.	  	  

 

Viewed in this form it is fairly clear that the smallest particles are overwhelmingly the 

most numerous. Particle numbers are particularly important in the response of fire 

detectors, both ionisation and optical scatter based devices. Give the range restrictions 

of the impactor cascade measurements it is probable that these cannot be relied upon to 

generate data allowing useful comparisons with detector performance and the effects of 

fire type on multiwavelength optical scatter devices. 

 

 

6.5	  FAIMS	  measurements	  (High	  Field	  Asymmetric	  Ion	  Mobility	  
Spectrometry)	  
 

6.5.1 Principles and Background 

Ion mobility spectroscopy (IMS) and its variant FAIMS were described in general terms 

in chapter 1 section 1.9.6. An OWLSTONE FAIMS device was made available by 

UCLan towards the end of the project and applied to set of full scale BS EN54/7 fire 

tests carried out at BRE in May 2010 and to some tests carried out in a smoke tunnel at 
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TYCO in Sunbury. The interest in FAIMS measurements arises from claims by the 

manufacturers that it may have fire gas recognition capability, that the active device is 

compact being based on a small micromachined chip, and that costs can potentially 

become low enough for future incorporation in fire detection equipment. The system 

presently available is an analytical device with a Windows enabled computer 

incorporated to control device operation and data collection.  

 

The operation of a Owlstone FAIMS unit may be understood in terms of Figure 190a 

and 190b below reproduced from Owlstone publications [144][145] As for conventional 

ion mobility spectrometry (IMS), FAIMS measurements rely on differences in mobility 

of ionized species in air, however IMS operates with relatively low field gradients 

where the mobilities of the ions in air show little or no field dependence (to left in 

Figure 190a) while FAIMS also uses the higher field gradient region (to right in Figure 

190a) where mobility varies with field and different molecules can show different 

variability (molecule A, B, C). Application of a pulsed asymmetric field (higher field in 

one direction, lower in other) between filter electrodes as shown in Figure 190b acts on 

ions passing towards a collection electrode.  

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  191(a)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  191(b)	  	  	  
Figure 190 Principle	  of	  FAIMS	  Operation	  	  (a)	  effect	  of	  field	  on	  mobility,	  (b)	  application	  

of	  pulsed	  asymmetric	  field	  to	  selectively	  deflect	  ions	  to	  filter	  electrodes. 

 

Only ions suitable mobility characteristics reach the collection electrode to produce a 

signal and others are lost to the filter electrode. This selectivity is further modified by 

application of DC bias fields between the filter electrodes. 

 

Sample air is subjected to ionisation, most commonly Ni 63 Beta emitter as for this 

study. A substantial advantage of FAIMS is ability to sample untreated but filtered air 

directly and units may be operated with photo-ionisation and possibly with corona 
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based units. Ions, usually associated with water molecules, are then moved by an 

applied electric field towards a current measuring collection electrode passing though a 

filter electrode assembly where some ions are selectively removed as indicated above. 

Etching silicon forms the filter electrode assembly in an Owlstone chip ~0.5 mm thick 

to provide inter-digitated comb electrodes and its operation is illustrated in Figure 191.  

   
Figure 191	  Representation	  of	  FAIMS	  Filter	  Operation.	   

The field parameters (pulsed field, and DC bias or compensating voltage) operating at 

the filter can be varied with time and the collected ion current plotted against those 

variables. This may be displayed as in Figure 192a and 192b below reproduced from the 

unit operation manual showing results for benzene in air. 

 
Figure 192 Representation	  of	  Display	  of	  FAIMS	  Spectra	  with	  Ion	  current	  shown	  on	  3d	  

graph	  or	  as	  false	  colour	  scale(b)	  . 
 

 

6.3.2 Experimental Work with FAIMS equipment 

The short FAIMS study within this work was directed at measurements on standard BS 

EN54/7 fires in the full-scale standard test room at BRE. This was supplemented by a 

series of measurements in the Tyco smoke tunnel. The unit was operated in “Lab User” 

mode where the range of mobility parameters accessible to the unit are scanned over a 

period of ~2 minutes to build up a display image of a mobility spectra which may 
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provide a “finger print” of the gas types present. It was not expected that identification 

of particular gaseous components would be possible although such capability is claimed 

for the kit under controlled conditions. These tests were intended to demonstrate 

whether FAIMS could reliable distinguish between clean air and air containing fire 

products, and whether the different tests fire types could be distinguished one from 

another. The unit is equipped with an aspiration system and was provided with pre-

filters (~0.2 um) to remove particulates.  The ionisation of gases generates both positive 

and negative ions.  

 

The unit was operated in “Lab User “ mode the unit, which displays mobility dispersion 

spectra as false colour images for both positive and negative ions. The “spectra” are 

built up as a series of parameter line sweeps (varying dispersion fields and 

compensating voltages affecting ions transiting the detector chip) and these are recorded 

as data files (matrices of data taking ~2 minutes for each scan ) which can be further 

processed in excel to generate lines scans and plots showing changes in going from 

clean to contaminated air. This can aid data analysis and inspection. Although this was 

carried out, such plots are not shown here. 

 

Figure 193 shows the FAIMS kit mounted on the TYCO fire tunnel with a pumped 

system provided to present part of the tunnel air stream to the instruments gas inlet.  

 
Figure 193 FAIMS	  Instrument	  operating	  to	  collect	  spectra	  for	  gases	  in	  TYCO	  smoke	  

tunnel.	  
 

The build up of dispersion spectra can be seen on the display. For the BRE tests a line 

with glass filter was simply inserted through one of the ceiling detector mounting ports. 
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Prior to each test a clean air spectra is acquired before air containing fire products is 

sampled. The unit is designed to respond to gases not particulates and in addition to the 

external filter there is an inbuilt unit. The FAIMS devices give close to real time 

updates of the smoke sampled and displays a trace every 8 seconds and full scan in ~2 

minutes. Inherent response time is fast but in scan mode the fire gases may change very 

substantially within one sweep period.  

 

The unit was operated throughout the tests with standard optical scatter detectors in 

operation, for Sunbury and BRE, and optical absorption measurements at BRE. The 

FAIMS files could be correlated with recorded fire times and fire detector and BRE 

obscuration meter file records. 

 

Owlstone staff were consulted about operation of the kit, data analysis and some of the 

initial results obtained. Software for analysing the data files was also provided by 

Owlstone. Following examination by Owlstone staff of files obtained for clean air input, 

it was suggested that the equipment had been subjected to some significant and 

persistent contamination prior to these tests. Improvements to the sample inlet system 

alleviated this issue and it was not felt that the overall results were very significantly 

affected. Figure 194 below reproduces a display for clean air. 

 

 
Figure 194 Example clear air plot from capillary file prior to  the collection of smoke 
from standard fire . The blue background display is the positive ion trace and the red 
background image on the right represents the negative ions produced after the gas is 

passed through the ionization source. 
 

Prior to each test a clean air spectra is acquired, (an example is given in Figure 194) 

before smoke is sampled. The FAIMS devices give close to real time updates of the 

smoke sampled and displays a trace every 8 seconds. The presence of organic material 

is expresses by the shifting of the elevated ion current “tendril” from the left to the right 
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representing a change in compensation voltage for which ions generate an ion current 

(reach the detection electrode). The amount of organic material present is represented 

by the intensity of the colour of the “tendril”. 

6.4.1 Smouldering wood (TF2)  

(a)  

(b)  

 (c)  

Figure 195 The figure represents the FAIMS response (a) to clear air, (b) to material in 
smoke during a pyrolysing wood fire in the Sunbury smoke tunnel, and (c) to a full 

scale TF2 fire in the BRE test room. 
 

In Figure 195(a), the clean air trace signal arises from ionised water and oxygen clusters 

probably with some low levels made up of organic vapours present in the atmosphere as 

a natural background. As ionizable material enters the FAIMS inlet the trace bend to the 

right (Figures 195(b) and (c). The displacement of the positive and negative ion trace to 

the right and ion currents values is comparable in the different scale fires and represents 

a significant amount of material. 
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6.4.2 Smoldering cotton (TF3) 

(a)  

(b)  

(c)  

Figure 196 The figure represents the FAIMS response (a) to clear air, (b) to material in 
smoke during a smouldering cotton wick fire in the Sunbury smoke tunnel,  and (c) to a 

full scale TF3 fire in the BRE test room.  
 

As in Figure 195 the displacement angle of the ion traces in Figure 196 is comparable in 

the two different scale fires. However the intensity appears smaller in the Sunbury 

tunnel compared to the BRE full-scale fire test room, which suggests a higher 

concentration in the BRE test. The other noticeable difference is the presence of a shift 

negative ion trace for the BRE test, which is not discernable for the Sunbury tunnel test. 
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6.4.3 Flaming polyurethane (TF4) 

(a)  

(b)  

 (c)  
Figure 197 The figure represents the FAIMS response (a) to clear air, (b) to material in 
smoke during a polyurethane foam burn in the Sunbury smoke tunnel,  and (c) to a full 

scale TF4 fire in the BRE test room.  
 
As for Figures 195 and 196, the shifts are seen for both the smoke tunnel and the BRE 

tests but appear more substantial for the latter suggesting a higher product 

concentration. 
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6.4.4 Flaming Pool fire (TF5)  

 

(a)  

(b)  

(c)  
Figure 198 Results from regulated inlet to a FAIMS device in clean air (a) and smoke 

from a flaming polyurethane fire in the Sunbury smoke tunnel (b). Figure C is the 
FAIMS response from a full scale TF4 test at BRE. 

 
Figure 198 figure represents the FAIMS response (a) to clear air, (b) to material in 

smoke during a flaming heptane fire in the Sunbury smoke tunnel, and (c) to a full scale 

TF5 fire in the BRE test room.  

 

As for Figures 195 to 197 the shifts are seen are significantly more substantial for the 

BRE tests than for the smoke tunnel test. In fact for the Sunbury tunnel test almost no 

shift is discernable. This may reflect the fact that most vapour from these tests is simply 

fuel evaporation and the heptanes molecule is not very readily ionised under the 

prevailing conditions and may not generate a good signature. 
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CHAPTER	  7	  DISCUSSION	  AND	  CONCLUSION	  	  
 
This study was directed at characterising airborne (gas, aerosol) emissions for fires at 

the early stage relevant to detection. A primary target is characterisation of standard test 

fires used for detector approvals (BS EN 54-7:2001 [1] and UL 217/268 [2],[3]) but 

interest extended to scenarios beyond test standards including electrical pyrolysis 

events, and identified false alarm stimuli e.g. cooking fumes. While products from well 

developed fires have previously been well documented, relatively little research has 

been directed at identifying products other than smoke and CO from early stage fires or 

for the standard test fires. This is an impediment to rational innovation in fire detection. 

 

When conceived it was envisaged that the project would be primarily directed at 

characterising fire gases. However aerosol (smoke) generation is an important aspect of 

nuisance fires and a major factor in their detection [146], and many possible fire gases 

may be involved in exchange with smoke particles. The study therefore includes some 

measurements related to smoke detection and characterisation. 

 

7.1	  Review	  of	  Work	  and	  Results	  
 

7.1.1 Development of Reduced Scale Test Fires 

While a target of the study included measurements on full scale standard test fires, it 

was recognised that the study had to involve development of reduced scale emulations 

both to provide scope for development of measurement protocols and to accumulate at 

acceptable cost a significant data set on variable fire conditions. The study has thus 

required development of an enclosure and equipment for performing reduced scaled test 

fires, and deployment of sensor, fire detector, and analytical systems to carry out 

measurements on both a reduced scale enclosure and on full scale fire test environment. 

 

Initially it was thought that an existing standard enclosure (NBS smoke box) could 

provide an environment in which reduced scale tests could be performed but early work 

revealed that this was not suited to development of fires with characteristics comparable 

to the target test fires. A larger (2 m high by 1 m2) enclosure was constructed at UCLan, 
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and with sensors mounted at the enclosure ceiling, as for standard tests, a series of test 

fire emulations were developed. This development eventually produced reduced scale 

tests which matched the smoke generation characteristics of the full scale test fire 

standards in terms of obscuration versus time. Although this development was informed 

by some existing understanding of fire scaling, the actual development of sources was 

largely empirical limited only by matching fuel and combustion type. Development of 

reduced scale test sources involved in some cases provision of structures partially 

enclosing fires to limit radiative heat loss and prevent small fires from self-

extinguishing. With the exception of a flaming crib fire, the designed emulations were 

broadly consistent with scaling expressions despite the fact those were developed for 

much larger fire environments. 

 

The reduced scale enclosure and fire test emulations are certainly more capable of 

matching real test fire than forced draft tunnel type units such as FE/DE device 

proposed by Grosshandler [82] which have been used as the basis for much detection 

research. 

 

7.1.2 Sensor Measurements 

Data sets have been built up as a result of application of a range of sensor and detector 

to tests in reduced scale and full-scale environments. These have included 

measurements of smoke by obscuration and optical scatter, and gases by 

electrochemical sensors and NDIR measurement. Results from some of these 

measurements have merely confirmed expectations of relatively low or imperceptible 

effects by test fires at the locations in the test environments used for detector location. 

Generation of CO2 and consumption of O2 were observed but as is to be expected for 

early stages of fires where only a small fraction of the O2 content of the enclosure is 

involved, only modest changes were observed. Similarly tests directed at sensing 

hydrogen using an electrochemical sensor showed no or only small and irreproducible 

generation of that gas.  

 

Temperature measurements were carried out throughout the study but not presented in 

this document. Generally temperature rises at the detector locations were as for standard 

tests, small for all but rapidly growing flaming fires. 
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Commercial ionization based smoke detectors were deployed throughout the tests but 

results were not presented as it was found that the dynamic range of such units is too 

small to allow useful analysis. This did indicate a need to include detectors in any future 

tests with dynamic range modified to more nearly match that of the MIC devices on 

which some standards are based. 

 

As expected substantial amounts of carbon monoxide were detected at sensor/ detector 

locations, but more significantly measurement with an electrochemical sensor having a 

broad rage response to oxidisable gases showed that in addition to the CO, test fires 

produced substantial amounts of other oxidisable products. The broad range oxidisable 

gas detector cell (Honeywell 7EtO type) does not provide any indication of the identity 

of these oxidisable gases but signals expressed as equivalent ppm CO concentrations 

were much higher than the actual CO concentrations measured at the same time as 

indicated in the summary shown in Table 65 below: 

 

Emulation at 

UCLan. 

 

TF2 

 

TF3 

 

TF4 

 

TF5 

UL 

fire A 

UL 

fire B 

UL 

fire C 

Total oxidisables as 

ppm CO / measured 

            CO ppm 

 

~5 

 

~2.5 

 

~3 

 

~3 

 

~2.5 

 

~2.5 

 

~2.5 

Table 65 Approximate	  response	  ratio	  of	  total	  oxidisable	  gas	  and	  CO	  sensors	  both	  
calibrated	  with	  CO	  and	  with	  signals	  expressed	  as	  CO	  ppm	  or	  CO	  pp	  equivalent	  

 
This result indicates at least that there is substantial production of oxidisable gases as 

fire products, which may provide a basis for fire detection. 

 

An issue with the generation of reduced scale test fires is whether having achieved a 

match to the smoke obscuration behaviour of full-scale test fires, other parameters 

including production of gases are also matched. Measurement of carbon monoxide was 

carried out using the same sensors in the UCLan enclosure and in tests in the BS EN 

54/7 standard room at BRE. Table 66 below shows ranges of CO concentrations 

observed towards the end of the BRE BS EN54/7 test fires and their emulations at 

UCLan. 
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Fire TF2 

UCLan 

TF2 

BRE 

TF3 

UCLan 

TF3 

BRE 

TF4 

UCLan 

TF4 

BRE 

TF5 

UCLan 

TF5 

BRE 

CO 

ppm 

range 

 

20-90 

 

70-100 

 

10-70 

 

45 

 

20-60 

 

40 

 

15-25 

 

27 

 

Table 66	  	  Ranges	  for	  CO	  concentration	  from	  measurements	  in	  UCLan	  reduced	  and	  BRE	  
full	  scale	  EN54/7	  test	  fires	  TF2,TF3,	  TF4,	  and	  TF5.	  

 

There is a reasonable match for in CO levels across the range of test fires. This suggests 

that matching the smoke obscuration characteristics has resulted in a match in fire gas 

generation and transport. If this is true for CO it seems probable that it should hold 

broadly true for other gases and vapours. 

 

7.1.3 GC/MS study 

The most substantial part of the study involved a series of GC/MS analyses on fire 

products collected on absorbent media from a large number of tests in the UCLan 

enclosure and much smaller set carried out at BRE. Although a variety of sample 

capture methods were considered, the convenience of capture onto absorbent materials 

and relative stability of such samples, meaning they could be transported and stored, 

resulted in the work concentrating on collection onto such media. Earlier work was 

predominantly with a Tenax absorbent but it became clear that this was not able to 

retain many of the smaller more volatile molecules, which might be present. The use of 

absorption tubes containing a Carboxen absorbent was introduced and work was 

continued using both materials. Protocols for GC/MS analysis of material desorbed 

from the Tenax and Carboxen sample tubes using different columns and conditions 

were developed.  Handling of absorbent resins is complex with a number of potential 

pitfalls. Accumulation of moisture is one and this had to be addressed for samples 

generating substantial water vapour, particularly toasting bread. The absorbent resins 

are also not prefect in that they can produce either high background signals or artefacts. 

Tenax for example produces ghost peak artefacts, which are identified as Bis-pthalates. 

 
GC retention time chromatograms were recorded for samples desorbed from Carboxen 

and Tenax for each of the test series carried out and these are presented in chapter 4 of 

this thesis as groups of ~6 traces for each test type/absorbent material combination. For 
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each test type the sets of chromatograms, there is generally a resemblance of form and 

major peak occurrence. However even for nominally identical tests, the GC traces can 

show significant variability. Calibration checks on the GC/MS equipment with standard 

test sample mixtures generally indicated good reproducibility for the equipment. The 

source of variability for GC/MS chromatograms for the experimental samples is not 

clear. It may reflect true variability in output from the test fire sources, or issues with 

sample collection, retention or desorption processes. However for each test type a 

reasonably representative GC/MS trace could be identified and such are presented in 

chapter 5. 

 

Comparison of the GC/MS chromatograms for the EN54/7 test fire emulations carried 

out in the UCLan enclosure with chromatograms for the corresponding full-scale tests at 

BRE, does not show great similarity in the GC peak distributions or relative intensities. 

The BRE traces show background effects which may indicate sampling or 

instrumentation issues. Instrumentation issues may have arisen as a result of GC/MS 

equipment shut down in the period between analysis of the UCLan and BRE samples. 

Viewing the BRE sample chromatograms on an expanded scale does show more peaks, 

which may be correlated with those, observed for the UCLan tests. 

 

In chapter 5 a set of selected representative GC chromatograms are presented on more 

expanded scale than used in chapter 4. These chromatograms are accompanied by table 

of MS fragmentation data for identified elution peaks, and where appropriate compound 

identification. The analysis of fragmentation data was not confined to the test runs 

identified in chapter 5. The product mixes in as far as they could be identified tended 

not to differ greatly from those indicated in chapter 5 and for reasons of space and 

convenience further results for duplicate tests are not presented here. 

 

Inspection of the MS fragmentation data tabulated in chapter5 and linked to GC/MS 

elution peaks indicates that a large and quite diverse set of compounds is identified. 

Given the complex mixtures present and evidence of incomplete peak resolution, some 

peaks show mass fragment mixes which do not allow compound identification, and for 

the same reason some of the identifications presented may be questionable, especially 

where the peaks in the retention time plots show overlap or significant baseline 

elevation. However certain species feature in the GC/MS analysis of Carboxen absorbed 

samples from many if not all fires, including propene, furan, acetone, and benzene. 
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Table 67 below reproduced from chapter 5 lists compounds commonly identified for the 

EN54/7 test emulations in the UCLan enclosure. 

 

Peak identity  TF2 TF3 TF4 TF5 

F R F R F R F R 

B : Propene 730 901 850 788   769 758 

E : Acetaldehyde 809 893       

H : Furan 855 876 933 897 720 766 777 789 

I : 2 – Propanal    867 803 830 733 959 942 

J : Acetone 906 933 750 775 761 722   

R: 2 Methyl furan   910 899 717 906   

V : Benzene 877 923 902 899 891 901 801 855 

Table 67 Common gases observed in the scaled standard fires in the UCLan enclosure 
with the library match values presented (F,R>750 considered good match) 

 
Several of these species are also present in the Carboxen absorbed samples from non 

standard fires and nuisance sources such as cooking and toasting indicating they do not 

potentially provide means of discriminating against such sources. Benzene appears 

discernable for most tests other than overheated PCB. 

 

The analysis for samples captured on Tenax yielded complex GC/MS chromatograms 

with many peaks for which identification is feasible but with some uncertainty due to 

peak and background overlap. The Tenax results for almost all samples do indicate the 

presence of benzene and larger aromatic compounds, anthracene and others. 

 
It is clear from the GC/MS chromatograms that full separation was not achieved for 

many tests and this complicates the analysis. The Sorption tubes were sourced from two 

different suppliers (Analytix and Sigma) have different mesh and pore sizes which leads 

to variation in how samples are desorbed and transferred to the GC column. Utilizing 

the CDS 5000 pyrolyser as a mechanism for injecting samples onto column was not 

ideal. Although rapid desorption was employed to minimise the plug of analyte injected 

onto column there is some spread which contributes to the poor peak shape observed 

particularly for early eluting compounds. This possibly could be corrected to some 

extent by use of a cyro- injection system where the fire gases enter a cold trap capillary, 

rapidly condense, and are then flashed onto the column. This could reduce the injection 

slug size and should result in better peak shapes. 
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7.1.4 Optical Scatter and Particle Size Measurements 

Optical scatter measurements were made for a large number of the fire tests carried out 

during this study being initially employed to aid development of the reduced scale test 

fires. A range of experimental devices operating at wavelengths other than the near 

standard ~850 nm were introduced to determine whether fire type could be 

distinguished by the relative response of their smokes to different wavelengths as has 

been suggested based on Mie scattering theory [147]. Tests used devices operating 

predominantly in the blue (465 nm) and near IR (~850 nm) regions. The results for the 

standard BS EN54/7 tests at BRE and emulations in the UCLan enclosure, and in the 

Sunbury smoke tunnel indicated that small differences in smoke transport to detectors 

could effectively obscure any useful wavelength based effect. Devices where dual 

wavelength scatter measurements were integrated into the same detector showed more 

promise and relative stability of signal ratio where substantial smoke was present. 

Where smoke and therefore signal levels were low, the response ratio was less stable 

indicating difficulties in employing this technique for early stage fire detection and 

discrimination. Results with a smoke detector provided with a near UV source were 

subject to the same issues but given the early development stage for such devices the 

results may indicate further work is warranted if UV LED prices continue to fall. 

 

A series of smoke particle size measurements were completed using a cascade impactor 

unit. There was reasonable reproducibility fire to fire but the dynamic range for the 

system probably does not extend to small enough particle sizes for the information to be 

informative when considering optical scatter or ionization based smoke detector 

response characteristics. 

 

7.1.5 FAIMS measurements 

A short study was completed employing an Owlstone FAIMS instrument during 

standard EN54/7 tests at BRE and some attempts to emulate those tests in the smoke 

tunnel at TYCO Sunbury. The tests demonstrated that the technique could give real time 

response to fire product gases but the nature of the response did not indicate any very 

substantial discriminatory capability. This is not surprising given the complexity of such 

fire products indicated by the GC/MS study. However these results constitute an initial 
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study only without any attempt to optimise the technique and further measurements 

with false alarm sources may be warranted. The FAIMS devices may have a future as a 

fire detection tool but in its present instrumental is too dependant on ancillary 

equipment and the price and power requirement would have to be very substantially 

reduced. 

 

7.2	  Summary,	  Applications	  and	  Future	  Developments	  
 
The impetus for this research was to determine whether there were any substantial 

gaseous fire products that could have potential for development of detector technologies 

with improved discrimination between real fires and against non fire nuisance sources. 

The work has demonstrated the existence of significant levels of oxidisable gases other 

than CO but that this certainly consists of a wide mixture of diverse species. The nature 

of this diversity does not indicate a route to discrimination against fume sources such as 

cooking, and may indicate that research effort should not be directed to progressing gas 

sensor development for detection of specific fire targets other than CO. 

 

A somewhat disappointing aspect of the work was a failure to establish reliable 

connections between GC/MS peak areas and product quantities, and to obtain and 

analyse samples at time stages through the fires. GC/MS is perhaps not the best 

technique to approach real time sampling but previous work had indicated the 

inadequacy of direct methods such as FTIR at low concentrations. 

 

The appearance of aromatic and polyaromatic species in some analyses prompted 

further examination of combustion related literature, which confirmed that 

polyaromatics have been widely identified in extracts from smoke and also within 

flames. Initial attempts in this study to carry out fluorescence measurements on smoke 

deposits were unsuccessful but have indicated requirements for future studies, which 

may enable discrimination of smokes rather than gases. 

 

The work on development of test fires at a conveniently reduced scale has potential to 

aid further work in the area impeded by limited access to full-scale fire room facilities. 
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