

Central Lancashire Online Knowledge (CLoK)

Title	On corticopetal-corticofugal loops of the new early filter: from cell assemblies to the rostral brainstem
Туре	Article
URL	https://clok.uclan.ac.uk/26080/
DOI	https://doi.org/10.1097/WNR.000000000001184
Date	2019
Citation	Campbell, Tom A and Marsh, John Everett (2019) On corticopetal- corticofugal loops of the new early filter: from cell assemblies to the rostral brainstem. Neuroreport, 30 (3). pp. 202-206. ISSN 0959-4965
Creators	Campbell, Tom A and Marsh, John Everett

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1097/WNR.00000000001184

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

NeuroReport

On corticopetal-corticofugal loops of the new early filter: From cell assemblies to the rostral brainstem

Manuscript Draft-	N	lanusc	ript [Draft-
-------------------	---	--------	--------	--------

NR-D-18-00212
On corticopetal-corticofugal loops of the new early filter: From cell assemblies to the rostral brainstem
Letter to the Editor
Auditory Brainstem Responses (ABRs), Selective Attention, Hebb, Adaptive Filtering Model, New Early Filter Model
Tom Campbell, Ph.D., Docent Tampereen Teknillinen yliopisto TAMPERE, Pirkanmaa FINLAND
Tampereen Teknillinen yliopisto
Tom Campbell, Ph.D., Docent
Tom Campbell, Ph.D., Docent
John Marsh

1	SUBMITTED AS A LETTER TO THE EDITOR
2	Running head: ATTENTION AND ABRS
3	On corticopetal-corticofugal loops of the new early filter: From cell assemblies to the
4	rostral brainstem
5	Tom A. Campbell ¹ & John E. Marsh ^{2,3}
6	¹ Department of Psychology and Logopedics, Faculty of Medicine, University of
7	Helsinki, Helsinki, Finland
8	² Department of Building, Energy and Environmental Engineering, University of
9	Gävle, Gävle, Sweden.
10	³ School of Psychology, University of Central Lancashire, Preston, United Kingdom.
11	
12	Correspondence concerning this manuscript may be addressed to John E. Marsh,
13	School of Psychology, Darwin Building, University of Central Lancashire, Preston,
14	Lancashire, United Kingdom, PR1 2HE.
15	Phone: (+44) 1772 893754
16	Fax: (+44) 1772 892925
17	E-mail: JEMarsh@uclan.ac.uk
18	
19	Funding: The writing of this article was supported by a grant from the Swedish
20	Research Council (2015-01116) awarded to Patrik Sörqvist and to John E. Marsh.
21	
22	Conflicts of interest: None declared.

4	2	3	
2	2	4	

rostral brainstem

On corticopetal-corticofugal loops of the new early filter: From cell assemblies to the

Selective attention affects both thalamocortically generated auditory middle-25 latency responses and cortically generated auditory long-latency responses, yet, up 26 until the work of Ikeda *et al.* [1-3], no such attentional effects upon auditory brainstem 27 responses (ABRs) had been observed [4-5]. That is, Ikeda et al. [1] have revealed 28 selective attentional influences upon ABRs: In contralateral loud (100 dB SPL) noise, 29 rare "deviant" target tone pips to the left ear exhibited a positivity in the range of 30 waves II-VI. In addition, there were selective attentional decrements in ABRs to 31 32 attended frequent "standard" non-target tone-pips relative to acoustically identical sounds that participants just ignore [1]. In quieter contralateral noise (80 dB SPL) 33 there were no such effects [1]. 34

Accordingly, sensory-load influences binaural mechanisms via descending 35 corticofugal routes between subcortical processing stations. These top-down effects, in 36 turn, affect ABR generators ipsilateral and contralateral to the attended ear via the 37 descending auditory system [5]. Corroborative evidence of a different sort stemmed 38 from Ikeda (2015) [2] concerning how attention affects the ABRs to binaural and 39 monoaural stimuli. Arguably a corticofugally operated top-down early selective 40 filtering mechanism [6], which we shall discuss, can act upon information from both 41 ears, as becomes particularly influential under adverse conditions, e.g., loud noise. 42

In the studies where there is no effect of selective attention on ABRs – such as
the investigation of Woldorff *et al.* [5] – what role does such a selective filtering
mechanism play? This mechanism is arguably neither necessary nor apparent under

46	the experimental conditions that Woldorff et al. [5] employed. In one new dichotic
47	listening investigation with low- rather than high-level diotic noise, Ikeda [3] now
48	better defines the stimulus conditions that permit [3] – and replicate the distinct
49	conditions that preclude – this influence of selective attention on ABRs [3, 5]. Under
50	conditions that preclude such an influence, Woldorff et al. [5], as Ikeda [3], presented
51	higher tone-pips to the left ear and lower tone-pips to the right ear. For the first time in
52	one experiment, Ikeda [3] reveal such stimulus conditions do not lead to an influence
53	of selective attention on ABRs, whereas the converse stimulus conditions of lower
54	tone-pips to the left ear and higher tone-pips to the right ear do. The point is that the
55	attentional modulation of tone-pip ABR componentry depends upon pitch and
56	stimulus arrangement.

We do not debate this new fact that stimulus conditions influence how
selective attention affects ABRs. Instead, we rather take issue with Ikeda's (2018)
Hebbian interpretation [3, 7] and elucidate how alternative models [6, 8] can explain
the data of Ikeda (2018) [3].

In what ensues, there is an introduction of Hebbian theory, followed by a 61 discussion of the two alternative models - the adaptive filtering model [8] and the new 62 early filter model [6] – and thereafter a focus on the common assumptions of those 63 alternative models that Ikeda challenges, addressing each challenge to each such 64 assumption in turn There is then cautious consideration of the related view [9] that the 65 all top-down attentional as well as experience-dependent plasticity factors are entirely 66 cortical rather than subcortical, leading into caveats for future investigations. This 67 discussion now embarks with Hebb. 68

69	Hebbian assumptions include that of cell assemblies [7]. Such assemblies are
70	groups of "neurons that fire together that wire together", due to prior Hebbian
71	learning, in a mutually facilitatory manner persisting in a more than fleeting moment
72	due to reverberation within that assembly. Such cell assemblies accumulate during the
73	ascendency of information in the brain, as a counterpart to a mental representation
74	with a persistence conducive to use in the neuronal basis of thought. In an auditory
75	context, Ikeda (2018) [3] identifies such a cell assembly with the extant concept of an
76	auditory object [10]. Diffuse connectivity – largely across the cortex, yet also in the
77	diencephalon and cerebrum – Hebb proposed as necessary to cell assemblies [7:pg.
78	xix]. Inasmuch that Hebb [7:pg. 67] notes, in the visual domain, that Area 17 of the
79	occipital cortex lacks such necessary diffusivity by contrast with Area 18, Ikeda's
80	expansion [3] of Hebbian theory is that "it would be difficult to represent a perceptual
81	object in the primary sensory cortex itself as the sensory projections up to the primary
82	sensory cortex were not diffuse."

Within the Hebbian notion of attention, "a hypothetical agency or process 83 which produces selectivity, ... a central facilitation of perceptual activity" [7:pg. 102], 84 a phase-sequence, a sequence of cell assemblies, gives rise to thought. That is, a cell 85 assembly may exist as a closed system briefly. Also, a cell assembly may facilitate the 86 assembly of other systems, including those cell assemblies influencing motor 87 behaviour. Selective attention is accordingly the central facilitation of cell assemblies 88 in a phase-sequence from the attentional set of preceding assemblies. When a phase-89 sequence causes the central facilitation of a cell assembly before the sensory 90 facilitation of that assembly, then an expectancy occurs [7:pg. 87] – effectively a 91 predictive facet of selective attention. Noteworthy is that Hebb's theory relied upon 92

93	excitatory interactions eschewing not only the role of inhibition in selective attention
94	but also inhibitory processes altogether [11]. Poignant is that, at the time when Hebb
95	formulated his theory, neural inhibition had yet to be discovered [12]. Combining
96	Ikeda's interpretation [3] of this Hebbian theory [7] that subcortical structures and
97	primary auditory cortex lack the necessary diffuse connectivity with Hebb's concept
98	of a selective attention as a phase-sequence, there is corroboration: A meta-analysis
99	reveals the involvement of nonprimary auditory cortex as crucial to haemodynamic
100	effects of auditory selective attention [13]. Uncontested here is such a crucial role for
101	nonprimary auditory cortex during the effects of attention. During these effects, the
102	rostral brainstem when implicated in attentional selectivity is arguably a subcortical
103	servant to this and other cortical masters.

There are two distinct alternative models, the adaptive filtering model [8] and 104 the new early filter model [6], which Ikeda's interpretation challenges: Evidence is 105 martialled in refutation of what Ikeda [3] terms gain theory. Turning to the first 106 alternative model, Giard et al. [8] defend a variant of the gain hypothesis, to which 107 they attribute origins within the work of Hillyard and colleagues [14]. This variant is 108 that selective attention – rather than operating by central facilitation – acts as a gain 109 mechanism capable of inhibiting or gating unattended relative to attended stimulus 110 information. This inhibition occurs at an early stage of sensory analysis kindred to the 111 original early filter [15]. The version of the hypothesis that Giard and colleagues [8] 112 defend assumes that, although there may be a voluntary endogenous componentry of 113 auditory long-latency responses, there is an attentional gain applied to several distinct 114 obligatory exogenous components. Giard and colleagues assume that this gain relies 115 on the facilitation of to-be-attended material and the active rejection of to-be-ignored 116

117	sound. This view assumes that facilitation and active rejection follow distinct time
118	courses. Gain mechanisms can operate at several stages of sensory analysis including
119	the cochlea and brainstem, each affecting the analysis and the representation of
120	stimulus information. Giard and colleagues assume that there is an efferent mechanism
121	that can modulate, under appropriate conditions, the gain at each level of processing
122	from auditory cortices, to brainstem, to cochlea. As such, the gain in an adaptive
123	filtering model [8] can be applied at any stage that the attentional requirements of the
124	task determine.

Turning from Giard and colleagues' view [8], which identifies their gain 125 126 mechanism with filtering, this discussion now turns to the second perspective that 127 Ikeda [3] challenges – that is, the new early filter model [6]. By contrast to the original early filter model, which places the selective filter, albeit somewhat hesitantly, in the 128 cochlear nuclei [15: pg.305], the new early filter model [6] assumes the top-down 129 control of corticopetal-corticofugal loops. These loops serve as the early filter by 130 increasing the signal-to-noise ratio at the cortex, operating early by egocentric 131 selection [16] to which lateral inhibition is integral. This selection serves both to 132 enhance the predicted signals and suppress unattended predicted noise. There are 133 134 numerous such loops from cortex to cochlea nuclei that convey the expectancies of higher loops to lower loops. Those lower loops adjust to meet those expectancies. 135 Although the cholinergic basal forebrain resides in a two-way feedback loop with the 136 anterior attentional system encompassing the prefrontal cortex, projections from the 137 cholinergic basal forebrain to the auditory and association cortices are assumed to be 138 exclusively efferent. The cholinergic basal forebrain thus commands the auditory and 139 association cortices. The early filter of corticofugal-corticopetal loops is, by default, 140

141 142 wide open, such that, when stimulation is unpredictable, late selection may be more influential than early selection on cognitive performance.

It is worth considering that the top-down predictive action of corticofugal-143 corticopetal loops need not serve as a psychophysiological volume control leading to a 144 gain that augments brain responses. Rather, that predictive action can lead to a 145 neuronal phase-locking more faithful to aspects of stimulus dynamics at the level of 146 the brainstem [17]. Such prediction leads to a more efficient neuronal coding of the 147 stimulus during repetition suppression [18] – a sparser coding reducing the stimulus-148 evoked Blood-Oxygen-Level Dependent (BOLD) signal within the inferior colliculus. 149 150 The new early filter model [6] assumes there are distinct forms of representation at different levels of the auditory system: for instance, the place-rate code that the 151 inferior colliculus supports differs from that in the auditory cortex by virtue of distinct 152 tonotopic and phase-locking characteristics as a function of centre frequency at those 153 levels. 154

155 Although Ikeda [3] again establishes an early effect of selective attention on the ABR, thus supporting the alternative models [6, 8], Ikeda [3] challenges several 156 assumptions made by both those models, i.e.: Selective attention can affect both the 157 brainstem and primary auditory cortex. There are different forms of representations 158 during processing at distinct levels of the auditory system. Selective auditory attention 159 relies mostly on efferent pathways. This selective attention can involve not just 160 inhibitory but also excitatory processes (cf., [7]). The following addresses challenges 161 to each of these assumptions in turn. 162

163	Striking accord somewhat with Ikeda's challenge [Ike18] that an involvement
164	of nonprimary auditory cortex is crucial to auditory selective attention [13], the new
165	early filter model [6] does assume that primary auditory cortex can be subject to top-
166	down control during selective attention. Such an assumption of exclusive top-down
167	control of primary auditory cortex would have been untenable for the new early filter
168	model. Germane are the differences in top-down cholinergic projections from the basal
169	forebrain to the primary and nonprimary auditory cortex, which may have functional
170	consequences [19]. However, in countenance to the supposed emphasis on the primary
171	auditory cortex of the new early filter [6, 20], the model also allows for top-down
172	cholinergic influences upon both primary and nonprimary auditory cortex during
173	selective attention, as well as upon association areas.

In Ikeda's further challenge [3] about which structures are affected by attention 174 supporting what forms of representation, with respect to the adaptive filtering model 175 [8] and the new early filter model [6], Ikeda [3:pg. 497] conjectures the hypothesis that 176 "According to the gain theory of selective attention [...] the attention effect on 177 neuronal processing (i.e., facilitation or inhibition) would be consistent between the 178 auditory cortical and subcortical neurons." In test of this hypothesis, Ikeda [3:pg. 501] 179 asserts that the distinct pattern of attentional modulation of the componentry of the 180 auditory brainstem responses – and arguably cortically generated long-latency 181 responses - "conflicts with the *coherent* modulation of both cortical and subcortical 182 neurons by auditory efferent pathways." Pivotal is what "consistent" or "coherent" 183 means, as hinges the relation of the hypothesis to the adaptive filtering model [8] (M-. 184 H. Giard, Personal communication, April 10th, 2018) and the new early filter model 185 [6]. 186

187	Mapping the hypothesis onto a well-designed experiment, Ikeda [3] derives
188	and tests a hypothesis: If "consistent" and "coherent" mean identical in that hypothesis
189	then an attentional modulation of componentry, regardless of tonal pitch or stimulus
190	arrangement, will be qualitatively similar whether the componentry is of the auditory
191	brainstem or the arguably cortically generated long-latency response. This, the ABR
192	data do not show [3], as is Ikeda's challenge.
193	However, neither in the new early filter model nor in the adaptive filtering
194	model (M H. Giard, Personal communication, April 10th, 2018) is there the
195	assumption that the object receives full representation at each level of processing.
196	Consider if, rather, as both the adaptive filtering model [8] and the new early filter
197	model [6] assume, there are different neuronal representations of the auditory
198	stimulus, which are subject to distinct forms of processing at different levels in the
199	auditory system. If so, then consistency and coherence take on different meanings: The
200	extent of the modulation at different levels could depend not just on the configuration
201	and content of the stimuli but also upon task requirements (e.g., attending to pitch),
202	such that there can be conditions for an efferent mechanism to modulate processing at
203	the level of the brainstem.
204	Ikeda's challenge to the role of efferent pathways in selective attention has the
205	

questionable underpinnings of a non-identical pattern of effects of selective attention upon cortically generated long-latency responses and ABRs. Rather, an influence of auditory efferent pathways on cortical and subcortical pathways still seems feasible. Such an influence is perhaps constrained to a route (secondarily) modulating the (ascending lemniscal input to the) left inferior colliculus subcortically, at least for pitch. Some views schematise these left and right pathways separately in presentation

211	of corticopetal-corticofugal loops within the human ascending and descending
212	auditory system (e.g., [6, 17]). As such, qualifications to the views under challenge [6,
213	8] could account for the pattern of ABR attentional modulations without recourse to
214	the Hebbian perspective [3, 7].
215	For instance, processing of different stimulus attributes may exhibit a distinct
216	lateralization of processing in the rostral brainstem from that shown in the cortex.
217	Germane to this discussion is localizer task data [18] during a pitch contour direction
218	detection task in which binaural speech stimuli significantly activate the left not the
219	right Inferior Colliculus (IC) of the auditory brainstem. Is there a specialisation of the
220	sound-contralateral left IC for pitch processing? Is it that attention to pitch influences
221	left IC only? The EEG Frequency Following Response (FFR) phase-locks to the
222	ascending frequency of the second harmonic of a chirp up until an individually
223	variable limit, which ranges from 881 to 1348 Hz in young adults [21]. Noting phase-
224	locking in the IC breaks-down around such a limit [21], is this left more than the right
225	IC particularly sensitive to attention to frequency up until this limit? Up until this
226	frequency, presenting sounds to the right ear rather than the left ear would thus
227	produce stronger attentional effects. Those effects would modulate phase-locking in
228	the left IC. The tones in a previous investigation [5] would affect place-coding rather
229	than phase-locking in the IC. As such, tones in this previous investigation [5], if
230	receiving a differential attentional processing within the IC, would involve small
231	rather than broad neuronal populations in the IC, thus not affecting scalp EEG as
232	substantially. Ikeda [3] reveals unconducive to attentional effects in the brainstem is a
233	stimulus arrangement with higher frequency tones to the left ear and lower frequency
234	tones to the right ear, kindred to this absence of attentional ABR findings in some

235	prior work [5]. However, the absolute rather than the interaural relative pitches of that
236	prior investigation [5] may account for the absence of attentional ABR effects.
237	Arguably stimulation of the left IC by higher frequency tones in the right ear by
238	contrast thus produces phase-locking of broad neuronal populations that are subject to
239	efferent attentional modulations. Intriguingly, Ikeda [3] indicates that the relative
240	interaural pitch, rather than absolute pitch, is crucial to attentional modulation.
241	A key shortcoming of Ikeda's Hebbian interpretation [3] remains the absence
242	of the theoretical possibility of (selective attentional influences on) neuronal
243	inhibition. Inhibitory processes are ubiquitous in the cortex [22] and a facet of binaural
244	interactions at the level of the auditory brainstem [23]. The Hebbian concept of a brain
245	without inhibition rather better describes a brain that exhibits epileptiform activity
246	[22]. If such neural inhibition plays a role in attentional modulations of ABRs [1–3],
247	such data are more reconcilable with the alternative models [6, 8] than with Hebbian
248	theory [7].
249	The deepest challenge of these alternative models is the replication of the
250	conditions for the elusive effects of attention on ABRs. Such replication should
251	motivate new explanatory assumptions such as a crucial role of the left IC in the
252	functional connectivity for attention to pitch.
253	From addressing Ikeda's challenges, the discussion now shifts to a related
254	perspective. Upon a recent tide of scepticism concerning the influence of selective
255	attention on subcortical processing, waiting in the wings is a different perspective that
256	the apparent top-down attentional as well as experience-dependent plasticity factors
257	that seem to affect the brainstem are entirely cortical [9]. Accordingly, the influence of

258	these factors on the rostral brainstem seem miscast: Considering the structure of a
259	person's magnetoencephalogram during the presentation of a sustained vowel sound of
260	a reveals frequency following response (FFR) generators that phase-lock to the
261	acoustical stimulus content not only in the subcortical structures of the medial
262	geniculate, inferior colliculus, and cochlear nucleus, but also in the auditory cortices
263	bilaterally [24]. Noteworthy is that a right cortical FFR source rather than left cortical
264	or subcortical FFR sources index musicianship and performance on a pitch
265	discrimination task [24]. As such, a possible inference is that experience-dependent
266	plasticity affects this FFR. An even bolder inference would be that the attentional
267	influences on FFR called into question [9], if genuine, could be cortically rather than
268	subcortically mediated. Further, phase-locking in the inferior colliculus, without
269	cortical involvement can be obtained from EEG measurements with higher harmonics
270	at frequencies over 150 Hz [25]. To be determined is whether the presence of cortical
271	FFR generation for the ca.100 Hz fundamental [25] in the absence of FFR for higher
272	harmonics is due to modes of the fundamental receiving less cortical processing rather
273	than the frequency of those partials per se.

Caveats thus include that higher harmonic stimulus content is ideal for investigations of top-down attentional influences on phase-locked responses in the rostral brainstem. Another caveat to bear in mind is that the stimuli content should be less than 881 Hz to activate broad neuronal populations in both inferior colliculi thus strongly affecting responses measurable at the scalp [6, 21].

To sum-up, a re-evaluation of Ikeda's hypothesis that attention's effect on neuronal processing (i.e., facilitation or inhibition) would be *consistent* between the auditory cortical and subcortical neurons accords with, rather than militates against as

282	Ikeda [3] asserts, both the adaptive filtering model [8] and the new early filter model
283	[6]. However, the definition of consistent must permit that there are different neuronal
284	representations of the auditory stimulus, which are subject to distinct forms of
285	processing at different levels in the auditory system. Ikeda's data support such a form
286	of consistency within his hypothesis. Accordingly, some forms of processing can be
287	subject to top-down attentional influences – not only from facilitatory but also from
288	inhibitory processes – mostly via the descending auditory system
289	In assessment, the adaptive filtering model [8] and the new early filter model
290	[6] offer a more plausible explanation of Ikeda's influence of stimulus conditions on
291	the attentional influence upon ABRs than Ikeda's Hebbian interpretation [3]. Ikeda has
292	improved the definition of the stimulus conditions that permit [3], and the different
293	conditions that preclude, an influence of selective attention on ABRs [3, 5]. The
294	adaptive filtering model [8] and the new early filter model [6] – by contrast to a
295	Hebbian interpretation [3, 7] – may well accommodate a tenable explanation of this
296	improved definition.
297	As to where the state-of-the-art is going, replication of the elusive effects of
298	attention on ABRs may well employ the caveats for the choice of stimuli reviewed in
299	the foregoing to motivate new explanatory assumptions for the new early filter model
300	[6]. Such assumptions could include a crucial role of the left IC in the functional

301 connectivity for attention to pitch.

302	Acknowledgements. T. A. C. is now at the Laboratory of Signal Processing, Tampere
303	University of Technology, Finland. Thanks are due to Kimmo Alho, Sylvain Baillet,
304	Gavin Bidelman, Bharath Chandrasekaran, Emily Coffey, Mathias Dietz, Marie-
305	Hélène Giard, Kazunari Ikeda, and Stefan Wiens for productive discussions and
306	critical comments upon earlier versions of the manuscript.

307	AUTHOR CONTRIBUTIONS
308	Both JM and TC made substantial contributions to the concept and interpretation in
309	drafting the manuscript, approved the submitted materials, and have agreed to be accountable
310	for all aspects of the work in ensuring that questions related to the accuracy or integrity of any
311	part of the work are appropriately investigated and resolved.

312	REFERENCES
313	1. Ikeda K, Sekiguchi T, Hayashi A. Attention-related modulation of auditory
314	brainstem responses during contralateral noise exposure. NeuroReport
315	2008; 19 :1593–1599. doi:10.1097/WNR.0b013e32831269be
316	2. Ikeda K. Binaural interaction in human auditory brainstem response
317	compared for tone-pips and rectangular clicks under conditions of auditory
318	and visual attention. Hear Res 2015; 325:27-34.
319	doi:10.1016/j.heares.2015.02.010
320	3. Ikeda K. Discontinuity of early and late event-related brain potentials for
321	selective attention in dichotic listening. <i>NeuroReport</i> 2018; 29 :495–503.
322	doi:10.1097/wnr.000000000000000004
323	4. Woods DL, Hillyard SA. Attention at the cocktail party: brainstem evoked
324	responses reveal no peripheral gating. In: Otto DA, editor.
325	Multidisciplinary perspectives in event-related brain potential research.
326	Washington, DC: US Government Printing Office; 1978. pp. 230-233.
327	5. Woldorff M, Hansen JC, Hillyard SA. Evidence for effects of selective
328	attention in the mid-latency range of the human auditory event-related
329	potential. Electroencephalogr Clin Neurophysiol Suppl 1987; 40:146–154.
330	6. Marsh JE, Campbell TA. Processing complex sounds passing through the
331	rostral brainstem: the new early filter model. Front Neurosci 2016; 10:136.
332	doi:10.3389/fnins.2016.00136
333	7. Hebb DO. The organization of behavior: a neuropsychological theory. New
334	York, NY: John Wiley; 1949.

335	8. Giard MH, Fort A, Mouchetant-Rostaing Y, Pernier J. Neurophysiological
336	mechanisms of auditory selective attention in humans. Front Biosci 2000;
337	5 :D84–D94.
338	9. Varghese L, Bharadwaj HM, Shinn-Cunningham BG. Evidence against
339	attentional state modulating scalp-recorded auditory brainstem steady-state
340	responses. Brain Res 2015; 1626:146–164.
341	doi:10.1016/j.brainres.2015.06.038
342	10. Winkler I, Denham SL, Nelken I. Modeling the auditory scene: predictive
343	regularity representations and perceptual objects. Trends Cogn Sci 2009;
344	13 :532–540. doi:10.1016/j.tics.2009.09.003
345	11. Milner PM. The mind and Donald O. Hebb. <i>Sci Am</i> 1993; 268 :124–129.
346	12. Brock LG, Coombs JS, Eccles JC. The recording of potentials from
347	motoneurones with an intracellular electrode. J Physiol 1952; 117:431-
348	460. doi:10.1113/jphysiol.1952.sp004759
349	13. Alho K, Rinne T, Herron TJ, Woods DL. Stimulus-dependent activations
350	and attention-related modulations in the auditory cortex: a meta-analysis of
351	fMRI studies. Hear Res 2014; 307:29-41.
352	doi:10.1016/j.heares.2013.08.001
353	14. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of
354	selective attention in the human brain. Science 1973; 182:177–180.
355	doi:10.1126/science.182.4108.177
356	15. Broadbent D. Perception and communication. London, England: Pergamon
357	Press; 1958.

358	16. Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for
359	hearing: recent progress. Proc Natl Acad Sci U.S.A. 2000; 97:11807-
360	11814. doi:10.1073/pnas.97.22.11807
361	17. Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to
362	speech: neural origins and plasticity. <i>Psychophysiology</i> 2010; 47 :236–246.
363	doi:10.1111/j.1469-8986.2009.00928.x
364	18. Chandrasekaran B, Kraus N, Wong PC. Human inferior colliculus activity
365	relates to individual differences in spoken language learning. J
366	Neurophysiol 2012; 107:1325–1336. doi:10.1152/jn.00923.2011
367	19. Chavez C, Zaborszky L. Basal forebrain cholinergic-auditory cortical
368	network: primary versus nonprimary auditory cortical areas. Cereb Cortex
369	2017; 27:2335-2347. doi:10.1093/cercor/bhw091
370	20. Campbell TA, Marsh JE. Commentary: Donepezil enhances understanding
371	of degraded speech in Alzheimer's disease. Front Aging Neurosci 2018;
372	10 :197. doi: 10.3389/fnagi.2018.00197
373	21. Bidelman G, Powers L. Response properties of the human frequency-
374	following response (FFR) to speech and non-speech sounds: level
375	dependence, adaptation and phase-locking limits. Int J Audiol 2018; in
376	press. doi: 10.1080/14992027.2018.1470338
377	22. Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron
378	2011; 72 :231–243. doi:10.1016/j.neuron.2011.09.027
379	23. Ungan P, Yagcioglu S. Origin of the binaural interaction component in
380	wave P4 of the short-latency auditory evoked potentials in the cat:

381	evaluation of serial depth recordings from the brainstem. Hear Res 2002;
382	167 :81–101. doi:10.1016/S0378-5955(02)00351-9
383	24. Coffey EBJ, Herholz SC, Chepesiuk AMP, Baillet S, Zatorre RJ. Cortical
384	contributions to the auditory frequency-following response revealed by
385	MEG. Nat Commun 2016; 7:11070. doi:10.1038/ncomms11070
386	25. Bidelman GM. Subcortical sources dominate the neuroelectric auditory
387	frequency-following response to speech. <i>NeuroImage</i> 2018; 175 :56–69.
388	doi:10.1016/j.neuroimage.2018.03.060

Michael Jakowec, Ph.D., Editor-in-Chief, NeuroReport, Associate Professor of Research Neurology, Department of Neurology, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, THE UNITED STATES OF AMERICA

August 10th, 2018

Dear Prof. Jakowec,

RE: Discontinuity of early and late event-related brain potentials for selective attention in dichotic listening

Please find within the enclosure a manuscript NR-S-18-00384, "On corticopetal-corticofugal loops of the new early filter: From cell assemblies to the rostral brainstem", which I have co-authored with my collaborator John Marsh. We would wish to submit this manuscript as a Letter to the Editor of *NeuroReport*. We would be honoured should you oversee a peer-review process regarding this manuscript. The manuscript concerns a recent article by Dr Ikeda that appeared under Integrative Systems:

Ikeda K. Discontinuity of early and late event-related brain potentials for selective attention in dichotic listening. *NeuroReport* 2018; **29**:495–503. doi:10.1097/wnr.00000000001004

We do not debate the new fact that stimulus conditions influence how selective attention affects Auditory Brainstem Responses. Instead, we rather take issue with Ikeda's (2018) Hebbian interpretation and elucidate how alternative models, including our own, can explain the data of Ikeda (2018). In respect to these extant models of auditory neurocognition, this Letter manuscript would unite the interests of your Integrative Systems readership to the interests of those researching Cognitive Neuroscience and Neuropsychology.

We would hope that Dr Ikeda offers your readership a reply enlivening the scientific debate, in which our scholarly interaction has already proved productive. Should such a reply be forthcoming, we would also be pleased to address such a rejoinder.

Dr Ikeda's article states that all participants provided their informed consent before the experiment, and this study was in accordance with the Declaration of Helsinki as approved by the ethics committee in Tokyo Gakugei University. The Letter manuscript is 19 pages long. This manuscript is not under consideration for publication elsewhere. I very much hope that this Letter manuscript is to your interest and I do look forward to hearing from you.

Yours sincerely,

Tom Campbell.

Dos. Ph.D. Tom Campbell

Psykologian ja logopedian osasto Lääketieteellinen tiedekunta, Helsingin yliopisto

Avdelning för psykologi och logopedi Medicinska fakulteten, Helsingfors universitet

Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki PL 21 (Haartmaninkatu 3B), Fl 00014 Helsingin yliopisto Puh 040 9527340, s-posti tom.campbell@helsinki.fi

PB 21 (Haartmansgatan 3 B), FI 00014 Helsingfors universitet Tel 040 9527340, e-post tom.campbell@helsinki.fi

PO Box 21 (Haartmaninkatu 3 B), FI 00014 University of Helsinki, Finland Phone 040 9527340, e-mail tom.campbell@helsinki.fi