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The importance of reliability to complex systems cannot be disputed as they are the

backbones of our society. In practice, the common cause failures may have severe reverse

function on complex systems’ overall stability. Survival Signature opens a new way to
perform reliability analysis on systems with multiple component types. This paper takes

a research on survival signature based reliability analysis on complex systems susceptible

to Common Cause Failures. To be specific, it proposes the standard α-factor model and
general α-factor model to combine with the survival signature. In practical applications,

the α-factor estimator of the system might not be defined completely due to limited data,

or knowledge which requires to take imprecision into account. Some numerical cases are
presented to show the applicability of the methods for complex systems. In addition,

this paper may attract people’s attention on the conception of Design for Reliability.

Keywords: Common Cause Failures; Survival Signature; α-Factor Model; Reliability
Analysis; Complex Systems.

1. Introduction

A common cause failure (CCF) is an event that causes multiple components fail

simultaneously, which exists widely in complex systems. Modelling CCFs is essen-

tial in complex systems reliability analysis as they can have a large effect on the

systems’ overall functionality, especially on the quality and productivity of prod-

ucts and processes.1 There is always an assumption that the components failures

are independent, however, CCFs make the hypothesis is not set up. What is more,

CCFs have been shown by many studies to decrease the reliability and availabil-

ity of complex systems. Therefore, common cause failures are extremely important

in reliability assessment and must be given adequate treatment to minimize gross

overestimation of performances.2

A number of parametric models have been developed for common cause fail-

ures over the last decades. Rasmuson and Kelly reviewed the basic concepts of

modelling CCFs in reliability and risk studies.3 One of the most commonly used

1
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single parameter models defined by Fleming4 is called the β-factor model, which

is the first parameter model applied to common cause failures in risk and relia-

bility analysis. Then he generalized the β-factor model to multiple Greek letter

model in 1986.5 The α-factor model which is proposed by Mosleh et al.6,7 devel-

ops CCFs from a set of failure ratios and the total component failure rate. The

binomial failure rate model discussed by Atwood8 estimates the failure frequency

of two or more components in a redundant system as the product of the CCF shock

arrival rate and the conditional failure probability of components given the shock

has occurred. A system’s components each contribute differently to the system,

which are defined as weights.9 Systems with weighted components are useful to

model various capacity-based engineering systems such as oil transportation sys-

tem, power generation system, and production system.10 Different from weighted

reliability components measure, which mainly focus on the influence of different

weighted components on the reliability of system, α-factor model is mainly used for

estimating the probability of how many components fail due to a common cause

failure event.

Recently, based on the α-factor model, Kelly and Atwood11 presented a method

for developing Dirichlet prior distributions that have specified marginal means, but

which are otherwise minimally informative. An explicit method and an implicit

method is proposed in12 to analyse the reliability of systems subject to internal

or external probabilistic common cause failures. A general applicable and effiecient

Monte Carlo simulation approach is used for reliability evaluation of systems sus-

ceptible to induced failures in.13 Levitin14 incorporated the common cause faliures

into non-repairable multistate series-parallel system analysis by using the universal

generating function method. A robust Bayesian approach to modelling epistemic

uncertainty in the imprecise Dirichlet model has been discussed by Troffaes et

al.15 Coolen and Coolen-Maturi16 presents non-parametric predictive inference for

system reliability following common cause failures of components. In that paper,

attention is restricted to system with exchangeable or a single type of components.

Therefore, an extension of this work is needed. To be specific, it is necessary to

perform reliability analysis on complex systems by considering CCFs among com-

ponents belonging to different types. Survival signature provides a good way solve

this problem.

Survival signature was first proposed by Coolen and Coolen-Maturi17 in 2012.

It is a powerful methodology that can not only hold the merits of the former sys-

tem signature,18 but can be used in complex system with components belong to

multiple types. In essence, it does not have the assumption that components of dif-

ferent types are exchangeable, which overcomes the long-standing limitation of the

system signature. This is useful when a system which may have components with

failure times that follow different probability distributions.19,20 Therefore, survival

signature is a promising method for application to complex systems and networks.

Based on the former work, Aslett developed a Reliability Theory package which
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was used to calculate the survival signature21 and analysed system reliability within

the Bayesian framework of statistics.22 A non-parametric predictive inference for

system reliability using the survival signature was proposed by Coolen et al.23 Feng

et al. deals with the imprecision within the system by analytical and numerical

ways respectively,24 what is more, probability bounds analysis is used to perform

sensitivity analysis on complex systems with epistemi uncertainty in the paper.25

An imprecise Bayesian non-parametric approach by using sets of priors to system

reliability with multiple types of components is developed by Walter et al.26 Patelli

et al.27 proposed efficient simulation approaches which are based on survival sig-

nature for reliability analysis on large system. An efficient algorithm for the exact

computation of the survival signature of large systems was put forward by Reed.28

Eryilmaz et al.29 developed the survival signature-based marginal and joint reli-

ability importance measures to optimise system design, as well as consider mean

residual life of coherent systems with multiple types of dependent components in

the article.30

A survival signature based reliability analysis on complex systems with common

cause failures has been proposed in this paper. The α-factor model distinct between

the total failure rate of a component and the common cause failures modelled by

α-factor parameters, which can be got through experts’ judgement of the system

or the past data on the system. These advantages of the α-factor model make

it possible to combine with the survival signature to assess the complex system

reliability. The standard α-factor model is proposed first in the paper to perform

system reliability analysis after CCFs, however, it has two assumptions that there

must be at least one component fails of each type and the components failures of

each type are independent. In order to remove these assumptions, another general

α-factor model has been introduced. It takes all the possible combinations of the

failed numbers of past events. The novel standard and general α-factor models can

be expressed by the equations which connect with the survival signature. What

is more, the imprecision within the models are also considered. The applicability

of the proposed approaches are demonstrated by solving the numerical cases, by

investigating the results, the concept of design for reliability should be drawn more

attention.

This paper is organized as follows. Section 2 gives a brief conceptions about the

α-factor model and survival signature. The system reliability analysis after common

cause failures has been presented in Section 3. In this Section, the standard α-

factor model and the general α-factor model have been studied respectively. The

applicability and performance of the proposed approaches is presented in Section

4. Finally Section 5 closes the paper with conclusions and discussion.
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2. α-Factor Model and Survival Signature

2.1. α-factor model

The α-factor model is particularly useful in the practical engineering world as the

alpha factor parameters can be got through experts’ judgement of the system or

past data on the system. The parameters αk of the model are the fractions of the

total probability of failure in the system that involves the failure of k components

due to a common cause.

The probability of a common cause basic event involving failure of k components

in a system of m components31 can be calculated by Equation 1.

Qk =
k(

m−1
k−1

) αk

αt
Qt (1)

where, k = 1, 2, ...,m and αt =
∑m

k=1 kαk. Qt is the total probability of failure

accounting both for common cause failures and independent failures. The alpha

parameter estimator can be expressed as:

αk =
nk∑m
i=1 ni

(2)

where, nk is the number of events with k failed components.

The alpha parameter estimator represents the probability that exactly k of the

m components fail, given that at least one failure occurs. It can be seen from

Equation 2 that the sum of the αk will be 1. The advantage of the α-factor model

is its distinction between the total failure rate of a component Qt, for which we

generally have a lot of information, and common cause failures modelled by αk, for

which we generally have very little information.15

2.2. Survival signature

Suppose there is a system with m components which belong to K ≥ 2 compo-

nent types, with mk components of type k ∈ {1, 2, ...,K} and
∑K

k=1mk = m.

Assume that the random failure times of components of the system type are ex-

changeable, while full independence is assumed for components belong to different

types (iid), Coolen17 proposed the survival signature which can be denoted by

Φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for k = 1, 2, ...,K. It defines the probabil-

ity that the system functions given that lk of its mk components of type k work,

for each k ∈ {1, 2, ...,K}. There are
(
mk

lk

)
state vectors xk with

∑mk

i=1 x
k
i = lk

(k = 1, 2, ...,K), where xk = (xk1 , x
k
2 , ..., x

k
mk

). Let Sl1,l2,...,lK denote the set of all

state vectors for the whole system, and it can be known that all the state vec-

tors xk ∈ Sk
lk

are equally likely to occur. Therefore, the survival signature can be

expressed as:
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Φ(l1, ..., lK) = [

K∏
k=1

(
mk

lk

)−1
]×

∑
x∈Sl1,...,lK

φ(x) (3)

Let Ck(t) ∈ {0, 1, ...,mk} denote the number of k components working at time t.

Assume that the components of type k have a known cumulative distribution func-

tion (CDF ) Fk(t) and the components failure times of different type are assumed

independent, then:

P (

K⋂
k=1

{Ck(t) = lk}) =

K∏
k=1

P (Ck(t) = lk) =

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk (4)

Hence, the survival function of the system with K types of components becomes:

P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P (

K⋂
k=1

{Ck(t) = lk}) (5)

Equation 5 shows that the structure of the system is separated from the its

components failure times, which is the typical advantage of the survival signature.

The survival signature is a summary of structure functions and only needs to be

calculated once for the same system. As a result, it is an efficient method to perform

system reliability analysis on complex systems with multiple component types.

3. System Reliability after Common Cause Failures

In this section, the survival signature is introduced to analyse complex system with

common cause failures. Based on the results of,16 the α-factor model can be applied

to calculate system reliability in the presence of common cause failures.

3.1. Standard α-factor model

Let assume that there is a system with mk components belong to type k ∈
{1, 2, ...,K}. When a failure event occur, P (f1, f2, ..., fK) denotes the probabil-

ity that how many failures occur of each component type. The survival signature

Φ(l1, l2, ..., lK) is the probability that the system functions if lk components of type

k are working, which can be expressed as Φ(l1, l2, ..., lK) = P (system functions |
lk components of type k work), where k ∈ {1, 2, ...,K}.

Let P (Ts > t | CCF ) express the probability that the system still functions

after the next common cause failure event, therefore, it can be calculated by

P (Ts > t | CCF ) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (6)
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where fi = mi − li.
It can be seen from Equation 6 that unlike the P (Ts > t) calculated by Equa-

tion 5, the survival function of the system after the CCFs is independent of t.

What is more, the typical merit of survival signature can also hold. To be specific,

the survival signature, which encompasses information of the system structures,

and the probability distribution, which relies on the common cause failures of the

components belong to different types, is separated in the equation.

The α-factor model with estimate of the alpha factor parameters are mainly

used in this section. And they are given by Equation 2 for a common cause group

of m components.

P (f1, f2, ..., fK) is constructed by using the past data available on the system,

combined with the α-factor model for CCFs. For this standard α-factor model,

there are assumptions that P (0, 0, ..., 0) = P (0, f2, ..., fK) = P (f1, 0, ..., fK) = ... =

P (f1, f2, ..., 0) = 0, as there must be at least one component fails of each type. What

is more, there is another assumption that the components failures of each type are

independent, which implies that P (f1, f2, ..., fK) = P (f1) ∗ P (f2) ∗ ... ∗ P (fK).

Recall that αk
nk

gives the probability that exactly nk components fail, given

that they belong to type k. For example, it is assumed that there is 1 component

of type 1 failure, it follows that P (f1 = 1) = α1
1. Thus, the alpha parameters

provide all of the information required to specify the distribution. For instance,

P (1, 1, ..., 1) = α1
1α

2
1...α

K
1 .

The next step is to calculate the survival signature, which will then combine

with the P (f1, f2, ..., fK) to assess the survival function of the system. It is not

necessary to computer all the survival signatures as it can identify which values are

required by Equation 6.

3.2. General α-factor model

The standard α-factor model may lead to an unsatisfactory low probability level of

the system reliability, which due to the assumption that the first failure event will

affect components of all types. Therefore, it is essential to find a general α-factor

model that can avoid the assumption that the failure event has necessarily affected

all common cause groups of components.

Let assume there are K common cause component groups, with group k ∈
{1, 2, ...,K} includes mk components. The past data nj1,j2,...,jK denotes the number

of past events with exactly j1 failed components from group 1, exactly j2 failure

components from group 2 and the like.

The α-factor parameter αj1,j2,...,jK provides the probability that exactly jk com-

ponents of group k fail due to a common cause failure event, with k ∈ {1, 2, ...,K}.
Given that a common cause failure event has affected the overall system, how-

ever, which exact common cause groups are affected are not known. Therefore, the

αj1,j2,...,jK can be estimated by Equation 7.
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αj1,...,jK =
nj1,...,jK

(
∑m1

j1=0 ...
∑mK

jK=0 nj1,...,jK )− n0,...,0
(7)

The
∑m1

j1=0 ...
∑mK

jK=0 nj1,...,jK in denominator represents all the possible out-

comes, but n0,...,0 has to be subtracted as there has an assumption that at least

one component of type k in the system is affected by the common cause failure

event. However, this assumption is only valid if n0,...,0 is included in the summa-

tion. In practice, there may be no data for the number of no components have

failed, therefore, for this circumstance, n0,...,0 is arbitrarily setted as 0.

The probability of the system works after a common cause failure event can also

be expressed by Equation 6. The survival signature Φ(l1, ..., lK) will not change for

the same system, as it only depends on the structures of the system. However, the

joint probability distribution P (f1, f2, ..., fK) is obtained without assuming inde-

pendence among components, as it is simply given by the alpha factor parameters.

To be specific, that means P (f1, f2, ..., fK) = αj1,j2,...,jK .

3.3. Imprecise system reliability after common cause failures

In the application engineering world, if the system has not been in operation in the

past (e.g., is a new system), or it does not usually encounter common cause failure

events. All of which means there may not be enough data or perfect inspections to

estimate the values of the accurate α-factor parameters.32 In addition, experts can

provide a estimation of the number nk of common cause components failures, but

often only an interval is predicted.

Therefore, the α-factor parameters might have imprecise values with [αk
mk
, αk

mk
].

Since P (f1, f2, ..., fK) is estimated based on the α-factor model, the imprecision will

propagate to P (m1 − l1, ...,mK − lK). The survival signature remains unaffected

by the imprecision since it is only influenced by uncertainty and imprecision in the

system structure. Hence, the bounds of the survival probability are calculated as

P (SCCF ) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (8)

P (SCCF ) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK)P (m1 − l1, ...,mK − lK) (9)

4. Numerical Examples

Figure 1 shows a complex system with thirteen components which belong to four

types.
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Fig. 1. Complex system with thirteen components which belong to four types. The number inside
the component box represents the type, while the number outside the box expresses the component

index.

4.1. Case 1: standard α-factor model

Firstly, let determine the values of the survival function by using the standard

α-factor model with past data on the complex system. Suppose that the common

cause failure groups are the same as component types, this is logical in engineering

world as the components of the same type have similar characteristics, therefore,

they are more likely to be influenced by the same common cause event.

There have n1 = 1, n2 = 2, n3 = 1 for component type 1. For example, n1 = 1

means that there has been 1 previous occurrences of failure with just one component

of type 1. So the α-factor parameter estimator in this case is

α1
1 =

n1
n1 + n2 + n3

=
1

4
(10)

It can also get the results that α1
2 = 1

2 and α1
3 = 1

4 in the same way. Just as the

said before in this paper, it can be seen the summation of the α-factor parameters

is equal to 1.

For type 2, n1 = 2, n2 = 1, n3 = 1 and n4 = 2, which gives α2
1 = 1

3 , α2
2 = 1

6 ,

α2
3 = 1

6 and α2
4 = 1

3 respectively.

There are n1 = 2 and n2 = 1 for type 3. Thus, α3
1 = 2

3 and α3
2 = 1

3 .

Similarly for component type 4, the data of n1 = 3, n2 = 3, n3 = 1 and n4 = 1

lead to α4
1 = 3

8 , α4
2 = 3

8 , α4
3 = 1

8 and α4
4 = 1

8 .

There has an assumption that a common cause failure event occur will affect at

least one component of each component type for the standard α-factor model, there-

fore, it can be known for this system that P (0, 0, 0, 0) = P (0, b, c, d) = P (a, 0, c, d) =

P (a, b, 0, d) = P (a, b, c, 0) = 0, for a = 1, 2, 3, b = 1, 2, 3, 4, c = 1, 2 and d = 1, 2, 3, 4.
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There is another assumption that the failure components of different types are

independent, which implies that P (f1, f2, f3, f4) = P (f1)P (f2)P (f3)P (f4). Accord-

ing to the conception, P (f1, f2, f3, f4) is calculated by the available past data on

the system, and is combined with the α-factor model for common cause failures.

Recall that α1
1 represents the probability that exactly one component of the

three components of type 1 failure. Since it has been assumed that one component

of type 1 fails, it follows that P (f1) = α1
1. So the alpha parameters provide all the

information that required to specify the distribution. For instance, P (1, 1, 1, 1) =

α1
1α

2
1α

3
1α

4
1 = 1

4 ∗
1
3 ∗

2
3 ∗

3
8 = 1

48 .

Then, it is necessary to calculate the survival signature Φ, which is used to

combine with the P (f1, f2, f3, f4) to assess the survival probability of the system.

For P (1, 1, 1, 1), its corresponding survival signature is Φ(2, 3, 2, 3), which means

that probability of the system works given that exact 2 components of type one, 3

components of type two, 2 components of type three and 3 components of type four

are working. There are altogether 48 possible state vectors, of which 41 combinations

allow the system to function. Therefore, Φ(2, 3, 2, 3) = 41
48 .

All the values of P (f1, f2, f3, f4) and their corresponding survival signature

Φ(m1 − f1,m2 − f2,m3 − f3,m4 − f4) can be calculated. Based on the values and

Equation 6, the probability that the complex system works after the next common

cause failure event P (Ts > t | CCF ) is 50
139 .

4.2. Case 2: general α-factor model 1

Let continue use the complex system in Figure 1, however, without assuming

that the common cause event will affect all the common cause failure groups. Again,

the component types form the common cause failure groups as before. Therefore,

it can be any number combinations of the components from type 1 to type 4. Note

again that P (0, 0, 0, 0) = 0 as at least one component will be affected by the CCFs.

The past data on the system can be seen in Table 1, which has more data

available to fit the requirements for implementing the general α-factor model.

Table 1: Past data nj1j2j3j4 on the system in Figure 1

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4
n0001 = 1 n0002 = 1 n0003 = 1 n0004 = 1 n0010 = 1 n0011 = 1

n0012 = 1 n0013 = 1 n0014 = 1 n0020 = 1 n0021 = 1 n0022 = 1

n0023 = 1 n0024 = 1 n0100 = 1 n0101 = 1 n0102 = 3 n0103 = 1

n0104 = 1 n0110 = 1 n0111 = 1 n0112 = 1 n0113 = 1 n0114 = 1

n0120 = 1 n0121 = 1 n0122 = 1 n0123 = 1 n0124 = 2 n0200 = 1

n0201 = 1 n0202 = 1 n0203 = 1 n0204 = 1 n0210 = 1 n0211 = 2

n0212 = 1 n0213 = 1 n0214 = 1 n0220 = 1 n0221 = 1 n0222 = 1

n0223 = 1 n0224 = 1 n0300 = 1 n0301 = 1 n0302 = 1 n0303 = 1

n0304 = 1 n0310 = 2 n0311 = 2 n0312 = 1 n0313 = 1 n0314 = 1

Continued on next page
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Table 1 – Continued from previous page

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4
n0320 = 1 n0321 = 1 n0322 = 1 n0323 = 1 n0324 = 1 n0400 = 1

n0401 = 1 n0402 = 1 n0403 = 1 n0404 = 1 n0410 = 1 n0411 = 2

n0412 = 1 n0413 = 1 n0414 = 1 n0420 = 1 n0421 = 1 n0422 = 1

n0423 = 1 n0424 = 1 n1000 = 1 n1001 = 1 n1002 = 1 n1003 = 1

n1004 = 1 n1010 = 1 n1011 = 1 n1012 = 2 n1013 = 1 n1014 = 1

n1020 = 1 n1021 = 1 n1022 = 1 n1023 = 1 n1024 = 1 n1100 = 1

n1101 = 1 n1102 = 1 n1103 = 2 n1104 = 1 n1110 = 2 n1111 = 1

n1112 = 1 n1113 = 1 n1114 = 1 n1120 = 1 n1121 = 1 n1122 = 1

n1123 = 1 n1124 = 1 n1200 = 1 n1201 = 2 n1202 = 1 n1203 = 1

n1204 = 1 n1210 = 1 n1211 = 1 n1212 = 1 n1213 = 1 n1214 = 1

n1220 = 1 n1221 = 3 n1222 = 2 n1223 = 1 n1224 = 1 n1300 = 1

n1301 = 1 n1302 = 1 n1303 = 1 n1304 = 1 n1310 = 1 n1311 = 3

n1312 = 1 n1313 = 1 n1314 = 1 n1320 = 1 n1321 = 1 n1322 = 1

n1323 = 1 n1324 = 1 n1400 = 1 n1401 = 1 n1402 = 1 n1403 = 1

n1404 = 2 n1410 = 4 n1411 = 1 n1412 = 1 n1413 = 1 n1414 = 1

n1420 = 1 n1421 = 1 n1422 = 1 n1423 = 1 n1424 = 1 n2000 = 1

n2001 = 1 n2002 = 1 n2003 = 1 n2004 = 1 n2010 = 3 n2011 = 1

n2012 = 1 n2013 = 1 n2014 = 1 n2020 = 1 n2021 = 1 n2022 = 1

n2023 = 2 n2024 = 1 n2100 = 1 n2101 = 1 n2102 = 1 n2103 = 2

n2104 = 1 n2110 = 1 n2111 = 1 n2112 = 1 n2113 = 1 n2114 = 1

n2120 = 1 n2121 = 1 n2122 = 1 n2123 = 1 n2124 = 1 n2200 = 1

n2201 = 2 n2202 = 1 n2203 = 1 n2204 = 1 n2210 = 1 n2211 = 1

n2212 = 1 n2213 = 1 n2214 = 1 n2220 = 1 n2221 = 2 n2222 = 1

n2223 = 1 n2224 = 3 n2300 = 1 n2301 = 1 n2302 = 1 n2303 = 1

n2304 = 1 n2310 = 1 n2311 = 1 n2312 = 1 n2313 = 1 n2314 = 1

n2320 = 1 n2321 = 1 n2322 = 1 n2323 = 1 n2324 = 1 n2400 = 1

n2401 = 1 n2402 = 2 n2403 = 1 n2404 = 1 n2410 = 1 n2411 = 1

n2412 = 1 n2413 = 1 n2414 = 1 n2420 = 1 n2421 = 1 n2422 = 1

n2423 = 1 n2424 = 1 n3000 = 2 n3001 = 1 n3002 = 2 n3003 = 1

n3004 = 1 n3010 = 1 n3011 = 1 n3012 = 1 n3013 = 1 n3014 = 1

n3020 = 1 n3021 = 1 n3022 = 1 n3023 = 3 n3024 = 1 n3100 = 1

n3101 = 1 n3102 = 1 n3103 = 1 n3104 = 1 n3110 = 1 n3111 = 1

n3112 = 2 n3113 = 1 n3114 = 1 n3120 = 1 n3121 = 1 n3122 = 1

n3123 = 1 n3124 = 1 n3200 = 1 n3201 = 1 n3202 = 1 n3203 = 1

n3204 = 1 n3210 = 1 n3211 = 3 n3212 = 1 n3213 = 1 n3214 = 1

n3220 = 1 n3221 = 1 n3222 = 2 n3223 = 1 n3224 = 1 n3300 = 1

n3301 = 1 n3302 = 1 n3303 = 1 n3304 = 2 n3310 = 1 n3311 = 1

n3312 = 1 n3313 = 1 n3314 = 3 n3320 = 1 n3321 = 1 n3322 = 1

n3323 = 2 n3324 = 2 n3400 = 1 n3401 = 1 n3402 = 1 n3403 = 2

n3404 = 1 n3410 = 3 n3411 = 1 n3412 = 1 n3413 = 1 n3414 = 1

Continued on next page
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Table 1 – Continued from previous page

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4
n3420 = 1 n3421 = 1 n3422 = 1 n3423 = 1 n3424 = 1

∑3
j1=0

∑4
j2=0

∑2
j3=0

∑4
j4=0 nj1j2j3j4 = 345 is got according to the above table,

and the α-factor parameters can be easily obtained by Equation 7. For instance,

α2314 = 1
345 . Since there is no assumption that independence among the com-

ponents, the joint probability distribution P (f1, f2, f3, f4) is simply given by the

α-factor parameters, which means P (2, 3, 1, 4) = α2314 = 1
345 .

The survival signature of the complex system in Figure 1 is totally the same

as calculated before as it only depends on the structure of the system. Combining

the joint probability distribution values and their corresponding survival signature,

the survival probability of the system after the CCfs P (Ts > t | CCF ), which

can be calculated by Equation 6, is 461
934 . This value is still low, however, it has an

improvement compared with the initial failure event in Case 1.

4.3. Case 3: general α-factor model 2

It can be seen from Case 2 that this system is highly susceptible to common

cause failures, as all combinations of the failed components have occurred in the

past data. There is a more robust system to be analysed in this Case, with past

data can be seen in Table 2.

Table 2: Past data nj1j2j3j4 on the system in Figure 1

nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4 nj1j2j3j4
n0001 = 16 n0002 = 11 n0003 = 13 n0004 = 6 n0010 = 13 n0011 = 3

n0012 = 2 n0013 = 3 n0014 = 3 n0020 = 13 n0021 = 5 n0022 = 2

n0023 = 4 n0100 = 13 n0101 = 3 n0102 = 3 n0103 = 2 n0104 = 2

n0110 = 2 n0111 = 1 n0120 = 3 n0200 = 13 n0201 = 4 n0202 = 2

n0203 = 1 n0204 = 13 n0210 = 1 n0220 = 3 n0300 = 14 n0301 = 5

n0302 = 2 n0303 = 13 n0304 = 1 n0310 = 3 n0320 = 2 n0400 = 7

n0401 = 3 n0402 = 3 n0403 = 2 n0404 = 1 n0410 = 1 n0420 = 3

n1000 = 17 n1001 = 6 n1002 = 3 n1003 = 4 n1004 = 4 n1010 = 5

n1011 = 1 n1020 = 3 n1100 = 6 n1101 = 2 n1102 = 1 n1110 = 2

n1111 = 1 n1200 = 3 n1201 = 1 n1300 = 6 n1301 = 1 n1400 = 4

n1401 = 1 n1402 = 1 n2000 = 13 n2001 = 5 n2002 = 3 n2003 = 2

n2004 = 2 n2010 = 4 n2011 = 1 n2020 = 4 n2100 = 6 n2101 = 1

n2110 = 1 n2200 = 3 n2300 = 3 n2301 = 1 n3000 = 9 n3001 = 5

n3002 = 3 n3010 = 4 n3020 = 2 n3100 = 3 n3300 = 1 n3301 = 1
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As can be seen from the above table that there is one past event (n1111) that

all component types are affected, and few past data where three types have been

influenced (n0111, n1011, n1101, n1102, n1110, n1201, n1401, n1402, n2011, n2101, n2110,

n2301, n3301 in this case). In other words, this system has the feature that com-

ponents belong to one type are more reliable when CCFs affect the other types.

Therefore, it is unlikely to have large numbers of components of more than two

types fail simultaneously.

Similarly,
∑3

j1=0

∑4
j2=0

∑2
j3=0

∑4
j4=0 nj1j2j3j4 = 345 and the joint probability

distribution P (f1, f2, f3, f4) can be got directly from α-factor parameters, with

P (f1, f2, f3, f4) = αn1n2n3n4
. The survival signature of the system remains the

same as before since its structure does not change at all.

Based on Equation 6, it can be known that P (Ts > t | CCF ) = 439
473 , which means

the system survival probability after a common cause failure is around 92.81%. This

is highly improved compared with the former two cases.

4.4. Case 4: imprecision within system

In this subsection, let consider uncertainty in the system reliability analysis after

common cause failures. In Case 1, if the system has not suffered CCF in the past,

there might not be enough data to calculate the α-factor parameters, although the

standard α-factor model can still be implemented by using experts’ judgements.

Given that a total of 20 common cause component failures has occurred across

the complex system in Figure 1, let two groups of experts estimate how the data

would be spread. Suppose group one gives that α1
1 = 2

5 , α1
2 = 1

5 and α1
3 = 2

5 for

components type 1, while for components type 2, α2
1 = 0, α2

2 = 2
5 , α2

3 = 2
5 and α2

4 =
1
5 . α3

1 = 2
3 and α3

2 = 1
3 for components type 3, and for components type 4, α4

1 = 3
7 ,

α4
2 = 1

7 , α4
3 = 2

7 and α4
4 = 1

7 . At this time, even the survival signature of Φ(2, 3, 2, 3)

remains the same as 41
48 , which is a big value within the survival signature. However,

its corresponding P (1, 1, 1, 1) decreases from 1
48 to 0. Let summarise the products

of P (f1, f2, f3, f4) and their corresponding Φ(m1 − f1,m2 − f2,m3 − f3,m4 − f4),

then the survival probability P (Ts > t | CCF ) of the complex system after the

next CCFs is 6
23 .

For group two, the estimated data are α1
1 = 1

2 , α1
2 = 1

3 , α1
3 = 1

6 , α2
1 = 1

4 , α2
2 = 1

4 ,

α2
3 = 1

4 , α2
4 = 1

4 , α3
1 = 1

2 , α3
2 = 1

2 , α4
1 = 3

8 , α4
2 = 3

8 , α4
3 = 1

4 and α4
4 = 0. For this

circumstance, P (1, 1, 1, 1) increases to α1
1α

2
1α

3
1α

4
1 = 1

2 ∗
1
4 ∗

1
2 ∗

3
8 = 3

128 . Therefore,

P (Ts > t | CCF ) = 179
456 according to Equation 6.

So due to the epistemic uncertainty in this example, the probability bounds of

the system works after the next common cause failure event is P (Ts > t | CCF ) =

[ 6
23 ,

3
128 ].

4.5. Results discussion

Common cause failures are the simultaneous failure of multiple similar components
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due to the same root cause, these kind of failures have been shown to decrease the

reliabiliyt and performance of complex systems.33 A common cause failure event

may affect an entire system or only a fraction of its components. Consequently, the

number of components involved in a common cause failure event ranges from 1 to

the total number of components within the same type.

In Case 1, due to the assumptions of the standard α-factor model, the survival

probability of the system is unsatisfactorily low. In order to release these assump-

tions, it is necessary to generalise the α-factor model. Both Case 2 and Case 3

improve from 50
139 to 461

934 and 439
473 , respectively. The structure of the system remains

the same for case 2 and case there, and the total number of the past data is identical

to Case 2, but why the vulnerability of the system to CCFs declines so drastically?

It can be investigated that the higher values of P (f1, f2, f3, f4), 17
345 , 16

345 , 14
345 , 13

345

and 11
345 , correspond to survival signature Φ(l1, l2, l3, l4) = 1. Therefore, these kinds

of CCFs that are triggered will not be likely to cause system fails. While in Case

2, there are more instances in the past data where larger numbers of components

from more than two types had failed, making it less likely that the system could

continue to work. Case 4 shows that epistemic uncertainty will lead the uncertainty

within the system in this case. In order to reduce the imprecision, engineers need

to put efforts to get the precise α-factor parameters.

5. Conclusions

Common cause failure events have highly adverse impact on the reliability and

availability of systems in the real world, which makes it important to analyse sys-

tems reliability after CCFs. This paper put forwards the survival signature based

reliability analysis on complex systems with common cause failures.

The survival signature is a summary of system structure function, which makes

it is efficient to analyse complex systems. Based on the basic α-factor model, the

paper presents the standard and general α-factor models for analysing complex

system reliability with common cause failures. The effects of epistemic uncertainty

are taken into account as well. What is more, the proposed methods are combined

with the survival signature in order to perform complex system reliability analysis

in the presence of common cause failure events. The feasibility and effectiveness of

the proposed measures are demonstrated by the numerical examples.

The standard α-factor model has the assumptions that (1) the common cause

failure event will affect all the common cause groups of components; and (2) the

failure components are independent. All of which may lead to an unsatisfactory

survival probability of system after a common cause failure event. In practice,

the engineer will have to consider repairing or replacing the failed components

if this kind of circumstance happens. Therefore, the CCFs model combines with

the survival signature can be used to decide whether to repair or replace the failed

components immediately, or after the next common cause failure event. In other

words, the administrator or designer has to consider the cost of repairing or replace
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the components as soon as possible, or taking the risk of allowing next common

cause failure vent to occur before performing the failed components repair or re-

placement. Overall, it is an example of how decision theory is incorporated in the

practical engineering world.

In order to release the assumptions of the former model, the general α-factor

model is introduced. By investigating the two cases which are given for this model,

it can be seen that design for reliability is useful in the engineering world. The

goal of the reliability policy is to achieve high initial reliability by focusing on reli-

ability fundamentals during design. So design for reliability provides engineers and

managers with a range of tools and techniques for incorporating reliability into the

design process for complex systems.34 For complex system, it can examine the sur-

vival signature first, in order to find out which component combinations of failures

will not allow the system to function at all. Therefore, the engineers can ensure

these components are equipped to be more reliable under certain circumstances,

which makes the system more reliable.

A possible challenge of the work presented in this paper is that there may not be

enough past data on the realistic system, which is essential to calculate the precise

values of the α-factor parameters. This is either if the system does not usually

experience the common cause failures, or if the system has not been run in the

past. However, these α-factor models can still be implemented by using experts’

judgements on the system to ascertain the nj1,j2,...,jK values.
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