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Abstract

Determining the orientation of galaxies with respect to their dark matter halo is vital in

understanding effects such as gravitational lensing. Disc galaxies, like the Milky Way, can

be orientated simply by using the angular momentum of the stellar disc. However, this

angular momentum is not constant. The change in direction of the angular momentum

vector, with respect to time, can be considered as a tilting rate. The tilting direction provides

an indication of the angular momentum reaching the disc. Both gas and satellite accretion

can deliver misaligned angular momentum directly to the disc. It has also been argued that

torques imposed by the dark matter halo can also change the angular momentum of the disc.

This thesis presents the tilting rates for galaxies evolving in two Λ cold dark matter

cosmological hydrodynamic simulations. All of the galaxies comparable with the Milky

Way have tilting rates higher than Gaia’s detection limit of 0.28◦ Gyr−1 (Perryman et al.,

2014).

Debattista et al. (2015) found that red galaxies tend to be aligned with the minor axis

of their dark matter halo, whereas, blue galaxies tend to have random orientations. Obser-

vationally, similar trends are found, for example between the alignment distribution of the

brightest satellite galaxies and the major axes of their host groups (Li et al., 2013). This

thesis finds a very strong correlation between the specific star formation rate and the tilt-

ing rate, using the state-of-the-art Numerical Investigation of One Hundred Astrophysical

Objects (NIHAO) suite of cosmological zoom-in simulations. Galaxies with higher star for-

mation rates tilt faster and therefore are likely to be perturbed from any stable orientation,



between the disc and the host halo. Moreover, for the predominantly blue galaxies within

the NIHAO suite, there is no preferential orientation, with respect to the dark matter halo.

The local environment provides a reservoir of angular momentum available to the disc.

For both of the cosmological simulations presented, the normalized local overdensity was

compared to the tilting rate of the disc, finding a strong correlation at R = 6 Mpc. On the

other hand, no correlations are found between the shape of the dark matter halo, and the

tilting direction of the stellar disc, contrary to previous claims that the torques imposed by

the halo will drive the tilting of the stellar disc (e.g. Yurin and Springel, 2015).

Five of the NIHAO galaxies are looked at in greater detail, comparing tilting direction

of the stellar disc to the angular momentum of various features and interactions. For two of

the galaxies, the tilting direction is dominated by interactions/mergers with satellites. The

remaining three are all driven by the infall of cool gas with misaligned angular momentum

compared to that of the hot gas corona and the stellar disc. By the time the cool gas reaches

the disc its angular momentum has been torqued by the hydrodynamical forces imposed

by the hot gas and has angular momentum aligned with the hot gas. The same process has

been proposed for forming warps in cosmological simulations (Roškar et al., 2010), and this

thesis also finds that in this case the cool gas disc is misaligned in the direction of tilting.
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Chapter 1

Introduction

1.1 Galaxies and their components

Galaxies are a diverse family of gravitationally bound stellar structures. The first classifica-

tion system was proposed by Hubble (1926), by dividing galaxies into two groups based on

their ellipticity Ei (i = (a−b)/a), with the decimal place omitted. Galaxies with ellipticities

ranging from E0 to E7 were called ellipticals, galaxies with an ellipticity greater then E7 are

generally spirals and given the symbol S. Elliptical galaxies resemble unremarkable defuse

blobs with differing luminosity and shape. Spiral galaxies, such as the Milky Way (MW),

appear visually much more diverse.

Hubble further divided spiral galaxies into two more distinct families, barred (SB) and

unbarred spirals (S). Both S and SB galaxies can be classified by the tightness of the spiral

arms, tightly wrapped spirals are classified Sa or SBa galaxies, loosely wrapped spirals are

classified Sc or SBc. Surprisingly, in the local universe barred galaxies are more common

than unbarred galaxies; about two in three spiral galaxies are barred (Buta et al., 2015).

Galaxies with an ellipticity greater than an E7, without spiral arms, were classified as a

lenticular galaxy and denoted as S0. Anything that did not fall into these categories was

given the name irregular. With these four families Ellipticals (E), Regular Spirals (S), Barred

1



Introduction

Spirals (SB), and Irregulars (I) one can form the Hubble tuning fork.

This classification system was extended by de Vaucouleurs, as shown in Figure 1.1.

Elliptical galaxies remain unchanged from the Hubble classification system. Spirals were

split into three families, non-barred (SA), weakly barred (SAB) and strongly barred (SB). A

galaxy in any of these families can be classified further by the tightness of their spiral arms,

Sa being tightly wound and Sc being loosely wound, with a further class d for diffuse spiral

arms, and m for irregulars. Intermediate classifications are allowed, for example, SAab

would be a galaxy with spiral arms bound looser than an SAa galaxy, but tighter than a SAb

galaxy. Lenticular galaxies were split into two families S0A (non-barred) and S0B (barred).

Purely irregular galaxies were given the symbol Im. As this form of classification is done

visually it poses problems for galaxies at high redshift where the angular resolution of the

telescope is comparable to the size of the galaxy.

Stellar Disc

The shapes of late-type galaxies are very different from typical elliptical galaxies. Figure

1.2 shows the edge-on lenticular galaxy NGC 5866. During the formation of the galaxy, the

collapsing gas has angular momentum; early work assumed that this angular momentum was

conserved in detail during the formation of a thin rotating disc (Fall and Efstathiou, 1980a).

Only a fraction of the total gas within the halo forms the gas disc, however, the resulting

disc contains most of the available angular momentum (van den Bosch et al., 2001). Modern

simulations are able to reproduce this phenomenon (e.g. Brook et al., 2012), where stellar

feedback drives galactic fountaining, redistributing the angular momentum. Gas with the

lowest angular momentum will be denser and reside on orbits with smaller radii. This gas

will be able to cool faster and will take less time to form a disc. The thin gas disc can

then form stars, according to the Kennicutt-Schmidt law ΣSFR ∝ (Σgas)
n (Kennicutt, 1998;

Schmidt, 1959a), where n is the power index with values ranging from 0 to 2, creating the
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1.1 Galaxies and their components

Fig. 1.1 Hubble-de Vaucouleurs classification system. Image credit: A. Ciccolella & M. De

Leo
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Fig. 1.2 NGC 5866: a lenticular S0 galaxy. Credit: NASA, ESA, and The Hubble Heritage

Team (STScI/AURA); Acknowledgment: W. Keel (University of Alabama, Tuscaloosa).

stellar disc. Lower angular momentum material forms stars first, followed by higher angular

momentum material, resulting in a larger disc at later times—this is referred to as inside-out

growth. One prediction of this is that stars nearer the centre of a galaxy should be older than

stars further out. When looking at the age profile of stars, one does indeed find that there is

an average decrease in stellar age with radius (Bell and de Jong, 2000; Dale et al., 2016; de

Jong, 1996; Gogarten et al., 2010; MacArthur et al., 2004; Williams et al., 2009).

To determine where the cool gas resides in the galaxy’s disc one can look at the neutral

hydrogen (HI) using the 21cm emission line. This emission is given out when an electron

within a hydrogen atom changes its spin, transitioning between hyperfine energy levels.

Having such a long wavelength this emission can easily pass through the earth’s atmosphere

and is unhindered by extinction. A dense enough (∼ 4 M⊙pc−2) region of HI will be able

to shield the inner region from UV radiation allowing molecular hydrogen to form and

eventually star formation to occur. The HI can extend beyond the disc of the galaxy, meaning

that at some radius it stops forming stars. At larger radii, the gas might not be dense enough

to collapse and the differential rotation starts to prevent the formation of clouds. Studying
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this region is difficult observationally due to its low surface brightness, and this difficulty is

not alleviated when studying simulations, where the low resolution in this region hampers

progress. However, this region of our Galaxy has lead to major discoveries, as discussed

later in this thesis.

In late-type galaxies, the disc normally has the largest faction of stellar mass. For our

own galaxy the mass can be dynamically measured to be MD
∗ = 4.6±0.3×1010 M⊙ (Bovy

and Rix, 2013). In order to determine the mass of the stellar disc, one can describe its

density using an exponential profile that declines with radius,

ρ(R) = ρ0e−R/RD (1.1.1)

where RD is the scale length of the disc (the radius at which the density falls by a factor

of e) and ρ0 is the central density. A recent value for the scale length of the MW’s disc is

2.5± 0.4 kpc (Bland-Hawthorn and Gerhard, 2016). The stellar disc is often broken into

two separate components; the thin stellar disc and the thick stellar disc. The thin stellar

disc consists of stars that are on average younger and more metal-rich than stars in the thick

stellar disc. The density of stars in the disc falls off exponentially in the z-direction, given

by

ρ(R,z) = ρ(R,0)e−|z|/zD(R) (1.1.2)

where z is the height from the plane of the disc, ρ(R,0) is the density in the plane of the

disc and zD(R) is the scale height of the disc at radius R. A typical value for the scale height

of the MW’s thick and thin discs are zD ≃ 900 pc and zD ≃ 300 pc, respectively (Bland-

Hawthorn and Gerhard, 2016; Jurić et al., 2008). However, even within the thin disc, the

scale height depends on the age of the stellar population: very young O and B stars have a

smaller scale height than older G, K or M stars (Binney and Tremaine, 2008).

The ordered rotation of disc galaxies turns out to be extremely useful. Tully and Fisher
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Fig. 1.3 M81: a SA(s)ab grand design spiral galaxy. Credit: HST.Credit: NASA, ESA, and

The Hubble Heritage Team (STScI/AURA).

(1977) found that the rotational velocity of disc galaxies are tightly correlated with their

luminosity. This has been verified since by numerous authors and helps us determine the

distance using the galaxy’s apparent magnitude.

Spirals

In the local Universe, observers find that the majority of galaxies contain spiral structure,

Figure 1.3 shows M81, a grand design spiral, which shows prominent and well-defined spi-

ral structure. Nair and Abraham (2010) looked at 14,034 galaxies from the Sloan Digital

Sky Survey (SDSS), finding 61 per cent of their sample were classical spirals. Willett et al.

(2013) compared the classifications of 304,122 galaxies from the Galaxy Zoo 2 project (also

observed using SDSS), and found, that out to redshift z = 0.2, the fraction of spirals is as
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high as ∼ 80 per cent. Such observations indicate that spiral galaxies are dominant through-

out the low redshift Universe, however, spiral galaxies become rarer at higher redshifts.

At redshift z ≳ 2 only two spiral galaxies have been kinematically confirmed, the first by

Law et al. (2012) at z = 2.18, and possibly an even more ancient one at z = 2.54 (Yuan

et al., 2017). This apparent under-abundance of spiral galaxies could be a symptom of the

requirements for a very thin, cold and rotationally stable disc to be present to form the spi-

ral structure (Sellwood, 2014; Toomre, 1977). In addition, the high merger rates (Hammer

et al., 2009), gas accretion rates, and cold flows (Cen, 2014) at higher redshift may make it

hard for the conditions for spiral formation to arise. Moreover, such studies are magnitude

limited imposing a bias towards detecting more early-types, also, the low resolution at high

redshifts makes it difficult to identify spiral features (Bouwens et al., 2004; Ribeiro et al.,

2016). However, some cosmological simulations have argued for the formation of spiral

structure as early as z ∼ 3 (Fiacconi et al., 2015). The spiral arms can be separated into two

kinds, leading and trailing. Leading spiral arms are where the end of the spiral is pointing

in the same direction as the rotation, whereas trailing is the opposite. Trailing spiral arms

are by far the most common, one example of a leading spiral galaxy is NGC 4622: which

has both leading and trailing arms (Buta et al., 2003).

Warps

As previously mentioned, the HI gas disc extends beyond the stellar disc. Sancisi (1976,

1983) investigated the distribution of this extended HI disc in the edge-on disc galaxy NGC

5907, finding that the column density contours did not align with the plane of the disc, as

shown in Figure 1.5. This warp in the extended HI disc can be found even in more face

on galaxies by looking at the kinematics of the HI disc (Bosma, 1978; Shostak and van der

Kruit, 1984). The velocity fields of warps are well behaved, and have been modelled well by

sets of concentric rings (e.g. Rogstad et al., 1974, 1976). An edge-on warped galaxy shows
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Fig. 1.4 ESO 510-G13: a highly warped spiral galaxy. Credit: NASA and The Hubble

Heritage Team (STScI/AURA); Acknowledgment: C. Conselice (U. Wisconsin/STScI).

an HI disc twisting upwards on one side and downwards on the opposite side, appearing

similar to an integral sign. This can be seen in Figure 1.4. Various formation mechanisms

have been proposed to form warps, ranging from misaligned cosmic infall (Jiang and Bin-

ney, 1999; Ostriker and Binney, 1989; Quinn and Binney, 1992; Shen and Sellwood, 2006),

misalignment between the plane of the disc and the angular momentum of the dark matter

halo (Debattista and Sellwood, 1999), and from perturbations caused by nearby satellites

(Weinberg and Blitz, 2006a). An extreme example of warps can be seen in polar ring galax-

ies, where the plane of the HI disc is almost orthogonal to the plane of the stellar disc (e.g.

Whitmore et al., 1990). Polar rings are more exotic and are thought to require interactions

(e.g. Bekki, 1998) or cold gas accretion from the surrounding filamentary structure to form

(Brook et al., 2008; Macciò et al., 2006). The strength of a warp can be given by the warp

angle φ , given by the angle between the plane of the inner (non-warped) isophotes, and the

plane of the outer (warped) isophotes. Warps appear to be a common phenomenon, with

studies finding that ≳ 50 per cent of galaxies in the local universe have a warp with warp
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Fig. 1.5 HII (left) and optical (right) images of NGC 5907 Sancisi (1983) showing the warp

in the outer HII disc.

angle φ > 2− 2.5◦ (García-Ruiz et al., 2002; Reshetnikov and Combes, 1998; Sanchez-

Saavedra et al., 1990). As a further example of this ubiquity, all the spiral galaxies in the

Local Group (the MW, M31 and M33) appear to be warped (Binney and Tremaine, 2008;

Burton, 1988). Warps can also harbour a small stellar component; Verdes-Montenegro et al.

(2002) found that the warp of the spiral galaxy NGC 3642 has ongoing star formation. Sim-

ilar discoveries have been found using the UV emission of ionized HII regions in the warped

region of other galaxies, implying recent star formation has taken place (Thilker et al., 2005,

2007).

Bulge

The bulges of late-type galaxies are among the densest stellar systems. They appear visu-

ally very similar to elliptical galaxies but contain both young and old stars with metallicities

higher than the thick disc. One of the most visually impressive examples is the Sombrero

Galaxy (Figure 1.6), where the bulge extends to almost the edge of the disc. This visual
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Fig. 1.6 M104: the Sombrero Galaxy M104. Credit: NASA/ESA and The Hubble Heritage

Team (STScI/AURA).

similarity with elliptical galaxies has been studied by looking at photometric scaling rela-

tions (e.g. central surface brightness versus core radius), finding that the classical bulges of

disc galaxies are indeed closely related to ellipticals (Kormendy, 1985). However, it was

already found they vary kinematically, bulges of late-type galaxies rotate much faster than

ellipticals (Davies et al., 1983).

The total stellar mass of the bulge in late-type galaxies is less than that of the disc;

for the MW Bland-Hawthorn and Gerhard (2016) give an estimate for the stellar mass of

(1.4−1.7)×1010, roughly four times less than the mass of the stellar disc.

Classical bulges are the most similar to elliptical galaxies. The surface brightness of a

classical bulge generally follows a Serśic profile,

I(R) = I0exp(−kR1/n), (1.1.3)
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where I0 is the central intensity, n is a constant called the Serśic index, and k is a constant.

Astronomers have used the best fitting value of n = 4 for elliptical galaxies, which is called

the de Vaucouleurs profile (de Vaucouleurs, 1948),

I(R) = I0exp(−kR1/4). (1.1.4)

As elliptical galaxies are formed mainly due to the hierarchical merging of galaxies, one

might expect the formation process for classical bulges to be the same. Some evidence

for this can be found by comparing galaxies in the field to galaxies in clusters. Kormendy

et al. (2010) found that less than half of their sample of high mass field galaxies contained

classical bulges or were ellipticals, whereas 2/3 of all the stellar mass in the Virgo cluster is

found in merger remnants (e.g. classical bulges or elliptical galaxies). Classical bulges are

now considered exclusively as the class of bulge that have formed due to violent processes,

such as hierarchical clustering via minor mergers. As a result of their formation process,

they generally have low angular momentum compared to the disc, which I will come back

to later in this thesis.

When plotting a galaxy’s colour against the mass (magnitude) for a large number of

galaxies, one finds a bimodal distribution with two components the red sequence and the

blue cloud (Bell et al., 2004; Schawinski et al., 2014; Strateva et al., 2001), see Figure 1.7.

The red sequence is comprised of ‘red and dead’ (non-star-forming) early-type galaxies,

whereas the blue cloud is populated by blue star-forming late-type galaxies. The same

strategy can be implemented for the bulges of late-type galaxies, where classical bulges

fall in the red sequence (as expected if they are similar to ellipticals) and pseudobulges fall

in the blue cloud (Drory and Fisher, 2007). Pseudobulges are a separate class of bulges

that are dynamically cold, and more flattened than classical bulges. Where classical bulges

form via violent processes, pseudobulges are thought to form through slow rearrangement

of disk material (see Kormendy and Kennicutt, 2004, for review). Due to this apparent
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dichotomy, the type of bulge residing within a galaxy can give us some information about

the global history of the galaxy. Gadotti (2009) found that pseudobulges follow a mass-size

relation similar to that of bars (see Section 1.1), and when plotted on the fundamental plane

(see Djorgovski and Davis, 1987) they occupy the same locus as discs. Therefore, pseudo

and classical bulges are very different structures. Fisher and Drory (2011) found that for

galaxies more massive than M∗ > 109 M⊙, only 17%±10% host classical bulges (including

elliptical galaxies), 45%±12% are galaxies with pseudobulges, and 35%±12% are purely

disc galaxies.

A further type of bulge is the boxy (or peanut) bulge, first observed in the galaxy NGC

128 (Burbidge and Burbidge, 1959) which were shown to be shaped like a peanut. Similarly,

de Vaucouleurs (1974) presented more galaxies with this peculiar ‘boxy’ shape. After their

discovery, two competing theories were suggested to explain these strange objects. Combes

and Sanders (1981) used three-dimensional N-body simulations of galaxies, and showed that

bars could be formed over a wide range of stellar masses and in the process, they showed

that when viewing such barred galaxies edge-on resulted in the bulge appearing to be boxy,

similar to observed galaxies. A few years later a competing theory was suggested by Binney

and Petrou (1985). The authors argued that a boxy/peanut bulge could be formed instead by

the merging of satellite galaxies. It is now generally accepted that boxy/peanut bulges are

the result of a bar. Erwin and Debattista (2017) found that for a sample of 84 local barred

galaxies, 79 per cent of galaxies with mass log(M∗/M⊙)≳ 10.4 have a boxy/peanut bulge.

However, this fraction decreases to 12 per cent for lower mass galaxies. As all of these

galaxies are barred one would expect all to exhibit boxy/peanut shapes. However, if the

bar is seen end-on (with the long axis of the bar orientated towards the observer) the bulge

would look more like a classical bulge, accounting for the missing boxy/peanut bulges (see

Figure 1.8 Athanassoula, 2005).
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Galaxy Zoo: The Green Valley is a Red Herring 5
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Figure 3. The reddening-corrected u� r colour-mass diagram for our sample. Same as Figure 2, but the u� r colour is corrected by the E(B-V) in the stellar
continuum, as measured in the SDSS spectra using the GANDALF code (Oh et al. 2011). Compared to Figure 2, there are no significant changes; in particular,
very few green or red late-type galaxies actually belong in the blue cloud. The slope of the disk galaxy contours becomes more horizontal, making clear that
late types evolve more slowly than early-type galaxies. Moreover, there is clearly a tail of galaxies rising above the blue cloud at high masses, whereas the
blue tail of the early types is toward low masses. While some red late types are indeed dust-reddened, intrinsically blue galaxies, many are not, and the overall
sense remains that the colours of late-type galaxies change slowly. The green valley defined here, from the all-galaxies panel (upper left), is used throughout
the rest of this paper. The contours on this Figure are linear and scaled to the highest value in each panel.

This suggests the bluest early types might have been produced by
major mergers of late types.

The demographics of galaxies by colour and morphology in
Table 1 make the point about evolutionary time scale very clearly
(for the moment ignoring changes from one morphology into the
other): early types spend most of their time on the red sequence,
while late types remain in the blue cloud for most of their lifetimes.

3.1.2 The extinction-corrected colour-mass diagram

Dust extinction reddens galaxies, and significant reddening from
blue to red has been reported for high-redshift galaxies (e.g., Bram-
mer et al. 2009; Williams et al. 2009; Cardamone et al. 2010), al-
though this effect should be of limited importance at low redshift,
where specific star formation rates and gas fractions are lower. Nev-
ertheless, since we are focusing on the quenching of star formation,
we must first assess the effect of dust in moving intrinsically blue

Table 1. Demographics of galaxies in the blue cloud, green valley and red
sequence by morphology

Galaxy N %
Sample of population

Early-type, blue cloud 464 5.2%
Early-type, green valley 1,110 12.4%
Early-type, red sequence 7,404 82.5%

Early-type, all 8,978 100%

Late-type, blue cloud 12,380 74.1%
Late-type, green valley 3,152 18.9%
Late-type, red sequence 1,175 7.0%

Late-type, all 16,707 100%

c� 2013 RAS, MNRAS 000, 1–20

Fig. 1.7 Reddening-corrected colour (u-r) versus stellar mass for 8978 early- and 16707 late-

type galaxies using spectra from SDSS (Schawinski et al., 2014). The morphological type

was determined visually as part of the Galaxy Zoo citizen science project (Lintott et al.,

2011, 2008). This plot illustrates the bimodality present in the distribution, with the red

sequence at the top and the blue cloud at the bottom of the left plot. The green lines denote

the green valley, lying between the two components which has been argued as a transition

region between the two regimes (Schawinski et al., 2014).
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1484 E. Athanassoula

which form an X-like shape, except that the four extensions do not
necessarily cross the centre. Another common feature is maxima of
the density along the equatorial plane, away from the centre and di-
ametrically opposite. Namely, starting from the centre of the galaxy
and going outwards along the equatorial plane, the projected surface
density drops and then increases again to reach a local maximum.
It then drops to the edge of the disc.

In order to compare the simulations with the observations, I ap-
plied to the former a similar analysis, using the same software.
Reliable median filtering, however, requires a very large number of
particles in the disc, considerably larger than what is available in
most simulations. To remedy this I proceeded as follows. I consid-
ered 10 snapshots closely spaced in time, so that the barwill not have
evolved noticeably, except of course for the rotation. In practice, I
found that!t = 0.5 in the computer units of AM02was an adequate
choice. I then rotated these frames so that the major axis of the bar
was the same at all times, and stacked them. Using also the natural
four-fold symmetry of the problem, this brings the number of disc
particles to a total of 8 × 106. I then viewed the disc edge-on, and
from the projected surface density of the disc material I produced a
fits image using NEMO (Teuben 1995). I then performed median fil-
tering in IRAF, choosing a circular aperture of radius one initial disc
scalelength. The results for three different viewing angles are shown
in Fig. 6 for a simulation with a strong bar. The similarity between
the features in the median-filtered observations and simulations is
stunning.

In the upper panel of Fig. 6 the bar is viewed side-on. It displays
a clear X-like form, as do the observed peanut galaxies. It also dis-
plays secondarymaxima on the equatorial plane on either side of the
centre. It further shows two very faint features, like parentheses en-
closing the X. The middle and lower panels of Fig. 6 show the same
simulation but from 45◦ and 0◦ viewing angle, respectively. Viewed
side-on, the four branches of the X do not cross the centre. This is
probably still true, but less easy to see, when the viewing angle is
45◦. Furthermore, the outermost isodensity contours joining the two
upper (or lower) branches of the X look curved. This can also be
seen in a number of the median-filtered galaxy images in Aronica et
al. (in preparation), which might mean that these galaxies are seen
from viewing angles similar to 45◦. Finally, the secondary maxima
along the equatorial plane can be seen from all three viewing angles,
but are best in the side-on view. All these features were seen in the
median-filtered images of the galaxies in Aronica et al. (in prepara-
tion). They are not accidental; they correspond to specific structures
of the periodic orbits that constitute the backbone of barred galax-
ies, i.e. the orbits of the x1 tree (SPAa), or, more specifically, the
members of the x1v1, x1v4 and z3.1s families (PSA02). A more
thorough comparison of the observations, the simulations and the
periodic orbit structure will be given elsewhere.

3.6 Cylindrical rotation

For a number of galaxies with peanut/boxy-shaped features there
exist published stellar velocity data, and these show clearly that the
velocity depends only little on the distance from the equatorial plane.
Good examples are NGC 4565 (Kormendy & Illingworth 1982), IC
3379 (Jarvis 1987), NGC 3079 (Shaw, Wilkinson & Carter 1993),
NGC128 (D’Onofrio et al. 1999) andNGC7332 (Falcón-Barroso et
al. 2004). Such a rotation is often referred to as cylindrical rotation.
N-body bars, observed edge-on, show a similar velocity structure
(CDFP90; AM02). A good example is shown in fig. 12 of AM02,
which also shows that for stronger bars the cylindrical rotation is
clearer and concerns a larger fraction of the bulge/peanut feature.

Figure 6. Median-filtered images for a simulation with a strong bar. In all
three panels the disc is seen edge-on. In the upper panel the line of sight is at
90◦ to the bar major axis (i.e. the bar is viewed side-on). In the middle panel
it is at 45◦ and in the lower one it is at 0◦. Each panel includes a grey-scale
plot (with higher values having lighter shades) and some isodensities, chosen
so as to show best certain features. The darkest areas correspond to negative
values.

3.7 Position–velocity diagrams: gas kinematics

Emission-line spectroscopy of boxy/peanut galaxies (Kuijken &
Merrifield 1995; Merrifield & Kuijken 1999; Bureau & Freeman
1999) showed that their major axis position–velocity diagrams
(hereafter PVDs) show a number of interesting features. Their con-
nection to bar signatures was first made by Kuijken & Merrfield
(1995). Bureau & Athanassoula (1999) superposed periodic orbits
in a standard barred galaxy potential to study these PVDs. Their
results stressed that gaps between the signatures of the different
orbit families, as well as material in the so-called forbidden quad-
rants, are a direct result of the superposition of the various periodic
orbit families. Athanassoula & Bureau (1999) used the gas flow
simulations of Athanassoula (1992) viewed edge-on to model such
PVDs. Shocks along the leading edges of the bar and the correspond-
ing inflow lead to a characteristic gap in the PVDs, between the

C⃝ 2005 RAS, MNRAS 358, 1477–1488

Downloaded from https://academic.oup.com/mnras/article-abstract/358/4/1477/1071570
by University of Central Lancashire user
on 27 November 2017

Fig. 1.8 A boxy/peanut bulge of a simulated barred galaxy, viewed along the intermedi-

ate axis (top), 45◦ from the major axis (middle) and along the major axis (bottom) from

Athanassoula (2005). This image shows that the boxy/peanut shape can be created by a

barred galaxy, and when viewed along the major axis, the bulge seems to be classical.
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Bars

Bars can be detected photometrically, or and kinematically using the streaming velocities

of stars on bar orbits. Bars vary in size and strength; from the density expansion of the

instantaneous distribution of disc particles in logarithmic spirals (Debattista and Sellwood,

2000), given as

A(m,γ, t) =
1

Nd

Nd

∑
j=1

exp[im(φ j + tanγ lnR j)]. (1.1.5)

The bar strength is then given by

A(2,0, t) = A e2iφ , (1.1.6)

where A is the bar strength. Some bars are barely visible as a minor non-axisymmetric

perturbation in the light distribution. As mentioned previously the majority of spiral galaxies

in the local universe are barred (Buta et al., 2015). However, for higher redshifts, there does

not appear to be a clear consensus. Surveys using SDSS photometric data have found a wide

range of barred factions ranging from 50 per cent (Aguerri et al., 2009; Barazza et al., 2008;

Yoshino and Yamauchi, 2015) to ∼ 25 per cent using Galaxy Zoo classifications Cheung

et al. (2013); Lintott et al. (2011, 2008); Masters et al. (2011); Skibba et al. (2012). Higher

redshifts studies (e.g. Simmons et al., 2014, and references therein) found that the fraction

drops even further. It has been argued that SDSS might miss bars in, lower-mass, bluer

galaxies, and that as bars grow in length over cosmic time the bar fraction is systematically

underdetermined (see Erwin, 2017).

Figure 1.9 shows NGC 1300, a galaxy with an extremely pronounced bar at the centre.

As mentioned in Section 1.1, barred galaxies can be found in all types of disc galaxies.

Some elliptical galaxies have also been found to have bars (see de Zeeuw and Franx, 1991,

for review on elliptical galaxies). The bar is not stationary, it rotates with a pattern speed

which can be measured observationally (Tremaine and Weinberg, 1984). Bars are mostly
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Fig. 1.9 NGC 1300: A SB(s)bc galaxy with a bar with short- to long-axis ratio of 1 : 5.

Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: P.

Knezek (WIYN).
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comprised of stars on elongated orbits that travel the length of the bar; they are not transient

density waves like spiral arms (Chemin et al., 2006; Gnedin et al., 1995; Goldreich and

Lynden-Bell, 1965; Grosbøl et al., 2004; Lin and Shu, 1964; Schweizer, 1976; Shetty et al.,

2007; Visser, 1978; Zibetti et al., 2009). Numerical simulations have shown that instabilities

in rotationally supported discs can begin to form a bar (e.g. Hohl, 1971), this bar then grows

by trapping more orbits (Lynden-Bell, 1979) and can eventually disperse the spiral structure.

After a bar has had time to settle it begins to experience a second instability, because of a

vertical resonance. This buckling of the bar thickens the bar out of the plane and is thought

to be the cause of the boxy/peanut shaped bulges mentioned previously (Martinez-Valpuesta

et al., 2006, and references therein). The buckling instability weakens the bar (Debattista

et al., 2004, 2006), as energy is transferred from horizontal motion to vertical.

It is well established from a variety of simulations that the potential from a rigidly-

rotating bar drives gas within the bar towards the centre and drives gas outside the coro-

tation radius outwards (Athanassoula, 1992; Kim and Stone, 2012; Matsuda and Isaka,

1980; Sanders and Huntley, 1976; Sanders and Tubbs, 1980; Schwarz, 1981; van Albada

and Roberts, 1981). This behaviour could explain the large amounts of gas that has been

detected in the centres of barred galaxies (Sheth et al., 2005).

1.1.1 Gas

At the largest scales, gas resides in the intergalactic medium, which is dominated by the

large filamentary structures of the cosmic web that funnel slowly cooling gas into dark mat-

ter haloes. Surrounding a galaxy, the circumgalactic medium, hosts hot gas that slowly cools

and replenishes the gas in the disc. Through the disc, the interstellar medium condenses in

the disc eventually forming stars.
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Galaxy formation

When discussing gas in the universe, it would be remiss if we did not take this opportunity

to give an overview of the history of the universe. The currently accepted paradigm is the

Λ-CDM (dark energy-cold dark matter) model, also known as the standard model. The very

early universe (z = 1100) was not completely homogenous but contained tiny fluctuations

in the form of a Gaussian random field (Bardeen et al., 1986). As the universe expanded,

the small overdensities were able to grow through self-gravity forming larger overdensities.

Such clumps were generally not isolated, and they began to form the cosmic web, a collec-

tion of sheets, filaments and voids. Cosmological simulations have been able to reproduce

this structure with ever-increasing resolution. One of the largest was the Millennium simu-

lation (Springel et al., 2005). The large over densities were able to begin merging with each

other at a high rate forming large peaks in the density (dark matter haloes). With the onset

of reacceleration due to dark energy (Λ), the density peaks became more isolated and the

rapid merging subsided. Figure 1.10 shows the results from the Two-degree-Field Galaxy

Redshift Survey (2dFGRS), which measured the redshift of 232,155 galaxies back to a red-

shift of ∼ 0.3 (Colless et al., 2001). The distribution of galaxies in 2dFGRS agrees with the

standard model and gives us a good view of the cosmic web.

Intergalactic Medium

In the standard cosmological model, roughly half of all the dark matter in the universe

resides in the large virialised dark matter haloes that harbour galaxies, the other half lies

between galaxies. As previously mentioned this matter forms the cosmic web, a large col-

lection of filaments and voids throughout the universe. However, the cosmic web is not

solely comprised of dark matter, it also contains a large amount of gas. This intergalactic

medium (IGM) plays a vital role in galaxy formation and evolution, funnelling gas along its

filaments and delivering it to galaxies. Kereš et al. (2005) found that half of the gas that falls
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1.1 Galaxies and their components

Fig. 1.10 Final results from the Two-degree-Field (2dF) Galaxy Redshift Survey (Colless

et al., 2001), showing the location of galaxies out to a redshift of z = 0.3 with a 1◦ field

of view. This shows the cosmic web, one of the fundamental predictions of the Λ-CDM

cosmogony.
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into the halo is shock heated joining the hot gas corona, referred to as ‘hot mode’ accretion,

and the other half is able to radiate its gravitational energy at lower temperatures and reach

smaller radii, called ‘cold mode’ accretion. High mass galaxies are generally dominated

by hot mode accretion, and lower mass systems are dominated by cold mode accretion,

with a transition at Mhalo ∼ 1011.4 M⊙. Kereš et al. (2005) also found there is a redshift

dependence, with cold mode accretion dominating at high redshifts and hot mode accretion

dominating at low redshift.

Circumgalactic Medium

Gas surrounding galaxies within the virial radius of the dark matter halo, that does not reside

in the disc or interstellar medium (ISM), is known as the circumgalactic medium (CGM).

Using NaI and CaII absorption in stellar spectra at high Galactic latitudes, Spitzer (1956)

was able to show the existence of a diffuse hot gas (T ∼ 106 K) component of the MW. This

component is now called the hot gas corona, and has been observationally detected in both

late- and early-type galaxies using X-ray emission (e.g. Anderson and Bregman, 2011; An-

derson et al., 2016; Bogdán et al., 2013; Dai et al., 2012; Savage and de Boer, 1979; Walker

et al., 2015; Wang et al., 2001). Moreover, satellites passing through the hot gas corona are

being ram-pressure stripped and can be a probe (Gatto et al., 2013). This section will not

be limited to just the hot gas that comprises the hot gas corona, but gas at all temperatures

that is within the virial radius, but not in the ISM. The amount of cold gas (T < 104K) in

the CGM is small, Putman et al. (2012) measured the amount of gas in high velocity clouds

(excluding the Magellanic Stream) and found just M = 2.6× 107 M⊙, whereas Tumlinson

et al. (2017a) found a value of just M = 2×108 M⊙. Increasing in temperature slightly, the

total mass of cool gas (∼ 104-5K) is significantly higher, with recent work finding values

of 9.2± 4.3× 1010 M⊙ out to 160 kpc (Prochaska et al., 2017). Estimates for the amount

of warm gas (∼ 105-6K) are hard to achieve, because this temperature range posses several

20



1.1 Galaxies and their components

observational problems (see Tumlinson et al., 2017a). Tumlinson et al. (2011) gives a lower

estimate of M = 2× 109 M⊙, with very conservative assumptions. The temperature of the

hot gas should be the virial temperature of the halo (Rees and Ostriker, 1977; Silk, 1977),

given by

Tvir =
GMhalomp

kRvir
(1.1.7)

where mp is the proton mass. A halo of mass Mhalo > 1012 M⊙ gives a temperature above

106 K. For the MW, Anderson and Bregman (2010) gave an estimate for the total mass of

the hot gas corona of up to Mhot ∼ 1.5×1010 M⊙.

As the hot gas corona is ionized, the gas is able to cool via Bremsstrahlung radia-

tion (braking radiation). As the corona is hot, the ions are moving fast and the resulting

Bremsstrahlung radiation is emitted at short wavelengths, typically in the X-ray. The gas

cools from the hot gas corona and is eventually able to reach lower and lower radii. Even-

tually, it reaches the disc, where its angular momentum will be changed by the disc’s po-

tential and its orbit will align with the galactic plane. However, the amount of gas reaching

the disc by this process alone is quite small (Binney et al., 2009; Hobbs et al., 2013; Joung

et al., 2012), an alternative mechanism is galactic fountaining (Fraternali, 2017; Hobbs et al.,

2015) where SN ejecta mixes with the hot gas corona and can quickly cool back onto the

disc.

Gas is also driven out of the ISM and into the CGM (and even into the IGM) by various

processes. These galactic winds were first observed in the 1960s (Lynds and Sandage,

1963). Stellar winds given off by OB stars and more evolved Wolf-Rayet stars drive gas

from the ISM and are able to heat it sufficiently for it to rejoin the CGM. Supernovae,

type II first followed by type Ia, dump even more energy into the surrounding gas and are

able to eject gas back into the CGM and also into the IGM. Active galactic nuclei (AGN)

feedback, from supermassive black holes being fed by an accretion disc, can heat the gas

in the inner regions and drive large jets out of the galaxy (see Veilleux et al., 2005, for a
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Figure 1

A cartoon view of the CGM. The galaxy’s red central bulge and blue gaseous disk are fed by filamentary accretion from
the IGM (blue). Outflows emerge from the disk in pink and orange, while gas that was previously ejected is recycling. The
“di↵use gas” halo in varying tones of purple includes gas that is likely contributed by all these sources and mixed together
over time.

factor of 30 between sub-L⇤ and super-L⇤ galaxies. More generally, sub-L⇤ galaxies gener-

ally have extended bursty star formation histories, as opposed to the more continuous star

formation found in more massive galaxies, suggesting di↵erences in how and when these

galaxies acquire their star forming fuel. As this fuel is from the CGM, we must explain how

sub-L⇤ and L⇤ galaxies fuel star formation for longer than their ⌧dep.

2.1.2. What quenches galaxies and what keeps them that way?. How galaxies become and

remain passive is one of the largest unsolved problems in galaxy evolution (Figure 2b).

Proposed solutions to this problem involve controlling the gas supply, either by shutting

o↵ IGM accretion or keeping the CGM hot enough that it cannot cool and enter the ISM.

4 Tumlinson, Peeples, & Werk

Fig. 1.11 A cartoon of the CGM from Tumlinson et al. (2017b). The galaxy at the centre of

the image is being fed by the inflow (blue) of accreted gas from the IGM. Gas is constantly

recycled from the galaxy to the CGM (pink) caused by supernovae and stellar winds, while

some gas is ejected in outflows (brown).

detailed review of galactic winds). Figure 1.11 shows a cartoon of the different flows of gas

in the CGM. Some authors (e.g. Lilly et al., 2013) have proposed models for galaxies where

the star formation rate is almost self-regulated, due to the inflow and outflow rates being

strongly related to the star formation rate. However, such simple treatment does not explain

the various components of the CGM (Tumlinson et al., 2017a). The CGM is a dynamic

environment that plays a vital role in the evolution of the galaxy.
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1.1 Galaxies and their components

Interstellar Medium

The interstellar medium (ISM) is the primary galactic repository for cool gas and the spawn-

ing grounds for most of the stars in a disc galaxy. Throughout the ISM there are dark clouds

consisting of cold molecular hydrogen and dust. Such clouds are the stellar nurseries, able

to shield molecular hydrogen from dissociating ultraviolet radiation, eventually allowing

new stars to be born. Once star formation begins ionizing photons are released, creating

bubbles of hot ionized plasma, called HII regions. HII regions can be observed by looking

at Hα emission. By mass, the ISM consists of 70 per cent hydrogen, 28 per cent helium and

the remaining 2 per cent are heavier elements referred to as metals. It also contains dust,

which makes up roughly one per cent of the total mass. For a recent review on the ISM see

Klessen and Glover (2016).

1.1.2 Dark matter

Λ CDM cosmogony

Consider all the photons in the entire universe, the vast majority of them do not come from

bright objects, such as stars, but from the Cosmic Microwave Background (CMB). The

CMB is the leftover light created by the big bang, which has now been stretched so much

by the expansion of the universe it is now only visible in microwave radiation. This radia-

tion seems extremely isotropic, however, with enough sensitivity small fluctuations can be

detected. These fluctuations correspond to quantum fluctuations in the very early universe.

Using satellites such as Wilkinson Microwave Anisotropy Probe (WMAP) and Planck, as-

tronomers have been able to use the CMB to constrain the cosmogony of our universe. We

now have values for the critical density of the universe ρcrit , curvature k and the Hubble con-

stant H. The next thing to consider is what the early universe looked like before it expanded,

cooled and started forming galaxies. If the early universe had been completely isotropic and
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homogeneous, gravity would not be able to act on clumps of matter to cause them to col-

lapse, eventually allowing galaxies to form. Anisotropy in the early universe is the seed for

all structure in the universe. Looking at the CMB one can build a power spectrum to fit the

different scales of structures. The choice of power spectrum can greatly affect the universe

created and can be described by two quantities, σ8 and n. The first of the two, σ8, is the

power spectrum normalization or the density fluctuations on the scale of 8 Mpc. Planck

gives a value of σ8 = 0.829±0.014 (Planck Collaboration et al., 2016) A the value close to

unity would result in the universe being fairly homogenous at scales of 8 Mpc. The second

value n is the power spectrum slope or the scalar spectral index, which is a measure of how

the fluctuations depend on the scale. Planck gives a value of 0.9655±0.0062 (Planck Col-

laboration et al., 2016) This is also close to unity, meaning the size of the fluctuation does

not depend much on the scale. The combination of these two values would imply that the

universe is quite homogenous.

In the Λ-CDM cosmogony, cold dark matter makes up roughly 85 per cent of all matter

in the universe (Planck Collaboration et al., 2016). The cold dark matter is thought to

be comprised of, yet undiscovered, massive weakly interacting particles (WIMPS). In this

section, I will discuss some of the indirect evidence for the existence of cold dark matter, and

the large dark matter haloes that are thought to envelop galaxies throughout the universe.

Indirect observations

Zwicky (1933) measured the velocity dispersion of galaxies in the Coma Cluster. Assuming

that the cluster is in virial equilibrium, the average kinetic energy should be equal to half

the average potential energy, also assuming that the mass is uniformly distributed, and each

of the 800 galaxies has a mass M∗ = 109 M⊙, it is possible to calculate the potential energy.
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1.1 Galaxies and their components

Take the mass to be

Mcoma ∼ Ngalaxies ×Mgalaxy × M⊙ ∼ 800×109 ×2×1033 = 1.6×1045 g (1.1.8)

combining this with the gravitational potential energy per unit mass

Ep =−3GMcoma

5Rcoma
∼−6.4×1013 cm2 s−2 (1.1.9)

yields the average velocity

Ek = v̄2/2 =−Ep/2 = 3.2×1013 cm2 s−2 (1.1.10)

v̄ = 80 km s−1. (1.1.11)

However, the observed velocity dispersion was far higher, σ ∼ 1000 km s−1, implying the

total mass is far higher than just the mass contributed from the luminosity of the galaxies—

the factor of two from the assumption of being in virial equilibrium does not come close to

alleviating this discrepancy. Zwicky (1933) reported that the Coma cluster has an average

density 400 times greater than the density derived solely from the luminous matter. The

missing mass, referred to as Dark Matter, was not only needed to reach the observed velocity

dispersion of the cluster but needed to be more abundant than the luminous matter.

Using nebulae inside Andromeda Babcock (1939) found that the mean rotational ve-

locity curve was remarkably flat. Similarly, Rubin and Ford (1970) measured the radial

velocities of 67 HII region in the Andromeda galaxy. The authors found that the radial

velocity profile was flat between 8 and 23 kpc. Also, a similar result was found for the

rotation curve of M33 (Corbelli and Salucci, 2000; Volders, 1959). As mentioned in section

1.1, in a spiral galaxy like Andromeda most of the stellar mass is in the disc which has an

exponentially declining density profile. The second most massive stellar component is the
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bulge, which extends to even shorter radii than the disc. Therefore, at large radii, the mass

enclosed by an orbit can be assumed to be constant. With this assumption, and considering

Kepler’s second law, the rotational velocity will fall with increasing radius. This is clearly

not the case for Andromeda, where the rotational velocity is not falling at high radii, thus

the assumption that the mass is constant must be wrong. For a particle at radius r, with

tangential velocity v and a mass m, the force required to maintain a circular orbit is given by

F =
mv2

r
. (1.1.12)

If the particle is in a circular orbit, this force must be equal to the force due to gravity,

therefore

F =
mv2

r
=

GMm
r2 , (1.1.13)

and the mass enclosed by an orbiting particle can be considered as a point mass (M) at the

centre of mass. Therefore, by rearranging this equation, the mass enclosed is given by

M =
v2r
G

. (1.1.14)

From the observation of Rubin and Ford (1970), one can assume that the velocity is constant,

yielding the relationship

M ∝ r. (1.1.15)

The density of the mass enclosed is given by

ρ =
M

πr2 , (1.1.16)

therefore, the density enclosed falls off at a rate

ρ ∝ 1/r. (1.1.17)
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But in section 1.1 it was noted that the density of the disc falls at an exponential rate, so

there must be missing mass out to 22 kpc in the Andromeda galaxy.

Figure 1.12 shows the favoured model for the rotation curve of the MW proposed by

Klypin et al. (2002). The non-solid lines show the velocity contributed by each component

of the galaxy. At small radii (r < 15 kpc) the disc dominates with a small contribution

from the bulge. Past 15 kpc the velocity curve is dominated by the dark matter halo which

extends well beyond any of the main stellar components. The authors show comparisons to

observed rotational velocities of the Galaxy, displaying indirect evidence of dark matter.

Gravitational lensing is one of the predictions of general relativity (Einstein, 1936), and

it allows observers to measure the mass of an object by the bending of background light.

Taylor et al. (1998) used gravitational lensing to measure the mass of the galaxy cluster

Abell 1689. The authors found that the mass is in good agreement with mass derived from

line-of-sight velocity dispersions, similar to the method used by Zwicky (1933). Finding

that the distribution of mass is far more extended and massive than the light would suggest.

This leads us to arguably the most compelling evidence for the existence of dark matter,

the Bullet Cluster—a merger between two galaxy clusters. Clowe et al. (2006) compared

the distribution of mass, derived from the weak-lensing observations, to the distribution of

X-ray emitting plasma. The authors found that the distribution of mass did not trace the

plasma, but followed the distribution of the stellar components of both clusters. Stars are

very small and dense compared to the size of a galaxy, and as such rarely collide, this is

an example of a collisionless system. Cold dark matter is also collisionless (Clowe et al.,

2006; Harvey et al., 2015; Read et al., 2018), however, gas is not. As the two clusters pass

through each other the gas collides, shock heating it to high temperatures at the centre of the

two clusters. However, the stars and dark matter are able to pass through each other with

little impediment. The observations agree with this theory, with the X-ray emitting hot gas

in between the mass distribution of the two clusters.

27



Introduction

ities and proper motions in the Galactic center. Squares are
based on kinematics of OH/IR stars (Lindqvist et al. 1992).
The point at 3.5 kpc is based on the Zhao (1996a, 1996b)
model of the bar. Because the model was compared with the
data on stellar kinematics (inner rotation curve and radial
velocity dispersion), it gives a constraint on the total mass:
4! 1010 M", with an uncertainty of about 20%. For the
next data point at 8.5 kpc we simply assume that the circular
velocity is 220# 20 km s$1, which covers the whole range of
reasonable values. We then estimate the mass as
M ¼ v2r=G. The last observational point is the constraint

from the motions of satellite galaxies discussed in x 3. The
central data points were not used either in our fitting or in
the analysis of the bulge (Zhao 1996b). Nevertheless, they
come fairly close to the extrapolation of our model into the
very center of our Galaxy. The theoretical curves for our
favored models A1 and B1 are very close to each other,
which is not surprising because they fit the same data and
have the same global darkmatter content. The largest devia-
tion of the models from the data is for the mass inside 100
pc, where the observational estimate is twice larger than the
prediction of the models. Even at this point the disagree-
ment is not alarming because the observational data are
likely more uncertain than the formal error.

What is remarkable about Figure 3 is that it spans more
than 5 orders of magnitude in radius and mass. It is encour-
aging that, without fine-tuning, our models are consistent
with observations of the dynamical mass of the MW over
this huge range.

Finding an acceptable model for M31 was relatively easy
because there are much less data. In particular, we do not
have kinematic constraints for the disk, which would be
equivalent to constraints at the solar position in our Galaxy.
Our model seems to reproduce reasonably well the dynami-
cal mass of M31 from 100 pc to &100 kpc. Our model does
not produce the very large wiggles exhibited by the observed
rotation curve. The wiggles at 5 and 9 kpc are likely due to
noncircular motions induced by the bar and, thus, as dis-
cussed before, cannot be reproduced by any axisymmetric
model. The bulge of M31 is almost twice as massive as the
bulge of our Galaxy. It is also slightly (30%) more compact.
The disk of M31 is also more massive, but it is more
extended. As a result, in the central 5 kpc of the M31 the

Fig. 2.—Rotation curve for our favorite models A1 (no exchange of
angular momentum) and B1 (with the exchange). Note that the dark matter
dominates only in the outer part of theMilkyWay. Symbols show observa-
tional data from H imeasurements of Knapp et al. (1985; circles) and Kerr
et al. (1986; triangles).

Fig. 3.—Mass distribution of the MW galaxy for model A1 ( full curve)
and model B1 (dashed curve). The large dots with error bars are observatio-
nal constraints. From small to large radii the constraints are based on the
following: stellar radial velocities and proper motions in the Galactic cen-
ter; radial velocities of OH/IR stars; modeling of the bar using DIRBE and
stellar velocities; rotational velocity at the solar radius; and dynamics of
satellites.

606 KLYPIN, ZHAO, & SOMERVILLE Vol. 573

Fig. 1.12 The circular velocity profile for the favoured model from Klypin et al. (2002) (with

exchange of angular momentum). Observational data from HI measurements of Knapp et al.

(1985, circles) and Kerr et al. (1986, triangles). At large radii the velocity curve is dominated

by the dark matter halo.
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1.1 Galaxies and their components

Profile and shape

I have previously discussed the formation of density peaks in the early universe (see sec-

tion 1.1.1) and mentioned that these peaks are the building blocks of the dark matter haloes

thought to be harbouring galaxies throughout the universe. The structure of dark matter

haloes can tell us about the cosmological parameters (Hoffman, 1988; Hoffman and Sha-

ham, 1985). With a large value for the spectral index (n) and a low value for the density

parameter (Ω) haloes should have steeper density profiles. Whereas for low n and high Ω the

density profiles should be shallower, which has been confirmed by N-body simulations (e.g.

Frenk et al., 1988, 1985). It was initially assumed that dark matter haloes were isothermal

spheres, with a density profile,

ρ(r) =
σ2

2πGr2/r2
c
, (1.1.18)

where σ is the velocity dispersion, and rc is the core radius. With such a dependence be-

tween density and velocity one might expect correlations between the velocity of satellite

galaxies and the rotation velocity of the disc, and between pairs of galaxies, but such cor-

relations are not found (Navarro et al., 1996). Dubinski and Carlberg (1991a) studied the

density profiles of dark matter haloes in a variety of simulations, finding that the profiles

were cuspy, not completely isothermal. Using N-body simulations of dark matter haloes

ranging in mass from dwarf galaxies to large clusters, Navarro et al. (1996) found a uni-

versal profile. The universal profile was approximately isothermal near the virial radius but

shallower near the centre. The Navarro-Frenk-White (NFW) profile,

ρ(r)
ρcrit

=
δc

(r/rs)(1+ r/rs)2 , (1.1.19)
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where rs = r200/c is a characteristic radius, ρcrit is the critical density, and δc and c are

dimensionless parameters. The mass of the halo is given by

M200 = 200×ρcrit(4π/3)r3
200 (1.1.20)

where r200 is the radius at which the mean density enclosed is equal to 200 times that of the

critical density. The dimensionless parameter δc is defined as

δc =
200
3

c3

[ln(1+ c)− c/(1+ c)]
. (1.1.21)

The parameters δc, rs and c are often referred to as the characteristic overdensity, scale

radius and concentration, respectively. Jing and Suto (2002) extended the NFW profile to

triaxial systems, using triaxial models for dark matter haloes within a large cosmological

simulation.

1.2 Simulations

1.2.1 N-Body

A popular set of methods for modelling the motions of particles are N-Body simulations,

which track the motion of large numbers of particles under their own gravitational field.

The resolution of such simulations has come a long way from the earliest experiments. The

first N-body simulation was presented by Holmberg (1941), using a novel set-up with light-

bulbs. Computational Peebles (1970) presented one of the first N-body simulations utilizing

just 300 particles, whereas, more recent N-body simulations have reached 374 billion parti-

cles (Kim et al., 2011). Such methods fall into two categories, collisional and collisionless.

Collisional N-Body codes are used for simulating systems where the resolution is compa-

rable to the system itself N = N∗, and where the relaxation time is less than the duration
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of the numerical integration. They accurately follow the close encounters of particles in

multiple particle systems. Due to resolution limits, such codes are very useful for globular

cluster scale objects, but not useful for galaxy scale systems. Collisionless codes are used

for systems where the relaxation time is much longer than the integration time, and where

the resolution is much lower than the system itself N << N∗. Due to the resolution being

much lower the relaxation time of the simulation will be much smaller than the system, as

such one must choose an integration time much shorter than the relaxation time. As the

number of particles in the simulation is far less than in the real astrophysical system, the

particles are massive by comparison. Therefore, close encounters between such particles

are unrealistic. To alleviate this issue a softening kernel is used, modifying the gravitational

potential of each particle using a function that reduces the force between particles when they

are extremely close, but leaves the potential unchanged for large distances. An example of

a form for the softening kernel can be given by the Plummer sphere:

S(r) =− 1√
r2 + ε2

(1.2.1)

where ε is the smoothing length.

The force on a particle i is the sum of contributions from all other particles in the simu-

lation,

Fi = ∑
j

Gm j
rrr j − rrri

|rrr j − rrri|.
(1.2.2)

This is the direct summation approach, which works for collisional codes with small N. For

a collisionless code, with smoothing, this equation requires modification. If the potential of

a particle is modified by Equation 1.2.1 then the force is smoothed simply by its derivative

SF(rrr) = d
drrr S(rrr). Therefore, Equation 1.2.2 can be rewritten as

Fi = ∑
j

Gm jSF(|rrr j − rrri|)
rrr j − rrri

|rrr j − rrri|.
(1.2.3)
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However, as the force of each particle requires a sum over all other particles the time taken

to calculate it scales as 1
2N(N −1)∼ N2.

A more desirable approach is a tree code, which scales as N logN (Barnes and Hut,

1986). The particles are organized by putting everything into one root cube, then splitting

this cube into eight more cubes. If any of these eight cubes contains more than one particle

the cube is split into eight more, this is done iteratively until each cube has at most one

particle—these are the smallest cubes called leaves. This results in a hierarchical structure

of different size cubes called an oct-tree.

1.2.2 Smoothed Particle Hydrodynamics

Euler’s equations for fluid dynamics can be applied to hydrodynamics which, in Lagrangian

form, can be written as

dρ

dt
=−ρ∇ · vvv, (1.2.4)

dvvv
dt

=−∇P
ρ

+ggg, (1.2.5)

du
dt

=−P
ρ

∇ · vvv+Γ−Λ, (1.2.6)

where, ρ , vvv, u, ggg, Γ and Λ are fluid density, velocity, internal energy, force, heating and

cooling terms, respectively. The three equations express the conservation laws of mass,

momentum, and energy, respectively. The equation of state P = (γ − 1)ρu of an ideal gas,

is assumed, where γ is the adiabatic index. Smoothed Particle Hydrodynamics (SPH) is a

particle-based approach to solving Euler’s equations developed by Lucy (1977) and Gingold

and Monaghan (1977).

For astrophysical systems, the gas is generally very low density, highly compressible,

and exists at a wide range of temperatures. As such, one approximation that can be reason-

ably made is that the gas is a perfectly adiabatic, neglecting small-scale processes. However,
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the action of gravity causes very high-velocity flows which are often turbulent and super-

sonic, for example, a gas particle falling into a halo of mass comparable to the MW would

reach several tens of km s−1. The fluid properties are stored in moving particles, eliminating

the need for advective terms found in non-particle based approaches. To find a particular

value of quantity fi of particle i at position rrr j in the simulation one can simply use the sum

fi = ∑
j

fiS(rrr j − rrri). (1.2.7)

where the value of fi is dominated by contributions from the neighbour particles. Such

an approach can be married well with previous N-body methods (e.g. GASOLINE Wadsley

et al., 2004).

GASOLINE

Built on the parallel N-body code PKDGRAV (Stadel, 2001), GASOLINE is a parallel SPH

code used to simulate a variety of different systems, from cosmological scales to gas-giant

planets. GASOLINE uses a spatial binary tree, with a similar hierarchical structure to the

oct-trees mentioned previously, constructed by bisecting the initial cube and then recur-

sively bisecting the cells longest axis until each cell has at most nbucket ∼ 8− 16 particles.

The motivation behind using buckets as opposed to single particles is to reduce the storage

requirements and to make the code more efficient.

The gravitational acceleration is calculated by the tree-walking procedure from Barnes

and Hut (1986), modified to calculate the interactions between buckets rather than particles.

Each cell of the tree is assigned an opening radius with respect to its centre of mass ropen =

2Bmax/
√

3θopen, where Bmax is the maximum distance from a particle in the cell to the centre

of mass, θopen is the user specified opening angle. When calculating the acceleration for a

bucket Bi, GASOLINE descends the tree opening all cells that are within or intersected by

ropen. This is then repeated for all the children of the opened cells until the code reaches the

33



Introduction

leaves (cells without children) of the tree, at which point the buckets themselves are opened.

All buckets that have been opened are added to a particle-particle interaction list, whereas

any cell that has not been opened will be added to the particle-cell interaction list.

Equation 1.2.7 shows the form for an estimate of some quantity f used throughout SPH

methods, including GASOLINE. In GASOLINE the kernel function Wi j is rewritten, following

the kernel-average from Hernquist and Katz (1989), as

Wi j =
1
2

w(|rrri − rrr j|/hi)+
1
2

w(|rrri − rrr j|/h j) (1.2.8)

to ensure that Wi j = Wji, where h is the smoothing length, thereby satisfying conservation

of energy and momentum. The function w(rrr,h) is the spline function,

w(rrr,h) =
1

πh3


1− 3

2q2 + 3
4q3 if 0 ≤ r

h ≤ 1;

1
4(2−q)3 if 1 ≤ r

h ≤ 2;

0 otherwise

(1.2.9)

where q = r
h (Monaghan, 1992).

Density is calculated by summing over particle masses m j

ρi = ∑
j

m jWi j. (1.2.10)

Acceleration is given by

dvvvi

dt
=−∑

j
m j

(
Pi

ρ2
i
+

Pj

ρ2
j
+Πi j

)
∇iWi j (1.2.11)

where Pj is the pressure, vvvi is the velocity, and Πi j is the artificial viscosity term. The
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pressure is dependent on the local gas particle pressure, given as

dui

dt
=

Pi

ρ2
i
∑

j
m jvvvi j ·∇iWi j (1.2.12)

where ui is the internal energy of the particle i assumed to represent an ideal gas, with

ui =
Pi

(γ −1)ρi
(1.2.13)

with γ the adiabatic index. The artificial viscosity term Πi j is given by,

Πi j =


−α

1
2 (ci+c j)νi j+βν2

i j
1
2 (ρi+ρ j)

for vvvij · rrrij < 0,

0 otherwise
(1.2.14)

where νij =
h(vvvij · rrrij)

rrr2
ij +0.01(hi +hj)2 (1.2.15)

where rrri j = rrri − rrr j, vvvi j = vvvi − vvv j, c j is the sound speed, α = 1 and β = 2 are coefficients

used for shear and Von Neumann-Richtmyer viscosities, respectively. The choice of using

an artificial viscosity is motived by the widths of dissipative shocks being smaller than the

resolution of the simulation, leading to instabilities in the numerical algorithms.

In galaxies, processes such as star formation and stellar feedback effect the flow of,

and composition of, neighbouring gas. Star formation traps gas into stars where some of

it can be slowly converted into heavier elements. Feedback transfers some of this material

back into the surrounding gas, but also drastically increases its energy. Many schemes have

been implemented that attempt to account for these processes. This thesis will concentrate

on one, in particular, Stinson et al. (2006). Following Katz (1992), Stinson et al. (2006)

imposed four criteria that must be met for a gas particle to be eligible to form a star. The

particle must be
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1. denser than nmin = 0.1cm−3,

2. in an overdense region,

3. part of a converging flow,

4. Jeans unstable (hi
ci
>
√

1
4πGρi

).

The overdensity required to meet criterion 2 is user specified and is motivated by the need

to limit star formation in the early universe. Governato et al. (2010) compared the effects of

high and low density star formation thresholds, finding that when the local density required

is high (100 amu cm−3) the resulting ISM is inhomogeneous, with strong outflows and

gas being preferentially ejected from the galaxy centre. For a low-density threshold (0.1

amu cm−3) the ISM is more homogenous, the supernova feedback more evenly distributed

throughout the disc, and star formation is able to continue in the central regions. In a star-

forming region the flow of gas should be converging, which can be determined from the

velocity field,

∇ · vvv = 1
ρi

∑
j

m j(vvv j − vvvi) ·∇iWi j. (1.2.16)

For ∇ ·vvv < 0 the flow is converging, and criterion 3 is satisfied. The Jeans stability criterion

tests if the cloud can provide sufficient pressure support so that the cloud will not collapse

under its self-gravity. If the pressure support is not sufficient the gas cloud will collapse

and form stars. The star formation time-scale t f orm is a fine balance between the dynamical

time tdyn taken to collapse, and the time taken for the gas to cool sufficiently. Stinson et al.

(2006) choose t f orm to simply be the dynamical time, but imposed an upper limit on the

temperature of the gas, so Tgas < Tmax. The star formation rate of such a system is given as

dρ∗
dt

= c∗
ρgas

t f orm
(1.2.17)

where c∗ is a constant corresponding to the star formation efficiency, a user prescribed
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parameter that can be used to tune the star formation rate to match observations.

A further consideration is stellar feedback. Supernova ejecta creates blastwave shocks,

converting the kinetic energy of the material into thermal energy in the surrounding medium.

This conversion happens on scales well below the resolution of galaxy-scale simulations,

and as such the energy of the supernova is treated as purely thermal. The number of stars

that go supernova depends on the IMF. Stinson et al. (2006) choose a three-piece power-

law following Miller and Scalo (1979). They defined the mass range for SN type-II to be

8≤M/M⊙ ≤ 40; stars above this either collapse to black holes directly or result in SN type-

Ib. However, the number of stars above this mass range is very small and contributes little

to the total feedback. Combining the IMF with the stellar lifetimes of stars within this mass

range (given by Raiteri et al., 1996), one can determine the rate of such supernovae. This

rate multiplied by the energy ejected into the ISM from type-II supernova, ESN = 1050 erg,

giving the total feedback energy. The energy is distributed, using the SPH smoothing kernel,

into the gas particles surrounding the current position of the star particle, i.e. more massive

gas particles will get more of the energy. However, because supernovae tend to occur in

higher density regions, the thermal energy contributed to the surrounding gas will quickly

be radiated away, and star formation will continue. Therefore, Stinson et al. (2006) disabled

radiative cooling of nearby gas particles, to suppress the local star formation. Supernovae

type-Ia, on the other hand, still distribute their energy into the surrounding gas in a similar

fashion, but do not disable radiative cooling. The motivation behind this is that the average

lifetime of a binary system is far longer than that of a supernova type-II candidate, and as

such if one was to form in a star-forming region, it would be a long time before the supernova

suppressed the local star formation rate. A further consideration is a stellar feedback for

stars with M < 8 M⊙, these stars also return a significant fraction of their mass back into

the ISM (0.25−0.5 Kennicutt et al. (1994)) in the form of stellar winds. Again combining

the IMF with the stellar lifetimes of M < 8 M⊙ mass stars, Stinson et al. (2006) used the
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same distribution technique described for supernova for stellar winds, however, returning

no energy into the ISM, just metallicity.

One issue facing SPH codes is the mixing problem, where the code is unable to resolve

mixing at fluid boundaries (Agertz et al., 2007; Read et al., 2010). Traditional SPH codes

were unable to develop Kelvin-Helmholtz or Rayleigh-Taylor instabilities across discon-

tinuities in thermal energy (Price, 2008). Read et al. (2010) identified two problems that

lead to this unresolved mixing, a leading order error (E0) in the momentum equation and

the local mixing instability. Dehnen and Aly (2012) showed that switching from traditional

kernels to Wendland kernels (Wendland, 1995) can avoid the leading order error. Wads-

ley et al. (2008) employed turbulent diffusion to improve mixing, while Hopkins (2013)

demonstrated that using modified pressure-based formulations could substantially reduce

the impact of numerical surface tension which exacerbated the mixing problem. GASO-

LINE2 uses Wendland kernels (Wendland, 1995), turbulent diffusion based on local velocity

shear to mix fluid quantities (Wadsley et al., 2008) and a new pressure force formulation to

achieve similar results to Hopkins (2013) alleviating the mixing problem (Wadsley et al.,

2017).

1.3 Orientations of galaxies

1.3.1 Briggs figures

Section 1.1 discussed the presence of warps in late-type galaxies. While presenting the

general behaviour of galactic warps, Briggs (1990) employed a figure to illustrate how the

planes of the warp and stellar disc differ. These Briggs Figures are polar plots contain-

ing the unit angular momentum vectors for concentric rings. Typically polar plots can be

used to show 2-dimensional vectors by plotting both the radial coordinate and azimuthal

coordinate, the angle φ from the reference axis. However, the angular momentum of a
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3-dimensional system is itself 3-dimensional, and in order to visualize it in 2-dimensions

requires a projection. For unit vectors the radial extent is unity, therefore, one can use the

radial coordinate on the figure to show the θ value of a 3-dimensional vector. As in the

spherical coordinate system (r,φ ,θ ), φ shows the angle between the x-axis and the vector,

and θ the angle between the z-axis and the vector. Values for φ and θ must lie within the

ranges 0 ≥ φ ≥ 180 and 0 ≥ θ ≥ 360, respectively. Briggs (1990) chose a reference frame

so that the angular momentum of the stellar disc lies along the z axis. Such Briggs Figures

allow us to visualize and compare numerous 3-dimensional vectors simultaneously, without

the use of 3-dimensional graphs.

1.3.2 Scale Varying Alignments

Throughout the literature, there are examples of alignments between various stellar systems

over a plethora of scales. Binggeli (1982) studied 44 regular Abell galaxy clusters, finding

that clusters separated by less than ∼ 30 Mpc strongly tend to be aligned such that their

major axes point to each other (the correlation alignment). The author also confirmed pre-

vious work that indicated that the major axes of a cluster’s cD galaxy (the central massive

galaxy) and the cluster itself seem to be aligned. Subsequently, Plionis (1994) looked at

637 clusters finding a comparable relationship for distances ∼ 15h−1 Mpc. Smargon et al.

(2012) looked at two much larger samples containing 6625 and 8081 clusters, finding strong

support for an alignment between the major axes and the line connecting the pair of clusters

out to distances of 100h−1 Mpc.

On smaller scales, Pen et al. (2000) found that galaxies closer together are more likely

to have similar angular momenta. This work was followed up by Lee and Pen (2007),

measuring the intrinsic alignments of blue and red SDSS galaxies, finding a 3σ signal for

galaxies with a/b≤ 0.8. Using an even larger sample of 83,773 SDSS luminous red galaxies

Okumura et al. (2009) found an intrinsic ellipticity correlation function for separations up
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to 30h−1 Mpc. Li et al. (2013) found that the brightest satellite galaxies (BSGs) are found in

the plane of the major axis (especially in richer groups), and that red BSGs are often more

aligned than blue BSGs. Hirata et al. (2007) investigated the gravitational lensing shear

and intrinsic ellipticity relationship for both red and blue galaxies, finding > 3σ detections

scales up to 60 h−1 Mpc for red galaxies and no detection for blue galaxies within their

samples. Paz et al. (2008) also found that redder galaxies tend to exhibit elliptical shapes that

are elongated in the direction of the large-scale structure both in numerical simulations and

in SDSS data. Incorporating a theoretical side, Faltenbacher et al. (2009) looked for similar

alignments in both the millennium simulation and SDSS galaxies, again finding correlations

for red galaxies, whereas the blue galaxies tended to exhibit more random orientations.

Similarly, Tempel and Libeskind (2013) and Tempel et al. (2013) looked at the alignment

of galaxy spin axes of both disc and elliptical galaxies, relative to the local filamentary

structure of the cosmic web, finding that disc galaxies were only weakly aligned, whereas

the more elliptical galaxies showed a strong perpendicular alignment. Zhang et al. (2013)

agreed that for red galaxies the major axes of galaxies within the filamentary structure were

aligned parallel to the filament, while galaxies in sheets have their major axes preferentially

aligned parallel to the plane of the sheets, this relation is much weaker in spiral galaxies

(Zhang et al., 2015).

Determining the alignments between satellites and host galaxies has yielded conflicting

results. Early work concluded that satellites are preferentially aligned with the minor axis

of the halo (Holmberg, 1969). More recent work has found that red galaxies have satellites

more aligned with the halo major axis, and that blue galaxies tend to have isotropic align-

ments (Brainerd, 2005; Dong et al., 2014; Nierenberg et al., 2011; Wang et al., 2008, 2014;

Yang et al., 2006). Lynden-Bell (1976) found a planar alignment for classical dwarfs in the

stellar streams of the MW, which was later found to be rotationally coherent (Metz et al.,

2008; Pawlowski et al., 2013). Similar work has been done for M31, concluding that the
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satellite distribution is anisotropic with satellites preferentially populating a roughly edge-

on plane with respect to the MW and almost perpendicular to the MW disk (Conn et al.,

2013; Koch and Grebel, 2006; McConnachie and Irwin, 2006). However, it has been ar-

gued that such structures are not kinematically coherent (Buck et al., 2016). One important

conclusion that can be drawn from these different alignments is that redder galaxies tend to

follow the correlations much more tightly than bluer galaxies.

1.3.3 Theory

A prediction of tidal torque theory is that the angular momenta and shapes of dark mat-

ter haloes should be correlated over large scales (Catelan et al., 2001; Catelan and Porciani,

2001; Crittenden et al., 2001; Peebles, 1969; Porciani et al., 2002). Such a correlation would

lead to the expectation of alignments between clusters of galaxies and the cosmic web. Var-

ious N-body simulations have detected the same ellipticity correlation found between clus-

ters of galaxies in pairs of dark matter haloes (Croft and Metzler, 2000; Faltenbacher et al.,

2008; Heavens et al., 2000; Jing, 2002). However, Camelio and Lombardi (2015) argue that

this alignment is not dominated by the tidal field as it is too weak to account for the observed

signal, but is driven by accretion and formation processes. Both galaxy clusters, dark mat-

ter haloes and ellipticals are predicted to be formed via hierarchical merging, which might

explain why previous studies (e.g. Faltenbacher et al., 2008) see similar alignments with

neighbours and the cosmic web. Aragón-Calvo et al. (2007) investigated the orientations

of dark matter haloes in cosmological N-body simulations, with respect to the surrounding

large-scale structure. The authors found that the triaxial shapes of the haloes generally had

minor axes perpendicular to the wall or filament the halo was situated within. Further work

expanded on this work finding similar results for the shape of dark matter haloes, however,

for the spin of the halo there appears to be a high and low mass preference separated at

M ∼ 5(±1)×1012 M⊙ (Cuesta et al., 2008; Hahn et al., 2007a,b; Libeskind et al., 2012; Paz
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et al., 2008; Trowland et al., 2013; Wang et al., 2011; Zhang et al., 2009). High mass haloes

tend to have their spin axes perpendicular to the filamentary structure, while less massive

haloes have spin axes parallel to their host filament (Codis et al., 2012). Such alignments be-

tween the filamentary structure and the shape of haloes are considered to be a consequence

of tidal torques and via the preferential accretion of material following along the filaments

(Bailin and Steinmetz, 2005; Faltenbacher et al., 2005; Jing, 2002).

In collisionless simulations, the angular momentum of dark matter haloes is typically

orientated parallel to the minor axis (Bailin and Steinmetz, 2005; Dubinski, 1992; Fal-

tenbacher et al., 2005; Porciani et al., 2002; Warren et al., 1992). It follows that the angular

momentum of the baryonic components may be aligned with the dark matter halo. Hydro-

dynamical simulations reveal that it is not that simple, even before the galaxy has formed,

the angular momenta of the hot gas that has fallen into the halo, has misaligned angular

momentum relative to that of the halo (Chen et al., 2003; Sharma and Steinmetz, 2005; van

den Bosch et al., 2002). Subsequently, the galaxy that forms from this misaligned gas will

change the angular momentum of the inner halo, leaving the halo unchanged at large radii

(Bailin et al., 2005; Butsky et al., 2016; Debattista et al., 2008; Kazantzidis et al., 2004).

Within 10 per cent of the virial radius the halo and disc are well aligned, but out to the virial

radius hydrodynamical simulations find on average 30◦−40◦ of misalignment between the

disc and halo (Bett et al., 2010; Croft et al., 2009; Hahn et al., 2010). Debattista et al. (2013)

showed, using numerical simulations, that redder galaxies tend to have much more stable

orientations, whereas bluer galaxies tend to be randomly orientated relative to their own

haloes. This discrepancy may be to due to the ongoing gas accretion feeding star formation

in the bluer galaxies.
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1.4 Galaxy tilting

The orientation of disc galaxies can be quantified by the direction of the stellar disc’s an-

gular momentum (see Section 1.3). The angular momentum of a disc galaxy is not fixed,

processes such as interactions, torques exerted on the disc by the host dark matter halo and

the quiescent cooling of gas onto the disc, all influence the total angular momentum of the

disc. Such processes alter the orientation of the disc, the difference in the angular momen-

tum vectors with respect to time results in a tilting rate. The Gaia space astrometry mission

may soon allow direct measurement of the MW’s disc tilting rate, using precision measure-

ments of stellar positions with accuracies of order 20µas with respect to distant quasars

(Lindegren et al., 2008; Perryman et al., 2001).

Numerous processes drive tilting in disc galaxies. Interactions between the disc, satel-

lites, and neighbours are the most often studied. I will exclude major mergers, which are

extreme events that can destroy discs. Minor mergers and similar small-scale interactions

generally leave the disc intact, resulting in a change in angular momentum. Infalling satel-

lites cause appreciable changes to discs, such as tilting, warping and heating (Huang and

Carlberg, 1997). Huang and Carlberg (1997) found that discs are mainly tilted rather than

heated and that the kinetic energy associated with vertical motion is more affected than the

heating in the same direction. As satellites fall into the disc, due to the transfer of angu-

lar momentum, they tilt towards alignment with the disc (Huang and Carlberg, 1997; Read

et al., 2008). In the MW, two of the most massive satellites are the Large and Small Mag-

ellanic Clouds (LMC and SMC). The mass of the LMC is as high as MLMC ∼ 2×1011 M⊙

(Gómez et al., 2015; Kallivayalil et al., 2013; Peñarrubia et al., 2016), corresponding to

∼ 20 per cent of the mass of the MW. This puts it above the upper mass estimate for the

initial mass of the Sagittarius dwarf galaxy (Jiang and Binney, 2000), meaning it is the most

important interaction in some time.
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1.4.1 Interactions

Minor mergers and interactions contribute angular momentum to a galaxy’s surrounding

dark matter halo. Bett and Frenk (2012) examined the consequences of minor mergers and

flybys on the spins of dark matter haloes from a ΛCDM simulation similar to the Millennium

Simulation. They measured the angular momentum of selected haloes spanning z = 6.2 to

z = 0 within a mass range of 12.0 ≤ log10(M/M⊙)h−1 ≤ 12.5 at z = 0. The authors found

that such events only caused small changes to the angular momentum of the entire halo,

with only 10.5 per cent experiencing changes in their angular momentum direction by more

than 45◦. However, the inner halo was not so stationary, with 47 per cent of inner haloes

experiencing a change in their angular momentum orientation of at least 45◦ during their

lifetimes. Bett and Frenk (2016) expanded the study to include a broader range of halo

masses (10.5 ≤ log10(M/ M⊙)h−1 ≤ 15.5). They found that 35 per cent of haloes had

experienced changes in angular momentum direction of at least 45◦, at some point in their

lifetimes, without a major merger taking place. When they considered just the inner haloes

64 per cent experienced orientation changes of a similar magnitude over just 0.5Gyrs, during

the course of their lifetime.

1.4.2 Dark matter torques

Torques imposed from the surrounding dark matter halo also influence the orientation of the

disc. In the Λ-cold dark matter (ΛCDM) paradigm, haloes grow hierarchically, becoming

triaxial (Allgood et al., 2006; Bailin and Steinmetz, 2005; Bardeen et al., 1986; Barnes and

Efstathiou, 1987; Dubinski and Carlberg, 1991b; Frenk et al., 1988; Jing and Suto, 2002).

Dubinski (1992) measured the tilting rates of dark matter haloes affected by tidal shear; he

found that the major axis of each halo in the mass range (1−2)×1012 M⊙ rotated uniformly

with an angular momentum vector generally aligning with the minor axis, with rotation rates

between 6◦−96◦Gyr−1. Similarly, Bailin and Steinmetz (2004) detected smooth figure ro-
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tation in 288 of their 317 dark matter haloes, with angular momentum vectors aligned with

the minor axis in 85 per cent of cases, and in 15 per cent of cases aligned with the major

axis. They found an average tilting rate of 6.2◦Gyr−1, with a log-normal distribution with

σ = 0.58◦Gyr−1. Bryan and Cress (2007) found that 63 per cent of the 115 haloes they con-

sidered exhibited significant figure rotation, however, less than half of their sample showed

alignment between the minor axis and the figure rotation axis with an average pattern speed

of 13.8◦ h Gyr−1. Debattista et al. (2015) showed that stellar discs, lacking gas and within

a triaxial halo, align with the minor axis of the halo. After being perturbed by a satellite

the disc settles back to this preferential alignment. Therefore, a disc that is misaligned with

the minor axis of its halo will tilt. Thus a tilting halo will drag a disc along with it. To

investigate such a coupling between the orientation of discs and dark matter haloes Yurin

and Springel (2015) inserted live stellar discs into eight, MW-sized, high-resolution dark

matter haloes from the AQUARIUS simulation. They found tilting rates of 5◦− 6◦Gyr−1,

comparable with the halo tilting rates measured in pure N-body simulations. While no di-

rect evidence of tilting dark matter haloes has been found, the tidal torques exerted by a

rotating dark matter halo on stellar discs have been proposed as a possible cause of warps

(Dubinski and Chakrabarty, 2009; Dubinski and Kuijken, 1995) and as a driving mechanism

for spiral structure in the compact dwarf galaxy NGC 2915 (Bureau et al., 1999).

1.4.3 Gas accretion

Sustaining star formation in galaxies such as the MW requires there to be ongoing gas

accretion onto the disc. As gas falls into a dark matter potential well it is shock heated to

approximately the halo virial temperature Tvir = 106(νcirc/167km s−1)2 K, forming a hot

gas corona with a greater mass than the stellar disc itself (Dahlem, 1997; Fukugita and

Peebles, 2006; Rees and Ostriker, 1977; Savage and de Boer, 1979; Silk, 1977; Spitzer,

1956; Wang et al., 2001; White and Frenk, 1991; White and Rees, 1978). This hot gas
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cools slowly and eventually settles into the disc, maintaining the star formation rate (Brook

et al., 2004; Brooks et al., 2009; Fall and Efstathiou, 1980b; Kereš et al., 2005; Robertson

et al., 2006). Gas cooling from the corona contributes angular momentum to the disc. In

hydrodynamical simulations, the angular momentum of the corona is usually misaligned

with that of their embedded stellar disc (Roškar et al., 2010; van den Bosch et al., 2002).

Roškar et al. (2010) showed that as the cold gas falls towards the disc it is torqued by the

hot gas and by the time it reaches the disc it’s angular momentum is completely aligned

with that of the hot gas corona—this is true of both hot and cold mode gas accretion. This

contribution of misaligned angular momentum will change the total angular momentum of

the disc, causing it to tilt. Debattista et al. (2015) showed that under these circumstances, the

orientation of the disc spin is determined by a balance between the torques from the triaxial

dark matter halo, and the net inflow of angular momentum via cooling gas. As a result,

star-forming galaxies where gas is being continually accreted onto the disc are generally

misaligned with the main planes of their dark matter haloes (Agustsson and Brainerd, 2006;

Azzaro et al., 2007; Brainerd, 2005; Faltenbacher et al., 2007; Li et al., 2013; Nierenberg

et al., 2011; Sales and Lambas, 2004; Wang et al., 2010, 2008; Yang et al., 2006). Tidal

streams such as the Sagittarius Stream may enable us to determine the orientation of the MW

with respect to its dark matter halo. However, such efforts have produced best fitting models

that require the angular momentum of the disc to be aligned with the intermediate axis of the

halo (Deg and Widrow, 2013; Law and Majewski, 2010; Law et al., 2009). An intermediate

axis alignment is extremely unstable, and hard to reproduce via simulations (Debattista

et al., 2013). Debattista et al. (2013) therefore, argued that the modelling assumption of

the disc residing in one of the halo’s symmetry planes must be violated. Although indirect,

this could support the hypothesis that gas accretion is affecting the orientation of the host

galaxy.
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1.5 Predicted observational limit of Gaia

Gaia was launched on December 19, 2013. Over the course of its five-year mission, Gaia

will observe all star-like objects down to a limit of V ∼ 20 mag (Lindegren et al., 2008;

Perryman et al., 2001). This is predicted to yield over a billion objects, 500000 of which

will be quasars, with redshifts between z = 1.5-2 (Claeskens et al., 2006). These quasars

will provide an inertial reference frame of the Galaxy. The main goal of the Gaia mission

is to provide accurate distances and proper motions for roughly one per cent of the stars in

the MW. With these observations, Perryman et al. (2014) give predictions for possible de-

tections that will be possible over the life of the mission. For example, a bulk rotation of the

disk with a characteristic rate of 2 rad H−1
0 (30µas yr−1) (like the tumbling rate presented

in Bailin and Steinmetz, 2004; Bryan and Cress, 2007), will significantly exceed the inertial

reference frame residual rotation (0.2-0.5µas yr−1), making it detectable. Moreover, if there

is a misalignment between the disc and halo (see Section 1.3) the torques imposed should

lead to a disc rotation rate that depends on the radius. Perryman et al. (2014) present simu-

lations using realistic quasar counts demonstrating an accuracy better than 1µas yr−1 (0.27◦

Gyr−1) should be achieved in all inertial spin components of the Gaia reference frame. This

thesis will present titling rates of simulated galaxies within cosmological simulations, and

compare them to the detection limit of Gaia.

Thesis structure

This thesis is organised as follows. The second Chapter will present results the VICTOR

simulation, a large cosmological hydrodynamical simulation. This set of simulations suffer

from over-cooling, meaning that lower mass galaxies are forming too many stars for their

halo mass. The third Chapter will present results from the NIHAO, suite of state-of-the-

art zoom-in cosmological hydrodynamical simulations. This suite does not suffer from the
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same over-cooling, as such, lower mass galaxies are able to be investigated. The fourth

Chapter will present five galaxies from the suite of simulations presented in the previous

Chapter in more detail. The fifth Chapter will summarize the results and present the conclu-

sions.
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Chapter 2

The tilting rate of the Milky Way’s disc

This chapter was published as Earp S. W. F., Debattista V. P., Macciò A. V., Cole D. R.,

2017, MNRAS, 469, 4095.

Abstract

We present tilting rates for galaxies comparable to the Milky Way (MW) in a Λ cold dark

matter cosmological hydrodynamical simulation, and compare these with the predicted tilt-

ing rate detection limit of the Gaia satellite 0.28◦Gyr−1. We first identify galaxies with

mass comparable to the MW (9× 1011 ≤ M200 ≤ 1.2× 1012 M⊙) and consider the tilting

rates between z = 0.3 and 0. This sample yields a tilting rate of 7.6◦ ± 4.5◦Gyr−1. We

constrain our sample further to exclude any galaxies that have high stellar accretion during

the same time. We still find significant tilting, with an average rate of 6.3◦Gyr−1. Both sub-

samples tilt with rates significantly above Gaia’s predicted detection limit. We show that

our sample of galaxies covers a wide range of environments, including some similar to the

MW’s. We find galaxies in denser regions tilt with higher rates than galaxies in less dense

regions. We also find correlations between the angular misalignment of the hot gas corona,

and the tilting rate. Gaia is likely to be able to directly measure tilting in the MW. Such a
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detection will provide an important constraint on the environment of the MW, including the

rate of gas cooling onto the disc, the shape and orientation of its dark matter halo, and the

mass of the Large Magellanic Cloud. Conversely, failure to detect tilting may suggest the

MW is in a very quiet configuration.

2.1 Introduction

Disc galaxies such as the Milky Way (MW) are rapidly rotating; the orientation of their spin

axis represents the integral of the angular momentum accreted via gas, interactions with

satellites or other galaxies, and torques exerted on the disc by the dark matter halo within

which they reside. Therefore directly observing disc tilting at the present time provides

clues to the nature of each of these processes. The Gaia space astrometry mission may soon

allow direct measurement of the MW’s disc tilting rate. Precision measurements will enable

the construction of stellar position catalogues with accuracies of order 20µas with respect

to distant quasars, which act as the measurement reference frame (Lindegren et al., 2008;

Perryman et al., 2001). Perryman et al. (2014) estimate that an accuracy better than 1µas

yr−1 should be achieved in all the inertial spin components of the Gaia reference frame,

corresponding to 0.28◦Gyr−1.

Galaxies tilt for a variety of reasons. The role of interactions in disc tilting has been

studied extensively. While major mergers destroy discs, smaller scale interactions are less

violent, and tilt disc galaxies. Huang and Carlberg (1997) showed that infalling satellites

tilt discs so that there is a preference for infalling satellites to merge in the plane of the disc.

Read et al. (2008) reached a similar conclusion. Bett and Frenk (2012) investigated the

effects of minor mergers and flybys on the orientation of spins of dark matter haloes of mass

(12.0 ≤ log10(M/M⊙)h−1 ≤ 12.5) at z = 0. They found that the majority of these events

only caused small changes in the angular momentum of the entire halo, with only 10.5 per
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cent of MW mass haloes experiencing changes in their angular momentum by more than

45◦ over the course of their lifetimes. However, the inner halo is not so stationary, with 47

per cent of inner haloes experiencing a large change in their angular momentum orientation

of at least 45◦ during their lifetimes. Bett and Frenk (2016) extended this study to include

a broader range of halo masses (10.5 ≤ log10(M/M⊙)h−1 ≤ 15.5). They found that 35 per

cent of haloes had experienced changes in orientation of at least 45◦, at some point in their

lifetimes, without a major merger taking place.

In the MW, the most important ongoing interaction is with the Large and Small Magel-

lanic Clouds (LMC and SMC). The mass of the LMC is as high as MLMC ∼ 2× 1011 M⊙

(Gómez et al., 2015; Kallivayalil et al., 2013; Peñarrubia et al., 2016), corresponding to

∼ 20 per cent of the mass of the MW, making it the most important interaction in some

time.

Another cause of disc tilting is torques from dark matter haloes. In the Λ-cold dark

matter (ΛCDM) paradigm, haloes grow hierarchically, becoming triaxial (Allgood et al.,

2006; Bailin and Steinmetz, 2005; Bardeen et al., 1986; Barnes and Efstathiou, 1987; Du-

binski and Carlberg, 1991b; Frenk et al., 1988; Jing and Suto, 2002). These triaxial haloes

are themselves tilting (Moore et al., 2004). Dubinski (1992) examined the effect of tidal

shear on dark matter haloes; he found that in all 14 of his (1—2)× 1012 M⊙ haloes the

major axis rotated uniformly around the minor axis with a rotation rate in the range of

6◦—96◦Gyr−1. Likewise Bailin and Steinmetz (2004) measured figure rotation in 288 of

their 317 dark matter haloes, finding a tilting rate of 6.2◦Gyr−1 with a log-normal distri-

bution having σ = 0.58◦Gyr−1. Bryan and Cress (2007) found that 63 per cent of the 115

haloes they considered exhibited significant figure rotation, with an average pattern speed

of 13.8◦ h Gyr−1.

The figure rotation of triaxial haloes leads to time varying torques on discs. Debattista

et al. (2015) showed that a stellar disc, lacking gas, within a triaxial halo aligns its spin axis
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with the minor axis of the halo. Even when perturbed by a satellite the disc settles back to

this alignment. Thus a tilting halo will drag a disc along with it. Yurin and Springel (2015)

inserted live stellar discs into eight, MW-sized, high-resolution dark matter haloes from the

AQUARIUS simulation. They found typical tilting rates of 5◦—6◦Gyr−1, comparable with

halo tilting rates. While no direct evidence of tilting haloes exists, tidal torques exerted on a

stellar disc by a rotating dark matter halo have been explored as a possible cause for warps

(Dubinski and Chakrabarty, 2009; Dubinski and Kuijken, 1995) and as a driving mechanism

for spiral structure in dark matter-dominated galaxies (Bureau et al., 1999).

Galaxies such as the MW are generally thought to be surrounded by hot gas coronae,

with masses greater than the stellar disc itself (e.g. Dahlem, 1997; Fukugita and Peebles,

2006; Savage and de Boer, 1979; Spitzer, 1956; Wang et al., 2001; White and Frenk, 1991;

White and Rees, 1978). The quiescent cooling of this hot gas then sustains star formation

over a long time (Brook et al., 2004; Brooks et al., 2009; Fall and Efstathiou, 1980b; Kereš

et al., 2005; Robertson et al., 2006). However, the angular momentum of coronae is usually

misaligned with that of their embedded stellar disc (Roškar et al., 2010; van den Bosch et al.,

2002). This contributes misaligned angular momentum to the disc, causing its orientation

to change. Debattista et al. (2015) showed that under these circumstances, the orientation of

the disc spin is determined by a balance between the torques from the triaxial dark matter

halo, and the net inflow of angular momentum via cooling gas. As a result, star forming

galaxies are generally misaligned with the main planes of their dark matter haloes (Agusts-

son and Brainerd, 2006; Azzaro et al., 2007; Brainerd, 2005; Faltenbacher et al., 2007; Li

et al., 2013; Nierenberg et al., 2011; Sales and Lambas, 2004; Wang et al., 2010, 2008; Yang

et al., 2006). Debattista et al. (2013) argued for just such an orientation in the MW, by not-

ing that the best fitting models for the Sagittarius Stream (Deg and Widrow, 2013; Law and

Majewski, 2010; Law et al., 2009) require the disc spin to be along the halo’s intermediate

axis, an orientation they showed is extremely unstable. Debattista et al. (2013) therefore, ar-
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gued that the modelling assumption of the disc residing in one of the symmetry planes must

be violated. While this is indirect evidence, stacking of external galaxies has shown that the

distribution of satellites around blue galaxies tends to be isotropic, contrary to what is seen

around red galaxies (Brainerd, 2005; Dong et al., 2014; Nierenberg et al., 2011; Sales and

Lambas, 2004; Wang et al., 2008, 2014; Yang et al., 2006). Moreover, Vera-Ciro and Helmi

(2013) argue that the effect of the LMC on the shape of the halo must be taken into account.

In summary in the MW, the disc may be tilting for a variety of reasons. As a first step

towards understanding the tilting of the MW, in this paper, we measure the tilting rates

of MW-like galaxies in a ΛCDM cosmological simulation. We compare the tilting rates of

these discs to the observational limit of Gaia to establish whether tilting of this nature would

be detectable. In Section 2.2, we describe the cosmological simulation. Then in Section 2.3,

we describe the samples of galaxies selected on the basis of virial mass, merger history and

total satellite mass. In Section 2.4, we describe the methods we use to calculate the tilting

rates. Section 2.5, presents the results, and provides a comparison with the observational

limit of Gaia for a variety of different local configurations and environments. We present

our conclusions in Section 2.6, showing that even galaxies in quiet systems tilt at a rate that

would be detectable by Gaia.

2.2 Numerical Simulation (VICTOR)

The simulation we use here was performed with GASOLINE, a multi-stepping, parallel, tree

code with smoothed particle hydrodynamics (SPH) (Wadsley et al., 2004). The version

of GASOLINE used for this work includes radiative and Compton cooling for a primordial

mixture of hydrogen and helium. The star formation algorithm is based on a Jeans instability

criterion (Katz, 1992), but simplified so that gas particles satisfying constant density, and

temperature thresholds in convergent flows spawn star particles at a rate proportional to the
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local dynamical time (see Stinson et al., 2006). The star formation efficiency was set to

0.05 based on simulations of the MW that satisfied the Schmidt–Kennicutt Law (Kennicutt,

1998; Schmidt, 1959b), and we adopt a star formation threshold of 0.1 particles per cubic

centimetre. The code also includes supernova feedback using the blast-wave formalism

as described in Stinson et al. (2006), and a UV background following Haardt and Madau

(1996); see Governato et al. (2007) for a more detailed description.

We used as a starting simulation one of the cosmological cubes described in Macciò et al.

(2008), namely our box has a size of 180Mpc and contained 3003 dark matter particles. This

box was created using WMAP5 (Komatsu et al., 2009) initial conditions with (h, ΩM, ΩL,

Ωb, σ8 ) = (0.72, 0.258, 0.742, 0.0438, 0.796) and was run with the code PKDGRAV as

detailed in Macciò et al. (2008).

From this simulation we selected at z = 0 a volume of about (25 Mpc)3 with the require-

ment of not containing any haloes with a virial mass above 5× 1012 M⊙. For this purpose

we use the halo catalogue from Macciò et al. (2008) which was generated using a Spherical

Overdensity halo finder algorithm. The choice of this particular mass threshold is motivated

by our interest in studying the properties of galaxies with a total mass equal or lower than

the MW.

We then traced back to the initial conditions the Lagrangian region defined by this

redshift-zero volume, making sure to obtain a continuous region (i.e. no holes) at the initial

redshift (z = 99). Finally, we used the standard zoom-in technique to enhance the resolution

of the dark matter particles in the selected region by a factor of 103, and adding baryons (gas

particles) with the same high resolution. As a final result, this high resolution region con-

tains more than 108 particles, and reaches a mass resolution of 6.6×106 and 1.1×106 M⊙

for dark matter and gas, respectively, with a gravitational softening length of 1.24 kpc for

dark matter and 0.5 kpc for gas.

We then used the GASOLINE code described above to evolve these new high resolution
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initial conditions from z = 99 to 0 taking into account gas cooling, star formation and feed-

back in a self consistent way. To generate the catalogue of virially bound haloes we use

the grid based code AMIGA Halo Finder (Knollmann and Knebe, 2009) on the simulation

outputs.

2.3 The Samples

We identify 182 haloes spanning the mass range 9×1010 — 4.4×1012 M⊙. Of the 41 saved

time steps during the time interval z = 0.3 to 0 we use a subset of ten time steps with an

average separation of ∼ 0.37Gyr to determine the stellar mass fractional growth rate, and to

track the merger history of each galaxy. We calculate the tilting rate once for each galaxy,

by measuring the angular momentum within 5 per cent of the virial radius at z = 0.3 and 0.

Subsample VICTOR:A contains haloes within a specified mass range comparable to the

MW. The motivation for this mass cut is two-fold. First, we are interested in galaxies with

similar halo mass as the MW. Secondly, we wish to choose galaxies where the mass of

the dark matter halo, and the stellar mass are in good agreement with abundance match-

ing results. We impose an upper limit of M200 ≤ 1.2× 1012 M⊙ in order to constrain the

sample to a mass range that is comparable with the virial mass of the MW (Klypin et al.,

2002). We also find that above this limit the full sample is dominated by ellipticals that,

due to their evolutionary history, generally have lower specific angular momentum. Fig.

2.1 compares the halo mass–stellar mass relation of the full sample with the relation de-

rived by the abundance matching method of Kravtsov et al. (2014). This figure shows that

galaxies residing within haloes of mass M200 ≥ 9× 1011 M⊙ in the simulation match this

relationship well. Lower mass haloes, however, have an excess stellar mass. Therefore,

we use this mass as a lower limit for subsample VICTOR:A. Implementing the mass range

1.2×1012 ≥ M200 ≥ 9×1011 M⊙ leaves 19 galaxies in subsample VICTOR:A.
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Fig. 2.1 Stellar mass versus halo mass at redshift z = 0 for the most massive galaxies in

the initial sample (black points). We measure the stellar mass within 5 per cent of the

virial radius (r200), where the mean interior density is 200 times the critical density. For

comparison the black line shows the M∗–M200 relation of Kravtsov et al. (2014) derived

using halo abundance matching. The grey shaded region shows the scatter in this relation.

The red dashed lines illustrate the bounds that subsample VICTOR:A lies within.
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Subsample VICTOR:B has the same mass constraint with two added limits: one on the

change in stellar mass to remove galaxies that have undergone mergers above a certain mass

ratio, and the second on the ratio of galaxy mass to total satellite mass. First, we observe

the evolution of the galaxies by visual inspection to construct a catalogue of galaxies that

have not undergone mergers between z = 0.3 and 0. By comparing this catalogue to the

full sample we can constrain the rate of change in stellar mass such that above this limit the

sample is dominated by galaxies that have undergone mergers. Fig. 2.2 shows the distribu-

tion of fractional growth rates for galaxies that do not undergo mergers and the full sample.

From Fig. 2.2 we set an upper limit on the maximum stellar mass fractional growth rate of

0.16Gyr−1 within 5 per cent of the virial radius, under which galaxies have not undergone

significant minor or major mergers. We construct subsample VICTOR:B from subsample

VICTOR:A with the added constraint that ∆M∗/(⟨M∗⟩∆t) must fall below this value. Two

galaxies that fell below this limit were observed undergoing a minor merger, however, the

maximum stellar mass accreted was roughly one per cent that of the central galaxy so they

are included in subsample VICTOR:B. Lastly, we stipulate that the total satellite stellar mass

must be less than 40 per cent that of the central galaxy at every time step. To measure the

total satellite mass we subtract the total stellar mass within 0.1r200, where r200 is the virial

radius, from the total stellar mass inside r200. This leaves us with just seven galaxies in

subsample VICTOR:B.
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Fig. 2.2 Distribution of the maximum rate of change in stellar mass normalized by average

stellar mass between ti and ti+1 within 5 per cent of the virial radius. The black histogram

shows the rates for the full sample of 182 haloes. The green histogram shows the distribution

of rates for galaxies that did not undergo any mergers between z= 0.3, and 0. The red dashed

line indicates the upper limit we impose on subsample VICTOR:B.
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2.4 Analysis

To derive accurate tilting rates, we first find the kinematic centres of the galaxies. We adopt

the position of the lowest potential dark matter particle as our kinematic centre. We verify

that this method is reliable by computing the kinematic centre using an iterative shrinking

sphere method. Starting with a sphere of 200 kpc, we iterate centring on the centre of mass

and halving the radius each step to a final value of ∼ 10 pc. Using the lowest potential

dark matter particle, we are able to obtain kinematic centres for our entire sample of 182

galaxies.

We then measure the angular momentum of the galaxy by summing the angular mo-

mentum of each star particle within R < 0.05r200. This radius is selected to include the disc

of the galaxy, but exclude any warps. Briggs (1990) found that warps become detectable

within the Holmberg radius (RHo). For a typical virial radius of ∼ 200 kpc, we would

expect a Holmberg radius of ∼ 15 kpc, 5 kpc greater than the radius we would consider

for 0.05r200 ∼ 10 kpc. We also select this radius to avoid selecting just the bulges of our

galaxies, which tend to have lower specific angular momentum.

In order to determine the uncertainty in the tilting rates, we measure the difference in

the direction of the angular momentum vector at different radii. We measure the angular

momentum at seven linearly spaced radii spanning 0.01 < R/r200 < 0.04. We then use the

average angular discrepancy between the vectors as the error (σ) on the measurement of

the angular momentum vector, and hence on the tilting rate. For each of these errors we

assign a weight w such that w = 1/σ2, which will be used in the calculation of the mean

and standard deviation of each subsample.
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2.5 Results

2.5.1 Tilting rates

First we consider subsample VICTOR:A, i.e. galaxies with virial mass comparable to the

MW’s, within the range 9× 1011 ≤ M200 ≤ 1.2× 1012 M⊙. We measure the tilting rate

once, between the two time steps z = 0.3 and 0. This subsample tilts with a mean rate of

7.6◦Gyr−1, and a standard deviation of 4.5◦Gyr−1, well above the average error for this

subsample of just 0.05◦Gyr−1. All 19 of the galaxies in this subsample exhibit significant

tilting above Gaia’s detection limit of 0.28◦Gyr−1 (Perryman et al., 2014).

Next we consider subsample VICTOR:B, i.e. the galaxies with similar mass to the MW,

that have low fractional stellar mass change from z = 0.3 to z = 0, and have a maximum

total satellite mass of 40 per cent that of the central galaxy. Fig. 2.3 shows tilting rates for

sample VICTOR:B versus the ratio of stellar mass to satellite stellar mass. Each data point

in this figure corresponds to a tilting rate of a single galaxy, with the mass ratio measured

at z = 0. The green squares show only the five galaxies that were not observed to undergo

any mergers since z = 0.3, while the black squares were the two galaxies that did undergo

a minor merger within the same time. The tilting rates of this subsample have an average

of 6.3◦Gyr−1, with a standard deviation of 6.5◦Gyr−1, well above the average uncertainty

of 0.13◦Gyr−1. This subsample VICTOR:Also tilts with a rate well above Gaia’s detection

limit.

2.5.2 Environmental dependence

To determine if there is any dependence between the tilting rates of galaxies and their local

environment, we compare the tilting rates of the galaxies with their normalized local density.

We calculate the density within various radii centred on each galaxy, and then normalize by

the critical density at z = 0. Fig. 2.4 shows the distribution of densities for spheres with
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Fig. 2.3 Tilting rate versus the present day fraction of satellite to galaxy stellar mass

(Msat,∗/M200,∗) for subsample VICTOR:B, i.e. galaxies that have mass comparable to the

MW, and have low fraction stellar mass change between z = 0.3 and 0. The (green) squares

represent the galaxies that were observed to not have undergone any mergers since z = 0.3,

the (black) circles show the galaxies that undergo a minor merger. The black dashed line

shows recent estimates of the mass ratio of the LMC relative to the MW (Gómez et al.,

2015; Kallivayalil et al., 2013; Peñarrubia et al., 2016). The red horizontal line is Gaia’s

predicted detection limit (Perryman et al., 2014).
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radii 3,4,5 and 6 Mpc. We find that for large radii (5 and 6 Mpc) that there is a strong

correlation for subsample VICTOR:A with p values of 0.8 for both, although, for smaller

radii (3 and 4 Mpc), the correlation weakens, with p values of 0.2 and 0.6 respectively.

When we consider subsample VICTOR:B the correlations are enhanced, with p values of

0.7,0.95,0.97 and 0.96 for radii 3,4,5 and 6Mpc, respectively.

The MW has a close massive neighbour M31 within 1 Mpc. We compare the tilting

rates with the distance D to the nearest massive (M∗ > 9× 1011 M⊙) galaxy in subsample

VICTOR:A. Fig. 2.5 shows the tilting rate versus D; galaxies in subsample VICTOR:A span

a range of D, including some with very close neighbours and some very isolated. We see no

relation between D and the tilting rate. Considering galaxies in subsample VICTOR:B we

do find a weak anti-correlation. One of our galaxies does appear to be tilting extremely fast

without a close neighbour.

2.5.3 Dependence on gas

The angular momenta of the hot gas corona surrounding a galaxy and of the disc are not

generally aligned. As the gas corona continually feeds cool gas to the disc, this misalign-

ment causes gas being accreted to change the angular momentum of the disc. To investigate

this effect on the tilting rate, we define the hot gas corona in two different ways. In the first,

we choose all gas with a temperature T > 5× 104K, and in the second, we choose all gas

between two spherical shells of radii 0.2r200 and r200. The angular momentum calculated

from each definition is in good agreement, with p = 0.99. We compare the tilting rates of

the hot gas corona to the tilting rate of the disc for both of these methods. Fig. 2.6 shows

that for both methods of defining the corona, there is no correlation between the angular mo-

mentum tilting rate of the corona and disc for MW mass galaxies. Even when we consider

subsample VICTOR:B, we find no correlation for both methods.

Next we compare the tilting rates of the disc to the angular misalignment between the
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Fig. 2.4 Tilting rate versus the local density within a sphere of radius x at redshift z = 0.

In all panels, the (black) diamonds represent galaxies in subsample VICTOR:A with masses

comparable to the MW,and the (red) squares show galaxies in subsample VICTOR:B with

comparable mass and undergoing no interactions since z = 0.3. We measure correlation

coefficients for each panel x = 3,4,5 and 6 Mpc of p = 0.2,0.6,0.8 and 0.8, respectively,

for all points, while for subsample VICTOR:B, we find p values of 0.7,0.95,0.98 and 0.97,

respectively.
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Fig. 2.5 Tilting rate versus distance D to nearest galaxy with comparable mass to the MW

measured at z = 0. The (black) diamonds represent subsample VICTOR:A and the (red)

squares show subsample VICTOR:B. We find a correlation coefficient of p = −0.05 for

subsample VICTOR:A and p =−0.3 for subsample VICTOR:B.
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Fig. 2.6 Top panel: The tilting rate of the stellar disc versus the tilting rate of the corona,

defined as all gas between radii 0.2r200 and r200. We find no correlation for subsample

VICTOR:A (black diamonds) with a coefficient of p = −0.08. For subsample VICTOR:B

(red squares) we find no correlation with p = −0.18. Bottom panel: The tilting rate of the

stellar disc versus the tilting rate of the corona, defined as all gas with a temperature T >

5× 104 K. We find no significant correlation for subsample VICTOR:A (black diamonds),

with p =−0.035. Similarly for subsample VICTOR:B (red squares) we find no correlation,

with p =−0.27.
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disc and the hot gas corona for both methods of defining the hot gas corona. Figure 2.7

shows the relation between the tilting rates of discs and the angular misalignment of the hot

gas corona and disc angular momentum. We find a weak correlation with p values of 0.4

and 0.5 for both methods, respectively, for subsample VICTOR:A. However, for subsample

VICTOR:B, the correlation strengthens considerably for both methods with p values of 0.86

and 0.87.

The large-scale structure (LSS) may influence the flow of gas into the halo and subse-

quently the misalignment between the stellar and coronal angular momentum. When we

compare the misalignment of the hot gas corona from the stellar disc with the normalized

local density, we find similar correlations as those we found in Fig. 2.4. Therefore it is not

possible to determine from this simulation if the effect of the environment directly governs

the tilting of the galaxy, or if the LSS affects the tilting via its effect on the coronal angular

momentum, as seems likely. Debattista et al. (2015) found that galaxies lacking gas gen-

erally aligned with the minor axis of their halo. However, when gas is allowed to cool on

to the disc, the orientation can be more arbitrary. For both of our subsamples, we find that

galaxies with higher star formation generally tilt with higher rates. These results favour the

gas driven tilting scenario.

When we compare the angular momentum misalignment between the disc and the gas

corona with the local density, we find similar correlations as those in Fig. 2.4. Thus the

mechanism by which the LSS affects the disc’s tilting rate is unclear. The LSS may torque

the disc directly, or it may influence the flow of gas into the halo, driving the misalign-

ment between the stellar and coronal angular momentum, which in turn drives the tilting

(e.g. Debattista et al., 2015). One possible clue comes from comparing the tilting and the

star formation rate. For both of our subsamples, we find that galaxies with a higher star

formation rate generally tilt faster, suggesting that it is the delivery of misaligned angular

momentum through gas that dominates the tilting.
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Fig. 2.7 Top panel: The tilting rate of the stellar disc versus the angular difference in angu-

lar momentum orientation between the stellar disc and the hot gas corona, defined as all gas

between radii 0.2r200 and r200. We find a weak correlation for subsample VICTOR:A (black

diamonds), with p = 0.4, and a strong correlation for subsample VICTOR:B (red squares),

with p = 0.86. Bottom panel: The tilting rate of the stellar disc versus the difference in ori-

entation between the stellar disc and the hot gas corona, defined as all gas with temperature

T > 5×104 K. We find a weak correlation for subsample VICTOR:A (black diamonds) with

p = 0.5, and a strong correlation for subsample VICTOR:B (red squares) with p = 0.87.
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2.6 Discussion and Conclusions

When we consider galaxies with halo masses comparable to the MW (subsample VIC-

TOR:A), we find significant tilting with an error weighted mean rate of 7.6◦Gyr−1 and a

standard deviation of 4.5◦Gyr−1. The entire subsample displays significant tilting with

rates higher than the detection limit of Gaia. We further restrict to a sample with low

relative stellar accretion, and a maximum stellar mass fraction in satellites of 40 per cent

(subsample VICTOR:B), finding a lower mean tilting rate of 6.2◦Gyr−1, with a range from

0.65 to 24.6◦Gyr−1.

A variety of processes may drive the change in angular momentum that we have mea-

sured. Interactions with other galaxies are the most violent processes changing the angular

momentum of discs drastically over a short period. However, we have found that even when

we exclude strong interactions we still measure significant tilting above the detection limit

of Gaia. Therefore, we must turn to processes such as halo torques and the accretion of

misaligned cold gas on to the disc to explain the entire phenomena of disc tilting.

We investigated the effect of the local environment on the tilting rate of the disc. Com-

paring the local density against the tilting rate, we find that the tilting rate does not correlate

with the normalized local density within 3Mpc for subsample VICTOR:A. However, for

subsample VICTOR:B, we do find a correlation. When we consider larger radii, we find a

correlation between the tilting rate and the local environment for both subsamples. Galax-

ies in denser regions generally tilt at higher rates than galaxies in lower density regions,

irrespective of the galaxies stellar mass accretion.

The MW has a very close, similar mass, neighbour M31. In order to compare to the

MW’s configuration, we measured the distance to the nearest massive galaxy and deter-

mined the correlation with the tilting rates. We find almost no correlation for subsample

VICTOR:A; however, for subsample VICTOR:B, we do find very weak anti-correlation. This

suggests that the local configuration is unlikely to be a large contributing factor when the
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disc is accreting significant mass. Our sample contains galaxies in similar configurations to

the MW with companion galaxies within a few hundred kpc; these galaxies exhibit tilting

rates similar to more isolated galaxies.

To determine the effect of misaligned gas accreting from the hot gas corona, we mea-

sured both the tilting rate of the hot gas corona and the angular misalignment between the

stars and the corona. We find no correlation between the tilting rates of the two different

components for either subsample. We also compared the tilting rate of the disc to the angular

momentum misalignment between the two components: For subsample VICTOR:A, there is

a weak correlation, which becomes stronger for subsample VICTOR:B. We also find a cor-

relation between the misalignment of the disc and coronal angular momentum and the LSS.

Thus, the LSS may directly affect the tilting rate via torques, or indirectly by influencing the

flow of gas into the halo. For both subsamples, galaxies with higher star formation tilt faster,

perhaps indicating that the role of the LSS is in driving the misaligned gas. We conclude that

the angular momentum misalignment between the corona and disc is an important, possibly

dominant, driver of disc tilting.

In this chapter, we have measured the tilting rates for a wide variety of galaxies of

similar mass to the MW, in various configurations, some similar to the local configuration

of the MW. Every configuration yielded a tilting rate above the Gaia limit and should be

detectable. Confirmation of a tilting disc would have important consequences for under-

standing the evolution of the MW. For example, the tilt of the disc will make the potential

seen by the Sagittarius Stream time varying. Conversely failure to detect tilting may suggest

the MW is in an unexpectedly quiet configuration.
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Chapter 3

NIHAO: Tilting discs in cosmological

zoom-in simulations

3.1 NIHAO: a Numerical Investigation of a Hundred As-

trophysical Objects

3.1.1 Brief Introduction

The NIHAO project offers a sample of high resolution hydrodynamical simulation within a

cosmological context. Wang et al. (2015) present the sample of galaxies and give a detailed

description of the simulation techniques implemented in its creation, as well as comparing

the sample with observations. This section gives an overview of the NIHAO project.

The sample

As the name suggests the sample contains a hundred galaxies. The halo and stellar masses

span the ranges 5×109 < M200/M⊙ < 3×1013 and 5×104 < M∗/M⊙ < 2×1011, respec-

tively. Haloes were drawn from three cosmological simulations, two with box widths 60
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x-axis p value
M∗ -0.29
∆Mmax,∗/⟨M∗⟩∆t 0.73
∆Mmax,b/⟨Mb⟩∆t 0.43
b/a -0.42
c/a -0.43
T 0.06
θ(∗,major) 0.12
θ(∗, intermediate) 0.3
θ(∗,minior) 0.19
ρr=3,4,5,6Mpc/ρcrit 0.59, 0.63, 0.65, 0.86
θ(∗,corona) 0.21
∆θcorona/∆t 0.052
θ(∗,gas) 0.45
sSFR 0.77
⟨sSFR⟩ 0.9
M∗/M∗,200 -0.0064
M∗/Mg -0.45
Md

g/M∗ 0.3
Md

g/Mg -0.19
|L∗|(t0) 0.27
∆|L∗| -0.22
∆|L∗|/⟨|L∗|⟩ 0.33
|Lcool|(t0) -0.36
∆|Lcool| -0.25
∆|Lcool|/⟨|Lcool|⟩ -0.39
|Lcold|(t0) -0.35
∆|Lcold| -0.25
∆|Lcold|/⟨|Lcold|⟩ -0.44

Table 3.1 All error-weighted Pearson’s correlation coefficients reported in this chapter, be-

tween the x-axis listed and the tilting rate of the stellar disc (∆θ/∆t).
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Component Bland-Hawthorn and Gerhard (2016)
Total stellar mass M∗ 5±1×1010 M⊙
Hot gas corona mass Mc

g 2.5±1×1010 M⊙
Cool gas disc mass Md

g 0.7×1010 M⊙
Total gas mass Mg 3.2×1010 M⊙
Halo mass M200 1.1±3×1012 M⊙
Virial radius Rvir 282±30 kpc

Table 3.2 Recent values for different components of the Milky Way which will be used in

this chapter.

and 20 h−1 Mpc (Dutton and Macciò, 2014) and one further simulation with a box size of

15 h−1 Mpc. All of the initial N-body simulations were run in with a flat ΛCDM cosmol-

ogy with parameters from Planck Collaboration et al. (2014): Hubble constant H0 = 67.1

km s−1 Mpc−1, matter density Ωm = 0.3175, dark energy density ΩΛ = 1−Ωm −Ωr =

0.6824, radiation density Ωr = 0.00008, baryon density Ωb = 0.049, power spectrum nor-

malization σ8 = 0.8344, and power spectrum index n = 0.9624. All haloes with masses

9.5 < log10(M200/M⊙) < 12.3 were selected from each simulation. Haloes with neigh-

bours containing more than one-fifth of the parent halo’s virial mass, within 3 virial radii,

were rejected—this cut ensures the haloes are isolated. Because the mass range of the sam-

ple is so broad, Wang et al. (2015) set the dark matter resolution to be Ndark ∼ 106 for each

halo, ensuring a reliable mass profile down to 1 per cent of the virial radius, for the entire

sample.

Hydrodynamics

The zoom-in simulations were run using the N-body Smooth Particle Hydrodynamics (SPH)

code GASOLINE2 (Wadsley et al., 2017, 2004), with some modifications. Star formation

following the Kennicutt-Schmidt law is allowed for gas particles with temperature T <

15000 K, and density nth > 10.3 cm−3. The star particles feed energy back into the ISM

through the blast-wave supernova feedback formalism detailed in Stinson et al. (2006), as
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well as stellar winds prior to the supernova described in Stinson et al. (2013). For NIHAO

stellar winds feed 13 per cent of the total stellar energy, back into the ISM as 2× 1050

erg of thermal energy per solar mass of the particle. This value was chosen to match the

observed abundance matching relation from Behroozi et al. (2013). If a star particle has

mass 8 < M∗/M⊙ < 40 it will eject both its energy and metals into the surrounding gas

particles around the formation point of the star particle. After being heated by a stellar wind

the gas is able to cool via radiation, however, for the supernova itself, the cooling is delayed

by ∼ 30 Myr as the gas is very dense and is able to dissipate its energy too efficiently. For a

full description see Wang et al. (2015).

Haloes and galaxies

The haloes in the zoom-in simulations were identified using the AMIGA Halo Finder (AHF)

(Gill et al., 2004; Knollmann and Knebe, 2009). AHF looks for peaks in the density field

of the simulation, and tracks them over the course of the simulation. This results in merger

trees that can be used to determine the building blocks of the dark matter haloes in the

resulting time steps. Each halo has a mass M200, which is taken to be the mass enclosed at the

virial radius R200, which is defined as the radius which contains a density 200 times greater

than the critical density (see equation 1.1.20). This chapter will refer to the stellar mass M∗

defined as the total mass of star particles enclosed by 10 per cent of the virial radius. Wang

et al. (2015) compared the NIHAO sample to the observed abundance matching relationship

from Behroozi et al. (2013); Kravtsov et al. (2014); Moster et al. (2013), finding that across

the range of halo masses the stellar mass was in good agreement with observations. One

caveat to this would be that the abundance matching results rely on the assumption of a

single universal Milky Way IMF. The authors also compared the star formation rate and

stellar mass of the NIHAO galaxies with observations, finding good agreement, although

the observations are only able to probe higher mass galaxies. Most of the galaxies have
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specific star formation rates (star formation rate divide by total stellar mass) ≳ 0.1, a value

close to that estimated for the MW.

3.2 Sample Selection

At the time of this work 91 of the one hundred NIHAO simulations had reached z = 0.

In order to measure the angular momentum of any system, it is vital that the centre of the

system is correctly defined. To find the centre of each galaxy two different methods were

used: a shrinking sphere, and the lowest potential particle. The shrinking sphere method

followed the technique implemented by Power et al. (2003), an iterative technique to find

the centre of an N-body simulation. At each step, the centre of the sphere is determined by

the barycentre of the previous step, and the radius of the sphere is reduced by 2.5 per cent.

This is iterated down to the smallest sphere containing at least 100 particles, at which point

the centre of mass of this final sphere is returned. For the second technique, one can simply

look for the dark matter particle with the lowest potential energy and use its position as the

centre. Both these methods were also attempted in chapter 2, This chapter, found that the

lowest potential dark matter particle obtained a reliable centre for most NIHAO galaxies.

After removing galaxies where the centres were poorly determined the sample is reduced to

85 galaxies.

Measuring the angular momentum of the stellar disc was done by excluding older stars

in the thick disc or halo by using only stars with ages < 1 Gyr. Then calculating the angular

momentum of these young stars within a range of radii from 0.5 per cent of the virial radius

out to 10 per cent of the virial radius in 0.5 per cent increments. This chapter will use the

young stars within 5 per cent of the virial radius to determine the angular momentum of the

stellar disc. This is motived by that fact that radii less than 2 per cent of the virial radius

sometimes resulted in a vector that was not aligned perpendicular to the plane of the disc,
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as one would expect. This misalignment might be due to the low angular momentum of the

bulge. Further out the same problem was reproduced, however, this time of stars populating

the warp were responsible. Determining the tilting rates was done by measuring the angle

(∆θ ) between the angular momentum vectors of the stellar disc at ti and ti+1, and divided by

the time difference ∆t = ti+1− ti. The errors were obtained by measuring ∆θ in annuli from

two to five per cent of the virial radius,

ε = max{∆θ(r2,ri), r = 3,4,5}. (3.2.1)

This value was measured at z = 0.3 and again at z = 0, then summing these values in

quadrature gives the final error. Any galaxy that has an error greater than 5◦ was removed,

leaving 29 galaxies that had tilting rates with low errors.

As in chapter 2, this chapter is primarily interested in galaxies where the evolution is

driven by gradual processes e.g. minor mergers and continual gas accretion. In galaxies

where this evolution is dominant, the change in stellar mass should be driven by the star

formation. As such one can compare the stellar mass change to the change in star formation

to determine which process is dominant. However, the peak in star formation is not likely to

be linked to the maximum change in the stellar mass of galaxies accreting satellites. There-

fore, the comparison between the maximum change in stellar mass ∆M∗(tpeak)/⟨M∗⟩∆t to

the specific star formation rate, sSFR, at the same time step tpeak is required. Figure 3.1

shows the resulting distribution, with the black line shows x = y, and the grey shaded re-

gion denoting where at least half of the stellar mass change could be attributed to the star

formation rate. This plot separates the NIHAO sample (grey stars) into two subsamples,

both the black and red (diamonds and squares) have well determined tilting rates, but the

red (squares) are galaxies with masses greater than M200 > 9× 1011 M⊙. In the unshaded

region (galaxies where stellar accretion is dominant) only ∼ 22 per cent of the galaxies have

well determined tilting rates, whereas in the shaded region (galaxies where star formation
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is dominant) 50 per cent of the galaxies have well determined tilting rates. Galaxies in the

non-shaded region have gained a majority of stellar mass through accretion, and as such

will have gained angular momentum, possibly resulting in tilting. This thesis is primarily

concerned with tilting due to gradual processes, therefore, we will separate them.

Figure 3.2 shows sample NIHAO:A, all galaxies with well determine tilting rates (black

diamonds) and a subsample of A, sample NIHAO:B (red squares), containing galaxies with

masses M200 > 9× 1011 M⊙. samples NIHAO:A and NIHAO:B contain no galaxies that

have gained a majority of stellar mass through satellite accretion since z = 0.3. The green

star indicates where the MW would lie on this figure. This estimate is calculated by subtract-

ing the average type-II supernovae rate of 1.9± 1.1 per century (Diehl et al., 2006) times

the integral of the Salpeter IMF (Salpeter, 1955) between the masses M∗ = 8−40 M⊙ from

the Galaxy’s sSFR rate (Licquia and Newman, 2015). For the MW this estimate predicts

that ∼ 30 per cent of the mass gained from star formation is lost due to supernovae, the red

dashed line applies this offset to the one-to-one relationship (black line). The definitions of

samples NIHAO:A and NIHAO:B used here will be continued throughout this chapter.
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Fig. 3.1 Maximum stellar mass change versus specific star formation rate at the same epoch.

The black (diamonds) show galaxies that have well determined tilting rates, red (squares)

denote galaxies with well defined tilting rates as well as having a stellar mass greater than

9×1011 M⊙, and grey (circles) denote the rest of the NIHAO galaxies. The black line shows

the one-to-one relationship, and the grey shaded region highlights where star formation is

the primary mode of stellar mass growth. Points lying above the line are where the star

formation dominates the stellar mass change, although, stellar feedback causes the mass

change to be slightly lower than expected.
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Fig. 3.2 Maximum stellar mass change versus specific star formation rate over the same

time. The black diamonds show sample NIHAO:A and the red squares denote sample NI-

HAO:B. The green star indicates the Galaxy, calculated from values of the sSFR and su-

pernovae rate from Licquia and Newman (2015) & Diehl et al. (2006). The red dashed line

applies an offset the to one to one relation (black line) by assuming a MW supernovae rate.
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3.3 Abundance Matching

Chapter 2 mentioned that the cosmological simulation suffered from over-cooling, where

lower mass dark matter haloes were forming stars too efficiently (see Figure 2.1). The

NIHAO galaxies do not suffer as much from over-cooling and can reproduce the observed

abundance matching relationships much more closely. Figure 3.3 shows the virial mass

versus the stellar mass within 10 per cent of the virial radius. The figure compares the

NIHAO galaxies to the observed relationship from Kravtsov et al. (2014) derived using halo

abundance matching (black line). Wang et al. (2015) present a similar figure showing that

the model galaxies do not suffer from over-cooling, and extend their comparison to include

the observed relationships given by Behroozi et al. (2013); Moster et al. (2013). With the

stellar mass to the halo mass in good agreement with observations to much lower mass than

in chapter 2, this chapter is able to consider the tilting rates of much lower mass galaxies.

The green star on Figure 3.3 denotes the MW, with virial mass M200 ∼ 1.1× 1012 M⊙ and

stellar mass M∗ ∼ 5× 1010 M⊙ (Bland-Hawthorn and Gerhard, 2016). The low end of the

NIHAO sample does still drift away from the observed relation, however, none of these

galaxies fall within sample NIHAO:A and will not be studied in much detail.
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Fig. 3.3 Halo mass versus stellar mass for the NIHAO galaxies (grey), sample NIHAO:A

(black diamonds) and sample NIHAO:B (red squares). All samples trace the observed abun-

dance matching relation from Kravtsov et al. (2014) (black line and grey shaded region is

the 1σ scatter). The green star denotes the position of the MW, assuming a halo mass of

M200 ∼ 1.1×1012 M⊙ and a stellar mass of M∗ ∼ 5×1010 M⊙ (Bland-Hawthorn and Ger-

hard, 2016).
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3.4 Sample Comparison

This section will briefly cover the tilting rates measured for all three samples NIHAO:A, NI-

HAO:B and NIHAO. As a preface to this section, one must be cautious drawing conclusions

from the tilting rates of the entire NIHAO sample, as they have large uncertainties.

Figure 3.4 shows the stellar mass versus the tilting rate of all the galaxies in the NI-

HAO sample (grey circles), sample NIHAO:A (black diamonds) and sample NIHAO:B (red

squares). One can see that there is no clear relationship between stellar mass and the tilting

rate of the stellar disc, however, there does appear to be a bias for galaxies with lower stellar

mass to tilt at higher rates than high mass galaxies. Figure 3.5 shows the tilting rate versus

the change in stellar mass (left) and baryonic mass (right). On one hand, for a galaxy ac-

creting smaller satellites one would expect the stellar mass change to be related to the tilting

rate, as the accretion of a satellite will contribute angular momentum to the disc—but not if

the satellites tend to lie in the plane of the galaxy. On the other hand for an isolated galaxy

evolving quiescently, there should be little relationship between change in stellar mass and

the tilting rate. However, the star formation might also be considered as a proxy for gas ac-

cretion, as without ongoing gas accretion the star formation would quickly deplete the gas

reservoir of the galaxy. With these considerations, one would expect the tilting rate to be

correlated with the baryonic mass change, and indeed such a tendency is found for galaxies

with higher accretion rates to have higher tilting rates.
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Fig. 3.4 Stellar mass versus tilting rate for NIHAO galaxies (grey), sample NIHAO:A (black

diamonds) and sample NIHAO:B (red squares). The tilting rates of higher mass galaxies

tend to have a wider range then lower mass galaxies, which tend to have higher tilting rates.

The underrepresentation of sample NIHAO:A and sample NIHAO:B at the lower end of the

mass range indicates that determining the tilting rates for lower mass galaxies is far harder

than for more massive galaxies.
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Fig. 3.5 Maximum change in stellar mass (left), and maximum change in baryonic mass

(right) against the tilting rate for NIHAO (grey), sample NIHAO:A (black diamonds) and

sample NIHAO:B (red squares). There is a weak correlation between the maximum stellar

mass change and the tilting rate, with p = 0.73 for sample NIHAO:A. The correlation be-

tween baryonic mass change and tilting rate for sample NIHAO:A is weaker with p = 0.43.
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3.5 samples NIHAO:A and NIHAO:B

This section will report the tilting rates and uncertainties for samples NIHAO:A and NI-

HAO:B with respect to different components of the galaxy. Throughout the error-weighted

Pearson correlation coefficient, p(x,y,ω), will be reported. The weights are given by ω =

ε−2, where ε is the error on the tilting rate. With this set of weights one can determine the

error-weighted covariance, given by

covω(x,y,ω) =
Σiω(x−µω(x))(y−µω(y))

Σiω
, (3.5.1)

where µω denotes the weighted mean. The weighed Pearson correlation coefficient is given

by

pω =
covω(x,y,ω)√

covω(x,x,ω)covω(y,y,ω)
. (3.5.2)

This thesis will only report p for sample NIHAO:A not for sample NIHAO:B, due to the

small number of galaxies in sample NIHAO:B. A correlation coefficient of |p| < 0.4 will

be treated as a null result and not reported here, a value between 0.4 < |p| < 0.7 will be

referred to as a weak correlation, a value between 0.7 < |p| < 0.9 will be referred to as a

strong correlation, and a value of |p|> 0.9 will be referred to as a very strong correlation.

Figure 3.6 shows the tilting rates for both samples A (all points) and B (red squares)

versus the stellar mass within 10 per cent of the virial radius. The red dashed line denotes

the observable limit of Gaia; as stressed in chapter 2, all the galaxies in sample NIHAO:A

tilt with a rate that would be detectable. There is a weak anti-correlation between the titling

rate and the stellar mass for sample NIHAO:A with p = 0.59.
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Fig. 3.6 Stellar mass versus tilting rate for sample NIHAO:A (black diamonds) and sample

NIHAO:B (red squares). The green dashed line denotes the stellar mass of the MW, M∗ ∼
5× 1010 M⊙ (Bland-Hawthorn and Gerhard, 2016), and the red dashed line indicates the

observational limit of Gaia (Perryman et al., 2014). As in chapter 2, all the galaxies in

sample NIHAO:A tilt with a rate that would be observable by Gaia.
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3.5.1 Dark Matter Halo

Various studies have found that the dark matter haloes in cosmological simulations tumble

(Bailin and Steinmetz, 2004; Bryan and Cress, 2007; Moore et al., 2004). It has been argued

that the torques imposed from such tumbling haloes would themselves cause a resident disc

to tilt. Yurin and Springel (2015) inserted live stellar discs into eight, MW-sized, high-

resolution dark matter haloes from the AQUARIUS simulation and found that the stellar

discs tilted. This section will compare the dark matter halo to the tilting rates of the stellar

discs they harbour and investigate the halo role in the tilting of the disc.

The principal axes of the dark matter halo are defined with the condition that a > b > c,

and the principal axis ratios are given by s = b/a and q = c/a following Kazantzidis et al.

(2004). Using an iterative process, the shape of the dark matter halo can be calculated,

starting with a spherical ellipsoid with a = b = c. Then determining the modified inertia

tensor Ii j, defined as:

Ii j = ∑
α

mαxα
i xα

j /r2
α

where xα
i is the ith coordinate of the αth particle and rα is the elliptical radius defined as

r2
α = x2

α + y2
α/s2 + z2

α/q2. The eigenvalues of the modified inertia tensor are used as the

new values of s and q. These iterations continue until the values of s and q converge to a

fractional difference less than 10−2. Following Butsky et al. (2016) the triaxiality parameter

is defined as T = 1−(b/a)2

1−(c/a)2 . T can be compared to prolate, oblate and triaxial spheroids,

which would have T values of 1, 0 and ∼ 0.5, respectively.

Figure 3.7 shows the tilting rate of the disc with respect to the intermediate to major axis

ratios (b/a, left), minor to major axis ratios (c/a, middle) and the triaxiality parameter (T ,

right). The ability of a halo to cause a disc to tilt in N-body simulations (e.g. Yurin and

Springel, 2015) would lead to a relationship between the halo shape and the tilting rate of

the disc. There is a weak anti-correlation between both b/a and c/a and the tilting rate of
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the disc with, p = −0.42 and −0.43, respectively. However, there is no correlation, with

the triaxiality, with p = 0.06. We also find that higher mass haloes have a higher average

T value ∼ 0.6, meaning they are slightly more prolate than the mean of the full sample,

T ∼ 0.54. Although previous authors have claimed that they are able to cause stellar discs

to tilt purely by the gravitational dynamical interactions between the disc and halo, in the

case of these hydrodynamical simulations there is only a weak anti-correlation between the

shape of the halo and the tilting rate of the disc.

The second possibility is that the stellar disc is tilting into alignment with the principal

axis of the dark matter halo. Debattista et al. (2013) showed that red galaxies tended to be

aligned such that their angular momentum was parallel to the minor axis of their parent halo,

whereas blue galaxies tended to have random orientations. Figure 3.8 shows the distance

between the angular momentum vector of the stellar disc and the major- (left), intermediate-

(middle) and minor-axes (right). The angles were calculated at z = 0.3, therefore, one might

assume that galaxies less aligned with a preferential axis (minor or major), would tilt with

higher rates. There does not appear to be such a relationship with correlation coefficients

of p = −0.12,0.3 & −0.19 for the left, middle and right panels, respectively. This was

also reproduced at z = 0, again finding no relationship between the galaxies alignment with

respect to the halo and its tilting rate.

Figure 3.9 shows the distribution of alignments between stellar discs and their host

haloes. Although the plot does indicate there is a slight preference to be more aligned

with the minor axis of the halo, the rightmost panel shows that the majority of the galaxies

are not closely aligned to any axes of the halo. All the galaxies in sample NIHAO:A are star

forming blue galaxies, with sSFRs generally above the level of the MW. This confirms the

previous results finding that blue galaxies generally have random alignments with respect

to their dark matter halo (Debattista et al., 2013). During the investigation the alignments

between the hot gas corona and dark matter were also considered, again finding no tendency
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to align. Ongoing gas flow from the surrounding IGM contributes angular momentum to the

corona; this angular momentum has no preference to be aligned with the angular momentum

of the halo.

3.5.2 Local density

Another possible driver of the tilting rates could be the presence of high mass neighbours

or the proximity of high density regions. The former is not possible in the NIHAO sample

due to the strict isolation criteria imposed when constructing the sample. Chapter 2 found

that galaxies in higher density areas tended to tilt with higher rates and that this correlation

was stronger for larger volumes. Figure 3.10 compares the tilting rate to the local density

calculated with increasing volumes, with radii between 3 and 6 Mpc. All four panels show

a correlation between local density and tilting rate, the correlation tightens with increasing

radius. The radii, 3,4,5 & 6 Mpc, have correlation coefficients of p = 0.59,0.63,0.65 &

0.86, respectively. Therefore, galaxies in higher density regions of the simulation tilt with

the highest rates, as reported in chapter 2. Figure 3.10 also sheds light on the galaxy with

the highest tilting rate in sample NIHAO:A; this galaxy is in a high density region, within

the smallest volume it has roughly twice the local density of second highest.

3.5.3 Gas

This section will compare the tilting rates to the hot gas corona and the gas disc of the

galaxy. The hot gas corona is defined as all gas particles with R < R200 and temperature T >

50000K. The extended gas disc is defined as all gas within 10 per cent of R200. Choosing

to go further out for the gas than for the stellar disc is motived by the need to capture the

angular momentum of the warp which can be extended beyond the radius of the stellar disc.

In hydrodynamical simulations, the stellar disc and hot gas corona are usually mis-

aligned (e.g. van den Bosch et al., 2002). This misalignment allows gas to cool from the
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corona onto the disc that is misaligned with the disc, possibly forming warps (Roškar et al.,

2010). Gas cooling from the halo may be able to fall further inside to the disc radius con-

tributing misaligned angular momentum to the disc, causing the disc to tilt. Figure 3.11

shows the tilting rate plotted against the angular misalignment between the hot gas corona

and the stellar disc (left), and the tilting rate of the hot gas corona (right). All the galaxies

in sample NIHAO:A have misaligned coronae. But there is no correlation between the mis-

alignment of the hot gas corona or its tilting rate and the tilting rate of the stellar disc, with

correlation coefficients of p = 0.21 and 0.052, respectively. Chapter 2 reported a correlation

between the misalignment of the corona and the titling rate, which is not reproduced here.

The angular momentum of the warp should give a good indication of the angular mo-

mentum of the corona, as cooling gas from the corona can form warps (Roškar et al., 2010).

As such the misalignment of the warp and the stellar disc should shed light on the angular

momentum that is being added to the disc from the corona. Figure 3.12 compares the angle

between the angular momentum vectors of the gas disc and the stellar disc against the tilting

rate of the stellar disc. This figure provides some indication of the link between the tilting

rate of the disc and the misaligned extended gas disc, finding a weak correlation between

the misalignment and the tilting rate, with p = 0.45.

3.5.4 Star formation rate

Observationally detecting gas accretion or the alignment of the hot gas corona is extremely

difficult. However, as the galaxy requires this ongoing accretion of gas to fuel its star forma-

tion one can assume that the star formation rate itself is a proxy for the amount of gas being

accreted. Section 3.5.3 highlighted a possible connection between the accretion of mis-

aligned gas and the tilting rate. If this misaligned gas can reach the disc it could form stars

directly contributing misaligned angular momentum to the disc. This section investigates

links between the star formation rate and the tilting of the stellar disc.
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Star formation is calculated as the mass sum of all star particles born between z = 0.3

and 0, divided by the time difference. As sample NIHAO:A spans a wide range of masses it

is practical to use the specific star formation rate (sSFR), by dividing the star formation rate

by the average stellar mass within 10 per cent of R200 since z = 0.3. Figure 3.13 compares

the sSFR at z = 0 and averaged over the time range to the tilting rate of the stellar disc. The

green dashed line in the left panel shows a recent estimate for the sSFR of the MW (Licquia

and Newman, 2015). sample NIHAO:A shows a strong correlation between sSFR at z = 0

and tilting rate, with an error weighted correlation coefficient of p = 0.77. When averaging

the sSFR over the time range there is a stronger correlation, with p = 0.9.

3.5.5 Mass fractions

This section compares the tilting rate of the stellar disc to various mass ratios. The left

panel of Figure 3.14 compares the ratio of stellar (out to 0.1R200) and total stellar mass

(out to R200) to the tilting rate of the stellar disc. The green line in this figure denotes an

upper limit for the MW, assuming the LMC is the dominant stellar mass outside 0.1R200

and has a virial mass of MLMC ∼ 2×1011 M⊙ (Gómez et al., 2015; Kallivayalil et al., 2013;

Peñarrubia et al., 2016). Determining the stellar mass from M200 was done by assuming

the LMC follows an observed abundance matching relation (Kravtsov et al., 2014). A value

of M∗ ∼ 5× 1010 M⊙ was assumed for the stellar mass of the MW (Bland-Hawthorn and

Gerhard, 2016). There is no correlation between the stellar mass ratio and the tilting rate

of the stellar disc for sample NIHAO:A with p = −0.064, indicating that the presence of

nearby satellites within R200 is not indicative of a high tilting rate. The right panel of Figure

3.14 compares the ratio of stellar (out to 0.1R200) to total gas mass (out to R200) against the

tilting rate of the stellar disc. The green star indicates the MW. sample NIHAO:A exhibits

a weak anti-correlation, with p =−0.45. This mass ratio traces the total gas mass available

to cool and form stars within the galaxy. It has been shown in section 3.5.4 that there is a
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correlation between the sSFR and the tilting rate of the disc. Star formation is a result of

the continual feeding of gas onto the disc. For galaxies with more gas available within R200,

relative to their stellar mass, it is therefore not surprising that they tilt faster.

The left panel of Figure 3.15 shows the ratio of gas and stellar mass (out to 0.1R200)

against the tilting rate of the stellar disc. The green star shows the location of the MW.

There is no correlation between this mass ratio and tilting rate of the stellar disc, with a

correlation coefficient of just p = 0.3. The right panel of Figure 3.15 shows the ratio of gas

mass in the disc (out to 0.1R200) and corona (out to R200). Again there is no correlation

between the mass ratio and the tilting rate with p =−0.19.

3.5.6 Angular Momentum

As the gas from the corona cools onto the disc, this changes the total angular momentum

of the disc. This extra angular momentum is not necessarily aligned with the stellar disc,

causing the direction of the angular momentum to change. This section will compare the

change in total angular momentum to the change in the direction of the angular momentum

(tilting rate).

Figure 3.16 shows the angular momentum of the stellar disc at z = 0.3 (left), the change

in angular momentum from z = 0.3 to z = 0 (middle), and then the difference normalized

by the mean angular momentum (right). The rough estimate for the angular momentum of

the Milky Way’s stellar disc |L|= mrv = 2.6×1013 M⊙ km s−1 kpc (green dashed line) was

obtained by assuming a disc stellar mass to be 4.6×1010 (Bovy and Rix, 2013), putting all

the mass at the scale radius R= 2.6 kpc (Bland-Hawthorn and Gerhard, 2016), and assuming

a circular velocity of 218 km s−1 (Bovy and Rix, 2013). There are no correlations between

the total angular momentum at z = 0.3 or the change in angular momentum when compared

to the tilting rate of the stellar disc with p =−0.27 & −0.22, respectively. Moreover, when

comparing the absolute normalized change in angular momentum (∆|L|= ||L2|− |L1||) and
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the tilting rate of the stellar disc there is no correlation, with a correlation coefficient of

p = 0.33.

Figure 3.17 compares the angular momentum of the cool gas (T < 50000K) at z = 0.3

(left), the change in angular momentum since z = 0.3 (middle) and the change normalized

by the average angular momentum over the same time (right) all versus the tilting rate of

the stellar disc. All three panels show no correlation, with p = −0.36, −0.25 and −0.39,

for the left, middle and right panels, respectively.

Figure 3.18 shows the angular momentum of the cold gas disc (T < 20000) at time

z = 0.3 (left), the change in angular momentum since z = 0.3 (middle), and the change

normalized by the average angular momentum over the same time period (right), all versus

the tilting rate of the stellar disc. All three panels show no correlation, with p = −0.35,

−0.25 and −0.44, for the left, middle and right panels, respectively. If the change in the

angular momentum’s magnitude is not related to the tilting rate of the stellar disc, one must

assume that not all of the angular momentum that is added to or removed from, the disc is

driving the tilting of the disc.
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Fig. 3.10 Normalised local density out to 3 Mpc (top left), 4 Mpc (bottom right), 5 Mpc (top

right) and 6 Mpc (bottom right), versus tilting rate for sample NIHAO:A (black diamonds)

and sample NIHAO:B (red squares). All four plots have a correlation between local density

and tilting rate, this correlation tightens with increasing volume size. For sample NIHAO:A,

the radii 3,4,5 & 6 have correlation coefficients of p = 0.59,0.63,0.65 & 0.86, respectively.
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Fig. 3.11 Left: the angle between the angular momentum vectors of the stellar disc and

hot gas corona versus the tilting rate of the stellar disc, right: tilting rate of the hot gas

corona versus the tilting rate of the stellar disc for sample NIHAO:A (black diamonds)

and sample NIHAO:B (red squares). Chapter 2 noted a correlation between the extent of

misalignment between the corona and stellar disc with the tilting rate of the disc. For sample

NIHAO:A there is no such correlation, with p = 0.21 and 0.052 for the left and right panels,

respectively.
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Fig. 3.12 Angular difference between the angular momentum vectors of gas within 10 per

cent of the virial radius and the stellar disc versus the titling rate for sample NIHAO:A (black

diamonds) and sample NIHAO:B (red squares). There is as weak correlation between the

misalignment extent and the tilting rate of the stellar disc, for sample NIHAO:A p = 0.45.
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Fig. 3.13 Left: specific star formation rate, at z = 0, versus tilting rate of the stellar disc

for sample NIHAO:A (black diamonds) and sample NIHAO:B (red squares). The green

line shows the specific star formation rate of the MW (Licquia and Newman, 2015). Right:

average specific star formation at each time step between z = 0 and 0. There are correlations

for sample NIHAO:A in both the left and right plots, with correlation coefficients of p= 0.77

and 0.9, respectively.
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Fig. 3.14 Left: ratio of galaxy stellar mass out to 10 per cent of R200 to total stellar mass

inside R200 versus tilting rate of the disc, right: ratio of stellar mass out to 10 per cent of R200

to total gas mass inside R200 versus tilting rate of the stellar disc. The green dashed line on

the right panel shows the stellar to gas mass ratio of the MW (Bland-Hawthorn and Gerhard,

2016). There is no correlation for sample NIHAO:A in the left panel, with p =−0.064, and

a weak anti-correlation for sample NIHAO:A (black diamonds) on the right panel, with

p =−0.45.
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Fig. 3.15 Left: mass ratio of the gas and stellar discs versus tilting rate. Right: mass ratio

of gas disc and halo. The green lines on both panels denotes the location of the MW with

values for the masses taken from Bland-Hawthorn and Gerhard (2016). Both panels show

no correlation for sample NIHAO:A, with p = 0.3 & −0.19 for left and right, respectively.
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3.6 Chapter summary

This chapter investigated the links between the tilting rates of the stellar discs and various

components of the respective galaxies. This section will provide a brief summary of the

correlations found. Weak anti-correlation between the axis ratios of the halo and the tilting

rate of the disc were identified. The weak correlation between the misalignment of the

extended gas and stellar discs versus the tilting rate of the stellar disc were shown. When

comparing the ratio of stellar (out to 0.1R200) to total gas mass (out to R200) against the

tilting rate of the disc, a weak anti-correlation was measured. Correlations found in chapter 2

between the local density and the tilting rate were confirmed here and again found to become

tighter with increasing volume. A strong correlation was found between the maximum

stellar mass change and the tilting rate. A strong correlation was found between the sSFR

and the tilting rate, this correlation becomes very strong when the sSFR is averaged over the

time period.
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Chapter 4

NIHAO: Sample B

4.1 Brief introduction

This chapter will delve deeper into the five NIHAO galaxies with well determined tilting

rates, a mass of M200 > 9× 1011 and whose stellar mass change is dominated by star for-

mation (sample B of Chapter 3). For each galaxy, the change in angular momentum of the

stellar disc will be compared to the galaxy’s cool gas disc, hot gas corona and dark matter

halo. This chapter will retain the naming convention laid out in Wang et al. (2015), where

the galaxy is simply referred to by the mass of the dark matter halo from the parent N-body

simulation. Tables 4.1 & 4.2 shows some generic information about each galaxy at z ∼ 0.3

and 0, respectively.

106



4.1 Brief introduction

Galaxy ID g7.55e11 g7.66e11 g8.26e11 g1.92e12 g2.79e12
Mdisc,∗[1011 M⊙] 0.24 0.35 0.41 1.3 1.6
Msat,∗/Mtotal,∗ 0.04 0.01 0.016 0.003 0.02
Mdisc,∗/Mtotal,∗ 0.94 0.76 0.97 0.98 0.94
M200[1012 M⊙] 0.70 0.82 0.89 2.1 3.3
Mcorona[1011 M⊙] 0.23 0.21 0.23 0.79 1.5
Mcorona/Mdisc,∗ 0.96 0.6 0.56 0.6 0.94
R200 [ kpc] 203 214 219 291 340
max(vcirc) [km s−1] 135 229 199 399 404
λp 0.054 0.023 0.062 0.027 0.05
ρ6kpc/ρcrit 0.7 0.7 0.6 0.7 1
|Ldisc,∗|[1014 M⊙ kpc km s−1] 0.07 0.03 0.2 0.8 1.8
|Lcorona|[1014 M⊙ kpc km s−1] 1.1 4.4 1.5 2.0 11.2
|Lcorona|/|Ldisc,∗| 15.5 147 7.5 2.5 6.2
Rwarp [ kpc] 25 4 21 13 28

Table 4.1 Galaxies in sample B, all values are calculated at z ∼ 0.3. Total stellar mass is

calculated within R200, max(vcirc) is for star particles inside R < 30 kpc. The mass and

angular momentum of the hot gas corona Mcorona & LLLcorona were determined using all hot

gas (T > 50,000K) within R200.
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Galaxy ID g7.55e11 g7.66e11 g8.26e11 g1.92e12 g2.79e12
Mdisc,∗[1011 M⊙] 0.3 0.47 0.46 1.5 1.9
Msat,∗/Mtotal,∗ 0.03 0.01 0.006 0.003 0.02
Mdisc,∗/Mtotal,∗ 0.97 0.79 0.97 0.98 0.95
M200[1012 M⊙] 0.90 0.93 1.02 2.3 3.5
Mcorona[1011 M⊙] 0.26 0.22 0.24 0.8 1.4
Mcorona/Mdisc,∗ 0.87 0.47 0.52 0.53 0.74
R200 [ kpc] 299 303 312 412 472
max(vcirc) [km s−1] 143 260 203 402 440
λp 0.05 0.026 0.06 0.022 0.036
ρ6kpc/ρcrit 1 0.8 0.6 0.7 1
|Ldisc,∗|[1014 M⊙ kpc km s−1] 0.15 0.09 0.25 1.1 2.4
|Lcorona|[1014 M⊙ kpc km s−1] 1.3 0.71 2.0 0.85 13
|Lcorona|/|Ldisc,∗| 8.7 7.9 8 0.77 5.4
Rwarp [ kpc] 25 4 21 13 28
sSFR [Gyr−1] 0.063 0.039 0.0307 0.041 0.0405
sSFRmax [Gyr−1] 0.066 0.19 0.0508 0.069 0.11

Table 4.2 Galaxies in sample B, all values are calculated at z = 0. Total stellar mass is

calculated within R200, max(vcirc) is for star particles inside R < 30 kpc. The mass and

angular momentum of the hot gas corona Mcorona & LLLcorona were determined using all hot

gas (T > 50,000K) within R200.
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4.2 Analysis

Throughout this chapter, the radius at which the misalignment between the cool gas and

stellar disc becomes > 5◦ is used to define the start of the warp (Rwarp) and the end of

the unwarped stellar disc (Rdisc). Here, ‘cool gas’ refers to gas with T < 20,000K and

‘hot gas’ will refer to gas with T > 50,000K. This value is calculated using the angular

momentum of cool gas in annuli from 2 kpc to 30 kpc, with widths of 2 kpc, at z ∼ 0.3.

As this value may change over the subsequent time steps, this chapter will also report the

values out to 30 kpc. In order to compare the orientation of each components’ angular

momentum Briggs figures will be used extensively, for a detailed explanation see section

1.3.1. In all of the Briggs figures, the colour represents the position of the unit vector in the

temporal (triangles) or radial (circles) series, dark blue being the start and dark red the end.

The size of each point represents the magnitude of the angular momentum vector and all

magnitudes are normalised to the panel. Each Briggs figure shows the angular momentum

vectors normalised and rotated with respect to the stellar disc’s angular momentum. This

is done by calculating the rotation matrix needed to transform the angular momentum of

the stellar disc into the z-axis, then applying this rotation matrix to all angular momentum

vectors in the panel.

This chapter is interested in the impact of accreting material with misaligned angular

momentum, on the tilting rate of the stellar disc. As such the inflow and outflow of angular

momentum is calculated using the unique gas particle id’s. Every particle within an annulus

has their id’s listed at each time step. Any particle that moves from a radius greater than

Rshell to a radius R < Rshell is considered inflowing material, any particle that moves from a

radius R < Rshell to R > Rshell is considered outflowing material. To calculate the net flow,

the total angular momentum was calculated for both the inflowing and outflowing material,

then subtracted such that LLLnetflow = LLLinflow −LLLoutflow. This results in the change in angular

momentum crossing each shell. For stars and dark matter particles the net flow can be
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calculated by simply comparing the particle id’s at z ∼ 0.3 and 0. However, for gas, this is

done by summing LLLnetflow at each time step. The motivation behind this is that a gas particle

can enter a bin then undergo star formation, in such a case the net flow of gas would be

underestimated. It is possible that a gas particle could cross a shell and then form a star

before the next snapshot, however, this should only be a small number of particles.

4.3 Substructure driven tilting

This section highlights two of the NIHAO galaxies from sample B where the tilting is pri-

marily driven by their substructure. The accretion or interactions with satellites can con-

tribute a large amount of misaligned angular momentum resulting in a change in the stellar

disc’s angular momentum. A comparison to the MW would be the interaction with the

Sagittarius Dwarf Spheroidal Galaxy (Sgr Sph).
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Fig. 4.1 g7.66e11 - Stellar surface density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.

4.3.1 Galaxy: g7.66e11

Galaxy g7.66e11 has a stellar mass of Mdisc = 4.7×1010 M⊙, but a small stellar disc with a

radius ∼ Rdisc ∼ 4 kpc. The total stellar content of the galaxy extends further than the disc

radius, with only ∼ 79 per cent of the stellar content inside this radius, residing in a stellar

warp and an extended stellar halo. It has the largest tilt rate in the sample with ∆θ/∆t ∼

14.6◦ Gyr−1, roughly 5 times larger than the second highest tilting rate in this sample.

Figure 4.1 shows the stellar surface density of g7.66e11 in three different projections.

g7.66e11: stellar disc and satellites

Figure 4.2 shows the angular momentum of the stellar disc (LLLdisc,∗) (top) at each time step,

with respect to LLLdisc,∗ at z ∼ 0.3. The stellar disc tilts in a very consistent direction but slows

between z ∼ 0.3 and 0. This is echoed in the angular momentum’s magnitude, which grows

slower at later times, starting and ending with values of |LLLdisc,∗| = 3.4 and 8.9× 1012 M⊙

kpc km s−1, respectively. The bottom panels show LLLdisc,∗ in increasing radial bins, from 5 to

30 kpc at z ∼ 0.3 (left) and 0 (right). Here the angular momentum is dominated by the disc

for only the first annulus, after this, the angular momentum is much smaller and is widely
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distributed as a result of the small stellar disc. The direction of the stellar warp’s angular

momentum is aligned with the tilting direction at z = 0. The magnitude of the angular

momentum grows rapidly at low radii, with the central bin gaining roughly three times its

initial angular momentum ending with 4.8× 1012 M⊙ kpc km s−1, whereas the outer bin

only gains twice its initial value finishing with 5.9×1011 M⊙ kpc km s−1.

Figure 4.3 shows the angular momentum of all stars (LLL∗) within the virial radius, but

with radii larger than the disc at each time step (top), with respect to LLLdisc,∗ at z ∼ 0.3.

This panel shows a drastic shift at z ∼ 0.15 and comparing this to the evolution of stellar

density, at this time a satellite falls into the halo, resulting in an order of magnitude increase

from |LLL∗| = 1.2× 1012 M⊙ kpc km s−1 to |LLL∗| = 4.1× 1012 M⊙ kpc km s−1. The bottom

left panel shows the stellar angular momentum of all stars within the virial radius, here the

misaligned angular momentum of this satellite is noticeable, but steadily tends towards the

final position of LLLdisc,∗. The bottom right plot shows LLL∗ in radial bins at z ∼ 0.3, where one

can see that before the in infall of this satellite, the angular momentum of the disc dwarfs

the misaligned angular momentum of the satellites out to 160 kpc. Starting with the inner

annulus of 10 kpc the angular momentum’s magnitude falls three orders of magnitude from

4 to 0.004×1012 M⊙ kpc km s−1 at the outer annulus of 140 kpc at z = 0.

g7.66e11: gas disc, warp and hot gas corona

Figure 4.4 shows the column density of HI in g7.66e11, with three different projections.

Roškar et al. (2010) used a disc galaxy forming in a high-resolution fully cosmological

simulation and found that the cool gas accreting at the virial radius starts out with misaligned

angular momentum with that of the hot gas corona. As the cool gas falls further towards the

disc it is torqued by the hydrodynamical forces imposed by the hot gas. By the time the cool

gas reaches the disc, it has angular momentum aligned with that of the hot gas. Figure 4.5

compares the axis ratios, b/a (black) and c/a (red) of the hot gas corona versus radius (left).
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Fig. 4.2 g7.66e11 - Top: angular momentum of the stellar disc LLLdisc,∗ at each time step (top),

with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right:

LLLdisc,∗ within annuli of increasing radii from 5 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3

(left) and at z = 0 (right). Each bottom panel is shown with respect to the stellar angular

momentum of the disc at their respective time steps. The size of each point indicates the

magnitude of the angular momentum vector, the colour denotes its position in the time (top)

or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red

being the end (z = 0 or R = 30 kpc). The majority of the angular momentum is within

R = 15 kpc, and the tilting direction is close to linear.
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Fig. 4.3 g7.66e11 - Top: angular momentum of all the stars LLL∗ outside the disc and within the

virial radius (Rwarp < R∗ < R200) at each time step, with respect to the angular momentum

of the stellar disc at z ∼ 0.3. Bottom left: LLL∗ for all stars within the virial radius R200 at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

right: LLL∗ within annuli of increasing radii from 10 to 160 kpc, with a width of 10 kpc (right)

at z = 0, with respect to the angular momentum of the stellar disc at z = 0. The size of

each point indicates the magnitude of the angular momentum vector, the colour denotes its

position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or

R = 10 kpc) and dark red being the end (z = 0 or R = 160 kpc). There is a drastic shift at

z ∼ 0.15 and comparing this to the evolution of stellar density, at this time a satellite falls

into the halo.
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Fig. 4.4 g7.66e11 - HI column density maps at z = 0, projected into the x-y-, x-z- and y-z-

planes.

Here there is a transition between a more oblate shape to a more triaxial shape at 8 kpc. It is

unlikely that the shape of the hot gas corona is directly responsible for the changing angular

momentum direction of the infalling cool gas via gravitational torques, in agreement with

Roškar et al. (2010). The right panel shows the angle between the hot gas corona’s angular

momentum and the angular momentum of the cool gas at z ∼ 0.3 (black) and 0 (red). At

both time steps the two components become misaligned at a radius of ∼ 9 kpc, comparable

to the radius at which the corona becomes more triaxial. As the cool gas falls further into

the halo, it becomes more aligned with the hot gas.

Figure 4.6 shows the angular momentum of the warp LLLwarp at each time step (top), with

respect to LLLdisc,∗ at z ∼ 0.3. Here one can see the warp’s angular momentum is oriented

between LLLdisc,∗ and LLL∗ outside the disc, at z = 0. In the first few time steps, however, LLLwarp

has a very different alignment and much lower total angular momentum. It is possible that

before z ∼ 0.3 there was another accretion event that might have formed this warp. The

bottom left and right panels show the angular momentum of the cool gas LLLgas in annular

bins from 5 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 and 0, respectively. At the first time

step LLLgas appears to be aligned very differently from the last time step where LLLgas is now

115



NIHAO: Sample B

10 100
R [kpc]

0.4

0.6

0.8

1.0
Sh

ap
e

b/a
c/a

10 100
R [kpc]

0

10

20

30

40

50

θ(
L c

oo
l,L

ho
t) 

[∘
]

z=0∘3
z=0

Fig. 4.5 g7.66e11 - Left: the axis ratios b/a (black) and c/a (red) at z ∼ 0.3, right: the angle

between the cool (T < 20,000K) and hot (T > 50,000K) gas’s angular momentum vectors,

at z ∼ 0.3 (black) and z = 0 (red). There is a transition between a more oblate shape to a

more triaxial shape at 8 kpc.

aligned with the tilting direction of the stellar disc. By z = 0 the angular momentum of the

cool gas within 10 kpc has become aligned with the tilting direction of the disc.

Figure 4.7 shows the angular momentum of the hot gas corona LLLcorona at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. The angular momentum tilts in a single direction

throughout all the time steps, slowing towards z = 0. Here again, it is possible to see that the

most drastic change comes around the same time z ∼ 0.15. The angular momentum of the

corona does not seem to be indicative of the tilting direction of the stellar disc. However,

it might help explain the offset between the angular momentum of the cool gas warp and

the stellar disc, providing gas with angular momentum misaligned with the disc in a similar

direction to the warp, with respect to the stellar disc. The bottom left and right panels show

LLLgas in radial bins ranging from 40 to 200 kpc, with widths of 20 kpc, at z ∼ 0.3 and 0,

respectively. The panels show that LLLgas varies with radius and the angular momentum’s

magnitude increases within every bin, with an average of 2.8 and 3.2×1013 M⊙ kpc km s−1
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Fig. 4.6 g7.66e11 - Top: angular momentum of the cool gas (T < 20,000K) beyond the

stellar disc LLLwarp within 30 kpc (Rwarp < Rgas < 30 kpc) at each time step, with respect to

the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for cool gas

within annuli of increasing radii from 10 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 (left)

and at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red being the

end (z = 0 or R = 30 kpc). The warp does not seem to have angular momentum that aligns

with the tilting direction.
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for z ∼ 0.3 and 0, respectively. The hot gas corona’s angular momentum is not aligned with

the tilting direction of the disc.

g7.66e11: dark matter halo

Figure 4.8 shows the angular momentum of the dark matter halo LLLdark at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. The same drastic change at z ∼ 0.15 is found here.

The bottom panels show LLLdark in radial bins of increasing radii from 0 to 200 kpc with a

width of 10 kpc. The angular momentum of the dark matter does not seem to be aligned

with the disc at any time step or radial bin. However, at z = 0 the innermost annuli do seem

more aligned with the total stellar angular momentum than that z ∼ 0.3.

g7.66e11: integrated net gas flow

Figure 4.9 shows net flow of angular momentum in gas LLLflow,gas crossing shells of increasing

radius from 5 to 30 kpc, with 5 kpc spacing (top), with respect to LLLdisc,∗ at z∼ 0.3. The panel

shows that LLLflow,gas becomes more aligned with LLLwarp and LLLcorona at higher radii and more

aligned with LLLdisc,∗ at lower radii. This is likely a symptom of cool gas within the disc falling

to smaller radii. The bottom left panel shows LLLflow,gas with shells of radius 40 to 140 kpc

with 20 kpc separation. Following a similar trend to the top panel, LLLflow,gas becomes more

aligned with LLLcorona at higher radii. The bottom right plot shows the magnitude of angular

momentum passing through each shell, illustrating that at higher radii the amount of angular

momentum crossing each shell is higher. Although these plots do not help indentify the

driving mechanism behind the tilting in this galaxy, they do show the gas becoming aligned

with the disc as it cools from the corona.
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Fig. 4.7 g7.66e11 - Top: angular momentum of the hot gas (T > 50,000K) beyond 40 kpc

LLLcorona within the virial radius (40kpc < Rgas < R200) at each time step, with respect to the

angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for hot gas within

annuli of increasing radii from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and

at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 40 kpc) and dark red being the

end (z = 0 or R = 200 kpc).
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Fig. 4.8 g7.66e11 - Top: angular momentum of the halo LLLdark within the virial radius

(Rdark < R200) at each time step, with respect to the angular momentum of the stellar disc at

z ∼ 0.3. Bottom left & right: LLLdark within annuli of increasing radii from 10 to 200 kpc, with

a width of 10 kpc, at z ∼ 0.3 (left) and at z = 0 (right). Both bottom panels are shown with

respect to the angular momentum of the stellar disc at their respective time steps. The size

of each point indicates the magnitude of the angular momentum vector, the colour denotes

its position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3

or R = 10 kpc) and dark red being the end (z = 0 or R = 200 kpc). The angular momentum

of the dark matter halo is not aligned with the tilting direction of the disc.
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Fig. 4.9 g7.66e11 - Top: integrated net flow of angular momentum in gas LLLflow,gas crossing

shells of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time step, with

respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLflow,gas

crossing shells of increasing radius from 40 to 140 kpc, with a separation of 20 kpc at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3 and

the magnitude of the angular momentum vectors |LLLflow,gas| versus the shell radius (right).

The size of each point indicates the magnitude of the angular momentum vector, the colour

denotes its position in the radial sequence, dark blue being the smallest radius and dark red

being the largest radius. The inflow of angular momentum within ∼ 10 kpc is aligned with

the tilting direction of the disc.
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g7.66e11: integrated net stellar flow

Figure 4.10 shows the net angular momentum of stars LLLflow,star crossing shells of increasing

radii from 5 to 30 kpc, with a separation of 5 kpc. The bottom left and right panels show

LLLflow,star crossing shells with radii ranging from 40 to 140 kpc, with 20 kpc separation and

|LLLflow,star|, respectively. The combination of these plots shows there is a large amount of

angular momentum crossing the shells of R ∼ 50 kpc, this angular momentum is aligned

with the tilting direction of the stellar disc. Furthermore, the angular momentum of all

stars that are beyond 50 kpc at z ∼ 0.3 but cross this radius over the period, have angular

momentum that is aligned with the tilting direction of the stellar disc.

g7.66e11: summary

The stellar disc of this galaxy gains a large amount of angular momentum between z ∼ 0.3

and 0 and tilts with a rate far higher than any other galaxy in this sample. The angular

momentum of gas reaching the disc does not appear to be the driving the tilting of the

stellar disc. A more likely scenario is that the interaction with a satellite, which has angular

momentum aligned with the tilting direction, is the main contributor of misaligned angular

to the disc. Between z ∼ 0.3 and 0, both the stellar and cool gas warps become aligned

with the tilting direction of the disc. In the MW a comparable interaction would be with the

Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph). Bailin (2003) argued that the stellar warp

of the MW was formed from the interaction with the Sgr dSph, finding that their angular

momenta were aligned, in a similar fashion to this galaxy. In this case, the direction of the

MW’s tilt would be predictable using the angular momentum of the stellar warp.
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Fig. 4.10 g7.66e11 - Top: integrated net flow of angular momentum in star particles LLLflow,∗

crossing shells of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time

step, with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left &

right: LLLflow,∗ crossing shells of increasing radius from 40 to 140 kpc, with a separation of

20 kpc at each time step (left), with respect to the angular momentum of the stellar disc at

z ∼ 0.3 and the magnitude of the angular momentum vectors |LLLflow,∗| versus the shell radius

(right). The size of each point indicates the magnitude of the angular momentum vector, the

colour denotes its position in the radial sequence, dark blue being the smallest radius and

dark red being the largest radius. The angular momentum of infalling stars is not aligned

with the tilting direction of the disc.
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Fig. 4.11 g8.26e11 - Stellar surface density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.

4.3.2 Galaxy: g8.26e11

Galaxy g8.26e11 is a late-type with comparable mass and circular velocity to the MW. It

sits in the middle of the sample with the median stellar and halo masses with Mdisc,∗ =

4.6×1010 M⊙ and M200 = 1.02×1012 M⊙. This galaxy has a much lower tilting rate than

the other hierarchically driven galaxy, with ∆θ/∆t ∼ 2.2◦ Gyr−1. Figure 4.11 shows the

stellar surface density of g8.26e11.

g8.26e11: stellar disc and satellites

Figure 4.12 shows the angular momentum of the stellar disc LLLdisc,∗ at each time step (top),

with respect to LLLdisc,∗ at z∼ 0.3. This panel shows that the tilting direction and rate are fairly

consistent, ending at roughly 9◦ away from its starting location. The magnitude of the disc’s

angular momentum |LLLdisc,∗| increases from 2 to 2.5×1013 M⊙ kpc km s−1, between z ∼ 0.3

and 0; a much smaller increase than g7.66e11. The bottom left and right panels show LLLdisc,∗

within annular bins of increasing radius from 5 to 30 kpc with 2 kpc widths, at z∼ 0.3 and 0,

respectively. These two panels show a clear difference, at the first time step LLLdisc,∗ is much

more aligned out to 30 kpc where the maximum misalignment is ∼ 1.5◦, whereas at later
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4.3 Substructure driven tilting

times LLLdisc,∗ becomes more warped with the misalignment at 30 kpc reaching ∼ 6 kpc. The

majority of the stellar angular momentum is within the first few radial bins and increases

over the two time steps. For the central bin |LLLdisc,∗| increases from 5.1 to 5.5×1012 M⊙ kpc

km s−1 and the outermost bin increases from 1.7 to 2.4×1011 M⊙ kpc km s−1.

Figure 4.13 shows the angular momentum of all stars outside the disc radius LLL∗, but

within the virial radius at each time step (top), with respect to LLLdisc,∗ at z∼ 0.3. Here one can

see that there is a noticeable jump between two fairly stable orientations, indicative of some

interaction or accretion event. The magnitude of the angular momentum in all stars outside

the disc radius increases from 5.4 to 6× 1012 M⊙ kpc km s−1, much lower than |LLLdisc,∗|.

This is reflected in the bottom left plot, which shows the change in angular momentum of

all stars inside the virial radius. For this panel, the change in total angular momentum is

dominated by the disc and one can see that LLL∗ has become much more aligned with LLLdisc,∗

at z = 0, hinting that an exchange of angular momentum has taken place. Again the bottom

right panel highlights the dominance of the stellar disc, showing the angular momentum in

radial bins from 10 to 160 kpc, with a width of 10 kpc. The angular momentum’s magnitude

within each bin is much greater for the inner bins reaching 1.5×1013 M⊙ kpc km s−1 and

falling quickly to 3.9×1010 M⊙ kpc km s−1 for the outermost bin.

g8.26e11: gas disc, warp and hot corona

Figure 4.14 shows the column density of HI in g8.26e11 and Figure 4.15 compares the axis

ratios, b/a (black) and c/a (red) of the hot gas corona versus radius (left). The transition

between oblate and spheroidal is hard to determine due to the substructure, it occurs be-

tween 8 and 20 kpc. The right panel shows the angle between the hot gas corona’s angular

momentum and the angular momentum of the cool gas at z ∼ 0.3 (black) and 0 (red). Here

the hot and cool gas seem to be well aligned out to ∼ 30 kpc.

Figure 4.16 shows the angular momentum of the warp LLLwarp at each time step (top), with
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Fig. 4.12 g8.26e11 - Top: angular momentum of the stellar disc LLLdisc,∗ at each time step

(top), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left &

right: LLLdisc,∗ within annuli of increasing radii from 5 to 30 kpc, with a width of 2 kpc, at

z ∼ 0.3 (left) and at z = 0 (right). Each bottom panel is shown with respect to the stellar

angular momentum of the disc at their respective time steps. The size of each point indicates

the magnitude of the angular momentum vector, the colour denotes its position in the time

(top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark

red being the end (z = 0 or R = 30 kpc). The disc is aligned within 30 kpc for z = 0.3 but

by z = 0 a slight warp has developed towards 190◦. The tilting direction is uniform and is

not aligned with the stellar warp.
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Fig. 4.13 g8.26e11 - Top: angular momentum of all the stars LLL∗ outside the disc and within

the virial radius (Rwarp <R∗<R200) at each time step, with respect to the angular momentum

of the stellar disc at z ∼ 0.3. Bottom left: LLL∗ for all stars within the virial radius R200 at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

right: LLL∗ within annuli of increasing radii from 10 to 160 kpc, with a width of 10 kpc (right)

at z = 0, with respect to the angular momentum of the stellar disc at z = 0. The size of

each point indicates the magnitude of the angular momentum vector, the colour denotes its

position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or

R = 10 kpc) and dark red being the end (z = 0 or R = 160 kpc). The angular momentum of

all stars inside the halo is not aligned with the tilting direction of the disc.
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Fig. 4.14 g8.26e11 - HI column density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.
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Fig. 4.15 g8.26e11 - Left: the axis ratios b/a (black) and c/a (red) at z ∼ 0.3, right: the

angle between the cool (T < 20,000K) and hot (T > 50,000K) gas’s angular momentum

vectors, at z ∼ 0.3 (black) and z = 0 (red). The transition between oblate and spheroidal

occurs between 8 and 20 kpc.
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4.3 Substructure driven tilting

respect to LLLdisc,∗ at z ∼ 0.3. The warp’s angular momentum is misaligned with LLLdisc,∗ in the

direction of the total stellar angular momentum and the stellar warp at z = 0. The magnitude

of LLLwarp increases by a large amount, starting at 2.2 and finishing at 3.9×1013 M⊙ kpc km

s−1. The bottom left and right panels show the angular momentum of the cool gas in annuli

of increasing radius from 10 to 30 kpc with widths of 2 kpc, at z ∼ 0.3 and 0, respectively.

These panels show that the extent of the misalignment of LLLwarp increases with time. The

magnitude of LLLwarp in the centre decreases from 7.5 to 5.5×1012 M⊙ kpc km s−1, whereas

at 28 < r < 30 it increases from 2.7 to 4.7×1012 M⊙ kpc km s−1. Such an increase in the

warp is not likely to be caused by the gradual cooling of gas from the corona, which would

not be expected to increase the angular momentum of the warp by such a large fraction. A

more plausible scenario is the accretion of gas from a satellite.

Figure 4.17 shows the angular momentum of the hot gas corona LLLcorona at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. This panel shows the steady evolution of LLLcorona,

which does not seem to be aligned with the warp but does seem to end aligned in a similar

direction to the tilting direction of the stellar disc. The bottom left and right panels show

LLLcorona in annuli starting with a radius of 40 kpc and ending at 200 kpc, with widths of 20

kpc, at z ∼ 0.3 and 0, respectively. This panel shows that the majority of angular momentum

in the corona is within the highest radial bins. Only the magnitude of the angular momentum

at high radii increases, with the largest bin increasing from 1.5 to 1.8×1014 M⊙ kpc km s−1.

For the smallest bins, the angular momentum decreases, from 7 to 4×1012 M⊙km s−1 and

on average there is a decrease from 8.3 to 7.9×1013 M⊙.

g8.26e11: dark matter halo

Figure 4.18 shows the angular momentum of the dark matter halo (LLLdark) at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. Similar to the jump seen in figure 4.13, again,

there is a jump between two seemingly stable orientations. The angular momentum of
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Fig. 4.16 g8.26e11 - Top: angular momentum of the cool gas (T < 20,000K) beyond the

stellar disc LLLwarp within 30 kpc (Rwarp < Rgas < 30 kpc) at each time step, with respect to

the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for cool gas

within annuli of increasing radii from 10 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 (left)

and at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red being the

end (z = 0 or R = 30 kpc). The cool gas warp is aligned with the stellar warp, but not the

tilting direction of the disc.
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Fig. 4.17 g8.26e11 - Top: angular momentum of the hot gas (T > 50,000K) beyond 40 kpc

LLLcorona within the virial radius (40kpc < Rgas < R200) at each time step, with respect to the

angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for hot gas within

annuli of increasing radii from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and

at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 40 kpc) and dark red being the

end (z = 0 or R = 200 kpc). The angular momentum of the hot gas corona is not aligned

with the tilting direction of the disc.
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the dark matter halo ends very similar to LLLcorona and increases in magnitude from 1.7 to

2.2×1015 M⊙ kpc km s−1. The bottom left and right panels show LLLdark in radial bins starting

at 10 kpc and ending at 200 kpc, with widths of 10 kpc, at z ∼ 0.3 and 0, respectively. For

both figures the direction of the halo’s angular momentum is orientated in a similar direction

to LLLdisc,∗, however, the misalignment increases slightly from ∼ 23 to ∼ 33◦. The angular

momentum of all the subhaloes is not aligned with the overall angular momentum of the

halo, the main halo contributes the dominant amount of angular momentum to the dark

matter within the virial radius at z ∼ 0.3.

g8.26e11: integrated net gas flow

Figure 4.19 shows the net flow of angular momentum in gas (LLLflow,gas) crossing shells of

increasing radius from 5 to 30 kpc with 5 kpc seperation (top), with respect to LLLdisc,∗ at

z ∼ 0.3. Here one can see that LLLflow,gas does not seem to be related to the tilting direction

of the stellar disc. However, it does appear to be aligned with LLLwarp. The bottom left panel

extends the top to larger radii (40 to 140 kpc), again we see a possible alignment with LLLwarp,

but not with the direction of stellar disc tilting. The bottom right panel shows the magnitude

of angular momentum in gas crossing each shell, the outer shells have a far greater flow of

the angular momentum than the inner regions.

g8.26e11: integrated net dark matter flow

Figure 4.20 shows the net flow of angular momentum in dark matter (LLLflow,DM) crossing

shells of increasing radius from 20 to 200 kpc with 20 kpc seperation (top), with respect

to LLLdisc,∗ at z ∼ 0.3. Here there appears to be a connection between the tilting direction of

the stellar disc and the flow of angular momentum in dark matter within 20 and 40 kpc.

The bottom left panel shows the angular momentum of dark matter crossing half the virial

radius. All the points are clustered at the bottom half of the panel, in a similar direction to
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Fig. 4.18 g8.26e11 - Top: angular momentum of the halo LLLdark within the virial radius

(Rdark < R200) at each time step, with respect to the angular momentum of the stellar disc at

z ∼ 0.3. Bottom left & right: LLLdark within annuli of increasing radii from 10 to 200 kpc, with

a width of 10 kpc, at z ∼ 0.3 (left) and at z = 0 (right). Both bottom panels are shown with

respect to the angular momentum of the stellar disc at their respective time steps. The size

of each point indicates the magnitude of the angular momentum vector, the colour denotes

its position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3

or R = 10 kpc) and dark red being the end (z = 0 or R = 200 kpc). The angular momentum

of the dark matter halo and its tilting direction are aligned with the tilting direction of the

disc.

133



NIHAO: Sample B

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30

5

10

15

20

25

30

R
ad

iu
s [

kp
c]

0°

45°

90°

135°

180°

225°

270°

315°

20
40

20

40

60

80

100

120

140

R
ad

iu
s [

kp
c]

0 50 100 150
R [kpc]

0.2

0.4

0.6

0.8

1.0

1.2

|L
| [
kp

c 
km

 s−
1  
M
⊙
]

1e14

Fig. 4.19 g8.26e11 - Top: integrated net flow of angular momentum in gas LLLflow,gas crossing

shells of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time step, with

respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLflow,gas

crossing shells of increasing radius from 40 to 140 kpc, with a separation of 20 kpc at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3 and

the magnitude of the angular momentum vectors |LLLflow,gas| versus the shell radius (right).

The size of each point indicates the magnitude of the angular momentum vector, the colour

denotes its position in the radial sequence, dark blue being the smallest radius and dark red

being the largest radius. The angular momentum of inflowing gas is not aligned with the

tilting direction of the disc.
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4.3 Substructure driven tilting

the tilting direction of the stellar disc. The bottom right panel shows the magnitude of the

angular momentum crossing each radial bin, there is a large amount of angular momentum

crossing all radii. Such a large amount of angular momentum moving within the halo might

explain the tilting of this disc.

Summary: g8.26e11

For this galaxy, only the angular momentum of the dark matter halo and hot gas corona

seem to be aligned with tilting direction of the stellar disc. However, the misalignment

between LLLdark and LLLdisc,∗ actually increases by ∼ 10◦, whereas the misalignment between

the stellar disc and LLLcorona reduces by ∼ 10◦. The change in angular momentum of the

dark matter halo seemed to be dominated by a single event where the angular momentum

changed its alignment between two time steps. The warp of this galaxy is dominated by

material stripped from of a satellite. When viewing the simulation this is indeed visible and

helps to justify the misalignment between the corona, warp and tilting direction of the stellar

disc. By following the angular momentum of the satellite, at z ∼ 0.3 is was aligned with

the angular momentum of the warp. The inflow of stars was also considered for g7.66e11,

however, it was found to align with the warp, even when considering stars as old as 7 Gyr.

Clearly the warp is contributing misaligned gas and stars to the disc, however, the magnitude

of the angular momentum is not large enough to counter the amount of angular momentum

in dark matter reaching the disc. This galaxy has the lowest sSFR in the sample, indicating

that the amount of cool gas that reaches the disc is low. The dark matter plays a role in

the tilting direction of the disc, however, it is not driven by the same processes associated

with the dark matter halo (i.e. dynamical fraction or torquing). In this case, the tilting is

driven by the accretion of dark matter, which contributes misaligned angular momentum to

the stellar disc.
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Fig. 4.20 g8.26e11 - Top: integrated net flow of angular momentum in dark matter LLLflow,DM

crossing shells of increasing radius from 20 to 200 kpc, with a separation of 20 kpc at each

time step, with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

left and right: LLLflow,DM crossing 0.5R200 at each time step (left), with respect to the angular

momentum of the stellar disc at z∼ 0.3 and the magnitude of the angular momentum vectors

|LLLflow,gas| versus the shell radius (right). The size of each point indicates the magnitude of

the angular momentum vector, the colour denotes its position in the radial sequence, dark

blue being the smallest radius and dark red being the largest radius. The angular momentum

of the inflowing dark matter is almost aligned with the tilting direction of the disc.
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4.4 Gas driven tilting

4.4 Gas driven tilting

This section presents the remaining three galaxies in the sample, which all have tilting driven

by the misaligned cool gas contributing angular momentum to the stellar disc.
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Fig. 4.21 g2.79e12 - Stellar surface density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.

4.4.1 Galaxy: g2.79e12

Galaxy g2.79e12 is the most massive in the sample, with Mdisc = 1.6×1011 M⊙. Although

this galaxy is far more massive than the MW, it has a similar morphology, being a barred

spiral galaxy. This galaxy has the fastest gas driven tilting rate, with ∆θ/∆t ∼ 3◦ Gyr−1.

Figure 4.21 shows the stellar surface density of g2.79e12.

g2.79e12: stellar disc and satellites

Figure 4.22 shows the angular momentum of the stellar disc (LLLdisc,∗) at each time step (top),

with respect to LLLdisc,∗ at z ∼ 0.3. Here one can see that the tilting direction of the disc is

fairly consistent, with a few very minor diversions and the tilting rate slows towards z = 0.

The magnitude of LLLdisc,∗ is very large starting at 1.8 and ending at 2.4× 1014 M⊙ kpc km

s−1, far greater than any other galaxy in our sample. The bottom left and right figures show

LLLdisc,∗ within annuli of increasing radius, from 5 to 30 kpc with a width of 2 kpc, at z ∼ 0.3

and 0, respectively. The variation in angular momentum is small ∼ 1.2◦ at z ∼ 0.3 and

falls slightly to ∼ 0.8◦ for z = 0. The magnitude of angular momentum in each annulus

also increases with time, for R < 5 kpc the total angular momentum increases from 2.8 to
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3.2×1013 M⊙ kpc km s−1. Also the outer most radius 28 < r < 30 kpc increases from 2.1

to 4.8×1012 M⊙ kpc km s−1. The combination of these two plots demonstrates there is no

significant stellar warp inside 30 kpc.

Figure 4.23 shows the angular momentum of all stars (LLL∗) outside the disc radius, within

R200 (top), with respect to LLLdisc,∗ at z ∼ 0.3. The plot shows an interesting feature, where

for a number of time steps the angular momentum deviates from its evolution, then returns

back to its prior orientation. The total angular momentum of stars outside the disc radius

is far lower than that of the disc, starting and ending at 3.4 and 3.9×1013 M⊙ kpc km s−1,

respectively. The bottom left plot shows LLL∗ for all stars inside the virial radius, again, the

jump is seen. However, this jump in angular momentum does not seem to have an impact

on the final orientation of total angular momentum. The tilting direction of stars outside the

disc is aligned in a similar direction to that of the tilting disc. The bottom right plot shows

the angular momentum of stars in annuli of increasing radius, from 10 to 160 kpc with a

width of 10 kpc at z = 0. Here one can see that outside ∼ 40 kpc the stars start to become

less aligned, but also have far less angular momentum.

g2.79e12: gas disc, warp and hot corona

Figure 4.24 shows the column density of HI in g2.79e12 and Figure 4.25 shows the axis

ratios, b/a (black) and c/a (red) at z ∼ 0.3 (left). There is a transition between an oblate and

more spheroidal shape in the hot gas, at ∼ 20 kpc. The right panel shows the angle between

the angular momentum of the cool and hot gas, at z = 0.3 (black) and 0 (red). Here there

is a transition between the hot and cool gas components, again, at ∼ 20 kpc, from well to

poorly aligned.

Figure 4.26 shows the angular momentum of the gas warp (LLLwarp) at each time step (top),

with respect to LLLdisc,∗ at z ∼ 0.3. Here the panel shows that at all but the first time step LLLwarp

falls in the upper half of the plot and ends in a similar direction to the tilting of the stellar
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Fig. 4.22 g2.79e12 - Top: angular momentum of the stellar disc LLLdisc,∗ at each time step

(top), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left &

right: LLLdisc,∗ within annuli of increasing radii from 5 to 30 kpc, with a width of 2 kpc, at

z ∼ 0.3 (left) and at z = 0 (right). Each bottom panel is shown with respect to the stellar

angular momentum of the disc at their respective time steps. The size of each point indicates

the magnitude of the angular momentum vector, the colour denotes its position in the time

(top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark

red being the end (z = 0 or R = 30 kpc). The tilting direction of the disc is uniform and the

disc has no warp within 30 kpc.
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Fig. 4.23 g2.79e12 - Top: angular momentum of all the stars LLL∗ outside the disc and within

the virial radius (Rwarp <R∗<R200) at each time step, with respect to the angular momentum

of the stellar disc at z ∼ 0.3. Bottom left: LLL∗ for all stars within the virial radius R200 at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

right: LLL∗ within annuli of increasing radii from 10 to 160 kpc, with a width of 10 kpc (right)

at z = 0, with respect to the angular momentum of the stellar disc at z = 0. The size of

each point indicates the magnitude of the angular momentum vector, the colour denotes its

position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or

R = 10 kpc) and dark red being the end (z = 0 or R = 160 kpc). The angular momentum of

all stars inside the virial radius is somewhat aligned with the tilting direction of the disc.
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Fig. 4.24 g2.79e12 - HI column density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.
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Fig. 4.25 g2.79e12 - Left: the axis ratios b/a (black) and c/a (red) at z ∼ 0.3, right: the

angle between the cool (T < 20,000K) and hot (T > 50,000K) gas’s angular momentum

vectors, at z ∼ 0.3 (black) and z = 0 (red). The transition between oblate and spheroidal

happens at ∼ 20 kpc.
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disc. The magnitude of LLLwarp falls from 2.7 to 1.5×1012 M⊙ kpc km s−1 between z ∼ 0.3

and 0. The bottom left and right plots show the angular momentum of cool gas in annuli of

increasing radius, from 10 to 30 kpc with a width of 2 kpc, at z ∼ 0.3 and 0, respectively.

Here the left panel shows that for the smallest radii the direction is similar to the tilting

direction of the disc, even at z ∼ 0.3. The bottom right highlights that at z = 0 the cool gas

begins to appear more coherently warped and is aligned with the tilting direction.

Figure 4.27 shows the angular momentum of the hot gas corona (LLLcorona) at each time

step (top), with respect to LLLdisc,∗ at z ∼ 0.3. The hot gas corona’s angular momentum is

aligned with both the tilting direction of the stellar disc and LLLwarp, just more misaligned. The

magnitude of LLLcorona is large, changing slightly over the period from 5.7 to 5.4× 1014 M⊙

kpc km s−1. The bottom left and right panels show the LLLcorona in annuli of increasing radius,

from 40 to 200 kpc with widths of 20 kpc, respectively. By comparing these panels, one can

see that the hot gas becomes more aligned with the global angular momentum of the corona

over time. The magnitude of LLLcorona within all these annuli also decreases over this time.

g2.79e12: dark matter halo

Figure 4.28 shows the angular momentum of the dark matter halo (LLLdark) at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. This shows that LLLdark is similar to the LLLcorona, but not

completely aligned and is not heading towards alignment. The bottom left and right plots

show LLLdark within annuli of increasing radius, from 10 to 200 kpc with a width of 10 kpc,

at z ∼ 0.3 and 0, respectively. Here one can see that LLLdark at different radii changes and at

smaller radii is misaligned with the disc, preferentially towards the angular momentum of

the halo as a whole.
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Fig. 4.26 g2.79e12 - Top: angular momentum of the cool gas (T < 20,000K) beyond the

stellar disc LLLwarp within 30 kpc (Rwarp < Rgas < 30 kpc) at each time step, with respect to

the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for cool gas

within annuli of increasing radii from 10 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 (left)

and at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red being the

end (z = 0 or R = 30 kpc). The angular momentum of the cool is not warped at z = 0.3,

however, a warp has developed by z = 0. This warp is aligned with the tilting direction of

the disc.
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Fig. 4.27 g2.79e12 - Top: angular momentum of the hot gas (T > 50,000K) beyond 40 kpc

LLLcorona within the virial radius (40kpc < Rgas < R200) at each time step, with respect to the

angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for hot gas within

annuli of increasing radii from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and

at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 40 kpc) and dark red being the

end (z = 0 or R = 200 kpc). The angular momentum of the hot gas corona is aligned with

the tilting direction of the disc.
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Fig. 4.28 g2.79e12 - Top: angular momentum of the halo LLLdark within the virial radius

(Rdark < R200) at each time step, with respect to the angular momentum of the stellar disc at

z ∼ 0.3. Bottom left & right: LLLdark within annuli of increasing radii from 10 to 200 kpc, with

a width of 10 kpc, at z ∼ 0.3 (left) and at z = 0 (right). Both bottom panels are shown with

respect to the angular momentum of the stellar disc at their respective time steps. The size

of each point indicates the magnitude of the angular momentum vector, the colour denotes

its position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3

or R = 10 kpc) and dark red being the end (z = 0 or R = 200 kpc). The angular momentum

of the dark matter halo is not well aligned with the tilting direction of the disc.
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g2.79e12: integrated net gas flow

Figure 4.29 shows the net flow of angular momentum in gas (LLLflow,gas) crossing shells of

increasing radius from 5 to 30 kpc, with a separation of 5 kpc (top), with respect to LLLdisc,∗ at

z ∼ 0.3. This panel shows that LLLflow,gas is aligned with LLLwarp at lower radii and with LLLcorona

at higher radii. Such a flow of gas in this manner would result in a change in LLLdisc,∗, in the

direction that has been measured. The magnitude of the angular momentum in this flow is

large, with values of |LLLflow,gas| ∼ 1.8×1014 M⊙ kpc km s−1 at 15 kpc. The bottom left plot

shows the same plot extended to higher radii, starting at 40 kpc and ending at 160 kpc with

a spacing of 30 kpc. Again, one can see that LLLflow,gas is aligned with LLLcorona for low radii,

at higher radii, it becomes even more misaligned than the corona itself. This could possibly

be the cause of the change in LLLcorona as a whole.

g2.79e12: summary

This galaxy exhibits tilting in the direction of the cool gas warp, hot gas corona and the

ongoing inflow of angular momentum coming in the form of gas. The amount of angular

momentum reaching the disc is the form of gas is much higher than any other galaxy in

sample A. The warp starts aligned with the tilting direction of the disc and over the period

becomes more coherent, with increasing misalignment with radii in the same direction at

every radial bin. This galaxy has the largest amount of gas flowing into the disc, therefore,

it is not surprising that it is tilting would be dominated by this process. If this process is

driving the stellar disc to tilt in the MW, one would be able to predict the tilting direction by

the orientation of the HI warp.
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Fig. 4.29 g2.79e12 - Top: integrated net flow of angular momentum in gas LLLflow,gas crossing

shells of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time step, with

respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLflow,gas

crossing shells of increasing radius from 40 to 140 kpc, with a separation of 20 kpc at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3 and

the magnitude of the angular momentum vectors |LLLflow,gas| versus the shell radius (right).

The size of each point indicates the magnitude of the angular momentum vector, the colour

denotes its position in the radial sequence, dark blue being the smallest radius and dark red

being the largest radius. The angular momentum of inflowing gas is aligned with the tilting

direction of the disc.
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Fig. 4.30 g7.55e11 - Stellar surface density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.

4.4.2 Galaxy: g7.55e11

The stellar disc of g7.55e11 is the second largest in the sample with the warp starting at

Rwarp = 25 kpc. At z = 0 it has the lowest stellar mass in the sample, with Mdisc,∗ = 3×

1010 M⊙. It has the median tilting rate for gas driven galaxies, with ∆θ/∆t ∼ 2.1◦ Gyr−1.

Figure 4.30 shows the stellar surface density of g7.55e11.

g7.55e11: stellar disc and satellites

Figure 4.31 shows the angular momentum of the stars in the stellar disc (inside 25 kpc)

LLLdisc,∗ plotted at each time step (top), with respect to LLLdisc,∗ at z∼ 0.3. This figure shows that

the tilting direction of the disc is not consistent with two changes in direction over the time

period. The bottom two plots show LLLdisc,∗ within annuli of increasing radius from 5 to 30

kpc, within a width of 2 kpc, at z ∼ 0.3 (left) and z = 0 (right). These plots show that LLLdisc,∗

at z ∼ 0.3 varies by about half the total tilting between z ∼ 0.3 and 0, this value reduces

to a final variance of ∼ 20 per cent at z = 0. The magnitude of the angular momentum

of the stellar disc |LLLdisc,∗| goes from 7.1 to 15× 1012 M⊙ kpc km s−1 over the same time,

with most of the change in angular momentum residing at higher radii with the outermost
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annulus, starting at 1×1011 M⊙ km s −1 and increasing by a factor of three by z = 0.

This galaxy has the largest stellar mass fraction in satellites with four per cent of the

total stellar mass, at z ∼ 0.3. Figure 4.32 shows the angular momentum of all stars outside

25 kpc and within the virial radius (top) at each time step, with respect to LLLdisc,∗ at z ∼ 0.3.

At z ∼ 0.3 the total stellar angular momentum LLL∗ is aligned with the disc, however, in the

very next time step this changes by ∼ 50◦, hinting at a separate stellar population with

high angular momentum. The magnitude of stellar angular momentum |LLL∗| outside the disc

radius increases over the time interval from 1.7 to 2.9×1012 M⊙ kpc km s−1. The bottom

panels show the angular momentum of stars within the virial radius at each time step (left)

and within annuli of radius 10 to 160 kpc, with a width of 10 kpc, at z = 0 (right). The

total |LLL∗| for all stars inside the virial radius also increased between the time interval, from

8.9 to 17.5×1012 M⊙ kpc km s−1, slightly more than the change in |LLLdisc,∗| over the same

time. At z = 0, |LLL∗| decreases rapidly with radius from 4.6 to 0.01×1012 M⊙ kpc km s−1,

at R = 10 and 160 kpc, respectively. The increase in |LLL∗| for stars outside the disc might be

due to the transfer of angular momentum, or due to just star formation outside of the disc.

When looking at the stellar density at each time step, one can see that this galaxy appears to

have just one satellite with stellar content which orbits the central galaxy.

g7.55e11: gas disc, warp and hot corona

Figure 4.33 shows the column density of HI in g7.55e11 and Figure 4.34 shows the axis

ratios, b/a (black) and c/a (red) for the hot gas at z = 0.3 (left). There is a transition

between a more oblate and a more spheroidal shape for the hot gas, between 10 and 20 kpc.

The right panel shows the angle between the angular momentum vectors of the cool and hot

gas at z = 0.3 (black) and 0 (red). In this panel, there is a transition between a strong and

weak alignment at ∼ 20 kpc.

Figure 4.35 shows the change in angular momentum of cool gas in the warp LLLwarp at each
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Fig. 4.31 g7.55e11 - Top: angular momentum of the stellar disc LLLdisc,∗ at each time step

(top), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left &

right: LLLdisc,∗ within annuli of increasing radii from 5 to 30 kpc, with a width of 2 kpc, at

z ∼ 0.3 (left) and at z = 0 (right). Each bottom panel is shown with respect to the stellar

angular momentum of the disc at their respective time steps. The size of each point indicates

the magnitude of the angular momentum vector, the colour denotes its position in the time

(top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark

red being the end (z = 0 or R = 30 kpc). The tilting direction is close to uniform, and the

stellar disc is not warped at either time step.
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Fig. 4.32 g7.55e11 - Top: angular momentum of all the stars LLL∗ outside the disc and within

the virial radius (Rwarp <R∗<R200) at each time step, with respect to the angular momentum

of the stellar disc at z ∼ 0.3. Bottom left: LLL∗ for all stars within the virial radius R200 at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

right: LLL∗ within annuli of increasing radii from 10 to 160 kpc, with a width of 10 kpc (right)

at z = 0, with respect to the angular momentum of the stellar disc at z = 0. The size of

each point indicates the magnitude of the angular momentum vector, the colour denotes its

position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or

R = 10 kpc) and dark red being the end (z = 0 or R = 160 kpc). The angular momentum of

all stars inside the virial radius is not aligned with the tilting direction of the disc.
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Fig. 4.33 g7.55e11 - HI column density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.
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Fig. 4.34 g7.55e11 - Left: the axis ratios b/a (black) and c/a (red) at z ∼ 0.3, right: the

angle between the cool (T < 20,000K) and hot (T > 50,000K) gas’s angular momentum

vectors, at z ∼ 0.3 (black) and z = 0 (red). The transition between oblate and spheroidal

happens between 10 and 20 kpc.
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time step (top), with respect to LLLdisc,∗ at z ∼ 0.3. This figure shows that that LLLwarp is aligned

with LLLdisc,∗ starting with just a ∼ 3◦ offset and ending with a ∼ 1◦ offset. The warp becomes

more aligned with the disc over time, however, the final time does show that the warp has

tilted further in roughly the same direction as the disc. Between z∼ 0.3 and 0, the magnitude

of the angular momentum in the warp |LLLwarp| slightly falls from 7.2 to 7.1×1012 M⊙ kpc km

s−1. Similarly to the stellar disc, LLLwarp at different radii becomes more aligned over time, at

z ∼ 0.3 the angular momentum varies by as much as ∼ 4◦, whereas at z = 0 this is reduced

to just ∼ 1.5◦. The magnitude of the angular momentum in these radial bins increases for

the small and intermediate radii but falls for larger radii (roughly the warp radius). For the

smallest annulus the total angular momentum goes from 4.2 to 5×1012 M⊙ kpc km s−1, the

average increases from 5.8 to 6.8×1012 M⊙ kpc km s−1 and the largest annulus falls from

2 to 1.5× 1012 M⊙ kpc km s−1. The loss of angular momentum at higher radii is possibly

due to gas from the warp falling into the disc, resulting in the measured increase in angular

momentum at lower radii.

Figure 4.36 shows the angular momentum of the hot gas corona LLLcorona at each time

step (top), with respect to LLLdisc,∗ at z ∼ 0.3. The bottom left and right panels show LLLcorona in

radial annuli from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and at z = 0 (right).

The direction of LLLcorona changes with time and the tilting direction is not constant, with a

change in tilting direction occurring roughly halfway through the interval. The magnitude

of the angular momentum |LLLcorona| is far larger than |LLLdisc,∗| or |LLLwarp| and increases over

the time interval, starting at 1.1 and ending at 1.3×1014 M⊙ kpc km s−1. The bottom two

panels of the plot show LLLcorona at increasing radii, showing that for lower radii the direction

changes far more than at higher radii. The amount of angular momentum in each radial bin

does the opposite to the warp, with |LLLcorona| in the innermost bins and the average falling,

whereas for the outer most radii, there is a gain in angular momentum.
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Fig. 4.35 g7.55e11 - Top: angular momentum of the cool gas (T < 20,000K) beyond the

stellar disc LLLwarp within 30 kpc (Rwarp < Rgas < 30 kpc) at each time step, with respect to

the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for cool gas

within annuli of increasing radii from 10 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 (left)

and at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red being the

end (z = 0 or R = 30 kpc). The angular momentum of the cool gas does seem to be aligned

with the tilting direction of the disc.
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Fig. 4.36 g7.55e11 - Top: angular momentum of the hot gas (T > 50,000K) beyond 40 kpc

LLLcorona within the virial radius (40kpc < Rgas < R200) at each time step, with respect to the

angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for hot gas within

annuli of increasing radii from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and

at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 40 kpc) and dark red being the

end (z = 0 or R = 200 kpc). The angular momentum of the hot gas corona is not aligned

with the tilting direction of the disc.
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4.4 Gas driven tilting

g7.55e11: dark matter halo

Figure 4.37 shows the angular momentum of the dark matter halo LLLdark at each time step

(top) and within radial bins from 10 to 200 kpc, with a width of 10 kpc, at z ∼ 0.3 (bottom

left) and at z = 0 (bottom right), with respect to LLLdisc,∗ at z ∼ 0.3. This figure shows that

LLLdark changes by ∼ 90◦ over the time interval, with a clear change in direction roughly

halfway through, similar to LLLcorona. The magnitude of the dark matters angular momentum

|LLLdark| is even greater than the corona, starting at 1 and finishing at 1.7× 1015 M⊙ kpc km

s−1. The bottom two plots show LLLdark kinks at similar radii and with similar misalignments,

however, the misalignment at higher radii increases by ∼ 20◦. These features in the angular

momentum versus radius Briggs figures are symptoms of a satellite.

g7.55e11: integrated net gas flow

Figure 4.38 shows the net flow of angular momentum in gas LLLflow,gas crossing increasing

shells of increasing radius from 5 to 30 kpc, with 5 kpc separation, between z ∼ 0.3 and

0 (top), with respect to LLLdisc,∗ at z ∼ 0.3. This panel shows that LLLflow,gas moving within

the disc radius is aligned with the tilting direction for radii R ≲ 15 kpc, however, at higher

radii (R ≳ 15 kpc) LLLflow,gas is more aligned with the hot gas corona. The bottom left panel

continues this plot with shells of higher radii ranging from 40 to 120 kpc with 20 kpc

spacing, showing that at low and intermediate radii LLLflow,gas is roughly aligned with LLLcorona,

however, at the largest radii this alignment breaks down. Finally, the lower right panel

shows the total magnitude of angular momentum |LLLflow,gas| crossing each shell. The flow

is strongest between R = 10 and 40 kpc reaching a maximum of ∼ 4.9 × 1013 M⊙ kpc

km s−1. This chapter previously mentioned that the amount of angular momentum in the

gas around the radius of the warp decreased between z ∼ 0.3 and 0. One must account

for star formation, which directly transfers angular momentum from gas to star particles.

The angular momentum of stars around the warp radius increased, alluding to the possible
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Fig. 4.37 g7.55e11 - Top: angular momentum of the halo LLLdark within the virial radius

(Rdark < R200) at each time step, with respect to the angular momentum of the stellar disc at

z ∼ 0.3. Bottom left & right: LLLdark within annuli of increasing radii from 10 to 200 kpc, with

a width of 10 kpc, at z ∼ 0.3 (left) and at z = 0 (right). Both bottom panels are shown with

respect to the angular momentum of the stellar disc at their respective time steps. The size

of each point indicates the magnitude of the angular momentum vector, the colour denotes

its position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3

or R = 10 kpc) and dark red being the end (z = 0 or R = 200 kpc). The angular momentum

of the dark matter halo is not aligned with the tilting direction of the disc.
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4.4 Gas driven tilting

formation of stars at this radius, which might explain this apparent dichotomy.

g7.55e11: summary

The two possible drivers for tilting in this galaxy are the accretion of cool gas with angular

momentum misaligned with the disc, or the interaction between the central galaxy and its

main satellite. The interaction with the satellite is most likely not the principle driver, as the

angular momentum of the satellite and the tilting direction of the disc are not aligned. The

angular momentum of gas falling to radii between 5 and 15 kpc is aligned with the tilting

direction of the disc, suggesting that the infall of this gas is dictating the tilting direction of

the stellar disc. The warp of this galaxy changes its angular momentum in a similar manner

to the stellar disc, becoming aligned with the tilting direction of the stellar disc and the

inflowing angular momentum of gas. Again, this scenario in the MW would be predictable

using the angular momentum of the warp in the HI gas disc.
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Fig. 4.38 g7.55e11 - Top: integrated net flow of angular momentum in gas LLLflow,gas crossing

shells of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time step, with

respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLflow,gas

crossing shells of increasing radius from 40 to 140 kpc, with a separation of 20 kpc at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3 and

the magnitude of the angular momentum vectors |LLLflow,gas| versus the shell radius (right).

The size of each point indicates the magnitude of the angular momentum vector, the colour

denotes its position in the radial sequence, dark blue being the smallest radius and dark red

being the largest radius. The angular momentum of inflowing gas is aligned with the tilting

direction of the disc inside 15 kpc.
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Fig. 4.39 g1.92e12 - Stellar surface density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.

4.4.3 Galaxy: g1.92e12

Galaxy g1.92e12 is the second most massive in stellar mass, Mdisc = 1.5×1011 M⊙. Similar

to g7.66e11 it has a very small disc, with a radius of just 13 kpc. It has the lowest tilting

rate of all gas driven and hierarchically driven galaxies, with ∆θ/∆t ∼ 1.4◦ Gyr−1. Figure

4.39 shows the stellar surface density of g1.92e12.

g1.92e12: stellar disc and satellites

Figure 4.40 shows the angular momentum of the stellar disc (LLLdisc,∗) at each time step (top),

with respect to LLLdisc,∗ at z ∼ 0.3. The direction of tilting for this galaxy is steady but changes

direction at roughly z = 0.13. The magnitude of the angular momentum also increases with

time, from 8.1 to 10.8×1013 M⊙ kpc km s−1. The bottom right and left panels show LLLdisc,∗

within annuli of increasing radius, from 5 to 30 kpc, with widths of 2 kpc at z ∼ 0.3 and

0, respectively. Here it is hard to see, but for z ∼ 0.3 LLLdisc,∗within the inner annuli are

slightly more misaligned with each other than at z = 0, however, it is easier to see that the

misalignment at higher radii becomes much larger. The inner few bins contain the vast

majority of |LLLdisc,∗|, this increases between the interval from 3.5 to 3.1× 1013 M⊙ kpc km
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s−1. At higher radii |LLLdisc,∗| also increases slightly, from 5 to 6×1010 M⊙ kpc km s−1.

Figure 4.41 shows the angular momentum of all stars outside the disc radius, but within

the virial radius (LLL∗) at each time step (top), with respect to LLLdisc,∗ at z ∼ 0.3. This panel

shows that LLL∗, outside the disc, is very steady and populated just one location on the plot

with some scatter—which is larger for the first few time steps. The bottom left plot shows

LLL∗ of all stars within the virial radius, where the plot shows the expected result that the

disc dominates the evolution of the angular momentum, but is slightly offset by the stars

outside the disc. The final panel (bottom right) shows LLL∗ in annuli of increasing radius

from 10 to 160 kpc with widths of 10 kpc. Here one can see that the angular momentum

of the stellar disc dwarfs that of any of the galaxies satellites, with the magnitude of stellar

angular momentum dropping rapidly from 7.8×1013 M⊙ kpc km s−1 for the inner annulus

and 1.7×1011 M⊙ kpc km s−1 for the outer annulus.

g1.92e12: gas disc, warp and hot corona

Figure 4.42 shows the column density of HI in g1.92e12 and Figure 4.43 shows the axis

ratios, b/a (black) and c/a (red) for the hot gas at z = 0.3 (left). There is a clear transition

between an oblate and a more spheroidal shape at ∼ 5 kpc. The right panel shows the angle

between the angular momentum vectors of the cool and hot gas at z = 0.3 (black) and 0

(red). In this panel, there is a clear transition at 7 kpc for z = 0, for z = 0.3 this transition is

more gradual between 10 and 20 kpc.

The compact disc of this galaxy has a very large amount of angular momentum com-

pared to its hot gas corona, with a ratio of 0.77 far below anything else in this sample.

Figure 4.44 shows the angular momentum of the gas warp (LLLwarp) at each time step (top),

with respect to LLLdisc,∗ at z ∼ 0.3. Here one can see that there appears to be no alignment

between the highly misaligned LLLwarp and the tilting direction of the stellar disc. The amount

of angular momentum in the warp decreases with time starting at |LLLwarp| = 5 and finishing
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Fig. 4.40 g1.92e12 - Top: angular momentum of the stellar disc LLLdisc,∗ at each time step

(top), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left &

right: LLLdisc,∗ within annuli of increasing radii from 5 to 30 kpc, with a width of 2 kpc, at

z ∼ 0.3 (left) and at z = 0 (right). Each bottom panel is shown with respect to the stellar

angular momentum of the disc at their respective time steps. The size of each point indicates

the magnitude of the angular momentum vector, the colour denotes its position in the time

(top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark

red being the end (z = 0 or R = 30 kpc). The tilting direction is fairly uniform, the majority

of the stellar angular momentum is within 15 kpc and is not warped.
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Fig. 4.41 g1.92e12 - Top: angular momentum of all the stars LLL∗ outside the disc and within

the virial radius (Rwarp <R∗<R200) at each time step, with respect to the angular momentum

of the stellar disc at z ∼ 0.3. Bottom left: LLL∗ for all stars within the virial radius R200 at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom

right: LLL∗ within annuli of increasing radii from 10 to 160 kpc, with a width of 10 kpc (right)

at z = 0, with respect to the angular momentum of the stellar disc at z = 0. The size of

each point indicates the magnitude of the angular momentum vector, the colour denotes its

position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3 or

R = 10 kpc) and dark red being the end (z = 0 or R = 160 kpc). The angular momentum of

all stars within the virial radius is not aligned with the tilting direction of the stellar disc.
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Fig. 4.42 g1.92e12 - HI column density maps at z = 0, projected into the x-y-, x-z- and

y-z-planes.
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Fig. 4.43 g1.92e12 - Left: the axis ratios b/a (black) and c/a (red) at z ∼ 0.3, right: the

angle between the cool (T < 20,000K) and hot (T > 50,000K) gas’s angular momentum

vectors, at z ∼ 0.3 (black) and z = 0 (red). There is a clear transition between an oblate and

a more spheroidal shape at ∼ 5 kpc.
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at 1.6×1012km s−1 The bottom panels show the angular momentum of the cool gas within

annuli of increasing radius from 5 to 30 kpc with widths of 2 kpc at z ∼ 0.3 and 0, respec-

tively. Here one can see that at z ∼ 0.3 there is a large amount of angular momentum in the

very centre of the galaxy that is aligned with LLLdisc,∗, however this rapidly drops in angular

momentum from 7.7× 1012 M⊙ kpc km s−1 to 3.3× 1011 M⊙ kpc km s−1. Not only does

the total angular momentum of the cool gas drop drastically, its alignment also changes be-

coming aligned with LLLwarp, not the stellar disc at z = 0. Moreover, at z = 0 even the gas

within 10 kpc has become completely misaligned with the stellar disc.

Figure 4.45 shows the angular momentum of the hot gas corona LLLcorona at each time step

(top), with respect to LLLdisc,∗ at z ∼ 0.3. The orientation of LLLcorona changes at a steady rate

but does change its tilting direction roughly halfway through the interval. The magnitude

of LLLcorona also falls by a factor of two, ending with the value of 8.3× 1013 M⊙ kpc km

s−1. The bottom left and bottom right plots show the angular momentum of the hot gas in

annuli of increasing radius from 40 kpc to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 and

0, respectively. Here one can see the angular momentum of hot gas becomes much more

uniform throughout the halo with both LLLwarp and LLLcorona becoming well aligned at z = 0. As

in the case of the corona, |LLLcorona| becomes smaller in every annuli, with the inner annulus

falling from 1.3 to 0.88×1013 M⊙km s−1.

g1.92e12: dark matter halo

Figure 4.46 shows the angular momentum of the dark matter halo (LLLdark) at each time step

(top), with respect to LLLdisc,∗ at z∼ 0.3. Here one can see that LLLdark is tilting, but in a direction

not related to any of the stellar or the gas components. The bottom left and right panels show

LLLdark in annuli of increasing radius, from 10 to 200 kpc with a width of 10 kpc, at z ∼ 0.3

and 0, respectively. The angular momentum is aligned similarly at both time steps, with the

only difference being at lower radii. At z = 0, the inner halo becomes more aligned with
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Fig. 4.44 g1.92e12 - Top: angular momentum of the cool gas (T < 20,000K) beyond the

stellar disc LLLwarp within 30 kpc (Rwarp < Rgas < 30 kpc) at each time step, with respect to

the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for cool gas

within annuli of increasing radii from 10 to 30 kpc, with a width of 2 kpc, at z ∼ 0.3 (left)

and at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 5 kpc) and dark red being the

end (z = 0 or R = 30 kpc). The angular momentum of the cool gas does not appear to be

aligned with the tilting direction of the disc.
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Fig. 4.45 g1.92e12 - Top: angular momentum of the hot gas (T > 50,000K) beyond 40 kpc

LLLcorona within the virial radius (40kpc < Rgas < R200) at each time step, with respect to the

angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLgas for hot gas within

annuli of increasing radii from 40 to 200 kpc, with a width of 20 kpc, at z ∼ 0.3 (left) and

at z = 0 (right). Both bottom panels are shown with respect to the angular momentum of

the stellar disc at their respective time steps. The size of each point indicates the magnitude

of the angular momentum vector, the colour denotes its position in the time (top) or radial

(bottom) sequence, dark blue being the start (z ∼ 0.3 or R = 40 kpc) and dark red being the

end (z = 0 or R = 200 kpc). The angular momentum of the hot gas corona is not aligned

with the tilting direction of the disc.
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4.4 Gas driven tilting

LLLdisc,∗. The magnitude of angular momentum in the dark matter increases at all radii over

the time interval.

g1.92e12: integrated net gas flow

Figure 4.47 shows the net flow of angular momentum in gas (LLLflow,gas) crossing shells of

increasing radius from 5 to 30 kpc with a 5 kpc seperation (top), with respect to LLLdisc,∗

at z ∼ 0.3. The bottom left panel extends this plot to higher radii starting at 40 kpc and

ending at 140 kpc, with a spacing of 20 kpc. The angular momentum flowing across these

shells does not appear to be related to the tilting direction of the stellar disc. The bottom

right panel shows the magnitude of LLLflow,gas, here one can see that there is a higher flow of

angular momentum at higher radii.

g1.92e12: realignment of cool gas

Figure 4.48 shows the angular momentum of hot (diamonds) and cool gas (circles), in annuli

of increasing radius, from 1 to 10 kpc (left) and 11 to 20 kpc (right), both with annular widths

of 1 kpc, at z = 0.3. Comparing the two panels, at lower radii the hot and cool gas are much

more aligned at higher radii—as seen in the right panel of Figure 4.43. The alignment

becomes far closer at radii R < 10 kpc, at which point the hot and cool gas components are

very well aligned. Within this radius, both hot and cool gas is aligned with the direction of

tilting. These panels highlight the results found previously in Roškar et al. (2010), that by

the time the cool gas reaches the disc it is completely aligned with the hot gas. However, the

angular momentum of the hot gas at the disc radius is not aligned with the global angular

momentum of the halo.
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Fig. 4.46 g1.92e12 - Top: angular momentum of the halo LLLdark within the virial radius

(Rdark < R200) at each time step, with respect to the angular momentum of the stellar disc at

z ∼ 0.3. Bottom left & right: LLLdark within annuli of increasing radii from 10 to 200 kpc, with

a width of 10 kpc, at z ∼ 0.3 (left) and at z = 0 (right). Both bottom panels are shown with

respect to the angular momentum of the stellar disc at their respective time steps. The size

of each point indicates the magnitude of the angular momentum vector, the colour denotes

its position in the time (top) or radial (bottom) sequence, dark blue being the start (z ∼ 0.3

or R = 10 kpc) and dark red being the end (z = 0 or R = 200 kpc). The angular momentum

of the dark matter halo is not aligned with the tilting direction of the disc.
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Fig. 4.47 Top: integrated net flow of angular momentum in gas LLLflow,gas crossing shells

of increasing radius from 5 to 30 kpc, with a separation of 5 kpc at each time step, with

respect to the angular momentum of the stellar disc at z ∼ 0.3. Bottom left & right: LLLflow,gas

crossing shells of increasing radius from 40 to 140 kpc, with a separation of 20 kpc at each

time step (left), with respect to the angular momentum of the stellar disc at z ∼ 0.3 and

the magnitude of the angular momentum vectors |LLLflow,gas| versus the shell radius (right).

The size of each point indicates the magnitude of the angular momentum vector, the colour

denotes its position in the radial sequence, dark blue being the smallest radius and dark red

being the largest radius. The angular momentum of the infalling gas is not aligned with the

tilting direction of the disc.
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Fig. 4.48 Angular momentum of hot (diamonds) and cool gas (circles), in annuli of increas-

ing radius, from 1 to 10 kpc (left) and 11 to 20 kpc (right), both with annular widths of 1

kpc, with respect to the angular momentum of the stellar disc, at z= 0.3. The colours denote

the position in the radial series, blue being the lowest radius and red being the highest. The

size of the points denotes the amount of angular momentum in each annulus, normalised to

each panel. The cool gas within 10 kpc is aligned with both the hot gas within 10 kpc and

the tilting direction of the disc. The angular momentum of both hot and cool gas outside 10

kpc are aligned with each other, but not with the tilting direction of the disc.
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g1.92e12: summary

The galaxy has undergone interactions with satellites over the period, however, the angular

momenta of these interactions are not aligned with the tilting direction. When looking at

the accretion of star particles, again there is no alignment between the misaligned angular

momentum contributed and the tilting direction. Comparing the angular momentum of the

hot and cool gas in annuli ranging from 1 kpc to 20, there is a trend for the cool gas to

become aligned with the hot gas by the time it reaches the disc. The angular momentum

of this cool gas is aligned with the tilting direction of the stellar disc and most likely the

primary driver for the tilting of the stellar disc. In this scenario, to determine the tilting

direction of the MW, one could consider the angular momentum in the HI gas. If there is a

small warp, like in this galaxy, then one would be able to predict the tilting direction of the

stellar disc.

4.5 Chapter summary

4.5.1 Hierarchical processes

This chapter has presented two galaxies that tilt due to hierarchical processes, g7.66e11

and g8.26e11. The first galaxy, g7.66e11, has a very high tilting rate which is driven by

the interaction of a satellite. During the interaction, the stellar disc becomes warped in

the direction of the angular momentum of the satellite. Bailin (2003) proposed a similar

scenario for the formation of the MW’s stellar warp. If this is the case, then the direction

in which the MW’s disc is tilting would be predictable using the angular momentum of the

stellar warp. On the other hand, if the warp of the MW is not caused by a satellite but the

tilting is, using the angular momentum of the satellite one could predict the tilting direction

of the stellar disc. The second galaxy, g8.26e11, has a much lower tilting rate which is

driven by interactions and the accretion of dark matter. The amount of angular momentum
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that builds up within ∼ 40 kpc is very large compared to other galaxies within this sample.

In this case, it would be harder to predict the direction of the MW’s tilt.

4.5.2 Accretion of misaligned gas

This chapter has also presented three galaxies from sample B that have tilting that is driven

by the accretion of misaligned gas, g2.79e12, g7.55e11 and g1.92e12. The first, g2.79e12,

is being driven by gas from the hot corona cooling and falling onto the disc, forming a warp

and contributing misaligned angular momentum to the stellar disc. The second, g7.55e11, is

tilting in the direction of the cool gas warp, as a result of the accretion of gas with misaligned

angular momentum. Finally, g1.92e12, which is the slowest tilting galaxy in all of sample

B, is also tilting due to the accretion of misaligned gas. In the case of this galaxy, the

warp is much harder to determine, but the cool gas is being affected by torques imposed

by the hot gas within the disc radius. For all three of these cases, if a scenario like this

was causing the MW to tilt, one could make a prediction for the tilting direction using the

angular momentum the HI disc.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Tilting rate and Gaia limit

This thesis presents the tilting rates for galaxies in two, separate, fully cosmological hy-

drodynamical simulations. Chapter 2 presents the tilting rate of galaxies with halo masses

comparable to the MW, finding significant tilting with an error weighted mean rate of 7.6◦

Gyr−1 and a standard deviation of 4.5◦ Gyr−1. This sample was further restricted to galax-

ies with low relative stellar accretion, and a maximum stellar mass fraction in satellites of

40 per cent, finding a lower mean tilting rate of 6.2◦ Gyr−1, with a range from 0.65 to 24.6◦

Gyr−1. In both samples, all the galaxies display significant tilting, with rates higher than

the detection limit of Gaia (Perryman et al., 2014). However, this simulation suffered from

over-cooling. Due to this more stars were able to form in lower mass galaxies resulting in

galaxies that do not follow abundance matching relationships.

Chapter 3 presents the tilting rates for galaxies in the NIHAO simulation suite (Wang

et al., 2015) which does not suffer from the over-cooling problem, finding an average tilting

rate of 7.8◦ Gyr−1 and a standard deviation of 9.8◦ Gyr−1. When the sample is restricted to
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galaxies with virial mass M200 > 9×1012 M⊙, the average tilting rate drops to 4.7◦ Gyr−1

and has a standard deviation of 5◦ Gyr−1. All the galaxies in the NIHAO sample, with well

determined tilting rates, tilt with a rate that is comparable to the galaxies studied in Chapter

2, and that would also be detectable by Gaia.

5.1.2 Environmental factors

Local density

Chapter 2 investigated the effect of the local environment on the tilting rate of the disc.

By comparing the total local density to the tilting rate, it was shown that the tilting rate

does not correlate with the normalized local density within 3Mpc for subsample VICTOR:A.

However, for subsample VICTOR:B, there is a correlation. When considering larger radii,

there is a correlation between the tilting rate and the local environment for both subsamples.

Chapter 3 verified this result using the NIHAO simulations, finding correlation coefficients

of p = 0.59,0.63,0.65 & 0.86 for the radii, 3,4,5 & 6 Mpc, respectively. The strongest

correlation is at the largest radius, and contains galaxies of a wide range of masses and

environmental configurations, implying that on average the smaller scale structure is not the

primary driver for most galaxies. Galaxies in denser regions generally tilt at higher rates

than galaxies in lower density regions, irrespective of the galaxies stellar mass accretion, or

stellar mass.

Massive neighbours

The MW has a close, similar mass, neighbour M31. Chapter 2 compared galaxies to the

MW’s configuration, by measuring the distances to the nearest massive galaxy and deter-

mining their correlation with the tilting rates. There is almost no correlation for subsample

VICTOR:A; however, for subsample VICTOR:B, we do find very weak anti-correlation, sug-

gesting that the local configuration is unlikely to be a large contributing factor when the disc
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is accreting significant stellar mass. The sample contains galaxies in similar configurations

to the MW with companion galaxies within a few hundred kpc; these galaxies exhibit tilting

rates similar to more isolated galaxies. Such a comparison was not possible in the NIHAO

suite, due to the strict isolation criterion imposed on the sample. However, comparable tilt-

ing rates are found for these galaxies, which all lack massive neighbouring galaxies, again

emphasising that the local configuration is not a primary driver of disc tilting.

Interactions and minor mergers

Mergers with other galaxies are among the most violent processes, which could result in a

drastic change in the disc’s angular momentum over a short period. Both Chapters 2 and

3 showed that even when excluding galaxies that gain a large amount of stellar mass from

such events, the measured tilting is still significant. In Chapter 4 two of the galaxies in the

NIHAO suite are shown to exhibit tilting caused by the interaction with a satellite and by

the accretion of a large amount of angular momentum in the form of dark matter. In first

of these two cases, where the interaction with the satellite caused the tilting of the stellar

disc, a very high tilting rate was measured. Therefore, interactions with satellites containing

large amounts of angular momentum can drastically change the angular momentum of the

disc over a very short time, also resulting in a warped stellar disc. In the second case, where

the accretion of dark matter with misaligned angular momentum was the primary driver, the

tilting rate was very similar to galaxies tilting solely due to the accretion of misaligned cool

gas.

5.1.3 Secular processes

Specific star formation

Debattista et al. (2015) found that red galaxies tend to have angular momentum aligned with

the minor axis of their dark matter halo, whereas, blue galaxies are found to have random
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orientations. Both Chapters 2 and 3 compared the tilting rate of the disc to the star formation

rate, finding that galaxies with higher star formation tilt faster. Of all the correlations that

are reported in Chapter 3, the one between the sSFR and tilting rate was the strongest,

with a value of p= 0.77 for sSFR(z = 0) and p= 0.9 for ⟨sSFR⟩. These correlations help

explain the random orientations of blue galaxies. As the sSFR increases, the tilting becomes

more rapid, perturbing the galaxy away from a stable orientation, irrespective of the driving

mechanism. Moreover, Chapter 3 measured the alignment between the stellar disc and the

minor, intermediate and major axes of the halo for the predominantly blue galaxies within

the NIHAO sample. In agreement with Debattista et al. (2015), no preferential alignments

are found.

Dark matter halo

Yurin and Springel (2015) inserted model stellar discs into dark matter haloes within a

cosmological N-body simulation. The authors report tilting rates for their stellar discs com-

parable to the tilting rates presented in this thesis. In such a scenario the tilting of the stellar

disc is driven by the torques, dynamical friction and interactions imposed by the tumbling

parent halo and surrounding substructure. In the case of torquing from the dark matter halo,

less spheroidal haloes exert greater torques on the disc. To test this Chapter 3 compared

the tilting rate of the stellar disc to the axis ratios, b/a and c/a of the halo, finding weak

anti-correlations for both. The triaxiality of the halo was also measured and compared to the

tilting rate of the stellar disc, however, no correlation was found. Although there is a weak

correlation, and the comparable tilting rates presented in Yurin and Springel (2015), when

looking at individual galaxies in the NIHAO sample, none of them are found to be tilting

due to the torques imposed by the dark matter halo.
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Hot gas corona

In an attempt to determine the effect of misaligned gas accretion from the hot gas corona,

Chapters 2 and 3 measured both the tilting rate of the hot gas corona and the angular mis-

alignment between the stellar disc and the corona. Both chapters find no correlations be-

tween the tilting rates of the two different components. In Chapter 2, when comparing the

tilting rate of the disc to the angular momentum misalignment between the two components:

a weak correlation was found for subsample VICTOR:A and a slightly stronger correlation

was found for subsample VICTOR:B. Chapter 3 did not find such a correlation for either

sample with a correlation coefficient of just 0.21. When looking at individual galaxies from

the NIHAO suite, only one galaxy tilted in the direction of the hot gas corona. However,

when looking in more detail as cool gas fell further into the halo it became more aligned

with the hot gas, as shown by Roškar et al. (2010). The hot gas near the disc is much more

oblate and misaligned with the global angular momentum of the corona. It is possible that

the more oblate shape induces larger torques on the infalling gas, it will change the angular

momentum of the cool gas much more efficiently. However, further investigation is needed

to understand the structure and angular momentum of the hot gas at different radii.

Warps

Chapter 3 presents a comparison between the misalignment of the gas disc with the tilting

rate of the stellar disc, finding a weak correlation. Subsequently. Chapter 4 compared the

angular momentum of the cool gas at various radii with the tilting direction of the stellar

disc. In all three cases where the accretion of cool gas is the primary driver of tilting, the

cool gas is misaligned in the direction of tilting. Roškar et al. (2010) argued for the creation

of warps due to the ongoing feeding of misaligned cool gas to the disc, which would explain

why these three galaxies, with tilting driven by cool gas accretion, have a warped gas disc.
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5.2 Predictions for the Milky Way

This thesis presents tilting rates for galaxies in fully cosmological simulations and compares

them to the predicted observational limit of Gaia (Perryman et al., 2014). If the MW is

tilting at a similar rate to the galaxies investigated, it would be detectable. The next question

is, in which direction is the disc tilting?

5.2.1 Using the warp

Three of the galaxies in the NIHAO suite tilt due to the ongoing accretion of misaligned

angular momentum, in the form of cool gas. In all these cases the cool gas disc is warped

with its angular momentum vector aligned towards the tilting direction of the stellar disc.

Levine et al. (2006) reported the height of the MW’s HI disc, finding that for R = 16,22 and

28 kpc their fit yielded peaks in height out of the plane of ∼ 1.3,3.7 and 6.4 kpc, located

at l = 53◦,57◦ and 59◦, respectively. If this is the case then the angular momentum of the

HI is misaligned with the stellar disc of the MW, with a contribution in a direction towards

121◦ ≲ l ≲ 127◦. In such a scenario one would expect the MW to be tilting such that stars at

longitude 53◦ ≲ l ≲ 59◦ would move preferentially towards positive heights and stars with

longitude 121◦ ≲ l ≲ 127◦ would move towards negative heights, relative to the inertial

frame of Gaia.

In the case of one of the galaxies in the NIHAO sample, the tilting is driven by the

interaction with a satellite. After the interaction, the stellar disc of the galaxy has become

aligned with the tilting direction. Bailin (2003) argued that because the angular momentum

of the Galactic warp and Sgr dSph are aligned, and that the infall of the dwarf galaxy may

have caused the warp to form. If this is the case, such a scenario is similar to the simulated

galaxy, and one would predict a tilting direction using the stellar warp. Recently, Laporte

et al. (2018) presented results from a set of N-body and hydrodynamical simulations of
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the LMC and MW disc. Their simulations are able to create a warp in the stellar and gas

discs, and the authors proposed that the current structure of the MW disc is caused by

the interaction with the LMC. Past authors have claimed a similar connection between the

LMC and Galactic warp (e.g. Weinberg and Blitz, 2006b). Again, in such a paradigm the

tilting direction of the stellar disc would be predictable using the stellar or HI warp, as the

main contribution of angular momentum will be aligned with the angular momentum of the

infalling satellite, and the resulting stellar and gas warps.

5.3 Future work

5.3.1 Sample improvements

The logical extension is to improve the statistics by investigating the driving mechanism

behind the measured tilting rates in the rest of NIHAO sample NIHAO:A. Because the

galaxies in NIHAO have a roughly constant relative resolution, extending the sample to

lower mass should not result in resolution issues, which would have been a hindrance in the

cosmological simulation presented in Chapter 2.

The correlation between the sSFR and tilting rate of the stellar disc is tantalising, not

only because it is the strongest found in this thesis. If the accretion of misaligned cool

gas is the predominant driver behind the tilting rate of the stellar disc, galaxies with higher

star formation would require the accretion of more gas, and would, therefore, tilt faster,

explaining this correlation. However, in Chapter 4, two galaxies are presented where the

dominant driver was not the accretion of cool gas. Extending this investigation to the re-

maining NIHAO galaxies would go a long way in unveiling the links between gas accretion,

star formation and tilting rates.
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5.3.2 More details about the corona

Chapter 4 showed the shape of the hot gas and the alignment between the angular momen-

tum of the hot and cool gas. There is a clear transition between a more oblate and a more

spheroidal shape near the radius of the stellar disc. The shape transition is likely driven by

the potential well of the stellar disc, but the impact of the shape on the flow of cool gas has

not been investigated. Cool gas passing through a spheroidal gas cloud could be torqued dif-

ferently than gas passing through a more oblate distribution of gas. The angular momentum

of the hot gas corona is not always aligned with the hot gas closer to the disc. More work

needs to be carried out to investigate the cause of this angular momentum substructure, and

the role both the substructure, shape and hydrodynamical forces play in the reorientation of

the infalling cool gas’s angular momentum.
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Fig. A.1 g7.55e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. A.2 g7.55e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. A.3 g7.55e11: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. A.4 g7.55e11: top: total angular momentum of gas entering Rdisc at each time step,

left: total angular momentum of gas entering 0.5R200 at each time step, right: magnitude of

angular momentum entering Rdisc at each time step.
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Fig. A.5 g7.55e11: the integrated net angular momentum flow of stars calculated at increas-

ing radii between 5 and 30 kpc with annuli of width 5 kpc (top) and between 40 and 120

kpc with annuli of width 20 kpc (left), and the magnitude of each angular momenta against

the interior annular radius (right).
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Fig. A.6 g7.55e11: the integrated net angular momentum flow of dark matter calculated at

increasing radii between 20 and 200 kpc with annuli of width 20 kpc (top), the total angular

momentum of dark matter entering 0.5R200 at each time step (left), and the magnitude of

each angular momenta against the interior annular radius (right).
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A.1 g7.55e11

Fig. A.7 g7.55e11: this plot shows the distribution of the gas clouds at z = 0.3, each colour

represents a different gas cloud that will be tracked. The top left and top right panel show the

gas clouds projected in the x-y plane, before (left) and after (right) grouping. The bottom left

and bottom right panels show the gas clouds projected in the x-z and y-z planes, respectively.
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Fig. A.8 Left: the location of all the particles in the gas cloud with M > 106M⊙ & R̄ < 30

kpc, middle: average distance to the centre of the galaxy with time, right: angular momen-

tum of each gas cloud at z = 0.3. The mass and starting angular momentum (in units M⊙

km s−1) of each cloud is given in middle plot.
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Fig. A.9 g7.66e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. A.10 g7.66e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. A.11 g7.66e11: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. A.12 g7.66e11: top: total angular momentum of gas entering Rdisc at each time step,

left: total angular momentum of gas entering 0.5R200 at each time step, right: magnitude of

angular momentum entering Rdisc at each time step.
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Fig. A.13 g7.66e11: the integrated net angular momentum flow of dark matter calculated at

increasing radii between 20 and 200 kpc with annuli of width 20 kpc (top), the total angular

momentum of dark matter entering 0.5R200 at each time step (left), and the magnitude of

each angular momenta against the interior annular radius (right).
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A.2 g7.66e11

Fig. A.14 g7.66e11: this plot shows the distribution of the gas clouds at z = 0.3, each colour

represents a different gas cloud that will be tracked. The top left and top right panel show the

gas clouds projected in the x-y plane, before (left) and after (right) grouping. The bottom left

and bottom right panels show the gas clouds projected in the x-z and y-z planes, respectively.
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Fig. 13 (Cont.) Left: the location of all the particles in the gas cloud with M > 107M⊙ &

R̄ < 30 kpc, middle: average distance to the centre of the galaxy with time, right: angular

momentum of each gas cloud at z = 0.3. The mass and starting angular momentum (in units

M⊙ km s−1) of each cloud is given in middle plot.
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Fig. 14 g8.26e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 15 g8.26e11: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 16 g8.26e11: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. 17 g8.26e11: top: total angular momentum of gas entering Rdisc at each time step,

left: total angular momentum of gas entering 0.5R200 at each time step, right: magnitude of

angular momentum entering Rdisc at each time step.
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Fig. 18 g8.26e11: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. 19 g8.26e11: the integrated net angular momentum flow of stars calculated at increasing

radii between 5 and 30 kpc with annuli of width 5 kpc (top) and between 40 and 120 kpc

with annuli of width 20 kpc (left), and the magnitude of each angular momenta against the

interior annular radius (right).
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Chapter 4 Figures Continued

Fig. 20 g8.26e11: this plot shows the distribution of the gas clouds at z = 0.3, each colour

represents a different gas cloud that will be tracked. The top left and top right panel show the

gas clouds projected in the x-y plane, before (left) and after (right) grouping. The bottom left

and bottom right panels show the gas clouds projected in the x-z and y-z planes, respectively.
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Fig. 21 g8.26e11: left: the location of all the particles in the gas cloud with M > 106M⊙

& R̄ < 30 kpc, middle: average radius of all the particles in the gas cloud with time, right:

angular momentum of the gas cloud at z = 0.3. The mass and starting angular momentum

(in units M⊙ km s−1) of the cloud is given in middle plot.
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Fig. 22 g1.92e12: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 23 g1.92e12: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 24 g1.92e12: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. 25 g1.92e12: top: total angular momentum of gas entering Rdisc at each time step,

left: total angular momentum of gas entering 0.5R200 at each time step, right: magnitude of

angular momentum entering Rdisc at each time step.
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Fig. 26 g1.92e12: the integrated net angular momentum flow of stars calculated at increasing

radii between 5 and 30 kpc with annuli of width 5 kpc (top) and between 40 and 120 kpc

with annuli of width 20 kpc (left), and the magnitude of each angular momenta against the

interior annular radius (right).
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Fig. 27 g1.92e12: the integrated net angular momentum flow of dark matter calculated at

increasing radii between 20 and 200 kpc with annuli of width 20 kpc (top), the total angular

momentum of dark matter entering 0.5R200 at each time step (left), and the magnitude of

each angular momenta against the interior annular radius (right).
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Fig. 28 g1.92e12: this plot shows the distribution of the gas clouds at z = 0.3, each colour

represents a different gas cloud that will be tracked. The top left and top right panel show the

gas clouds projected in the x-y plane, before (left) and after (right) grouping. The bottom left

and bottom right panels show the gas clouds projected in the x-z and y-z planes, respectively.
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Fig. 29 g1.92e12: left: the location of all the particles in the gas cloud with M > 107M⊙ &

R̄ < 30 kpc, middle: average distance to the centre of the galaxy with time, right: angular

momentum of each gas cloud at z = 0.3. The mass and starting angular momentum (in units

M⊙ km s−1) of each cloud is given in middle plot.
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Fig. 30 g2.79e12: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 31 g2.79e12: column density of stars (top row), gas (middle row) and dark matter

(bottom row), within boxes of widths 60 kpc (left column) and 400 kpc (right column).
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Fig. 32 g2.79e12: top: total angular momentum of stars entering Rdisc at each time step,

left: total angular momentum of stars entering 0.5R200 at each time step, right: magnitude

of angular momentum entering Rdisc at each time step.
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Fig. 33 g2.79e12: top: total angular momentum of gas entering Rdisc at each time step,

left: total angular momentum of gas entering 0.5R200 at each time step, right: magnitude of

angular momentum entering Rdisc at each time step.
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Fig. 34 g2.79e12: the integrated net angular momentum flow of stars calculated at increasing

radii between 5 and 30 kpc with annuli of width 5 kpc (top) and between 40 and 120 kpc

with annuli of width 20 kpc (left), and the magnitude of each angular momenta against the

interior annular radius (right).
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Fig. 35 g2.79e12: the integrated net angular momentum flow of dark matter calculated at

increasing radii between 20 and 200 kpc with annuli of width 20 kpc (top), the total angular

momentum of dark matter entering 0.5R200 at each time step (left), and the magnitude of

each angular momenta against the interior annular radius (right).
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Chapter 4 Figures Continued

Fig. 36 g2.79e12: this plot shows the distribution of the gas clouds at z = 0.3, each colour

represents a different gas cloud that will be tracked. The top left and top right panel show the

gas clouds projected in the x-y plane, before (left) and after (right) grouping. The bottom left

and bottom right panels show the gas clouds projected in the x-z and y-z planes, respectively.
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Fig. 34 (Cont.) Left: the location of all the particles in the gas cloud with M > 107M⊙ &

R̄ < 30 kpc, middle: average distance to the centre of the galaxy with time, right: angular

momentum of the gas cloud at z = 0.3. The mass and starting angular momentum (in units

M⊙ km s−1) of each cloud is given in middle plot.

250



Appendix B

Appendix B includes a copy of Earp S. W. F., Debattista V. P., Macciò A. V., Cole D. R.,

2017, MNRAS, 469, 4095.

251



MNRAS 469, 4095–4101 (2017) doi:10.1093/mnras/stx1143
Advance Access publication 2017 May 11

The tilting rate of the Milky Way’s disc

Samuel W. F. Earp,1‹ Victor P. Debattista,1‹ Andrea V. Macciò2,3 and David R. Cole4
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ABSTRACT
We present tilting rates for galaxies comparable to the Milky Way (MW) in a � cold dark
matter cosmological hydrodynamical simulation, and compare these with the predicted tilting
rate detection limit of the Gaia satellite 0.28◦ Gyr−1. We first identify galaxies with mass
comparable to the MW (9 × 1011 ≤ M200 ≤ 1.2 × 1012 M�) and consider the tilting rates
between z = 0.3 and 0. This sample yields a tilting rate of 7.6◦ ± 4.5◦ Gyr−1. We constrain
our sample further to exclude any galaxies that have high stellar accretion during the same
time. We still find significant tilting, with an average rate of 6.3◦ Gyr−1. Both subsamples tilt
with rates significantly above Gaia’s predicted detection limit. We show that our sample of
galaxies covers a wide range of environments, including some similar to the MW’s. We find
galaxies in denser regions tilt with higher rates then galaxies in less dense regions. We also
find correlations between the angular misalignment of the hot gas corona and the tilting rate.
Gaia is likely to be able to directly measure tilting in the MW. Such a detection will provide
an important constraint on the environment of the MW, including the rate of gas cooling
on to the disc, the shape and orientation of its dark matter halo, and the mass of the Large
Magellanic Cloud. Conversely, failure to detect tilting may suggest the MW is in a very quiet
configuration.

Key words: reference systems – Galaxy: disc – Galaxy: evolution – Galaxy: kinematics and
dynamics.

1 IN T RO D U C T I O N

Disc galaxies such as the Milky Way (MW) are rapidly rotating; the
orientation of their spin axis represents the integral of the angular
momentum accreted via gas, interactions with satellites or other
galaxies, and torques exerted on the disc by the dark matter halo
within which they reside. Therefore directly observing disc tilting
at the present time provides clues to the nature of each of these pro-
cesses. The Gaia space astrometry mission may soon allow direct
measurement of the MW’s disc tilting rate. Precision measurements
will enable the construction of stellar position catalogues with accu-
racies of order 20µ as with respect to distant quasars, which act as
the measurement reference frame (Perryman et al. 2001; Lindegren
et al. 2008). Perryman, Spergel & Lindegren (2014) estimate that
an accuracy better than 1µ as yr−1 should be achieved in all the in-
ertial spin components of the Gaia reference frame, corresponding
to 0.28◦ Gyr−1.

Galaxies tilt for a variety of reasons. The role of interactions
in disc tilting has been studied extensively. While major mergers

� E-mail: swfearp@gmail.com (SWFE); vpdebattista@gmail.com (VPD)

destroy discs, smaller scale interactions are less violent, and tilt disc
galaxies. Huang & Carlberg (1997) showed that infalling satellites
tilt discs so that there is a preference for infalling satellites to merge
in the plane of the disc. Read et al. (2008) reached a similar conclu-
sion. Bett & Frenk (2012) investigated the effects of minor mergers
and flybys on the orientation of spins of dark matter haloes of mass
(12.0 ≤ log10(M/ M�)h−1 ≤ 12.5) at z = 0. They found that the
majority of these events only caused small changes in the angular
momentum of the entire halo, with only 10.5 per cent of MW mass
haloes experiencing changes in their angular momentum by more
than 45◦ over the course of their lifetimes. However, the inner halo
is not so stationary, with 47 per cent of inner haloes experiencing a
large change in their angular momentum orientation of at least 45◦

during their lifetimes. Bett & Frenk (2016) extended this study to
include a broader range of halo masses (10.5 ≤ log10(M/ M�)h−1

≤ 15.5). They found that 35 per cent of haloes had experienced
changes in orientation of at least 45◦, at some point in their life-
times, without a major merger taking place.

In the MW, the most important ongoing interaction is with the
Large and Small Magellanic Clouds (LMC and SMC). The mass
of the LMC is currently the subject of debate, with mass estimates
as high as MLMC ∼ 2 × 1011 M� (Kallivayalil et al. 2013; Gómez

C© 2017 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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et al. 2015; Peñarrubia et al. 2016), corresponding to ∼20 per cent
of the mass of the MW. Other estimates are significantly lower
(∼5 × 109 M�) (Alves & Nelson 2000; van der Marel et al. 2002).
Thus the importance of the LMC on the orientation of the MW’s
disc spin cannot yet be estimated well.

Another cause of disc tilting is torques from dark matter haloes. In
the �-cold dark matter (�CDM) paradigm, haloes grow hierarchi-
cally, becoming triaxial (Bardeen et al. 1986; Barnes & Efstathiou
1987; Frenk et al. 1988; Dubinski & Carlberg 1991; Jing & Suto
2002; Bailin & Steinmetz 2005; Allgood et al. 2006). These triaxial
haloes are themselves tilting (Moore et al. 2004). Dubinski (1992)
examined the effect of tidal shear on dark matter haloes; he found
that in all 14 of his (1–2) × 1012 M� haloes, the major axis ro-
tated uniformly around the minor axis with a rotation rate in the
range of 6◦–96◦ Gyr−1. Likewise, Bailin & Steinmetz (2004) mea-
sured figure rotation in 288 of their 317 dark matter haloes, finding
a tilting rate of 6.2◦ Gyr−1 with a log-normal distribution having
σ = 0.58◦ Gyr−1. Bryan & Cress (2007) found that 63 per cent of
the 115 haloes they considered exhibited significant figure rotation,
with an average pattern speed of 13.8◦ h Gyr−1.

The figure rotation of triaxial haloes leads to time varying torques
on discs. Debattista et al. (2015) showed that a stellar disc, lacking
gas, within a triaxial halo aligns its spin axis with the minor axis of
the halo. Even when perturbed by a satellite, the disc settles back
to this alignment. Thus a tilting halo will drag a disc along with it.
Yurin & Springel (2015) inserted live stellar discs into eight, MW-
sized, high-resolution dark matter haloes from the Aquarius simu-
lation. They found typical tilting rates of 5◦–6◦ Gyr−1, comparable
with halo tilting rates. While no direct evidence of tilting haloes ex-
ists, tidal torques exerted on a stellar disc by a rotating dark matter
halo have been explored as a possible cause for warps (Dubinski &
Kuijken 1995; Dubinski & Chakrabarty 2009) and as a driving
mechanism for spiral structure in dark matter-dominated galaxies
(Bureau et al. 1999).

Galaxies such as the MW are generally thought to be surrounded
by hot gas coronae, with masses greater than the stellar disc itself
(e.g. Spitzer 1956; White & Rees 1978; Savage & de Boer 1979;
White & Frenk 1991; Dahlem 1997; Wang et al. 2001; Fukugita &
Peebles 2006). The quiescent cooling of this hot gas then sustains
star formation over a long time (Fall & Efstathiou 1980; Brook et al.
2004; Kereš et al. 2005; Robertson et al. 2006; Brooks et al. 2009).
However, the angular momentum of coronae is usually misaligned
with that of their embedded stellar disc (van den Bosch et al. 2002;
Roškar et al. 2010). This contributes misaligned angular momen-
tum to the disc, causing its orientation to change. Debattista et al.
(2015) showed that under these circumstances, the orientation of the
disc spin is determined by a balance between the torques from the
triaxial dark matter halo and the net inflow of angular momentum
via cooling gas. As a result, star forming galaxies are generally mis-
aligned with the main planes of their dark matter haloes (Sales &
Lambas 2004; Brainerd 2005; Agustsson & Brainerd 2006; Yang
et al. 2006; Azzaro et al. 2007; Faltenbacher et al. 2007; Wang
et al. 2008, 2010; Nierenberg et al. 2011; Li et al. 2013). Debat-
tista et al. (2013) argued for just such an orientation in the MW, by
noting that the best-fitting models for the Sagittarius Stream (Law,
Majewski & Johnston 2009; Law & Majewski 2010; Deg & Widrow
2013) require the disc spin to be along the halo’s intermediate axis,
an orientation they showed is extremely unstable. Debattista et al.
(2013), therefore, argued that the modelling assumption of the disc
residing in one of the symmetry planes must be violated. While this
is indirect evidence, stacking of external galaxies has shown that the
distribution of satellites around blue galaxies tends to be isotropic,

contrary to what is seen around red galaxies (Sales & Lambas 2004;
Brainerd 2005; Yang et al. 2006; Wang et al. 2008; Nierenberg et al.
2011; Dong et al. 2014; Wang et al. 2014).

In summary in the MW, the disc may be tilting for a variety of
reasons. As a first step towards understanding the tilting of the MW,
in this paper, we measure the tilting rates of MW-like galaxies in
a �CDM cosmological simulation. We compare the tilting rates of
these discs to the observational limit of Gaia to establish whether
tilting of this nature would be detectable. In Section 2, we describe
the cosmological simulation. Then in Section 3, we describe the
samples of galaxies selected on the basis of virial mass, merger his-
tory and total satellite mass. In Section 4, we describe the methods
we use to calculate the tilting rates. Section 5 presents the results
and provides a comparison with the observational limit of Gaia for
a variety of different local configurations and environments. We
present our conclusions in Section 6, showing that even galaxies in
quiet systems tilt at a rate that would be detectable by Gaia.

2 N U M E R I C A L S I M U L AT I O N

The simulation we use here was performed with GASOLINE, a multi-
stepping, parallel, tree code with smoothed particle hydrodynamics
(SPH) (Wadsley, Stadel & Quinn 2004). The version of GASOLINE

used for this work includes radiative and Compton cooling for a
primordial mixture of hydrogen and helium. The star formation al-
gorithm is based on a Jeans instability criterion (Katz 1992), but
simplified so that gas particles satisfying constant density and tem-
perature thresholds in convergent flows spawn star particles at a rate
proportional to the local dynamical time (see Stinson et al. 2006).
The star formation efficiency was set to 0.05 based on simulations of
the MW that satisfied the Schmidt–Kennicutt Law (Schmidt 1959;
Kennicutt 1998), and we adopt a star formation threshold of 0.1
particles per cubic centimetre. The code also includes supernova
feedback using the blast-wave formalism as described in Stinson
et al. (2006), and a UV background following Haardt & Madau
(1996); see Governato et al. (2007) for a more detailed description.

We used as a starting simulation one of the cosmological cubes
described in Macciò, Dutton & van den Bosch (2008), namely our
box has a size of 180Mpc and contained 3003 dark matter particles.
This box was created using WMAP5 (Komatsu et al. 2009) initial
conditions with (h, �M, �L, �b, σ 8) = (0.72, 0.258, 0.742, 0.0438,
0.796) and was run with the code PKDGRAV as detailed in Macciò
et al. (2008).

From this simulation, we selected at z = 0 a volume of about
(25 Mpc)3 with the requirement of not containing any haloes with
a virial mass above 5 × 1012 M�. For this purpose, we use the halo
catalogue from Macciò et al. (2008), which was generated using
a Spherical Overdensity halo finder algorithm. The choice of this
particular mass threshold is motivated by our interest in studying
the properties of galaxies with a total mass equal or lower than
the MW.

We then traced back to the initial conditions the Lagrangian
region defined by this redshift-zero volume, making sure to obtain
a continuous region (i.e. no holes) at the initial redshift (z = 99).
Finally, we used the standard zoom-in technique to enhance the
resolution of the dark matter particles in the selected region by a
factor of 103, and adding baryons (gas particles) with the same high
resolution. As a final result, this high resolution region contains
more than 108 particles, and reaches a mass resolution of 6.6 × 106

and 1.1 × 106 M� for dark matter and gas, respectively, with a
gravitational softening length of 1.24 kpc for dark matter and 0.5 kpc
for gas.
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We then used the GASOLINE code described above to evolve these
new high resolution initial conditions from z = 99 to 0 taking into
account gas cooling, star formation and feedback in a self-consistent
way. To generate the catalogue of virially bound haloes, we use the
grid based code AMIGA Halo Finder (Knollmann & Knebe 2009) on
the simulation outputs.

3 THE SAMPLES

We identify 182 haloes spanning the mass range 9 × 1010–
4.4 × 1012 M�. Of the 41 saved time steps during the time interval
z = 0.3 to 0, we use a subset of ten time steps with an average
separation of ∼0.37 Gyr to determine the stellar mass fractional
growth rate, and to track the merger history of each galaxy. We
calculate the tilting rate once for each galaxy, by measuring the
angular momentum within 5 per cent of the virial radius at z = 0.3
and 0.

Subsample A contains haloes within a specified mass range com-
parable to the MW. The motivation for this mass cut is two-fold.
First, we are interested in galaxies with similar halo mass as the
MW. Secondly, we wish to choose galaxies where the mass of the
dark matter halo and the stellar mass are in good agreement with
abundance matching results. We impose an upper limit of M200 ≤
1.2 × 1012 M� in order to constrain the sample to a mass range
that is comparable with the virial mass of the MW (Klypin, Zhao &
Somerville 2002). We also find that above this limit the full sample
is dominated by ellipticals that, due to their evolutionary history,
generally have lower specific angular momentum. Fig. 1 compares
the halo mass–stellar mass relation of the full sample with the rela-
tion derived by the abundance matching method of Kravtsov et al.
(2014). This figure shows that galaxies residing within haloes of
mass M200 ≥ 9 × 1011 M� in the simulation match this relation-
ship well. Lower mass haloes, however, have an excess stellar mass.
Therefore, we use this mass as a lower limit for subsample A. Im-
plementing the mass range 1.2 × 1012 ≥ M200 ≥ 9 × 1011 M�
leaves 19 galaxies in subsample A.

Subsample B has the same mass constraint with two added limits:
one on the change in stellar mass to remove galaxies that have

Figure 1. Stellar mass versus halo mass at redshift z = 0 for the most
massive galaxies in the initial sample (black points). We measure the stellar
mass within 5 per cent of the virial radius (r200), where the mean interior
density is 200 times the critical density. For comparison, the black line
shows the M∗–M200 relation of Kravtsov, Vikhlinin & Meshscheryakov
(2014) derived using halo abundance matching. The grey shaded region
shows the scatter in this relation. The red dashed lines illustrate the bounds
that subsample A lies within.

Figure 2. Distribution of the maximum rate of change in stellar mass nor-
malized by average stellar mass between ti and ti + 1 within 5 per cent of the
virial radius. The black histogram shows the rates for the full sample of 182
haloes. The green histogram shows the distribution of rates for galaxies that
did not undergo any mergers between z = 0.3 and 0. The red dashed line
indicates the upper limit we impose on subsample B.

undergone mergers above a certain mass ratio, and the second on
the ratio of galaxy mass to total satellite mass. First, we observe
the evolution of the galaxies by visual inspection to construct a
catalogue of galaxies that have not undergone mergers between
z = 0.3 and 0. By comparing this catalogue to the full sample, we can
constrain the rate of change in stellar mass such that above this limit
the sample is dominated by galaxies that have undergone mergers.
Fig. 2 shows the distribution of fractional growth rates for galaxies
that do not undergo mergers and the full sample. From Fig. 2, we
set an upper limit on the maximum stellar mass fractional growth
rate of 0.16 Gyr−1 within 5 per cent of the virial radius, under which
galaxies have not undergone significant minor or major mergers. We
construct subsample B from subsample A with the added constraint
that �M∗/(〈M∗〉�t) must fall below this value. Two galaxies that
fell below this limit were observed undergoing a minor merger,
however, the maximum stellar mass accreted was roughly one per
cent that of the central galaxy so they are included in subsample
B. Lastly, we stipulate that the total satellite stellar mass must be
less than 40 per cent that of the central galaxy at every time step.
To measure the total satellite mass, we subtract the total stellar
mass within 0.1r200, where r200 is the virial radius, from the total
stellar mass inside r200. This leaves us with just seven galaxies in
subsample B.

4 A NA LY SIS

To derive accurate tilting rates, we first find the kinematic centres
of the galaxies. We adopt the position of the lowest potential dark
matter particle as our kinematic centre. We verify that this method
is reliable by computing the kinematic centre using an iterative
shrinking sphere method. Starting with a sphere of 200 kpc, we
iterate centring on the centre of mass and halving the radius each
step to a final value of ∼10 pc. Using the lowest potential dark
matter particle, we are able to obtain kinematic centres for our
entire sample of 182 galaxies.

We then measure the angular momentum of the galaxy by
summing the angular momentum of each star particle within
R < 0.05r200. This radius is selected to include the disc of the
galaxy, but exclude any warps. Briggs (1990) found that warps be-
come detectable within the Holmberg radius (RHo). For a typical
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virial radius of ∼200 kpc, we would expect a Holmberg radius
of ∼15 kpc, 5 kpc greater than the radius we would consider for
0.05r200 ∼ 10 kpc. We also select this radius to avoid selecting just
the bulges of our galaxies, which tend to have lower specific angular
momentum.

In order to determine the uncertainty in the tilting rates, we mea-
sure the difference in the direction of the angular momentum vector
at different radii. We measure the angular momentum at seven lin-
early spaced radii spanning 0.01 < R/r200 < 0.04. We then use the
average angular discrepancy between the vectors as the error (σ ) on
the measurement of the angular momentum vector, and hence on
the tilting rate. For each of these errors, we assign a weight w such
that w = 1/σ 2, which will be used in the calculation of the mean
and standard deviation of each subsample.

5 R E S U LTS

5.1 Tilting rates

First we consider subsample A, i.e. galaxies with virial mass
comparable to the MW’s, within the range 9 × 1011 ≤ M200 ≤
1.2 × 1012 M�. We measure the tilting rate once, between the two
time steps z = 0.3 and 0. This subsample tilts with a mean rate of
7.6◦ Gyr−1, and a standard deviation of 4.5◦ Gyr−1, well above the
average error for this subsample of just 0.05◦ Gyr−1. All 19 of the
galaxies in this subsample exhibit significant tilting above Gaia’s
detection limit of 0.28◦ Gyr−1 (Perryman et al. 2014).

Next we consider subsample B, i.e. the galaxies with similar
mass to the MW, that have low fractional stellar mass change from
z = 0.3 to 0, and have a maximum total satellite mass of 40 per cent
that of the central galaxy. Fig. 3 shows tilting rates for sample
B versus the ratio of stellar mass to satellite stellar mass. Each
data point in this figure corresponds to a tilting rate of a single
galaxy, with the mass ratio measured at z = 0. The green squares
show only the five galaxies that were not observed to undergo
any mergers since z = 0.3, while the black squares were the two
galaxies that did undergo a minor merger within the same time.

Figure 3. Tilting rate versus the present day fraction of satellite to galaxy
stellar mass (Msat,∗/M200,∗) for subsample B, i.e. galaxies that have mass
comparable to the MW and have low fraction stellar mass change between
z = 0.3 and 0. The (green) squares represent the galaxies that were observed
to not have undergone any mergers since z = 0.3, the (black) circles show the
galaxies that undergo a minor merger. The black dashed line shows recent
estimates of the mass ratio of the LMC relative to the MW (Kallivayalil
et al. 2013; Gómez et al. 2015; Peñarrubia et al. 2016). The red horizontal
line is Gaia’s predicted detection limit (Perryman et al. 2014).

The tilting rates of this subsample have an average of 6.3◦ Gyr−1,
with a standard deviation of 6.5◦ Gyr−1, well above the average
uncertainty of 0.13◦ Gyr−1. This subsample also tilts with a rate
well above Gaia’s detection limit.

5.2 Environmental dependence

To determine if there is any dependence between the tilting rates of
galaxies and their local environment, we compare the tilting rates
of the galaxies with their normalized local density. We calculate the
density within various radii centred on each galaxy, and then nor-
malize by the critical density at z = 0. Fig. 4 shows the distribution
of densities for spheres with radii 3,4,5 and 6 Mpc. We find that for
large radii (5 and 6 Mpc) that there is a strong correlation for sub-
sample A with p values of 0.8 for both, although, for smaller radii
(3 and 4 Mpc), the correlation weakens, with p values of 0.2 and
0.6, respectively. When we consider subsample B, the correlations
are enhanced, with p values of 0.7, 0.95, 0.97 and 0.96 for radii
3,4,5 and 6Mpc, respectively.

The MW has a close massive neighbour M31 within 1 Mpc. We
compare the tilting rates with the distance D to the nearest massive
(M∗ > 9 × 1011 M�) galaxy in subsample A. Fig. 5 shows the
tilting rate versus D; galaxies in subsample A span a range of D,
including some with very close neighbours and some very isolated.
We see no relation between D and the tilting rate. Considering
galaxies in subsample B, we do find a weak anti-correlation. One of
our galaxies does appear to be tilting extremely fast without a close
neighbour.

5.3 Dependence on gas

The angular momenta of the hot gas corona surrounding a galaxy
and of the disc are not generally aligned. As the gas corona contin-
ually feeds cool gas to the disc, this misalignment causes gas being
accreted to change the angular momentum of the disc. To investi-
gate this effect on the tilting rate, we define the hot gas corona in
two different ways. In the first, we choose all gas with a temperature
T > 5 × 104 K, and in the second, we choose all gas between two
spherical shells of radii 0.2r200 and r200. The angular momentum
calculated from each definition is in good agreement, with p = 0.99.
We compare the tilting rates of the hot gas corona to the tilting rate
of the disc for both of these methods. Fig. 6 shows that for both
methods of defining the corona, there is no correlation between
the angular momentum tilting rate of the corona and disc for MW
mass galaxies. Even when we consider subsample B, we find no
correlation for both methods.

Next we compare the tilting rates of the disc to the angular mis-
alignment between the disc and the hot gas corona for both methods
of defining the hot gas corona. Fig. 7 shows the relation between
the tilting rates of discs and the angular misalignment of the hot
gas corona and disc angular momentum. We find a weak correlation
with p values of 0.4 and 0.5 for both methods, respectively, for sub-
sample A. However, for subsample B, the correlation strengthens
considerably for both methods with p values of 0.86 and 0.87.

The large-scale structure (LSS) may influence the flow of gas into
the halo and subsequently the misalignment between the stellar and
coronal angular momentum. When we compare the misalignment
of the hot gas corona from the stellar disc with the normalized local
density, we find similar correlations as those we found in Fig. 4.
Therefore it is not possible to determine from this simulation if
the effect of the environment directly governs the tilting of the
galaxy or if the LSS affects the tilting via its effect on the coronal
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Figure 4. Tilting rate versus the local density within a sphere of radius x at redshift z = 0. In all panels, the (black) diamonds represent galaxies in subsample
A with masses comparable to the MW and the (red) squares show galaxies in subsample B with comparable mass and undergoing no interactions since z = 0.3.
We measure correlation coefficients for each panel x = 3, 4, 5 and 6 Mpc of p = 0.2, 0.6, 0.8 and 0.8, respectively, for all points, while for subsample B, we
find p values of 0.7, 0.95, 0.98 and 0.97, respectively.

Figure 5. Tilting rate versus distance D to nearest galaxy with comparable
mass to the MW measured at z = 0. The (black) diamonds represent sub-
sample A and the (red) squares show subsample B. We find a correlation
coefficient of p = −0.05 for subsample A and p = −0.3 for subsample B.

angular momentum, as seems likely. Debattista et al. (2015) found
that galaxies lacking gas generally aligned with the minor axis of
their halo. However, when gas is allowed to cool on to the disc,
the orientation can be more arbitrary. For both of our subsamples,
we find that galaxies with higher star formation generally tilt with
higher rates. These results favour the gas driven tilting scenario.

When we compare the angular momentum misalignment between
the disc and the gas corona with the local density, we find similar
correlations as those in Fig. 4. Thus the mechanism by which the

LSS affects the disc’s tilting rate is unclear. The LSS may torque
the disc directly, or it may influence the flow of gas into the halo,
driving the misalignment between the stellar and coronal angular
momentum, which in turn drives the tilting (e.g. Debattista et al.
2015). One possible clue comes from comparing the tilting and the
star formation rate. For both of our subsamples, we find that galaxies
with a higher star formation rate generally tilt faster, suggesting that
it is the delivery of misaligned angular momentum through gas that
dominates the tilting.

6 D I S C U S S I O N A N D C O N C L U S I O N S

When we consider galaxies with halo masses comparable to the MW
(subsample A), we find significant tilting with an error weighted
mean rate of 7.6◦ Gyr−1 and a standard deviation of 4.5◦ Gyr−1.
The entire subsample displays significant tilting with rates higher
than the detection limit of Gaia. We further restrict to a sample with
low relative stellar accretion and a maximum stellar mass fraction
in satellites of 40 per cent (subsample B), finding a lower mean
tilting rate of 6.2◦ Gyr−1, with a range from 0.65 to 24.6◦ Gyr−1.

A variety of processes may drive the change in angular mo-
mentum that we have measured. Interactions with other galaxies
are the most violent processes changing the angular momentum of
discs drastically over a short period. However, we have found that
even when we exclude strong interactions, we still measure signif-
icant tilting above the detection limit of Gaia. Therefore, we must
turn to secular processes such as halo torques and the accretion of
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Figure 6. Left-hand panel: The tilting rate of the stellar disc versus the tilting rate of the corona, defined as all gas between radii 0.2r200 and r200. We find
no correlation for subsample A (black diamonds) with a coefficient of p = −0.08. For subsample B (red squares), we find no correlation with p = −0.18.
Right-hand panel: The tilting rate of the stellar disc versus the tilting rate of the corona, defined as all gas with a temperature T > 5 × 104 K. We find no
significant correlation for subsample A (black diamonds), with p = −0.035. Similarly for subsample B (red squares), we find no correlation, with p = −0.27.

Figure 7. Left-hand panel: The tilting rate of the stellar disc versus the angular difference in angular momentum orientation between the stellar disc and the
hot gas corona, defined as all gas between radii 0.2r200 and r200. We find a weak correlation for subsample A (black diamonds), with p = 0.4, and a strong
correlation for subsample B (red squares), with p = 0.86. Right-hand panel: The tilting rate of the stellar disc versus the difference in orientation between the
stellar disc and the hot gas corona, defined as all gas with temperature T > 5 × 104 K. We find a weak correlation for subsample A (black diamonds) with
p = 0.5, and a strong correlation for subsample B (red squares) with p = 0.87.

misaligned cold gas on to the disc to explain the entire phenomena
of disc tilting.

We investigated the effect of the local environment on the tilt-
ing rate of the disc. Comparing the local density against the tilting
rate, we find that the tilting rate does not correlate with the nor-
malized local density within 3 Mpc for subsample A. However, for
subsample B, we do find a correlation. When we consider larger
radii, we find a correlation between the tilting rate and the local
environment for both subsamples. Galaxies in denser regions gen-
erally tilt at higher rates than galaxies in lower density regions,
irrespective of the galaxies stellar mass accretion.

The MW has a very close, similar mass, neighbour M31. In order
to compare to the MW’s configuration, we measured the distance
to the nearest massive galaxy and determined the correlation with
the tilting rates. We find almost no correlation for subsample A;
however, for subsample B, we do find very weak anti-correlation.
This suggests that the local configuration is unlikely to be a large
contributing factor when the disc is accreting significant mass. Our
sample contains galaxies in similar configurations to the MW with
companion galaxies within a few hundred kpc; these galaxies exhibit
tilting rates similar to more isolated galaxies.

To determine the effect of misaligned gas accreting from the hot
gas corona, we measured both the tilting rate of the hot gas corona
and the angular misalignment between the stars and the corona.
We find no correlation between the tilting rates of the two differ-
ent components for either subsample. We also compared the tilting
rate of the disc to the angular momentum misalignment between
the two components: For subsample A, there is a weak correlation,
which becomes stronger for subsample B. We also find a corre-
lation between the misalignment of the disc and coronal angular
momentum and the LSS. Thus, the LSS may directly affect the tilt-
ing rate via torques, or indirectly by influencing the flow of gas into
the halo. For both subsamples, galaxies with higher star formation
tilt faster, perhaps indicating that the role of the LSS is in driving
the misaligned gas. We conclude that the angular momentum mis-
alignment between the corona and disc is an important, possibly
dominant, driver of disc tilting.

In this paper, we have measured the tilting rates for a wide va-
riety of galaxies of similar mass to the MW, in various configu-
rations, some similar to the local configuration of the MW. Ev-
ery configuration yielded a tilting rate above the Gaia limit and
should be detectable. Confirmation of a tilting disc would have
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important consequences for understanding the evolution of the MW.
For example, the tilt of the disc will make the potential seen by the
Sagittarius Stream time varying. Conversely failure to detect tilting
may suggest the MW is in an unexpectedly quiet configuration.
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Klypin A., Zhao H., Somerville R. S., 2002, ApJ, 573, 597
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Komatsu E. et al., 2009, ApJS, 180, 330
Kravtsov A., Vikhlinin A., Meshscheryakov A., 2014, preprint (arXiv:e-

prints)
Law D. R., Majewski S. R., 2010, ApJ, 714, 229
Law D. R., Majewski S. R., Johnston K. V., 2009, ApJ, 703, L67
Li Z., Wang Y., Yang X., Chen X., Xie L., Wang X., 2013, ApJ, 768, 20
Lindegren L. et al., 2008, in Jin W. J., Platais I., Perryman M. A. C., eds,

IAU Symp. 248, The Gaia Mission: Science, Organization and Present
Status. Kluwer, Dordrecht, p. 217
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