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p53 modeling as a route to mesothelioma 
patients stratification and novel therapeutic 
identification
Kun Tian1, Emyr Bakker2, Michelle Hussain3, Alice Guazzelli1, Hasen Alhebshi1, Parisa Meysami1, 
Constantinos Demonacos4, Jean‑Marc Schwartz4, Luciano Mutti5 and Marija Krstic‑Demonacos1*

Abstract 

Background: Malignant pleural mesothelioma (MPM) is an orphan disease that is difficult to treat using traditional 
chemotherapy, an approach which has been effective in other types of cancer. Most chemotherapeutics cause DNA 
damage leading to cell death. Recent discoveries have highlighted a potential role for the p53 tumor suppressor in 
this disease. Given the pivotal role of p53 in the DNA damage response, here we investigated the predictive power of 
the p53 interactome model for MPM patients’ stratification.

Methods: We used bioinformatics approaches including omics type analysis of data from MPM cells and from MPM 
patients in order to predict which pathways are crucial for patients’ survival. Analysis of the PKT206 model of the p53 
network was validated by microarrays from the Mero‑14 MPM cell line and RNA‑seq data from 71 MPM patients, whilst 
statistical analysis was used to identify the deregulated pathways and predict therapeutic schemes by linking the 
affected pathway with the patients’ clinical state.

Results: In silico simulations demonstrated successful predictions ranging from 52 to 85% depending on the drug, 
algorithm or sample used for validation. Clinical outcomes of individual patients stratified in three groups and simula‑
tion comparisons identified 30 genes that correlated with survival. In patients carrying wild‑type p53 either treated 
or not treated with chemotherapy, FEN1 and MMP2 exhibited the highest inverse correlation, whereas in untreated 
patients bearing mutated p53, SIAH1 negatively correlated with survival. Numerous repositioned and experimental 
drugs targeting FEN1 and MMP2 were identified and selected drugs tested. Epinephrine and myricetin, which target 
FEN1, have shown cytotoxic effect on Mero‑14 cells whereas marimastat and batimastat, which target MMP2 dem‑
onstrated a modest but significant inhibitory effect on MPM cell migration. Finally, 8 genes displayed correlation with 
disease stage, which may have diagnostic implications.

Conclusions: Clinical decisions related to MPM personalized therapy based on individual patients’ genetic profile and 
previous chemotherapeutic treatment could be reached using computational tools and the predictions reported in 
this study upon further testing in animal models.
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Author summary
Mesothelioma is a rare type of cancer with a notori-
ously poor prognosis whose incidence is heavily tied to 
asbestos exposure. Due to the long latency period from 
asbestos exposure to mesothelioma development, it is 
expected that incidence of the disease will peak between 
2015 and 2030, which represents a significant unmet 
need due to the ineffectiveness of current therapies. Here 
we employ a combination of computer simulation tech-
niques along with data from both mesothelioma cells and 
from mesothelioma patients to identify genes that are 
correlated with both patient survival and disease stage. 
Through the use of drug databases we have also identi-
fied a number of drugs that may have therapeutic benefit 
in mesothelioma, with these suggested therapies tailored 
to individual patients based on disease stage, genetic sta-
tus, and type of therapy received. Ultimately this research 
provides evidence for the effectiveness of an interdisci-
plinary approach of computational research and clinical 
medicine, that may upon further testing improve patient 
outcomes.

Background
Malignant pleural mesothelioma (MPM) is an aggressive 
cancer mostly related to asbestos exposure, affecting 2570 
patients every year in the UK and approximately 20,000 
worldwide. Due to the continuing exposure in certain 
countries and the latency period from asbestos exposure 
to mesothelioma development, a rise in MPM incidence 
worldwide is expected during the coming decades [1]. 
Currently, there are no effective treatments for MPM and 
the prognosis of patients is invariably poor. The current 
standard therapy for MPM (cisplatin/antifolate, as well as 
potentially surgery and radiotherapy in selected patients) 
improves the average survival by approximately two and 
half months [1].

Moreover, modern targeted therapies that have shown 
benefit in other human tumors, have failed in MPM [2, 
3] possibly due to specific biological characteristics of 
this tumor that should be investigated more extensively. 
Therefore there is an urgent need to find ways to diag-
nose MPM at an earlier stage and increase knowledge 
about the mechanisms underlying carcinogenesis, pro-
gression and chemo-radio-resistance of this neoplasm.

Development of new therapies is based mainly on our 
better understanding of potentially “targetable” mol-
ecules and their relevance to clinical outcomes. Recent 
reports have highlighted important features that may 
cause specific MPM resistance to therapy including alter-
ations in p53 signaling [4–6] and hypoxic [7] pathways. 
Genomic and transcriptomic analysis of MPM patients 
has shown the existence of aberrations in the p53 net-
work, for instance mutations in the ARF pathway, which 

regulates p53 [4, 8, 9]. Thus, improved understanding of 
the p53 network and its role in mesothelioma may con-
tribute towards improved therapeutic outcomes.

Different classes of chemotherapeutics are used to 
induce apoptosis in cancer cells. DNA damaging agents 
such as the topoisomerase II inhibitor etoposide (ETO) 
are the most commonly used drugs to treat leukemia and 
solid tumors due to their capacity to induce TP53 activa-
tion [10]. In turn the “guardian of the genome” p53 tumor 
suppressor induces apoptosis in cells with DNA damage 
and is found mutated in over half of all human cancers 
[11]. Thus, intensive investigation of the TP53 signaling is 
carried out (more than 91,000 published articles related 
to p53 as of September 2018) and detailed understand-
ing of the alterations that occur in its network when this 
tumor suppressor is mutated is needed to improve the 
outcomes of the TP53-network based therapies.

Computational research methodologies offer the pos-
sibility of integrating large data sets in a comprehensive 
manner through modeling. Systems biology aims to accu-
rately model biological phenomena, with approaches 
such as Boolean modeling being suitable for network 
generation and dynamic analysis. Genes/proteins, as 
well as biological stimuli or output processes, are rep-
resented by the model’s nodes whilst the interactions 
between these network elements are the model’s edges. 
These models are able not only to predict steady states 
and time-course dynamics of complex systems but also to 
simulate in vivo loss-of-function mutations through node 
deletion [12].

We have previously demonstrated the successful 
application of this modeling approach through the gen-
eration of glucocorticoid receptor and TP53 interac-
tomes, which uncovered novel levels of signaling in 
these two pathways [11, 13]. The TP53 interactome 
(p53 model constructed by Kun Tian, containing 206 
nodes [PKT206]) consists of 206 nodes connected by 
738 edges, and generates predictions as to how the rela-
tionship between model constituents is altered follow-
ing loss of network elements. Correct prediction rates 
[as assessed by microarray validation in human osteo-
sarcoma cell lines using logical steady state analysis 
(LSSA)] reached rates as high as 71% for this model [11]. 
The alternative algorithm STSFA (signal transduction 
score flow algorithm) aimed to overcome the limitations 
of qualitative analysis brought by Boolean modeling, 
allowed for analysis in a semi-quantitative manner, and 
demonstrated improved predictive power over the origi-
nal LSSA analysis [14]. The STSFA has also been prelimi-
narily used to assess model performance as a predictive 
clinical tool, through its application to our glucocorti-
coid receptor interactome using microarray data from 
thirteen leukemia patients [13, 15, 16]. This preliminary 
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analysis also showed a potential correlation of model 
predictions with clinical outcomes, which provides fur-
ther evidence of the strength of this modeling approach 
to understand cancer, identify novel drug targets and 
predict responses to treatment.

To further analyze the predictive capacity of our p53 
model, we tested its predictive capabilities using an MPM 
cell line and patients’ transcriptome data and demon-
strated the high predictive features of this modeling 
approach in MPM. We also identified genes that are cor-
related with survival depending on the patients’ p53 sta-
tus and previous therapy, linked the expression of specific 
genes to particular stages of MPM and proposed rational 
approaches which, upon further testing and validation, 
could direct the selection of personalized therapeutic 
schemes.

Results
Microarray analysis of MPM cells after treatment 
with etoposide or gemcitabine
We have previously described the PKT206 model which 
was validated using U2OS human osteosarcoma cell lines 
as well as human colon carcinoma HCT 116 cell lines 
demonstrating high levels of correct predictions [11, 
14]. In order to determine if model predictions extend to 
other cancer types we performed microarray analysis in 
the Mero-14 human MPM cell line treated with the DNA 
damaging agents etoposide and gemcitabine (GEM) 
which are used in the clinical settings to treat various 
cancers [17–19].

In Mero-14 cells the expression of 1767 genes was 
altered upon etoposide treatment out of which 1021 
genes were up-regulated and 746 genes were down-
regulated (Additional file  1: Table  S1, Additional file  2: 
Table S2 and Additional file 3: Table S3). In gemcitabine-
treated Mero-14 cells the expression of 1622 genes was 
altered compared to the expression level of these genes 
identified in the control untreated cells. In particular, 
876 genes were upregulated and 746 genes were down-
regulated (Additional file  4: Table  S4, Additional file  5: 
Table S5 and Additional file 6: Table S6). A high number 
of the same genes (647) were found to be upregulated in 
cells treated with either etoposide or gemcitabine with 
469 identical genes downregulated in either etoposide or 
gemcitabine-treated cells (Fig.  1). Certain genes specifi-
cally up or downregulated by either etoposide or gemcit-
abine have been identified, whereas the H1 histone family 
member 0 (H1F0) gene was found to be upregulated in 
etoposide and downregulated in gemcitabine treated cells 
(Fig. 1).

PKT206 model validation was undertaken on 
a genome-wide scale using Mero-14 cells by two 

approaches: LSSA as well as STSFA in conjunction with 
high-throughput data such as microarrays [11, 20, 21].

Superimposition of mesothelioma Mero‑14 cell line 
transcriptome data to the PKT206 model
Superimposition of human Mero-14 malignant meso-
thelioma cell line gene expression profiles to PKT206 
was performed as previously described [11]. Briefly, the 
in silico DNA damage input was switched ‘ON’ to mimic 
conditions of cells treated with gemcitabine or etoposide, 
and ‘OFF’ to mimic cells that were not treated. No p53 
knockout scenario was generated as no p53 null cell lines 
were used to create a p53 wild type versus p53 knockout 
scenario.

One ninety nine genes were filtered from Mero-14 
mesothelioma cell line treated with etoposide and gem-
citabine expression profiles and compared to the model 
[21]. Use of LSSA algorithm to validate the model 
resulted in 149 correct (74.87%) predictions, 48 (24.12%) 
small errors and 2 (1.01%) large error following validation 
based on Mero-14 cells treated with gemcitabine against 
untreated sample (Table 1, top row). Second analysis was 
performed in Mero-14 cell lines treated with etoposide 
(Table  1, bottom row). For the simulation of mesotheli-
oma cells treated with 10 µM etoposide 199 genes were 
analyzed, a total of 142 correct predictions (71.36%) were 
obtained with 56 small errors (28.14%) and one large 
error (0.51%). Large errors occupied the minority of all 
these predictions and the greatest number of correct pre-
dictions was obtained for gemcitabine simulations.

In the next set of simulations STSFA was applied to the 
same set of data as described above (Table 2, Additional 
file  7: Table  S7). Total number of genes analyzed was 
191 and simulation results were compared to Mero-14 
mesothelioma cell line treated with etoposide and gem-
citabine microarray expression profiles. This simulation 
resulted in 163 correct (85.34%) predictions, 28 (14.66%) 
small errors and no large errors, following validation 
based on Mero-14 cells treated with gemcitabine com-
pared to control (Table 2, top row). Second analysis was 
performed in Mero-14 cell lines treated with etoposide 
(Table 2, bottom row). 191 genes were analyzed, and 157 

Fig. 1 Venn diagram showing genes regulated in similar or different 
manner in etoposide and gemcitabine treated cells
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correct (82.2%) correct predictions were recorded with 
34 (17.8%) small errors and no large errors. Similarly to 
LSSA simulations, the greatest number of correct predic-
tions was obtained for gemcitabine simulations.

Superimposition of mesothelioma tumors expression 
profiles to the PKT206 using LSSA
As good predictive ratios were obtained from superimpo-
sition of in vitro transcriptome data to the PKT206 model 
we further evaluated its capability to predict differential 
gene expression changes on patient derived RNA-Seq 
data obtained from Bueno et  al. [4]. RNA sequencing 
data were processed by the software package edgeR and 
normalized by the trimmed mean of M values method 
(TMM). Then differential expression analysis was per-
formed using the negative binomial generalized linear 
model (glm) method. The differentially expressed genes 
were filtered by the fold change of 1.5 and p-value < 0.05. 
Transcriptome data from 71 patients and 200 genes in 
total were filtered and compared to the results obtained 
from LSSA (Table  3). Depending on the scenario, cor-
rect predictions ranged between 52 and 84% whilst small 
errors were between 15.5 and 45%. Large errors occupied 
only a small number of cases (0.5–3%). Therefore this 

model demonstrated high predictive capacity (up to 84%) 
when interrogating patient-derived omics type of data.

Superimposition of mesothelioma tumors expression 
profiles to the PKT206 using STSFA‑correlations 
with survival and tumor stage
The 71 patients described in Bueno et al. [4] were strati-
fied into four groups depending on their p53 status and 
whether or not they were treated with chemotherapy. 
These groups were wild-type p53 treated, or not treated 
with chemotherapy, and mutant p53 treated or not 
treated with chemotherapy. STSFA scores were calcu-
lated for each gene/process and for each patient (Addi-
tional file 8: Table S8). Then these scores were correlated 
with the survival after surgery as indicated in [4]. Genes 
exhibiting the highest correlative scores with survival 
are shown in Tables  4, 5. Two methods were employed 
to obtain this correlation. First, the Pearson coefficient 
correlation method that correlated gene STSFA score and 
survival time after surgery was used and results shown 
in the Table 4 and Additional file 8: Table S8. The second 
method used was Cox proportional hazards regression 
analysis, which investigates the association between sur-
vival time of patients and other parameters (covariates) 

Table 1 Model evaluation by LSSA and microarray analysis of mesothelioma cell line Mero-14

Source scenario 
in Mero‑14

Target scenario 
in Mero‑14

LSSA simulation Total 
number 
of genes

Number 
of correct 
predictions

p‑value 
of correct 
predictions

Number of small 
error predictions

Number of large 
error predictions

TP53 wt without 
treatment

TP53 wt with Gem 
treatment

TP53 wt with DNA 
damage ON vs 
TP53 wt with 
DNA damage 
OFF

199 149 (74.87%) 4.33 × 10−33 48 (24.12%) 2 (1.01%)

TP53 wt without 
treatment

TP53 wt with 
etoposide treat‑
ment

TP53 wt with DNA 
damage ON vs 
TP53 wt with 
DNA damage 
OFF

199 142 (71.36%) 5.88 × 10−28 56 (28.14%) 1 (0.5%)

Table 2 Model evaluation by STSFA and microarray analysis of mesothelioma cell line Mero-14

Source scenario 
in Mero‑14

Target scenario 
in Mero‑14

STSFA simulation Total 
number 
of genes

Number 
of correct 
predictions

p‑value 
of correct 
predictions

Number
of small 
error 
predictions

Number of large 
error predictions

TP53 wt without 
treatment

TP53 wt with Gem 
treatment

TP53 wt with DNA 
damage ON vs 
TP53 wt with DNA 
damage OFF

191 163 (85.34%) 6.02 × 10−50 28 (14.66%) 0 (0%)

TP53 wt without 
treatment

TP53 wt with etopo‑
side treatment

TP53 wt with DNA 
damage ON vs 
TP53 wt with DNA 
damage OFF

191 157 (82.2%) 6.8 × 10−44 34 (17.8%) 0 (0%)
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using the Cox proportional hazards model (Table 5 and 
full analysis in Additional file  9: Table  S9). Genes in 
Tables  4, 5 which are negatively related with survival, 
were also analyzed by the Cox proportional hazards 
regression analysis and the results are shown in Table 5 
below. The values in the beta column indicate the regres-
sion coefficients. A positive value indicates the risk of 
death is higher and a negative value means the hazard is 
lower. The column of HR (95% CI for HR) summaries the 
hazard ratio (the exponentiated coefficients) of the covar-
iate and the hazard ratio intervals between the lower 95% 
confidence bound and the upper 95% bound. The global 
statistical significance results are also represented by the 
Wald test value and the p-value of the test.

Different genes were found to correlate with survival 
depending on the patient’s p53 status (Tables  4, 5). In 
particular the highest negative correlation (− 0.582) 
obtained using Pearson correlation with survival for 
treated patients with wild type p53 was found to be the 
flap structure-specific endonuclease 1 (FEN1) [22] gene 
(Table  4 and Additional file  10: Table  S10). FEN1 is an 
endonuclease involved in DNA replication and error 
prone DNA repair [22]. In not treated with chemother-
apy patients carrying wild-type p53 the highest nega-
tive correlation with survival was observed for MMP2 
(− 0.521), which is a matrix metallopeptidase involved 
in cell migration and metastasis [23] (Table 4 and Addi-
tional file  9: Table  S9). Finally, in the not treated with 
chemotherapy p53 mutated group of patients the highest 

negative correlation with survival was observed with 

Table 3 Model evaluation by LSSA and RNA-sequencing analysis (Chemoth stands for chemotherapy)

Source scenario 
in patients

Target scenario 
in patients

LSSA simulation Total 
number 
of genes

Number 
of correct 
predictions

p‑value 
of correct 
predictions

Number of small 
error predictions

Number of large 
error predictions

TP53 wild type 
treated with 
chemoth

TP53 mutant 
treated with 
chemoth

TP53 null with 
DNA damage 
ON vs TP53 wt 
with DNA dam‑
age ON

200 104 (52%) 2.03 × 10−8 90 (45%) 6 (3%)

TP53 wild type 
not treated with 
chemoth

TP53 mutant not 
treated with 
chemoth

TP53 null with 
DNA damage 
OFF vs TP53 wt 
with DNA dam‑
age OFF

200 109 (54.5%) 3.77 × 10−10 86 (43%) 5 (2.5%)

TP53 mutant not 
treated with 
chemoth

TP53 mutant 
treated with 
chemoth

TP53 null with 
DNA damage 
ON vs TP53 null 
with DNA dam‑
age OFF

200 150 (75%) 1.92 × 10−33 46 (23%) 4 (2%)

TP53 wild type 
not treated with 
chemoth

TP53 wild type 
treated with 
chemoth

TP53 wt with DNA 
damage ON vs 
TP53 wt with 
DNA damage 
OFF

200 168 (84%) 1.921.92 × 10−49 31 (15.5%) 1 (0.5%)

Table 4 Correlation of  genes and  processes with  survival 
of  mesothelioma patients; the  Pearson correlation 
coefficient is shown

Patients treated by chemotherapy are indicated by T; patients untreated by 
chemotherapy are indicated by UT. Wild type p53 status is labelled WT and 
mutant is labelled MUT

TP53 WT T TP53 WT UT TP53 MUT UT

Gene Survival 
correlation

Gene Survival 
correlation

Gene Survival 
correlation

CKB 0.495 DDIT4 − 0.507 E2F1 − 0.498

MUC1 − 0.510 MMP2 − 0.521 FOXM1 − 0.504

FOXM1 − 0.519 NLRC4 − 0.508

E2F1 − 0.526 CDC20 − 0.512

SFN − 0.530 AURKA − 0.515

CKS2 − 0.533 RAS − 0.518

CHEK1 − 0.534 PLAUR − 0.519

HSP90AB1 − 0.535 MCTS1 − 0.522

RECQL4 − 0.535 GAPDH − 0.523

PTTG1 − 0.539 EZH2 − 0.534

AURKA − 0.559 ECT2 − 0.548

PRC1 − 0.563 PRC1 − 0.561

HMMR − 0.575 APAF1 − 0.566

FEN1 − 0.582 BRCA1 − 0.579

HSP90AB1 − 0.583

NCL − 0.604

MAPK14 − 0.611

HIF1A − 0.624

SIAH1 − 0.702
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SIAH1 (− 0.702) gene. SIAH1 is an E3 ligase involved 
in the p53 signaling, protein degradation, WNT path-
way as well as hypoxia and apoptosis [24] (Table  4 and 
Additional file  10: Table  S10). Negative correlation 
with survival in patients expressing either wild type or 
mutant p53 was observed for five genes namely the E2F1, 
FOXM1, PRC1, HSP90AB1 and AURKA.

It was found that 22 genes out of these 30 genes in the 
Table 5 have highly significant coefficients, such as PRC1, 
ECT2, FOXM1, CDC20, BRCA1, AURKA, RECQL4, 
CHEK1, EZH2, HMMR, HSP90AB1, MMP2, E2F1, 
CKS2, PTTG1, APAF1, RAS, NCL, MCTS1, FEN1, and 
HIF1A. Only CKB has negative beta coefficients and 

the other 29 genes have positive beta coefficients, which 
means CKB is associated with the better survival and the 
other genes are associated with the poor survival.

Gene ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were then used to anno-
tate the individual gene products and the classes of gene 
products respectively to find the pathway(s) these genes 
are involved in (Additional file 10: Table S10). The KEGG 
pathways appearing more frequently included cell cycle, 
DNA repair, metabolism, and microRNA pathways.

Comparison of the data obtained from the analysis of 
the patients based on the p53 status (Tables  4, 5) with 
genes altered in Mero-14 cells (Fig.  1, Additional file  1: 
Table  S1, Additional file  2: Table  S2, Additional file  3: 
Table  S3, Additional file  4: Table  S4, Additional file  5: 
Table  S5 and Additional file  6: Table  S6) indicated that 
PTTG1, AURKA, DDTI4 and CDC20 were downregu-
lated and FEN1, EZH2 and BRCA1 upregulated upon 
either etoposide or gemcitabine treatment. PLAUR was 
upregulated in etoposide treated and HIF-1 alpha upreg-
ulated in gemcitabine treated Mero-14 cells.

Then we investigated the DRUGSURV database [25] 
to unveil drugs specifically targeting the genes with the 
higher negative association with survival in each group 
(FEN1, MMP2 and SIAH1 in p53 wt treated, p53 wt 
untreated and p53 mut untreated respectively). The 
rationale for this investigation was to address the possi-
bility of stratified treatment for patients classified in the 
three different groups (Table  6 and Additional file  11: 
Table  S11). For example FEN1 can be targeted directly 
by 10 drugs approved for various conditions suggesting 
that these drugs could be repositioned for MPM treat-
ment. In addition, there are 12 experimental drugs tar-
geting FEN1 directly, 13 approved drugs that target FEN1 
indirectly and 8 experimental drugs that target FEN1 
indirectly (Additional file  11: Table  S11). MMP2 can be 
directly targeted by 2 drugs approved by the U.S. Food 
and Drug Administration (FDA) (Table 6). There are no 
FDA approved drugs directly targeting SIAH1 whereas 
there are approved and experimental drugs that target 
SIAH1 indirectly (Additional file 11: Table S11).

In order to determine if the STSFA scores correlate with 
the stage of the tumor, 203 genes from the model were 
grouped into stage groups (Additional file 12: Table S12 
modified from Bueno et  al. [4], and Additional file  13: 
Table  S13) The expression level of eight genes (AIFM2, 
CDKN1B, KAT2B, MAP4K4, PDRG1, RRM2B, SLC2A4, 
ZMAT3) was considered significantly different between 
the stages 3 and 4 with p-value < 0.05 (Additional file 14: 
Figure S1). AIFM2, CDKN1B, KAT2B, MAP4K4, RRM2B 
and ZMAT3 were positively correlated (median score of 
these genes was higher in the stage 4 than in the stage 
3) and PDRG1 and SLC2A4 were negatively correlated 

Table 5 Univariate Cox regression analysis

The Cox regression results for genes listed in the Table 4 are shown in the 
Table 5. The column of beta coefficient shows the beta regression coefficient. 
The column of HR [95% confidence intervals (CI) for HR] list the hazard ratios 
(the exponentiated coefficients) and the size of the confidence intervals of the 
hazard ratios. The column of p value lists the p value for the Wald test method

Gene name Beta coefficient Hazard ratio (95% 
confidence interval 
for HR)

p value

CKB − 0.0621 0.97 (0.819–1.08) 0.376

MUC1 0.181 1.2 (0.944–1.47) 0.0566

FOXM1 0.462 1.59 (1.28–1.96) 1.89E−05

E2F1 0.143 1.15 (1.06–1.25) 0.000551

SFN 0.0768 1.08 (0.983–1.19) 0.111

CKS2 0.408 1.5 (1.19–1.91) 0.000783

CHEK1 0.55 1.73 (1.3–2.31) 0.000165

HSP90AB1 0.494 1.64 (1.25–2.16) 0.000412

RECQL4 0.442 1.56 (1.25–1.94) 8.71E−05

PTTG1 0.397 1.49 (1.18–1.88) 0.000819

AURKA 0.438 1.55 (1.25–1.93) 8.47E−05

PRC1 0.435 1.54 (1.27–1.88) 1.31E−05

HMMR 0.355 1.43 (1.18–1.73) 0.00029

FEN1 0.345 1.41 (1.05–1.91) 0.024

DDIT4 0.348 1.42 (1.16–1.73) 0.000689

MMP2 0.14 1.15 (1.06–1.24) 0.000414

NLRC4 0.109 1.12 (0.844–1.47) 0.443

CDC20 0.361 1.43 (1.21–1.71) 4.61E−05

RAS 0.32 1.38 (1.11–1.71) 0.0039

PLAUR 0.185 1.2 (0.98–1.48) 0.0779

MCTS1 0.542 1.72 (1.09–2.71) 0.0194

GAPDH 0.119 1.13 (0.86–1.47) 0.388

ECT2 0.49 1.63 (1.3–2.04) 1.87E−05

EZH2 0.184 1.2 (1.09–1.33) 0.000268

APAF1 0.443 1.56 (1.15–2.1) 0.00383

BRCA1 0.203 1.22 (1.11–1.35) 6.32E−05

HIF1A 0.146 1.16 (1.01–1.33) 0.0404

MAPK14 0.139 1.15 (0.803–1.64) 0.447

NCL 0.504 1.66 (1.13–2.43) 0.00978

SIAH1 0.143 1.15 (0.974–1.37) 0.0986
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(median score of these was lower in the stage 4 than in 
the stage 3). There were no statistically significant differ-
ences between other stages.

These genes were then compared with those identi-
fied in etoposide or gemcitabine treated Mero-14 cells 
to be over- or underexpressed compared to untreated 
cells. This comparison revealed that the PDRG1 gene is 
upregulated in ETO or GEM treated cells and negatively 
correlated with stage 4. Its expression is higher in stage 3 
compared to stage 4.

In order to determine which pathways are modu-
lated by these genes we used KEGG, the biological bio-
chemical image database (BBID) and Biocarta databases 
(Additional file 15: Table S14). Histone acetyl transferase 
PCAF controls gene expression of numerous genes such 
as p53, nuclear hormone receptors Notch, IFN-beta and 
others involved in cancer, immune system and metabo-
lism. CDKN1B is p27 cyclin dependent kinase inhibitor 
and controls cell cycle progression. Additional pathways 
include MAPK signaling pathway, DNA metabolism 
(RRM2B) glucose transporters (SLC2A4) and several of 
these genes are involved in the p53 signaling pathway. 
Apoptosis-inducing factor 2 (AIFM2) is an oxidore-
ductase induced by p53 stimulating apoptosis. p53 and 
DNA-damage regulated 1 (PDRG1) gene is induced by 
DNA damage and is a p53 transcriptional target.

Along similar lines described above we investigated 
the DRUGSURV database to unveil drugs targeting spe-
cifically PDRG1 (Additional file 16: Table S15). Although 
there were no approved or experimental drugs that tar-
get PDRG1 directly, we identified 12 drugs that target its 
interaction partner HSP90AA1 and 8 drugs that target its 
interaction partner MAP3K3.

Given that both Pearson correlation and Cox regres-
sion analysis identified FEN1 and MMP2 as correlating 
negatively with survival, we used the DRUGSURV data-
base (Table  6 and Additional file  11: Table  S11 to iden-
tify approved and experimental drugs that target them. 
We analyzed the effects of epinephrine, a drug approved 
for various conditions, and predicted to target directly 
FEN1, as well as myricetin that is an experimental drug 
predicted to target FEN1 directly, to analyze their effects 
on Mero-14 cell viability (Fig.  2). Epinephrine inhibited 
Mero-14 cell survival at high concentrations and more 
effectively when incubated with cells for 72 h then at 48 h 
(Fig.  2a, b). Myricetin demonstrated inhibition of cell 
viability up to approximately 70% after 48  h treatment 
and up to 80% at 72  h treatment at 100  µM dose, sug-
gesting a cytotoxic effect of this drug on these MPM cells 
(Fig. 2c, d). In the next set of experiments, we identified 
drugs that target MMP2 directly; Marimastat, which is 
approved for clinical use and Batimastat, an experimen-
tal drug. Treatment of Mero-14 cells with marimastat 
caused cellular cytotoxicity of up to 60% when cells were 
treated with 100 μM dose for 72 h (Fig. 3a, b). Batimastat 
treatment had marginal effect on cell survival after 72 h 
of incubation with 100 µM dose (Fig. 3c, d). Given that 
MMP2 is a protease involved in metastasis, we employed 
migration assays to determine the role of its inhibitors on 
cell migration (Fig.  4). Both Batimastat and Marimastat 
caused modest but significant inhibition of wound clo-
sure in Mero-14 cells incubated for 24  h with 12.5  μM 
and 25  μM concentrations, with Batimastat showing 
more potent effects These results provide partial valida-
tion of the in silico predictions described previously.

Discussion
The p53 network is inactivated in most cancers [26], thus 
understanding the role of this network in cancer devel-
opment and treatment is pivotal for improving cancer 
therapy. In mesothelioma inactivation of the p53 network 
is frequent (> 70%) through p53 and the CDKN2A locus 
alterations [4, 6, 9, 27]. Here we use a systems biology 
approach to integrate clinical data with high-through-
put ‘omics’ data in order to understand the role of DNA 
damage in cancer development and therapy. Our previ-
ous modelling approach used in osteosarcoma [11, 14] 
was expanded to demonstrate the high predictive capac-
ity of the model in the mesothelioma cell line Mero-14 
treated with DNA damaging drugs etoposide and gemcit-
abine. In addition, we used this model to analyze omics 
profiles of 71 mesothelioma patients and identify pre-
dictors of survival and stage of disease. We linked those 
predictors to experimental and approved drugs that 
could be used to devise therapeutic schemes for stratified 
groups of patients based on their p53 status and received 

Table 6 Approved drugs that  target FEN1 and  MMP2 
directly (DRUGSURV database)

Gene Drug‑target details

 FEN1 Epinephrine

Gentian violet

Methyldopa

Dopamine

Idarubicin

Norepinephrine

Masoprocol

Quinacrine

Mitoxantrone

Levodopa

 MMP2 Captopril

Marimastat
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chemotherapy. Finally, initial testing of selected drugs 
effects provided partial validation of model predictions.

We mimicked in  vivo mutations or loss of function 
of p53 using various in silico simulations and predicted 
the effects on gene signaling pathways and cellular fate 
caused by perturbations of DNA damage input (ON or 
OFF). The in silico DNA damage input can represent, for 
example, the chemo-therapeutic DNA damaging agent, 
etoposide or gemcitabine. The superimposition of the 
model predictions to mesothelioma cell line Mero-14 led 
to a high level correct prediction rate of 74% for LSSA 
and up to 85% for STSFA (Tables  1 and 2 respectively). 
This compares to 51–71% prediction rates for LSSA 
analysis of osteosarcoma and colon cancer cell lines we 
observed previously [11]. In addition, we identified that 
in Mero-14 cells treated with etoposide and gemcitabine 
the majority of genes are regulated in the same way, how-
ever a portion of genes is specific to the drug and histone 
H1, member 0 is regulated in opposite manner (Fig.  1). 
This may have implications to which drug is chosen to 
treat particular cancer depending on signaling pathways 

regulated and genes affected. This approach also con-
firmed that the predictive capacity of the model is high 
across osteosarcoma, colon and mesothelioma cancer cell 
lines.

Some modelling approaches of cellular processes have 
been reported. For example, Kirouac et  al. [28] devel-
oped a Boolean model of drug resistance in breast cancer 
that had Erbb2 amplified and tested the in silico interac-
tome prediction using in vitro and mouse model systems. 
Fumia et al. [29] constructed a large scale network with 
several inputs including hypoxia, to predict molecular 
drivers of carcinogenesis. Mai and Lui [30] constructed a 
network considering 40 nodes and found that apoptosis is 
an irreversible process, whilst Schlatter et. [31] developed 
a large scale literature based Boolean model comprising 
125 interactions and 86 nodes and analyzed the behavior 
of apoptotic pathways. Other p53 Boolean models have 
also been reported. Poltz and Naumann [32] investigated 
p53 and NFKB pathways in response to in silico DNA 
damage inputs simulations of single and double stranded 
breaks using a Boolean model that was validated by 

Fig. 2 Effect of FEN1 inhibitors on Mero‑14 cell survival. SRB assay was used as described in “Methods” to treat Mero‑14 cells for 48 h (a, c) or 72 h 
(b, d) with indicated concentrations of epinephrine (a, b) or Myricetin (c, d). Error bars represent SEM of three or more independent experiments. 
p‑value ≤ 0.05, 0.01 and 0.001 is indicated as *, ** or ***, respectively
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Fig. 3 Effect of MMP2 inhibitors on Mero‑14 cell survival. SRB assay was used as described in “Methods” to treat Mero‑14 cells for 48 h (a, c) or 72 h 
(b, d) with indicated concentrations of Marimastat (a, b) or Batimastat (c, d). Error bars represent SEM of three or more independent experiments. 
p‑value < 0.05, 0.01 and 0.001 is indicated as *, ** or ***, respectively

Fig. 4 Wound healing assay of Mero‑14 cell lines treated with MMP2 inhibitors (marimastat (a) and batimastat (b)) for 24 h. The wound healing was 
measured every two hours. Error bars represent SEM of two independent experiments each performed four times. p‑value of < 0.05, 0.01 and 0.001 
is indicated as *, ** or ***, respectively
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experimental methods, revealing carcinogenesis drivers 
and candidate targets for chemo-sensitization strategies. 
However, modelling approaches that can predict poten-
tial novel biomarkers and drug targets upon analysis of 
patients’ data are not frequently reported in literature 
and databases that hold omics type of data or survival 
curves for mesothelioma are lacking.

Despite the fact that number of patients analyzed is not 
high, and different number of patients was present in dif-
ferent groups, given the rarity of mesothelioma, we have 
used these data to obtain limited but important conclu-
sions. We have identified 30 genes that negatively corre-
late with survival after surgery (Tables 4, 5). These differ 
depending on p53 status and therapy. In patients that 
have wild type p53 and were treated with chemotherapy 
there are 14 genes that have been identified and they are 
involved in numerous signaling pathways (Tables 4, 5 and 
Additional file  10: Table  S10), with cell cycle being the 
most represented followed by DNA repair, microRNA 
and metabolism. The top scoring gene was FEN1 indi-
cating that high expression of this gene correlates with 
poor prognosis. This could be potentially because FEN1 
gene [22] is part of error prone DNA repair pathway thus 
increased DNA repair rate is likely to lead to increased 
mismatch and higher mutational load. This could help to 
achieve better selection (which is currently badly needed) 
of patients with MPM that are candidates for immune 
checkpoint inhibitors. DRUGSURV search identified 
10 already approved drugs targeting FEN1 that could be 
repositioned to treat mesothelioma (Table 6). In patients 
with wild-type p53 that were not treated with chemo-
therapy there were two genes identified to negatively 
correlate with survival (DDIT4 and MMP2) (Tables 4, 5). 
The highest score was obtained for MMP2 [23], which is 
involved in cell migration and metastasis, indicating that 
in this group of patients higher expression of this gene is 
a negative prognostic factor possibly because of higher 
chances of metastasis. There are 12 drugs that we found 
that target MMP2 and can be repositioned for mesotheli-
oma treatment of patients that have wt p53 and have not 
been treated with chemotherapy (Table 6).

In patients with mutant p53 that have not been treated 
with chemotherapy 19 genes were identified with signifi-
cant negative correlation to survival (Table  4). The top 
scored gene was SIAH1 [24] and its potential involvement 
may be in affecting WNT pathway or through hypoxia 
signaling. Although there are no drugs directly targeting 
SIAH1, 6 already approved drugs that target its interac-
tion partners UBE2N and 9 that target STAT3 could be 
tested in mesothelioma patients carrying mutated p53. 
There are several genes identified in both p53 wild type 
and mutant cases including the E2F1 transcription factor 
that is a master regulator of cell cycle [33], FOXM1 that is 

a member of forkhead family of transcription factors that 
control proliferation [34], and PRC1 involved in control 
of cytokinesis and chromosomal stability [35]. Given that 
several drugs that have already been FDA approved can 
directly target these proteins, this provides the possibility 
of repositioning these drugs for mesothelioma patients 
that are stratified according to the p53 status and chemo-
therapy received (Table 6). Initial testing of epinephrine 
and myricetin that target FEN1 indicated that they have 
cytotoxic effect on Mero-14 cells (Fig. 2). Both Batimas-
tat and Marimastat that target MMP2 showed cytotoxic 
effect and inhibited migration of Mero-14 cells in  vitro, 
with Marimastat having stronger cytotoxic effect, 
whereas Batimastat was more efficient in inhibiting cell 
migration (Figs.  3 and 4). Given that both epinephrine 
and marimastat are used in medicine, there is a possibil-
ity of repositioning these drugs for MPM treatment upon 
further testing.

MPM is difficult to diagnose, therefore early detection 
is crucial for improving the therapy and identification 
of novel potential biomarkers will facilitate this process. 
In order to link tumor progression with gene expression 
profiles and p53 status, STSFA scores of studied genes 
were analyzed in different patients groups according 
to their stages (S12-S13 Tables). The expression level of 
8 genes was found to be significantly different between 
stages 3 and 4. AIFM2, CDKN1B, KAT2B, MAP4K4, 
RRM2B and ZMAT3 exhibiting higher expression levels 
in stage 4 compared to stage 3 control cell cycle, p53 and 
NOTCH pathways. PDRG1 and SLC2A4 gene expression 
is lower in the stage 4 than in the stage 3 and they regu-
late DNA damage, p53 pathway and are involved in insu-
lin signaling.

Comparison with genes that are altered by etoposide 
and gemcitabine in Mero-14 cell line indicated that the 
PDRG1 gene is upregulated in cells exposed to DNA 
damage, and although its role in cancer development is 
not well described potential drugs that can target it indi-
rectly are available (Additional file 16: Table S15).

Conclusion
We have successfully validated the use of the p53 net-
work model in mesothelioma cell line and patients, and 
we have shown that the PKT206 model is a promising 
predictive tool for development of stratified anti-cancer 
therapies. In addition, we have identified novel deregu-
lated pathways that upon further testing in animal models 
could offer potential targeted drug therapy combinations. 
This approach could predict patients’ responses to ther-
apy according to their genetic profile and identify the 
best therapeutic schemes during the course of the treat-
ment, leading to improved and personalized treatment of 
mesothelioma patients.
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Methods
Cell culture
The human mesothelioma cell line Mero-14 that has wild 
type p53 and expresses p53 protein (Additional file  17: 
Figure S2) was used as a predicted wild type p53 source 
and was donated by Prof. Landi (University of Pisa) [36]. 
Mero-14 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (Sigma, UK) supplemented 
with 10% fetal bovine serum (Gibco, UK), and 1% penicil-
lin/streptomycin (Lonza, USA) and maintained at 37  °C 
in a 5%  CO2 humidified atmosphere. The etoposide and 
gemcitabine were purchased from Sigma, UK.

Sulphorhodamine (SRB) assay
Cells were plated at a density of 0.03 × 105 cells/well in a 
96-well plate  24  h before treating cells with the desired 
drugs. Cells were fixed with 10% trichloroacetic acid 
(TCA) for 1 h, and dried overnight at room temperature 
followed by staining with SRB for 15 min, washed twice 
with 1% acetic acid, and air dried for at least 1  h. The 
incorporated SRB staining was dissolved in 10 mM Tris 
pH 8.8 solution and then plates were analyzed using a 
calorimetric microplate reader (Thermo Labsystem Mul-
tiskan Ascent) (Akribis Scientific, UK) at a wavelength 
of 540 nm and 690 nm, according to In Vitro Toxicology 
Assay Kit Sulforhodamine B based protocol (Sigma, UK).

Western blot analysis
Cells were harvested in ice-cold RIPA buffer contain-
ing 20 mM BGP, 1 mM PMSF, 1 mM DTT, 5 mM NaPPi 
and 2 mM NaOV and 1 µg/ml protease and phosphatase 
inhibitors (Sigma, UK). Bradford assay (Sigma, UK) was 
used for protein quantification. 30  µg of proteins was 
loaded into SDS polyacrylamide gel, then transferred to 
the PDVF membrane. Membranes were incubated over-
night for blocking at 4 °C with 5% no-fat dry milk in PBS 
and then treated with primary and secondary antibodies 
and blots developed using ECL substrate according to 
manufacturer’s instructions (Pierce, Thermo Scientific, 
USA). The following primary antibodies were used for 
western blotting: β-actin (Abcam, UK) and p-53 (Santa 
Cruz Biotechnology, Inc.).

DNA extraction and total TP53 sequencing analysis
Genomic DNA was isolated from Mero-14 cell line using 
Phase Lock Gel™ (PLG) (VWR International Ltd, UK) 
according to the manufacturer’s genomic DNA isolation 
instruction. The entire coding sequence of the TP53 gene 
(exons 1–11) was amplified using designed primers by 
Liu and Bodmer [37].

The standard PCR was performed in a volume of 
50 µl containing 200 ng template DNA, 10 pmol of each 
primer, 25  µl of MyTaq™Red Mix 2X (Bioline, UK) and 

the appropriate volume of  H2O. PCR programs were then 
used to amplify the exons: initial denaturation (1 min at 
95  °C), followed by 35 cycles of denaturation (95  °C for 
15  s), annealing temperature (Tm; 56  °C for 15  s for all 
exons, except exon 2 Tm: 57 °C), and extension (72 °C for 
30 s), and a final extension of 72 °C for 3 min. PCR prod-
ucts were purified using FavorPrep™Gel/PCR Purifica-
tion Kit (Favorgen, Germany). 10  ng/µl of purified PCR 
product were sent to Source BioScience (UK) for Sanger 
sequencing. Sequence alignment was performed using 
BioEdit software v7.0.5.3. Gene-Bank accession number 
NG_017013.2 was used as a reference sequence. In addi-
tion, sequence that corresponds to the genomic sequence 
NC_000017.10 was used for exon alignment.

Wound healing assay
For the wound healing assay, Mero-14 cells were seeded 
at density of 3 × 105  cell/well in 24-well plate and incu-
bated overnight a 37  °C. After achieving confluence, 
monolayer cells were scratched using a p200 pipette tip. 
Cells were washed twice with sterile 1× PBS and then 
treated with marimastat and batimastat both at 12.5 
and 25 µM and incubated at 37° C for 24 h in Cytation 
3 (BioTeck, UK). The migration of the cells at the edge of 
the scratch was analyzed at the indicated time. The rate 
of migration was measured by quantifying the percent-
age (%) of wound closure area, determined using the 
software ImageJ, according to the formula:  % of wound 
closure = [(At = 0 h − At = Δ h)/At = 0 h] × 100%.

Microarray analysis preparation and processing
Total RNA was extracted from untreated or treated 
Mero-14 cells with etoposide (10  µM) or gemcitabine 
(1 µM) for 24 h [38–40] and subjected to The Affymetrix 
Human Genome U133 plus 2.0 Array (Eurofins, UK) as 
previously described [15, 41]. The raw data were nor-
malized by robust multi-array average (RMA) algorithm 
[42] and annotated. As multiple probe ids are annotated 
to the same gene symbol names, the expression values 
of same gene from different probes were merged. The 
median expression value of the same gene in each group 
was calculated to represent the expression value of these 
genes. Then the expression value matrix is processed 
by the Bioconductor platform to identify differentially 
expressed genes using the limma package, which applies 
a linear model algorithm for microarray data analysis 
[43]. Lists of differentially expressed genes were filtered 
using a threshold of  log2(1.5) for the  log2-fold change and 
a raw p value < 0.05.
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Genome‑wide model validation in Mero‑14 cell line
Model validation using LSSA
As previously described [11], to evaluate the predic-
tive strength of the TP53 model, in silico predictions 
were compared to experimentally obtained microarray 
data from mesothelioma cell line Mero-14. To assess the 
model’s prediction for changes between two states, an 
Emod value (this value is obtained from in silico simula-
tions) was calculated which predicted the state change 
for a node between two scenarios [11]. LSSA assigns a 
state of inactive (0), undetermined (NaN) or active (1) 
to each node. For Scenario 1 (i.e. TP53 wild-type DNA 
damage OFF) node i was defined as S(i)1 which could 
take the values of 0, NaN or 1. For Scenario 2 (i.e. TP53 
wild-type DNA damage ON) node i was defined as S(i)2 
which could take the same values. Emod was then calcu-
lated to predict the state change between the two scenar-
ios where − 1 is downregulated, 0 is unchanged and 1 is 
upregulated:

The differential expression for a gene between two 
datasets (i.e. untreated cells and cells treated with etopo-
side to induce DNA damage) was calculated using the 
Eexp value (this value is obtained from in  vitro experi-
ments) calculated as previously described [11] where 
− 1 equates to downregulation, 0 to no change and 1 to 
upregulation. The difference between  Emod and  Eexp can 
have absolute values of 0, 1 or 2 and was used to evalu-
ate model predictive capacity. A value of 0 was labeled as 
correct prediction, value of 1 a small error and value of 2 
a large error as described in [11].

Model validation using STSFA
The STSFA score of nodes in the model for each sample 
was calculated by the Cytoscape plugin, Pathway Scoring 

Emod = −1 if S(i)1 = 1 and S(i)2 = 0

Emod = −1 if S(i)1 = 1 and S(i)2 = NaN

Emod = −1 if S(i)1 = NaN and S(i)2 = 0

Emod = 0 if S(i)1 = 1 and S(i)2 = 1

Emod = 0 if S(i)1 = 0 and S(i)2 = 0

Emod = 0 if S(i)1 = NaN and S(i)2 = NaN

Emod = 1 if S(i)1 = 0 and S(i)2 = 1

Emod = 1 if S(i)1 = NaN and S(i)2 = 1

Emod = 1 if S(i)1 = 0 and S(i)2 = NaN.

Application [20]. The  log2 medium values of the normal-
ized expression values were scaled up by a factor of 100 
to generate microarray experiment inputs of the applica-
tion as described previously [14]. In the scenario of DNA 
damage ON, the mean value of all other mapped genes’ 
score was assigned to the DNA damage input node. 
Whereas in the DNA damage OFF scenario, the mini-
mum value of all other mapped genes’ score was assigned 
to the DNA damage node. The minimum value was also 
assigned to the other un-mapped genes in the model. 
Then the final score for all the nodes was calculated by 
the heuristic algorithm [20].

The  log10 fold change of the STSFA score of each model 
gene for the scenario was calculated to detect the differ-
entially expressed genes. If this  log10 fold change value 
was higher than the upper limit (the mean value of  log10 
fold change plus the standard deviation of the  log10 fold 
change) then the gene was considered to be upregulated 
in the model’s prediction (Emod = 1), whilst if the value 
was lower than the lower limit (the mean value of  log10 
fold change minus the standard deviation of the  log10 fold 
change) the gene was considered to be downregulated in 
the model’s prediction (Emod = − 1), and if the value was 
between the lower and upper limits then the gene was 
considered to be unchanged between the two scenarios 
(Emod = 0). Eexp was calculated as described previously for 
the LSSA analysis and the absolute value of Emod − Eexp 
was calculated as for the LSSA analysis and could take 
three possible values: 0 (model prediction was correct); 
1 (small error prediction where the model predicts for 
example upregulation but the gene is unchanged); 2 (large 
error prediction where the model predicts the opposite 
of what occurred, i.e. the model predicted downregula-
tion whilst the gene is actually upregulated).

Clinical model validation using RNA‑Seq data 
from mesothelioma patients
To further validate models using clinical data, pub-
lished RNA-seq data from Bueno and colleagues [4] was 
obtained from the European Genome-phenome Archive. 
The raw RNA-seq data for each patient was downloaded 
and decrypted using the European Genome-phenome 
Archive (EGA) download client (EgaDemoClient) and 
the downloaded fastq files were aligned to the GRCh37 
reference genome for Homo sapiens using TopHat2 
(Additional file  18: Figure S3) [44, 45]. The generated 
BAM files were processed on the Bioconductor plat-
form to prepare the count matrix. Patients were split 
into 4 groups: treated with chemotherapy patients with 
TP53 wild-type (n = 27), not treated with chemother-
apy patients with TP53 wild-type (n = 26), treated with 
chemotherapy patients with TP53 mutant (n = 1) and not 
treated with chemotherapy patients with TP53 mutant 
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(n = 17). Differential expression analysis for samples of 
different groups was performed by the functions of the 
count-based statistical package edgeR (empirical analy-
sis of digital gene expression in R) [46]. Lists of differen-
tially expressed transcripts were filtered using a threshold 
of  log2 (1.5) for the fold change and a raw p value lower 
than 0.05. Transcript identifiers were annotated to gene 
symbol names by the genome wide annotation for human 
package, org.Hs.e.g.db [47].

The group comparison results were validated by the 
LSSA predictions of the PKT206 model as described 
above. Then the STSFA score of each gene based on 
individual samples were calculated as described above. 
Briefly, the log2 transformed read counts of each gene 
mapped in the PKT206 model were scaled up by a fac-
tor of 100 and then imported as the experiment input of 
the Pathway Scoring Application. The score of the DNA 
damage input node and the unmapped nodes in the 
model were assigned by the same method as for Mero-14 
microarray STSFA calculation above. The pathway scor-
ing application in the Cytoscape was used to calculate 
the score of all nodes in the model for each individual 
patient.

Analysis of model prediction and correlation 
with the clinical profile of patients
STSFA scores were correlated with patients survival after 
surgery (data was published by Bueno and colleagues [4] 
by calculating the Pearson correlation coefficient and 
Cox proportional hazards regression analysis. Pearson 
correlation coefficient provides a measure of the strength 
of correlation between parameters and can have a value 
between + 1 and − 1. 1 means there is a positive corre-
lation, 0 there is no correlation, and − 1 means there is 
negative correlation, with the value of the number indi-
cating the strength of the correlation. Cox proportional 
hazards regression analyses the simultaneous effects 
of covariates on the survival that are calculated by this 
model and quantified as the hazard ratio (HR). HR value 
equal to 1 indicates no effect between the covariate and 
the survival. HR < 1 indicates that the covariate is posi-
tively associated with the survival (good prognostic fac-
tor) and HR value more than 1 indicates the covariate is 
negatively associated with the survival (bad prognostic 
factor). The univariate Cox proportional hazards regres-
sion analysis is performed by functions of the survival 
package and the survminer package on the R platform.

Patients were also grouped according to the stage 
where TNM information was modified according to 
MPM staging classification (https ://emedi cine.medsc 
ape.com/artic le/19993 06-overv iew). 203 genes from the 
PKT206 model were analyzed and their median scores 
compared between different stages of disease. Analysis of 

variance (ANOVA) was used to identify genes that have 
a p value < 0.05. The genes that were most positively or 
negatively correlated with patients’ survival were loaded 
in the database for annotation, visualization and inte-
grated discovery (DAVID) [48] and the biological path-
ways that were altered by those genes were determined 
by the Kyoto Encyclopedia of Genes and Genomes [49]. 
Drugs that can target relevant gene products were identi-
fied through the use of DRUGSURV database [25].

Additional files
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Additional file 2: Table S2. ETO vs ctrl upregulated genes.
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Additional file 4: Table S4. Gem vs ctrl differentially expressed genes.

Additional file 5: Table S5. Gem vs ctrl upregulated genes.
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