
Central Lancashire Online Knowledge (CLoK)

Title Raft on a highline: Loads and trim
Type Article
URL https://clok.uclan.ac.uk/24096/
DOI
Date 2017
Citation Onions, C., and Collins, L. (2017) Raft on a highline: Loads and trim. Journal 

of Search and Rescue, 2 (1). pp. 1-10. 
Creators Onions, C., and Collins, L.

It is advisable to refer to the publisher’s version if you intend to cite from the work. 

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Journal of Search & Rescue Volume 2, Issue 1 

 

 

1 

 

Raft on a Highline: 
Loads and Trim 

 
Chris Onions MRes 

R3 Safety & Rescue Ltd 

Glyndyfyrdwy 

Corwen 

LL21 9HH 

UK 

and  

Loel Collins DProf PGCert 

Institute of Coaching and Performance 

University of Central Lancashire 

Preston 

PR1 2 HE 
 Email chris.onions@R3SAR.com 

 
 

Abstract 
This study examines the loads associated with the positioning of a 4.5m raft on a high line in moving 

water. Testing was conducted within a flow-calibrated channel demonstrating representative stream 

velocities typical (0.6 – 5.4ms/ also MPH) of those encountered during water related rescues. The raft 

was positioned from a high line mid-stream, and a load cell was utilised to collect force/time data. The 

independent variables of trim (relative positioning of the load within the boat) and average stream 

velocity were investigated. The findings challenge assumptions regarding the impact of trim on the 

loads within a highline, the relationship between flow rate and loads on highline and make 

recommendation for training and practice. The study contributes to understanding the loads placed on 

high lines by representative rafts during operational rescues. 

 

KEY WORDS: High line, trim, force, current vector, water rescue training. 

 

 

Introduction 
 

Extrication of a casualty located on an obstruction mid-stream (for example vehicle or boulder) 

requires fine positioning of the craft against the flow of water. ‘Holding station’ may not be achievable 

by paddle or motor power alone. Under these circumstances the raft may be positioned by virtue of a 
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system of tensioned ropes rigged across the moving water (a high tensioned line). The high tensioned 

line allows the craft to be positioned accurately and facilitate the rescue. The techniques to construct 

the system vary but are internationally referred to as boat on a high line techniques, all position of the 

craft in the flow from a tensioned line. Loads with in other high line applications such as mountain and 

technical rescue are well understood (c.f. Attaway, et.al, 2013). However, comprehension of the loads 

generated by boats in flowing water have not been examined. We pose the question, what force will a 

rescue raft typically encounter when placed upon a high line and deployed in moving water during a 

swift water rescue? 

 

As an initial study we measure the force acting on a raft while tethered to a highline in representative, 

but controlled, real-world conditions. The influence of trim (the fore and aft balance of the raft and 

velocity of the water in which the raft is operating are considered.  Comparisons are made with related 

literature to contextualise the derived data. This study represents an initial step to understanding the 

load on (and consequences of overloading) a high line system when utilised to position a rescuing 

boat within moving water. It is hoped that the results of this research will be the first step to produce 

working guidance associated with empirical data in this field.  

 
Boat High Line Rescue 
Ray (1997: p 125-128) describes a continuum of tethered boat rescues. Ray outlines a single point 

tether (managed with a single line. P 125), a two point tether (p. 125), and a four point tether (p. 125).  

All of these methods are suitable for river current velocities that allow the tethers to be hand held by 

the operators.  In situation where the river velocity prevents hand held operation a high line system 

offers management of the boat on the flow with greater security. 

 

In this context this system has been adapted from the high line principles used in technical rescue 

and has evolved from two variants. The first a drooping highline (Brown, 2000, p. 271-301; Ray, 1997. 

P96, figure 1) in which the tension of the line can be varied to facilitate control of the craft (see figure 

1), and reeved high lines, either English (Brown, 2000, p. 285; Ray, 1997. P126-127, figure 2) or 

Norwegian (Brown, 2000, p.285; Ray, 1997. P126-127, figure 3) in which the tensioned line remains 

taught and the boat is controlled via controlling lines. Water rescue practitioners have borrowed and 

adapted the technique from technical rescue in which gravity provides the load and is understood. 

However, an additional factor, the load generated by the water velocity is not understood. The water 

may provide two additional considerations for the rescuer; a change in direction of and additional 

load. Assumptions made concerning the safety implications in the original contexts of mountain and 

technical rescue may not be true in this new application of swift water rescue and therefore require 

investigation.  
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Method 
The fieldwork was conducted in a calibrated channel situated within a manufacture water course. 

Obstructions were removed from the channel so producing an unrestricted laminar flow within a 

parallel-sided channel of 4.5m width.  

 
Calibration and Control of Water Velocity (v) 

Average stream velocity was calibrated by utilising the Manning formula (Akan (2006; Gierke, 2002), 

at the test site. The Manning formula is an empirical tool for determining discharge with respect to the 

potential energy of the flow, the nature and composition of the channel bed. The test channel was 

selected as exhibiting a constant cross sectional area resulting in steady flow.  Further, the test site 

was selected with a fixed, constant and known gradient with consistent use of concrete during the 

channel construction. 

 

Measurements were taken from the test site to enable the relationship between pumped volume and 

average stream velocity to be established.  A steel tape measure was used to collect the dimensions 

of the channel width (m) and the channel length (m).  The slope of the channel was calculated by 

referencing the engineering drawings of the site.  The levels were obtained from the top and bottom of 

the gradient and subtracted (height lost) and divided by the channel length. 

 

 Slope = (top datum – bottom datum) / channel length. 

 

Flow into the channel was introduced and increased in staged increments (55, 65, 75, 85 and 100% 

flows) into the channel, so the average depth could be established at each setting. This procedure 

established a calibration curve for the channel, for pump capacity (%) and average stream velocity (m 

s-1). This approach was preferable to taking live ultra-sonic/Doppler reading because adjusting the 

trim of the raft would expose the hull to water at different depths, the stream velocity changes with 

respect to depth. 

 

Load cell calibration 

The data produced by the load cell were continuous mV signal with a quoted full scale deflection of 

2.000V at 10kN.  The data were captured via an analogue to digital signal convertor with the 

associated software set to sample a value every 0.5 seconds. The manufacturers calibration cited 

1.987V for 10kN (0.1987mV = 1kN).  This conversion factor was applied to the mV values in MS 

Excel™ to obtain values in N force, from which Force/Time Elapsed charts were produced. 
 
Personal Protective Equipment (PPE) and Safety and Management 

Technicians were selected on the basis of their qualification which was mapped against the Concept 

of Operations module 3 training syllabus (DEFRA, 2012). The Technicians were equipped with 
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appropriate personal protective equipment (PPE) including water rescue boots, dry suit, thermal 

under-suit, knife, helmet and a personal floatation device (PFD).   

 
The Raft 

Ray (1997) identified that ‘Almost any watercraft can be used for the lower’ p126. Reflecting common 

use in the UK a 4.5m raft was selected. The raft is an inflatable multi compartment, self-bailing, 

lightweight rescue platform and has capacity to carrying multiple casualties. Raft of similar size are in 

common use by water rescue teams in the UK. Such rafts can be paddled, pulled by hand or motor 

driven. Its shallow displacement and flat hull allows easy maneuvering. 
 
Procedure 

The raft and associated rigging was set up as per Figure 1 with the addition of a Force Logic universal 

column load™ cell connected in series between the focal point of the anchor on the raft and the 

attachment point to the high-line. 

 

 
Figure 1.  Boat on a Highline.  Image by George Manley, courtesy of Rescue 3 (Europe). For clarity, 
the mechanical advantage rigging of the highline and reeving lines have been omitted. 
 

A 30m length of data cable was connected to an in-line signal amplifier positioned on the bank side 

which was used to collect streamed analogue data (Force/time) throughout the procedure via this 
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equipment. The load cell, data cable length and amplifier had been calibrated by the manufacturer as 

a combined unit using a 5-point calibration procedure. A Data Translation™ analogue to digital signal 

convertor was used to transfer the mV signal to a laptop PC and was exported to Microsoft Excel. 

 

The raft was positioned and the data recorded equipment set to record every 0.1 seconds. The 

Manufacturer’s calibration curve was used to convert the mV signal to force (N) and the data were 

manipulated using MS Excel™. The nominal pumped volumes were converted into average stream 

velocity (ms-1) via the Manning calculations and calibration curve  

 
Test 1: Measurement of the forces induced on the highline.  
The crew was positioned centrally in the boat (neutral trim) and maintained constantly.  The water in 

the channel was switched on incrementally at 55, 65, 75, 85 and 100% flow and at each increment; 

the boat was deployed into the current vector via the high line. The raft was positioned mid-stream via 

alignment with a marker placed on the side of the channel and the loads recorded. 

  

Test 2: Locating the load to the rear of the craft (stern trim) 

The testing procedure for Test 1 was repeated for consistency with the crew (n=3) positioned towards 

the rear of the raft creating a stern trim. Force data were recorded and compared with the data from 

test 1. 

 
Test 3: Locating the load to the front (bow trim) 
The testing procedure for Test 1 was repeated for with the crew (n=3) positioned towards the bow of 

the raft and maintained constantly. Force data were recorded and compared with the data from Test 

1. 

 

 

 

Results  
Test 1: Measurement of the forces induced on the highline. 

Summary of mean and peak force induced on the highline by the raft, trimmed neutrally with respect 

to average stream velocity and subjected to an incremental increase in average stream velocity. 

 

Trim - Neutral 

Average Stream 
Velocity (m/s) 

Mean Force (N) Peak Force (N) Standard Deviation (N) 

0.6 1224 1408 89 

1.4 1132 1249 36 

2.5 638 727 34 

4.2 610 793 38 
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5.4 1128 2566 34 

Table 1: Mean and peak force induced on the highline by neutrally trimmed raft.   

 

The force profile reduces with respect to average stream velocity from 0.6 – 4.2 ms-1 and the highest 

force value recorded during the testing of this test (1224N) occurred at the lowest average stream 

velocity (0.6 ms-1). Beyond an average stream velocity of 4.2 ms-1 the force value increased up to 5.4 

ms-1.  At the highest stream velocity, the force recorded (1128 ms-1) was comparable with the force 

recorded at the lowest stream velocity (1224 ms-1).  
 
Test 2: Locating the load to the rear of the raft (stern trim) 

Summary of mean and peak force induced on the highline by the raft, trimmed to the stern with 

respect to average stream velocity. 

 

Trim - stern 

Average Stream 
Velocity (m/s) 

Mean Force (N) Peak Force (N) Standard Deviation (N) 

0.6 1120 1228 52 

1.4 988 1162 38 

2.5 1912 2081 56 

4.2 2120 2256 47 

5.4 1942 2072 33 

Table 2.  Mean and peak force induced by the 4.5m raft, trimmed to the rear.   

 

The force is lowest (988N) at 1.4 ms-1 in this state of trim, and peaks at 2120N at 4.2 ms-1 
 
Test 3: Locating the load to the front (bow trim) with respect to force for a given stream 
velocity.  

Summary of mean and peak force induced on the highline by the raft boat, trimmed forward (bow trim) 

with respect to average stream velocity. 

 

Test 3 Trim - Bow 

Average Stream 
Velocity (m/s) 

Mean Force (N) Peak Force (N) Standard Deviation (N) 

0.6 1045 1158 34 

1.4 1003 1077 36 

2.5 1773 1886 49 

4.2 2030 2141 44 

5.4 2530 2674 60 

Table 3. Mean and peak force induced by the raft, trimmed forward.   
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Above 1.4 ms-1 loads are higher than the corresponding values for neutral trim. Above an 

average stream velocity of 4 ms-1 the trace climbs with respect to load.  Observations highlight that at 

velocities above 4ms-1 the hull is no longer demonstrating planning behaviour.  

  

 

 

Discussion 
 

Test 1: Measurement of the forces induced on the highline.   

The highest loads experienced occurred at a low stream velocity (up to 1.5m/s). The raft was 

observed to be functioning as a displacement hull. Beyond stream velocities of 1.5m/s the loads 

reduce, the raft was observed to be functioning as a planning hull. The implication for practice is that 

in low flow conditions the loads are higher than may be anticipated.  At these low flows the raft is 

functioning as a displacement hull exposing a greater surface are to the flow. At higher velocity the 

hull demonstrates a planning behaviour corresponding to lower loads because a smaller surface area 

is exposed to the flow.  These finding appear counter intuitive, rescuers will need to be aware and 

recognise the planing action of the hull in rescue settings and anticipate higher loads on anchors 

when the hull is not planing. The assumption of low speeds equating to low loads on the highline is 

not true. However, the raft hull will have a planning speed. The data also demonstrates that loads will 

increase at even higher stream velocities. In short the raft has an optimum stream velocity in which it 

can operate, a sweet spot. This will clearly vary depending of raft design, size and water line length. 

The rescuers need to be aware of their rafts behaviour in different conditions. 

 

Test 2: Locating the load to the rear of the craft (stern trim) with respect to force for a given 
stream velocity. 

In this test the highest loads are observed at higher stream velocities (up to 1.5m/s) during which the 

raft was observed to be functioning as a displacement hull. Beyond stream velocities of 1.5m/s the 

loads increased and peaked at 4.2m/s. The raft was observed to be functioning as a displacement 

hull at all flow velocities. The implication for practice is that trimming the raft towards the stern 

changes the hull behaviour and prevents planning behaviour, thus maintain high loads on the 

highline. Rescuers will need to be aware and recognise that the action of the hull is not planning. In 

short, compensating for high stream velocities by trimming the raft towards the stern generates high 

loads on the highline system and is counter intuitive. Echoing our finding in test 1, this will clearly vary 

depending of raft design, size and water line length. Test 2 confirms the need for rescuers to being 

aware of their rafts’ behaviour in different conditions. 

 



Journal of Search & Rescue Volume 2, Issue 1 

 

 

8 

 

Test 3: Locating the load to the front (bow trim) with respect to force for a given stream 
velocity. 
At a low stream velocity (up to 1.5m/s) the load is lower than in the stern trimmed position. Above 

1.5m/s the loads are higher than for the neutral trimmed state. The implication for practice is that in 

low flow conditions the loads are higher than may be anticipated because the raft is functioning as a 

displacement hull. At higher velocity the hull demonstrates a planning behaviour corresponding to the 

lower loads. The hull appears to retain its planning function, as shown in test 1. Observation highlights 

that the support provided by the reeving line, lifting the bow, is in effect compensating for the bow 

trim. 

 
 
 
General Discussion 

Key to understanding the loads on the highline is the planing behaviour of the raft. Brewer,(1993) and 

Fontaine and Cointe, (1997) identify that the displacing hull produces two waves, a bow wave and an 

aft wave The positions of these waves is determined by the wetted length of the hull.  (see Fontaine 

and Cointe, for greater detail). A theoretical maximum velocity can be established for a given hull type 

and length while the boat demonstrates displacement behaviour (Miller et al, 2006).  For the hull to 

exceed this velocity, it must transition to a planing hull behaviour, in which the hull has a reduced 

wetted area, and so resistance. This leads us to recognise a ‘sweet spot’ for a given hull on a high 

line. 

  

Implications in Training and Practice,  

Encouraging neutral trim in a range of flows and exploration of the optimal performance of a range of 

different craft would seem paramount in training. In practice observation of the planning and 

displacement behaviours of the raft would appear pivotal. In particular, the assumption that high 

velocities equate to high loads needs to be challenged. 

 

During a rescue the change in trim that may occur as the Subjects of the recue board the raft needs 

to be considered. The resultant increase in load on the highline and change to the position of the raft 

in the flow needs to be anticipated by the rescuers. A change in rescuer position may compensate for 

this effect though this warrants further investigation. 

 

Conclusion 
The awareness of rescuers to the added dimension of stream velocity and direction is key to 

understanding the resultant load on the high line system. The influence of trim (how the load is 

distributed in the raft) has a profound effect on the resultant loads that may be counterintuitive. The 

results challenge the notion of low stream velocities equate to low loads in the highline. These 

findings expose the weakness in the transference of assumptions regarding loads from one domain to 
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another (in this case technical rope rescue to swift water rescue). However, the importance of 

understanding the operational capacity of the raft is also highlighted. In particular, the transferability of 

knowledge regarding planning behaviour of hulls derived from power boat rescue and an ability to 

identify the ‘sweet spot’ of a rafts’ performance. 
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