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Abstract 

In this study, novel layer by layer assemblies based on Nafion, lysozyme and chitosan 

were developed and assessed with respect to their antimicrobial activity. A quartz 

crystal microbalance was used to monitor the built up of the multilayers in real time, 

confirming the presence of strong electrostatic interactions between the negatively 

charged Nafion and the positively charged particles of lysozyme and chitosan. The 

coatings are durable and resist detachment against flowing water, while AFM 

characterization reveals the presence of a complex surface topology with a high degree 

of roughness. The wettability of the coated surfaces reflects an interplay between the 

chemical nature of the deposited materials and the surface morphological 

characteristics. Moreover, it was observed that the antimicrobial behaviour of the 

coatings critically depends on the nature and the pH of the deposited layers. The 

ultrathin coatings comprising 6 bilayers of Nafion/lysozyme (pH=6.2) were shown to 

exhibit excellent antimicrobial properties, inhibiting the growth of Staphylococcus 

aureus and Escherichia coli by a factor of 100%.  This remarkable behaviour carries great 

promise for the development of a new generation of highly effective antimicrobial 

coatings. 
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1. Introduction 

1.1 Antimicrobial Resistance 

Antibiotic resistance is a growing and continuous problem all over the world due to 

antibiotics being overused for both human and agricultural purposes, which has 

ultimately led to the major cause for concern in public health. [1] One way to address 

this problem is to reduce the spread of bacteria which can be done is by coating 

commonly used surfaces with an antimicrobial coating. Antimicrobial coatings can be 

made via the process of layer by layer (LbL) adhesion which will be discussed in depth 

during this report. 

The purpose of this research project was to surpass previous findings and advance this 

type of material forward. As stated below on the timeline (Figure 1) there has been 

research on this topic since 1625 which shows its importance. Metals such as copper 

and silver are still being used today despite their limitations.  Tributyltin (TBT) was 

previously used but it was banned during 2003-2008 due to it causing damage to the 

endocrine systems of shell-fish and the immune systems of other organisms.  Novel 

environmentally acceptable alternatives were introduced in 2003 because of TBT and 

the work done in this project was aimed to continue the exploration of this area [2]. 

 

Figure 1. The development on surface coatings over time [3] 
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1.2 Antimicrobial Materials 

The development of antimicrobial materials is very important, particularly in the 

maintenance of hospitals and healthcare environments where hygiene levels need to 

be maintained to a high standard. Preventative measures such as surface coatings, as 

well as treatments that inactivate microbes adhered to surfaces, can be used. [4] 

Poly(vinyl chloride) (PVC). PVC is a versatile, low cost, highly resistant plastic that is used 

in industry for medical devices, packaging, bottles and boxes. [5] Systematic studies aim 

to improve the antimicrobial   resistance of PVC. A study has shown that the use of a 

biocide agent can be used when bound to the surface or upon release to the 

surrounding area. The key biocide agents that can be used are copper, silver and 

quaternary ammonium salts [6] and these are detailed below.  

1.2.1 Copper 

Copper (Cu) is a popular material that is used to reduce infections caused by common 

microbes such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) [7]. Cu 

is commonly used in hospitals, especially on equipment such as bed and door handles, 

drip-feed equipment and nurse ‘help’ buttons. Using materials coated with copper 

reduced the incidence of infection by over 95% and thus contributed to the increased 

levels of hygiene within the hospitals. [8] 

The antimicrobial effect of Cu has been tested and documented for a long time with a 

study by Keevil and Lewis [9] showing how Cu can target all parts of the bacteria cell by 

a series of deactivation mechanisms. It is suggested that the Cu may form free radicals 

that can deactivate bacteria cells and virus’. The radicals that are formed are highly 

reactive and deactivation of the protein occurs due to Cu2+ ions forming protein 

chelates with carboxylate and amine groups and by also oxidation of protein and lipids. 

[10] 

Cu2+ may break the hydrogen bonds of the DNA’s double strand leading to the 

deactivation of microbes. Cu can also disrupt the helical structure of DNA by cross 
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linking within the strands and it can form bonds with mRNA, which are molecules that 

play a vital role within DNA. [11]  

Cu-based spray coating [12] is particularly effective in construction working areas where 

resources like steel are used. The sprays can contain a number of components 

enhancing a range of the physio-chemical properties of the coated materials [8], 

including the antimicrobial effect. A study by Helfritch et al [13] explains the methods of 

how the copper can be sprayed onto the surface: the most common are arc, plasma 

and cold spraying. Although each technique results in a distinctly different 

microstructure, they all impart significant antimicrobial performance.  

With the arc spraying technique, there was a clear relationship between the porosity, 

the distribution of particle size and antimicrobial activity [14]. 

Different morphologies can also determine how much of an antimicrobial effect there 

will be, for example Cu surfaces that have high levels of roughness and high surface free 

energy displayed good antimicrobial activity towards MRSA.[15] However, one the major 

limitations of using Cu is that is that it expensive and has weak mechanical properties 

when comparing it with stainless steel. [16]  

1.2.2 Silver Nanoparticles  

Silver nanoparticles (Ag NPs) are widely used as antimicrobial agents. Kim et al tested 

Ag using agar plates against S. aureus, E. coli and yeast which showed a clear inhibition 

of growth [17]. Ag NPs can be deposited by various methods to impart antimicrobial 

resistance to surfaces. For example, Ag NPs are deposited to fabrics in hygienic clothing 

by vacuum coating, a method that relies on the ionisation of the sputtering species in 

the presence of highly-charged pulses [18]. 

Although Ag NPs are highly effective antimicrobial agents, they tend to become 

concentrated in aquatic environments and are toxic towards organisms that live there. 

If Ag NPs are used in an increasing number of applications, they might cause significant 

environmental damage and has adverse effects in humans. [19] [20] For those reasons, 

the use of Ag NPs should be strictly regulated and remain beyond certain levels. 
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1.2.3 Quaternary Ammonium Salts 

Quaternary ammonium salts (QAS) are also used as biocides. These salts have low 

toxicity, low skin irritation, low environmental impact and can penetrate the cell 

membrane efficiently. [21] The overall positive charge of the QAS drives the attraction to 

the overall negative charge of the bacteria’s cell membrane. [22] After this initial 

attraction, the hydrophobic group on the QAS will cause disruptions in the cytoplasm 

of the membrane causing the releasing of potassium which leads to cell death. [23] While 

QAS are known to be effective antimicrobials, their use is rather limited. This is because 

they cannot easily be incorporated into a polymer matrix due to poor adhesion and low 

structural stability. [24] Antimicrobial activity is mostly dependent on the concentration 

of biocides on the fibre surface, however reaching such high QAS surface 

concentrations on plastic materials is challenging. [25] 

All the materials above show good responses to microbes, however they all have 

significant downfalls. The threat of antibiotic resistance is becoming a global threat 

and so the most effective methods need to be employed. New medicines that are 

more capable of fighting multi-resistant bacteria need to be developed, but there also 

needs to be improvements made to prevent spread of infection in the first place, 

particularly in public and medical areas. It seems that strong and stable surface 

coatings that can be applied will help this problem significantly. [26] The methods by 

which these coatings can be applied will be explored in the next section. 

1.3 Coating Methods 

1.3.1 Layer-by-layer  

The basic principles of LbL consist of electrostatic interactions between negatively and 

positively charged materials and other intermolecular forces such as van der Waals and 

hydrogen bonds. The procedure involves a charged material being submerged in an 

oppositely charged solution to form the first monolayer. This monolayer is then washed 

with water to remove excess compounds and the cycle is repeated until multilayers of 

strongly bonded materials are formed. The morphology, depth and stability of the 

multilayer film can differ due to the LbL composition. [27] As the substrates are used in 



12 

 

excess there is no stoichiometric measures of charges used for each step, this allows for 

a more favourable surface for adhesion of the next layer that is added. [28] 

 

Figure 2. Electrostatic forces of attraction between layers in LbL assemblies [29] 

In LbL assemblies, as shown in Figure 2, electrostatic forces of attraction between the 

building layers give rise to strong and durable coatings. The most common strategies to 

develop LbL coatings is via dipping or spray-assisted deposition. 

1.3.2 Dipping  

The dipping method process involves a surface being immersed consecutively into two 

suspensions containing positively and negatively charged particles, while the surface is 

washed-off with water after each deposition step. This technique is popular because of 

its simplicity, but it does have limitations when applied on a large scale.  This is due to 

the time constraints and there may be contaminations upon dipping in various coatings. 

[30]  

As stated, the coated substrate is immersed with a solvent that removes spare 

polyelectrolytes that are not bound and water can be used for this.  This process helps 

to prevent the cross contamination of solutions. The polyelectrolytes that are strongly 

bonded to the substrate will remain on the plate and will not be washed off due to their 

high levels of surface charge density. These bonds are essential for a successful 

multilayer adhesion and helps to create a durable surface coating. [31] 

If a coated substrate with multilayers adsorbed onto it is left to dry after each step, the 

growth of the next layers added are hindered due to unfavourable arrangements of the 

molecules on the top layer. If a moist environment is present, the chains become more 
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flexible and ionisation increases. This makes the films less dense and therefore greater 

adhesion occurs. [32]   

1.3.3 Spray Assisted  

Spray-assisted LbL was introduced to help deal with the shortcomings of the dipping 

LbL technique. Here surfaces are held up vertically and sprayed uniformly, in a more 

time-effective manner. The spray assisted method also has many advantages over 

other methods used, some of which include; reduced cross contamination due to the 

substrate not being in contact with the stock liquid, the ability to be automated which 

can run continuously thus reducing the need for human input and it is easy to use 

when needed for large scale projects. [33] 

1.3.4 Spin Coating 

As well as the two most common methods mentioned previously, there are other 

methods by which an LbL assembly can be achieved. One of these methods is called 

spin coating and is demonstrated by Bottino et al [34] where they use this method to 

develop a highly efficient antimicrobial resorbable membrane, to treat bone infections. 

The strategy relies in the LbL assembly of poly(sodium4-styrenesulfonate) (PSS) and 

poly(allylamine hydrochloride) (PAH) on the poly(D, L-lactide-co-glycolid acid) (PLGA) 

surface. As well as this, the authors also entrapped a water-soluble antibiotic within the 

top layers for extra antimicrobial effects.  

Spin coating can consistently produce films of material however for successful spin-

coating, the substrate must suit the size of the equipment being used and it must also 

be planar. Problems arise in this method as uniformity and final thickness is difficult to 

control and it is not possible to produce the layers from the same solvent making it less 

environmentally friendly. [33]  

1.3.5 LbL Equipment  

The most commonly used plates for LbL assemblies are made of either silicon, mica, 

quartz, gold or glass. The texture and morphology of the surface used can affect the 

levels of adhesion. A treatment of heating and then allowing it to cool with sodium 

chloride has been to show to smooth out the substrates surface. This creates closer 
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contact with a larger surface area, which aids the production of a high-quality coat. The 

elasticity of the coating can also affect the surface adhesion. [35] 

The concentrations of the solutions used are the prerequisite for a successful 

adsorption. This stops the substance from depleting during the LbL process, al lows for 

the concentration to exceed the minimum threshold and reverses the polarity of the 

charge for each layer. [27] 

1.4 Effect of pH and Salt Concentration on LbL Assemblies  

A change in the overall pH can lead to the interactions varying between the polymers. 

This is because changing the pH can have a direct effect on the electrostatic forces 

between the LbL assemblies and thus immediately affecting the interactions between 

the substrates and polyelectrolytes. [36] 

𝑃𝑜𝑙− 𝑀(𝑚)
+ + 𝑃𝑜𝑙+  𝐴(𝑎𝑞)

−  ↔  𝑃𝑜𝑙−  𝑃𝑜𝑙(𝑚)
+ + 𝑀(𝑎𝑞)

+ + 𝐴(𝑎𝑞)
−   (1) 

Equation 1.  Shows how a change of pH or concentration of salt dictates the ion exchange 

regulation of the adsorption step. Where m is molecules that are bonded to the surface of the 

substrate and aq refers to a molecule that is dissolved (in aqueous state). Pol denotes charged 

areas of polyelectrolytes and M and A are salt ions.  

The equation shows how an increase in the concentration of salt will cause the 

adsorption step to slow down or stop completely, unless they are removed via dialysis. 

[37,38] The salt ions between the layers can have an impact on the electrostatic charge. 

If the threshold of salt concentration is exceeded, there can be a negative impact on 

adhesion. This is because the overall charge will be decreased as a response to 

coagulated dispersion. [39] It has been proven that polyelectrolytes can be coated in a 

media with varying salt concentrations and this results in minimal growth of multilayers 

beneath thresholds value. [40] 

 

If the pH of the solutions are changed, the separation of polyelectrolytes from the ions 

will vary the success of adsorption. A change in pH can also affect whether there is a 

linear or exponential development of multilayers. [41]  
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1.4.1 Polarity of surface coatings 

Studies have been conducted which demonstrate how the polarity of the material can 

affect the overall LbL system. Aqueous solutions are mainly used for coating materials 

although non-aqueous materials can be used if they show some form of polarity within 

the solvent. [42] An example of a non-polar solvent is toluene and this can be used by 

adding surfactants to the suspension of alumina or carbon black. [43]  

Overall, the materials used for water solution coatings should allow the polyelectrolyte 

to ionize to a certain extent because the largest interactions present are electrostatic. 

[42] 

1.4.2 Adsorption Kinetics 

Adsorption kinetics can explain the interaction between a charged colloid and a 

substrate. The factors that are involved show time-dependence which means their 

effect can be quantised with adsorption kinetics. There is a two-step process for the 

adsorption onto the surface of a substrate known as the Jonhson Mehl Avrami bi-

exponential saturation process. The first step is a first order process that spans over a 

short amount of time, seconds, where electrostatic anchoring sites on the substrate 

become unsaturated and this decides if the coating will be successful. The second step 

stretches over several minutes and reveals how the coated substrates have been 

rearranged in the first step. [44] During this step it is possible that there is more 

adsorption as a result of the extra polyelectrolyte chains diffusing further. However, the 

coated substance will eventually become saturated over time. A ‘brush like’ 

polyelectrolyte gathering occurs on the surface, which poses as a barrier to further 

saturation. [45] 
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The Johnson Mehl Avrami process uses an equation that shows the relationship 

between time, phase fraction transformation and temperature, all based on 

assumptions. This is shown in equation 2: 

𝑋 (𝑡) = 1 − 𝑒𝑥𝑝 [−(𝐾𝑡)𝑛] , 𝐾 = 𝐾0 exp(−
Q

RT
) (2) 

Equation 1. The Johnson Mehl Avrami equation (2) where; X (t) represents fraction 

transformation after time, n shows growth, R shows the gas constant, T shows temperature, Q 

is the activation energy and K0 is the coefficient of the pre-exponent. [46] 

In conclusion, adsorption kinetics should have optimal value to guarantee the best 

possible conditions for the LbL process and the amount of time the coating solutions 

are exposed to the substrate should be optimised.  

 

1.5 Ideal antimicrobial surfaces   

Bacteria can adhere to almost all natural and synthetic surfaces and another use of 

antimicrobial coatings could be in operative implants to reduce the risk of infection. 

Below is a table highlighting the key features of an ideal antimicrobial surface, specific 

to implant’s. These features occur in other applications of surface coatings. [47]  

Table 1. Ideal antimicrobial surface coating properties [47] 

Safety In vitro activity  Efficacy  Easy to use Market 

No systemic 

toxicity 

No cytotoxicity Proven to be 

effective 

Easy to 

handle 

Acceptable 

cost 

No local 

toxicity  

Proven 

antibacterial 

effects 

Case studies  Versatile Good 

availability 

No unwanted 

long-term side 

effects 

Large 

spectrum of 

activity 

Randomised 

trials 

Easily storable  Easy to 

manufacture 

 

https://www.google.co.uk/search?q=Johnson+Mehl+Avrami&spell=1&sa=X&ved=0ahUKEwiPpLifn6zWAhXGKsAKHXilBsYQvwUIJSgA
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1.6 Applications of surface coatings 

One use of LbL assembly is to produce a material with high stability that can be used in 

drugs where a controlled release is required. [48]
 Temperature changes are used to 

influence the permeability of the barrier made by LbL for the introduction of water-

soluble drugs. This means the LbL barrier must but strong yet be able to vary is 

permeability. [49] 

One method that can be used for the controlled release of content within a LbL system 

is to dissemble it, with another approach being to destroy the assembly. One way in 

which disassembly can occur is through the use of salts. Sodium chloride has been 

studied for this purpose and has proven to be useful due to its electrostatic forces.[50] 

However, high salt concentrations are needed to initiate the disassembly process, 

which results in high, often unwanted release of contents.[51] There is another challenge 

when using controlled deletion of layers and that is the bond strengths between the 

layers can be difficult to deplete.[52] As well as this, there is also a risk that changes in 

pH can cause unwanted releases.[53] 

It is possible to have slow, controlled disassemblies by using a combination of 

polyelectrolyte materials that are biodegradable and by also having some which are 

non-biodegradable. [54] The same effect can be seen in poly(β-amino) esters that have 

cleaving properties when the hydrophobicity modifications hit a critical value. After this 

point, it rapidly destabilises, and releases occur. [55] 

Another application of the coatings is within fouling release systems [56]. Surfaces that 

are underwater for long periods of time may be susceptible to growth of organisms such 

as algae, mussels and barnacles and this can lead to corrosion and frictional resistance, 

especially on boats. Antifouling coatings that have previously been used contained 

biocides which were toxic to aquatic life. A fouling release coating does not completely 

prevent organisms from reaching the surface but they can reduce the adhesion of such 

things. A remaining challenge in this area is the development of superior and cost-

effective fouling release coatings with minimal toxicity. [57] Surface engineering in the 
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nanoscale can prevent bio-adhesion by minimising the points of contact for the 

microorganisms, giving rise to advanced fouling release systems. 

LbL can potentially be used in within drug therapies. LbL techniques make it possible to 

control various parameters such as thickness and mechanical properties. It also allows 

for drugs to be entrapped within layers which can control how much of the drug is  

released and when. This is particularly useful as it will help to produce prolonged release 

drugs, and this is more beneficial for a patient as it requires taking fewer drugs. 

However, there is room for more research into the involvement of LbL in drug therapies 

in the future. [58]  

Another use for using the layer-by-layer technique is to coat foods with edible coatings. 

One example of this is using gelatin and chitosan to produce a coating for food such as 

fresh melon and the results shown that the LbL formation inhibited microbial growth 

for up to 7 days, it was also reported that the LbL formulation preserved the texture of 

the fruit also. [59] 
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1.7 Lysozyme 

A material that can be used in surface coatings is lysozyme. Lysozyme is an enzyme that 

is found in bodily secretions such as mucus and tears and is abundant in chicken egg 

whites. Chicken egg white lysozyme is a polypeptide chain consisting of 129 amino acids 

with an Mr of 14600. The structure of lysozyme is represented in figure 3 as a space 

filling molecular model. [60] The isoelectric point (pI) of lysozyme is near to 11 which 

means that in the range of pH’s from 4-10 it is positively charged. [61] 

 

 

Figure 3. Structure of lysozyme represented by a space filling molecular model [62] 

From the model (figure 3), it can be seen that the molecule is compact and that most of 

the polar, hydrophilic side chains are found on the surface of the molecule and can 

therefore readily interact with the surrounding water.  On the inside of the molecule 

are the hydrophobic, non-polar side chains which therefore means that they are 

shielded from the solvent as much as possible. Within the molecule there are also two 

major polypeptide conformations; alpha-helix and the beta-sheets. [63] 

1.7.1 Lysozyme Orientation  

A study has determined that lysozyme molecules have a dimension of 45 x 30 x 30 Å [64] 

which gives them an ellipsoidal shape. Due to their shape, there are two main 

orientations that are possible; ‘side-on’ which involves the longer axis of the lysozyme 

molecule being parallel to the surface and the ‘end-on’ orientation where the longer 

axis is at 90o to the surface. However, lysozyme can also adsorb in a way classed as 

‘edge-on’ which is half way between the two previous mentioned orientations (as 

shown in figure 4). [65] 
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A study by Xu et al [66] discusses how lysozyme molecules position themselves in a QCM 

in LbL assembly, a concept discussed in more detail in section 2.1.2. The study suggests 

that lysozyme molecules can undergo mild deformation if the surface is too thin, for 

example less than 1ng/mm2. The most favourable position for lysozymes to position 

themselves in is side-on and this is how optimum thickness is achieved. 

 

Figure 4. The orientation of lysozyme molecules at different weight percentage solvations. [66] 

Lysozyme molecules will adopt different orientations (as shown in figure 4) to increase protein-

protein interactions and this can therefore alter the thickness of the layers in a LbL assembly. 

[67] 

Figure 4 also shows that once the thickness increases above 3nm2 a multilayer will have been 

formed. This multilayer will be completely packed with the lyozyme molecules being in the 

preferred side-on orientation which increases the overall weight percentage solvation. Another 

way in which the weight percentage solvation can be increased is by rinsing each layer of 

lysozymes once it has been assembled. The rinsing will remove any loosely-bound lysozymes 

thus creating gaps through which solvent can penetrate. It has also been shown that the rinsing 

process can irreversbly reduce the layer thickness as it allows for the lysozymes to stay in the 

favoured position, side-on (as shown in figure 5). [67] 
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Figure 5. The orientation of lysozyme molecules upon rinsing with water [66] 

1.7.2 Antimicrobial Properties 

The cell walls of bacteria can be destroyed due to lysozyme catalysing the hydrolysis of 

certain polysaccharides which renders the cell wall vulnerable to osmotic lysis. 

Lysozymes can bind irreversibly to the transpeptidase enzyme which is essential for 

when peptidoglycan macromolecules form in synthesis of cell walls, which is similar to 

the way in which penicillin acts as an antibiotic. [68] In standard conditions, bacteria 

would grow and multiply exponentially in less an hour but when cell wall cross links are 

damaged, they will be lysed within the media in which they are put. [69]  

N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM) characterise the units 

which build the structures of bacterial cell walls. Lysozyme is cleaved at (1-4) glycosidic 

linkages connecting carbon (C1) of NAM to carbon (C4) of NAG. (NAG-NAM)3 

hexasaccharide is the optimum substrate, where lysozyme cleaves at  NAM4--NAG5 

glycosidic bond (shown in figure 6). The active site of lysozyme has six binding sites for 

each sugar ring of hexacasaccharide. The lysozyme will most likely cleave glycosidic as 

indicated on figure 6. [70]  
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Figure 6. Lysozyme destroying bacteria cell walls by breaking b(1-4) glycosidic bonds that lie in 

between NAM and NAG. 
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Figure 7. Lysozyme catalysis mechanism as established by Phillips in 1966. 
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The Philips mechanism (shown in figure 7) was established in 1966 [71] and occurs in a 

step-by-step process as detailed above. Initially, a strained conformation will occur 

when the residue becomes distorted which then allows the -CH2OH group to interact 

with the enzyme. This step then results in the substrate acting as though it is in the 

transition state. The next step involves residue 35 which consists of glutamic acid and 

is highlighted as Glu35. Within Glu35 there is a proton which readily transfers to the 

polarised oxygen of the glycosidic bond and it is at this step where the C-O bond 

becomes cleaved. [72] The third step produces the intermediate oxonium ion because of 

the positive charge on residue A. The intermediate can either be produced by an 

aspartate residue, known as Asp52, acting as a negatively charged carboxylate and then 

reacting with the positively charged oxonium ion which results in a stability change.  [73] 

The second method will rely on distortion of residue A allowing for resonance as the 

positive charge is shared between its carbon and oxygen atoms. The fourth step then 

involved residue B being released by the enzyme in conjunction with the polysaccharide 

producing a glycosyl-enzyme intermediate. The oxonium ion from the previous step will 

then react with H2O from a solvent thus extracting the hydroxyl group to re-protonate 

Glu 35. The reaction completes by residue A being released alongside the 

polysaccharide. [74] 

Koshland proposed two mechanisms for the hydrolysis of enzymatic glycosidic bonds. 

[75] The first is a retaining mechanism, where the glycosidic oxygen is protonated by 

acidic catalysts. Aglycon is released via nucleophilic reaction provided by a base. The 

resulting enzyme is hydrolysed via a H2O nucleophilic substitution at the anomeric 

carbon. This gives it the equivalent stereochemistry to the substrate. The second is an 

inverting mechanism. The glycosidic oxygen is protonated and aglycon is released like 

previously, however there is an associated attack from a H2O that is activated by the 

base residue. The product yielded has opposing stereochemistry compared to 

substrates because of this singular nucleophilic substitution. [76]  
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1.8 Nafion 

Walther Grot first developed Nafion by altering a material named Teflon. Upon the 

discovery of Nafion (figure 8) a new group of polymers were created called ionomers 

due to a polymer having ionic properties for the first time. Sulfonic groups were added 

to the Teflon backbone in the polymer matrix, which gave the material an ionic 

characteristic. [77]  

 

Figure 8. Molecular structure of Nafion  

 

 

 

 

 

Figure 9. Clusters of sulfonate-ended perfluoroalkyl ether groups of Nafion [78]  

Nafion has high resistance to damage made by chemicals because the bonding structure 

is very stable, which is due to the strength of the fluorine to carbon bonds. The structure 

in figure 8 shows how polymer units can be repeated within Nafion. [79] 

When dry Nafion is covered by water droplets, the contact angles imply that the surface 

is hydrophobic. [80] This is shown by a study by Zhong et al. in which stainless steel was 

coated with Nafion and contact angles were measured confirming that the surface 
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would in fact appear hydrophobic. [78] However, over time it can be seen that Nafion 

does absorb water which therefore makes the material hydrophilic, so much so that it 

can be used as a drying agent. [80] There was also a report that signified anti-bacterial 

performance for the Nafion coated surface. Zhong et al suggested that the negative 

charge from the sulphonate groups (shown in figure 9) of Nafion reduce the adhesion 

of bacteria through repulsion against the negative charge from the bacteria cells. [78] 

A study by Zhang et al [81] showed that varying the concentration of Nafion from 0.5 to 

1 wt% changed the zeta potential from 0 to -12 mV which indicates that it has an overall 

negative net charge in these conditions. 

Nafion is an ion-exchange membrane that has a range of applications. It can be used as 

a super acid catalyst in its acidic form. It can be used in electrolysis of water, production 

of chlor-alkali and recovery of metal-ions. Nafion can also be in proton exchange 

membranes for fuels. [82] 

Due to the large size of the molecule that is created by polymerisation of monomers, 

there is a separation between polar and non-polar areas which provides a unique 

network for transportation of protons. The re-occurring feature of the models is the 

understanding that the hydration level determines the connections between ionic 

areas, which alters the dynamics of molecules of water as well as the movement of 

protons. [83] 

Nafion is a self-assembling material that has the ‘intelligence’ to create regular matrix 

formations consisting of cavities that are linked by thin tunnels. Sulphonate (SO 3
-) 

groups cluster around the tunnels and cavities and there are exchanges with M2+. This 

process acts in a similar way to proton exchanges in Langmuir monolayers. [84] 

Despite the potential importance of materials such as Teflon and Nafion, there had 

been no nuclear magnetic resonance (NMR) data of these perfluorinated polymers in 

literature prior to 2001. The Schmidt-Rohr group gained the first spectra of 13C high-

resolution NMR for polymers of this type by combining rotation synchronised 19F 180o 

pulses with 28-kHz magic-angle spinning (MAS). This data showed that the majority of 

Nafion backbones are formed in a helical fashion, even though Nafion is a random 
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copolymer. Disorder in terms of conformation occurs at the branched parts of the 

molecule. [85] 

In addition to this, it was proved that a high number of chains in between branches 

rotate greater than 150o around the helix axis. The rigidity of the backbone is accounted 

for differently here than in other models that assume it is due to random coiling. [86] 

The nanostructure that allows for the interesting properties of Nafion has now been 

identified through numerical fourier transformation. Novel approaches to this 

technique can determine quantitative analysis of scattering data with small angles. The 

resulting characteristics are as follows and are shown in figure 8. Long water packed 

channels arrange themselves randomly if not parallel and moderately hydrophilic side 

branches surround them (as shown in figure 10). This forms cylindrical inverted 

micelles, which are stabilised by the rigid backbone of polymer that is shown by NMR. 

When 20% of the volume is water, the average diameter for the water channels are 2.4 

nm. Crystallites which are approximately 10% of the volume are stretched out and 

become parallel with the water channels, with a cross section of ~5 nm2. This model 

helps to explain imperative characteristics of Nafion such as quick diffusion of protons 

and water as well as its abilities at low temperatures. In addition to this, improved 

polymers that may be less expensive could be designed as a replacement to Nafion. [87] 

 

Figure 10. Nanostructure of Nafion [88] 
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1.9 Chitosan  

Chitosan is a derivative of chitin and is a non-toxic and biodegradable polymer. [89] 

Chitosan can be obtained from crustacean exoskeletons [90] and is widely known for its 

antimicrobial properties.  These antimicrobial properties could be due to its 

polycationic nature which means that it will react predominantly with anion 

components. [91] This reaction leads to leakage of the intracellular components of 

bacteria which in turn leads to cell death. [92]  

The structure of the both chitosan and chitin is almost identical to the polymer cellulose 

(shown in figure 11). However, the hydroxyl group at carbon-2 is changed to an 

acetamide group. Chitosan is an N-deacetylated derivative of chitin because the 

acetamide groups are transformed into primary amino groups. [93] 

 

Figure 11. Molecular structure of cellulose 

Both are polymers found in nature and are made up of β-(1,4)-linked D-glucosamine 

and N-acetyl-D-glucosamine units that are randomly distributed. [93] 

The average degree of acetylation and how the acetyl groups are distributed 

throughout the chain are the main properties of solution. An irregular structure is given 

due to deacetylation because of the semi-crystalline characteristics of the polymer. [94] 

The degree of ionisation depends on the pH and pK of the acid involved. This conclusion 

was based upon the protonation of chitosan in acetic acid and hydrochloric acid. [95] 

Chitosan that has a low degree of acetylation undergoes solubilisation at an avera ge 

degree of ionisation of 0.5. This relates to a pH of 4.5-5. [96] 



28 

 

Chitin and chitosan have powerful antimicrobial properties that can be used to kill 

bacteria. Chitin is responsible for developing the serum in animals which contains 

antibodies. This acts as a defence mechanism against infection and disease. [97] 

Evans et al conducted a test to show how capable chitosan is at gathering wide varieties 

of microbial cells together. They did this by testing how well chitosan binds to different 

types of microorganisms. [98] 

The study showed that chitosan successfully lowered the levels of growth in 

microorganisms, meaning it bonded sufficiently to its target. S. aureus and Klebsiella 

pneumoniae were reduced as a result of the chitosan textile fibres. [99]  

Chitosan also has its own derivatives such as chitosan glutamate and lactate. It was 

found that these showed aggressive antimicrobial properties towards S. aureus, E. coli 

and Saccharomyces cerevisiae. [100] It is also known that chitosan can be used in food 

preservation. Certain chitosan derivatives such as chito-oligosaccharide and various 

chitosan salts can be used, as well as chitosan that has low degrees of polymerisation. 

[101] The morphology of the structure of chitosan has been identified in literature. The 

electron diffraction diagram indicates an orthorhombic unit cell. The indexing of the 

unit cell (P212121) where a is 0.807nm, b is 0.844nm and c is 1.034nm. The unit cell 

consists of two chains of chitosan that are antiparallel. No water molecules are present. 

Solubility of chitosan can also be dependent on ionic concentrations. A salting-out 

effect occurs in excess of hydrochloric acid (1M) which means chlorhydrate forms of 

chitosan are able to be made. If the chlorhydrate form is in isolation, it is soluble in 

water. This gives a pK0=6±0.1 acidic solution, meaning it is soluble at pH lower than 6. 

[102] 

This data agrees with work done by Domard et al in measurements of pH for acetylated 

chitosan. [103] In practical applications, the volume of acid needed is dependent on the 

amount of chitosan that needs to be dissolved. The concentration of –NH2 units should 

be equalled or exceeded by the concentrations of protons. [104] To conclude, the 

solubility of chitosan is a difficult factor to have control over. Variables such as the 

degree of acetylation, ionic concentrations, protonation effect, pH and distributions of 

acetyl groups all affect solubility levels. [105] 
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It is important to fine tune these parameters to ensure as much of the chitosan is 

dissolved as possible for use in techniques such as (QCM-D).  

Chitin (figure 12) and chitosan (figure 13) contain nitrogen groups which makes them 

able to react with amines. [106] The presence of primary and secondary hydroxyl groups 

on every unit makes chitosan more chemically active than chitin. [107] 

 

Figure 12. Molecular structure of chitin 

 

Figure 13. Molecular structure of chitosan 

 

Chitin and chitosan are extracted from crustacean shell wastes and shrimp shells are 

the current most used biomass in industry to produce chitin and its derivatives. Chitin 

is extracted in a step-wise procedure by chemical methods. The shells are grounded 

into smaller parts and then hydrochloric acid is used to extract certain minerals. [108] 

Proteins in the residual materials are extracted with diluted sodium hydroxide (aq).  
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This forms Chitin which is deacetylated (in 40% NaOH at 160oC 2 hrs, absence of oxygen) 

which is then purified to give chitosan. [109] The process can be repeated to give higher 

deacetylation values up to 98%, but full deacetylation can never be completed without 

changing the process. [110] The concentration of NaOH, temperature used and time 

effects the level of transformation from chitin to chitosan. This procedure controls the 

amount of free amine groups (-NH2) that are present in chitosan. [111] 

Another method that could be used is chitosan in a water-soluble form where glycerol 

2-phosphate is used at a neutral pH (between 7-7.1) and at room temperature. 

Temperatures above 40oC cause a gel to be formed which is only partially reversible. 

[112] 

A study by Saïed et al stated that chitosan has an overall positive charge in acidic pH’s 

ranging from 1 to 7. Also, the zeta potential values were highest at pH’s less than 5 and 

fell significantly at pH’s 6-7. [113] 
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2. Materials and Methodology 

2.1 Materials 

Nafion (CAS: 31175-20-9) lysozyme (CAS: 12650-88-3) chitosan (CAS: 9012-76-4) sodium carbonate 
(CAS: 497-19-8) sodium bicarbonate (CAS: 144-55-8) citric acid (CAS: 77-92-9) and Na2HPO4 (CAS: 7558-
79-4) were all purchased from sigmaaldrich.co.uk - based in Dorset, UK. 

Nafion is readily dispersed in water [114] so this material is easily prepared for use in 

QCM-D. A solution of 1% Nafion in water was therefore prepared. Chitosan, as it is more 

difficult to disperse, needed to be dissolved in a solution containing acetic acid. A study 

by Saïed et al stated that chitosan at 0.1% concentration was soluble in 0.1% acetic acid 

solutions in water. This was the lowest concentration of acetic acid that would allow 

the chitosan to be dissolved and so this method was used to disperse the chitosan which 

produced a pH of 5. [113] A buffer solution can be used to resist a change in pH, even 

when small volumes of acid or alkali are put in the mixture. According to Sigma-Aldrich, 

Sodium carbonate-sodium bicarbonate and Citric Acid - Na2HPO4 can be used to 

produce buffer solutions of certain pH’s. Buffer solutions of pH’s 9, 7, 6.2 and 4 were 

created for 0.1% lysozyme solutions to make comparisons in data. The tables below 

show the necessary volumes of ‘x’ and ‘y’ needed to create these buffer  solutions.  

Table 2. Sodium Carbonate - Sodium Bicarbonate buffer solutions pH 8.8-10.8 [115] 

pH    x ml 0.1M-

Na2CO3 

y ml 0.1M-

Na2CO3 20oC            37oC 

9.2 8.8 10 90 

9.4 9.1 20 80 

9.5 9.4 30 70 

9.8 9.5 40 60 

9.9 9.7 50 50 

10.1 9.9 60 40 

10.3 10.1 70 30 

10.5 10.3 80 20 

10.8 10.6 90 10 
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Table 3. Citric Acid - Na2HPO4 buffer solutions pH 2.6-7.6 [115] 

pH x ml 0.1M-Citric acid y ml 0.1M-Na2HPO4 

2.8 84.15 15.85 

3.0 79.45 20.55 

3.2 75.30 24.70 

3.4 71.50 28.50 

3.6 67.80 32.20 

3.8 64.50 35.50 

4.0 61.45 38.55 

4.2 58.60 41.40 

4.4 55.90 44.10 

4.6 53.25 46.75 

4.8 50.70 49.30 

5.0 48.50 51.50 

5.2 46.40 53.60 

5.4 44.25 55.75 

5.6 42.00 58.00 

5.8 39.55 60.45 

6.0 36.85 63.15 

6.2 33.90 66.10 

6.4 30.75 69.25 

6.6 27.75 72.75 

6.8 22.75 77.25 

7.0 17.65 82.35 

7.2 13.05 86.95 

7.4 9.15 90.85 

7.6 6.35 93.65 
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2.2 Methodology  

The following methods were implemented to develop and assess the performance of 

the antimicrobial layers.  

2.2.1 Quartz Crystal Microbalance with Dissipation Monitoring 

Firstly, Q-Sense QCM-D was used to monitor the adhesion of the flowing phase to a 

substrate at a real time. The deposition of matter onto an oscillating crystal reduces its 

resonance frequency (f). The energy loss, otherwise known as dissipation factor (D), of 

the deposited ultrathin film is a measure of its rigidity and is also measured 

simultaneously [116].  For LbL assembly, alternating layers of positively and negatively 

charged layers are deposited onto the crystal. The negatively charged particles were 

introduced to the system during the flowing phase and were then in contact with the 

crystal layer therefore allowing the deposition of a negatively charged layer. The next 

step was to wash off the weakly bounded particles via water rinsing. Subsequently, the 

positively charged particles are introduced as the flowing phase, following by water 

rinsing. The repetition of these steps creates a multilayer system.  

QCM-D involves a crystal being used that is a piezoelectric material. This means an 

electrical field is formed when mechanical stress occurs, and the vice versa effect takes 

place also. When the potential (sine wave) is alternated, the crystal oscillates. The 

combination of a correctly cut crystal with a suitable alternating potential, gives a 

standing shear wave with the resonance frequencies of quartz. [117] 

The application of this technique can be used in surface chemistry. It is poss ible to 

determine the resonance frequency of quartz so when small volumes of material 

(ng/cm2) are placed onto the crystals surface they can be quantified. This is done by 

calculating the change in resonating frequencies using the Sauerbrey equation as 

detailed below. 

The QCM must be stabilised within +/- 2 Hz.  

The relationship between the frequency of QCM and mass can be estimated due to the 

adsorption of the QCM frequency shift. The Sauerbrey equation as follows shows the 
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relation between frequency shift, ∆F (Hz) and absorbed mass, M (g). A is the area of the 

crystal covered in material. [118] 

∆F= -1.832 x 108 M/A (3) 

Equation 2. Sauerbrey equation showing the relation between frequency shift, ∆F (Hz) and 

absorbed mass, M (g). A is the area of the crystal covered in material 

The main advantage of this technique is its ability to measure the addition of materials 

layer by layer on a very small scale. It can measure surface to molecule interactions with 

nanogram precision when used alongside software called Q-sense. The build-up of the 

multi layers in a QCM-D system is highly reliable, while other techniques such as dipping 

typically suffer from a lower level of consistency.  

Figure 14 shows what occurs to the sensogram QCM-D as mass is added. The adsorbed 

monolayer causes a drop in resonance frequency that is partially reversed after water 

rinsing. At the same time, dissipation is seen to increase first as expected due to the 

less rigid nature of the deposited layer compared to the crystal itself and then it partially 

reverses back upon rinsing.  

 

 

Figure 14. QCM-D sensogram showing the deposition of a lipid monolayer onto silica coated 

crystals [119] 
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2.2.2 Pre-coating of Gold Crystals 

To create the first layer onto the crystal, the Ossila spin coating machine was used. A 

gold crystal was placed onto the machine and a small droplet of Nafion-ethanol solution 

was lowered onto the crystal. The machine separates the Nafion and ethanol, leaving a 

layer of Nafion deposited onto the crystal. 

 

 

Figure 15. Step by step procedure for using the Ossila spin coating machine. [120] 

The step by step procedure for spin coating is explained below and illustrated by figure 

15. [120] 

1.      The gold crystal was coated with the solvent containing a mixture of Nafion 

and ethanol (1:40) 

2.      The crystal rotated at high speeds and most of the solvent was swept off the 

side 

3.      Airflow dries up most of the solvent which leaves a plasticised film 

4.      The film was left to dry and the desired molecules are left on the surface 

The usual speed setting is 600 rotations per seconds. The surface tension in conjunction 

with the centripetal force drags the liquid state coating into an even coverage. At the 

same time the solvent is evaporated leaving the sought-after material. 

Spin coatings have several advantages. Thin, uniform layered coatings can be created 

easily and the simplicity of the process is unmatched. High levels of consistency can be 
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achieved due to the high spinning speeds and high airflow, which applies at nano and 

macroscopic scales. [120] 

One of the main disadvantages of this process is the lack of material efficiency as the 

process will only utilise between 2% and 5% of the material used. Also, there are 

increasing costs to both materials and waste material disposal.  Despite this 

disadvantage, spin coating is most often the most highly regarded process for producing 

thin, uniform coatings. [121] 

Nafion coated (monolayer) gold crystals were prepared in bulk. One crystal was then 

placed on the QCM-D chip and the sensor was initially exposed to distilled water at 

room temperature (22 ± 2 oC). The QCM-D crystals have gold-chrome electrodes that 

are 5mm in diameter and a surface area of 0.196 cm2. This gives a 9MHz fundamental 

resonance and the 3-micron finish gives a theoretical mass sensitivity of 5.458 ng Hz -1 

cm2. The shear wave decay length is 250nm at room temperature. This is within the 

sensing region of the QCM-D to measure surface effects. [122] 

 

2.2.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is an imaging procedure where the apparatus used is a 

Digital Instruments Nanoscope (Scanning Probe Microscope). The AFM was set to 

contact mode where a sharp tip with a diameter typically between 5 and 10 nm is used 

to scan the surface providing information about its morphology. The method can also 

quantify the force of adhesion of an individual particle to the surface at which it is 

bonded to. This means that AFM can examine the surface roughness of an individual 

layer or a multilayer. [123] AFM has been proven to the most appropriate method of 

measuring surface roughness on a glass-ceramic substrate due to the reduced risk of 

causing damage. [124]  
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2.2.4 Contact Angle Measurement 

An OptoSigma optical tensiometer was used at room temperature to measure the 

contact angle and hydrophobicity of the surface coatings. A drop of distilled water was 

placed on the surface of the film and a video camera was used to record the change in 

shape. Software named ‘FTA32’ was used to analyse the image was used to measure 

the contact angle. The test was repeated several times to increase reliability. [125] 
 

For surface coatings, a larger contact angle is more desirable as this means the surface 

is more hydrophobic and therefore the water will run off. Super-hydrophobic surfaces 

have a contact angle greater than 150o and show virtually no contact between the 

droplet and the surface, which would be the ideal scenario for surface coatings. [126] 

 

2.2.5 Fourier Transform Infrared Spectroscopy (FT-IR) 

An analytical method that will be used is Fourier Transform Infrared Spectroscopy (FT-

IR). A Thermo Scientific Nicolet iS5 FT-IR was used. Firstly the sample was freeze dried, 

which was done by initially leaving it in a standard freezer for 2 hours and then moving 

the sample into the Scanvac Coolsafe freeze dryer to remove all water.  

OMNIC Spectra Software was launched onto the computer desktop, the ZnSe crystal of 

the FT-IR was cleaned with acetone and a background test was collected. The freeze-

dried sample was then placed onto the ZnSe crystal with a spatula and the knob is 

dialled until the sample is secured into the apparatus. When IR radiation is passed 

through a certain type of molecules, only frequencies that match the vibration 

frequencies of the molecules are absorbed.  A ‘fingerprint’ of the data is collected and 

used to determine the samples chemical structure. [127] It can be used to assess purity 

by identifying the composition of base polymers, contaminants in organic materials and 

additives. More specifically, a variety of polymers can be used including, thin, soluble, 

liquids and irregular-shaped, which is ideal for this project. The absorbance spectra’s 

shows the unique bonds and molecular structures of the layer that will be tested. [128] 
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2.2.6 Scanning Electron Microscope 

A J-6000 scanning electron microscope (SEM) was used to produce high resolution, 

three dimensional images. The sample was initially freeze dried, as described early, and 

placed onto a sample holder. This was then placed in SEM and focused beams of 

electrons obtain information in order to form an image. The SEM focuses on surfaces 

as they can detect and analyse surface fractures and microstructures. This technique is 

an efficient way to observe the surface coatings to understand how the materials 

interact. [129]  

2.2.7 Transparency Test 

A UV-3600 UV-vis spectrometer and UVProbe 2.43 software was used to measure the 

attenuation of light after it has passed through the materials. [130] The materials were 

prepared by dipping the cuvette firstly in a 1% Nafion in water solution and leaving to 

dry, then dipping it in 0.1% lysozyme or chitosan solutions. When the layers dried 

sufficiently, the LbL surface coating formed was tested for absorbance to see how much 

light was absorbed when ultra-violet (UV) light is passed through. A blank cuvette was 

measured to use as a control.  

2.2.8 Antimicrobial Activity Testing 

This step was done in collaboration with the School of Pharmacy and Biomedical 

Sciences (PhD student Ella Gibbons), method adapted loosely from Zhong et al. [78]  

Gold QCM discs, 1cm in diameter, were coated with a series of compounds (exact 

compounds and combinations listed in results section) via LbL. These discs, from here 

on referred to as test discs, were disinfected with isopropyl alcohol prior to each 

experiment as both autoclaving and UV sterilisation were unsuitable for the coatings. 

Two uncoated discs, referred to from here as control discs, were used in addition to the 

test discs in each experiment as means of providing a baseline for bacterial growth on 

the untreated discs.  Due to being uncoated, the control discs were suitable for 

autoclave sterilisation.   

For every experiment, each of the control and test discs were placed into separate wells 

in a flat bottomed 12 well plate. Each disc was placed atop a circle of autoclave sterilised 
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aluminium foil to prevent run-off of bacteria and to allow for easy transfer of the 

samples following their incubation.  

Each disc was inoculated with 200µl of bacterial culture. The cultures themselves were 

grown in 25ml nutrient broth within 250ml Erlenmeyer flasks at 37⁰C for 24hrs. 

Following this overnight incubation, the cultures were transferred into 50ml Falcon 

tubes, balanced to within 0.1g of one another, and centrifuged at 4000rpm for 10 

minutes. The supernatant from this centrifugation was then discarded of, 20ml of ¼ 

strength Ringer’s solution added to each tube and the tubes vortexed to resuspend the 

pellet. The tubes were once again balanced and centrifuged at 4000rpm for a further 

10 minutes. The supernatant, again, discarded of and this time 2ml of ¼ strength 

Ringer’s added to each tube before vortexing. The resuspended cultures were then 

diluted by a factor of 100, via means of transferring 1ml culture into 9ml ¼ strength 

Ringer’s twice.  

Following inoculation, the 12 well plate was incubated for 20hrs at 37⁰C, after which 

the discs plus the foil were transferred into universal bottles, each containing 9.8ml 

Ringer’s solution. These bottles were sonicated for 5 minutes and then diluted by a 

factor of 10 4 times, 100µl into 900µl each time. The dilutions were plated out in 

triplicate onto nutrient agar, spreading 100µl of culture onto each plate. The plates 

were then incubated for 24hrs at 37⁰C and subsequent growth recorded using a colony 

counter. 

The test was conducted on two different bacteria. A gram-positive bacterium, S. aureus, 

and a gram-negative bacterium, E. coli was tested against various LbL assemblies. [131]  
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3. Results and Discussion 

3.1 Precipitates 

 

 

 

 

Figure 16. Precipitate of lysozyme (pH 6.2) and Nafion solutions, precipitate of chitosan (pH 5) 

and Nafion solutions and both precipitates post freeze dry (-76oC), from left to right.  

Nafion and lysozyme solutions were mixed together to form a white precipitate (as 

shown in figure 16). The precipitate is a result of the negatively charged Nafion and 

positively charged lysozyme having electrostatic interactions. This occurred at when the 

lysozyme solution was at pH 9, 7, 6.2 and 4. Nafion and chitosan solutions were also 

mixed together to form white precipitates due to opposing electrostatic interactions. 

 

 

 

 

 

 

 

 

 

 

Figure 17. FT-IR spectroscoopy data for (A) the precipitate of lysozyme and Nafion, (B) 

lysozyme and (C) Nafion.  

B 

A 

C 
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Figure 17 indicates the following data. The FT-IR spectrum for lysozyme shows 

absorption bands at many points, these include bands at; 3276.21cm -1 which can be 

attributed to either an O-H stretch with hydrogen-bonding or an N-H group and 

2960cm-1 which shows C-H bond stretches. There are bands at 1644.40cm-1 and 1234.64 

also which could suggest the presence of an amide group as these wavelengths shows 

the bonds C=O and C-N respectively. There are also two bands; 1514.51cm-1 and 

1455.12cm-1, which show the presence of an aromatic C=C bond.  

The spectrum for Nafion shows several absorption bands which confirm the presence 

of C-H groups, these wavelengths can be seen at 2879.16cm-1, 2938.0cm-1 and 

2964.28cm-1. Also shown on the spectrum are absorption bands at 1011.35cm -1, 

1051.45cm-1, 1058.88cm-1 and 1067.64cm-1 which are typical of ether groups, 

specifically C-O bonds. Other absorption bands depicted by the 1457.87cm -1 which 

shows C-H bending, 1537.26cm-1 which shows the presence of an aromatic C=C and 

1644.37cm-1 which confirms the presence of an amide group with a C=O stretch typical 

to that seen within amides. The absorption bands shown on this spectrum are 

confirmed by the known structure of Nafion, which contains each of the bonds found.  

The FT-IR spectrum for the combination of lysozyme and Nafion shows a characteristic 

blend between both molecules with no additional bonds being formed. The spectra for 

both lysozyme and Nafion confirm the presence of groups which will have electrostatic 

forces of attraction with each other and this will be the main form of interaction given 

that no permanent bonds have been formed.  
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Figure 18. FT-IR spectroscopy data for (A) Nafion, (B) chitosan and (C) the precipitate of chitosan 

and Nafion. 

Figure 18 indicates the following data. The FT-IR spectrum for Nafion confirms the 

presence of many groups. C-H stretch groups can be seen by three main peaks at 

2879.69cm-1, 2938.40cm-1 and 2964.60cm-1. In addition to this there are 5 peaks which 

depict the presence of an ether group by the wavelengths 1011.18cm-1, 1031.09cm-1, 

1067.65cm-1, 1096.89cm-1 and 1158.80cm-1 which are all typical to the C-O bond within 

the ether group. Another group which was found by the spectrum was a C=O bond 

which is typically characteristic to that of an amide group. All the absorption bands 

shown on the spectrum correspond directly to the structure of Nafion which is known 

to contain each of these groups.  

From the spectrum obtained for chitosan an absorption band of 3308.63cm -1 was 

measured, this could be indicative of either the amine bond N-H or an O-H bond with 

hydrogen bonding present. However, when taking intensity into account, it is more 

likely that this absorption band is relating to an N-H bond group. In addition to this, the 

A 

B 

C 
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spectrum also confirms bonds such as C-O through the absorption band 1025.89cm-1  

and further C-O groups which are shown by an absorption of 1150.90cm-1.  

Similarly, to lysozyme and Nafion, the spectrum for the combined materials show the 

characteristic bands of the parent molecules therefore confirming once again that no 

additional bonds have been formed. Instead, it can be concluded that it is likely that 

electrostatic forces are involved, such as hydrogen bonds being been formed through 

the presence of -NH band present in chitosan and -OH band present in Nafion.  

 

3.2 SEM 

 

 

 

 

 

Figure 19. (A) SEM image of lysozyme and Nafion upon freeze dry measured at 20 μM. (B) SEM 

image of Nafion upon freeze dry measured at 10 μM and (C) SEM image of clustering measured 

at lysozyme 20 μM [132]  

The images, in figure 19, above present the SEM results for when the precipitate of 

lysozyme and Nafion has undergone the freeze-drying process. These materials were 

mixed at a ratio of lysozyme 1:1 Nafion.  Image A shows a general clustering of lysozyme 

molecules together around the long Nafion membrane. The clustering is reflected in C 

which is a clearer image. Image B shows the long string like morphology of Nafion which 

has been stated by Schmidt-Rohr [85] as long water-packed channels that arrange 

themselves either randomly or parallel with hydrophilic side chains around them. The 

clustering of lysozyme seems to occur more often near the long water channels of the 

Nafion as shown in image (A) of figure 19. This backs up data by FTIR and the production 

of the precipitate in that lysozyme and Nafion have electrostatic interactions.  

 

A B C 

10 μM 20 μM 20 μM 
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Figure 20. (A) SEM image of Nafion and chitosan precipitate upon freeze dry measured at 50 

μM. (B) SEM image of the scaffold of chitosan measured at 100 μM [133] and (C) SEM image of 

Nafion and chitosan precipitate upon freeze dry measured at 20 μM.   

Figure 20 presents images from the SEM for the precipitate of Nafion and chitosan that 

has undergone the freeze-drying process and were mixed at a ratio of 1:1. Image A 

shows the long water packed channels of Nafion but in a more random arrangement to 

previous images shown. Image B shows the scaffold structure of chitosan. Fernandes et 

al [134] stated that the average pore diameter of chitosan was 16 μM which gives 50% 

porosity. Image C shows a possible pore created by chitosan where nearby can Nafion 

water channels can be found. This backs up the formation of the white precipitate when 

the materials are mixed in solution and data found in FTIR that Nafion and chitosan have 

electrostatic interactions. Based on this information, these materials were used in QCM 

to build up LbL assemblies. 
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3.3 QCM-D 

 

 

 

 

  

 

 

 

 

Figure 21. QCM-D sensogram during LbL deposition of Nafion and lysozyme (pH 9) onto a 

Nafion-coated crystal resonator with 2 layers of lysozyme and 2 layers of Nafion at room 

temperature (22oC). The frequency (f) is plotted in blue and the dissipation (D) is plotted in 

orange. “W”, “L” and “N” denote the injection of water, 0.1% lysozyme and 1% Nafion solutions 

respectively. 
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Figure 22. QCM-D sensogram during LbL deposition of Nafion and lysozyme (pH 7) onto a 

Nafion-coated crystal resonator with 4 layers of lysozyme and 3 layers of Nafion at room 

temperature (22oC). The frequency (f) is plotted in blue and the dissipation (D) is plotted in 

orange. “W”, “L” and “N” denote the injection of water, 0.1% lysozyme and 1% Nafion solutions 

respectively. The dotted line arrow represents the repeated steps of injections. 

 

Figure 23. QCM-D sensogram during LbL deposition of Nafion and lysozyme (pH 6.2) onto a 

Nafion-coated crystal resonator with 6 layers of lysozyme and 5 layers of Nafion at room 

temperature (22oC). The frequency (f) is plotted in blue and the dissipation (D) is plotted in 

orange. “W”, “L” and “N” denote the injection of water, 0.1% lysozyme and 1% Nafion solutions 

respectively. The dotted line arrow represents the repeated steps of injections. 
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Figure 24. QCM-D sensogram during LbL deposition of Nafion and lysozyme (pH 4) onto a 

Nafion-coated crystal resonator with 6 layers of lysozyme and 5 layers of Nafion at room 

temperature (22oC). The frequency (f) is plotted in blue and the dissipation (D) is plotted in 

orange. “W”, “L” and “N” denote the injection of water, 0.1% lysozyme and 1% Nafion solutions 

respectively. The dotted line arrow represents the repeated steps of injections. 

 

Figure 25. QCM-D sensogram during LbL deposition of Nafion and chitosan (pH 5) onto a Nafion-

coated crystal resonator with 3 layers of chitosan and 2 layers of Nafion at room temperature 

(22oC). The frequency (f) is plotted in blue and the dissipation (D) is plotted in orange. “W”, “C” 

and “N” denote the injection of water, 0.1% chitosan and 1% Nafion solutions respectively.  
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Figure 26. QCM-D sensogram during LbL deposition of Nafion, chitosan (pH 5) and lysozyme (pH 

7) onto a Nafion-coated crystal resonator with 2 layers of chitosan, 2 layers of lysozyme and 3 

layers of Nafion at room temperature (22oC). The frequency (f) is plotted in blue and the 

dissipation (D) is plotted in orange. “W”, “C”, “L” and “N” denote the injection of water, 0.1% 

chitosan, 0.1% lysozyme and 1% Nafion solutions respectively.  

Figures 21-24 show the QCM-D data collected and repeats of these tests can be found 

in the supplementary data. For figures 25 and 26, QCM-D data was collected once, 

therefore no repeats for these are provided within supplementary data. 

Figure 21 shows the QCM-D data of a 0.1% lysozyme in sodium carbonate-sodium 

bicarbonate buffer solution and 1% Nafion in water with gold crystals pre-coated with 

Nafion and ethanol at a ratio of 1:40. 3.5 bilayers of Nafion/lysozyme (pH=9) were 

created. 

The frequency (f) is a measure of the oscillations of the quartz crystal as mass is added 

to the sensor. Dissipation (D) is a result of the lapse in energy when the voltage towards 

the crystal is stopped.  

At 20s, the frequency signal drops to -450Hz. This initial drop is caused by the water 

molecules either entrapping within in the Nafion monolayer or by direct hydration. [135] 

The amount of water adsorbing onto the surface ultimately depends upon its 

orientation of either ‘side-on’ or ‘end-on’ as more water will be present should they 

adsorb in the ‘end-on’ orientation. [67] 
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The frequency drop upon addition of water falls within a range consistent with a study 

by Fernandes et al. [136] 

The first layer of lysozyme adsorbs sufficiently onto the surface of the Nafion with the 

frequency dropping from -450Hz to -570Hz. Then subsequent lysozyme layers show 

differences of 20-30Hz. The layers of Nafion causes frequency changes of around 20-

30Hz also. The Sauerbrey equation can be used to describe the frequency to mass 

relationship at the surface of the crystal.  

The trends in terms of dissipation and frequency are consistent throughout the results. 

From the graph, it is clear when a new layer is added and when the excess is washed off 

with water. The results from the other Nafion/lysozyme (pH=9) results show 

consistency and can be found in the supplementary data. The reliability of the repeats 

means that these QCM-D data are easily reproducible when using the buffer of pH 9. 

There are currently no published journals that have explored the idea of building a LbL 

system consisting of Nafion and lysozyme and therefore this research is novel.  Nafion 

has an overall negative charge because the polymer molecule has at least one excess 

electron at a time. [137] 

Lysozyme at a pH below 11 has an overall positive net charge, which is shown in a study 

by Dolinsky et al where it is concluded that as the pH becomes more acidic there is a 

higher positive charge value. [138] 

 

 

Figure 27. pH changes influence the net charge of lysozyme [139] 
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Changes in the pH of the lysozyme with the use of buffers could potentially give 

different frequency and dissipation levels in the QCM-D system.  

Figure 22 shows the data for when 4 bilayers of Nafion/lysozyme (pH=7) were created. 

The initial frequency as water is added is as expected. The changes in frequency for both 

lysozyme and Nafion layers added are in conjunction with the data that Dolinsky et al 

presented, as the addition of Nafion layers show larger changes in frequency than 3.5 

bilayers of Nafion/lysozyme (pH=9). It is likely that when there is a more positive charge, 

the molecules of the proceeding Nafion layer will more readily be attracted the 

lysozyme and form more electrostatic interactions. However, in comparison to the 6 

bilayers of Nafion/lysozyme (pH=4) data there is not much difference in the change of 

frequency per Nafion layer.   

A study by Araki et al stated that the adsorption of lysozyme onto a gold crystal was pH 

insensitive. However, as a multilayer system is being created here, it would appear the 

interactions between layers is dependent on the charges that the varying pH’s create.  

Araki et al explained that even if lysozyme was pH insensitive, the dissipation results 

showed a softness of the adlayer created. This could affect the interactions between 

layers in LbL system where a stiffer layer of lysozyme would encourage molecules of the 

proceeding layer to be added by electrostatic interaction. [140] 

A buffer was made at the optimal pH for lysozyme to be most active at. At pH 6.2, 

lysozyme shows the most activity over a larger ionic strength range. [141] 

Figure 23 shows the QCM-D data for 6 bilayers of Nafion/lysozyme (pH=6.2). Lysozyme 

is most active at pH 6.2 due to a higher activity over a larger ionic strength range. The 

adhesion of the layers to the surface is similar to that in the 4 bilayers of 

Nafion/lysozyme (pH=7) data. The change in frequency when Nafion is added is also 

similar to the 4 bilayers of Nafion/lysozyme (pH=7) results but is more consistently 

around 100Hz which follows Dolinsky’s findings.  

The trends of the results are consistent and so are reproducible. It appears that when 

water is used to wash the excess off, less material is lost in comparison to when other 

pH’s were used. This could either be due to a difference in rigidity of the layers formed 

or the levels of water entrapment within the layer are higher.  
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Figure 24 shows the data for when 6 bilayers of Nafion/lysozyme (pH=4) were created. 

The frequency of the initial addition of water is slightly lower than usual, which is 

possibly due to less Nafion molecules being adsorbed to the surface during the spin 

coating process. As the layers of lysozyme are added, the frequency changes by 

approximately 20Hz each time, which is significantly less than when compared to the 4 

bilayers of Nafion/lysozyme (pH=7) and 5 bilayers of Nafion/lysozyme (pH=6.2) data. 

When Nafion is added the frequency drops around 90-100Hz. This follows the 

statement made by Dolinsky et al that the lower the pH, the higher the net charge. It 

can also be seen that as each layer of Nafion is added, there is around a 50% decrease 

in adsorbed material as the excess is washed with water. This suggests that layer of 

Nafion is not strongly bonded despite the higher electrostatic forces.  

Figure 25 represents the data for when 3 bilayers of Nafion/chitosan (pH=5) were 

created. Unlike the results prior to this there is no repeatable trend where the layers 

have been adsorbed and washed off, however it is still clear that adhesion has occurred. 

The initial addition of water to the QCM-D changed the frequency outside of the usual 

range of -450 to -550 Hz. This could have been due to impurities in the water or human 

error in the coating of Nafion for the first layer. As the test continues, the changes in 

frequency still show that chitosan and Nafion were successfully added as a LbL system. 

There was a substantial change around 350s which indicated vast amounts of material 

were washed off. The subsequent layer however had high adhesion, which means that 

there was no issue with the polarity of the previous layer despite losing large mass.  

The overall frequency changed to around -2400Hz, which indicates large masses of 

material added. However, the repeatability of this LbL construct is more difficult than 

the lysozyme/Nafion constructs as shown by the lack of trends. A likely reason for this 

is that the chitosan is not uniformly distributed across the layer when added which 

could be due to specific requirements when dispersing chitosan. 

Figure 26 shows that a LbL system can be created that contains all materials lysozyme, 

Nafion and chitosan. The data presents the QCM-D data for 4 layers of Nafion, 2 layers 

of chitosan and 2 layers of lysozyme (pH=7). The theory behind this is that the assembly 
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is built upon the alternations between Nafion – lysozyme – Nafion – chitosan and 

repeated this way, maintaining the principle of alternating opposite charges.  

The data is less reliable than other data presented as there is no obvious patterns or 

trends to follow. However, it is clear to see that there is adhesion of Nafion layers 

around 400s, 1000s and 1800s. The change in frequency and dissipation for the 

adhesion of Nafion here is a lot larger than in previous results despite no obvious 

changes within the method. 

It is possible that there are more random arrangements and orientations of molecules 

because of the introduction of a third material. The changes in frequency for the 

addition of the lysozyme and chitosan are minimal which again indicates a lack of 

reproducibility. This could due to repulsion between the two layers of positively 

charged lysozyme and chitosan molecules which encase each Nafion layer. For example, 

if a layer of lysozyme does not cover the Nafion with a full monolayer, when chitosan is 

used, the positive charges will repel. 

 

 

 

 

 

 

 

 

 

 



53 

 

3.4 AFM 
 

 

 

 

 

 

  

Figure 28. AFM images of Nafion and lysozyme (pH 9) LbL assembly (A) and (B) from left to 

right. 

AFM studies of lysozyme-Nafion were carried out to investigate the cluster formations 

found in SEM and other information about the LbL formation. Figure 28 images A and B 

shows the surface of 3.5 bilayers of Nafion/lysozyme (pH=9), which was the only LbL 

construction tested. The roughness average (Ra) of image A is 5.70nm, which is the 

arithmetic mean of the height of the surface, position and length. When this is 

compared to Ra of image B, which is 4.18nm, there is a difference of 1.52nm. As the 

images are both of the same batch of material (but different areas) this could suggest 

that the spread of roughness is fairly even, but it does deviate. 

The root mean square of roughness (Rq) is another measurement that can be used. The 

advantage that Rq has over Ra is that it is more sensitive to peaks and troughs in the 

average roughness of the surface because the amplitude is squared. The Rq of figure A 

is 29.1nm whereas figure B is 6.79nm. This shows that the surface in two different areas 

has large changes in roughness indicating that the size of the peaks and troughs vary 

substantially throughout the surface.  

The maximum profile peak (Rmax) measures the highest point of the surface from the 

baseline. The Rmax of image A is 1888nm which is much greater than any of the averages. 

This peak could indicate a crack in the surface, which is important to consider when 

comparing against other figures. The Rmax of image B is 75.9nm which is more 

realistically of a peak that larger than the rest but is not an anomaly. [142] 

A B 
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It has been suggested that lysozyme adsorbs onto the surface as monomers and the 

proteins diffuse forming clusters. Protein monomers do not land on top of previously 

adsorbed proteins which is probably a result of electrostatic repulsions. They move 

laterally and adhere next to the monomer, increasing the growth of clusters. Several 

other studies also confirm that proteins in aqueous state diffuse onto solid surfaces.  

[143][144][145] 

If there is a sufficient protein content in a lysozyme solution, there will be initial clusters 

formed, then proteins adsorb to create a complete monolayer, and then multilayers will 

be formed. It is expected that it takes a longer amount of time for the additional layers 

to form compared to the time it takes for a monolayer to form. Despite this, all lysozyme 

layers are irreversibly adsorbed. Kim argued that the proteins can undergo 

conformational changes such as unravelling to assist in multilayer formations. Diffusion 

at the surface and collisions of neighbour proteins allows for the aggregation of the 

surface. [146] The clustering formation phenomenon is captured by the AFM when the 

surface is only sparsely populated. 
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3.5 Contact Angle Measurements 
 

Table 4. Contact angles of the various LbL assemblies at different pH’s 

Surface  pH Contact Angle (o) 

 

Lysozyme and 

Nafion 

 

4  

(6 bilayers) 

 

 

6.2  

(6 bilayers) 

 

 

7  

(4 bilayers) 

 

 

9  

(3.5 bilayers) 

 

                      45.35 

 

 

 

                     55.95 

 

 

 

                      58.63 

  

 

  

                      59.38 

Chitosan and 

Nafion 

 

5  

(3 bilayers) 

                        

                        60.76  

Lysozyme, 

chitosan and 

Nafion 

 

- 

 

                        42.21 
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Contact angle measurements reflect the interplay between the chemistry of surface 

groups and the surface topology of the coatings. Table 4 shows the contact angle 

behaviour of the various materials. The contact angle of the lysozyme and Nafion layers 

increases as the pH increases. Repeated contact angles can be found in supplementary 

data. 

These results are coherent with a study conducted by Vasani et al where the contact 

angle of porous silicon (pSi) and poly(2-diethylaminoethyl acrylate) films (pSi-pDEAEA) 

increases as the pH increases. The theory behind these results can be applied to both 

sets of data. When the pH is higher than the pKa value, intramolecular hydrogen bonds 

are formed due to the deprotonation of amine groups in the surface, which makes the 

surface hydrophobic. This explains the results that occur for 3.5 bilayers of 

Nafion/lysozyme (pH=9) which gave a contact angle of 59.38o in comparison to 6 

bilayers of Nafion/lysozyme (pH=4) which gave a contact angle of 45.35o – a larger 

amount of amine groups become deprotonated making it more hydrophobic. Due to 

lysozyme containing many amino acids that contain amine groups, this theory can be 

applied. [147] 

Table 5. pKa  of acidic residues in chicken egg white lysozyme at 35o C [148] 

Residue pKa 

Alpha 

Glu 7  2.7 

Asp 18 2.3 

Glu 35 6.1 

Asp 48 2.3 

Asp 52 3.6 

Asp 66 < 2 

Asp 87 2.3 

Asp 101 4.0 

Asp 119 3.1 

C-terminal 3.1 
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Table 5 presents the pKa values of acidic residues in chicken egg white lysozyme. This 

data backs up the points made previously that when the pH value is higher than the 

pKa, the surface is more hydrophobic because most of these values are below 4.0. The 

residue ‘Glu 35’ has the highest pKa value which is markedly similar to the most active 

pH of lysozyme (6.2). Due to the importance of Glu 35 in the catalysis in lysozyme 

molecules its activity should be an important marker in deciding the most appropriate 

pH to use for this surface coating in terms of LbL assembly, antimicrobial activity and 

contact angles.  

The 3 bilayers of Nafion/chitosan (pH=5) surface coating had the largest contact angle 

of 60.76o which is similar to results in a study by Kim et al where the contact angle for 

pure chitosan was 56.90o. [149] 

The difference in contact angle between the 3 bilayers of Nafion/chitosan (pH=5) 

surface coating and the 3.5 bilayers of Nafion/lysozyme (pH=9) coating was minimal, 

however still significant as it means the Nafion/chitosan surface is more hydrophobic 

than the others. This includes the contact angle for LbL assembly with 4 layers of Nafion, 

2 layers of chitosan and 2 layers of lysozyme (pH=7) which accounted for the second 

lowest contact angle of all the results. An explanation for this result could be that there 

is an increased random arrangement and orientation of molecules as suggested in the 

QCM-D results section. 

Wenzel defined the relationship between wettability and surface roughness stating that 

an increased surface roughness enhances the wettability of a surface. [150] 

Thus, the roughness affects the contact angle measurements. From the AFM results it 

can be said that the surface coatings have a significant number of peaks and troughs 

which could be the reason for the low hydrophobicity. This means the surface coating 

will not easily allow to water to just run off the surface which would be ideal for an 

antimicrobial surface coating. This should be a focus of future work in this area.  



58 

 

3.6 Antimicrobial Activity 

  

Figure 29. Percentage reduction of S. aureus and E. coli for various LbL assemblies  

Figure 29 represents the data collected from the antimicrobial tests. The antimicrobial 

tests were carried out for each LBL construction in the presence of either S.aureus or 

E.coli and the tests were carried out once in each instance. These results were 

completed in collaboration with Ella Gibbons of the School of Pharmacy and Biomedical 

Sciences.  

It is essential that E. coli and S. aureus are controlled in a safe manner as these microbes 

are the most common occurrences in outbreaks of foodborne disease. [151] 

The surface coatings produced are an attempt at combatting this problem. Varying pH’s 

of lysozyme were created and used with Nafion to see which was most effective. In 

addition, Nafion was used with chitosan (pH=5) and a final assembly consisting of 

lysozyme, Nafion and chitosan was also created in the QCM-D.  

The results show us that the 6 bilayers of Nafion/lysozyme (pH=6.2) assembly is the 

most effective pH in terms of destroying both strains of bacteria. More than 99.9% of 
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S. aureus and 99.9% of E. coli were reduced, which is expected at pH 6.2 because, as 

Davies et al wrote, the maximum activity of lysozyme is observed at this pH. [141] 

The 6 bilayers of Nafion/lysozyme (pH=4) and 3.5 bilayers of Nafion/lysozyme (pH=9) 

tests proved to work well against S. aureus (>99.9% and 99.9% respectively) however 

did not reduce as much E. coli as the former (28.0% and 45.0%). The coating of 4 bilayers 

of Nafion/lysozyme (pH=7) decreased S. aureus by 12.0% and E. coli by ~0%. The 6 

bilayers of Nafion/lysozyme (pH=4), 6 bilayers of Nafion/lysozyme (pH=6.2), and 4 

bilayers of Nafion/lysozyme (pH=7) results are in accordance to the results of a study 

by Wecke et al, who stated that despite previous findings, lysozyme can attack cell walls 

of S. aureus when used in acidic conditions, as the 6 bilayers of Nafion/lysozyme (pH=4) 

and 6 bilayers of Nafion/lysozyme (pH=6.2) results were more effective than the 4 

bilayers of Nafion/lysozyme (pH=7) result.  

Wecke et al [152] stated that under acidic conditions, a new attacking mechanism occurs 

from the inside of the cell wall. Studies with an electron microscope showed that the 

attack started within the cross-wall and lytic sites become arranged between the cell 

wall and cytoplasm membrane, causing a gap to form and wall segments becoming 

trapped in the medium. The 3.5 bilayers of Nafion/lysozyme (pH=9) results do not 

follow this trend because it is not under acidic conditions. However, this result could 

also be due to Nafion being the last layer to be added to the LbL system (shown in the 

QCM-D data). This is crucial as the top layer of the LbL assembly is more exposed to the 

microbes than other layers. Preliminary data from our lab stated that Nafion on its own 

had antimicrobial activity which could explain the 3.5 bilayers of Nafion/lysozyme 

(pH=9) result. [153] 

The 3 bilayers of Nafion/chitosan (pH=5) LbL construct also showed high-levels in 

reduction of S. aureus (>99.9%) and E. coli (74.6%). This behaviour is consistent with the 

with the well- explored antimicrobial activity of chitosan against the bacteria tested 

here. [154] 

The LbL system consisting of 4 layers of Nafion, 2 layers of chitosan and 2 layers of 

lysozyme (pH=7) decreased S. aureus by 83.4% and E. coli by 88.5%. Again, high levels 

of reduction are exhibited due to the materials used. 
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Despite the observations made by the results, there are some limitations that should 

be considered. A possible limitation is in the event that the crystals weren’t washed 

with water after the last layer of material was added in the QCM-D machine. The excess 

material which could be left on the crystals could dry and then produce deviations in 

results, particularly because the antimicrobial testing comes into contact with the top 

layer first. Another factor that could influence the results is the number of layers that 

are used in each test, where it would be assumed that if more material is built in the 

LbL assembly it would have higher antimicrobial activity. However, the 4 bilayers of 

Nafion/lysozyme (pH=7) test has more layers than the 3.5 bilayers of Nafion/lysozyme 

(pH=9) test and less antimicrobial activity so this point is subjective.  

 

 

 

 

 

Figure 30. Antimicrobial effect of gold crystals, upon which the LbL systems were formed, 

against S. aureus and E.coli 
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3.7 Transparency Test 

 

 

Figure 31. Comparison of absorbance of a range of dipped LbL assemblies 

Figure 31 shows the comparisons of absorbance for all the materials. The materials 

were prepared by dipping the cuvette firstly in a 1% Nafion in water solution and leaving 

to dry, then dipping it in 0.1% lysozyme or chitosan solutions. When the layers are dried 

sufficiently, the surface coating formed consists of one layer of each component. The 

coated cuvettes were then tested for absorbance to see how much light is absorbed 

when ultra-violet (UV) light is passed through. A blank cuvette was measured to use as 

a control. This was not repeated and so results are based on the initial transparency test 

carried out.  

Proteins such as lysozyme absorb UV light at peaks 280nm and 200nm. The peak at 

280nm is a result of aromatic rings and amino acids (due mostly to the presence of 

tyrosine and tryptophan) which are present. The peak at 200nm is present due to the 

peptide bonds. The absorbance spectrum can be affected by the structure of the 
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protein whether it be secondary, tertiary or quaternary. In addition to the structure 

having an impact, pH and ionic strength can also alter the absorbance spectrum. [155][156]  

The absorbance for Nafion is at 228nm and this is seen in the change in wavelength, 

however it is not as present as the lysozyme protein peaks, suggesting that the dipping 

technique adheres more lysozyme than Nafion. [157] 

The Nafion/chitosan assembly shows results that correspond with the UV-vis given by 

Kumirska et al for chitosan and a derivative. This could suggest that the LbL assembly 

here had larger amounts of chitosan than Nafion. The system that contained lysozyme, 

Nafion and chitosan showed an absorbance of all of three materials as expected. [158] 

The results show that the more neutral the pH is, the higher the absorbance is. This is 

in accordance with the results of a study by Nagasaka et al [159], where LbL films of 

fluorescein-modified poly(allylamine) (F-PAH) and poly(styrenesulfonic) (PSS) layers 

were alternately deposited through electrostatic forces of attraction. Nagasaka et al 

wrote that absorbances of the film were higher at more neutral pH’s than in weakly 

acidic solutions.  

The definition of transparency is the property of allowing light to pass through so that 

objects behind can be seen. The absorbance of light measured here can be an indicator 

of the amount of light that is stopped by the material and so it is possible to compare 

these results. Figure 31 shows that there is minimal to no peaks in the visible 

wavelength spectrum (400-800nm). This is a positive result as this means the LbL 

materials that were deposited on the cuvette have no visible colour to them. 

Consequently, if these materials are applied to materials such as tin foil (to protect 

food) or door handles, they would have minimal to no visible colours which is a property 

of an ideal antimicrobial surface coating. 

Aside from the blank control, the Nafion/chitosan assembly had the lowest absorption 

which suggests that it is less visible than the other coatings. This was followed by the 

assembly with lysozyme, chitosan and Nafion which was unexpected as the thickness 

and opacity of this material should have been increased due to the increased number 

of materials used. The pH 9 and pH 4 lysozyme-Nafion assemblies had similar 
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absorbance and as stated previously the more neutral pH’s have the highest 

absorbance. 

This approach to measuring absorbance of light/transparency is limited however, as the 

drying process of the cuvettes could create clouding effects from the layers deposited, 

and the thickness of the layers should be more reproducible. Also, some of the material 

may get scratched off as it is placed inside the UV-vis machine. 
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4. Summary 

 

We investigated for the first time the development of LbL materials comprising of 

Nafion and lysozyme. Preliminary data in our lab demonstrated that Nafion shows 

antimicrobial activity in line with the well-explored antimicrobial behaviour of 

lysozyme. 

Using QCM-D sensograms, stable LbL ultrathin coatings based on Nafion and lysozyme 

(pH 9, 7, 6.2 and 4) were formed.  Judging from the magnitude of the frequency drop 

(that is a measure of the total mass deposited on the crystal) observed after the 

deposition of Nafion, it is clear that Nafion adsorption on the lysozyme monolayer is 

systemically stronger as the pH of lysozyme decreases. The changes in pH also effected 

changes of frequency when lysozyme was added. It could be concluded that the more 

neutral pH’s exhibited higher frequency changes for lysozyme (and therefore more 

mass).  

Nafion and chitosan LbL assemblies were also chosen to be constructed based off the 

principle that building units have opposing charges and the formation of a white 

precipitate when mixed in solution. It is known that chitosan is non-toxic and has 

antimicrobial properties and so these results can be compared against the lysozyme 

and Nafion tests. The overall adhesion of material for 3 bilayers of Nafion/chitosan 

(pH=5) was higher than other results as the frequency changed by around 2400Hz. In 

addition to this a LbL assembly consisting of lysozyme, chitosan and Nafion was 

constructed. Similarly to the Nafion and chitosan test, there was lower repeatability in 

the results as there was no obvious trends.  

Contact angle measurements were taken to test the hydrophobicity of each of the LbL 

systems created. The 3 bilayers of Nafion/chitosan (pH=5) coating showed the highest 

contact angle of 60.76o. From the AFM results it can be said that the coatings have a 

significant number of peaks and troughs in the topography which could be the reason 

for the low hydrophobicity. 
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It was observed that 6 bilayers of Nafion/lysozyme (pH 6.2) exhibited the greatest 

antimicrobial resistance against S. aureus and E. coli, inhibiting their growth by 100%. 

Significant antimicrobial activity was also observed for the systems comprising 3 

bilayers of Nafion/chitosan (pH=5) and the lysozyme, chitosan Nafion tri-component. 

A final experiment was done to test how visible each test was in a transparency test. 

Nafion/lysozyme tests that used more neutral pH’s absorbed more light which indicated 

they were more visible. The Nafion/chitosan system had the lowest absorbance. The 

lysozyme, chitosan and Nafion tri-component assembly had the second lowest 

absorbance.  

5. Conclusion 
 

In conclusion, this study provides direct evidence that LbL assemblies based on Nafion 

can open a very promising avenue in the field of antimicrobial coatings, giving rise to a 

range of nanostructured materials that are stable, reliable and non-toxic.  

Further work would involve a more systematic approach including more combinations 

of pH’s, number of layers and materials. An aim would be to create larger contact angles 

and make the surface coatings less visible whilst retaining the high antimicrobial effect. 
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