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Abstract 
 

Wind power is one of the most important sources of renewable energy. Wind-

turbines extract kinetic energy from the wind. Currently much research has 

concentrated on improving the aerodynamic performance of wind turbine 

blade through wind tunnel testing and theoretical studies. These efforts are 

much time consuming and need expensive laboratory resources. However, 

wind turbine simulation through Computational Fluid Dynamics (CFD) 

software offers inexpensive solutions to aerodynamic blade analysis problem. 

In this study, two-dimensional aerofoil (i.e. DU-93 and NREL-S809) CFD 

models are presented using ANSYS-FLUENT software. Using the Spalart-

Allmaras turbulent viscosity, the dimensionless lift, drag and pitching moment 

coefficients were calculated for wind-turbine blade at different angles of 

attack. These CFD model values we then validated using published calibrated 

lift and drag coefficients evident in the literature. Optimum values of these 

coefficients as well as a critical angle were found from polar curves of lift, drag 

and moment modelling data. These data were exploited in order to select the 

aerofoil with best aerodynamic performance for basis of a three-decisional 

model analogue. Thereafter a three-dimensional CFD model of small 

horizontal axis wind-turbine was produced. The numerical solution was 

carried out by simultaneously solving the three-dimensional continuity, 

momentum and the Naveir-Stokes equations in a rotating reference frame 

using a standard non-linear k-ω solver so that the rotational effect can be 

studied. These three-dimensional models were used for predicting the 

performance of a small horizontal axis wind turbine. Moreover, the analysis of 

wake effect and aerodynamic noise can be carried out when the rotational 

effect was simulated. 
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Chapter 1 Introduction 

1.1 Background 

Wind energy is an abundant resource in comparison with other renewable 

resources. Moreover, unlike the solar energy, the utilization could not be 

affected by the climate and weather. Wind turbine was invented by engineers 

in order to extract energy from the wind. Because the energy in the wind is 

converted to electric energy, the machine is also called wind generator. Figure 

1-1 shows the growth rate of wind generator capacities, which has increased 

significantly in the last ten years. The total installed capacity of wind power 

generators was 159,213 MW at the end of 2009 (World Wind Energy Report 

2009).  

 

 

Figure 1-1 World total installed capacity (World Wind Energy Report 2009, p.5) 

 

A wind turbine consists of several main parts, i.e. the rotor, generator, driven 

chain, control system and so on. The rotor is driven by the wind and rotates at 

predefined speed in terms of the wind speed, so that the generator can 

produce electric energy output under the regulation of the control system. In 

order to extract the maximum kinetic energy from wind, researchers put much 

efforts on the design of effective blade geometry. In the early stage, the 

aerofoils of helicopters were used for wind turbine blade design, but now, 

many specialized aerofoils have been invented and used for wind turbine 
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blade design. Moreover, a rotor blade may have different aerofoils in different 

sections in order to improve the efficiency, so the modern blades are more 

complicated and efficient comparing to early wind turbine blades.  

In the early stage, the research on wind turbine blade design was limited on 

theoretical study, field testing and wind tunnel testing which need a lot of 

efforts and resources. Due to the development of computer aided design 

codes, they provide another way to design and analyse the wind turbine 

blades. Aerodynamic performance of wind turbine blades can be analysed 

using computational fluid dynamics (CFD), which is one of the branches of 

fluid mechanics that uses numerical methods and algorithms to solve and 

analyze problems of fluid flows. Meanwhile, finite element method (FEM) can 

be used for the blade structure analysis. Comparing to traditional theoretical 

and experimental methods, numerical method saves money and time for the 

performance analysis and optimal design of wind turbine blades. 

 

1.2 Aims & Objectives 

Aims 

The research aims to evaluate the aerodynamic performance of variable-

speed fixed-pitch horizontal-axis wind turbine blades through two and three 

dimensional computational fluid dynamics (CFD) analysis. 

Objectives 

The objectives of the research are to establish 2D and 3D CFD models of 

wind turbine blade and rotor, so as 

 To analyse the aerodynamic performance of different aerofoils; 

 To predict wind turbine power output at different wind speeds; 

 To compare different blade roots and tips design; 

 To analyse the wake effect of the rotor under operation; 

 To predict the noise of wind turbine under operation. 

1.3 Overview of this report 

A comprehensive study of the aerofoil behaviour is implemented using 2D 

modelling. Unlike another aerodynamic device, wind turbine relies on the stall 

property to limit the power output (Carcangiu, 2008, p.4) at high wind speed, 

so it is necessary to know when and how the stall condition happens. 
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In 3D modelling, the torque and thrust force acting on the blade can be 

calculated using CFD packages. At different wind speeds, the optimum 

rotational speeds can be estimated in order to maintain either maximum 

power point tracking at low wind speed or constant power output at high wind 

speed. Meanwhile, by taking into account of the rotational effect, wake 

analysis and aerodynamic noise prediction can be implemented. 

This dissertation consists of five chapters. The aims and objectives are 

introduced in Chapter 1. In Chapter 2, the theories of computational fluid 

dynamics and wind turbine aerodynamics are introduced. Simulation methods 

are introduced in Chapter 3, which includes the two- and three-dimensional 

modelling. In this chapter, different modelling approaches are compared so as 

to improve the simulation accuracy. Two- and three-dimensional simulation 

results are analysed in Chapter 4, aerodynamic performance of different 

aerofoils are estimated in two-dimensional results section and a 

comprehensive analysis regarding wind turbine rotor performance is 

addressed in three-dimensional results section. The conclusions and future 

work are summarized in Chapter 5. 
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Chapter 2 Literature Review 

In this chapter, some basic theories of wind turbine aerodynamics and 

computational fluid dynamics are introduced. Moreover, the purposes and 

methods for wind turbine simulation are discussed. 

2.1 Historical development of wind turbine 

Wind turbine is a device, which converts the kinetic energy from the wind to 

electric energy via a mechanical rotor, a drive train and a generator. One of 

the earliest wind turbines was designed by Poul La Cour, who was a 

professor at an adult education centre in Denmark in 1891 (Figure 2-1). 

Nowadays, Enercon E-126, the world biggest wind turbine can generate up to 

7 Megawatts of power under the rated wind speed. This capacity can provide 

the daily electricity for more than 4500 homes. Following the technology 

development of modern wind turbines, they can now be mounted either on the 

ground or on the seabed. A giant offshore wind turbine of 10 megawatts will 

be installed in 2011 by Enova SF in Norway. As the depletion of coal and 

fossil oil, wind energy will play a more and more important role in this century. 

 

Figure 2-1 Pou La Cour’s first electricity producing wind turbine in 1891 in Askov, 

Denmark (Golding, 1977) 
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2.2 Wind turbine aerodynamics 

According to the different rotational orientations, wind turbines can be 

categorized as vertical-axis or horizontal-axis. The advantages of vertical-axis 

wind turbine (VAWT) are: 

1. Simple structure: VAWT can work without yaw system and most of 

them have a blade with constant chord and no twist (Manwell, et al., 

2002, p.259), which is easy to construct. 

2. Easy to install: because the drive trains (gear box, brake and 

generator) can be located relative to the ground. 

Comparing to horizontal-axis wind turbine (HAWT), stall control can only be 

used in VAWT as it is difficult to incorporate aerodynamics control such as 

variable pitch and aerodynamic brake, so the overall power efficiency is lower 

than HAWT. 

 

Figure 2-2 Vertical-axis wind turbine               Figure 2-3 Horizontal-axis wind turbine 

 

2.2.1 Lift, drag and moment coefficients 

In general, there are two forces and one moment that act upon an aerofoil; 

these being lift, drag and pitching moment. The definitions of those three 

forces are explained in this section. 

 

 



 

 

6 

 

 

Figure 2-4 Definition of lift and drag ratio (Hansen, 2008, p. 8) 

 

Lift is the force used to overcome gravity (Hansen, 2008, p. 8) and is defined 

to be perpendicular to direction of the oncoming airflow (Manwell, et al., 2002, 

p.96). It is formed as a consequence of the unequal pressure on the upper 

and lower airfoil surfaces. The drag force is defined as a force parallel to the 

direction of oncoming airflow. (Manwell, et al., 2002, p.96) The drag force is 

due both to viscous friction forces at the surface of the aerofoil and to unequal 

pressure on the airfoil surfaces facing toward and away from the oncoming 

flow. The lift is the force used to overcome gravity and the higher the lift the 

higher the mass that can be lifted off the ground. For an aerofoil, Hansen 

(2008, p.8) stated that the lift to drag ratio should be maximized. As a result, it 

can improve efficiency when wind turbine generates electricity. Lift and drag 

coefficients CL and CD are defined as follows. 

Lift coefficient   L

2

01/ 2
L

F
C

V c
                  (Equation 2-1) 

Drag coefficient 
2

01/ 2

D
D

F
C

V c
                 (Equation 2-2) 

Where   is the air density and c  is the length of the aerofoil, often denoted 

by the chord, unit for the lift and drag in Equations 2-1 and 2-2 is force per 

length (in N/m). To describe the forces completely, it is also necessary to 

know the pitching moment M. It has been found both experimentally and 

theoretically by NASA that, if the aerodynamic force is applied at a location ¼ 

chord back from the leading edge on most low speed airfoils, the magnitude 

of the aerodynamic pitching moment remains nearly constant with angle of 
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attack. In most aerofoil simulations, the pitching moment centre is set up at ¼ 

chord length to get an approximate value and the pitching moment coefficient 

is defined as follows. 

Moment coefficient 
2 2

01/ 2
M

M
C

V c
          (Equation 2-3) 

2.2.2 Tip speed ratio 

The tip speed ratio is the ratio of the blade tip speed over wind speed. It is a 

significant parameter for wind turbine design and its definition is shown in 

Equation 2-4. 

Definition of tip speed ratio 0/R v        (Equation 2-4) 

 is the angular velocity of the wind turbine rotor, R is radius of the rotor and 

0v  is the wind speed. A higher tip speed ratio generally indicates a higher 

efficiency but is also related to higher noise levels. Generally a low speed 

wind turbine chooses value of tip speed ratio from 1 to 4 and a high speed 

wind turbine chooses its value from 5 to 9. 

As a preliminary design consideration, the best range of tip speed ratios for a 

high speed turbine is around 7 (Burton, et al., 2001, p.207), which ensures 

that the wind turbine can run at near maximum power coefficient. The 

relationship between rotational speed and tip speed ratio is shown in Equation 

2-5. 

0

2

60

nr

V


              (Equation 2-5) 

Where n is the rotational speed of the rotor, r is the rotor radius and V0 is the 

wind speed. For instance, if tip speed ratio is 8, the rotor radius is 9m and 

wind speed is 10m/s, then the rotational speed of the rotor should be 85rpm 

using Equation 2-6. 

060

2

V
n

r




            (Equation 2-6) 

Thus, an inverse relationship between the rotational speed and the blade 

span is presented in this equation. Due to the same tip speed ratio, a blade 

with a big span has a low rotational speed. What‟s more, taking into account 

of the structural design of blades, high rotational speed requires a highly 
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substantial structure, which cost too much to construct and induces enormous 

noise. 

 

2.2.3 Betz limit 

 

Figure 2-5 The efficiency of an optimum turbine with rotation (Hansen, 2008, p. 40) 

 

The efficiency is defined as the ratio between power coefficient Cp and the 

Betz limit, Betz = 16/27 ≈ 0.593. This value was concluded by Albert Betz 

who was a German physicist in 1919, 0.593 is the maximum power efficiency 

of a wind turbine which converts the kinetic energy to mechanical energy,  So 

efficiency 16 27
/

27 16

Cp
Cp


  . Seeing from Figure 2-5, the power loss is big for 

a low tip speed ratio wind turbine, for instance, a running wind turbine can 

only achieve 85% efficiency when the tip speed ratio is 2. The system will 

become more and more efficient if the tip speed ratio is higher. When the tip 

speed ratio reaches to 6, the efficiency is approximate 96%. It indicates that 

wind turbines with high tip speed ratio can extract more kinetic energy from 

wind by comparing with low tip speed ratio wind turbines.  

 
2.2.4 Number of blades 
 

The number of blades greatly influences the HAWT performance. The most 

common formats are two-blade and three-blade machines. Some small 
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HAWTs may have more than 3 blades, and normally they are low speed wind 

turbines. Low speed machine operates with large torque. On the other hand, 

high speed wind turbines have only 2 or 3 blades can hence to achieve similar 

wind energy utilization with low driving torque. 

 

 

2.2.5 Blade element momentum theory (BEM) 
 

With this theory, it is possible to calculate the steady loads and also the thrust 

and power for different settings of wind speed, rotational speed and pitch 

angle. As shown in Figure 2-6, for illustration purpose, the blade is assumed 

to be divided into N sections or elements and the following assumptions are 

made: 

1. Every element is independent; a variation in one element will not affect 

other elements. 

2. The force from the blades is determined individually by the lift and drag of 

the airfoil shape of the blades. 

 

Figure 2-6 Schematic of blade elements; c, airfoil chord length; dr, radial length of 

element; r, rotor radius; Ω, angular velocity of rotor (Manwell, et al., 2002, p107) 

 

In order to get good results when using BEM method, it is necessary to apply 

two important corrections below. (Carcangiu, 2008, p.16) 

The first is called Prandtl‟s tip loss factor, which corrects the assumption of an 

infinite number of blades. The second correction is called Glauert‟s correction 

and is an empirical relation between the thrust coefficient CT and the axial 

induction factor a when value is greater than approximately 0.3. 
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2.2.6 Aerofoil Behavior 

Before introducing the aerofoil behavior, Mach number and Reynolds number 

need to be explained. Mach number is a ratio of speed of an object over 

sound and it is defined as: 

s

c

v
Ma

u


  
        (Equation 2-7) 

Where Ma is mach number, vs is object speed and uc is sound speed. 

Subsonic is defined as 1Mach  , transonic is defined as 1Mach  , supersonic 

is defined as 1Mach  and hypersonic is defined as 5Mach  . 

The Reynolds number is a non-dimensional value and it is a ratio of inertial 

force to viscous force, defined as: 

2
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/
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/
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                (Equation 2-8) 

Aerofoil behaviour can be described into three flow regimes: the attached flow 

regime, the high lift/stall development regime and the flat plate/fully stalled 

regime (Burton, et al., 2001, p.101). In attached flow regime, flow is 

considered at the upper surface of aerofoil, in this situation, lift increases with 

the angle of attack. In high lift/stall development regime, the lift coefficient 

peaks as the airfoil becomes increasingly stalled. Stall occurs when the angle 

of attack exceeds a certain value (depending on the Reynolds number) and 

separation of the boundary layer on the upper surface takes place. It is 

indispensable to study the aerofoil behaviour: aerodynamic performances are 

different because of different geometry of aerofoil, and according to different 

aerofoil‟s behaviour, choosing an applicable aerofoil for wind turbine blade will 

improve the efficiency. 

 

2.2.7 Untwisted and twisted blade 
 

For some modern wind turbines, the blade tips are designed using a thin 

airfoil for high lift to drag ratio, and the root region is designed using a thick 

version of the same airfoil for structural support. The crucial factors for 

choosing airfoil are: maximum lift to drag ratio and low pitch moment. Figure 

2-8 shows that: as one untwisted blade, the stall condition occurs from the 

spanwise station (r/R) is 16%. In order to increase the effective flow velocity at 
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the rotor blade from the blade root to the tip, it is better to twist blades (Hau, 

2006, p.135). Note that in order to achieve the maximum lift and efficiency for 

some long blades, not only the chord length, thickness and twisted angle 

change, but also the shape of airfoil varies along the blade. Manufacturing 

difficulty needs to be taken into account as well. Previously, the most popular 

aerofoil of wind turbine blade was NACA4412 (Figure 2-7), since the lower 

surface of this aerofoil is flat which is easy to manufacture with glass fibre, 

although it does not have a good air performance. Nowadays, many practical 

aerofoils have been designed for different wind turbines such as NREL, DU 

and BE series. 

 

Figure 2-7 NACA4412 aerofoil cross section 

 

Figure 2-8 Contours of vorticity magnitude ξ [1/s] along blade span direction 

(Carcangiu, 2008, p93) 

 

2.2.8 Aerodynamic power control 

Many small wind turbine designs using fixed pitch blades rely on power 

control via aerodynamic stall of the blades. Air separation is obvious under the 
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stall condition which leads to pressure difference between the upper and 

lower surface of an aerofoil to reduce. As a consequence, decrease in lift and 

an increase in drag. In a well designed wind turbine, the output power can be 

kept constant level even if the wind speed increases; this is called passive 

stall control. Commonly, passive stall control on HAWT produces too much 

power at high wind speeds which causes generator damage. In order to 

prevent wind turbine from destruction, the provision of aerodynamic brakes to 

limit overspeed are absolutely mandatory for rotors with fixed blades. Different 

types of aerodynamic brakes are shown below in Figure 2-9: 

 

Figure 2-9 Different types of aerodynamic break (Manwell, et al., 2002, p333) 

 

Recently, many large-scale wind turbines have used power control by rotor 

blade pitching. In principle, power control by changing the aerodynamic angle 

of attack of the rotor which can be achieved by two methods. The 

conventional approach is by adjusting the blade angle of attack to a smaller 

degree in order to reduce power output. Conversely, the power output is 

increased by increasing the angle of attack. The other way is to increase the 

blade pitch angle to a larger angle, up to the critical aerodynamic angle of 

attack, at which point the airflow separates at the surface of the rotor blade, 

thus limiting the aerodynamic input power. 

When the optimum rotational speed is exceeded, the wind turbine with fixed 

pitch blades are used aerofoil stalls at a high angle of attack to reduce the tip 

speed ratio. Differently, Wind turbines with variable pitch blades can change 

the angle of attack by pitching blades which cause rotor aspect ratio to vary. 

The aspect ratio (AR) of wind turbine is defined as (Hau, 2006, p124): 
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2R
AR

S
  

R is the radius of rotor blade and S is the area of rotor blade. The higher the 

AR is, the more the lift and drag of rotor blade will be created. (Hansen, 2008, 

p.95) 

 

 

2.3 Computational fluid dynamics (CFD) 

There are many commercial CFD softwares used in engineering, such as 

PHOENICS (it is the first commercial CFD software), STAR-CD, ANSYS 

FLUENT/CFX and so on. All CFD softwares have three main structures which 

are Pre-Processer, Solver and Post-Processor. 

 

2.3.1 The principle theories relevant to CFD modelling 

No matter what kind of CFD software is, the main processes of simulation are 

the same. Setting up governing equations is the precondition of CFD 

modelling; mass, momentum and energy conservation equation are the three 

basis governing equations. After that, Boundary conditions are decided as 

different flow conditions and a mesh is created. The purpose of meshing 

model is discretized equations and boundary conditions into a single grid. A 

cell is the basic element in structured and unstructured grid. The basic 

elements of two-dimensional unstructured grid are triangular and quadrilateral 

cell. Meanwhile, the rectangular cell is commonly used in structured grid. In 

three-dimensional simulation, tetrahedra and pentahedra cells are commonly 

used unstructured grid and hexahedra cell is used in structured grids. The 

mesh quality is a prerequisite for obtaining the reasonably physical solutions 

and it is a function of the skill of the simulation engineer. The more nodes 

resident in the mesh, the greater the computational time to solve the 

aerodynamic problem concerned, therefore creating an efficient mesh is 

indispensable. Three numerical methods can be used to discretize equations 

which are Finite Different Method (FDM), Finite Element Method (FEM) and 

Finite Volume Method (FVM). FVM is widely used in CFD software such as 

Fluent, CFX, PHOENICS and STAR-CD, to name just a few. Compared with 
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FDM, the advantages of the FVM and FEM are that they are easily formulated 

to allow for unstructured meshes and have a great flexibility so that can apply 

to a variety of geometries. 

 

2.3.2 Turbulent models 

In CFD software, wind turbines are simulated under the turbulent flows. 

Normally, the method of turbulent numerical simulation consists of two main 

parts, which are Direct Numerical Simulation (DNS) and Indirect Numerical 

Simulation (INS). Although DNS has a precise calculated result, but the whole 

range of spatial and temporal scales of the turbulence must be resolved which 

requires a very small time step size, hence this is not suitable for CFD 

simulation. There are three different types of simulated methods under the 

Indirect Numerical Simulation which are large eddy simulation (LES), 

Reynolds-averaged Navier-Stokes (RANS) and detached eddy simulation 

(DES). In order to simulate turbulent flows, theoretically, the computational 

domain should be big enough to contain the biggest eddy. Meanwhile, the 

mesh should be small enough to find out the smallest eddy. But the current 

grid was too coarse to catch the small eddies. Hence large eddy simulation 

(LES) is a technique which filters small eddies while conserving large energy 

eddies. This method requires a more refined mesh than RANS model, but a 

far coarser mesh than DNS solutions. The equation of Reynolds-averaged 

Navier-Stokes (RANS) is defined as:  

' 'ji i
i j

i i j i

UDU UP
u u

Dt X X x x
  

   
            

 (Equation 2-9) 

It is the oldest and most common approach to turbulence modelling; the left 

hand side of the equation describe the change in mean momentum of fluid 

element and the right hand side of the equation is the assumption of mean 

body force and divergence stress. ' '

i ju u  is an unknown term and called 

Reynolds stresses, named after the person who proposed the equation 

(Sahini, 2004, p.47). The RANS equation is not closed due to the presence of 

stress term, so it requires a turbulence model to produce a closed system of 

solvable equation. The turbulence model contains one and two equations 

model. The famous one equation “Spalart-Allmaras” model and two equations 
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“standard k−ε” models are widely used in most CFD softwares. The transport 

equation of Spalart-Allmaras model can be described as: 

2

2

1
( ) ( ) ( )i v b v v

i j j j

v v
v vu G v C Y S

t x x x xv
    



                              

   Equation 2-10 

v  is the turbulent kinematic viscosity, 
vG is the production of turbulent 

viscosity and 
vY  is the destruction of turbulent viscosity. v  and 2bC  are 

constants and v is the molecular kinematic viscosity. 
v

S  is a user-defined 

source term (Fluent 6.3 User‟s Guide 12.3.2, 2006). 

In k−ε model, the first transported variable is turbulent kinetic energy, k. The 

second transported variable in this model is the turbulent dissiation, ε. In 

standard k−ε model, the turbulent kinetic energy k can be described as: 

( ) ( ) t
i k b M k

i j k j

k
k ku P P Y S

t x x x


   



     
         

      

 Equation 2-11 

The turbulent dissiation ε can be described as: 

2

1 3 2( ) ( ) ( )t
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Equation 2-12 

The eddy viscosity is given by: 

2

t

k
C 


 Equation 2-13 

The production of the turbulence kinetic enery is given by: 

2

k tP S  Equation 2-14 

In these equations, kG and bG  are the generation of turbulence kinetic energy. 

MY is the dilatation dissipation term which is the contribution of the fluctuating 

dilatation in compressible turbulence to the overall dissipation rate (Fluent 6.3 

User‟s Guide 12.4.1, 2006). The empirical constants 1C  =1.44, 2C  =1.92, C

=0.09,  =1.3 and k =1.0. In ANSYS-Fluent, S and kS are the user-defined 

terms. 

Hybird LES/RANS approaches, such as detached eddy simulation (DES), 

(Carcangiu, 2008) represent an attractive compromise between computing 
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costs and accuracy. The DES technique has recently been applied on the 

NREL Phase VI wind turbine blade under parked conditions. (Sorensen, et al., 

2004) 

 

2.3.3 Solutions methods 

 Standard k−ε model: it has a nice stability and precision for high 

Reynolds number turbulent flow but it is not suitable for some 

simulation with rotational effect. 

 RNG k−ε model: it can used for low Reynolds number flow, as 

considering the rotational effect, the simulated accuracy will be 

enhanced in rapidly strain flow. 

 Realizable k−ε model: it is more accurate for predicting the speeding 

rate of both planar and round jets but it will produces non-physical 

turbulent viscosities when the simulated model includes both rotating 

and stationary fluid zone (Fluent 6.3 User‟s Guide 12.4, 2006). 

 Standard k-ω model: it contains the low-Reynolds-number effects, 

compressibility and shear flow spreading. It has a good agreement with 

measurements with problems of far wake, mixing layers and plane, 

round, and radial jets. 

 Shear-stress transport (SST) k-ω model: because it absorbs both the 

property of good accuracy in the near-wall region of standard k-ω 

model and nice precision in the far field region of k−ε model (Fluent 6.3 

User‟s Guide 12.5, 2006), it is more accurate and reliable for a wider 

class flow than the standard k-ω model. 

 Reynolds stress model: Abandoning the eddy-viscosity hypothesis, the 

Reynolds stress model (RSM) calculates the Reynolds stresses directly. 

Theatrically, it is much more accurate than k−ε and k-ω model, but five 

additional transport equations in 2D flows and seven additional 

transport equations in 3D flows (Fluent 6.3 User‟s Guide 12.7, 2006) 

seize huge resources in computer and a long simulated time. 
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2.4 HAWT CFD modelling objectives 

Nowadays, CFD modelling has been widely used in wind turbine analysis. In 

2D modelling, it can be used to evaluate the lift, drag and moment value and 

estimate the separation point. Meanwhile, it can be used in 3D simulation to 

determine the design parameters and wind farm optimization. 

1. Try to achieve an accurate lift, drag and momentum coefficient during 

aerofoil simulation is the one of the objectives. The Figure 2-10 shows a 

comparison between 2D DU 93-W-210 aerofoil numerical simulations and 

Delft university wind tunnel test. A reliable result can in fact replace the 

wind tunnel test and reduce the overall testing time needed. Figure 2-10 

shows that CFD software has a nice precision under the angles of attack 

from -10° to 10°. Based on the reliable result, aerofoil can be simulated 

under a wide range of angles of attack (-20° to 90°), in order to observe 

the optimum and critical angle of attack. 

The critical angle of attack is defined as an angle which can produce 

maximum lift, above the critical angle of attack, a stall condition occurs as 

air flow becomes fully separated. This means that when angle of attack 

increases further, wind turbine blade will get into fully stalled regime. 

When wind turbine blades are working on the stall condition, noise will be 

increased significantly and wind turbine vibration may happen. It is 

valuable to investigate the critical angle of attack, because, in principle, 

change the blade pitch angle to the so-called critical aerodynamic angle of 

attack leads the aerofoil into fully stalled position so that limits the 

aerodynamic power output. The optimum angle of attack is where lift to 

drag ratio has the maximum value and it can be found by plotting the lift to 

drag ratio. 
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Figure 2-10 Lift coefficient of DU93 from -10° to 10° 

 

2. Separation point is where the fluid passing over a body separates from the 

surface of the body. It is sometimes followed by reattachment of the flow. 

In ANSYS Fluent, the separation point can be found by observing where 

the wall shear stress vanishes. Stall will begin when the separation point 

has moved forward to the leading edge. The transition point is where 

boundary layer changes from laminar to turbulent. As speed and angle of 

attack increases, the upper surface transition point also tends to move 

forward. In order to capture the point along the chord where the transition 

changes from a laminar to a turbulent boundary layer in ANSYS-Fluent, 

the computational region can be split into laminar flow and turbulent flow 

domains. The disadvantage of this approach is that the accuracy of the 

simulation depends on one‟s ability to accurately guess the transition 

location and a new grid must be generated if someone wants to change 

the transition location. 

3. In three-dimensional simulations, different blade and hub geometries can 

be simulated to evaluate which one has a highest power output. These 

parameters are of the utmost importance for engineers in order to improve 

the performance of wind turbine blades. Mechanical power is the most 

important parameter for performance evaluation and definition is shown in 

Equation 2-15:  

p Q  (Equation 2-15) 
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In steady CFD simulations, a wind turbine has a unique rotational speed, 

so the torque can be calculated when simulated results converge. 

Therefore, the power can be calculated by using the equation above. Two 

approaches have been used in three-dimensional wind turbine 

simulations. One is full scale simulation which put wind turbine (neither the 

ground nor tower is included into the model) into a cylindrical 

computational domain (Carcangiu, 2008, p71). However, this method 

requires large memory inside the computer. In order to simulate models 

using personal computers, the 120 degrees periodicity of the rotor has 

been exploited with computational domain, it only allows to mesh the 

volume around a single blade. The remaining two blades were included in 

the computations using periodic boundary condition. 

4. Onshore wind farms usually consist of a number of horizontal axis wind 

turbines which are mounted with a close space. Various models have 

been developed in the past to estimate the wake effect and optimize the 

sitting of a wind farm (Makridis & Chick, 2009). Computational Fluid 

Dynamics (CFD) has been a useful tool towards the understanding of 

wake behaviour on different terrains such as wind turbine mounted on 

plains and hills. By using CFD code to study the wake interaction, the 

optimum distance between adjacent wind turbines can be predicted in 

different terrains. 

 

2.5 Fluid structure interaction (FSI) 

In order to simulate blade rotational effect, rotational reference frame, sliding 

mesh and dynamic mesh technologies can be used in ANSYS-Fluent which is 

one of the most famous CFD commercial software. The rotational reference 

frame model is used in steady-state solution (FLUENT 6.3 User‟s Guide). For 

wind turbine simulation, it requires the rotational speed to remain constant. 

Sliding mesh model is used in unsteady-state simulation. Normally, it has 

been adopted to solve periodic problem such as rotation wake and flow 

separation, but this approach requires large memory and high performance 

CPU. As the dynamic mesh is based on the moving objects, it can 

automatically rebuild the mesh in the computational domain, hence can be 
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used to solve the unsteady-state problem and will seize a large number of 

computational resources. The precondition of solving fluid structure interaction 

problem is using dynamic mesh. 

 

FSI is the interaction of some movable or deformable structures with an 

internal or surrounding fluid flow. It is the cutting edge of wind turbine 

simulation. Under the interaction of computational fluid dynamics (CFD) and 

computational structure dynamics (CSD), the rotor rotational speed, pressure 

distribution and dynamic stress distribution on the blade can be evaluated in a 

particular wind speed. Normally, ordinary CFD software can simulate wind 

turbine rotation in a steady condition which means the wind speed is constant 

and rotational speed needs to be set up manually, this method requires 

rotational speed to be adjusted with an applicable value, the wind speed and 

wind turbine rotational speed are both independent so that they could not 

affect each other. By using fluid structure interaction technology, wind turbine 

model starts to rotate if an appropriate moment of inertia is given under a 

specified wind speed. Wind speed affects the rotational speed and torque of 

the blades, which can give feedback to flow field simultaneously. The results 

are stable when the iterations of fluid dynamics and structure dynamics 

converge; the simulated result can be used in an aeroelastic analysis. 

 

2.6 Issues in wind turbine simulation using CFD software 

A confident result of aerofoil simulation was achieved in two dimensional 

simulations (section 2.2), but it was difficult to get a reliable results for three 

dimensional simulations. Initially, the air flow passing through a rotating 

HAWT blade is much more complicated than that of a 2D simulation because 

the changing angles of attack vary along the aerofoil span. Moreover, under 

high winds, stall of the system can take place from the root sections. There 

are also centrifugal forces along the blade due to rotor rotation. On the other 

hand, accuracy of simulation is affected because of the limitation of CFD 

software: firstly, no matter what kind of turbulent model is used, it is extremely 

hard to simulate the turbulence in physical reality. Additionally, a fine mesh is 

a prerequisite in order to simulate full scale wind turbines; which are very 
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memory restrictive inside the computer meaning the simulation cannot be 

carried out using personal computers with low configuration. In order to 

reduce the mesh size, normally, neither the tower nor the ground are included 

into the model. Finally, geometry of wind turbine blades is difficult to mesh 

with quality. Most wind turbine blade tips are designed using a thin airfoil for 

low induced drag and the root region is using a thick version for structural 

support, the size difference between tip and root leads to mesh scales difficult 

to control. 
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Chapter 3 Methods 
 

Two-dimensional (2D) aerodynamic models and three-dimensional (3D) wind 

turbine models are explained in this chapter. Different modelling strategies are 

exploited in order to address the accuracy of the modelling presented in this 

and other chapters. 

 

3.1 Two-dimensional aerofoils modelling 

GAMBIT is the pre-processor of ANSYS-Fluent. A simulation model can be 

created in GAMBIT directly or imported from other CAD software packages, 

such as SolidWorks and Pro/Engineer®. In this section, aerofoils DU93-W-

210 and NREL S809 are modelled. 

 

3.1.1 DU93-W-210 modelling 

Figure 3-1 depicts the profile of DU-93-W210 aerofoil, and Figure 3-13 depicts 

the profile of NREL S809 aerofoil. 

Structured and unstructured grids are used in aerofoil modelling for comparing 

the accuracy of the simulation result. In Figure 3-1 and 3-13, the red line is the 

mean camber line and is located at a point halfway between the upper and 

lower surface of the aerofoil. Both Figure 3-1 and 3-13 demonstrate the fact 

that neither geometry is symmetry. This is because of the curvature of mean 

camber line, which allows lift to be generated when the angle of attack is 0°. 

 

Figure 3-1 The profile of DU93-W-210 

To allow the air flow to be fully expanded, the length of computational domain 

using structured grid is determined at 32.5 times that of chord length, and the 

width is determined at 25 times that of chord length, as shown in Figure 3-2. 
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(Note that: c is chord length) 

Figure 3-2 Computational Domain of DU93-W-210 by using structured grid 

 

The mesh consists of 50,000 quadrilateral cells, of which, 300 are on the 

aerofoil. A large number of grids around the aerofoil surface is used to capture 

the pressure gradient accurately at the boundary layer. This is because the 

adverse pressure gradient induces flow separation. Stall will occur when 

separation region extends. In the far-field area, the mesh resolution can 

become progressively coarser since the flow gradients approach zero. The 

meshing overview is shown in Figure 3-3. 

 

Figure 3-3 DU93-W-210 meshing by using structured grid 

In Figure 3-4, close to the aerofoil surface, the most grids should be located 

near the leading and trailing edges since these are critical areas with the 
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steepest gradients. It is better to transit the mesh size smoothly, because the 

large and discontinuous transition may decrease the numerical accuracy. 

 

Figure 3-4 Mesh around DU93-W-210 by using structured grid 

 

With an unstructured grid, the length of computational domain is set at 20 

times that of the chord length and the maximum width is set at 24 times that of 

the chord length, as shown in Figure 3-5. The mesh consists of 147472 

triangular cells, 300 cells are on the aerofoil surface. 

 

 

Figure 3-5 Computational Domain of DU93-W-210 by using unstructured grid 

 

When the identical mesh strategy was used in unstructured grid: close to the 

aerofoil surface, the most grids should be located near the leading and trailing 

edges to capture the pressure and velocity gradient, and use coarser mesh in 

the far-field area. The overviews of unstructured grid are shown in Figure 3-6 

and 3-7. 
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Figure 3-6 DU93-W-210 meshing by using unstructured grid 

 

Figure 3-7 Mesh around DU93-W-210 by using unstructured grid 

 

Pressure far-field boundary condition was used in both meshing methods as 

the computational domain is large enough. Aerofoil is treated as stationary 

wall condition with no slip shear condition. The computational condition is 

seen in Table 3-1: 

Aerofoil DU93-W-210 

Simulation Type Steady Simulation 

Fluid Material Air 

Temperature 300 K 

Kinematic Viscosity 1.4607 10-5 m2/s 

Reynolds Number 1,000,000 

Density 1.2 kg/m3 

Pressure 101325 pa 

Wind Speed 23.8  m/s 
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CFD algorithm SIMPLE (default option) 

Turbulent model Spalart-Allmaras 

Interpolating scheme Pressure (Standard) 

Density (Second Order Upwind) 

Momentum (Second Order 

Upwind) 

Modified Turbulent Viscosity 

(Second Order Upwind) 

Boundary condition Pressure far field 

Stationary wall with no slip shear 

condition 

Table 3-1 Computational conditions of aerofoil simulation 

 

In order to compare the experimental data with the simulation outcome under 

the same testing condition, the Reynolds number was set up as 1,000,000 

and wind speed is 23.8 m/s. By using Equation 2-8, aerofoil chord length can 

be calculated which is 0.61 meter. 

Spalart-Allmaras model will be used for turbulent modelling because it is 

designed specifically for aerospace application, which involves wall-bounded 

flow and has been shown good results for boundary layers subjected to 

adverse pressure gradients. Before running the simulation, lift, drag and 

pitching moment coefficients need to be monitored in ANSYS-Fluent and will 

be used to estimate the convergence of calculation. Lift coefficient is defined 

to be perpendicular to the direction of oncoming airflow; drag coefficient is 

defined to be parallel to the direction of oncoming airflow and the pitching 

moment centre is set at 1/4 chord length from the leading edge. 
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Figure 3-8 The value of lift coefficient 

 

Figure 3-8 is the polar curve of the lift coefficient: the horizontal-axis is the 

value of iteration times and the vertical-axis represents the value of the lift 

coefficient. Initially, the value of lift coefficient was going down, the lowest 

value is 0.71 when the simulation was iterated 500 times. Then, it climbs to 

0.925 and keeps at a stable level after 2500 iterations. This means the 

simulated results are converged. From Figure 3-8 to 3-10, it is obvious that 

the drag and pitching moment coefficients are converged earlier than the lift 

coefficient. 

 

Figure 3-9 The value of drag coefficient 

 

Figure 3-10 The value of moment coefficient 



 

 

28 

 

 

Pressure and velocity distributions can be displayed when the simulations are 

finished. For instance, Figure 3-11 shows the pressure on the lower surface of 

DU93 which is greater than the upper surface when the angle of attack is 3.6°. 

It also shows that the maximum static pressure, which is 300 Pascal, locates 

at the leading and trailing edge areas of the lower surface. The minimum 

static pressure is distributed on the upper surface. As shown in Figure 3-12, 

air flow is attached to the aerofoil and it is obvious to see that the air passes 

through the upper surface, which is faster than the lower surface and the 

maximum air velocity is 34 m/s. 

 

Figure 3-11 Static pressure contour at 3.6°   Figure 3-12 Stream line of x-velocity at 3.6°

  

3.1.2 NREL S809 modelling 

Figure 3-13 is the profile of NREL S809 airfoil. We use the same meshing 

methods for the Modelling the NREL S809. Here the length of computational 

domain for the structured grid was 32.5 times that of chord length and width 

was 25 times the chord length. The mesh consists of 50,000 quadrilateral 

cells, of which 300 are on the aerofoil control surface. For an unstructured 

grid, the length of computational domain was 20 times of chord length and 

maximum width was 24 times that of chord length. The mesh consists of 

147472 triangular cells, 300 cells are on the aerofoil surface. By using 

identical boundary and computational conditions, the pressure and velocity 

distributions were obtained by the software. 
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Figure 3-13 The profile of NREL S809 

 

Figure 3-14 Static pressure contour at 3.6°     Figure 3-15 Stream line of x-velocity at 3.6° 

 

The maximum static pressure on S809 was also 300 Pascal, too, which 

located at the leading and trailing edge area of lower face. But the minimum 

static pressure was smaller than DU93. As a consequence, it can be seen 

from Figure 3-15, the maximum velocity of air was 31 m/s which was slower 

than DU93. 

 

3.2 Aerofoil modelling using structured and unstructured 

grid 

Compared with a structured grid, an unstructured grid has good adaptability 

for simulating models with a complicated boundary condition, and also where 

the mesh density is difficult to control. In order to find out the most accurate 

simulated approach with DU93, both structured and unstructured grids were 

utilized under the identical computational condition. 
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AoA Lift Coefficient 

Experiment 

data 

Structured 

grid 

% error Unstructured 

grid 

% error 

0° 0.485 0.3969 -18.16% 0.42521 -12.33% 

5° 1.072 0.92765 -13.47% 0.92959 -13.28% 

10° 1.337 1.374657 2.81% 1.200537 -12.70% 

Table 3-2 Lift coefficient between structured and unstructured grid 

 

AoA Drag Coefficient 

Experiment 

data 

Structured 

grid 

% error Unstructured 

grid 

% error 

0° 0.00874 0.01245 42.45% 0.003413 -61% 

5° 0.0102 0.017303 69.63% 0.008877 -13% 

10° 0.02223 0.028798 30.00% 0.026864 20.85% 

Table 3-3 Drag Coefficient between structured and unstructured grid 

 

AoA Moment Coefficient 

Experiment 

data 

Structured 

grid 

% error Unstructured 

grid 

% error 

0° -0.1249 -0.10586 -15.24 % -0.11074 -11.33% 

5° -0.132 -0.10261 -22.30 % -0.109658 6.87% 

10° -0.1029 -0.09173 10.90 % -0.083392 -19% 

Table 3-4 Moment Coefficient between structured and unstructured grid 

 

Compared with experimental data, the structured grid shows better results 

under a small angle of attack (Tables 3-2, 3-3, and 3-4). While increasing the 

angle of attack, lift, drag and moment coefficient with both grids begin to 

oscillate, this is because under the high angle of attack, around the trailing 

edge area, vortex shedding occurs periodically. 

 



 

 

31 

 

 

Figure 3-16 Lift coefficient of unstructured grid at 22° 

 

Figure 3-17 Drag coefficient of unstructured grid at 22° 

 

Figure 3-18 Lift coefficient of structured grid at 22° 

 

Figure 3-19 Drag coefficient of structured grid at 22° 

 

Figures 3-16 and 3-17 are the lift and drag coefficients of unstructured grid at 
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22°, Figures 3-18 and 3-19 are the lift and drag coefficients of structured grid 

at 22°. Comparing with unstructured grid, lift and drag coefficient in structured 

grid oscillate considerably. This is because when using a structured grid to 

model the aerofoil, different angles of attack are simulated by changing the 

velocity vector and keeping the aerofoil in a horizontal direction, grid would 

not be aligned with the flow anymore when suffers a high AoA. For the 

unstructured grid, different angles of attack are simulated by pitching the 

aerofoil which likes real wind tunnel testing. In order to reduce the oscillation 

and obtain more reliable results, the structured grid is used for low angles of 

attack (-10° to 10°) and unstructured grid is for angles outside this range. 

 

3.3 Aerofoil CFD modelling using pressure and density-

based solver 

In ANSYS Fluent, the pressure-based solver is suitable for low-speed (Ma<1) 

incompressible flow and density-based solver is mainly used for high-speed 

compressible flows. In the pressure-based approach, pressure and pressure 

correction equations are used for the calculation of pressure fields. In the 

density-based approach, continuity equation is used to obtain the density field. 

The velocity field can be obtained from the momentum equation in both 

solvers (Fluent user‟s guide, 2006). Due to the low Mach number (normally 

Ma≤0.3); density does not change when pressure varies, so air can be treated 

as incompressible flow. By using a structured grid and unified boundary 

condition, the simulation results are shown in Tables 3-5 to 3-7: 

 

AoA Lift Coefficient 

Experiment Density 

Based 

% error Pressure 

Based 

% error 

0° 0.485 0.3969 -18.16% 0.400876 -17.35% 

5° 1.072 0.92765 -13.47% 0.936198 12.67% 

10° 1.337 1.374657 2.81% 1.38703 3.70% 

Table 3-5 Lift coefficient between pressure based and density based solver 
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AoA Drag Coefficient 

Experiment Density 

Based 

% error Pressure 

Based 

% error 

0° 0.00874 0.01245 42.45% 0.011369 30% 

5° 0.102 0.017303 69.63% 0.014942 47% 

10° 0.02223 0.028798 30.00% 0.024751 11.34% 

Table 3-6 Drag coefficient between pressure based and density based solver 

AoA Moment Coefficient 

Experiment Density 

Based 

% error Pressure 

Based 

% error 

0° -0.1249 -0.10586 -15.2 % -0.106715 -14.53% 

5° -0.132 -0.10261 -22.30% -0.104268 -21.00% 

10° -0.1029 -0.09173 -10.90% -0.094409 -8.25% 

Table 3-7 Moment coefficient between pressure based and density based solver 

It can be seen from Tables 3-5 to Table 3-7 that pressure based solvers is 

more reliable than density based solver, especially for calculations of drag 

coefficient. For both solvers, the simulated results are closer to the 

experimental data when AoA increases. The comparisons of different solvers 

and meshing strategies imply that, the final approach of 2D simulation is using 

pressure based solver and structured grid to simulated aerofoil in small angles 

of attack (-10°≤AoA≤10°), beyond this range, an unstructured grid will be 

implemented. 

 

3.4 Three-dimensional wind turbine modelling 
 

Basic parameters 

Power P / W 9518 

Wind velocity m/s 8.8 

Number of blades z 3 

Optimal Tip speed ratio Lambda 8 

Air density kg/m^3 1.2 

Radius of the rotor R / m 4.5 

Generator RPM rpm 150 

Aerofoil  DU93W210 

Table 3-8 Basic parameters of rotor blade 
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Table 3-8 shows the basic parameters of wind turbine, this wind turbine 

consists of 3 blades and optimal tip speed ratio is 8, the nominal rotational 

speed is 150 rpm when wind speed has reached to 8.8 m/s, under this 

condition, the power output of generator is 9518 w. 

 

Figure 3-20 Original blade with rectangular tip 

 

The original blade wingspan is 4.5 m and DU93 is used as the aerofoil of this 

blade. Chord length of the blade tip is 0.097 m and while root is 0.421 m; 

twisted angle varies along the wingspan. This blade is shown in Figure 3-20. 

 

Figure 3-21 Original blade with tapered tip 

 

Figure 3-21 is the original blade with tapered tip, the blade tip is sharper than 

rectangular tip, and the aerodynamic noise can be reduced by using this 

design. The performance of noise reduction for those two tips will compare in 

the following chapter. 

 

Figure 3-22 New blade with innovated root 

 

The innovated root blade is formed by remaining the twisted angle of original 

blade, but only extending the chord length of root to 0.6 m. it can be seen in 

Figure 3-22. 
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Figure 3-23 Wind turbine with original blades (rectangular tip) 

 

Figure 3-24 Wind turbine with original blades (tapered tip) 

 

Wind turbine consists of 3 blades and 1 hub, seeing from Figures 3-23 and 3-

24, original rotor blades with rectangular and tapered tip use the same hub 

which the length is 0.8 m and diameter is 0.6 m. 
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Figure 3-25 Wind turbine with new blade (new hub and rectangular tip) 

 

Comparing with original blade, the new blade has a bigger root area; hub 

needs to redesign in order to content the root area. The length of hub is 1.1 m 

and diameter is 0.84 m. All rotor blades and wind turbine models were 

modelled using Solidworks 2009. After that, the wind turbine model was 

imported to GAMBIT once modelled in Solidworks. In Chapter 4; using the 

same meshing approach, different geometry of blade roots and tips will be 

compared under the different wind for predicting the power output. 

 

 

Figure 3-26 Computational domain of wind turbine simulation 
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The computational domain was designed as a conical shape to reduce the 

model size; it was extended in the axial direction about 2 diameters upstream 

and 15 diameters downstream of the rotor (Figure 3-26). This was to make 

sure the air flow could be fully extended. The radius of inlet is 2 times that of 

rotor blade and the radius of outlet is 4 times that of blade. The blockage ratio 

is difeined as 
h

H
  , where h is the diameter of wind turbine and H is the 

height of computational domain. Blockage will cause flow characteristics to 

differ from those expected in full scale situations without wall constraints 

(Cheung and Melbourne, 1980). So in the wind tunnel test or CFD simulation, 

a smaller blockage ratio means it is closer to the field testing. Carlo (2008, p. 

36) states in the plane of the rotor, the height of computational domain was 

five times that of the rotor which means the blockage ratio is 20%. 

Considering the configuration of computer, the blockage ratio is increased to 

33% for this wind turbine simulation. The boundary condition was set up as 

velocity inlet. Pressure outlet and wind turbine was treated as wall condition. 

Wind turbine rotational effect can be simulated by using sliding mesh. 

 

Figure 3-27 Wind turbine meshing by using unstructured grid 

 

The air flow passing through a rotating and twisted HAWT blade is much more 

complicated due to the angles of attack varying along the aerofoil span. In 

order to reduce the meshing difficulty, an unstructured grid was used to mesh 
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the wind turbine as it has a nice adaptability. A structured grid was used to 

mesh the remaining of the computational domain as it has a nice meshing 

quality. Figure 3-27 shows that unstructured grids are located in rotational 

area and structure grids are utilized beyond that range. Moreover, in order to 

improve the accuracy of simulation, the mesh size is small and intensive 

around the wind turbine. 

 

 

Figure 3-28 Blade section meshing by using unstructured grid 

 

Figure 3-28 shows that the mesh is denser near the wind turbine and gets 

coarser when the mesh approaches towards the boundaries. This meshing 

approach is able to capture the boundary layer near the wind turbine 

(Digraskar, 2010, p.31). 
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Figure 3-29 Wind turbine with original blades meshing (rectangular tip) 

 

 

Figure 3-30 Wind turbine with original blades meshing (tapered tip) 

 

Figure 3-31 Wind turbine with innovated root meshing (new hub and rectangular tip) 



 

 

40 

 

 

Figures 3-29, 3-30 and 3-31 are the surface meshing of the wind turbine 

rotors, in order to capture vortices wake, many cells were assigned around 

the blade tips. After finishing the meshing process, wind turbine mesh was 

imported to ANSYS-Fluent and the boundary condition is seen below: 

Blade 10kW@8.8m/s wind turbine 

blade design using DU93W210 

aerofoil 

Simulation Type Transient Simulation 

Fluid Material Air 

Flow Type Incompressible flow 

Temperature 300 K 

Kinematic Viscosity 1.4607 10-5 m2/s 

Pressure 101325 pa 

Wind Speed 2.4~18  m/s 

Pitch Angle 4.75° 

CFD algorithm SIMPLE 

Turbulent model SST k-ω 

Interpolating scheme Pressure (Standard) 

Density (Second Order Upwind) 

Momentum (Second Order 

Upwind) 

Modified Turbulent Viscosity 

(Second Order Upwind) 

Boundary condition Velocity Inlet and Pressure Outlet 

Moving wall with no slip shear 

condition 

Mesh cells 5804232 

Table 3-9 Computational conditions of three-dimensional simulation 

 

In Ansys-Fluent, Pressure-based solver and transient solution were used for 

wind turbine modelling. SST k-ω model was used because Carcangiu (2008, 

p.26) states that it includes a number of features that make it more accurate 
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and reliable for a wider class flows (e.g., adverse pressure gradient flows and 

aerofoil). When simulation is over, torque (Figure 3-32) and thrust can be 

displayed and mechanical power will be calculated by using the value of 

torque. 

 

Figure 3-32 Torque calculation by using ANSYS-Fluent with 8.8 m/s wind speed 

An appropriate step size is indispensable in achieving different simulated 

purposes for three-dimensional models. Using larger time step is acceptable, 

if a steady state solution wants to be obtained to calculate the torque and 

thrust of wind turbine. Small time step size will be used when transient 

solution is desired, for instance vortex shedding and wind turbine wake. The 

smaller the time step, then, the more detail of the flow will be obtained. Also, if 

simulated model is not encountering high velocities, then using segregated 

solver will definitely improve speed of computation. Four different time step 

sizes which are 0.01, 0.005, 0.002 and 0.001s were used for comparison in 

order to test how they influence the simulated result. Because the rated 

rotational speed is 150 rpm when wind speed is 8.8 m/s, a complete 

revolution takes 0.4s which means 40, 80, 200 and 400 time steps will take 

when time step sizes were 0.01, 0.005, 0.002 and 0.001s. 

Time step 

size (s) 

Simulated 

torque (n-m) 

 

Theoretical 

torque (n-

m) 

Error % Time step Simulation 

time 

0.01 1112.4054 739.90 50.88% 40 3 hours 

0.005 747.4973 739.90 1.08% 80 7  hours 

0.002 720.12349 739.90 -2.57% 200 18 hours 

0.001 727.08632 739.90 -1.73% 400 40 hours 

Table 3-10 Comparison of different time step size 
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The theoretical torque was calculated by using BEM theory. In order to 

simplify the model, the tip loss factor was not taken into account. seeing from 

Table 3-10, it is obvious that a big time step size leads a coarse result but a 

short time to simulate. It will take a long time to calculate if the time step size 

is too small, although a nice simulated result can be obtained. Several cases 

need to be calculated for predicting the wind turbine output power, in order to 

save time, using 0.005s as a fixed time step size. 

 

3.5 Three-dimensional wind turbine noise Modelling using 

Gambit and ANSYS Fluent 

The computational domain was designed as cylindrical shaped (Figure 3-33), 

extending in the axial direction about 7.5 diameters upstream and 15 

diameters downstream of the rotor to make sure the air flow can be fully 

extended. In the plane of inlet and outlet, the radius of domain is 1.5 times of 

rotor blade. In order to predict the aerodynamic noise, two approaches are 

used in ANSYS-Fluent (Fluent 6.3 User‟s Guide, 2006); using the Flowcs 

Williams and Hawkings Model for predictions of near- to far-field noise and 

using broadband noise source method for predicting aerodynamic noise of the 

wind turbine. 

 

Figure 3-33 Computational domain of noise prediction 
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Figure 3-34 Wind turbine meshing 

 

3.5.1 Using Fflows Williams and Hawkings acoustic model to predict 

the near- to far field noise 

The procedure for computing sound using the FW-H (Ffowcs Williams and 

Hawkings) acoustics model in ANSYS-Fluent consists of two steps. In the first 

step, a time-accurate flow solution is generated, so the relevant variables 

(e.g., pressure, velocity and density) on the selected source surface are 

obtained (ANSYS-Fluent 6.3 User‟s Guide). In the second step, sound 

pressure signals which are set by the users are computed using the source 

data. FW-H acoustics model requires a statistically steady transient solution, 

this means that the unsteady flow which includes the major flow variable, has 

become fully developed so that its statistics do not change with time. In this 

model, the LES turbulence model is recommended for aeroacoustic 

simulations because it resolves all eddies with scales larger than the grid 

scale (Modelling Flow-Induced Noise Problems Using Fluent) and resolves 

the noise generating eddies over a wide range of length scales in engineering 

application. Therefore, wide band aeroacoustic noise can be predicted using 

LES simulation. 
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Blade 10kW@8.8m/s wind turbine 

blade design using DU93W210 

aerofoil 

Simulation Type Transient Simulation 

Fluid Material Air 

Flow Type Incompressible flow 

Temperature 300 K 

Kinematic Viscosity 1.4607 10-5 m2/s 

Pressure 101325 pa 

Wind Speed 3.5m/s, 6m/s and 8.8m/s 

Pitch Angle 4.75° 

CFD algorithm SIMPLE 

Turbulent model LES  

Interpolating scheme Pressure (Standard) 

Momentum (Second Order 

Upwind) 

Boundary condition Velocity Inlet and Pressure Outlet 

Moving wall with no slip shear 

condition 

Mesh cells 5348232 

Table 3-11 Computational conditions of near- to far-filed aerodynamic noise predicting 

 

 

Figure 3-35 Locations of 5 acoustic receivers 
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Setting wind turbine as acoustic sources and specifying 5 acoustic receivers 

to predict the noise from near-to far-field when using FW-H acoustic model. 

The location of receivers can be seen from Figure 3-35 and distance between 

wind turbine and 5 receivers separately are 134m, 90m, 45m, 0m and -70m. 

In order to make sure enough simulation time will get a statistically steady 

transient solution, 1000 time steps with 0.005 time step size was chosen in 

this simulation and computational condition can be seen from Table 3-11. 

 

 

Figure 3-36 Sound pressure level of one acoustic receiver 

 

When the simulation is completed, every receiver can be used with Fast 

Fourier Transform (FFT) analysis to interpret the spectral distribution of sound 

pressure level, the value of aerodynamics noise can be displayed in the 

console panel in ANSYS-Fluent (Figure 3-36). 

 

3.5.2 Using broadband noise source method for predicting 
aerodynamic noise of wind turbine 

 

Unlike the FW-H integral method, the broadband noise source models do not 

require transient solution and the typical RANS models can be used in this 
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model. Therefore, the use of broadband noise source models requires the 

least computational resources. 

In steady state simulation, using Moving Reference Frame (MRF) to model 

wind turbine rotation and using the same computational domain and boundary 

condition in Table 3-11 to predict the wind turbine aerodynamic noise, 1000 

interactions make sure the result is converged. Two different tip designs 

(Figure 3-37 and Figure 3-38) are tested under the wind speeds are 3.5m/s, 

6m/s and 8.8m/s. 

 

Figure 3-37 Tapered tip                                               Figure 3-38 Rectangular tip 
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Chapter 4 Results and Discussions 

In this chapter, aerodynamic analysis of aerofoils and rotor blades will be 

conducted in two-dimensional simulation using ANSYS Fluent. DU93-W-210 

and NREL S809 aerofoils will be compared in order to find out which one has 

a better aerodynamic performance. In three-dimensional simulation, different 

blade geometries will be compared for predicting the rotor power and 

operation noise. 

 

4.1 Aerodynamic performance evaluation of NREL S809 and 

DU93-W- 210 aerofoils 

Lift and drag coefficients are the crucial values for aerodynamic performance 

evaluation. The critical and optimum attack angles can be estimated by 

plotting the lift and drag coefficient polar curves. 

 

4.1.1 Aerodynamic performance evaluation of DU93-W- 210 aerofoil 

 

Simulated results need to be verified with experimental data before 

implementing the evaluation of aerodynamic performance. From -10° to 10°, 

the lift and drag coefficients are shown below. 

 

 

Figure 4-1 DU93 comparison of lift coefficient between experiment and Fluent 
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Figure 4-1 shows ANSYS Fluent simulation is fairly accurate when calculating 

the lift coefficient of DU93 from -10° to 10°. From -3.1° to -4.1°, the simulated 

results are 35% to 45% lower than the Delft university wind tunnel test. The 

biggest error occurs at -4.6°, where the simulated lift coefficient is 45.37% 

lower than the experimental value. Beyond that range, errors of lift coefficient 

can be controlled less than 25%. Figure 4-1 also indicates that, from -10° to 

10°, lift coefficient of DU93 increases when the angle of attack increases. 

 

 

Figure 4-2 DU93 comparison of drag coefficient between experiment and Fluent 

 

Figure 4-2 shows the corrections between the simulation and experiment are 

poorer by using structured grid when compares the modelling and Delft 

university wind tunnel test with regards to the drag coefficient. The simulated 

drag coefficients are 30% to 85% higher than the experimental results. This is 

due to the fact that the values of drag coefficient are very small from -10° to 

10°, ANSYS-Fluent may not have a good ability to predict it precisely at low 

angles of attack. 

It is interesting to observe from Figures 4-1 and 4-2 that: for most angles of 

attack, the simulated lift coefficients are smaller than experimental data; 

conversely, simulated drag coefficients are bigger than experiments. Wolfe 

and Ochs (1997) stated the overprediction of lift and drag coefficient is due to 

the actual aerofoil having laminar flow over forward half, but in the CFD 
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modelling, simulations are running under the fully turbulent model which may 

influence the prediction of lift and drag coefficient. 

 

 

4.1.2 Aerodynamic performance evaluation of NREL S809 aerofoils 
 

From -20° to 26°, the comparison between calculated and experimental data 

can be plotted by using the S809 experimental data from OSU (Ohio State 

University- USA). 

 

Figure 4-3 S809 comparison of lift coefficient between experiment and Fluent 

The biggest error occurs at 0° where simulated lift coefficient is 51.61% higher 

than the experimental value. Beyond this point, errors can be limited less than 

35%, and the smallest error occurs at 4°, where simulated result is 0.74% 

lower than the experimental value. 
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Figure 4-4 S809 comparison of drag coefficient between experiment and Fluent  

In Figure 4-4, ANSYS-Fluent shows fair correlation with OSU values. 

However, the error is quiet big at small angles of attack. From 0° to 8°, the 

simulated results are 145% to 413% higher than the experimental values. The 

biggest error occurs at 0° where simulated result is 413.55% higher than 

experiment. Firstly, the major error may be caused by the very low 

experimental drag coefficient at that range. OSU values indicate that the drag 

coefficient is 0.0022 when angle of attack is 0°, and for ANSYS-Fluent, it is 

difficult to capture such a precise value during the simulation. Secondly, this 

may be due to the defining coordinates give insufficient definition of the S809 

aerofoil. This is because DU93 aerofoil consists of 200 coordinates and most 

of them are used for defining the leading and trailing edge. Comparing this 

with DU93 aerofoil; only 50 coordinates were used to define the profile of 

S809 aerofoil which leads to inaccuracies in the leading edge radius. The 

inaccurate aerofoil profile may influence the drag prediction and larger errors 

may occur at some angles of attack which have a low drag coefficient. 

Beyond that range of angles of attack, errors of drag coefficient can be 

controlled to be less than 85%. 

 

 

4.2 Aerodynamic performance comparison between NREL 

S809 and DU93-W- 210 

Based on previous results, aerofoils were simulated between a wide range of 

angles of attack (-20° to 90°) to observe the optimum and critical angle of 

attack. The critical angle of attack is defined as the angle of attack which 

produces maximum lift. Below the critical angle of attack, lift increases when 

angle of attack increases. 
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Figure 4-5 Comparison of lift coefficient between S809 and DU93 

 

Figure 4-5 shows that for both aerofoils, lift coefficient is negative at -20°, and 

then it is increased due to the AoA increasing. The lift coefficient is zero when 

angles of attack are at -3.6° and -0.5° for the DU93 and S809 aerofoils, 

respectively. Lift coefficient keeps growing until it reaches to the critical angle 

of attack. The critical angles of attack are 14° of the S809 aerofoil and 16° of 

the DU93 aerofoil, respectively. Beyond this angle, the polar curve of lift 

coefficient has an obvious drop. When the AoA increases, aerofoils begin to 

stall. Moreover, if wind turbine blades are still in this stall condition, noise is 

increased significantly and wind turbine vibration occurs. After a sharp 

decline, the lift coefficients of both aerofoils raise again. After 45° for the 

DU93 aerofoil and 50° for the S809 aerofoil, the lift coefficient drops down all 

the way. 

It is obvious that DU93 aerofoil always has a higher lift coefficient and lower 

drag coefficient than S809 under the same AoA. This is because a high 

curvature of mean camber line leads an increased airflow on upper face, so 

under the same AoA, DU93 aerofoil has a higher lift coefficient than the S809 

aerofoil. 
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Figure 4-6 Comparison of drag coefficient between S809 and DU93 

Figure 4-6 shows when the angle of attack is increased from -20° to 0°, the 

drag coefficient of both aerofoils decreases. Thereafter, the values increase 

as the AoA increases in positive direction. For both aerofoils, the minimum 

drag coefficient of both aerofoil is nearly zero when the angle of attack is 0°. 

From 15°, the value increases significantly. The maximum drag coefficient for 

S809 is 2.665 and DU93 is 2.47, it also happens at the same angle of attack 

which is 90°. 

Figure 4-6 shows that from -10° to 15°, the drag coefficient maintains in a low 

value level before it rises dramatically. At the same time, before aerofoil gets 

into the stall condition, the lift coefficient always maintains a high value where 

the optimal angle of attack can be found by plotting the lift to drag ratio. 

 

Figure 4-7 Relationship between lift to drag ratio and angle of attack 
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The optimal angle of attack is where CL/CD (lift and drag coefficient) has the 

maximum value. Figure 4-7 shows the optimal AoA of the DU93 aerofoil is 

7.2° where lift to drag ratio is 54.62 and the S809 aerofoil is 6° where lift to 

drag ratio is 43.17. Comparing the two polar curves in Figure 4-7, the region 

of high lift to drag ratio of the DU93 aerofoil is wider than the S809 aerofoil, 

which means high lift can be generated in a wider range of angles of attack, 

and for wind turbine blades (especially a stalled control blade), it can delay 

stall and produce a high wind energy utilization coefficient. 

In order to compare the stall performance, two aerofoils were mounted at the 

same angle of attack to see which one has a earlier air separation than the 

other.  The simulated angles of attack were -10°, 0°, 10°, 14° and 30°. 

 

Figure 4-8 S809 pressure contour at -10°      Figure 4-9 DU93 pressure contour at -10° 

 

Figures 4-8 and 4-9 show when AoA is as low as -10°, air flow becomes 

separated on the lower surface near the trailing edge of the S809 aerofoil, but 

it still attaches to the surface of the DU93 aerofoil. The maximum pressure 

locats near the leading edge of upper face on both aerofoils. 
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Figure 4-10 S809 pressure contour at 0°       Figure 4-11 DU93 pressure contour at 0° 

 

Figures 4-10 and 4-11 show when AoA is 0°, the air flow attaches to both 

aerofoil surfaces and the maximum pressure is located at the leading and 

trailing edges. 

 

Figure 4-12 S809 pressure contour at 10°    Figure 4-13 DU93 pressure contour at 10° 

 

Figures 4-12 and 4-13 show when AoA is pitched to 10°, the separation point 

occurs at the trailing edge of the S809 aerofoil but air flow is still attached to 

the surface of the DU93 aerofoil. Comparing this with Figures 4-8 and 4-9, the 

maximum pressure point moves to near the leading edge of lower face on 

both aerofoils. 

 



 

 

55 

 

 

Figure 4-14 S809 pressure contour at 14°    Figure 4-15 DU93 pressure contour at 14° 

 

Figures 4-14 and 4-15 show when  AoA is increased to 14°, the separation 

point in the S809 aerofoil moves forward to the leading edge, at the same 

time; vortex shedding happens on the trailing edge. In contrast, on the trailing 

edge of the DU93 aerofoil only separated flow occurs. 

 

Figure 4-16 S809 pressure contour at 30°     Figure 4-17 DU93 pressure contour at 30° 

 

Figures 4-16 and 4-17 shows vortex shedding occurs near the leading edge at 

30°. This leads the air flow not to be attached to the upper face of the 

aerofoils anymore. Aerofoils have already reached the stall condition at this 

angle. From Figure 4-8 to 4-17, it is clear to see the air flow separation on the 

DU93 aerofoil is slower than the S809 aerofoil. 
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In AYSYS-Fluent, separation point can be found by showing the wall shear 

stress. It takes place when airflow on the surface leaves the aerofoil. 

 

Figure 4-18 Wall shear stress of DU93 at 10° 

 

Figure 4-18 shows that the separation point takes place when wall shear 

stress vanishes.  Moreover, when the angle of attack is 10°, separation point 

occurs on the upper face of the aerofoil and locates at approximately 80% 

chord length from leading edge. 

 

Figure 4-19 Wall shear stress of DU93 at -14° 

 

Conversely, it occurs on the lower face when angle of attack is negative, 

Figure 4-19 shows when the angle of attack is -14°, separation point locates 

at approximately 50% chord length from leading edge. 

Figures 4-18 and 4-19 indicate that the separation point changes with the 

variation of angle of attack. Based on this point, separation points on DU93 
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aerofoil and S809 aerofoil can be compared to see which one has a better 

stall performance. 

 

Figure 4-20 Separation point locations of S809 and DU93 

 

Figure 4-20 shows the locations of the separation point on S809 and DU93 

aerofoil, respectively. It occurs on the lower face when AoA is negative and on 

the upper face when AoA is positive. When the angle of attack is positive, the 

airflow separation occurs at 8° on both aerofoils. From 14° to 16°, the 

separation point move rapidly on both aerofoils. At 14°, separation point 

locates at the upper face and 80% chord length of the DU93 aerofoil. It also 

locates at the upper face but 48% chord length of the S809 aerofoil. At 16°, 

separation point moves forward from 80% to 60% chord length on the DU93 

aerofoil and from 48% to 34% chord length of the S809 aerofoil. Based on the 

prediction of lift coefficient, it is known that both aerofoils get into the stall 

condition at 16°, so under this condition; not only the lift coefficient drops 

dramatically but also the airflow separation points moves significantly. When 

the AoA is 30°, the separation point locates at approximately 10% chord 

length of the S809 aerofoil but 24% chord length of the DU93 aerofoil. 

However, when the angle of attack is negative, separation point occurs at -5° 
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on S809 but -8° on DU93, when AoA is -20°, separation point moves to 

approximately 10% of the chord length on the S809 aerofoil and 22% on the 

DU93 aerofoil. 

By observing the airflow pass these aerofoils, it is clear to see DU93 has a 

better stall performance by comparing than the S809 aerofoil, because the 

stall condition will begin when the separation point is moving forward to the 

leading edge. Figure 4-20 shows the separation point on the DU93 aerofoil 

moves slower than the S809 aerofoil, so the critical angle of attack of DU93 

aerofoil is higher than S809 aerofoil. 

 

4.3 Wind turbine power output prediction 

There is a power loss when the mechanical power transfers to the generator 

power. Mechanical power can be calculated by using the equation from 

ANNEX XIV report (Thumthae and Chitsomboom (2006, p.2): 

0.78Generator MechanicalP P
                                  (Equation 4-1)

 

Duque N.P., et.al (2000) found that this equation is not perfectly correct. They 

proposed a new correlation which is:
 

0.9036 0.847Generator MechanicalP P 
              (Equation 4-2) 

Compared with original correction, the better accuracy has been proved with 

Thumthae and Chitsomboom (2006, p.3). The nominal generator power of the 

simulated wind turbine is 10 kW, in order to keep it in a stable value, 

mechanical power should be limited between the ranges of 11.5 kW to 12 kW. 

 

To validate the numerical model, the overall performances of wind turbine are 

computed and compared to BEM theoretical calculations. Figure 4-21 and 

Figure 4-22 show the torque and mechanical power as a function of the wind 

velocity. 
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Figure 4-21 Torque errors between theory and ANSYS-Fluent for different wind speed 

 

 

Figure 4-22 Mechanical power comparisons between theory and CFD calculations 

under different wind speeds 

 

ANSYS-Fluent has a good correlation with theoretical value for different wind 

velocities. The mechanical power is increased dramatically while wind speed 

changes from 8 to 8.8 m/s. When wind velocity reaches 9.5 m/s, theoretical 

mechanical power is 14.56 kW. By using Equation 4-2, the generator output 

power would be 12.31 kW. High rotational speeds and output power may lead 

to a high temperature in the generator. It may catch fire when the generator 

runs with a high rotational speed for a long time. The efficient way to control 

the output power is reducing the rotational speed of blade. 
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Table 4-1 Tip speed ratio variations 

 

It is clear to see from Table 4-1; under the same wind speed, torque is 

reduced by decreasing the tip speed ratio. Hence, tip speed ratio variations 

can be used to change the rotor output power and thereby the rotor torque. 

According to Equation 2-7, torque and rotational speed have an inverse 

relationship under a fixed mechanical power; decreasing the rotational speed 

will keep a constant output power. In order to predict the wind turbine output 

power, simulation is carried out under a wide wind speed range (from 3 to 18 

m/s). 

 

Figure 4-23 Diagram of mechanical power and rotational speed 

 

Based on Equation 2-4, before nominal wind speed, rotational speed of rotor 

blade has to increase in order to maintain the constant tip speed ratio. Figure 

4-23 indicates that the maximum rotational speed is 150 rpm when wind 

speed is 8.8 m/s, after that, a reasonable decrease of rotational speed can 

retain the 12 kW power output. The minimum rotational speed is 40 rpm when 

wind speed is 18 m/s. 
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Figure 4-24 Diagram of mechanical power and tip speed ratio 

 

Figure 4-24 shows the diagram of mechanical power and tip speed ratio. 

Before it reaches to the rated wind speed (8.8 m/s), the mechanical power 

increases as the wind speed increases. The tip speed ratio is kept constant at 

8. After that, the decrease of rotational speed leads a declination of tip speed 

ratio curve. The minimum tip speed ratio is 1.1 when wind speed is 18 m/s. 

 

Figure 4-25 Diagram of power and torque 

 

Figure 4-25 shows although the mechanical power can be kept constantly 

when wind speed exceeds over 8.8 m/s, yet the torque is still increasing. This 

phenomenon can be explained by using Equation 2- 15: in order to achieve a 

stable power output, the decrease of rotational speed leads the increase of 

torque. 
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The power coefficient Cp (Equation 4-3) is one of the crucial factors in wind 

turbine design; a high power coefficient means wind turbine can extract more 

energy from the wind (R.Lanzafame and M.Messina, 2006). 

3 21

2

p

P
C

Vo R 

        (Equation 4-3) (Varol, et al., 2001) 

 

Figure 4-26 Diagram of mechanical power and power coefficient 

 

Figure 4-26 shows the maximum power coefficient is 0.439 where the wind 

speed is 8.8 m/s, the power coefficient drops dramatically once the tip speed 

ratio decreases. When wind speed reaches to 18 m/s, the value of power 

coefficient is only 0.053 

 

4.4 Rotational effect of wind turbine with original blade 

As the wind turbine rotates, vortexes shed from hub and blade tips which form 

a helical vortex wake; the spin in the wake is opposite to the torque of the 

rotor in order to maintain the angular momentum (Hau, 2006, p.105). Tip and 

hub losses will occur when the wake happens, so the power coefficient of the 

turbine must be smaller than the Betz limit. In general, the extra kinetic energy 

in the wind turbine wake will be higher if the generated torque is higher 

(Manwel el al., 2002, p.89), so with the same output power, wind turbine with 

high tip speed ratio can extract more kinetic energy from wind comparing with 

low tip speed ratio wind turbine and this phenomenon is shown in Table 4-2. 
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Table 4-2 Glanert’s comparison of the computed optimum power coefficient including 

wake rotation with the Betz limit 

 

Table 4-2 indicates that when the tip speed ratio is increased, the power 

coefficient approaches to the Betz limit. What‟s more, the power loss is small 

when tip speed ratio reaches to 5. 

The expansion of the wake behind a wind turbine can be described as: 

/2 1/

0( )n n

xD k s D    (Equation 4-4) (Méchali, et al., 2004) 

Where 0/s x D , the solution for n has been suggested as 3 by e.g. 

Schlichting (1968), k is the decay constant, according to the Wind Atlas 

Analysis and Application Program (WAsP)‟s experience, the default value k = 

0.075 is reasonable in most land-cases, for off-shore cases, WAsP 

recommend to use a lower limit of k = 0.04.   is the initial wake expansion 

and described as: 

0.5 (1 1 )

1

T
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    (Equation 4-5) 
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Wind speed 
(m/s) 

x 
(m) 

Dx 
(m) 

Wind speed 
(m/s) 

x 
(m) 

Dx 
(m) 

 
 
 
 
3.5 

10 10.55  
 
 
 
8.8 

10 10.79 
20 10.73 20 10.99 
30 10.95 30 11.18 
40 11.41 40 11.36 
50 11.33 50 11.54 
60 11.51 60 11.71 
70 11.68 70 11.88 
80 11.85 80 12.04 
90 12.01 90 12.20 
100 12.17 100 12.36 

(Note that: x is downwind horizontal distance between the wind turbine, Dx is wake diameter 

on the downwind horizontal distance between the wind turbines) 

Table 4-3  wake expansion under the different wind speeds 

 

The wake expansion can be calculated by using Equation 4-4, Table 4-3 

shows that wake diameter is proportional to the downwind distance between 

the wind turbine. When the downwind distance between wind turbine is 100 

m, the wake diameter is 12.17 m at 3.5 m/s. Meanwhile, the wake diameter is 

12.36 m at 8.8 m/s. 

 

Figure 4-27 Contour of axial velocity in wind turbine rotational plane at 8.8 m/s wind 

speed 
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Figure 4-27 shows the leading edge has a high axial velocity when rotor 

blades begin to rotate. Meanwhile, a low axial velocity is located behind the 

trailing edge. The wake cylinder is formed once the wind turbine blades rotate. 

 

Figure 4-28 Wind turbine wake at 3.5 m/s         Figure 4-29 Wind turbine wake at 6 m/s 
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Figure 4-30 Wind turbine wake at 8.8 m/s 

 

Figure 4-28 is the wind turbine wake at 3.5 m/s. it shows that in the wake 

region, the axial velocity is smaller than the ambient environment. The 

minimum axial velocity is located behind the hub which is the blue area. Far 

behind the wind turbine, the axial velocity in wind turbine wake is increased 

and becomes equal to the ambient velocity. Figure 4-29 is the wind turbine 

wake at 6 m/s. The wind turbine wake has a longer and wider low velocity 

region in comparison to Figure 4-28. Figure 4-30 is the wind turbine wake at 

8.8 m/s, the wake expansion is more obvious than previous two figures. Three 

figures indicate that when wind speed increases, high rotational speed leads a 

longer wind turbine wake and more distinct velocity drop. 
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In a wind farm, if wind turbines are placed close to each other, then the wake 

interaction will cause a number of consequences: firstly, due to the 

decreasing of wind speed in wake, the output power of subsequent wind 

turbine will be reduced.  Méchali, et al. (2007) demonstrate if wind turbines 

are placed in a row, the largest relative power drop is from the first turbine to 

the second turbine, which the second turbine may lose 20% to 30% output 

power. Secondly, the turbulence in the rotor wake increases causing 

turbulence loading on the downwind turbines which will consequently cause 

the material fatigue (Hau, 2006, p.117) and reduces the life time of the wind 

turbine. 

 

Figure 4-31 Streamline on suction side of blade at 3.5 m/s wind speed 

 

Figure 4-32 Streamline on suction side of blade at 6 m/s wind speed 

 

Figure 4-33 Streamline on suction side of blade at 8.8 m/s wind speed 

 

A depiction of air flow on the blade surface is given by plotting the streamlines. 

Figures 4-31, 4-32 and 4-33 show the air flow can align with the blade under a 

low wind speeds. Air flow can attach the blade when wind speed are 3.5 and 

6 m/s. Then, when wind speed reaches to 8.8 m/s, the air separation occurs 

from the root area and extends to the middle section of the blade. A 

separation line can be seen in Figure 4-33, but air flow still attaches to the 

blade outward section. 
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4.5 Comparisons of different blade geometries 

The inspiration of innovated root design comes from Enercon E-70 (Figure 4-

34) (71 m rotor diameter), which can produce 2300 kW power output under 

the nominal wind speeds. Rohden (2004) stated this new blade generates an 

increased yield of 12%-15% in comparsion with E-66 (70 m rotor diameter) 

wind turbine. In this section, different blade geometries will be compared for 

predicting the power output. 

 

Figure 4-34 Enercon E-70 

Wind 

speed 

(m/s) 

Rotational 

speed 

(rpm) 

Rotor design Torque 

(Nm) 

Mechanical 

power (kW) 

CP 

3.5 60 Rectangular tip 106.290 0.666 0.407 

Innovated root 109.826 0.684 0.418 (+2.7%) 

Wind 

speed 

(m/s) 

Rotational 

speed 

(rpm) 

Rotor design Torque 

(Nm) 

Mechanical 

power (kW) 

CP 

6 102 Rectangular tip 331.097 3.536 0.429 

Innovated root 358.387 3.823 0.464 (+8.1%) 

Wind 

speed 

(m/s) 

Rotational 

speed 

(rpm) 

Rotor design Torque 

(Nm) 

Mechanical 

power (kW) 

CP 

8.8 150 Rectangular tip 727.086 11.421 0.439 

Innovated root 811.291 12.739 0.49 (+11.5%) 

Table 4-4 Torque and mechanical power comparisons of different blade geometries 
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As seen in Table 4-4, innovated root has a significant effect on power 

increasing, especially under a high wind speed condition (8.8 m/s). This 

innovated root design allows 11.5 percent increase of the power coefficient.  

 

4.6 Aerodynamic noise prediction 
 

Mechanical and aerodynamic noises are the main sources of noise from wind 

turbines. Mechanical noise is generated mainly from gearbox and generator; it 

may also come from cooling fans and other auxiliary equipment (Burton, et al., 

2001, p.531). Arakawa, et al. (2005, p.11) stated aerodynamic noise consists 

of low frequency and high frequency broadband noises. In this section, 

ANSYS-Fluent is used in order to predict the amount of noise generated when 

different tips are used in the design of wind turbine blades. 

 

4.6.1 Near- to far-field aerodynamic noise predicting under the different 
wind speeds 

 

In ANSYS-Fluent, the near- to far-field aerodynamic noise can be calculated 

by mounting receivers at different position and the setting has been 

introduced in section 3.5.1. The simulated results of aerodynamic noise of 

rectangular and tapered tip are shown in Tables 4-5 and 4-6. 

 

Tip 

design 

Wind 

speed 

Rotational 

speed 

Receiver 

1 

134 m 

Receiver 

2 

90 m 

Receiver 

3 

45 m 

Receiver 

4 

0 m 

Receiver 

5 

-70 m 

 

 

Rectan

gular 

tip 

3.5 

m/s 

60 rpm 26.62 dB 30.07 dB 36.08 dB 81.89 dB 32.06 dB 

6.0 

m/s 

102 rpm 30.89 dB 34.33 dB 40.29 dB 90.25 dB 36.2 dB 

8.8 

m/s 

150 rpm 38.2 dB 41.63 dB 47.58 dB 93.69 dB 43.47 dB 

Table 4-5 Aerodynamic noise of rectangular tip from near- to far- field 
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Table 4-6 Aerodynamic noise of tapered tip from near- to far-field 

 

Receiver 5 was mounted at the upstream of the wind turbine and rest of 

them were installed under the downstream of the wind turbine. The 

location of receiver 4 is on the centre of wind turbine. Table 4-5 and 

Table 4-6 shows that the aerodynamics noise is increasing as the 

rotational speed increases. Tapered tip produces less aerodynamic noise 

than rectangular one and this phenomenon is more obvious under a low 

wind speed. When the wind speed reaches to 8.8 m/s, the fast rotational 

speed leads too much aerodynamic noise. The receiver 4 shows the 

noise generated by rectangular and tapered tip is over 90 dB.  In the far-

field area, receiver 5 shows tapered tip has a better performance for 

noise reduction. Experience (Burton, et al., 2001, p.339) suggests that 

the normal minimum spacing between turbines and residence is 400 m. 

 

 

 

 

 

 

 

 

4.6.2 Wind turbine aerodynamic noise 

In ANSYS-Fluent, wind turbine aerodynamic noise can be simulated by using 

RANS model, the simulated results are plotted from Figures 4-35 to 4-40. 

Tip 

design 

Wind 

speed 

Rotational 

speed 

Receiver 

1 

134 m 

Receiver 

2 

90 m 

Receiver 

3 

45 m 

Receiver 

4 

0 m 

Receiver 

5 

-70 m 

 

 

Tapered 

tip 

3.5 

m/s 

60 rpm 11.95 dB 

(-55.1%) 

15.28 dB 

(-49.2%) 

21.05 dB 

(-41.7%) 

73.97 dB 

(-9.6%) 

17.21 dB 

(-46.3%) 

6.0 

m/s 

102 rpm 20.77 dB 

(-32.8%) 

24.21 dB 

(-29.5%) 

30.23 dB 

(-25%) 

83.13 dB 

(-7.9%) 

26.25 dB 

(-27.5%) 

8.8 

m/s 

150 rpm 26.13 dB 

(-31.6%) 

29.57 dB 

(-29%) 

35.52 dB 

(-25.3%) 

91.60 dB 

(-2.2%) 

31.43 dB 

(-27.7%) 
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Figure 4-35 Acoustic power of rectangular tip at 3.5m/s 
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Figure 4-36 Acoustic power of tapered tip at 3.5m/s 

 

Figures 4-35 and 4-36 indicate that when wind speed is 3.5 m/s, the 

maximum acoustic power is located at the leading edge of both blade tips. 

The maximum value of rectangular tip is 117dB and tapered tip is 108dB, from 

blade tip to the root area, the acoustic power value is decreased and the 

lowest value is at the hub area. 
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Figure 4-37 Acoustic power of rectangular tip at 6m/s 
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Figure 4-38 Acoustic power of tapered tip at 6m/s 

 

Figures 4-37 and 4-38 show when wind speed is 6 m/s, the maximum 

acoustic power value of rectangular tip is 129dB and tapered tip is 126dB, as 

increasing the rotational speed, the low acoustic power area shrinks and 

concentrates at hub and blade root region. 
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Figure 4-39 Acoustic power of rectangular tip at 8.8m/s 
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Figure 4-40 Acoustic power of tapered tip at 8.8m/s 

 

Figures 4-39 and 4-40 show when wind speed reaches to 8.8 m/s, the 

maximum acoustic power value of rectangular tip is 139dB and tapered tip is 

138dB. It is obvious that tapered tip has a better performance for noise 

reduction than rectangular tip, especially under a low wind speed condition. 
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Thus, increasing the wind speed, the noise generation of those two tips are 

almost the same. 

 

4.7 Results summary 

In two-dimensional aerofoil modelling, the comparison between the CFD 

results and experimental data shows ANSYS-Fluent is a reliable benchmark. 

Aerodynamic performances of different aerofoils have been compared. The 

simulated results demonstrate that the DU93 aerofoil has a better 

aerodynamic performance than the S809 aerofoil. In three-dimensional wind 

turbine modelling, the innovated root design gives a significant power output 

increase and tapered tip design has a better ability for noise reduction. 

Moreover, ANSYS-Fluent provides a better correlation with theoretical data for 

power output prediction. Based on its greater ability, simulations can be run 

under a wider range of wind speeds. According to the different wind speeds, 

an optimum rotational speed can be achieved to maintain the constant power 

output at high wind speed. 
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Chapter 5 Conclusion and future work 

Based on the research work, the aims and objections of the research project 

have been achieved. The significant findings are summarized below. 

5.1 Conclusions 

 ANSYS-Fluent shows a good performance in calculating the lift, drag 

and moment coefficients of aerofoils when compare to the 

experimental data. Especially for low angles of attack. So this software 

has a good ability to predict the optimum and critical angle of attack. 

 Using the second order SST k-ω turbulent model, ANSYS-Fluent 

shows a good agreement with the measured data for a variety of wind 

speeds (from 4 m/s to 8.8 m/s). According to the reliable results, the 

wind turbine power output can be predicted under a wider wind speeds 

range (from 3.5 m/s to 18 m/s). Therefore, when the wind speed 

increases, the optimum rotational speed can be estimated to maintain 

the constant power output. In ANSYS-Fluent, not only the torque 

magnitudes but also the thrusts can be calculated, but the accuracy is 

unknown as the lack of theoretical data of thrust. 

 Wind turbine rotational effect can be simulated by using sliding mesh 

approach and the wake can be shown once the wind turbine rotates. 

The velocity drop and wake length have not been predicted precisely in 

the work, because the mesh gets coarser when it approaches towards 

the boundaries. The mesh density is difficult to control by using 

unstructured grid; at the same time, because the blade is twisted and 

chord length of the blade is varied along the wingspan, it is extremely 

difficult to mesh the wind turbine by using structured grid in GAMBIT. 

 Near- to far- field aerodynamic noise can be simulated by using LES 

approach, this turbulent model gives a better physical representation of 

the eddy dynamics than RANS (Carcangiu, 2008, p.31).  Due to the 

high requirement of mesh, LES methods need a longer time than 

RANS to run the simulation of this work. 
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5.2 Future work 

 For aerofoil simulation, boundary layer should be refined at some angle 

of attack so that the accuracy of simulations can be improved. 

Moreover, it is worthwhile to try to use laminar and turbulent mixer 

model to see whether the accuracy of drag coefficient could be 

enhanced. Walter P. Wolfe and Stuart S. Ochs (1997) stated that this 

method highly depends on engineer‟s ability to accurately guess the 

transition location. 

 The wake effect has been simulated previously. For the next step, two 

wind turbines can be mounted in a row to observe how the front wind 

turbine wake influences the downstream wind turbine and the 

difference of power output between two turbines can be calculated. 

Meanwhile, in order to create a real operation condition, the tower 

should be taken into account. 

 Turbulent models have been shown to play an important role in CFD 

modelling of wind turbines. The next step; in order to simulate the wind 

turbine wake, a high performance computer should be employed to 

implement the DES and LES techniques.  

 Total thrust acting on the blade can be calculated using ANSYS-Fluent, 

Using ANSYS 12.0 Workbench, the simulated result can be imported 

into the static structural analysis. Hence, the flap wise bending moment 

could be calculated. 
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