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Abstract

Adverse Outcome Pathways (AOPs) establish a connection between a molecular initiating event (MIE) and 

an adverse outcome.  Detailed understanding of the MIE provides the ideal data for determining chemical 

properties required to elicit the MIE. This study utilized high-throughput screening data from the ToxCast 

program, coupled with chemical structural information, to generate chemical clusters using three similarity 

methods pertaining to nine MIEs within an AOP network for hepatic steatosis. Three case studies 

demonstrate the utility of the mechanistic information held by the MIE for integrating biological and 

chemical data. Evaluation of the chemical clusters activating the glucocorticoid receptor identified activity 

differences in chemicals within a cluster. Comparison of the estrogen receptor results with previous work 

showed that bioactivity data and structural alerts can be combined to improve predictions in a customizable 

way where bioactivity data are limited. The aryl hydrocarbon receptor (AHR) highlighted that while 

structural data can be used to offset limited data for new screening efforts, not all ToxCast targets have 

sufficient data to define robust chemical clusters. In this context, an alternative to additional receptor assays 

is proposed where assays for proximal key events downstream of AHR activation could be used to enhance 

confidence in active calls. These case studies illustrate how the AOP framework can support an iterative 

process whereby in vitro toxicity testing and chemical structure can be combined to improve toxicity 

predictions. In vitro assays can inform the development of structural alerts linking chemical structure to 

toxicity. Consequently, structurally related chemical groups can facilitate identification of assays that would 

be informative for a specific MIE.  Together, these activities form a virtuous cycle where the mechanistic 

basis for the in vitro results and the breadth of the structural alerts continually improve over time to better 

predict activity of chemicals for which limited toxicity data exist.
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1. Introduction

In 2007, the National Research Council recommended increased use of alternative approaches to toxicity 

testing such as in vitro, in chemico, in silico, and –omics techniques that report on toxicity pathways at the 

molecular and cellular level (NRC, 2007). To make full use of the information generated by these alternative 

approaches, a framework that integrates these different data streams and connects the toxicity pathways 

with apical endpoints typically used for evaluation of toxicity was needed. The Adverse Outcome Pathway 

(AOP) concept provides such a framework that links mechanistic information derived from these alternative 

approaches to a biological target and, subsequently, to an apical adverse outcome (Ankley et al., 2010, 

Villeneuve et al., 2014a). This mechanistic focus enables the use of AOPs for organizing and integrating 

information from multiple methods for toxicity assessment. As such, the assays associated with these 

approaches may measure changes to the same or different biological processes along the pathway. 

Additionally, the structure of AOPs provides a scaffold on which mechanistic data from various sources 

including in silico models, in chemico, in vitro and/or in vivo assays, and literature information can be 

organized.

The molecular initiating event (MIE) is the initial key event (KE) within an AOP and its elicitation is 

essential for initiation of an AOP. The MIE is unique compared to other KEs as it is the stage where the 

chemical directly interacts with the biological system (Villeneuve et al., 2014b). As such, the MIE can 

provide mechanistic understanding of the interaction between the chemical and the biological system at the 

molecular level. Insight into these underlying mechanisms can help discern the chemical properties that are 

responsible for the interaction with the biological system (Enoch et al., 2013, Enoch and Roberts, 2013, 

Przybylak and Schultz, 2013). Once structural features have been identified as being associated with the 

elicitation of a particular MIE, they can facilitate the development of structural alerts, i.e. structural 
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fragments associated with a specific MIE (Allen et al., 2014, Allen et al., 2016, Gutsell and Russell, 2013, 

Przybylak and Schultz, 2013). Collections of structural alerts associated with a given MIE have been 

recently termed in silico profilers especially in the context of their practical implementation into software 

tools such as the OECD Toolbox (Dimitrov et al., 2016). The information held by these profilers can be 

used to generate chemical clusters centered on the ability to elicit the same MIE (Allen et al., 2016, Enoch 

et al., 2011, Enoch et al., 2012, Enoch et al., 2013, Enoch and Roberts, 2013, Naven et al., 2013, Nelms et 

al., 2015a, Nelms et al., 2015b, Sakuratani et al., 2013a, Sakuratani et al., 2013b). 

Alternatively, in vitro data related to a MIE can be utilized as a primary filter to identify chemicals active 

against the target of interest. Subsequently, the active chemicals can be clustered based upon structural 

similarity (Enoch and Roberts, 2013). To develop chemical clusters in this manner requires: 1) a 

representation of the chemical structure and, 2) a method to calculate the similarity between two chemicals 

(Leach and Gillet, 2007). There are a multitude of options available for both components, leading to an 

overwhelming number of possible combinations (Cereto-Massague et al., 2015). However, encoding 

chemical structure as a binary fingerprint (i.e. a string of vectors indicating the presence (1) or absence (0) 

of particular substructural features) and calculating similarity using the Tanimoto coefficient are most 

commonly used (Leach and Gillet, 2007, Willett, 2009, Willett, 2006). The outcome of this provides a 

measure of the similarity between two chemicals ranging from zero to one, where zero indicates a complete 

dissimilarity and one indicates the chemicals are identical. 

As noted by Carrió et al. (2016), since there is no general agreement about which method is the most 

appropriate for quantifying chemical similarity, as this will be dependent on the characteristics of both the 

chemicals and the endpoint being evaluated, in this study we investigated three different similarity 

approaches that were chosen arbitrarily: 1) atom-pair descriptors and Tanimoto similarity, 2) ToxPrint 

chemotypes and Tanimoto similarity, and 3) atom environment descriptors and Hellinger distance (Carhart 

et al., 1984, Yang et al., 2015, Jeliazkova et al., 2009). For more discussion about the issues of 
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characterizing chemical similarity, the reader is referred to other works by Todeschini et al. (2012), Floris 

et al. (2014), and Floris and Olla (2018). 

A practical number of chemical clusters can be identified by using a similarity threshold. An index of 0.6 

(i.e. 60% similarity) or greater, has been found to be useful in developing chemical clusters in previous 

works (Enoch et al., 2009). Investigation of the resultant chemical clusters in conjunction with the 

associated bioactivity data can, in certain circumstances, also enable the identification of structural alerts 

that may be incorporated into in silico profilers. It should be noted that the chemicals present within clusters 

can vary depending upon the chemical representation and similarity calculation used (Cereto-Massague et 

al., 2015). As such, just because chemicals cluster based upon one method does not mean they will 

necessarily cluster based upon a different method. 

Recently, Angrish et al. (2016) outlined an AOP network (i.e. individual AOPs that share at least one 

common KE) for hepatic steatosis focusing on the key events of chemical mediated non-alcoholic fatty 

liver disease (Angrish et al., 2016). Fatty liver disease is currently the most common liver disease in the 

United States, affecting between 20-30% of the population (Noureddin and Rinella, 2015). Hepatic steatosis 

can be induced either by excessive alcohol consumption (alcoholic fatty liver disease) or by a variety of 

other stressors, including both therapeutic drugs and environmental chemicals (non-alcoholic fatty liver 

disease) (Al-Eryani et al., 2015). Within their AOP network Angrish and colleagues identified seven MIEs 

that may induce non-alcoholic fatty liver disease, five of these MIEs related to nuclear receptor interactions. 

Work performed by Mellor et al. expanded the number of MIEs present in the AOP network developed by 

Angrish et al. by identifying five additional nuclear receptors (NR) associated with hepatic steatosis (Mellor 

et al., 2016a). Consequently, a total of ten NRs have been identified as MIEs associated with the potential 

to induce hepatic steatosis, namely: Aryl hydrocarbon receptor (AHR), Constitutive androstane receptor 
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(CAR), Estrogen receptor (ER), Farnesoid X receptor (FXR), Glucocorticoid receptor (GR), Liver X 

receptor (LXR), Peroxisome proliferator-activated receptor (PPAR), Pregnane X receptor (PXR), Retinoic 

acid receptor (RAR), and Retinoid X receptor (RXR). 

In a follow-up paper, Mellor et al. identified two hundred and fourteen structural features and eight 

physicochemical descriptors that can be used as structural alerts to screen for chemicals with the potential 

to bind to one, or more, of these NRs (Mellor et al., 2016b). It should be noted that due to a lack of data in 

the database used to construct these alerts (only 40 chemical structures could be found in ChEMBL and 

none of these structures had an associated pChEMBL value), no structural alerts could be developed for the 

constitutive androstane receptor (CAR). Therefore, in this study we will only consider the nine NRs for 

which structural alerts were developed.

Both the AOP network developed by Angrish et al., and the work undertaken by Mellor et al., identify 

interactions between chemical ligands and various NRs as important MIEs that have the potential to induce 

hepatic steatosis. In order to discern chemicals with the ability to elicit the same MIE, biological information 

pertaining to the targets of interest is needed. The U.S. EPA’s Toxicity Forecasting (ToxCast) project, and 

the U.S. federal cross-agency Tox21 program have utilized high-throughput screening methods to generate 

large quantities of in vitro assay data (Dix et al., 2007, Judson et al., 2010, Kavlock et al., 2012, Attene-

Ramos et al., 2013, Collins et al., 2008, Tice et al., 2013). At present, across both projects, a total of more 

than 9000 chemicals have undergone some level of assay screening (Richard et al., 2016, ToxCast). Of 

these 9000 chemicals, the vast majority have been tested in approximately 100 assays as part of the Tox21 

program; whilst a subsection (~1060 ToxCast Phases I and II chemicals) have the broadest assay coverage, 

having been tested in more than 1000 assays across both the Tox21 and ToxCast projects. These chemicals 

cover a broad range of uses including food additives, cosmetic/personal care product ingredients, pesticides, 

pharmaceutical drugs, and industrial chemicals (Richard et al., 2016). As such, not only the chemical-use 

space, but the structure-feature space associated with the ToxCast and Tox21 data is highly diverse. The 
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ToxCast database (which contains all the data from both ToxCast and Tox21 projects), contains at least two 

assay endpoints associated with each of the NRs identified as MIEs for hepatic steatosis.

The aim of this study was to highlight the power of combining biological activity and chemical structure in 

an iterative manner to better leverage both when attempting to predict chemical toxicity in data limited 

situations. To illustrate this process, chemical clusters were formed based on in vitro data corresponding to 

a set of MIE(s) within an AOP network for hepatic steatosis. Given the importance of hepatic steatosis as 

an AO, and interactions with NRs as MIEs within the AOP network, it provided an ideal set of case studies 

for demonstrating some of the applications for these chemical clusters. However, as we are only utilizing 

data pertaining to the MIEs any predictions of downstream events are, therefore, beyond the scope of the 

current study.

2. Materials and Methods

2.1 ToxCast high-throughput screening data

High-throughput screening data for the 9076 chemicals and 1192 assay endpoints, contained within the 

October 2015 data released by the ToxCast project, were used for this analysis (Judson et al., 2010, Kavlock 

et al., 2012, Richard et al., 2016). Further information regarding the chemicals and assays within ToxCast 

can be obtained from the data download page (https://www.epa.gov/chemical-research/toxicity-forecaster-

toxcasttm-data, accessed on July 16th 2018), the interactive webpage of the iCSS ToxCast Dashboard 

(https://actor.epa.gov/dashboard/, accessed on July 16th 2018), or the CompTox Chemistry Dashboard 

(https://comptox.epa.gov/dashboard/, accessed on July 16th 2018) (Williams et al., 2017). The DSSTox 

Substance Identifiers (DTXSIDs) provided in this manuscript can be utilized to access highly curated 

chemical information, with associated chemical properties, present in the CompTox Chemistry Dashboard. 

Three files were utilized for this analysis, the first containing AC50 values (i.e. the concentration at 50% 

of maximum activity) for each chemical-assay pair (oldstyle_ac50_Matrix_151020.csv, provided by 
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ToxCast), the second containing a list of chemical-assay combinations with a flag for quality control (QC) 

(AllResults_flags_151020.csv, provided by ToxCast), and the third containing the chemical specific 

cytotoxicity point (Supplementary Table 1). All ToxCast files referenced throughout this manuscript are 

available for download from the ToxCast data download page at 

ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Summary_Files (accessed July 16th 

2018). 

The AC50 file comprises a matrix containing an AC50 value (in µM) for each chemical-assay pair that has 

been tested and identified as being active within ToxCast. A value of 1,000,000µM (1M) is used to represent 

a chemical-assay combination that has been tested but was identified as being inactive, and “NA” values 

represent chemical-assay combinations that have not currently been tested (as of the October 2015 data 

release) (Judson et al., 2016, Documentation, 2015). Meanwhile, the QC flag file identifies chemical-assay 

pairs where there may be false positive/negative results; alternatively, the associated flag(s) may help to 

explain potentially anomalous data (Filer et al., 2015, Filer et al., 2017(ToxCast, 2018)).

The cytotoxicity point file contains a list of the chemicals within ToxCast and the associated concentration 

(in log units and µM) at which the chemical exhibited cytotoxicity. It has been shown that chemicals can 

cause a large number of non-specific hits (the “burst”) in in vitro assays at concentrations near or above 

where cell stress and cytotoxicity occur (Judson et al., 2016). The burst region is defined by taking activity 

data from a range of cytotoxicity assays (46 total in the current analysis) in the form of hits (i.e. was the 

chemical active or not) and AC50 values (concentrations at 50% of maximal activity). A chemical is defined 

as being cytotoxic if at least 2 of the cytotoxicity assays were active below the typical upper limit of testing 

of 100M. For each chemical, we take the median(log10(AC50)) as the center of the cytotoxicity region, 

and we additionally calculate the median absolute deviation (MAD) of the log10(AC50) values. Since the 

individual chemical MAD values are sensitive to the number of cytotoxicity assays that are positive, we 

then take the median of the cytotoxicity MAD values across all chemicals, which is termed the global 
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cytotoxicity MAD. In this instance, the global cytotoxicity MAD value is 0.289. Finally, the lower bound 

of cytotoxicity for each chemical is defined as the median(log10(AC50)) – (3*global cytotoxicity MAD) 

(Judson et al., 2016). Thus, any chemical-assay pair concentration above this lower bound value would be 

considered within the cytotoxicity region. Additionally, because this lower bound value takes into 

consideration the variability of the cytotoxicity point across the entire ToxCast dataset, it acts as a more 

conservative estimate of the cytotoxicity point. For chemicals with 0 or 1 active cytotoxicity assays, the 

center of the cytotoxicity region is set to a default value of 1000µM. More information regarding how the 

values contained within this file were generated can be found in Judson et al. (2016). 

2.2 Data Analysis

Unless otherwise stated all analyses in this study were performed using R, v3.3.2 (Team, 2016). 

2.2.1 Generation of filtered hit-call matrix 

2.2.1.1 Use of cytotoxicity burst phenomenon information

The AC50 and cytotoxicity point ToxCast data files, discussed above, were utilized to develop a discretized 

hit-call matrix that takes into account the cytotoxicity-associated burst phenomenon. To generate the burst 

hit-call matrix, we first identified, in a chemical-specific manner, the lower value of either 1) the µM value 

of the lower bound of cytotoxicity, or 2) the lowest reported AC50 value for the chemical within the 46 

cytotoxicity assays. These criteria were used to provide us with the most conservative estimate of the 

cytotoxicity burst threshold. For this study, the lower of these two values will be termed the lower 

cytotoxicity value. Next, for each chemical, the lower cytotoxicity value was compared against the AC50 

values present in the ToxCast AC50 matrix. Those chemical-assay combinations with an AC50 below the 

lower cytotoxicity value for the chemical are considered active (i.e. assigned a “1”) and those combinations 

with an AC50 above the lower cytotoxicity value are considered inactive (i.e. assigned a “0”) 
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(Supplementary Figure 1). It should be noted that some of the activity present above this lower cytotoxicity 

value may be driven by the target specific mechanism of the assay. However, where AC50 values fall within 

this region it is more difficult to ascertain if those chemical-assay pairs are driven by a target specific 

mechanism or by more generalized cytotoxicity or cell stress effects (Judson et al., 2016). For this work, it 

was more important to enrich for chemicals that specifically act via the MIE rather than to identify all 

chemicals that may act via the MIE.

2.2.1.2 Use of quality control flag information

To evaluate the burst-filtered hit call matrix, the cytotoxicity assay AC50s were compared with the AC50 

for the target assay across the chemicals. To perform this examination, the original –log10AC50 data matrix 

(old_style_neg_log_ac50_Matrix_151020.csv, provided by ToxCast) was integrated with the burst hit-call 

matrix developed above through scalar multiplication. This was done so that only the –log10AC50 data for 

those chemical-assay combinations active below the lower cytotoxicity value remained. Next, a scatter 

graph of the results from the cytotoxicity assays was plotted against the results for the corresponding 

specific target assay for each chemical (Supplementary Figure 1, inset). For example, the –log10AC50 

values in the TOX21_AR_BLA_Antagonist_viability assay (a cytotoxicity assay) were plotted against the 

results from the TOX21_AR_BLA_Antagonist_ratio assay (the corresponding target-specific assay). 

The scatter graphs showed that the majority of the points fell on either the x-axis (i.e. the chemical exhibited 

a target-specific effect prior to cytotoxicity) or the y-axis (i.e. the chemical exhibited cytotoxicity prior to 

the observation of a target-specific effect). However, a number of points fell along the diagonal. These 

points are more difficult to decipher because the target-specific effect occurs at approximately the same 

concentration at which the chemical exhibits cytotoxicity. Therefore, we are less certain about the 

mechanism behind these chemicals because one of two scenarios may be occurring: 1) a target-specific 

mechanism may be inducing cytotoxicity at approximately the same concentration, or 2) cytotoxicity may 
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be occurring via a secondary mechanism and the target-specific effect coincidentally occurs at the same 

concentration. Investigation of the points along the diagonal led us to identify four quality control (QC) 

flags that were associated with a large proportion of these chemical-assay pairs. These four flags are: “Only 

one concentration above baseline, active”, “Borderline active”, “Gain AC50 < lowest concentration and 

loss AC50 < mean concentration”, and “Hit-call potentially confounded by overfitting”. The four QC flags 

utilized within this study represent a subset of the nine flags present within the quality control flag file 

released by ToxCast (AllResults_flags_151020.csv, provided by ToxCast). More information regarding 

each of these flags can be found in the ToxCast data analysis pipeline (tcpl, V1.4.3, accessed July 16th 2018) 

R package or the associated vignette (Filer et al., 2018). These four flags were added to the filtering criteria 

when creating the final hit-call matrix for this work to remove potentially confounding chemicals and 

increase confidence in target-specific active calls.

2.2.1.3 Combining burst and QC flag information

To generate the final hit-call matrix (the burst flag hit-call matrix) that was used for the remainder of this 

study, a chemical was considered active in an assay only when it passed two criteria: 1) the AC50 was 

below the lower cytotoxicity value, and 2) it did not have an associated QC flag. Unless otherwise noted, 

these criteria were used for determining chemical activity whenever a positive assay result is referenced 

throughout the manuscript. A copy of this final burst flag hit-call matrix is available as a comma separate 

value (csv) file within the Supplementary Information (Supplementary Table S2).

2.2.2 Extraction of chemicals active for nuclear receptors associated with hepatic steatosis
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Since at least two cytotoxicity assays were required to establish a burst point, chemicals that were tested in 

fewer than two of the 46 cytotoxicity assays were not considered for this study. This information was 

gathered from the “tested_Matrix_151020.csv” file available in the ToxCast data release. Of the chemicals 

with two or more cytotoxicity assays, active chemicals for each NR from  Mellor et al. (2016a) were defined 

based on activity in at least one human-relevant assay from the final hit-call matrix. Therefore, a separate 

data frame was generated for each of the nine NRs that contained 1) the list of active chemicals for the 

specific NR; 2) the assay results for the NR in question; 3) SMILES notation, where available, for each 

chemical and; 4) a number of chemical identifiers. Only use those chemical with a defined structure and 

corresponding simplified molecular-input line entry system (SMILES) notation are used in the present 

study. The relatively small number of compounds without a defined SMILES string in ToxCast are typically 

macromolecules, mixtures/formulations, or polymers. Only the chemicals with a SMILES string were used  

because the SMILES strings provide the necessary chemical structure information to create structure-based 

chemical clusters and profile against the previously developed structural alerts. Therefore, unless otherwise 

stated, numbers referenced will relate to active chemicals that have associated SMILES notation. All of the 

SMILES strings were neutralized, and salt counter ions were removed using ChemAxon’s Standardizer 

program.

2.2.3 Clustering of active chemicals

Three separate clustering methods were used to generate chemical clusters for each chemical list identified 

above based upon structural similarity. The first approach used the ChemmineR package (Cao et al., 2011, 

Cao et al., 2008) to generate atom-pair descriptors for each chemical within the separate chemical lists and 

then calculated the Tanimoto index between chemicals (AP_Tani) (Carhart et al., 1984). The second 

approach utilized the more than 700 freely available ToxPrint chemotypes implemented within the 
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ChemoTyper software to generate a molecular fingerprint for each chemical (Yang et al., 2015) 

(https://chemotyper.org, accessed July 16th 2018). Subsequently, the ChemmineR package was used to 

calculate the Tanimoto index between chemicals (TP_Tani). For the final approach, we used Toxmatch 

(v1.07) to generate a similarity matrix identifying the Hellinger distance between atom environments within 

each chemical list (AE_Hell) (Gallegos Saliner et al., 2008, Jeliazkova et al., 2009, Patlewicz et al., 2008). 

The chemical cluster generation for each individual method was performed using the single-linkage (nearest 

neighbor) binning clustering function implemented within the ChemmineR package (Cao et al., 2011). It 

should be noted that for the first two approaches a distance matrix was calculated on the fly by the 

ChemmineR package. For the final approach, a distance matrix calculated as 1-similarity was generated 

prior and subsequently utilized by the clustering function within ChemmineR. We used an initial similarity 

threshold of 0.6 (60%) and increased in 5% increments. Our initial threshold was based upon previous work 

that demonstrated a cut-off of 0.6 works well for chemicals clustering for teratogenicity (Enoch et al., 2009) 

The final similarity thresholds were chosen based upon visual inspection of the clusters after each iteration 

to keep the cluster sizes generally consistent across the different chemicals/metrics. Neither chemical 

structure, toxicity information, nor any other information regarding expected clustering of the chemicals 

were used as criteria. As such, the chosen similarity thresholds varied between chemical list and similarity 

approach used.  

2.3 Profiling active chemicals against previously developed structural alerts

Each chemical list was profiled against a set of previously developed structural alerts associated with NRs 

that have the potential to induce hepatic steatosis (Mellor et al., 2016b). The majority of these alerts are 

present in the AOP network developed by Angrish et al. (2016). The KNIME workflow developed by 

Mellor et al. (2016b) was utilized within KNIME (v3.2) to perform the profiling of each of the chemical 
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lists to identify those chemicals that contain a structural fragment(s) associated with NR binding. Chemicals 

triggering an alert for a NR, therefore, suggest chemicals that have the potential to bind to the specific NR.

2.4 Use of Judson et al. estrogen receptor model to evaluate our approach

The results from the full ER model developed by Judson et al. (2015) were used to evaluate our approach. 

These results were utilized because the Judson et al. (2015) ER model has been shown to perform on par 

with other, more traditional, lower-throughput tests (Browne et al., 2015, Kleinstreuer et al., 2016). To 

evaluate our approach, chemicals not given a designation of “agonist”, “antagonist”, or “none” within the 

supplemental table provided by Judson et al. (2015) were removed. The chemicals were then split into two 

groups based upon their classification by the Judson et al. (2015) ER model: those classified as either 

“agonist” or “antagonist” were consider active, and those classified as “none” were considered inactive. 

Subsequently, we varied the conditions under which a chemical would be considered active by our 

approach. The conditions utilized were as follows: 1) an active call in at least one ER assay; 2) an active 

call in at least one ER assay AND the presence of a structural alert for ER binding; 3) an active call in at 

least one ER assay OR the presence of a structural alert for ER binding; and 4) the presence of a structural 

alert only. For each of the first three conditions we iterated through every combination of sets of four ER 

assays (a total of 3060 different combinations per condition) based on the work of Judson et al. (2017). 

Finally, we calculated the mean sensitivity, specificity, accuracy, and Matthews’ correlation coefficient and 

the corresponding 95% confidence interval for each condition.

Additionally, the same calculations for the same three conditions were made when iterating through every 

combination of between five and eighteen ER assays to estimate the minimum number of assays needed to 

better define chemical clusters for cases like the AHR case study.
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3. Results and Discussion

This study demonstrates the use of chemical structure and bioactivity information to improve chemical 

toxicity prediction in situations where data are limited. To ensure that chemical activity used for developing 

the chemical clusters represented target-mediated effects, stringent filters removed assay results that were 

potentially confounded by non-specific cytotoxicity. These filters include explicit filtering on cytotoxicity 

and more general filtering via quality control flags identified as informative based on preliminary analysis. 

While the stringency of the filters likely resulted in a high false negative rate, it increases our confidence 

that an active call was due to a target-mediated mechanism. This, in turn, makes the structural clusters more 

reliably focused on target-mediated mechanisms.

Using the target-specific hit-calls, active chemicals were defined for each NR acting as an MIE within the 

liver steatosis AOP network (Angrish et al., 2016, Mellor et al., 2016a). Active chemicals were 

subsequently profiled against previously developed structural alerts associated with the potential to bind to 

NRs linked to inducing hepatic steatosis (Mellor et al., 2016b). It should be noted that different numbers of 

assays are associated with the different NRs. For example, there are twenty human-relevant assays 

associated with ER but only two assays associated with AHR (Table 1). Furthermore, the total number of 

chemicals active below the cytotoxicity burst also varied across the NRs with the liver X receptor (LXR) 

having the fewest number of chemicals active below the burst (20) and ER having the highest number of 

chemicals active below the burst (1449) (Table 1). Additionally, there is no apparent correlation between 

the number of active chemicals identified and the total number of assays associated with a NR; although, 

increased sensitivity to actives with increasing number of assays cannot be ruled out. For example, there 

are 680 total chemicals active within at least one of the three assays associated with pregnane X receptor 
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(PXR); in comparison, there are only 285 total chemicals active within at least one of the eight assays 

associated with farnesoid X receptor (FXR) (Table 1).

[TABLE 1 HERE]

3.1 Coverage of previously developed structural alerts

After identifying active chemicals for each NR, each chemical list was profiled against the structural alerts 

developed by Mellor et al. (2016b). Upon inspecting the profiling results, it became clear that the structural 

alerts associated with certain NRs performed better than others at identifying potential binders (Table 1). 

The four best performing suites of structural alerts were able to identify between 36-60% of chemicals 

active for a particular NR as having the potential to bind to that specific NR (Table 1). For example, of the 

448 chemicals active in at least one AHR assay, 161 (36%) were profiled as having a structural alert for 

AHR. Meanwhile, the suites of structural alerts perform poorly for other NRs, with the structural alerts for 

LXR, the retinoic acid receptor (RAR), and the retinoid X receptor (RXR) identifying between 0-5% of 

chemicals active for one of these NRs as having the potential to bind to that specific NR. The varying 

success of suites of structural alerts will depend, in part, on the size of the active NR sets from which the 

alerts were derived, and to which the alerts are being applied. As discussed below, the iterative nature of 

evaluating structural alerts based on functional assay information and then refining chemical activity 

predictions using the structural alerts holds the promise to both refine the structural alerts, and their 

predictive ability, as well as provide the additional support of the structural predictions when evaluating 

assay activity.

In using the more stringent threshold for defining our active chemicals, we may have removed false 

positives that resulted in aberrant structural alerts that were more influenced by general cytotoxicity 

previously or we may have removed true positives that fell above the cytotoxicity burst threshold the would 

have been informative for developing structural alerts. To determine the impact of our stringent threshold 
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on the lack of coverage by the structural alerts, we investigated how the suites of structural alerts performed 

when the chemical lists were generated using the original ToxCast hit-call matrix. As would be expected a 

larger number of chemicals were identified as being active for each NR (Table 2). However, for the vast 

majority of the NRs there was either no change or only a modest decline in the percentage of active 

chemicals containing a structural alert for the specific NR (Table 2): the exception being those chemicals 

active in at least one GR assay that had a decline of 15% compared to the results using the burst flag hit-

call matrix. 

[TABLE 2 HERE]

Given that the results seem to be at least as good with the more stringent cutoff, utilizing the lower 

cytotoxicity value to remove chemicals that are (potential) false positives is likely to be a less significant 

contributing factor to the lack of coverage by the structural alerts when compared to the chemical space 

that the structural alerts cover. This may be explained, at least in part, by examining the two datasets used 

as the training and test set. To develop the structural alerts Mellor et al. (2016b) used ChEMBL as the 

training set, a data set containing mainly drug-like bioactive molecules. In comparison, the test set 

chemicals, i.e. ToxCast, contains mainly environmentally-relevant chemicals with few drug-like molecules. 

Therefore, it is likely that a difference in chemical space between the chemicals in the training and test sets 

contributed to our not observing more active chemicals associated with an alert for the specific NR.  In 

other words, many ToxCast chemicals lie outside the applicability domain of the existing alerts, which were 

derived based on drug-like chemicals.

Chemicals with biological activity for each NR were clustered based on structural similarity using three 

separate clustering methods to generate chemical clusters. We chose to employ three different 

fingerprinting and similarity approaches to investigate what differences, if any, may be observed. It should 

be noted that detailed analysis as to the distinctions between the methodologies employed by the different 
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approaches is beyond the scope of this study. Whilst investigating these chemical clusters, we were able to 

hypothesize refinements to some of the existing alerts whilst also positing additional alerts. One example 

of a cluster that may lead to a possible refinement to an existing alert can be seen in Figure 1, whereby 

seven chemicals active in at least one AHR assay were clustered together using the AP_Tani similarity 

approach. The original alert developed by Mellor et al. (2016b) (center structure, Figure 1) enables either a 

fluorine, chlorine, or hydrogen atom to be at the meta and/or para position on the benzene ring. However, 

this existing alert does not cover two of the chemicals present within this cluster because they contain a 

bromine atom para to the amino substituent. After examination of the chemicals within the cluster it would 

make sense to expand the existing alert to cover bromine substituted chemicals, especially given that 

bromine is also a halogen and, therefore, has the potential to act in a similar manner to the fluorine and 

chlorine substituted chemicals. 

[FIGURE 1 HERE]

One example of a hypothesized additional alert regarding the potential to bind to the peroxisome 

proliferator-activated receptor (PPAR) can be seen in Figure 2 (center structure). Each of the four chemicals 

used to derive this potential alert were active in at least one PPAR assay and were clustered together using 

the TP_Tani similarity approach. As can be seen in Figure 2, each of the four chemicals contain the same 

backbone that has been utilized to generate the posited alert. Three of the chemicals present within this 

cluster (mefenamic acid (DTXSID5023243), tolfenamic acid (DTXSID1045409), and meclofenamate 

sodium (DTXSID8045567)) were also clustered when using the AP_Tani approach. However, both putative 

alerts used as examples here should not yet be considered “finished”. This is because additional data are 

required to confirm (or refute) the mechanistic information as to how these chemicals bind AHR or PPAR. 

Additionally, for the hypothesized PPAR alert more data from further studies would likely be needed for 

other, similar chemicals to further define/refine the alert.
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[FIGURE 2 HERE]

3.2 Case Studies

Three nuclear receptors will be considered in turn to evaluate the findings and to demonstrate the value of 

integrating in vitro and in silico data using the AOP framework. As the data used within this study only 

relate to the MIE, and not to any downstream KEs, we will be limiting discussion to those applications that 

could be performed using the data included in this study. Thus, predictions regarding the likelihood that a 

chemical induces hepatic steatosis will not be made. 

[TABLE 3 HERE]

3.2.1 Glucocorticoid Receptor

A total of 340 chemicals were active below the cytotoxicity burst in at least one of the five GR related 

assays (Table 1). Comparing the structure-based chemical clusters for GR active chemicals highlights some 

of the main differences in results between the different clustering methods. 

As can be seen in Table 3, irrespective of the clustering approach used, approximately two thirds of the 

active chemicals were assigned to “clusters” with either one or two members and the vast majority (at least 

85%) of “clusters” contain only a single chemical. This is perhaps expected given the diversity of chemical 

space in the ToxCast chemical library (Richard et al., 2016). Within this study, any cluster with fewer than 

three members was not investigated further. Overall, there is modest variability across the three clustering 

approaches in terms of the number of clusters produced containing three or more cluster members: the 

AE_Hell (i.e. Hellinger distance between atom environments) approach generated the most clusters (14) 

covering 99 active chemicals; the TP_Tani (i.e. Tanimoto similarity between ToxPrint chemotypes) 

approach generated the fewest clusters (7) covering 97 active chemicals; and the AP_Tani Tani (i.e. 
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Tanimoto similarity between atom pair descriptors) approach generated 10 clusters covering the fewest 

active chemicals (88) (Table 3). Even though the number of clusters generated across the approaches differ, 

the chemicals that comprise the clusters essentially remain the same, i.e. the extra clusters generated by the 

AP_Tani and AE_Hell approaches are primarily subsets of the clusters containing larger numbers of 

chemicals generated by the TP_Tani approach. For example, the 32 chemicals that form Cluster 44 

generated by the TP_Tani approach are, in large part, spread over two separate clusters (Clusters 95 and 

136) when using the AP_Tani approach, whilst these chemicals are split into four clusters (Clusters 7, 27, 

29, and 77) when using the AE_Hell approach. There are cases where novel clusters are formed, however, 

such as two chemical clusters (Clusters 76 and 98) defined by AE_Hell that were not identified by either 

the AP_Tani or TP_Tani.

The AP_Tani approach was, in most cases, able to cluster chemicals that were active in either the 

TOX21_GR_BLA_Agonist_ratio or TOX21_GR_BLA_Antagonist_ratio (Supplemental Figure 12). This 

is also borne out for the other two similarity approaches (Supplemental Figures 11 and 13). One example 

where this is not the case is Cluster 10 generated by the AP_Tani approach that contains 25 chemicals, of 

which 22 are active in the TOX21_GR_BLA_Agonist_ratio assay, with three (prednisone 

(DTXSID4021185), meprednisone (DTXSID8023260), and cortisone (DTXSID5022857)) active in the 

TOX21_GR_BLA_Antagonist_ratio assay. Upon closer inspection, the three chemicals active within the 

antagonist assay contain a carbonyl substituent at the 11-carbon position within the steroid ring system 

(Figure 3A). In contrast, the chemicals active in the Tox21 GR -lactamase agonist assay all contain a 

hydroxyl substituent at the 11-carbon position (Figure 3B). This is further corroborated by Cluster 5 

generated by the TP_Tani approach, of the 48 chemicals contained within this cluster only the two 

chemicals (prednisone and meprednisone) active in the Tox21 GR -lactamase antagonist assay did not 

have a hydroxyl substituent present at the 11-carbon position within the steroid ring. The results from these 

clusters suggest that the change in substituent at the 11-carbon position from a ketone to a hydroxyl may 

play a role in conferring agonist activity. Information within the literature further supports this hypothesis: 
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prednisone is a known pro-drug that must be metabolized in order to be converted to the GR active form, 

prednisolone (Becker, 2013). In the conversion from prednisone to prednisolone the only difference 

between the two chemical structures is the change from a ketone moiety at the 11-carbon position to a 

hydroxyl moiety. Additionally, in terms of GR activity, cortisone can be considered the inactive form of 

cortisol (Rask et al., 2001). In this instance, the 11-hydroxysteroid dehydrogenase enzyme is responsible 

for metabolizing cortisone to cortisol. Therefore, the information we have gained by taking into 

consideration both the assay and chemical structure data can be utilized to help inform the development 

and/or refinement of structural alerts pertaining to chemicals that contain this steroid backbone. 

[FIGURE 3 HERE]

3.2.2 Estrogen Receptor

A total of 1449 chemicals, were active below the cytotoxicity burst in at least one of the 20 ER related 

assays (Table 1). As discussed above, there is a moderate level of variability in terms of the number of 

clusters containing three or more cluster members generated by the different clustering approaches: the 

AE_Hell approach generated 27 clusters covering 173 active chemicals (12%), the AP_Tani approach 

generated 42 clusters covering 237 active chemicals (16%), and the TP_Tani approach generated 59 clusters 

covering 325 active chemicals (22%) (Table 3 ). Whilst there was overlap between the chemicals contained 

within clusters with three or more members, together the three clustering approaches covered a total of 443 

active chemicals (31%).

Work recently published by Judson and colleagues demonstrated that for certain combinations of in vitro 

assays, as few as four assays were sufficient to predict ER agonist activity at a level comparable to the 16-

assay ER agonist model (Judson et al., 2017). In this work, Judson et al. generated subset models for each 

combination of 1-16 in vitro assays that comprise the ER agonist pathway model. For each subset model, a 

variety of performance metrics were calculated (i.e. sensitivity, specificity, and balanced accuracy) for 
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different contexts, namely: using all chemicals against the previously developed full ER model (Judson et 

al., 2015); using only the reference chemicals against the full ER model, using only in vitro literature-based 

reference chemicals (Judson et al., 2015); and using only in vivo literature-based reference chemicals 

(Kleinstreuer et al., 2016). The results of certain combinations of four ER agonist-related assays were 

observed to have a minimum balanced accuracy (across the four different situations named above) of 0.94, 

which was on par with the minimum balanced accuracy for the model containing all 16 ER agonist-related 

assays. As a consequence of this, and the fact that few targets within ToxCast contain as many assays as 

ER, we decided to use the minimum number of assays identified by Judson et al. (2017) to generate two 

distinct models. 

The models were created by iterating through every combination of four ER-relevant assays from the burst 

flag hit-call matrix and combining this information with the ER-specific structural alerts developed by 

Mellor et al. (2016b). The first model (the higher confidence model) aimed to provide a higher confidence 

in a hazard call; this was achieved by requiring the presence of 1) activity within at least one ER assay in 

the burst flag hit-call matrix and 2) an ER structural alert. In comparison, the second model (the wider 

coverage model) was designed to capture the maximal number of positive chemicals; this was achieved by 

requiring only the presence of activity in at least one ER assay or an ER structural alert. Due to the relative 

simplicity of our models, we wanted to evaluate them against the much more detailed ER model developed 

by Judson et al. (2015) (Table 4). The reason for this was not to attempt to replace the Judson et al. (2015) 

ER model, but rather to investigate how reliable our approach would be in instances where only limited 

bioactivity data are available. 

[TABLE 4 HERE]

As can be seen in Table 4, the higher confidence model has a higher specificity, accuracy, and Matthew’s 

Correlation Coefficient (MCC) than the wider coverage model or bioactivity data in isolation; thus, 
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demonstrating that the higher confidence model is able to utilize the combination of bioactivity data from 

only four assays and structural alert information to correctly identify chemicals with the ability to bind to 

the ER (Table 4). Therefore, if the higher confidence model predicts a chemical as being active, there is a 

greater likelihood the chemical is a true active. In comparison, the wider coverage model has a higher 

sensitivity and lower specificity, i.e. it identifies a larger number of chemicals as being active at the expense 

of identifying a larger number of false positives. This is to be expected as the aim of the wider coverage 

model is to identify chemicals that have the potential to bind to the ER with further, confirmatory, toxicity 

tests subsequently being performed. 

Based on how the models performed against the Judson et al. (2015) ER model we believe our approach of 

integrating structural information into predictions could be of use in instances where bioactivity data are 

limited. This approach will be useful to limit the amount of testing required for novel chemicals that contain 

either a structural alert or are structurally similar to other chemicals that have already undergone testing.

3.2.3 Aryl Hydrocarbon Receptor

Overall, a total of 461 chemicals were active in at least one of the two AHR assays present in ToxCast 

(Table 1). The AP_Tani approach generated the fewest clusters with at least three cluster members (17) 

covering the fewest chemicals (90), the TP_Tani approach generated the most clusters (24) covering the 

largest number of chemicals (121), and the AE_Hell approach generated an intermediate number of clusters 

(19) covering 92 chemicals (Table 3).

Unlike ER, the majority of targets within ToxCast have many fewer assays in which a chemical can be 

tested to verify bioactivity. For example, considering the two assays related to AHR binding, over half 

(55%) of the active chemicals were tested in only one assay. Therefore, it is difficult to determine a 
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chemical’s activity with a high degree of certainty. Determining true activity is especially difficult in 

instances where a chemical has been tested in both AHR assays but is active in only one. Even taking 

cytotoxicity into consideration, certain chemicals may be active in a specific assay or technology due to: 1) 

assay interference (e.g. chemicals used as dyes interfering with fluorescence readouts), or 2) real activity 

that can only be captured in a specific assay (e.g. the assay may have metabolic capabilities not present in 

other assays within the battery). With data from fewer assays it is also more difficult to define robust 

chemical clusters. Thus, while four assays are sufficient once the pathway is known and mechanistic models 

exist for integrating the data, the number of assays needed to define this information initially is likely to be 

higher.

To estimate the minimum number of assays required when nothing is known about the chemical clusters or 

mechanistic linkage among the assays, we again used the Judson et al. (2015) model results. However, this 

time we varied the number of assays used between five and eighteen and iterated through every combination 

to calculate the same statistics (Table 5 and Figure 4). The results suggest that chemical activity in any one 

(or more) of 10 assays provides a good balance between bringing the statistics in-line with using the entire 

18 assay battery and the number of assays used to generate the statistics. Therefore, it is likely that 

information from up to 10 assays may be required to enable the development of robust chemical clusters 

and allow development of more sophisticated models for integrating the assay results. There are two means 

by which we could acquire the additional assay data. The first is by using additional assays specific for the 

biological target (e.g. AHR) or MIE. Alternatively, the AHR AOP could be utilized to identify appropriate 

assays that measure changes in downstream KEs and the information from these assays could be used. This 

second approach may be more desirable, especially where data for downstream KEs is available such as in 

ToxCast, as it would allow for data from proximal KEs to be used not only for determining the chemical 

clusters but also to provide orthogonal assays to evaluate active calls at the MIE in the context of the broader 

AOP. 
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[TABLE 5 HERE]

[FIGURE 4 HERE]

4. Conclusion

ToxCast data has shown promise for providing cost-effective bioactivity information for a large number of 

chemicals, especially in cases where many related or orthogonal assays exist for a common target-mediated 

mechanism (Judson et al., 2015, Browne et al., 2015). Cheminformatics approaches are also providing 

valuable information for chemicals where little or no toxicity data exist (Allen et al., 2016, Enoch et al., 

2011, Enoch et al., 2012, Enoch et al., 2013, Enoch and Roberts, 2013, Nelms et al., 2015a, Nelms et al., 

2015b, Sakuratani et al., 2013b, Sakuratani et al., 2013a, Naven et al., 2013). The present work focused on 

how in vitro and in silico data can be leveraged to provide the maximal information in data-limited 

situations. Our results have shown the importance of the applicability domain and how this can be difficult 

to overcome with the wide array of structural diversity seen with environmental chemicals. 

The ultimate goal for this work would be an iterative process whereby solutions can be provided to 

maximize the utility of existing in vitro and in silico data while providing concrete information for use in 

improving the confidence in those predictions when needed. The AHR example (Figure 2) showed how 

biological activity could be used to refine existing structural alerts. The PPAR example (Figure 3) showed 

how biological activity could be used to identify new structural alerts. The glucocorticoid receptor case 

study highlighted how small molecular changes that are critical for agonist activity can be identified in a 

data-driven way. The estrogen receptor showed how existing structural alerts can be combined with 

biological activity readouts to provide fit-for-purpose toxicity predictions making optimal use of the 

available data for data-poor chemicals. With the aryl-hydrocarbon receptor case study, however, we saw 

that in many cases the biological activity data associated with many MIEs is insufficient to support many 

applications. While structural information can improve confidence in those situations as well, it can be 
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combined with AOP information to assist in improving the suite of biological assays for these MIEs. As 

data-driven approaches to AOP development are established (Oki and Edwards, 2016, Oki et al., 2016, Bell 

et al., 2016), these efforts can be integrated to continually improve 21st century toxicity predictions.

Evaluation of the wealth of data associated with estrogen receptor activity (Judson et al., 2015) suggests 

that up to ten assays may be required to define the optimal model for integrating the toxicity data and create 

high confidence chemical clusters to support the development of structural alerts. This does not mean that 

the methods described herein cannot be employed until after a major data gathering effort. Chemical 

clusters could be defined based on as little as two assays as shown with the AHR example, and these could 

be used to increase confidence in predictions with the two assays alone. As chemical clusters are defined 

that are highly likely to work through a given MIE, the biological activity of the chemicals in those clusters 

could be used to identify additional assays related to that mechanism and potentially expand the number of 

assays without required additional screening. This, in turn, could improve the clustering of chemicals to 

establish higher quality structural groups with broader coverage of the chemical space, which then could 

be used to further expand the number of assays considered for the toxicity assessment. As high throughput 

toxicogenomics measurements are generated, this method of iterative development should prove extremely 

valuable. 

It is also important to note that data from the full set of assays covering any one MIE is only required for a 

subset of the chemical universe to evaluate the assays and determine the optimal subset for screening. 

Results from Judson, et al. (2017) suggest that the remaining chemicals following this initial phase can be 

screened with as few as four assays. By employing an iterative process where chemical structure as well as 

mechanistic information is used as the initial assay battery is defined and evaluated, we would expect that 

the process can be optimized to minimize the up-front screening required to establish the biological assay 

panel and maximize the domain of applicability for the structural alerts identified.
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ASSOCIATED CONTENT

Supplementary Information

Supplementary Figure 1 contains a scatterplot that depicts, using an example, how the cytotoxicity burst 

point was used to increase confidence in active calls.

Supplementary Figures 2-19 contain a vectorized image (PDF) of the negative log10AC50 values for each 

nuclear receptor and clustering method utilized for which chemical groups were identified. The colored 

side bar identifies the chemical cluster the chemical belongs to. Each column corresponds to a ToxCast 

assay. Blue represents activity within the assays, with darker blues depicting activity at a lower 

concentration and lighter blues depicting activity at higher concentrations. White depicts chemical-assay 

pairs that were tested but not activity was observed, and grey depicts, as yet, untested chemical-assay pairs.

Supplementary Table 1. Cytotoxicity point, and associated lower bound of cytotoxicity point, data 

calculated using information from the 46 cytotoxicity assays. Each row present in the table contains a 

chemical-specific cytotoxicity point, lower bound of the cytotoxicity point, and number of “hits” within the 

46 cytotoxicity assays.

Supplementary Table 2. Complete final burst flag hit-call matrix that takes into consideration both 

cytotoxicity and quality control flag information.

Supplementary Table 3. Shows the similarity threshold chosen for each nuclear receptor and similarity 

method, the resulting number of clusters with three or more cluster members, and the number of active 

chemicals covered by these clusters. Each tab labelled with the abbreviated nuclear receptor name contains 

the chemical identified from ToxCast (chid), the cluster size at the chosen similarity threshold, and the 

cluster identifier for each similarity method.
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AE_Tani – Atom Environment and Hellinger distance approach, AHR – Aryl Hydrocarbon Receptor, AOP 

– Adverse Outcome Pathway, AO – Adverse Outcome, AP_Tani – Atom Pair and Tanimoto similarity 

approach, ER – Estrogen Receptor, GR – Glucocorticoid Receptor, MAD – Median Absolute Deviation, 

MIE – Molecular Initiating Event, NR – Nuclear Receptor, TP_Tani – ToxPrint chemotypes and Tanimoto 

similarity approach.
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Figure 1.  The chemicals around the perimeter are those contained within AP_Tani Cluster 26 of the AHR active chemicals. The structure in the center is the 

previously identified structural alert generated by Mellor et al. (2016b). It is hypothesized that this structural alert could be expanded to cover brominated 

chemicals as well as chlorinated and fluorinated chemicals. As a structural alert is either present or absent from a chemical there is no relative similarity that 

can be calculated between the alert and the chemical(s) being profiled.
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Figure 2.  The chemical fragment in the center is a hypothesized additional alert for chemicals with the potential to bind to PPAR. The chemicals around the 

perimeter are those contained within TP_Tani Cluster 124 of the PPAR active chemicals form the basis upon which this hypothesized alert was developed.
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Figure 3. A) Structures of the three chemicals present within Cluster 10 using the AP_Tani approach that are active within the 

TOX21_GR_BLA_Antagonist_ratio assay. B) General structure of the majority of chemicals present within AP_Tani Cluster 10 and TP_Tani Cluster 5 that 

are active in the TOX21_GR_BLA_Agonist_ratio assay. The main differences in structure occur at the R1 and R2 substituents. As can be seen, each of the 

chemicals active only in the antagonist assay contain a carbonyl moiety at the 11-carbon position of the steroid structure whilst the chemicals active in only the 

agonist assay contain a hydroxyl moiety at the same position.

A

B
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Figure 4. Four line graphs depicting the mean change in sensitivity, specificity, accuracy, and 

Matthew’s correlation coefficient (MCC) when adjusting the minimum number of assays required to 

initially provide a reliable determination of activity. The 95% confidence interval is represented by the 

ribbon plot surrounding each line graph. The different colors represent a different testing method: blue 

represents instances where activity required an active call in the burst hit-call matrix and the presence 

of a structural alert; orange represents instances where only an active call in the burst hit-call matrix 
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was  required, and; green represents instances where either an active call in the burst hit-call matrix or 

the presence of a structural alert was required.
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Tables

Nuclear 
Receptor

Number of human 
relevant assays in 

ToxCast

Number of chemicals 
tested in at least 1 assay

Number of chemicals 
active in at least 1 assay

Number of chemicals 
triggering any alert

Number of chemicals triggering nuclear 
receptor specific structural alert

AHR 2 8415 461 (448) 349 161 (36%)

ER 20 8415 1449 (1341) 905 576 (43%)

FXR 8 7639 285 (278) 206 38 (14%)

GR 5 8415 340 (284) 250 170 (60%)

LXR 3 3282 20 (20) 15 1 (5%)

PPAR 12 8707 541 (513) 360 222 (43%)

PXR 3 3282 680 (639) 436 117 (18%)

RAR 6 3282 72 (65) 51 0 (0%)

RXR 5 3284 192 (175) 87 3 (1%)

Table 1. Data extracted from the burst flag hit-call matrix showing: 1) the number of human relevant assays present in ToxCast for each nuclear receptor 

identified as being associated with liver steatosis, 2) the total number of chemicals tested in at least one of the NR-related assays, 3) the total number of chemicals 

active below the lower cytotoxicity value (numbers within parentheses provide number of chemicals with associated SMILES strings), 4) the number of 

chemicals that contain any of the structural alerts developed by Mellor et al (2016), and 5) the number of chemicals that contain at least one structural alert for 

the specific nuclear receptor (numbers within parentheses are the percentage of chemicals with SMILES strings that contain a nuclear receptor specific structural 

alert).
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Nuclear 
Receptor

Number of chemicals active in at 
least 1 assay

Number of chemicals triggering 
any alert

Number of chemicals triggering nuclear receptor specific 
structural alert

AHR 974 (954) 740 302 (32%)

ER 2840 (2677) 1837 1154 (43%)

FXR 1177 (1127) 904 134 (12%)

GR 941 (858) 710 383 (45%)

LXR 148 (142) 96 8 (6%)

PPAR 1584 (1517) 1119 557 (38%)

PXR 1533 (1467) 961 244 (17%)

RAR 339 (318) 242 1 (0%)

RXR 632 (596) 364 14 (2%)

Table 2. Data extracted from the original ToxCast hit-call matrix showing: 1) the number of chemicals that were active (numbers within parentheses give the 

number of chemicals with associated SMILES strings), 2) the number of those chemicals that contain any of the structural alerts developed by Mellor et al. 

(2016b), and 3) the number of chemicals that contain at least one structural alert for the specific nuclear receptor (numbers within parentheses are the percentage 

of chemicals with SMILES strings that contain a nuclear receptor specific structural alert).
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Nuclear 
Receptor

Similarity 
Approach

Similarity 
Threshold (%)

Number of clusters with 3 
or more members

Number of active 
chemicals covered

AE_Hell 70 19 92

AP_Tani 60 17 90AHR

TP_Tani 75 24 121

AE_Hell 85 27 173

AP_Tani 65 42 237ER

TP_Tani 80 59 324

AE_Hell 70 14 61

AP_Tani 60 10 32FXR

TP_Tani 75 10 41

AE_Hell 80 14 99

AP_Tani 70 10 88GR

TP_Tani 85 7 97

AE_Hell 60 0 0

AP_Tani 60 0 0LXR

TP_Tani 70 0 0

AE_Hell 80 11 76

AP_Tani 65 14 62PPAR

TP_Tani 75 26 102

AE_Hell 75 22 91

AP_Tani 60 14 61PXR

TP_Tani 80 19 110

AE_Hell 75 1 5

AP_Tani 60 1 4RAR

TP_Tani 80 1 5

AE_Hell 75 8 44

AP_Tani 60 4 14RXR

TP_Tani 80 4 29

Table 3. Clustering data that shows the similarity threshold chosen, the number of clusters that contain 

three or more chemicals, and the number of active chemicals that are contained within a cluster with 

three or more members for each similarity measure. AE_Hell - atom environment descriptors and 
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Hellinger distance, AP_Tani – atom pair descriptors and Tanimoto similarity, and TP_Tani – ToxPrint 

chemotypes and Tanimoto similarity.
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Active call in burst hit-call 
matrix

Presence of structural 
alert only

Active call in burst hit-call matrix 
AND presence of structural alert

Active call in burst hit-call matrix OR 
presence of structural alert

Sensitivity 67% (48-80%) 69% 52% (40-62%) 84% (77-89%)

Specificity 92% (85-97%) 73% 98% (96-99%) 67% (61-71%)

Accuracy 90% (84-94%) 72% 94% (93-95%) 68% (63-71%)

MCC 0.466 (0.38-0.575) 0.234 0.546 (0.484-0.617) 0.27 (0.244-0.292)

Table 4. Mean performance data of every variation of four ER assays for the two ER models and how they compare to using the burst flag hit-call data or the 

presence of a structural alert in isolation. Values in parentheses are 95% confidence intervals (no confidence interval could be calculated for the presence of a 

structural alert as there were no parameters to change). MCC – Matthews Correlation Coefficient.

[TABLE 5.]
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Table 5. Mean performance data of every variation of between 5 and 18 ER assays for the two ER models and how they compare to using the burst flag hit-call 

data in isolation. Values in parentheses are 95% confidence intervals. MCC – Matthews Correlation Coefficient.
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Supplementary Data
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Supplementary Figure 1. The main scatterplot depicts an example of how the cytotoxicity “burst” 

information is used to increase confidence in active calls. Note that the red point below the line for the 

lower cytotoxicity value failed at least one of the quality control flags as discussed in the main text. The 

inset scatterplot depicts the -log10AC50 values from the 35 cytotoxicity assays against the results for 

the corresponding target-specific assay for each chemical. The majority of the points that lie on the 

diagonal contain one of four quality control flags present in the ToxCast data release. We used this 

information to help filter out results that may be potentially confounded by cytotoxicity.

Utilizing Adverse Outcome Pathways in the Development of Chemical Clusters to Assist in 

Determining Chemical Activity When Data is Limited

Proposed new title: A Mechanistic Framework for Integrating Chemical Structure and High-

Throughput Screening Results to Improve Toxicity Predictions 

Mark D. Nelmsa,b, Claire L. Mellorc,1, Steven J. Enochc, Richard S. Judsond, Grace Patlewiczd, Ann M. 

Richardd, Judith M. Maddenc, Mark T. D. Croninc, and Stephen W. Edwardsb,2
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Abstract

Adverse Outcome Pathways (AOPs) establish a connection between a molecular initiating event (MIE) 

and an adverse outcome.  Detailed understanding of the MIE provides the ideal data for determining 

chemical properties required to elicit the MIE. This study utilized high-throughput screening data from 

the ToxCast program, coupled with chemical structural information, to generate chemical clusters using 

three similarity methods pertaining to nine MIEs within an AOP network for hepatic steatosis. Three 

case studies demonstrate the utility of the mechanistic information held by the MIE for integrating 

biological and chemical data. Evaluation of the chemical clusters activating the glucocorticoid receptor 
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identified activity differences in chemicals within a cluster. Comparison of the estrogen receptor results 

with previous work showed that bioactivity data and structural alerts can be combined to improve 

predictions in a customizable way where bioactivity data are limited. The aryl hydrocarbon receptor 

(AHR) highlighted that while structural data can be used to offset limited data for new screening efforts, 

not all ToxCast targets have sufficient data to define robust chemical clusters. In this context, an 

alternative to additional receptor assays is proposed where assays for proximal key events downstream 

of AHR activation could be used to enhance confidence in active calls. These case studies illustrate how 

the AOP framework can support an iterative process whereby in vitro toxicity testing and chemical 

structure can be combined to improve toxicity predictions. In vitro assays can inform the development 

of structural alerts linking chemical structure to toxicity. Consequently, structurally related chemical 

groups can facilitate identification of assays that would be informative for a specific MIE.  Together, 

these activities form a virtuous cycle where the mechanistic basis for the in vitro results and the breadth 

of the structural alerts continually improve over time to better predict activity of chemicals for which 

limited toxicity data exist.

Research Highlights

 The AOP framework can support an iterative process to maximise utility of available in vitro 
and in silico data

 ToxCast nuclear receptor data was combined with structural information to derive new or 
refine existing structural alerts

 Assay data relating to the glucocorticoid receptor highlighted activity differences within a 
chemical cluster

 ER in vitro and in silico data were combined to improve predictions in a customizable way 
when bioactivity data are limited

 AHR illustrated the potential for proximal key events to assist in expanding assays used to 
make high confidence predictions


