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ABSTRACT  

 

The physical demands of competitive soccer are shaped by strategic and tactical 

decisions.  Modern soccer is increasingly characterised by shorter and more frequent 

sprint efforts emphasising the need to accelerate repeatedly.  However, while this change 

is mirrored in the approach to training and conditioning, fitness assessment remains 

biased towards the assessment of high speed running and repeated sprint ability. The aim 

of this thesis was to explore the validity of contemporary field-tests for modern soccer so 

that the value and usefulness of fitness assessment may be improved.  The acceleration 

and deceleration activity during sub-elite youth match-play was determined using 

integrated technology and confirmed that this activity is crucial for performance.  Wide 

players completed greater distances during high magnitude acceleration/decelerat ions 

justifying the inclusion of position specific training.  Analysis of the Yo-Yo Intermit tent 

Recovery Test (Level 1), the Hoff-Helgerud Football Endurance Test and the Bangsbo 

Sprint Test showed comparable tri-axial load.  This questions the need to satisfy logical 

validity with complex field tests and lends support to the use of linear modalities.  Each 

test also provided a high density effect exposing players to an acceleration/decelera t ion 

load higher than competition.  Evidence of repeated acceleration activity (RAA) was the 

first reported during competition and analysis showed it was a generic attribute, although 

wide players tended to complete more bouts.  Findings supported the inclusion of RAA 

conditioning and justified the derivation of a novel field test to assess this component.  In 

response, the Repeated Acceleration Performance Test (RAPT) was designed and 

validated against the RAA demands of competition.  Test re-test reliability was strong, 

although medium term reliability assessed following a 6-week training intervention was 

negatively affected by a congested fixture period and requires further investigation.  In 

conclusion, RAA is a crucial element of modern competitive soccer.  The absence of a 
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suitable field test to assess this component was addressed with the derivation and 

validation of the Repeated Acceleration Performance Test.  
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1.1 Background 

Soccer is reliant on the synergy between technical competence, tactical astuteness and 

efficient physical movement (Drust, Atkinson & Reilly, 2007).  Competition is 

unpredictable and features movement of varying speeds, accelerations and decelerations, 

changes of direction and discreet movements, including jumping and tackling.  

Intermittent high-speed activities are performed on an endurance background requiring 

well developed aerobic and anaerobic capacities. Therefore superior physical condition 

may prove advantageous.  A considerable proportion of team preparation is allocated to 

fitness training and readiness to compete is evaluated through periodic fitness assessment 

that forms an essential element of a support programme (Svensson & Drust, 2005).   

 

However, fitness tests have been suggested to merely confirm the evidence of an 

individual’s fitness status and dismissed as irrelevant providing functiona l 

competitiveness remains (Mendez-Villanueva & Buchheit, 2013).  Instead, complex 

monitoring systems, particularly Global Positioning Systems (GPS), have been adopted 

at the elite level to analyse physical performance during games and training (Malone, Di 

Michele, Morgans, Burgess, Morton & Drust, 2015; Morgans, Adams, Mullen, McLellan 

& Williams, 2014).  Based on the variation of physical data, inferences are made about 

physical condition, yet, although appealing, this approach does have several 

shortcomings.  Initially, longitudinal data is required to establish the natural variation in 

physical performance (Carling, Dupont, Bradley & McCall, 2016), something not 

possible for a new signing.  Secondly, soccer performance is complicated by a wide 

variety of situational factors (Castellano, Blanco-Villaseñor, & Álvarez, 2011) and a 

decline in any key performance indicator cannot be reliably attributed to fatigue or 

inferior conditioning.  Finally, these systems incur a substantial financial and 

administrator time burden placing them out of the reach of many clubs. In summary, 
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fitness assessment is the only cost effective and objective way to determine an 

individual’s physical condition, assuming that the procedure selected is valid, reliable and 

fit for purpose.   

 

A broad range of field based assessments are available, yet the Multi Stage Fitness Test 

(MSFT) (Leger & Lambert, 1982), Yo-Yo Intermittent Recovery test (YYIR) (Bangsbo, 

1996) and Repeated Sprint Ability assessments (RSA) (Rampinini, Bishop, Marcora, 

Bravo, Sassi & Impellizzeri, 2007; Wragg, Maxwell & Doust, 2000), dominate in soccer.  

Use of the MSFT is justified by the elevated aerobic demands, and much of the game is 

spent in low-speed movements like walking and jogging (Bangsbo, 1994).  However, 

authors including Carling, Bloomfield, Nelsen & Reilly (2008), assert that key game 

changing events occur at high-speeds suggesting that this is an important component of 

fitness.  This standpoint is supported by findings that higher tiered sides are shown to 

complete greater distances during games (Iaia, Rampinini & Bangsbo, 2009; Mohr, 

Krustrup & Bangsbo, 2003; Mohr, Krustrup, Anderson, Kiekendal & Bangsbo, 2008).   

 

In response, the YYIR was created to assess this capacity and higher tiered sides also 

performed better than lower tiered counterparts (Ingebrigtsen, Bendicksen, Randers, 

Castagna, Krustrup & Holtermann, 2012; Rampinini, Sassi, Azzalin, Castagna, Menaspa, 

Carlomagno & Impellizzeri, 2010; Teplan, Malý, Zahálka, Hráský, Malá, & Heller, 

2012b).  Although it is not possible to infer that greater physical performance leads to on 

field success (Drust, Atkinson & Reilly, 2007), these findings provide convincing support 

for the importance of high-speed running.  Interestingly, Bradley, Carling, Gomez, 

Antonio, Barnes, Ade, Boddy, Krustrup & Mohr (2013a) recently reported that third 

tiered English professionals completed greater high-speed running than their Premier 
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League counterparts in contrast with the consensus of previous literature.  The same group 

suggested that these differences might reflect superior ball retention at the top tier 

negating the need to chase the ball or a different tactical approach.  The contrast in 

findings between Bradley, Lago-Peñas, Rey & Diaz (2013b) and Iaia, Rampinini & 

Bangsbo (2009), Mohr, Krustrup & Bangsbo (2003) and Mohr et al. (2008) may reflect 

a change in the prevailing strategic/tactical approach to competition affecting 

development in the physical demands.  As such, high-speed running per se might no 

longer be a key performance indicator in the modern game. 

 

Insight into the evolution of the physical demands of the English Premier League 2006-

2012 supports the anecdotal view that soccer is more physically demanding.  In the 

modern era high-speed efforts are shorter in bout duration and distance, but more 

numerous (Barnes, Archer, Bush & Bradley, 2014; Bush, Archer, Hogg, Barnes & 

Bradley, 2015), serving to emphasise the importance of repeated accelerations. In support 

of this standpoint, acceleration activity is impaired following peak activity (Akenhead, 

Hayes, Thompson & French, 2013) and may compromise an individual’s functiona l 

potency.  To summarise, it is clear that high-speed running remains an important element 

of match-play. However, the capacity to accelerate repeatedly is increasingly crucial.  

Recent research highlighted that earlier time motion analysis systems were insensitive to 

acceleration activity because movement was classified using thresholds/cut-off points.  

Indeed, maximal accelerations may occur at low movement velocity (Osgnach, Poser, 

Bernardini, Rinaldo & di Prampero, 2010; Varley & Aughey, 2013) leading to an 

underestimation of the energetics of the sport.   
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Exponents of repeated sprint ability may assert that this is semantics and that RSA 

protocols assess the capacity to accelerate repeatedly.  However, despite evidence that 

RSA performance separates higher from lower tiered sides (Gabbett, 2009; Impellizze r i, 

Rampinini, Castagna, Bishop, Bravo, Tibauid & Wisløff, 2008; Ingebrigtsen, Dalen, 

Hjelde, Drust & Wisløff, 2015; Rampinini, Sassi, Morelli, Mazzoni, Fanchini & Coutts, 

2009b), evidence in soccer is limited, and its importance in match-play is contentious 

(Buchheit, Mendez-Villanueva, Simpson & Bourdon, 2010c, Schimpchen, Skorski, Nopp 

& Meyer, 2016).  Further, the majority of RSA protocols lack a change of direction 

component that fails to replicate the multi-directional nature of soccer.   

 

Recent technological advances, particularly portable GPS and accelerometers, have 

described for the first time the acceleration activity of match-play previously overlooked 

by time motion analysis systems (Varley & Aughey, 2013).  Presently, our understanding 

of this activity is limited and requires further investigation, particularly amongst the youth 

population that is often overlooked by research.  The importance of acceleration in soccer 

has been long established (Chaouachi, Manzi, Chaalali, Wong, Chamari & Castagna, 

2012) but assessment is limited to linear 0 - 10 m trials (Little & Williams, 2005) with no 

consideration for repeated bouts or multi-directional activity.  This provides a strong 

rational to investigate this activity further, and also emphasises that a measure of this 

capacity is required to bridge the shortcoming in literature.  This data may provide a 

reference point for the design of conditioning programmes at a tier that is generally unable 

to access expensive analysis systems.  Further, a practical and cost effective protocol 

would facilitate meaningful fitness assessment, enhancing preparation and competition at 

this level.   

 



21 

 

1.2 Project aims and objectives 

The overall aim of this thesis is, therefore, to evaluate the positional physical demands of 

sub-elite youth football using acceleration/deceleration profiles, and accelerometer 

derived metrics, to inform the derivation of a field based testing protocol.  

 

The research aim will be achieved through a series of objectives, specifically;  

 The examination of the positional accelerometer/deceleration activity, and tri-

axial external load of competitive sub-elite youth soccer. 

 Determining the extent that the acceleration/deceleration activity and tri-axial 

external load of competition is replicated in three contemporary fitness tests. 

 Validating a novel field test for sub-elite youth soccer using 

acceleration/deceleration activity and accelerometer derived metrics. 

 Assess the test-retest reliability of the new protocol, and, the sensitivity to detect 

changes in performance following a short-term training intervention.  
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2.1 Physical demands of soccer: Time motion analysis 

The Fédération Internationale de Football Association (FIFA) is responsible for the global 

governance of the game and stipulates that matches are played on a surface 90-120 m in 

length and 45-90 m in width, by two teams of 11 players, over two periods of 45 minutes.  

The increasing interest in soccer from academics is concurrent with the upsurge in media 

interest and escalating financial rewards for success.  Consequently, there are compelling 

reasons to identify and exploit competitive advantages, but also to identify and develop 

talented young players. Accordingly, a wealth of literature is available that describes the 

physical demands of match-play intending to optimising physical preparation.  This 

review, whilst acknowledging earlier research, focusses more on recent work examining 

the demands of competition typically utilising time motion analysis systems.  

 

Contemporary time motion analysis reports that players cover ~10-14 km during 

competition, a figure which changes relatively little (Barros, Misuta, Menezes, Figueroa, 

Moura, Cunha, Anido & Leite, 2007; Bradley, Sheldon, Wooster, Olsen, Boanas & 

Krustrup, 2009; Dellal, Wong, Moalla & Chamari, 2010b;  Di Salvo, Baron, Tschan, 

Calderon Montero, Bachl & Pigozzi, 2007; Reilly & Thomas, 1976).  Total distance (TD) 

is regularly used as a global indicator of effort (Reilly & Williams, 2003) and midfielders 

generally cover the greatest TD, as a function of their combined offensive and defensive 

roles (see Table 1, p.28).  The majority of distances are of a sub-maximal level of exertion, 

representing a large aerobic outlay of energy (Bangsbo, 1994; Reilly & Thomas, 2003).  

However, the crucial parts of a game are completed at high-speed evidencing the need for 

a well developed anaerobic capacity (Carling et al., 2008; Gabbett & Mulvey, 2008).  The 

fluctuating aerobic and anaerobic periods characterises soccer as an intermittent sport.  
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Soccer is unpredictable, requiring players to perform approximately 1000-1500 

movement changes during a game, equating to one every 4–4.5 s (Bangsbo, Nørregaard 

& Thorsø, 1991; Bloomfield, Polman & O’Donoghue, 2007).  The multi-directiona l 

nature of match-play also increases energy expenditure, which is estimated to range 

between 1200–1500 kcal per game, according to calculations based on the measurement 

of heart rate (HR)  (Dellal et al., 2010b; Lakomy & Haydon, 2004; Osgnach et al., 2010; 

Reilly & Bowen, 1984; Williford, Scharff-Olson, Gauger, Duey & Blessing, 1998).  

Superimposed on this background is the requirement to interact with the ball and to react 

to the movement of opponents, while demonstrating technical and tactical proficiency.   

 

A key component of soccer is high-speed running (HSR),  although consensus is lacking 

about what constitutes a high-speed effort, and thresholds range from 12 to 24 km·hr-1  

(Burgess, Naughton & Norton 2006; Dellal, Chamari, Wong, Ahmaidi, Keller, Barros, 

Bisciotti & Carling, 2011).  Elite players are reported to cover the greatest distances 

rendering superior HSR performance desirable (Andersson, Randers, Heiner-Møller, 

Krustrup & Mohr, 2010; Bangsbo et al., 1991; Iaia, Rampinini & Bangsbo, 2009; 

Ingebrigtsen et al., 2012; Mohr, Krustup & Bangsbo, 2003; Mohr et al., 2008).   

 

Sprinting is a sub component of high-speed activity (HSA) and may provide a decisive 

advantage particularly in goal scoring situations (Faude, Koch & Meyer, 2012). 

Individual bouts of sprinting are generally < 20 m (Burgess, Naughton and Norton, 2006; 

Di Salvo, Pigozzi, Baron, Gormasz, González-Haro & Bachl, 2010; Gabbett & Mulvey, 

2008; Vigne, Rogowski, Hautier, Gauidino & Alloatti, 2010) and TD during games 

ranges between 200-500 m (Barros et al., 2007; Bradley et al., 2009; Dellal et al., 2010b; 

Di Salvo et al., 2010).  Sprinting ability is shown to discriminate between higher and 
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lower tiered competition (Cometti, Maffiuletti, Poulson, Chatard & Maffuli, 2001), 

tactical roles of players within a team and consequently, the overall success of a team 

(Rampinini, Coutts, Castagna, Sassi & Impellizzeri, 2007).   

 

Recovery time between sprints ranges <30 s to >1 minute (Mujika, Santiseban & 

Castagna., 2009) yet, critically, mean values do not represent the fluctuation in work rates 

and underestimate the most intense periods of games where consecutive sprints can be 

required (Fitzsimons et al., 1993).   This activity was later defined as repeated sprint 

ability (RSA), a minimum of three consecutive sprints with less than 21 s between them 

(Spencer, Bishop, Dawson & Goodman, 2005).  Despite some evidence that players are 

required to repeat maximal, or near maximal sprints, separated by brief recovery 

(Bansgbo, Norregaard & Thorsø, 1994; Withers, Maricic, Wasilewski & Kelly, 1982), 

conflicting evidence means that the importance of RSA during match-play is contentious  

(Buchheit et al., 2010c).  Before dismissing the importance of RSA, it is noteworthy that 

the level of intensity and work rate of competition demonstrates natural variation, 

meaning certain fixtures are physically more demanding than others necessitating RSA 

activity (Gregson, Drust, Atkinson & Di Salvo, 2010; Rampinini et al., 2007a).   

 

A greater insight into HSA is achieved by separating sprinting and acceleration.  

Acceleration is defined as the rate of change in velocity (Aughey, 2011) and the 

correlation between acceleration and maximum speed ranges r = 0.56–0.87 (Harris, 

Cronin, Hopkins & Hansen, 2008; Little & Williams, 2005; Vescovi & McGuigan, 2008) 

emphasising the two are separate qualities (Little & Williams, 2005).  Accelerating is an 

energetic task, more so than running at a constant velocity (Osgnach et al., 2010. Speed 

is suggested to be related to muscular-tendon stiffness, the stretch-shortening cycle and 
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hip extensor activity (Buchheit et al., 2014; Murphy, Lockie & Coutts, 2003), whereas 

acceleration is reliant on the concentric extension of the knee and hip (Dorn, Schache & 

Pandy, 2012).  

 

In the English Premier League, 30 % of sprints were classified as explosive (preceded by 

a rate of acceleration <3.0 m·s-2), and the remainder were leading sprints (preceded by a 

rate of acceleration >3.0 m·s-2) (Di Salvo, Gregson, Atkinson, Tordoff & Drust, 2009).  

A higher rate of acceleration evokes a greater energetic cost (di Prampero, Fusi, 

Antonutto, Sepulcri, Morin, Beli & Antonutto, 2005) emphasising that in order to 

elucidate the energetic demands of match-play, a system of classifying acceleration 

activity is required.   In addition, because time motion analysis studies overlooked 

acceleration activities, the energetic demands of competition have been underestimated 

(Osgnach et al., 2010) and further research is required to describe this activity.  Presently, 

limited research exists and is summarised in Table 2 (p.34). 

 

Despite attempts to standardise the zones used to classify acceleration in field sports, a 

lack of agreement prevails.  Aughey (2011) proposed that 4.00 m·s-2 be too high for 

categorising maximum acceleration based on the observation that team sports players 

accelerated at 3.00 m·s-2 during a linear test (Góralczyk, Mikolajec, Poprzecki, Zajac, 

Szyngiera, & Waskiewicz, 2003).  However, efforts >4.00 m·s.-2 have been observed, 

suggesting higher categories are required (Bradley, Di Mascio, Peart, Olsen & Sheldon, 

2010) and reliance on too low a threshold would present limitations with sensitivity and 

underestimate an individual’s performance.  In reality, the most reliable way to evaluate 

performance would define relative zones based on each individual’s sprint times. 
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Unfortunately, this presents significant administrator burden and is very time costly, 

leading to the adoption of predefined categories.  

 

The myriad of multi-directional activities in soccer confirm it is not a linear activity 

(Bloomfield, Polman & O’Donoghue, 2007; Reilly & Williams, 2003; Rienzi, Drust, 

Reilly, Carter & Martin, 2000).  As such, understanding of the rigours of competition 

would be advanced by an assessment of the volume and magnitude of tri-axial external 

load and would serve to inform conditioning and rehabilitation interventions.    
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Table 1:  A summary of time motion analysis studies into the physical demands of soccer. 

Author Age group Group System TD  (m ± SD) Activity  (m ± SD) 

Rienzi et al. (2000) 
Elite Male, 

(n = 23) 

South American  

(n = 17),  

English  

(Premier League) 

(n = 6) 

Video 

analysis 

All positions: 8638 m (± 1158). 

 

 

Strudwick & Reilly 

(2001) 

Elite Male, 

(n = 24) 

English  

(Premier League) 

Computer 

analysis  

All positions: 22264 m. 

MF: 12075 m, WD: 11433 m > 

CD: 10650 m, p <0.05.   

 

Mohr, Krustrup &  

Bangsbo (2003) 

Elite Italian 

Male, 

(n = 18),  

Elite Danish 

Male,  

(n = 24) 

Italian (Serie A) 

and Danish 

(SuperLiga) 

Computer 

coded 

Italian: 10860 m (± 180) >  

Danish: 10330 m (± 260), p = 

<0.05. 

MF: 11000 m (± 210),  

WD: 10980 m (± 230),  

FW: 10480 m (± 300) >  

CD: 9740 m (± 220), p <0.05. 

(HSA: 18.0 km·hr-1, Sprinting: 30.0 km·hr-1) 

HSA; MF: 2230 m (± 150), WD: 2460 m (± 130), 

FW: 2280 m (± 140) > CD: 1690 m (± 100) p 

<0.05.  

Sprinting; FW: 690 m (± 80), WD: 640 m (± 60) > 

MF: 440 m (± 40), CD: 440 m (± 30) p <0.05. 

Castagna, D’Ottavio 

& Abt (2003) 

Amateur 

Male Youths 

(n = 11) 

Italian (U12) 
Computer 

analysis 

All positions: 6175 m (±318). (HSA: >13 km·hr-1). 

All positions: 468 m (± 89). 
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Burgess, Naughton 

& Norton (2006) 

Elite Males, 

(n = 45) 

Australian 

(National Soccer 

League [NSL]) 

Computer 

analysis 

All positions: 10100 m (± 1400). 

MF: 10100 m (± 1900),  

FW: 9900 m (± 1500) >  

DEF: 8800 m (± 1200), p <0.05. 

(HSR: 12-18 km·hr-1, Sprinting 18.0-24.0 km·hr-1) 

Mean all positions: HSR; 1800 m (± 400), 

Sprinting; 700 m (± 200). 

HSR; MF: 2100 m (± 500),  

FW: 1900 m (± 300) >  

DEF: 1500 m (± 300) p <0.05). 

Sprinting; DEF: 600 m (± 200), MF: 800 m (± 

200),  

FW: 800 m (± 200) p >0.05). 

Barros et al. (2007) 
Elite Males,  

(n = 55) 

Brazilian 

(Campeonato 

Brasileiro Serie 

A)  

Video 

WD: 10642 m (± 663),  

CMF: 10476 m (± 702),  

WMF: 10598 m (± 890) > FW: 

9612 m (± 772) & CD: 9029 m (± 

860), p <0.05. 

(HSA = 19-23 km·hr-1, Sprinting > 23.0 km·hr-1). 

HSA; WD: 779 m, WMF: 756 m, CMF: 719 m, 

FW:  693 m, CD: 560 m. 

Sprinting; WD: 562 m, FW: 481 m, WMF: 457 m, 

CMF: 367 m, CD: 352 m.  

Da Silva, Kirkendall 

& Neto (2007) 

Amateur 

Male Youths 

(n = 75) 

Brazilian 

U15 (n = 25), 

U17 (n = 25), 

U20 (n = 25)  

Video 

analysis 

U15: 7007 m (± 545) <  

U17: 8638 m (± 519) p <0.05), < 

U20: 9809 m (± 459) p <0.05. 

 

Di Salvo et al. (2007) 
Elite Male,  

(n = 300) 

Spanish  

(La Liga) and 

UEFA 

Champions 

League games  

Amisco 

All positions: 11393 m (± 1016). 

CM: 12027 m (± 625),  

WMF: 11990 m (± 776) >  

WD: 11410 m (± 708),  

FW: 11254 m (± 894), 

CD: 10627 m (± 893) p < 0.001.   

HSR: 19.1 – 23.0 km·hr-1, Sprinting: >23.0 km·hr-

1. 

HSR; WMF: 738 m (± 174) > WD: 652 m (± 179), 

CMF: 627 m (± 184), FW: 621 m (± 161),  

CD: 397 m (± 114) p = 0.05. 

Bradley et al. (2009) 
Elite Male,  

(n = 370) 

English  

(Premier League) 
Prozone 

All positions: 10714 m (± 991).   

WMF: 11535 m (± 933),  

CMF: 11450 m (± 608) >  

(HSA = > 14.5 km·hr-1, Sprinting >25.0 km·hr-1).  

HSA = 9.0 % of total time. 
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WD: 10701 m (± 589),  

CD: 9885 m (± 555),  

FW: 10314 m (± 1175) p = 0.01. 

WMF: 3138 m (± 565) > CD: 1834 m (± 256), 

WD: 2605 m (± 387), CMF: 2825 m (± 473),  

FW: 2341 m (± 575) p 0.01. 

Sprinting; WMF: 346 m (± 115), WD: 287 m (± 

89) > CD: 152 m (± 50), CMF: 204 m (± 89),  

FW: 264 m (± 87) p = 0.01.  

Rampinini, 

Impellizzeri, 

Castagna, Coutts & 

Wisløff (2009a) 

Elite Male,  

(n = 186) 

Italian  

(Serie A)  

SICS 

automatic 

tracking 

All positions; “less successful 

side” (LS) 12190 m > 

 “most successful side” (MS) 

11647 m, p <0.01.  

(HSA >14.5 km·hr-1, VHSR >19.0 km·hr-1). 

HSA; LS: 4263 m > MS: 3787 m, p <0.01. 

VHSR: LS: 1309 m > MS: 1196 m, p <0.01. 

Buchheit, Mendez-

Villanueva, Simpson 

& Bourdon (2010a) 

Elite Male 

Youths, 

(n = 77) 

International 

Youths 

SPI Elite 

(1 Hz) 

All positions. 

U17: 8448 m (± 118). 

U18: 8254 m (± 135). 

WD > CD, FB > CMF, WMF > 

CD, FW > CD, WMF > FW  

(p >0.05). 

(HSR 13.1 km·hr.-1 - 16.0, VHSR 16.1–19.0 

km·hr-1, Sprinting >19.1 km·hr-1). 

All age groups. 

HSR; WD > CD, WD > CMF, WMF > CD, FW > 

CD, CMF, WMF > FW (p > 0.05).   

VHSR; WD > CD, CMF > CD, WMF >CD, FW > 

CD, FW > CD, CMF, WMF >FW (p > 0.05). 

Sprinting; WD > CD, WD > CMF, FW > WD, 

WMF > CD, CMF > WMF (p >0.05).   

Di Salvo et al. 

(2010) 

Elite Male,  

(n = 717) 

European 

Champions 

League and 

UEFA Cup   

Prozone 

 (Sprinting >25.2 km·hr-1). 

Total mean distance 205 m (± 108). 

CD < WD, CMF, WMF, FW (p < 0.001, d = 0.40-

1.69). 

0-5 m: WMF > CD, WD, CMF, FW (p < 0.001). 

5-10 m: CD, CMF < WD, WMF, FW (p < 0.001). 

10-15 m: CD, CMF < WD, WMF, FW (p < 0.001). 

15-20 m: WMF > WD, CD, CMF, FW (p < 0.001). 
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Dellal et al. (2010b) 
Elite Male,  

(n = 3540) 

French  

(Ligue 1)  
Amisco 

WMF: 12029 m (± 977),  

CAM: 11726 m (± 984),  

CDM: 11501 m (± 901) >  

CD: 10425 m (± 808),  

WD: 10655 m (± 860),  

FW: 10942 m (± 978), p < 0.001.   

(HSA = 21.0-24.0 km·hr-1, Sprinting = >24.0 

km·hr-1).  HSA; WMF: 335 m (± 64), CAM: 334 m 

(±62), CDM: 302 m (± 69), FW: 300 m (± 57) > 

CD: 230 m (± 56), WD: 274 m (± 63) p 0.00. 

Sprinting; FW: 290 m (± 75)> WMF: 235 m (± 

85), CAM: 234 m (± 72), WD: 241 m (± 70),  

CDM: 220 m (± 77), CD: 199 m (± 66) p < 0.001. 

Bradley et al. (2010) 
Elite Male, 

(n = 100). 

English  

(Premier League)  
Prozone 

All positions: 10841 m (± 950).  

Elite: 10666 m (± 566),  

Domestic: 10859 m (± 980),  

p >0.05. 

WMF: 11491 m (± 996),  

CMF: 11411 m (± 486) >  

WD: 10763 m (± 627), 

FW: 10504 m (± 1090),  

CD: 10057 m (± 582) p <0.05. 

(HSA = > 14.5 km·hr-1).  

Mean = 2725 m (± 656). 

WMF: 3243 m (± 625), CMF: 2949 m (± 435),  

WD: 1806 m (± 408), FW: 2618 m (± 745) >  

CD: 2034 m (± 284), p = 0.01.   

Njororai  (2010) 

Elite Male,  

(n = not 

disclosed).  

USA National 

Team (2010 

FIFA World 

Cup) 

Via. 

fifa.com 

All positions:  

90 minutes: 10842 m. 

120 minutes: 14823 m (± 1347). 

 

 

Harley, Barnes, 

Portas, Lovell, 

Barrett, Paul & 

Weston, (2010) 

Elite Male 

Youths, 

(n = 24). 

English 

Academy (U16)  

Minimax 

GPS (5 

Hz) 

All positions: 7672 m (± 2578). 

 

HSR normalised to 10 m flying sprint time.  

All positions: 2481 m (± 1044) 

Lago, Casais, 

Dominguez & 

Sampaio, (2010) 

Elite Male, 

(n = 19) 

Spanish  

(La Liga) 
Amisco 

WMF:11425 m (± 354), 

CMF: 11320 m (± 610), 

HSR: 19.1–23.0 km·hr-1 Sprinting: >23.0 km·hr-1) 

HSR; WMF: 609 m (± 117), FW: 584 m (± 116),  
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WD: 11050 m (± 482), 

CD: 10491 m (± 496).  

WD: 576 m (± 135), CMF: 502 m (± 132),  

CD: 388 m (± 114). 

Sprinting; FW: 344 m (± 112), WMF: 337 m (± 

94), WD: 327 m (± 131), CD: 188 m (± 84), CMF: 

179 m (± 84). 

Rey, Lago-Peñas, 

Lago-Ballesteros, 

Casais, Dellal, 

(2010) 

Elite Male, 

(n = 42) 

Spanish  

(La Liga) 
Amisco 

All positions:  

10963 – 11053 m. 

HSR: 19.1 – 23.0 km·hr-1; VHSR: >23.0 km·hr-1). 

All positions:  

HSR: 1760 -  1779 m,  

VHSR: 522 – 544 m. 

Carling (2011) 

Elite Male, 

(n = 21) 

French  

(Ligue 1)  
Amisco 

All positions;  

4-3-3 vs. 4-2-3: 10808 m (± 661) 

> 4-4-2: 10594 m (± 681),  

p <0.05, ES 0.32. 

(HSR: 14.4 – 19.7 km·hr-1; VHSR: >19.8 km·hr-1) 

HSR: 4-3-3 vs. 4-3-3 (1630 m ± 376), vs. 4-2-3-1 

(1608 m ± 374), vs. 4-4-2 (1577 m ± 373) p = 0.48. 

VHSR: 4-3-3 vs. 4-3-3 (741 m ± 236), vs. 4-2-3-1 

(721 m ± 222), vs. 4-4-2 (704 m ± 219) p = 0.42.  

Bradley, Carling, 

Archer, Roberts, 

Dodds, Di Mascio, 

Paul, Diaz, Peart & 

Krustrup, (2011) 

Elite Male, 

(n = 153) 

English  

(Premier League) 
Prozone 

All positions:  

4-4-2: 10697 m (± 945),  

4-3-3: 19786 m (± 1041),  

4-5-1: 10613 m (± 1104), p 

>0.05). 

 

DEF: 4-4-2: 10452 m (± 755) >  

4-3-3: 10073 m (± 852),  

4-5-1: 10123 m (± 875), p <0.05. 

 

(HSR: >14.4km·hr-1; VHSR: 19.8-25.1 km·hr-1; 

Sprinting >25.1 km·hr-1). 

HSR; 4-4-2: 2633 m (± 671);  

4-3-3: 2649 m (± 706);  

4-5-1: 2585 m (± 734), p >0.05. 

VHSR; 4-4-2: 956 m (± 302); 4-3-3: 924 m (± 

316);  

4-5-1: 901 m (± 305).  p >0.05.  

HSR: DEF: 4-4-2: 2454 m (± 632) > 4-5-1: 2218 m 

(± 625) p < 0.001.   

FW: 4-3-3: 2988 m (± 614) > 4-5-1: 2333 m (± 

458) p <0.05; 4-4-2: 2250 m (± 454) p <0.01). 
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Dellal et al. (2011) 
Elite Male,  

(n = 5938) 

Spanish 

(La Liga) and 

English  

(Premier League) 

Amisco 

All positions:  

La Liga: 10893 m;  

Premier League: 11095 m. 

CAM:  

Premier League: 11779 m (± 706) 

> La Liga: 11005 m (± 1164), 

p <0.05. 

 

 

(HSR: 21.0-24.0 km·hr-1. Sprinting >24.0 km·hr-1). 

CD; Premier League: 241m (± 64) >La Liga: 226 

m (±54) p <0.05. 

WD; La Liga: 285 m (± 55) > Premier League: 270 

m (± 55) p <0.01. 

CDM; Premier League: 319 m (± 68) > La Liga: 

280 m (± 66) p <0.00. 

CAM; Premier League: 334 m (± 61) > La Liga: 

278 m (± 61) p < 0.001. 

WMF; La Liga: 311 m (± 67) > Premier League: 

298 m (± 62). 

Carling & Dupont 

(2011) 

Elite Male, 

(n = 60 ) 

French  

(Ligue 1) and 

UEFA Europa 

League  

Amisco 

Aall positions:  10494 m (± 514) 

– 10949 m (± 853).  

(HSA >14.4 km·hr-1). 

All positions: 2667 m (± 200) – 2414 m (± 145). 

Key: Hz: Hertz; HSA: high speed activity; HSR; high-speed running; VHSR: very high speed running;  
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Table 2:  Summary of research investigating acceleration/deceleration demands of competitive soccer. 

     
Author Group Method Thresholds Observations 

 

Osgnach et al. 
(2010) 

Elite Male 
 
Italian 
(Serie A)  
 
(n = 399) 

SICS Automated 
tracking system 

ACC and DEC ±; 
Max: < 3.0 m·s -2;  
HI ACC: 3.00 to 2.00 m·s -2 
MO ACC: 2.00 to 1.00 m·s -2 
LO ACC: 1.00 to 0.00 m·s -2. 
 

Low running speeds can generate higher 
metabolic demands based on rate of 
acceleration.  

Bradley et al. 
(2010) 

Elite Male 
 
English 
(Premier League) 
 
(n = 100) 

ProZone MO ACC: 2.5 to 4.0 m·s -2. 
HI ACC: > 4.0 m·s -2. 

No differences between halves.   

Di Salvo et al. 
(2009) 

Elite Male 
 
English  
(Premier League) 
 
(n = 563) 

ProZone Explosive sprints > 3.0 m·s -2. 
Leading sprints < 3.0 m·s -2. 

Explosive sprints: CD>FW, CMF >WD; 
Leading sprints: FW>CD, WD>CMF  
(p < 0.001).   

Varley & 
Aughey 
(2013) 

Elite Male 
 
Australian  
(A League) 
 
 
(n = 29) 

GPS (SPI Pro)  
5 Hz 

ACC 0 to 1, 1 to 2, 2 to 3, 3 to 4, 
>4 m·s -2. 
HI ACC > 2.78 m·s -2. 

HI ACC: WD > CD, WMF & FW, p = 0.05. 
LO ACC: WD > CD, CMF, FW. 
 
8 fold more maximum ACC than sprints. 

Key: ACC = acceleration; DEC = deceleration, WD: wide defender; CD; centre defender; CDM: centre defensive midfielder; CAM: centre 
attacking midfielder; FW: forward. 
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2.2 Situational variables influencing physical performance 

Analysis of the physical performance of soccer players should not take place in isolation 

because of the myriad of situational variables that can influence match-play.  Indeed, 

physical performance is not stable and exhibits match-match variation, shaped by the 

demands each fixture and the individual’s ability to regulate their work rate (Gregson et 

al., 2010), and seasonal variation due to longitudinal changes in fitness status (Gregson 

et al., 2010; Mohr, Krustrup & Bangsbo, 2003; Rampinini et al., 2007b).   

 

Match-match variation was investigated by Mohr, Krustrup & Bansgbo (2003) over two 

consecutive games within 3 weeks involving 18 players from a single club, reporting CV 

3.1 % for TD and 9.2 % for HSR.  In contrast, Rampinini et al. (2007b) analysed 20 

players during 2 games in one week, reporting CV 14.4 % for VHSR.  The generalisability 

of these findings is limited given the relatively small sample sizes, and in a much larger 

study (n = 485) over three consecutive seasons Gregson et al. (2010) reported HSR 

activity may vary ~15 – 30% between games.  The large discrepancies between the studies 

highlight the importance of measuring variability on a club-wise basis to retain specific ity 

for the target group (Carling et al., 2016).    

 

When analysed by playing position, HSR appears to vary more for central positions than 

wide players.  Gregson et al. (2010) reported reported greater variability in the HSR and 

sprinting distances of CD (CV 18.8 % ± 5.9 & 16.8 % ± 6.3) and CMF (CV 36.4 % ± 

10.4 & 33.6 % ± 11.1) compared to WD (CV 17.9 % ± 6.6; 18.8 % ± 6.8) and WMF (CV 

29.4 % ± 10.9; 26.9 % ± 10.2) (p <0.05).  Similarly, Bush, Archer, Hogg & Bradley 

(2015) reported greatest variability amongst CD vs. WMF for HSR (CV 20.2 % ± 8.8 vs. 

CV 13.7 % ±7; p < 0.05, ES 0.4-0.8) and sprinting (CV 32.3 % ± 12.8 vs. 22.6 % ± 11.2; 
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p < 0.05, ES 0.5-0.8).  These differences are consistent with superior physical capacities 

of WD as assessed by intermittent running tests (Mohr, Krustup & Bangsbo, 2003; Reilly, 

Bangsbo & Franks, 2000) and represent a superior recovery capacity. 

 

In contrast to match-match fluctuations in performance, seasonal trends exhibit greater 

variation and Mohr, Krustrup & Bangsbo (2003) reported HSR varied CV 24.8 %, 

suggesting fitness status improves through the competitive phase (Rampinini et al., 

2007b). 

 

Contemporary research asserts that influences on performance may include the strategic 

approach (playing formation and playing position), match status, quality of opposition, 

game location, fixture congestion and interaction effects (Lago- Peñas, 2009).  Strategic 

decisions dictate playing formation and intend to optimise offensive and defensive 

prowess (Bangsbo & Petersen, 2000).  By application, team tactics and strategy may limit 

the opportunity to express physical capacity, and differences in physical performance 

between playing formations and playing positions, are interpreted cautiously because they 

do not necessarily reflect differences in physical capacity.   

 

Anecdotally, changes in playing formation are assumed to impact on work rate, yet 

research is surprisingly limited.   Analysis of the effect of playing formation on the 

physical performance of the reference team (Bradley et al., 2011) and of the opposition 

formation on the reference side (Carling, 2011) both report that the gross impact is 

minimal.  However, the tactical approach of the reference team does evoke differ ing 

physical responses, with ball possession an important consideration. ~30-40 % more HSR 

was completed in a 4-4-2 and 4-3-3 when in possession compared to a 4-5-1 (Bradley et 
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al., 2011), and in contrast, more was completed in a 4-5-1 when not in possession, 

compared to 4-4-2 and 4-3-3.  Coaching philosophy dictates that 4-4-2 and 4-3-3 be 

inherently offensive, and players are expected to advance into the attacking third.  In 

contrast, 4-5-1 is more defensive and characterised by a reinforced midfield zone (Bradley 

et al., 2011), and players naturally curtail their offensive work rate, and accumulate more 

distance when defending.     

 

The strategic role of each playing position also shapes their activity profile.  As a function 

of their combined offensive and defensive role, MF tend to cover greater TD and are 

stationary for less time than other positions (Bangsbo, 1994; Bloomfield, Polman & 

O’Donoghue, 2007; Reilly & Williams, 2003).  Wide players and FW tend to dribble or 

run with the ball over greater distances and with greater frequency than other positions.  

Finally, CD and FW tend to complete more jumps to head the ball and DEF engage in 

more tackles (Bangsbo. 1994; Bloomfield, Polman & O’Donoghue, 2007; Reilly & 

Williams, 2003).   

 

In relation to HSR, inferior distances are common amongst CD (Buchheit et al., 2010a; 

Da Silva, Kirkendall & Neto, 2007; Strudwick & Reilly, 2001), whereas greater TD are 

completed by WD/WMF and FW (Buchheit et al., 2010a; Da Silva, Kirkendall & Neto, 

2007).  Sprint activity mirrors that of HSR, and where the distinction is made, WMF and 

FW, tend to complete greater sprint activity (Buchheit et al., 2010a; Di Salvo et al., 2010; 

Mohr, Krustrup & Bangsbo, 2003; Rampinini et al., 2007a).  Shorter recovery periods 

reported amongst WD (Da Silva, Kirkendall & Neto, 2007) also confirms that the 

locomotor activity of wide players tends to be higher than all other positions.   
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Tactical changes made in response to changes in the scoreline also affect work rate.  When 

winning, the desire to consolidate an advantage promotes positional discipline, curtailed 

offensive ambition and often reduced possession (James, Mellalieu & Hollely, 2002; 

Lago & Martin, 2007).  Concurrent with this change is a reduction in low speed running 

(LSR) and moderate speed running (MSR) (Lago et al., 2010) and HSR compared to 

when the scoreline was level, but this only persisted for ~10 minutes (O’Donoghue & 

Tenga, 2001).  The impact of losing may be unique to the team and their reaction to this 

situation, for example; increases in HSR reflect the desire to regain a foothold in the game 

(Bradley et al., 2013b; Bradley & Noakes, 2013) but equally, reductions in work rate may 

reflect a loss of motivation (Lago et al., 2010; O’Donoghue & Tenga, 2001).  Result status 

also affects positional work rate; with a large winning margin, CD completed less HSA 

and sprinting compared to a competitive game or a heavy loss (p < 0.01).  Predictably, 

the opposite was reported for a FW in the same situations (p < 0.05) (Bradley & Noakes, 

2013) reflecting enhanced motivation to score.   

 

A final situational variable reported to impact on physical performance is the fixture 

schedule.  Despite the prevalence of post competition muscle soreness and concurrent 

declines in muscle power (Mohr, Krustrup, Nybo, Nielsen & Bangsbo, 2004; Mohr, 

Randers, Bischoff, Krustrup, Mujika, Santiseban, Solano, Peltola, Hewitt & Zubillaga, 

2010; Paulsen, Ramer Mikkelsen, Raastad & Peake, 2012) and field based measures of 

HSA (Krustrup, Jensen, Mohr & Zebris, 2010), changes in locomotor activity are minimal 

during fixture heavy periods (Carling & Dupont, 2011; Dupont, Nedelec, Berthoin, 

McCall, McCormack & Wisløff, 2010; Odetoyinbo, Wooster & Lane., 2007; Rey et al., 

2010).  Nevertheless, periods of fixture congestion are comparatively rare, and two games 

in seven days are normal amongst the top European leagues.  Notable exceptions to this 

are limited to Easter and Christmas periods, but the latter is only applicable to countries 
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that do not incorporate a mid season break.  Thus, whether fixture congestion is a geniune 

concern within the domestic calendar is unclear, especially when player rotation is used 

to manage an individual’s fatigue status (Carling, Gregson, McCall, Moreira, Wong & 

Bradley, 2015).  

 

2.3 Evidence of fatigue and the impact on physical performance 

The key objective of conditioning programmes is the inducement of adaptation in systems 

crucial for competition (Reilly, Morris & Whyte, 2009) with the implicit aim of reducing 

a decline in physical performance.  In this respect, fatigue is defined as a reduction in 

maximal power output, or force generation, associated with prolonged exercise (Hawley 

& Reilly, 1997; Reilly, 1994, Waldron & Highton, 2014), that manifests itself as a decline 

in work rate (Reilly, Drust & Clarke, 2008).  The mechanisms contributing to fatigue can 

be grouped under central or peripheral factors and may act in isolation, but more likely in 

combination, to negatively affect performance (Waldron & Highton, 2014).  Importantly, 

this definition of performance relates to locomotor activity, which includes movement 

distances or intensity (speed) of movement (Waldron & Highton, 2014), but not decision-

making or technical components of the game, although these too might be sensitive to 

changes in fatigue status (Badin, Smith, Conte & Coutts, 2016; Knicker, Renshaw, 

Oldham & Cairns, 2011).   

 

Peripheral fatigue refers to a biochemical change at the muscular level that inhibits the 

capacity to complete work (Krustrup, Mohr, Steensberg, Bencke, Kjaer & Bangsbo, 

2006b; Mohr, Krustrup & Bangsbo, 2003); in contrast, central fatigue refers to a reduction 

in central motor drive, or motor unit recruitment (Amann, 2011).  Contemporary research 

has also emphasised the integral role of the Central Nervous System, or the Central 
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Governor (Noakes, 2012), that functions as a regulator of work rate to avoid premature 

fatigue (Noakes, St Clair Gibson & Lambert, 2005).  Fatigue in soccer can therefore be 

regarded as multi- faceted and cannot be attributed to a single source. 

 

Fluctuations in physical performance during match-play are evidenced by an apparent 

decay in work capacity observed at three main junctions; following intense periods of 

activity, during the initial phase of the second half and towards the end of the game (Mohr, 

Krustrup & Bansgbo, 2003).  Observations of reduced physical performance following 

intense periods of activity, are consistent with Castastrophe Theory (Noakes, St Clair 

Gibson & Lambert, 2005) referring to homeostatic disturbances at the muscular level that 

impair force development (Krustrup et al., 2006b; Mohr, Krustrup & Bangsbo, 2003).  

Elevated blood lactate (BL) and associated Hydrogen (H+) accumulation are observed 

during intense periods of match-play, providing some support for the contribution of these 

mechanisms (Mohr, Krustrup & Bangsbo, 2003).  Evidence of  game related metrics 

include a 12-15 % reduction in HSR following the peak 5 minute period (Bradley et al., 

2010; Mohr, Krustup & Bangsbo, 2003).  However, attributing these reductions to 

peripheral factors implies that fatigue is task dependent and fails to account for the 

reduction in work rate in the latter stages of games.  Alternatively, advocates of the 

Central Governor Theory, suggest that players pace themselves through games (Edwards 

& Noakes, 2009), and, following periods of intense activity, will self select a lower work 

rate to facilitate a more rapid recovery.  According to Edwards & Noakes (2009), the 

fluctuation of periods of high and lower work rate represents the micromanagement of 

energy expenditure, that contributes to a wider strategy, ensuring adequate reserves are 

available for the remainder of the game.  
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In the 15 minute periods after half time, players are assumed to be well rested, yet 

performance is often impaired with reductions in TD and HSA common (Bradley et al., 

2009; Mohr, Krustrup & Bangsbo, 2003; Weston, Batterham, Castagna, Portas, Barnes, 

Harley & Lovell, 2011).  Although half time provides the opportunity to rehydrate, ingest 

food and receive tactical instruction, passive recovery also facilitates a decline in 

muscular temperature, which may reach 2-3 % (Lovell, Kirkie, Siegler, Mcnaughton & 

Greig, 2007; Mohr et al., 2004).  Reductions in muscular temperature are linked to 

reduced lower body power (Sargeant, 1987) as evidenced by reductions in sprinting, 

jumping and strength (Mohr et al., 2004; Lovell, Midgley, Barrett, Carter & Small, 

2013b).  Following 4-10 minutes of the second half, the capacity to complete HSA was 

recovered, asserting that a decline in muscle temperature contributes to impaired activity 

(Lovell et al., 2013b), and supports the use of a half-time re-warm intervention to 

attenuate any temperature decline.   

 

Reductions in TD (~10 %) during the second half demonstrates a lower work rate 

(Bangsbo, Nørregaard & Thorsø, 1991; Carling & Dupont, 2011; Mohr, Krustrup & 

Bangsbo, 2003; Reilly, Drust & Clarke, 2008).  No single causal factor explains these 

phenomena and several contributory mechanisms are suggested, including; reduced 

substrate availability (Krustrup et al., 2006b), dehydration, hyperthermia (Magal, 

Webster, Sistrunk, Whitehead, Evans & Boyd, 2003), mental fatigue (Reilly & Williams, 

2003) and the Central Governor Theory (Edward & Noakes, 2009).  In contrast, research 

is conflicting about a reduction of HSA between halves; some authors report reductions 

ranging between 5-9 % (Barros et al., 2007; Mohr, Krustrup & Bangsbo, 2003), yet 

elsewhere no reductions were found (Bradley et al., 2009; Di Salvo et al., 2007).   
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Segmenting the game into 15 minute periods provides greater insight into the fluctua t ion 

in work rate.  Amongst elite males, Bradley et al. (2010) reported 18 % less HSR, 12 % 

less sprinting and 17-28 % longer rest intervals, during the last 15 minutes of the game 

compared to the opening period.  However, the outcome of the game may be decided by 

the 75 minute mark, leading to a concurrent loss of motivation and work–rate in the losing 

side, meaning any comparison with this period may be misleading.   

 

Inferences about impaired physical performance during the second half are commonly 

derived through comparison with the opening period of the first half, which is shown to 

be an atypical period of the game (Carling et al., 2008; Weston, Drust & Gregson, 2011).  

This period tends to be frantic; players seek to impose themselves on their opponent, and 

motivation and tempo are at their highest (Carling et al., 2008; Weston, Drust & Gregson, 

2011).  To nullify this effect, an alternative method using relative comparison using 

relative mean distances (m·min-1) was used in youth football, and this confirmed 

substantial reductions in HSA, but these were limited to the opening 5 minute period 

(Lovell, Barrett, Portas & Weston, 2013a).  It remains unclear whether this represents an 

impaired capacity, a self-imposed reduction in work rate linked to tactical instruction, or 

a pacing strategy to minimise fatigue in the latter stages of the game.  Because players 

are able to complete an additional 30 minutes during tournament play (Njororai, 2010), 

this would support the standpoint that players do not express their full physical potential 

during match-play. 

 

Concurrent with physical performance, players must also exhibit technical prowess and 

changes in skill related performance are inconsistent (Carling & Dupont, 2011; Rampinini 

et al., 2009a).  A drop in the number of ball involvements during the second half 
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(Rampinini et al., 2009a), may, initially, appear to indicate fatigue, yet might be explained 

by a strategic decision or change in style of play.  On the other hand, pass completion 

remains stable between halves (Carling & Dupont, 2011; Rampinini et al., 2009a), 

illustrating that reductions in physical performance are not, necessarily, to the detriment 

of technical performance. 

 

2.4 Monitoring the physical response to soccer   

Traditionally group training sessions are common in soccer and a generic approach to 

conditioning has prevailed for many years, but this may provide a suboptimal stimulus 

for the fitter players (Hoff, Wisløff, Engen, Kemi & Helgerud, 2002; Impellizze r i, 

Marcora, Castagna, Reilly, Sassi, Iaia & Rampinini, 2006).  Physiological adaptation to 

training is a product of training load, and the magnitude of adaptation is largely dependent 

on the dose response relationship (Stagno, Thatcher & Van Someren, 2007).  Monitoring 

training load is increasingly common during practice and competition, and facilita tes 

micro-management on an individual basis (Akubat, Barrett & Abt, 2014; Gaudino, Iaia, 

Strudwick, Hawkins, Alberti, Atkinson & Gregson, 2015).   

 

When monitoring training it is possible to evaluate both internal and external load.  

Internal load refers to the physiological response to a training stimulus (Impellizzeri et 

al., 2004), and typically is evaluated by examining heart rate data (mean heart rate, time 

spent in zones of maximum heart rate) (Achten & Jeukendrup, 2003), oxygen 

consumption (Burnley & Jones, 2007), blood lactate concentration (Bourgois, Coorevits, 

Danneels, Witrouw, Cambier & Vrijens, 2004) or RPE (Impellizzeri, Rampinini, Coutts, 

Sassi & Marcora, 2004).   
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In contrast, external load refers to the combined locomotor stress and mechanical load 

experienced during match-play.  Typically, time motion analysis systems have evaluated 

locomotor metrics, such as distances completed in various categories of movement speed 

(i.e. moderate speed running, high speed running and sprinting) (Mohr, Krustrup & 

Bangsbo, 2003; Castagna, D’Ottavio & Abt, 2003).  However, a truer representation of 

external load is achieved by incorporating GPS and accelerometer technology to quantify 

mechanical work; i.e. acceleration/deceleration activity, during jumping, changing 

direction and impact/collisions (Boyd et al., 2013; Varley & Aughey, 2013).  The 

following section reviews, in detail, the methods of monitoring, and evaluating, interna l 

and external training load. 

 

2.4.1 Internal training load 

Heart rate (HR) monitoring is used extensively in soccer as a non-invasive method to 

monitor the physiological response to training and match-play (Dellal et al., 2011; Owen, 

Twist & Ford, 2004).  Based on the relationship between HR and VO2max during steady 

state exercise (Achten & Jeukendrup, 2003; Alexiou & Coutts, 2008; Bernard, Gavarry, 

Bermon, Giacomoni, Marconnet & Falgairette, 1997; Krustrup & Bangsbo, 2001), 

average game intensity is estimated to be ~85-95 % maximum heart rate (MHR) or 75-

85 % VO2max (Ali & Farrally, 1991; Bangsbo, 1994; Helgerud, Engen, Wisløff & Hoff, 

2001; McMillan, Helgerud, Macdonald & Hoff, 2005; Reilly & Williams, 2003).   

 

Importantly, the estimation of intensity based on HR is not reliable during intermit tent 

activity, because of the time delay response (Alexiou & Coutts, 2008; Borreson & 

Lambert, 2009).  Soccer features numerous discrete activities including, jumping, 

sprinting, tackling and turning (Bloomfield, Polman & O’Donoghue, 2007) and their 
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duration is too short to elicit changes in HR placing a reliance on anaerobic metabolism 

(Achten & Jeukendrup, 2003; Borresen & Lambert, 2009).  Furthermore, HR may 

overestimate physical stress based on dehydration, hyperthermia, prior exercise, diet and 

mental stress (Borreson & Lambert, 2009; da Silva, Fernandes & Fernandez, 2008).  In 

short, HR alone is not suited to monitoring soccer activity (Little & Williams, 2007).   

 

Rate of Perceived Exertion (RPE) is a simple, non-invasive method for monitor ing 

internal training load (Impellizzeri et al., 2004) that has demonstrated reliability for 

measuring steady state (Foster, Florhaug, Franklin, Gottschall, Hrovatin, Parker, Doleshal 

& Dodge, 2001) and intermittent activity (Foster et al., 2001; Impellizzeri et al., 2004).    

As a derivative of RPE, sessional RPE (sRPE) (RPE * session duration) provides a global 

indication of workload, and is correlated (r = 0.50-0.96) with heart rate based assessments 

of training load in field based intermittent sports (Alexiou & Coutts, 2008; Coutts , 

Rampinini, Marcora, Castagna & Impellizzeri, 2009; Impellizzeri et al., 2004; Little & 

Williams, 2007; Lovell, Sirotic, Impellizzeri & Coutts, 2013c).   

 

More recently, moderate correlations were reported between sRPE and soccer specific 

external load metrics (HSR; r = 0.11; CI 0.07–0.16; accelerations; r = 0.37; CI 0.33–

0.41), illustrating that sRPE presents a useful global indicator of soccer specific load 

(Gaudino et al., 2015).  It is noteworthy that sRPE represents the cumulative load of the 

whole session, and soccer training incorporates a range of activities that may evoke 

different physiological responses.  For example, small-sided games require frequent 

changes of direction providing a greater internal and external load, compared to larger 

scale games and linear running (Gaudino, Alberti & Iaia, 2014).  Evidently, the ability of 

sRPE to differentiate between individual sessions components is limited. Nevertheless it 
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presents a useful, low cost global estimation of training load (Gaudino et al., 2015; 

Impellizzeri et al., 2004; Lovell et al., 2013c). 

 

A limitation of RPE is that it represents an individual’s self perception of training stress 

(Borg, 1982) and is influenced by a range of psychological factors, including; stress, 

fatigue, motivation or session enjoyment (Impellizzeri et al., 2004; Little & Williams, 

2007; Lupo, Capranica & Tessitore, 2014; Snyder, Jeukendrup, Hesselink, Kuipers & 

Foster, 1993).  Psychological factors reportedly account for up to 30 % variability in 

sRPE, meaning athletes may under, or, overestimate their training load (Impellizzeri et 

al., 2004; Morgan, 1994; Winter, Jones, Davison, Bromley & Mercer, 2007).  Delaying 

the assessment of sRPE by 30 minutes is recommended to avoid the influence of dyspnea 

or temporary fatigue (Impellizzeri et al., 2004; Kelly, Gregson, Reilly & Drust, 2013), 

and a period of familiarisation improves measurement reliability (Alexiou & Coutts, 

2008; Impellizzeri et al., 2004; Lovell et al., 2013c).   

 

As a metabolic by product of anaerobic metabolism, blood lactate measurement is a valid 

method of predicting endurance performance (Bourgois et al., 2004) and is used widely 

to individualise endurance training programmes (Dantas, Doria, Pietrangelo, FanòIllic, 

Naknamura, Rossi & Rosa, 2015).  Muscular lactate accumulation occurs during activity 

above the anaerobic threshold, and is linked to muscular acidosis and an associated 

decline in work rate (Allen, Lamb & Westerblad, 2008; White & Wells, 2015).   The 

intermittent nature of soccer dictates that the contribution of anaerobic metabolism to 

energy production may be elevated during periods of high-intensity activity (Bangsbo, 

Mohr & Krustrup, 2006).  During match-play average values range from 2-14 mmol·L-1  

(Bangsbo, 1994; Krustrup et al., 2006b; Reilly, 1997), but may reach >16 mmol·L-1  



 

47 
 

during elevated periods of activity (Krustrup et al., 2006b), suggesting BL may be a valid 

method to monitor work rate in soccer.  However, the relationship between BL, muscle 

lactate accumulation and fatigue during intermittent activity is more complex.  Periods of 

reduced work rate accelerate muscular lactate clearance (Devlin, Paton, Poole, Sun, 

Ferguson, Wilson & Kemi, 2014; Krustrup et al., 2006b) meaning BL is not an accurate 

reflection of the muscular environment (Bangsbo, Johansen, Graham & Saltin, 1993; 

Krustrup, Mohr, Amstrup, Rysgaard, Johansen, Steensberg, Pedersen & Bangsbo, 2003; 

2006b).    Furthermore, BL values during match-play may reflect an accumulation of prior 

activity rather than any single bout of activity (Bangsbo, Mohr & Krustup, 2006).  In 

addition, that a slight reduction in muscular pH was weakly correlated to decreased sprint 

performance during match-play (r = 0.13–0.14) (Krustup et al., 2006b), asserts that 

muscle lactate accumulation is not a causal mechanism of fatigue.  Given this apparent 

limitation, BL is also intrusive, expensive and labour intensive, leading practitioners to 

favour alternative methods of monitoring training load, including HR and sRPE (Dantas 

et al., 2015; Gaudino et al., 2015).   

 

2.4.2 External training load 

GPS is satellite navigational technology devised originally for military purposes, but in 

their portable form are used in everyday life to quantify distance travelled and velocity, 

in air, land and sea environments (Cummins, Orr, O’Connor & West, 2013).   Positiona l 

location is determined through communication with orbiting satellites, and optimum 

satellite orientation termed Dilution of Precision (DOP) is achieved with one satellite 

directly overhead and a minimum of four spaced equally around the horizon (Witte & 

Wilson, 2004).   Calculation of distance is reliant on an internal atomic clock that 

measures the time taken for a signal originating from the satellite to reach the GPS unit 

(Aughey, 2011), and deviation from the initial location can be used to determine 
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movement velocity.    The frequency at which GPS gathers data is specifica t ion 

dependent, ranging from 1–15 hertz (Hz) rate of refresh. 

 

Concurrent with the increasing presence of sports science in soccer has been the desire to 

monitor the physical rigours of training and competition more accurately.  Modern 

portable GPS circumvents the major limitation of stadia housed time motion analysis 

systems (Witte & Wilson, 2004), and, GPS is used extensively at the elite level.  The 

capacity to record basic physical movements, i.e.; distance travelled, the velocity of 

movement, acceleration and decelerations, has led to many studies describing the work 

rate and movement patterns (external load) within; Rugby League (Austin & Kelly, 2013; 

McLellan, Lovell & Gass, 2011; Waldron, Twist, Highton, Worsfold & Daniels, 2011), 

Australian Rules Football (AFL) (Brewer, Dawson, Heasman, Stewart & Cormack, 2010; 

Coutts, Quinn, Hocking, Castagna & Rampinini, 2010; Gray & Jenkins, 2010; Wisbey, 

Montgomery, Pyne & Rattray, 2010), Field Hockey (Gabbett, 2010; Jennings, Cormack, 

Coutts & Aughey, 2012), Cricket (Petersen, Pyne, Portus & Dawson, 2009; 2011) and 

Soccer (Portas, Harley, Barnes & Rush, 2010).  Until recently, GPS was not permitted 

during official soccer fixtures, and match data reported in the literature was based on non-

competitive fixtures.  However, in 2015, this rule was relaxed allowing the use of 

Electronic Performance and Tracking System (FIFA, 2015).  Acceptance of GPS 

technology into the mainstream of performance analysis is contingent on acceptable 

validity and reliability (Johnston, Watsford, Kelly, Pine & Spurris, 2014; Rawstorn, Gant, 

Maddison, Ali & Foskett, 2014).  Validity is essentially the level of agreement between 

the new technology and the criterion, or gold standard measure, whereas, reliability 

determines the reproducibility of the measurement.      
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2.4.2.1 Measurement of distance: Validity and reliability 

Analysis of the validity of GPS to measure distance is complicated by the lack of a 

criterion measure.  Best practice dictates that validation be determined by comparing the 

distance of a predetermined course, measured using a trundle wheel or tape measure 

(Varley & Aughey, 2013).  However, both methods have their limita tions and conclusions 

drawn about the validity of GPS based on these comparisons are best interpreted as 

indicative, rather than definitive.  Nevertheless, early research highlighted the tendency 

for GPS to overestimate distance during continuous motion (see Table 3, p.55), yet the 

functional size of the error was relatively small, leading to the conclusion that GPS was 

suitable for this activity (Barberó-Álvarez, Coutts, Granada, Barebero-Álvarez & 

Castagna, 2010; Edgecomb & Norton, 2006; Townshend, Worringham & Stewart, 2008; 

Williams & Morgan, 2009).   However, soccer is multi-directional and features 

acceleration, deceleration and changes of direction, therefore, the impact of these 

variables on the validity of GPS is a more pertinent discussion.  The current consensus is 

that measurement error is magnified as speed increases and distance travelled decreases 

(Jennings, Cormack, Coutts, Boyd & Aughey, 2010b).  During separate linear trials 

featuring walking and sprinting over 10 m, the error of measurement (SEE) of 1 and 5 Hz 

models increased with greater movement speed, but decreased with increased sampling 

frequency; walking: 1 Hz: SEE 23.8 % (± 5.9); 5 Hz: SEE 21.3 % (± 5.8); sprinting: 1 

Hz: SEE 32.4 % (± 6.9); 5 Hz: SEE 30.9 % (± 5.8).   Similarly, when walking and 

sprinting over 20-40 m the greater errors were observed with higher speeds; walking: 1 

Hz: SEE 15.0 % (± 3.2); 5 Hz: SEE 11.9 % (± 2.5); sprinting: 1 Hz: SEE 18.5 % (± 3.9); 

sprinting: SEE 12.9 % (± 2.7) (Jennings et al., 2010b).   Similar observations were 

reported by Castellano, Casamichana, Calleja-González, San Román, & Ostojic, (2011),  

Petersen et al. (2009) and Portas et al. (2010) implying that GPS sampling at lower 

frequencies is not suitable for high-speed movements particularly over short distances.  
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Multi-directional activities involving changes of direction are used to replicate sports 

activity, and during trials within the penalty area, errors were more pronounced with 

lower sampling frequency consistent with linear tests; SEE 1 Hz; 6.6–8.0 %; 5 Hz; 2.2–

4.4 % (Portas et al., 2010).   

 

During sprint trials incorporating gradual and acute turns, 1 Hz GPS reported greater error 

than 5 Hz; gradual turn: 1 Hz: SEE 12.7 % (± 3.0); 5 Hz: SEE 11.7 % (± 3.0); acute turn: 

1 Hz: 12.5 % (± 3.3); 5 Hz: SEE 11.5 % (± 3.0) (Jennings et al., 2010b).  A similar trend 

for lower error with higher sampling frequency was also reported elsewhere (Coutts & 

Duffield, 2010; Grey et al., 2010; Rawstorn et al., 2014).  Similarly, 10 Hz GPS reported 

SEM > 6 % during linear 15 m trials, > 3 % during 30 m trials (Castellano et al., 2011) 

and minimal differences during a team sport simulation (Johnston et al., 2014) hence 10 

Hz GPS offer a greater validity of distance measurement than 1 and 5 Hz models. In 

summary, greater sampling frequencies increase the validity of measurement during 

multi-directional activity.    

 

Of interest to practitioners is the inter unit reliability, this being the agreement between 

separate units over the same distance, and intra unit reliability, or the ability of the same 

GPS to reproduce a measurement.  Broadly, the factors that affect validity also affect the 

reliability of GPS to measure distance.  Thus, high-speed, multi-directional activities over 

short distances demonstrate the greatest issues with reproducibility (Coutts & Duffie ld, 

2010; Jennings et al., 2010b; Johnston et al., 2014).   

 

During sprint activity involving tight changes of direction, reliability was poorer in 1 Hz 

than 5 Hz GPS (CV 12.0 % vs. 9.2 %) (Jennings et al., 2010b) consistent with previous 
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findings. However, comparison to a 10 m linear sprint exhibited inferior reliability (1 Hz: 

77.2% vs. 5 Hz: 39.5 %) (Jennings et al., 2010b).  Although multi-direction courses 

incorporate more changes in speed, the rate of acceleration would be smaller compared 

to a linear sprint, meaning acceleration is a key limiting factor in the reliability of GPS to 

measure distance (Jennings et al., 2010b).  During change of direction (COD) tasks the 

participant is assumed to run from point to point, which is not the case, rather, participants 

deviate from the true path and the distance reported represents the actual path taken 

(Coutts & Duffield, 2010).  Similarly, while turning, the participant alters their body 

position and leans into the turn, shortening the path adopted by the GPS (Witte & Wilson, 

2004).  The error in measurement is also exacerbated during HSR/sprinting when body 

lean is at its greatest (Gray & Jenkins, 2010; Townshend, Worringham & Stewart, 2008).  

Correction of body lean reduced measurement bias by half during nonlinear running, 

emphasising that reliability statistics overestimate measurement error (Gray & Jenkins, 

2010).   

 

Sampling frequency is also a limiting factor, and improved reliability is reported amongst 

10 Hz GPS evidenced by CV < 1.5 % during 15-30 m trials (Castellano et al., 2011). 

Interestingly, amongst team sport simulation trials, reliability was superior in the 10 Hz 

rather than the 15 Hz model (TEM 1.3 % vs. 1.9 %) (Johnston et al., 2014). However, 

both represent a good level of repeatability for determining TD.  TEM during HSR ranged 

11.5-12.1 %, which is an improvement compared to 1 Hz and 5 Hz models (32 % & 17 

%) (Coutts & Duffield, 2010; Johnston, Watsford, Pine, Spurrs, Murphy & Pruyn, 2012) 

supporting improvements in sampling frequency will improve reliability further.   
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By comparison, intra unit studies are fewer, and variability in measurements has led to 

the recommendation that athletes use the same unit wherever possible (Coutts & Duffie ld, 

2010; Duffield, Reid, Baker, & Spratford, 2010; Petersen et al., 2009).  During linear 

trials, less variability was found in comparison to nonlinear trials when walking (CV 1.85 

% & 2.71 %) and sprinting; (CV 2.79 % & 4.80 %) (Gray & Jenkins, 2010).  Also, during 

team sports simulation, greater variability is observed during very high-speed movement 

(CV 11.5-30.45 %) and HSA (CV 11.2-32.4 %), compared to low-speed (CV 4.3-12.5 

%) (Coutts & Duffield, 2010).  Castellano et al. (2011) also reported the tendency for 

greater measurement stability over longer distances (CV 1.3-0.7 % over 15 m and 30 m). 

 

In accounting for intra unit variability during repeated trials, it is that plausible satellite 

availability, or orientation, may be a contributory factor, yet, during trials held at 09.00, 

13.00 and 16.00 on the same day, there were no significant differences (MacLeod, Morris, 

Nevill & Sunderland, 2009).  Assuming the prevailing weather conditions are stable, this 

suggests that time of day does not affect reliability. GPS reliability is optimal with an 

unobstructed view of the sky, and the extent to which variable weather conditions would 

influence reliability is unclear.   

 

GPS manufacturers regularly release software updates to eliminate bugs or improve data 

analysis, and measures of distance were unaffected during intra unit trials held before, 

and after, software update (Buchheit, Al Haddad, Simpson, Palzzi, Bourdon, Di Salvo & 

Mendez-Villanueva, 2014).  However, measurement of acceleration and deceleration 

activity was significantly changed (Buchheit et al., 2014a) suggesting that data reliability 

might be dependent on the nature of the update.  From a practical standpoint, this 
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complicates comparison of historical data gathered by units of differing software 

versions, model or manufacturer (Buchheit et al., 2014a).   

 

2.4.2.2 Measurement of velocity: Validity and reliability 

GPS categorises athletic activity into defined thresholds, and measurement validity is 

crucial.  Criterion measures used within literature are electronic timing gates and lasers, 

which both demonstrate excellent validity and reliability (Varley, Fairweather & Aughey, 

2012).  Limitations in measuring velocity are also acceleration dependent.  During linear 

trials, 5 Hz and 10 Hz GPS displayed greater underestimations of velocity when 

accelerations commenced from lower initial movement speeds; 1-3 m·s-1: Bias -9.6 % (± 

1.3); -2.9 % (± 0.3); 3-5 m·s-1: Bias -5.0 % (± 1.0); -3.6 % (± 0.3); and 5-8 m·s-1; Bias -

5.2 % (± 1.4); -2.1 % (± 0.2) (Varley, Fairweather & Aughey, 2012) (See Table 4, p.58).  

During linear trials where 10 Hz GPS units were affixed to a towed sled, errors also 

increased in an acceleration dependent manner; 0-1 m·s-2; CV 0.7 % (± 0.1); 1-2 m·s-2; 

CV 1.1 % (± 0.1); 2-3 m·s-2; CV 2.2 % (± 0.2); 3-4 m·s-2; CV 3.9 % (± 0.4); >4 m·s-2; 

CV 9.1 % (± 1.0) (Akenhead et al., 2013).  Notwithstanding this evidence, it is noteworthy 

that the majority of accelerations during match-play occur < 2.0 m·s-2 and minimal 

distance is accrued > 4.0 m·s-2 (Akenhead et al., 2013; Russell, Sparkes, Northeast, Cook, 

Love, Bracken & Kilduff, 2016; Bradley et al., 2010) meaning 10 Hz GPS is suitable for 

measuring acceleration during the majority of soccer activities.   

 

Acceleration dependent limitations are also greater during accelerations from lower 

starting speeds, regardless of sampling frequency; 1-3 m·s-1: 5 Hz:  CV 16.2 % (± 1.99); 

10 Hz: CV 4.3 % (± 0.24); 3-5 m·s-1: 5 Hz:  CV 9.5 % (± 1.18); 10 Hz: CV 4.2 % (± 

0.26); 5-8 m·s-1: 5 Hz:  CV 11.0 % (± 2.29); 10 Hz: CV 1.90 % (± 0.15) (Varley, 
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Fairweather & Aughey, 2012).  However, the differences for the 10 Hz (CV 1.69-4.3 %) 

illustrate a good to moderate level of reliability during running involving accelerations.  

Similar observations during constant velocity (CV 2.0-5.3 %) and during movement 

involving deceleration (CV 6.0 %) assert that 10 Hz can provide reliable measures during 

soccer type activity (Scott, Scott & Kelly, 2014; Varley, Fairweather & Aughey, 2012; 

Vickery, Dascombe, Baker, Higham, Spratford & Duffield, 2014).    

 

Interestingly, inter unit reliability for peak speed was greater in the 10 Hz Minimax (TEM 

1.6 %) than the 15 Hz GPSports GPS (TEM 8.1 %) (Johnston et al. 2014).  Both margins 

represent a significant improvement compared to 1 Hz (<33 %) (Coutts & Duffield, 2010) 

and 5 Hz GPS (17 %) (Johnston et al., 2012) during similar activity, meaning both 10 and 

15 Hz can be used reliably (Johnston et al., 2014).  However, differences between the 

systems led the same authors to conclude that comparison between different 

manufacturers is not methodologically sound, in agreement with Buchheit et al. (2014a).  

  

The high-speed movement, and swift changes in direction characterising match-play, 

compromise the validity and reliability of GPS to measure velocity and distance.   

Literature has demonstrated that inaccuracies are strongly attributed to sampling 

frequencies meaning 1 Hz and 5 Hz models are likely suboptimal for measuring soccer 

activity.  Alternatively, 10 Hz GPS demonstrates acceptable validity and reliability for 

the measurement of velocity and distance during simulated team sport activity.  Best 

practice dictates that players use the same unit where possible in order to reduce the 

impact of inter unit measurement error.  Finally, comparison of units from different 

manufacturers should be done cautiously given the apparent differences in reliability.   
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Table 3:  A summary of research into the validity and reliability of GPS for measuring distance in team sport scenarios. 

Author GPS Model Hz Task Criterion 
measure 

Validity Reliability Conclusions 

Edgecomb & 
Norton (2006) 

GPSports Not 
stated 

Running around a 
marked oval 

Trundle 
wheel 

TE  
6.30 % (± 6.0). 

TEM  
5.50 %. 

GPS overestimated TD 

Petersen et al. 
(2009) 

GPSports 
and 
Catapult 

5 Hz Linear trials over 
varying running 
speeds 

Athletics 
track 

SEE 
0.50 % (± 0.20) – 
23.80 % (± 8.80) 

CV 
0.30 % (0.30-
0.50) – 30.0 % 
(23.20-43.30) 

Reduced validity / 
reliability with increasing 
movement velocities 

MacLeod et al. 
(2009) 

GPSports 1 Hz Various tasks to 
replicate Hockey 
activities 

Trundle 
wheel 

LOA  
2.50 m (± 15.80) 

 Error increased during 
movement incorporating 
frequent, tight changes of 
direction and backwards 
movement 

Gray & Jenkins. 
(2010) 

GPSports 1 Hz Linear course 
 
 
Nonlinear course 

Trundle 
wheel 

Bias  
2.00 % 
LOA  
-1.23 – 5.25 % 
Bias: -6.00 % 
LOA  
2.00 –  -13.40 %. 

 Validity and reliability of 
GPS is affected by 
velocity and path 
linearity 

Coutts & 
Duffield (2010) 

GPSports 1 Hz Multi-directional 
activity course 

Measuring 
tape 

<5.00 % CV  
3.60-7.10 % 

May not be reliable for 
higher speed activities 

Jennings et al. 
(2010b) 
 
 
 

Minimax 1 Hz 
and  
5 Hz 

Multi-directional 
activity course 

Measuring 
wheel 

SEE 
1 Hz:  
3.60 (± 0.60 %) 
 
5 Hz: 
3.80 (± 0.60 %) 

TE  
1 Hz: 4.60 m 
(±4.10-5.30) 
 
5 Hz: 4.70 m 
(±4.20-5.20) 

GPS unable to accurately 
assess movement during 
rapid speed over short 
distances, which are 
critical for team sports 



 

56 
 

Portas et al. 
(2010) 

Minimax 1 Hz 
&  
5 Hz 

Multi-directional 
activity course 
 
 
 
 
Soccer specific 
course 

Measuring 
wheel 

SEE  
1 Hz:  
1.80 – 2.70 %. 
5 Hz:  
2.20 – 3.60 %. 
 
1 Hz:  
1.30 - 3.00 %. 
5 Hz:  
1.50 – 2.20 %. 

CV 
1 Hz:  
4.13 – 7.71 % 
5 Hz:  
3.71 – 6.11 % 
 
1 Hz:  
2.03 – 4.86 % 
5 Hz:  
2.21 – 4.49 % 

GPS validity / reliability 
decreased with 
increasingly complex 
movement including tight 
turns. 

Jennings, 
Cormack, 
Coutts, Boyd & 
Aughey, 
(2010a). 
 

Minimax 5 Hz Multi-directional 
activity course 
 
Match-play 

Not stated  CV 
11.10 % (± 4.20) 
 

10.30 % (± 6.20) 

To minimise variability, 
the same unit should be 
worn by the same player 
repeatedly 

Castellano et al. 
(2011) 

Minimax 10 Hz Linear sprinting. Measuring 
tape 

 15m:  
TE 0.20 m 
SEM 10.90 %. 
 
30m:  
TE 0.30 m SEM: 
5.10 %. 

Validity improves over 
longer distances 

Waldron et al. 
(2011) 

GPSports 5 Hz Linear running. Measuring 
tape 

CV 
4.81 – 8.09 % 

CV 
1.99 – 2.30 % 

Systematic 
underestimation of 
distance 

Johnston et al. 
(2012) 

Minimax 5 Hz Multi-directional 
activity course. 

Measuring 
tape 

TEM  
<5.00 % 

TEM  
3.30 – 12.32 % 

Amount of error 
increased exponentially 
with the intensity of the 
exercise 

Rawstorn et al. 
2014. 

GPSports 15 Hz Loughborough 
Intermittent Shuttle 
Test and 
Curvilinear 
protocol. 

Measuring 
tape 

Shuttle run:  
r = 0.99.   
 
Curvilinear 
protocol:  
r = 1.00. 

Shuttle run:  
SEM 119 m;  
 
Curvilinear 
protocol:  
SEM 0 m. 

Multidirectional running 
compromised validity of 
measurement.  
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Vickery et al. 
(2014) 
 

Minimax 
and 
GPSports 

5 Hz  
&  
15 Hz 

Team sport 
simulation circuit. 

VICON SEE  
10.00-28.00 % 

90o COD;   
5 Hz: 
CV 17.7 % 
10 Hz: 
CV 6.2 %. 
 
45o COD;  
5 Hz:  
CV 22.7 % 
10 Hz: 
CV: 12 % 
 
Random COD;  
5 Hz: 
CV 22.8 % 
10 Hz: 
 CV 8.2 %. 

Greater reliability with 
increased sampling 
frequency. 
 
Reliability decreased 
with increased severity of 
turn. 
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Table 4:  A summary of research into the validity and reliability of GPS for measuring velocity in team sport scenarios. 

Author GPS 
Model 

Hz Task Criterion 
measure 

Validity Reliability Conclusions 

Macleod et al. 
(2009) 

GPSports 1 Hz Team sport 
simulation 
circuits 

Electronic 
timing 
gates 

T shaped shuttle:  
95 % LOA 0.00 (± 0.07); 
 
Linear shuttle:  
95 % LOA 0.00 (± 0.05); 
 
Zig zag shuttle:  
95% LOA -0.1 (± 0.08). 

 Provides a valid tool 
for measuring speed 
and distance during 
match-play. 

Barberó-
Álvarez  et al. 
(2010) 

GPSports 1 Hz Linear 
sprinting 

Electronic 
timing 
gates 

Fastest sprint time:  
R2= 0.93, p < 0.00. 

 Greater validity over 
longer distances 
(30m). 

Waldron et al., 
(2011) 

GPSports 5 Hz Linear 
sprinting 

Manual 
calculation 

10 m: CV 9.81 %;  
20 m: CV 8.54 %;  
30 m: CV 6.61 %. 

10 m: CV 1.13 %;  
20 m: CV 1.00 %; 
30 m: CV 1.35 %. 

Underestimation of 
velocity at all measure 
intervals.   

Johnston et al. 
(2012) 

Minimax 5 Hz Team sport 
simulation 
circuit and 
linear 
sprinting 

Electronic 
timing 
gates and 
radar gun. 

Average peak speed:  
no difference (no data 
reported). 
Instantaneous speed:  
r = 0.36 – 0.46. 

 Underestimated 
average, and 
instantaneous, peak 
speed.   

Varley, 
Fairweather & 
Aughey, 
(2012) 

Minimax 5 Hz 
&  
10 Hz 

Linear 
running 

Laser Constant velocity; 
1-3 m·s-2: CV 11.1 %  
(± 0.58); 8.3 % (± 0.27); 
  
3-5 m·s-2: CV 10.6 %  
(± 0.59); 4.3 % (± 0.59); 
 
5-8 m·s-2: CV 3.6 %  
(± 0.26); 3.1 % (± 0.26) 
 
 
 

Constant velocity; 
1-3  m·s-2: TEE 0.21 
(± 0.02) ; 0.12 (± 
0.00);  
 
3-5  m·s-2: TEE 0.27 
(± 0.03); 0.13 (± 0.01); 
 
5-8  m·s-2: TEE 0.35 
(± 0.05); 0.11 (± 0.01); 
 
 

Both 5 & 10 Hz 
underestimated 
velocity during 
acceleration. 
Constant velocity 
underestimated at 
higher velocities and 
overestimated at lower 
velocities. 
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Acceleration: 
1-3  m·s-2: CV 14.9 %  
(± 1.16); 5.9 % (± 0.23);  
 
3-5 m·s-2: CV 9.5 %  
(± 0.79); 4.9 % (± 0.21) 
 
5-8 m·s-2: CV 7.1 %  
(± 0.87); 3.6 (± 0.18). 

Acceleration: 
1-3  m·s-2: TEE 0.50 
(± 0.06); 0.18 (± 0.01);  
 
3-5  m·s-2: TEE 0.43 
(± 0.05); 0.20 (± 0.01); 
 
5-8 m·s-2: TEE 0.60  
(± 0.12); 0.13 (± 0.01). 

Akenhead, 
French, Hayes 
& Thompson 
(2014) 

Minimax 10 Hz Linear sled 
towing 

Laser 1m·s-2:  
SEE 0.12 (± 0.02);  
 
1-2 m·s-2:  
SEE 0.16 (± 0.02);  
 
2-3 m·s-2:  
SEE 0.18 (± 0.03); 
 
3-4 m·s-2:  
SEE 0.19 (± 0.02); 
 
>4 m·s-2:  
SEE 0.32 (± 0.06) 

1m·s-2:  
TEE 0.05 (± 0.01);  
 
1-2 m·s-2:  
TEE 0.06 (± 0.01)   
 
2-3 m·s-2:  
TEE 0.09 (± 0.01); 
 
3-4 m·s-2:  
TEE 0.10 (± 0.01); 
 
>4 m·s-2:  
TEE 0.12 (± 0.01) 

Validity greater during 
lower speed 
accelerations. 
Inter unit reliability 
decreased with 
increasing rates of 
acceleration. 

Johnston et al. 
(2014) 

GPSports 
& 
Minimax 

10 Hz 
&  
15 Hz 

Team sport 
simulation 
circuit 

Electronic 
timing 
gates 

10 Hz: r = 0.89;  
15 Hz: r = 0.64. 

 Superior validity with 
10 Hz GPS. 

Vickery et al. 
(2014) 

GPSports 
& 
Minimax 

5 Hz  
&  
15 Hz 

Team sport 
simulation 
circuit 

VICON    90o COD;   
5 Hz: CV 26.3 % 
10 Hz: CV 14.5 %. 
 
45o COD;  
5 Hz: CV 20.9 % 
10 Hz: CV 20.0 % 
 
Random COD;  
5 Hz: CV 31.5 % 
10 Hz: CV 11.9 %. 

Superior reliability 
with 15 Hz GPS. 
 
Reliability decreased 
with greater severity of 
turn.  
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2.4.3 Accelerometers 

Acceleration is proportional to the force applied and quantifying acceleration can, 

therefore, reflect the energetic cost and intensity of effort during athletic endeavours 

(Chen & Bassett, 2005).  The most common accelerometers are piezoelectric and conta in 

a seismic mass and a piezoelectrical element.  During acceleration the seismic mass 

causes proportional deformation of the piezolectrical element which is, in turn, converted 

to a digital reading (Chen & Bassett, 2005).  Uni-axial accelerometers measure 

accelertion in the vertical direction, whereas, multiple piezoelectrical elements positioned 

on each anatomical axes (Anterior-Posterior [AP]; Medio-Lateral [ML] and Caudal-

Cranial [CC]), are required for tri-axial measurement.  Contemporary accelerometers 

sample at 100 Hz providing a highly sensitive measure of acceleration during jumping, 

changes of direction, collisions/impacts.   

 

Uni-axial accelerometers are used widely in the general population providing insight into 

the frequency, intensity and duration of free living and physical activity (Freesdon & 

Miller, 2000; Montgomery, Pyne & Minahan, 2010).  In a lab setting, validity was 

established against indirect caliometery (Freesdon & Miller, 2000; Nichols, Morgan, 

Chablot, Sallis & Calfas, 2000) and in the field, against HR and energy expenditure during 

several types of activity (Coe  & Pivarnik, 2001; Durant, Baranowski, Davis, Thompson, 

Puhl, Greaves & Rhodes, 1993; Janz, 1994; Kozey, Lyden, Howe, Staudenmayer & 

Freedson, 2010).  However, uni-axial accelerometers are unsuitable for monitoring the 

stochastic activity in soccer, unlike tri-axial accelerometers that are sensitive to three 

dimensional movement (Boyd, Ball & Aughey, 2011; Chen & Bassett, 2005).  

Accelerometers measure the total mechanical stress experienced during quick changes in 

direction, jumping and collisions (Barrett, Midgley & Lovell, 2014; Dellaserra, Gao & 

Randsell, 2014).  
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In comparison to the abundance of literature examining the validity and reliability of GPS, 

research relating to accelerometers is limited.  Nevertheless, of concern to practitioners 

is performance during static and dynamic trials.  Static validity is the ability of the unit to 

detect a constant value (acceleration due to gravity) (Boyd, Ball & Aughey, 2011), and is 

important because periods of inactivity, when players are stationary are numerous 

(O’Donoghue, 2002).  During these intervals, the data recorded by the accelerometer 

should be zero, otherwise external load may be overestimated.  To date, only one paper 

has investigated static validity, and SPI-Pro (GPSports, Canberra, Australia) 

underestimated constant value by ~30 % (Kelly, Murphy, Watsford, Austin & Rennie, 

2015) representing a significant limitation.  In contrast, the static reliability of the Catapult 

MinimaxX (Catapult Innovations, Sowersby, Australia) is reported; inter unit (CV 1.01 

%), and intra unit (CV 1.10 %) (Boyd, Ball & Aughey, 2011). According to manufacturer 

recommendations, scheduled periodic recalibration is sufficient to ensure static valid ity 

and reliability, and may explain the paucity of data of this nature (Sprint software, 

Catapult Innovations, Sowersby, Australia).   

 

Dynamic reliability has, in the main, been established using lab based oscillation tests in 

which the unit is fixed to a calibrated mechanical arm.  During vertical oscillation at 3 Hz 

to 8 Hz, the Catapult MinimaxX demonstrated acceptable within unit (CV 0.9-1.05 %) 

and between unit reliability (CV 1.02-1.04 %) (Boyd, Ball & Aughey, 2011).  The same 

authors explained that the choice of oscillation speed replicated non contact human 

locomotion.  In contrast, when assessing the SI-Pro (GPSports) Kelly et al. (2015) opted 

for higher frequency (5-15 Hz), to replicate high-intensity collision and locomotor 

activities from AFL competition, and findings showed similar within unit reliability (CV 

1.87-2.21 %)  (Kelly et al., 2015).  Notwithstanding this evidence, the reliability of 

accelerometers during sporting activity is crucial and, to date, has focussed on running 
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(Tran, Netto, Aisbett & Gastin, 2010; Wundersitz, Netto, Aisbett & Gaston, 2013), mult i-

directional simulations (Wundersitz et al., 2013) and, tackles/collisions (Gabbett, 2010; 

Gastin, Mclean, Breed & Spittle, 2014; Wundersitz, Gastin, Robertson & Netto, 2015b).   

 

Acceleration is proportional to the external force applied, and therefore running impact 

force can reflect the intensity of movement and total external load (Wundersitz, Gastin, 

Richter, Robertson & Netto, 2015a).  In comparison to a force plate platform, 

measurement was not significantly different during linear running and COD trials, 

ranging 45-180o (p = 0.68-1.00) but, measurement error increased with increased severity 

of turn; 45o: CV 14.5 %; 90o: 17.2 %; 180o: 23.9 % (Wundersitz et al., 2013).  Simila r ly, 

the measurement error during countermovement jumping and drop landing trials was CV 

16.8 % and 21.4 % respectively (Tran et al., 2010).   A contributory factor to these 

shortcomings may be accelerometer placement on the body or unit artefact that may result 

in erroneous data.   

 

Centre of mass is the criterion location for an accelerometer and distance from this point 

increases measurement error because of compensatory postural movements (Barrett, 

Midgley & Lovell., 2014; Derrick, 2004; Halsey, Shepard & Wilson, 2011; Netto, Tran, 

Gastin & Aisbett, 2010).  Contemporary integrated technology needs to be located at the 

scapula to enhance satellite communication (Barrett, Midgley & Lovell, 2014), but also 

increases the distance from the impact site and increases shock attenuation in the body 

(Zhang, Derrick, Evans & Yu, 2008).  The effect of this placement was highlighted during 

treadmill running when the centre of mass elicited higher AP (14.7 % ± 22.2), ML (35.0 

% ± 20.3) and CC (7.9 % ± 14.6) load compared to the scapula (Barrett, Midgley & 

Lovell, 2014).  During linear running, athletes adopt a forward lean (Barrett, Midgley & 



 

63 
 

Lovell, 2014) and a crouched position during lateral movement (Keller, Weisberger, Ray, 

Hasan, Shiavi & Spengler, 1996), and both alter the vertical orientation of the GPS unit 

(Wundersitz et al., 2013).  During changes of direction, this is exacerbated, and lateral 

trunk orientation has been observed to range 5-10 % outside vertical (Houck, Duncan & 

Haven, 2006; Tran et al., 2010).  The degree of postural changes during running is also 

athlete specific complicating between individual comparison.  It is therefore 

recommended that longitudinal data be used to monitor the intensity, and volume, of 

external load on an individual basis (Barrett, Mideley & Lovell, 2014).   

 

The accuracy of integrated technology is also compromised by “noise” in the 

accelerometer signal.  Noise refers to data that is not attributed to movement i.e. vibration 

produced during physical contact, that adds to the true signal (Tran et al., 2010; Winter, 

2009; Wundersitz et al., 2015b).  Data filtering algorithms reduce error by removing noise 

that exceeds “cut-off points” or thresholds (Gastin, Aisbett, Netto & Tran, 2010; 

Robertson et al., 2004; Wundersitz et al., 2015b).  Investigation of the impact of a range 

of filter frequencies on the validity of accelerometer impact data during three physical 

collision tasks, reported that 20 Hz filtering frequency demonstrated the best accuracy, 

agreement and precision in comparison with a 3-dimensional motion analysis system 

(Raptor-E, Motion Analysis Corp, USA) (Wundersitz et al., 2015b).  In the same study, 

6-10 Hz underestimated impact acceleration (-1.87 g ± 1.14 to -0.92 g ± 0.82), while 20-

30 Hz overestimated acceleration (0.01 g ± 0.75 to 0.60 g ± 1.09).  During multiple linear 

sprinting trials, smoothed data was more accurate than raw data (SEE: 0.19 % ± 0.01 vs. 

0.29 % ± 0.01), and, although the filter frequency was not reported, an acceleration 

dependent overestimation was still apparent; 0-1 m·s-2; SEE: 0.12 % ± 0.02; >4.0 m·s-2; 

SEE: 0.32 % ± 0.06 (Akenhead et al., 2013).  However, during soccer minimal 

acceleration activity is recorded > 4.0 m·s-2 (Akenhead et al., 2013; Bradley et al., 2010; 
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Russell et al., 2016) therefore the practical significance of overestimating accelerations 

>4.0 m·s-2 may be minimal. 

 

A contributory factor to the underestimation of acceleration may be too low a filter 

frequency which effectively removes too many data points. In contrast, too high a filter 

frequency would fail to remove sufficient noise.  Consequently, differences in filter ing 

algorithms may explain some of the variability in data reported between integrated 

technology of different manufacturers discussed above.  At present, a specific study into 

the optimum filtering frequency for soccer is absent from the literature, but, considering 

Wundersitz et al. (2015b) featured impacts > 5.0 g, consistent with data from contact 

sports (Gastin et al., 2014), it is feasible that a 20 Hz filter might be too high. 

 

2.4.4 PlayerLoad (PL) 

The combination of locomotor activity, measured by GPS, and mechanical load, provided 

by tri-axial accelerometers, can quantify total external load.  External load is reported as 

a vector magnitude termed PL (Boyd, Ball & Aughey, 2011) and is epressed in arbitrary 

units (AU).  Proprietry software automatically separates total PL and reports the   

contribution of load according to each anatomical plane.  PL is calculated as follows; 

Figure 1:  The equation for calculating PlayerLoad (Boyd, Ball & Aughey, 2011).  

 

PlayerLoad = √ ( [fwd y1 - fwd y-1]2 + [side x1 - side x-1]2 + [up z1 - up z-1]2 ) 

 

Where; 

fwdy1 = Forward accelerometer  

sidey1 = Sideways accelerometer   

upz1 = Vertical accelerometer 

 

100 
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The validity of PL to reflect training load has been established against RPE during soccer 

(r = 0.73-0.84) (Scott, Lockie, Knight, Clark & De Jonge, 2013b), and AFL practices (r 

= 0.78-0.81) (Scott, Black, Quinn & Coutts, 2013a).  Also, very strong correlations with 

TD covered during training (r = 0.93 & 0.94) (Boyd, Ball & Aughey, 2013;Scott et al., 

2013a), assert that PL is an acceptable measure of external load, and, related to the 

internal physical response to training.  Limited research has been conducted on the 

reliability of PL during sports activities, but during treadmill running test-retest reliability 

was moderate to high (ICC 0.80–0.93, CV 5.3-14.8 %) (Barrett, Midgley & Lovell, 2014), 

lending support to the use of PL in measuring accumulated external load.   

 

Research to date has used PL to quantify the external demands of a number of sports 

including; AFL (Boyd, Ball & Aughey, 2011; 2013), Basketball (Montgomery, Pyne & 

Minahan, 2010), Netball (Cormack, Smith, Mooney, Young & O’Brien, 2013) and Soccer 

(Barrett, Midgley, Reeves, Joel, Franklin, Heyworth, Garrett & Lovell, 2016a; Dalen, 

Ingebrigtsen, Ettema, Geir Harvard & Wisløff, 2016).  Dalen et al. (2016) presented a 

comprehensive study of PL in soccer, across three consecutive seasons demonstrating that 

during match-play, WD exhibited lower PL than CD (12 %), CMF (18 %), WMF (26 %) 

and FW (8 %).  However, WD accelerated more than CD (39 %), CMF (15 %) and FW 

(15 %), which is consistent with other studies (Ingebrigtsen et al., 2015), at face value 

these findings seem inconsistent.  During match-play, positional differences exist in 

unorthodox activities, i.e., tackles, jumping, heading the ball, collisions or falling 

(Bloomfield, Polman & O’Donoghue, 2007) and all contribute to PL.  Significantly, these 

discreet game activities occur without a discernable change in physical location, and 

therefore, PL is accumulated in different ways (Dalen et al., 2016).  The precise 

contribution of a single activity to PL is unclear. However, a detailed classification would 

provide a greater understanding and enhance the specificity of training.  
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Comparison of PL between individuals is complicated by running efficiency and postural 

issues because it is an accelerometer derived metric (see earlier discussion).  However, 

longitudinal within individual comparison may serve to highlight changes in physical 

performance attributed to residual fatigue.  A study by Cormack et al. (2013) in AFL 

revealed that, in comparison to non fatigued players, fatigued individuals had a -5.8 

m·min-1 (± 6.1 %) impairment in CC axis activity.  Impairment in musculotendinous 

stiffness is linked to increased ground contact time (Girard, Micallef & Millett, 2011) and 

decreased vertical jump performance (Gathercole, Sporer, Stellingwerff & Sleivert, 

2015), indicative of neuromuscular fatigue (Cormack et al., 2013).  Similarly, towards 

the end of matches injury incidence is higher (Woods, Hawkins, Maltby, Hulse, Thomas 

& Hodson, 2004) and may be explained by compromised stability of lower limb joints 

(Hughes & Watkins, 2006).  Increases in PL in the last 15 minutes of each half of 

simulated match-play (Barrett, Midgley, Towlson, Garrett, Portas & Lovell, 2016b) and 

match-play (Barrett et al., 2016a) are consistent with alterations in movement efficiency 

(Barrett et al., 2016a; 2016b; Cormack et al., 2013) and injury incidence (Hughes & 

Watkins, 2006), suggesting PL may be a useful tool to identify fatigue during match-play.  

  

In summary, the preceding section has emphasised the inherent difficulties when 

assessing the physical stress of competition.  Based on the available evidence, interna l 

measures appear are compromised by the intermittent high-speed nature of soccer and 

cannot accurately measure the stress of competition.  By extension, the validation of 

contemporary field tests based on internal responses is questioned.  In comparison, 

external measures, notably integrated technology, can reflect the mechanical load 

imposed by competition that is not offered by traditional time motion analysis systems.  

Whether current field tests reflect the external load of competition is also unclear and 
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requires investigation.  However, in order to select a range of tests for evaluation, it is 

first necessary to review contemporary fitness assessment in soccer.   

 

2.5 Contemporary fitness assessment in soccer 

Periodic fitness assessment is an important element of the athlete support programme 

(Svensson & Drust, 2005) and field based tests present a low cost and convenient method 

of determining fitness status (Currell & Jeukendrup, 2008; Krustrup, Mohr, Nybo, Jensen, 

Nielsen & Bangsbo, 2006a). Performance on a test, no matter how ecologically valid, 

cannot predict on field success so data is used to inform training prescription and increase 

the likelihood of success (Drust, Atkinson & Reilly, 2007; Svensson & Drust, 2005).     

Soccer is reliant on the synergy of aerobic and anaerobic capacities presenting a challenge 

when implementing fitness assessment.  Sport specific protocols are appealing and 

perhaps a logical choice because they purport to replicate soccer activity, but do not 

isolate a single physical capacity presenting difficulties when planning training 

interventions (Mendez-Villanueva & Buchheit, 2013).  Alternatively, the assessment of 

a single component in isolation can provide a more meaningful assessment, but several 

tests are required to achieve a full evaluation.  In the absence of a gold standard approach, 

fitness testing is influenced by the purpose of the assessment and the philosophy of the 

practitioner.   

 

This section will review a range of protocols available according to fitness component 

and it is limited to those used in a soccer context that have been subject to academic 

scrutiny.    

2.5.1 Maximal aerobic capacity 
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Of particular interest to coaches and sports scientists has been cardiovascular fitness given 

the heavy aerobic demands of the game (Hoff, 2005).  VO2max is the maximum rate of 

oxygen consumption during maximal exercise, and values ranging 55-70 ml·kg·min-1 are 

reported at elite levels (Al-Hazzaa, Almuzaini, Al-Refaee, Sulaiman, Dafterdar, Al-

Ghamedi & Khuraiji, 2001; Tønnessen, Hem, Leirstein, Haugen & Seilier, 2013; 

Williams, 2013).  The importance of aerobic power to modern soccer is contentious 

(Tønnessen et al., 2013); on one hand, VO2max may differentiate between successful and 

unsuccessful sides because higher ranked sides had superior values (Bangsbo & 

Lindquist, 1992; Wisløff, Helgerud & Hoff, 1998).  Also, an 11% improvement in VO2max 

led to a 20 % increase in HSR (Helgerud et al., 2001) suggesting VO2max is sensitive to 

soccer endurance training (Hoff, Wisløff, Engen, Kemi, & Helgerud, 2002).    However, 

the high anaerobic contribution has led some to assert that VO2max is not a sensitive 

measure of soccer (Bangsbo & Lindqvist, 1992; Reilly, Bangsbo & Franks, 2000; 

Svensson & Drust, 2005).  Importantly, game changing events are preceded by HSA 

diminishing the importance of aerobic capacity (Faude, Koch & Meyer, 2012).  Finally, 

recent longitudinal studies report that although the HSA of players has increased 

substantially (Barnes et al., 2014; Bush et al., 2015b), TD has remained relative ly 

unchanged (+ ~2 %) (Barnes et al., 2014; Barros et al., 2007; Bradley et al., 2009) which 

is consistent with minimal changes in VO2max over time (Tønnessen et al., 2013).  

Assessments of VO2max are separated into shuttle running protocols and sport specific 

procedures.  

 

2.5.1.1 Shuttle running protocols 

The MSFT (Leger & Lambert, 1982) was modified by Ramsbottom, Brewer & Williams 

(1988) and has been used widely in sport and studied extensively.  Participants run 
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continuously over 20 m between two markers at increasing speeds until volitiona l 

exhaustion.  Prediction of VO2max is based on a regression equation (see Figure 2, p.70), 

and within the general population correlation between MSFT and criterion measure 

ranges r = 0.71-0.94 (Leger, Mercier, Gadoury & Lambert, 1988; Leger & Lambert, 

1982; Ramsbottom, Brewer & Williams, 1988).  However, amongst athletes, inconsis tent 

relationships are found (r = 0.43-0.78) (Aziz, Mukherjee, Chia & Teh, 2007; Castagna, 

Manzi, Impellizerri, Weston & Barberó-Álvarez, 2010; Williford, Scharff-Olson, Duey, 

Pugh & Barksdale, 1999) suggesting the MSFT may not be suitable for this population, 

or that these studies were unable to elicit a maximal effort.  Elsewhere, the strong 

relationship between the MSFT and YYIR Level 1 (YYIRL1) (r = 0.89) suggests the 

MSFT is more similar to field tests than lab based criterion measures (Castagna et al., 

2010; Williams, 2013).  The frequent requirement to change direction and increasing 

running speed, impact on O2 kinetics (Da Silva, Natali, de Lima, Filho, Garcia & Marins, 

2011), placing an increasing demand on anaerobic processes (Grant, Corbett, Amjad, 

Wilson & Aitchison, 1995; Flouris, Metsios, Famisis, Geladas & Koutedakis, 2010) and 

may explain these differences.  

 

Although the MSFT features frequent COD and changes in running speed, it does not 

replicate the intermittent nature of soccer (Nassis, Geladas, Soldatos, Sotiropoulos, Berkis 

& Souglis, 2010).  Also, the sensitivity of the MSFT is questionable after it was unable 

to differentiate between elite and recreational players unlike a soccer specific, 

intermittent, protocol (Edwards, MacFadyen & Clark, 2003).  Similarly, no performance 

improvement was found following an eight week training intervention (Odetoyinbo & 

Ramsbottom, 1997).  Nevertheless, it is used widely in soccer (Aziz et al., 2007; Castagna 

et al., 2010; Russell & Tooley, 2011; Strudwick, Reilly & Doran, 2002; Tumilty, 1993) 

despite questionable validity and specificity.  
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Figure 2:  The equation for calculating VO2max based on performance on the Multi Stage 

Fitness Test (Leger & Lambert, 1982). 

Y = 24.4 + 6.0 MAS 

Where MAS = maximum aerobic speed reached during the test. 

 

In contrast to the MSFT, the Yo-Yo Intermittent Endurance Test (YYIET) (Bangsbo, 

1996) incorporates rest periods and aims to assess the capacity to “repeatedly perform 

intervals over a prolonged period of time” (Bangsbo, 1996. p.16), and TD covered is the 

performance measure.     

 

The YYIET stresses the aerobic system evidenced by near maximal heart rates (Bradley 

et al., 2011; Castagna, Impellizzeri, Belardinelli, Abt, Coutts, Chamair & D’Ottavio,  

2006) and test–retest reliability for HR was good (CV 3.9 %) (Bradley et al., 2011).  In 

the most comprehensive review to date, an ability to differentiate between performance 

in relation to competitive level, different stages of the season and playing position was 

reported (Bradley et al., 2011).  Interestingly CD outperformed FW (2000 m ± 247 vs. 

1786 m ± 306, p <0.05) which contrasts with the observations of TD covered in games 

(Bangsbo, Nørregaard, & Thorsø, 1991; Bradley et al., 2009; 2011) but may reflect the 

more anaerobic nature of forward play.  

 

Finally, the Intermittent Shuttle Run Test (Lemmink & Visscher, 2003) was based on the 

MSFT but has a higher initial running speed (10 km·h-1 vs. 8 km·h-1) and increments of 1 

km·h-1 up to 13 km·h-1 vs. rather than 0.5 km·h-1.   Performed incrementally, work 

intervals of 30 s are spaced by 15 s rest in which participants walk 16 m (2x8 m).  Each 

work/rest cycle is repeated twice, and stages are 90 s.  These amendments were made to 
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measure the intermittent endurance capacity of team sports players and produce higher 

peak velocity (PV).  Failing to meet the running speed three successive times or voluntary 

withdrawal terminates the test.  The relationships with VO2max (r = 0.72-0.77) highlights 

the intermittent nature of the test (Lemmink, Verheijen & Visscher, 2004; Lemmink & 

Visscher, 2003).   

 

While assessing footballers of different competitive levels, near maximum HR was 

reached, and BL was elevated (+8 mmol·L-1) indicating a maximal effort.  In addition, 

ICC ranged 0.86–0.96 in men and 0.95–0.99 in women demonstrating acceptable 

reliability (Lemmink, Verheijen & Visscher, 2004).  Discriminative power was observed 

as professional players were differentiated from amateurs (Lemmink, Verheijen & 

Visscher, 2004) (p < 0.05), yet has not been widely adopted. 

 

2.5.1.2 Sport specific assessments 

Linear shuttle running protocols are criticised because they do not reflect the various 

modes of locomotion or the multi-directional nature of competition.  In response, a limited 

number of soccer specific tests have been proposed, including the Ekblom Soccer Specific 

Endurance test (Ekblom, 1989), the Bangsbo Intermittent Field Test (Bangsbo & 

Lindquist, 1992) and the Hoff-Helgerud Football Endurance Test (Hoff FET) (Kemi, 

Hoff, Engen, Helgerud & Wisløff, et al., 2003).  A summary of research investigating the 

validity and reliability of field assessments is found in Tables 5 and 6 (p.79 & 82). 

 

The Ebklom Soccer Specific Endurance Test (Ekblom, 1989) is a multi-directional four 

lap time trial and has received little attention in the literature.  Available evidence 

demonstrates acceptable reliability (SEM ± 3 s), sensitivity to detect a smallest 

worthwhile change in performance (Williams, Wiltshire, Lorenzen, Wilson, Meehan & 
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Kolsky, 2009) and the ability to differentiate between stages of the season (Ekblom,  

1989).  Fundamentally, however, the test is flawed because there are no specific 

instructions over pitch dimension; only that it is completed on a soccer field, and thus, 

the test cannot be transported to another venue.  Finally, test performance is not been 

correlated to VO2max or match distance metrics questioning the usefulness of findings.   

 

The Intermittent Field Test (Bangsbo & Lindquist, 1992), requires the alternation of HSR 

(15 s) and LSR (10 s), over 16.5 minutes, dictated by an audio cue.  The combined aerobic 

and anaerobic contribution was evidenced by elevated blood lactate values (9 mmol·L-1  

± 3.7) (Chamari, Hachana, Ahmed, Galy, Shaier, Chatard & Wisløff, 2004). Although 

mean data correlated to vVO2max (R2 = 0.55), the SEE was too large to allow for an 

accurate prediction of VO2max, and precision is lacking  (Chamari et al., 2004).  For 

example, when estimating distance covered during the test at vVO2max of 18 km·hr-1 , 

values ranged 1700-1950 m (Chamari et al., 2004).   

 

In contrast, the Hoff FET (Kemi et al., 2003) was adapted from a soccer specific training 

drill and aims to assess aerobic capacity.  Uniquely, players dribble a soccer ball 

continuously around a multi-task obstacle course designed to replicate the demands of 

soccer (see Figure 3, p.74).  According to the authors, an advantage of the test is the 

positive effect on motivation that dribbling the ball has, compared to straight line running 

(Chamari et al., 2005; Kemi et al., 2003).  However, during match-play, players spend 

~2 % of the total time with the ball and whether this represents a worthwhile inclusion is 

debatable (Reilly & Gilbourne, 2003), especially because it presents a high technica l 

demand that may underestimate physical performance in lower ability players.  Finally, 
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along with the high administrator burden, the Hoff FET presents significant limitat ions 

for use in an applied setting. 

 

Notwithstanding these drawbacks, the original study reported a strong relationship 

between test performance and VO2max (r = 0.87) (Kemi et al., 2003), but elsewhere, 

poorer relationships were found.  Amongst young player’s test performance correlated to 

VO2max (r = 0.68) (Chamari et al., 2005), and in comparison to distance metrics during 

match-play, the Hoff FET demonstrated a relationship with sprinting distance (r = 0.70), 

but not TD or HSR (Castagna et al., 2010).  Elsewhere, performance correlated with 

MSFT performance (r = 0.44-0.49) suggesting it may be used as a broad indicator of 

aerobic capacity rather than a precise measure (Nassis et al., 2010; Zagatto, da Silva, 

Santiago, Papoti, Miyagi, Brisola & Milioni, 2015).  The moderate correlations reported 

may be partially explained by the contribution of anaerobic metabolism during frequent 

changes in direction or running speed (Zagatto et al., 2015).  To the best of my 

knowledge, only one study has reported on the sensitivity of the Hoff FET, and following 

a short training intervention improvements in VO2max were detected by the Hoff FET 

(Chamari et al., 2005).   However, the combined evidence suggests that, although 

demonstrating strong logical validity, the Hoff FET is not a suitable predictor of aerobic 

capacity. 
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Figure 3: The structure and dimensions of the Hoff-Helgerud Football Endurance Test 

(Adapted from Chamari et al., 2005) (m). 

 

 

2.5.2 High-speed running 

Commensurate with the increasing importance of HSA during competition, has been a 

growing focus on evaluating the ability to perform this work, and to this end, the YYIR 

tests were devised by Bangsbo (1996).  The YYIRL1 measures the capacity to perform 

repeated aerobic high-speed work, whereas the Level 2 (YYIRL2) assesses the ability to 

“perform intense, intermittent exercise with a large anaerobic component in combination 

with a significant aerobic contribution” (Bangsbo, Iaia & Krustrup, 2008. p.40).   Both 

tests have been used extensively in literature and the field, to assess the soccer specific 

endurance capacity of players and referees (Deprez, Coutts, Lenoir, Fransen, Pion, 

Philippaerts & Vaeyens, 2014; Krustrup & Bangsbo, 2001; Krustrup et al., 2003; Mohr, 

Krustrup & Bangsbo, 2003).    
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Both procedures involve progressive shuttle running between two 20 m markers, except 

unlike the MSFT, a 2x5 m walk, equating to 10 s, separated each repetition.  Performance 

on the YYIRL1 correlates with HSR completed during games demonstrating good 

construct validity (r = 0.71-0.81) (Castagna, Impellizzeri, Cecchini, Rampinini & 

Barbero-Alvarez, 2009; Krustrup & Bangsbo, 2001; Krustrup et al., 2003).  Also, high 

level of reproducibility (CV 4.9 % & 9.6 %) is evidenced between trials separated by 

seven days (Krustrup et al., 2003; 2006a).  Although both levels stress the aerobic system 

maximally, evidenced by near maximum HR (Krustrup et al., 2003; 2006a; Ingebrigtsen 

et al., 2012; Rampinini et al., 2010), a high anaerobic contribution is reflected by 

moderate correlation to VO2max (YYIRL1: r = 0.74-0.76); YYIRL2: r = 0.47-0.48) 

(Ingebrigtsen et al., 2012; Rampinini et al., 2010).   

 

At exhaustion, the YYIRL2 showed lower Creatine Phosphate levels, higher muscle 

lactate, lower muscle pH, higher muscle Hydrogen and a faster BL accumulation than the 

YYIRL1 (Krustrup et al., 2003; 2006a; Rampinini et al., 2010).  Evidently, aerobic power 

is not the sole determinant of performance in the YYIRL2 and may be more related to O2 

kinetics.  Rampinini et al. (2010) observed that quickly activating the aerobic systems 

would delay the anaerobic contribution perhaps delaying fatigue.  Also, superior muscular 

oxidative capacity, running economy and acid-base control helps to explain the better 

performances of professionals versus amateurs on the YYIRL2 (Ingebrigtsen et al.,  2012; 

Rampinini et al.,  2010).  

 

Another important characteristic of the YYIR is sensitivity.  Professional and amateur 

players were differentiated significantly by YYIR2 performance (2231 m ± 294 vs. 1827 

m ± 292) despite similar VO2max values (58.5 ml·kg·min-1 ± 3.8 vs. 56.3 ml·kg·min-1 ± 
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4.3) (p < 0.05) (Rampinini et al., 2010).  International elite and second division players 

were characterised by a 37 % difference in YYIR2 performance (1059 m ± 35 vs. 771 m 

± 26) (Krustrup et al., 2006a).  Following a twelve week training block, referee’s YYIRL1 

performance improved 31 %  (± 7) and HSR during games increased 23 % (± 8), despite 

no significant changes in VO2max (Krustrup & Bangsbo, 2001). Elsewhere elite males 

were separated from elite youth (Castagna et al.,  2009; Chaouachi, Manzi, Wong, 

Chaalali, Laurencelle, Chamari & Castagna, 2010), successful from less successful sides 

(Ingebrigtsen et al., 2012; Teplan et al., 2012b;) and U17 from U16 players (Teplan, 

Malý, Zahálka, Hráský, Kaplan, Hanuş, & Gryc, 2012a).  Differences in YYIRL2 

performance are observed between pre-season and competitive stages of the season 

(Krustrup et al., 2006a), and combined these findings provide a compelling case for the 

YYIR tests to evaluate soccer specific intermittent exercise. 

 

A criticism of the YYIR is that the fixed 20 m distance is not reflective of the range of 

distances covered during games.  As an alternative, Carminatti’s Test (TCAR) 

(Carminatti, Lima-Silva, & De-Oliveira, 2004) is a progressive distance shuttle running 

test, the initial running distance is 30 m (2x15 m) and increases 1 m each stage, and TD 

is the performance measure.  Participants complete 5x12 s shuttle runs at increasing 

speeds until exhaustion or voluntary withdrawal.  Each stage is separated by 6 s of active 

recovery involving a 5 m walk (2x2.5 m); making each stage 90 s.  Initial running speed 

is 9 km·h-1 and is dictated by an audio CD.  A distinct advantage over fixed distance 

protocols is that the varied running distances exhibit greater logical validity, however 

rather than VO2max, or HSR, the TCAR aims to determine peak running velocity to inform 

training prescription (Carminatti, Lima-Silva, & De-Oliveira, 2004).   
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When examining PV, no significant differences were found in comparison to a treadmill 

protocol (r = 0.73) (J. Da Silva, Guglielmo, Carminatti, De Oliveira, Dittrich & Paton, 

2011) and this is in contrast to the MSFT and YYIR alternatives run over shorter distances 

(Castagna et al., 2009).  The test also differentiated between the PV of juvenile and youth 

athletes demonstrating construct validity (J. Da Silva et al., 2011).  These findings are 

useful because PV may be used to assess changes in performance after training 

interventions (Billat, Flechet, Petit, Muriaux & Koralsztein, 1999). Furthermore, a 

correlation between PV and VVO2max (r = 0.74, r = 0.55) suggests that maximum aerobic 

power may be calculated from PV (J. Da Silva et al., 2011; Dittrich, da Silva, Castagna, 

de Lucas & Guilherme, 2011).  Similarly, estimates of Onset of Blood Lactate 

Accumulation between lab based tests and the TCAR were strong (r = 0.63) (J. Da Silva 

et al., 2011).    To date evidence of validity and reliability is limited but HR was not 

significantly different from a treadmill protocol (r = 0.62) (J. Da Silva et al., 2011; 

Dittrich et al., 2011).  Regarding sensitivity, the TCAR detected changes in performance 

after nine weeks of training in young athletes (J. Da Silva et al., 2011) and also to 

adaptations during the competitive season (Floriano, Ortiz, Souza, Liberali, Navarro & 

Cavinatto, 2009).   Further research is warranted into whether the TCAR is a robust, valid 

and reliable option; but the ability to measure physical variables associated with aerobic  

power differentiates it from the YYIR tests (J. Da Silva et al., 2011).   

 

The 30-15 Intermittent Fitness Test (30-15IFT) (Buchheit, 2008) was developed to 

individualise interval training that features a COD, based on final test running velocity.  

30 s shuttle runs over 40 m are separated by 15 s of active rest.  The initial speed is 8 

km·h-1 increasing 0.5 km·h-1 thereafter and is dictated by an audio cue, and ends when 

the participant is unable to reach a 3 m zone at each end line or withdraws voluntar i ly.  

The performance indicator is the velocity during the final stage (Buchheit, 2008) and, is 



 

78 
 

“simultaneously related to maximal aerobic function, anaerobic capacity, neuromuscular, 

change of direction qualities and inter effort recovery qualities” (Buchheit, 2008 p.5).  It 

is hard to separate any one physical component during shuttle running, thus, a lower 

running economy or poor change of direction ability would lead to an underestimation of 

PV.  Supporting evidence is provided by a comparison between the original 30-15IFT 

and a linear version (turns removed) where a higher PV was noted (19.7 km·h-1 ± 1.2 vs. 

21.7 km·h-1 ± 1.9) (Haydar et al., 2011).  For tests that rely on PV to predict VO2max, this 

is a consideration.   

 

Amongst Handball players TEE 0.3 km·h-1 was reported, and  VO2 peak and peak HR 

were correlated with MSFT performance (r = 0.76; r = 0.84 respectively) (Buchhe it, 

2008).  Combined this data shows the 30-15IFT elicited a maximal effort comparable to 

the MSFT. However, the final velocity is approximately 5 km·h-1 faster than vVO2max 

deriving a significant anaerobic contribution thus providing a more sport specific stimulus 

(Buchheit, 2008). 

 

Performance improvements, amongst footballers (+7 %), following an 8-week training 

block, demonstrates that the 30-15IFT is sensitive to sport specific training (Buchheit & 

Rabbani, 2013).  In the same study performance correlated with YYIRL2 (r = 0.75) 

suggesting a degree of similarity yet the likelihood is that the tests assess slightly different 

variables (Buchheit & Rabbani, 2013).   
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Table 5:  A summary of research investigating the validity of field based assessments in soccer. 
 
Study 

 
Test 

 
Participants 

 
Age 

 
Comparison measure 

 
HR 

 
VO2max  

       
Deprez et al.  
(2014) 

YYIRL1   Male Youth 
 
(n = 228) 
 
150 Elite (Professional) 
 
78 Sub-elite (National & 
Regional league) 

11-17 yrs Test performance: 
Elite > Sub-elite;  
p <0.00 
 
 

  

Krustrup et al.  
(2003) 
 

YYIRL1 Male 
 
(n = 37) 
 
Elite (Professional) 

22-32 yrs HSR in game. 
r = 0.71, p <0.05. 
 

 Vs. treadmill. 
r = 0.71, p <0.05. 

Martínez-Lagunas 

& Hartmann. 
(2014) 
 

YYIRL1 Female 
 
(n = 18) 
 
German  
(Bundesliga 2) 

21.5 yrs 
(± 3.4) 

  Vs. treadmill. 
r = 0.83, p <0.00. 

Ingebrigtsen et al. 
(2012) 
 

YYIRL1 & 
YYIRL2 

Male 
 
(n = 203) 
 
Elite: 76 Norwegian 
(Tippligaen), 127 
Danish (SuperLiga). 
 
Sub-elite: Norwegian (2 
Divisjon), Danish (2nd 
Division)   

20-31 yrs   Vs. treadmill test. 
 
YYIRL1:  
Sub-elite: r = 0.73, p <0.01  
Elite: r = 0.76, p <0.01. 
 
YYIRL2:  
Sub-elite: r = 0.48, p<0.01 
Elite: r = 0.59, p <0.10. 
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Shin-Ya Ueda, 
Yamanaka, 
Yoshikawa, 
Katsura, Usui, 
Orita & Fujimoto,  
(2011) 
 

YYIRL1 & 
YYIRL2 

Male 
 
(n = 82) 
 
University Soccer club 

20-22 yrs   Vs. treadmill test. 
YYIRL1: r = 0.79, p <0.00 
YYIRL2: r = 0.49, p <0.05. 

Krustrup et al. 
(2006a) 

YYIRL2 Male 
 
(n = 132) 
 
Sub-elite (13 Trained 
individuals) 
 
Elite (119 Scandinavian 
professionals) 

22-30 yrs Test performance: 
Elite > sub-elite; 
p <0.05. 

Vs. treadmill 
test. 
r = 0.64, 
p <0.05. 

Vs. treadmill test. 
r = 0.56, p <0.05. 

Rampinini et al. 
(2010) 
 

YYIRL1 & 
YYIRL2 

Male 
 
(n = 25) 
 
Elite (13 Professional) 
Sub-elite (12 Amateur) 

25 yrs  
(± 4)  

Test performance: 
Elite vs. sub-elite. 
YYIRL12 p <0.01,  
d = 1.14. 
YYIRL2 p <0.01,  
d = 1.66. 

 Vs. treadmill test. 
YYIRL1 r = 0.74, p<0.05. 
YYIRL2 r = 0.47, p <0.05. 

Wong, Chaouachi, 
Castagna, Lau, 
Chamari & Wisløff, 
(2011) 

YYIET Male 
 
(n = 62) 
 
Regional representative 
side 

13.7 yrs 
(± 0.15) 

  Vs treadmill test. 
r = 0.63, p < 0.001. 

Bradley, 
Bendicksen, Dellal, 
Mohr, WIlkie, 
Datson, Omtoft, 
Zebris, Gomez-
Dias, Bangsbo & 
Krustrup (2012) 

YYIETL2 Female 
 
(n = 13) 
 
Elite (European 
National squad) 

22 yrs  
(± 3) 

TD in game;  
r = 0.55, p <0.05. 
Vs.  HSA distance in 
game; r = 0.70,  
p <0.01. 
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Chamari et al. 
(2005) 

Hoff-FET Male 
 
(n = 18) 
Sub-Elite (National 
league club) 

14 yrs 
(± 0.4) 

  Vs. treadmill test. 
r = 0.68, p <0.01. 

Buchheit, Al 
Haddad, Millet, 
Lepretre, Newton 
& Ahmaiai, (2009) 

30-15IFT Male 
 
(n = 20) 
 
Moderately trained team 
sport athletes 

20.9  yrs 
(± 2.2) 

 Vs. treadmill 
test. 
r = 0.84,  
p <0.01) 

Vs. treadmill test. 
r = 0.76, p <0.00. 

J. Da Silva et al. 
(2011) 
 

TCAR Male 
 
(n = 28) 
 
Brazilian Youths 
(National league club) 

17.9 yrs  
(± 1.0) 

 Vs. treadmill 
test. 
r = 0.62,  
p <0.01 
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Table 6:  A summary of research investigating the reliability of field based assessments in soccer. 
Study Test Group Age Distance HR BLa Time to 

complete test 

Deprez et al. (2014) YYIRL1 Male Youths 
 
(n = 78) 
 
Elite (Professional) 
and Sub-Elite 
(National & Regional 
league) 
 
Numbers not specified 
 

11-17 
yrs 

U13: ICC 0.82, 
CV 17.3 % 
 
U15: ICC 0.85; 
CV 16.7 % 
 
U17: ICC 0.94, 
CV 7.9 %. 
 

U13; ICC 0.87, 
CV 1.4 % 
 
U15: ICC 0.80, 
CV 1.5 % 
 
U17: ICC 0.95.  
CV 1.3 %. 

  

Krustrup et al. (2003) 
 

YYIRL1 Male 
 
(n = 17) 
 
Active individuals 

25-36 
yrs 

CV 9.4 %,  
p >0.05 

CV 1 %,  
p >0.05 

CV 17 %, 
p >0.05 

 

Krustrup et al. (2006a) 
 

YYIRL2 Male 
 
(n = 13) 
 
Active individuals 

22-30 
yrs  

CV 9.6 %, 
p >0.05. 
 

 CV 31 %, 
p >0.05. 

 

Bradley et al.  (2012) 
 

YYIETL2 Female 
 
(n = 27) 
 
Domestic league sides 

18-27 
yrs  

CV 4.5 %,  
TE 67m, 
p >0.05 

   

Williams et al. (2009) Ekblom Football 
Specific 
Endurance test 

Male 
 
(n = 19) 
 
University soccer club 

20.5 
yrs 
(±2.5)  

   ICC = 0.98,  
p >0.05 
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2.5.3 Repeated sprint ability 

 

The distribution of HSA is unequal across match-play, leading to periods of elevated 

activity (Carling & Dupont, 2011; Impellizzeri et al., 2008; Withers et al., 1982), in which 

players complete maximal sprints of short duration (1-7 s) with brief recovery (Bangsbo,  

Nørregaard, & Thorsø, 1991; Rampinini et al., 2007b; Withers et al., 1982).  Later 

described as, RSA and defined as the “ability to perform repeated straight sprints, or 

shuttle sprints, with minimal recovery between sprint bouts” (Wong, Chan & Smith, 

2012, p.2324).  This definition is preferred to Dawson, Fitzsimons & Ward (1993) who, 

in an original definition of RSA, did not include a COD component.    

 

An array of RSA tests are available that are completed over 15-40 m, and incorporate 3-

15 repetitions separated by 15-30 s rest (Haugen, Tønnessen, Hisdal & Seiler, 2014).  

Other than being broadly consistent with the characteristics of periods of elevated work 

rate described above, the construct of RSA procedures appears to be largely subjective 

and based on logical validity (Bishop, Spencer, Duffield & Lawerence, 2001; Impellizze r i 

et al., 2008).  Further, whether procedures replicate, or predict, match performance is 

largely unexplored in literature, with only Barberó-Álvarez, Pedro & Nakmura (2013) 

and Rampinini et al. (2007a) reporting relationships between RSA performance and 

match-play metrics.  Strong relationships between HSR during and RSA best time 

(RSAbest)   r = 0.78 (Barbero- Álvarez, Pedro & Nakamura (2013), and r = 0.65 

(Rampinini et al., 2007a), and mean RSA time (RSAmean) and VHSR (r = 0.60); and 

sprinting (r = 0.65) (Rampinini et al., 2007a) suggest a predictive ability of RSA 

performance.  The different procedures might explain the observed differences; Barbero-

Álvarez, Pedro & Nakamura (2013) used a linear 7x30 m (24 s rest) and Rampinini et al. 

(2007a) opted for a 6x40 m (2x20 m) (20 s rest).  Furthermore, the latter employed elite 
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adult professionals, while Barbero- Álvarez, Pedro & Nakamura (2013) used young 

males.  Test performance has also distinguished between elite and non-elite players 

(Gabbett, 2009; Impellizzeri et al., 2008; Rampinini et al., 2009b), teams of different 

standards (Ingebrigtsen et al., 2012) and detected training induced adaptations 

(Impellizeri et al., 2008).  However, whether RSA is a crucial component of soccer is 

contentious, and research is inconclusive (Schimpchen et al., 2016).   

 

In game sprints frequently involve  COD and, therefore, reliance on linear running 

procedures lacks construct validity (Currell & Jeukendrup, 2008; Dellal, Keller, Carling, 

Chaouachi, Wong & Chamari, 2010a; Wong, Chan & Smith, 2012).  This assertion is 

strengthened by the observation that linear running and COD speed are distinct qualit ies 

(Buchheit, Simpson, Peltola, & Mendez-Villanueva, 2012).  The impact of turning angle 

(45o, 90o, and 135o) was investigated during sprinting (Buchheit et al., 2012), revealing 

that performance is angle dependent when the turn is < 45o.  Turning at 45o was strongly 

related with linear sprinting (r = 0.76), emphasising that relatively obtuse turns do not 

alter running mechanics greatly.  However, increasingly sharp turns showed weaker 

relationships (90o r = 0.63; 135o r = 0.68) and can be explained by changes in body 

orientation, stride adjustments, deceleration, and acceleration.  Further, muscle activation 

is greater with increased severity of turn (Besier, Lloyd & Ackland, 2003); indicat ing 

construct validity is improved by including the range of turns involved in match-play.    

 

Two soccer specific protocols incorporating COD, and have received attention in the 

literature, are the Repeated Shuttle Sprint test (RSSA) (Impellizzeri et al., 2008) and the 

Bangsbo Sprint Test (BST) (Bangsbo, 1994).  The RSSA compromises 6x40 m (20+20 

m) shuttle runs, featuring an 180o turn, whereas the BST features 7x34.2 m interspersed 
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by 25 s active rest and incorporates two COD (see Figure 4, p.86).  Due to the lack of a 

“gold standard” against which to examine criterion validity (Bishop et al., 2001), 

comparison of match-play work rest ratios have been used, in addition to match running 

metrics.  Both the RSSA and BST have similar work rate profiles (RSSA: 1:2.8; BST: 

1:3.1) compared to match-play (1:4.3) (Rampinini et al., 2007a; Withers et al., 1982; 

Wragg, Maxwell & Doust, 2000) suggesting comparable metabolic demands (Dawson, 

2012; Rampinini et al., 2007a; 2007b; Spencer et al., 2005; Stølen, Chamari, Castagna & 

Wisløff, 2005). 

 

In relation to reproducibility, the RSSA demonstrated a superior absolute value for 

RSAmean across trials during pre-season (CV 1.0 %), mid-season (CV 0.8 %) and end of 

season (CV 0.9 %) (Impellizzeri et al., 2008), compared to the BST (CV% 1.8) during 

six sequential trials (Wragg, Maxwell & Doust, 2000).  When compared to RSAbest, the 

superior reproducibility of RSAmean at each test interval (pre-season: CV 1.6 % vs. 36.7 

%; mid-season: CV 1.1 % vs. 21.6 %; end of season: CV 1.0 % vs. 29.8 %) render it the 

preferred method of evaluating RSA performance (Impellizzeri et al., 2008).   

 

The importance of repeated COD ability during competition was recently highlighted 

(Wong, Chan & Smith, 2012).  The same authors sought to determine whether an 

individual’s training focus should be RSA or repeated COD (RCOD), using an 

RSA/RCOD ratio.  The RSA protocol featured linear 6x20 m with 25 s active recovery, 

and the RCOD 6x20 m with 25 s active recovery, including four x 100o COD at every 4 m.  

Although, RSA and RCOD demonstrated similar metabolic demands, the shared variance (R2 

48-50 %) supported earlier speculation that they were separate qualities (Brughelli, Cronin, 

Levin & Chaouachi, 2008), and justified the use of separate training and testing modalities.  
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In summary, both the RSSA and BST demonstrate reliability and a degree of validity for 

use within soccer.  However, match analysis demonstrates between player variation in 

activity profiles, questioning a generic approach to RSA assessment and offering some 

support for the use of position specific protocols.   

 

Figure 4: The structure and dimensions of the Bangsbo Sprint Test (Bangsbo, 1994) (m).  

 

 

 

2.5.4 Agility/change of direction ability. 

 

Agility is defined as “a rapid whole body movement with change of velocity or direction 

in response to a stimulus” (Brughelli et al., 2008, p.1046) and is regarded as a 

fundamental attribute of soccer performance (Hachana, Chaabène, Ben Rajeb, Khlifa, 

Aouadi, Chamari, & Gabbett, 2014; Sporis, Jukic, Milanovic & Vucetic, 2010).  A 

plethora of agility tests have been used to assess soccer players, including the T-Test 

(Lovell, Towlson, Parkin, Portas, Vaeyens & Cobley, 2015; Pojskić, Pagaduan, Babajic, 

Užicanin, Muratovic, & Tomljanovic, 2015; Sporis et al., 2010) the Illinois test (Brughe ll i 

et al., 2008; Caldwell & Peters, 2009; Kutlu, Yapici, Yoncalik & Çelik, 2012), the Zig 

Zag test (Kutlu et al., 2012), the 505 test (Draper & Lancaster, 1985), and the Balsom 

Agility run (Balsom, 1994).  However, the perceptual decision making process is often 

absent, rendering the assessment of COD ability instead (Ellis, Gaston, Lawrence, 

Savage, Buckeridge & Tumilty, 2000).  COD ability reflects the mechanical element of 
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agility and is increasingly assessed using custom procedures, including the Change of 

Direction and Acceleration Test (CODAT) (Lockie et al., 2013).     

 

During agility/COD tests, the learning effect may be neutralised by the provision of one 

trial repetition (Sporis et al., 2010).  Both the Illinois and T-Test demonstrate strong 

within participant reliability (CV < 3.3 %) during repeated trials (Hachana et al., 2014; 

Lockie et al., 2013; Sporis et al., 2010), and between participant reliability (ICC > 0.94) 

(Hachana et al., 2014; Lockie et al., 2013; Munro & Harrington, 2011; Sporis et al., 

2010).  The CODAT (ICC 0.84, CV 3.0 %) (Lockie et al., 2013) and Balsom Agility run 

(ICC 0.88) (Garcia-Pinillos, Martinez-Amat, Hita-Contreras, Martinez-López & Latorre-

Roman, 2014; Garcia-Pinillos, Ruiz-Ariza, Moreno del Castillo & Latorre-Román, 2015) 

show similar results, also indicating a high level of reliability.  

 

The validation of agility tests is difficult because there is no criterion measure.  Agility is 

multifaceted and reliant on several fitness components, including, strength, balance, 

coordination, acceleration and velocity (Gamble, 2010; Serpell, Ford & Young, 2010).   

The Illinois test, and the T-Test, are correlated with velocity (r = 0.47; r = 0.46-0.57) 

(Draper & Lancaster, 1985; Paoule, Madloe, Garhammer, Lacourse & Rozenek, 2000), 

whereas the 505 agility test is correlated with acceleration (Draper & Lancaster, 1985), 

suggesting that the choice of test should be related to the purpose of the assessment 

(Paoule et al., 2000; Sporis et al., 2010).  In contrast, Stewart, Turner & Miller (2014) 

reported high correlations between performance on the Illinois test and the T-Test (r = 

0.89) and the 505 test (r = 0.89) suggesting that the tests assess the same components.  

Regardless, the assessment of agility, or COD, has differentiated between professiona ls 

and amateurs (Kaplan, Erkmen & Taskin, 2009), professionals and youths (Rebelo, Brito, 
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Maia, Coelho-e-Silva, Figueiredo, Bangsbo, Malina & Seabra, 2013), playing positions 

(Rebelo et al., 2013) and gender (Mujika, Santisteban, Impellizzeri & Carlo, 2009). 

 

Agility and COD tests include fixed running distances and a limited range of turning 

angles, but whether these characteristics reflect the activity profile of soccer is 

questionable.  Analysis of turns during match-play reported that the majority are <90o, 

but differences exist depending on positional role (Bloomfield, Polman & O’Donoghue, 

2007).  Similarly sprinting distances range one to >20 m (Di Salvo et al., 2010), and 

activity profiles differ by position.  In conclusion, greater specificity would improve the 

validity and the usefulness of the result.   

 

2.6 Conclusion 

The preceding review highlights that soccer presents an energetic challenge to players 

and relatively modest VO2max values (55-70 ml·kg·min-1) (Al-Hazzaa et al., 2001; 

Tønnessen et al., 2013; Williams, 2013) accentuates the crucial anaerobic contribution.  

Further, high-speed activities are crucial to match-play, and superior physical 

performance may increase the likelihood of on field success (Faude, Koch & Meyer, 

2012; Rampinini et al., 2007a).   

 

Time motion data reveals subtle differences in physical performance between playing 

positions; broadly, CMF cover the greatest TD and CD the least and, wide players, and 

FW tend to cover greater HSA distance.  However, it is apparent that several factors 

influence positional profiles, including active playing time, score line and playing 

formation, yet a large proportion of research does not consider the impact of these 

variables.  Admittedly, researchers have limited ability to control extraneous variables 
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related to tactics and strategy, but insight would be improved by investigating these links 

further.  The greatest shortcoming in literature is the positional tri-axial acceleration 

activity during competition, and this would inform the design of conditio ning 

programmes. 

 

The emphasis on HSA is reflected in literature that is biased towards the YYIR.  This test 

has received considerable academic scrutiny and demonstrates strong validity and 

reliability (Castagna et al., 2009; Krustrup & Bangsbo, 2001; Krustrup et al., 2003; 

Krustrup, Mohr, Ellingsgaard, & Bangsbo, 2005) making it a popular choice in the field.  

The intermittent nature of the YYIR purports to replicate match-play, but reliance on 20 

m linear shuttles and 180o turns presents a limitation.     

 

Soccer science is characterised by a desire to optimise physical conditioning and is 

facilitated by monitoring the internal physical response to training load, chiefly through 

HRM and RPE, and external load or the variables manipulated to induce physical stress, 

using a combination of GPS and accelerometers.  Combined, these measures are used to 

micro manage individual training load and achieve specificity of training.  An important 

finding from this review is that neither internal nor external measures adequately quantify 

the universal physical demands of soccer activity in isolation.  Alternatively, a combined 

approach would provide the most comprehensive evaluation.   

 

Popular measures of external load evaluate tri-axial external load, or the total mechanica l 

stress experienced during movement (Barrett, Midgley & Lovell, 2014), and are used to 

tailor conditioning programmes.  However, the availability of micro-technology also 

presents the opportunity to evaluate the tri-axial load of contemporary field tests to 
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determine whether they replicate soccer activity.  By reviewing the magnitude and 

frequency of acceleration/decelerations, it is possible to establish the validity of field tests 

using a modern metric that circumvents the limitations of internal measures.  

 

Finally, a large proportion of research in soccer examines elite adult and youth 

populations but overlooks the sub-elite youth tier.  This omission ignores a very large 

demographic from which future professionals emerge and greater insight into competition 

at this level would aid talent development.  In addition, the application of field tests 

derived and validated in other populations may not be specific to participation at this 

level.  Sub-elite clubs experience significant financial limitations meaning a cost 

effective, easy to use test that is valid in the context of competition at this level is a 

necessity. 
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Chapter 3: The external load experienced 

during competitive youth soccer 
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 3.1 Introduction 

 

Chapter 2 highlighted that research into the external load of competitive, sub-elite youth 

soccer is lacking, despite a growing body of knowledge about the professional game.  At 

the highest tier of competition, the measurement of locomotive distances, or mechanica l 

work, using GPS in particular, has proved advantageous in micro-managing players’ daily 

workload, optimising physical conditioning programmes and tailoring end-stage 

rehabilitation (Cummins et al., 2013).  More recently, accelerometer derived metrics such 

as PlayerLoad (PL) (Catapult Sports), enable the measurement of acceleration associated 

with changes in direction and impacts, on a tri-axial basis (Wundersitz et al., 2015a).  The 

addition of PL to locomotor activity provides a more holistic evaluation of the physical 

activity performed during competition, and a full evaluation of the demands of sub-elite 

youth competition would inform physical conditioning at this level.  

 

During competition, players perform dynamic, unpredictable movements that vary in 

intensity and duration, presenting an energetic challenge (Bloomfield, Polman & 

O’Donoghue, 2007).   The execution of these movements is founded on the ability to 

accelerate and decelerate, which are energetically costly maneuvers (Osgnach et al., 

2010).  Maximum accelerations are more frequent than maximum sprints, but, do not 

always proceed maximum sprints (Varley & Aughey, 2013) meaning that the work rate 

of players is underestimated when these variables are ignored (Akenhead et al., 2013; 

Osgnach et al., 2010).  In summary, the measurement of acceleration and deceleration 

activity is imperative should the true physical work rate of players be determined.  

 

A limited body of research has reported the acceleration characteristics of competition, 

differentiating between explosive and leading sprints (Di Salvo et al., 2009), revealing 
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playing positional differences (Ingebrigtsen et al., 2015) and reporting time dependent 

profiles (Bradley et al., 2010).  Explosive sprints are defined as those proceeded by an 

acceleration of > 3.00 m·s-2 and accounted for 30 % of sprints during the English Premier 

League (Bradley et al., 2010).  In relation to positional differences, Ingebrigtsen et al. 

(2015) concluded wide players completed 13% more accelerations (p < 0.001; d = 1.54) 

suggesting an influence of positional role.  However, the comparison between studies is 

tentative because wide and central positions are not always separated and, the influence  

of contextual variables is not always considered, e.g., playing formations, tactics, and 

strategy (Carling, 2011).   

 

Time dependent reductions between playing halves are reported suggesting fatigue may 

hinder acceleration.  Within an English professional reserve side; 7.5 % reduction in total 

acceleration distance and 6.8 % less total deceleration distance (Akenhead et al., 2013).  

However, Bradley et al. (2010) reported no significant reductions in a sample of elite 

English sides.  Importantly, these differences may be methodological due to different 

classification systems or may depict superior conditioning at the elite level offering 

improved immunity to the effect of fatigue.  However, any link with fatigue is tentative 

because of the myriad of factors that can influence second half work rate.   

 

A shortcoming amongst the body of literature is that no study has elucidated the tri-axial 

load of competitive soccer.  Positional differences in locomotor activity (Bradley et al., 

2009) and discreet activities (Bloomfield, Polman & O’Donoghue, 2007) are common 

and are reasonably expected to manifest themselves in differences in tri-axial load.  

Establishing how positional role shapes tri-axial load would be of interest to practitioners 

and help to inform conditioning, and rehabilitative, programmes.  Therefore the aims of 
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this study were to; 1) establish the external load of competitive youth soccer according to 

playing position, as measured by distances covered in acceleration/deceleration zones, 

total PL and individual planar components, 2)  investigate time dependent changes in 

acceleration/deceleration activity and 3) investigate HSA according to playing position 

and 4) time dependent changes in HSA.   

 

Hypothesis 1: Positional differences in tri-axial external load will be exhibited and 

demonstrate time dependent changes. 

 

3.2 Methodology 

3.2.1 Participants 

Thirty eight well trained sub-elite youth soccer players (17.3 ± 0.9 yrs., 71.3 ± 8.1 kg, 

177 ± 6 cm) volunteered for the study, and were classified by playing position (WD = 8, 

CD = 6, CMF = 11, WMF = 6, FW = 7).  All participants were training in a high 

performance environment comprising four, two hour field based sessions, two, sixty 

minutes supervised strength and conditioning sessions and up to two competitive games 

per week.  Players or parents/guardians provided informed consent where appropriate in 

accordance with the Declaration of Helsinki.   The experimental procedure was approved 

by the BuSH committee at the University of Central Lancashire.   

 

3.2.2 Procedures 

Eight home English College fixtures were monitored during the competitive phase of the 

2012-2013 season.  All games were played on a full size synthetic 3G surface; a 4-2-3-1 

formation was preferred and only players completing 90 minutes, in the same playing 
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position, were included.  Consequently, this produced uneven group numbers given the 

tendency for WD, WMF, and FW to be substituted more often.  There were also periods 

of limited GPS unit availability and, therefore, WMF and FW were prioritised for data 

collection.  Game activity was limited to 90 minutes and excluded additional time at the 

end of each playing half.  

 

Portable GPS units (Catapult Sports, Minimax, 5 Hz) equipped with 100 Hz 

accelerometer were worn by players and located securely between the scapulae in a 

custom made harness.  GPS units were switched on 10 minutes before use to allow 

satellite locking consistent with manufacturer’s guidance, Horizontal dilution of precision 

(HDOP) indicated accuracy of GPS in a horizontal plane (Catapult Sports) and optimum 

satellite availability (HDOP = 0) is where one satellite is directly overhead with a 

minimum of four spaced equally around the horizon.  During these trials, HDOP ranged 

between 0.8-1.6 and is a good signal. Acceleration activity was calculated using the 

Doppler shift method.  

 

PL was reported as total load, this being the square root of the sum of the squared 

instantaneous rate of change in acceleration in each anatomical vector (ML, AP, and CC) 

divided by 100 (see Figure 1, p. 64)  (Boyd, Ball & Aughey, 2011).   Proprietary software 

also recorded and reported PL in each contributory anatomical plane.  PL is reported in 

arbitrary units (AU). 

 

When starting the study there was no consensus in literature about a system for classifying 

acceleration/deceleration activity, therefore a modified version of the default Sprint 

software team sport settings were used.  This meant that the Sprint software zone one (-
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20.0 to -5.0 m·s-2) and zone 2 (-5.0 to -4.0 m·s.-2) were combined to simplify analysis.  

Distance covered during acceleration/deceleration was coded as follows; zone 1: -20.0 to 

-4.0 m·s-2; zone 2: -4.0 to -2.0 m·s.-2; zone 3: -2.0 to 0.0 m·s-2; zone 4: 0.0 to 2.0 m·s-2; 

zone 5: 2.0 to 4.0 m·s-2; zone 6: 4.0 to 20.0 m·s-2).  To investigate time dependent changes 

in acceleration/deceleration activity, the game was divided into six, 15 minute periods; 

P1 (0-15), P2 (15-30), P3 (30-45), P4 (45-60), P5 (60-75) and P6 (75-90). 

 

The classification of locomotor activity was consistent with Aslan, Açıkada, Güvenç, 

Gören, Hazır, & Özkara, (2012) in a similar population; HSR: 15.1 to 18.0 km·hr-1; Low 

speed sprint (LSS): 18.1 to 21.0 km·hr-1; Moderate speed sprint (MSS): 21.1 to 24.0 

km·hr-1; High speed sprint (HSS) > 24.1 km·hr-1).   

 

3.2.3 Statistical analysis 

Data files were uploaded to Catapult Sprint software (version 5.0) and manually edited to 

exclude non-game activity.  All data was tested for normality using a Shapiro-Wilk’s test 

and Levene’s established homogeneity.  When using repeated measures Maulchy’s test 

confirmed sphericity and when violated a Greenhouse-Geisser correction was applied 

(Field, 2013).  Data are presented as mean ± SD unless otherwise stated.   

 

One-way ANOVA was used to detect the main differences between playing positions for 

distances covered in acceleration/deceleration and locomotor zones, total PL and PL per  

anatomical plane.  Repeat measures ANOVA was used to detect the main differences 

between playing positions for distances covered in acceleration/deceleration zones during 

each time period. All significant main effects were investigated using a Gabriel post hoc 

test, which is suitable for comparing groups of uneven sizes (Field, 2013).  Paired T-Tests 
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compared differences playing halves for acceleration/deceleration distance and locomotor 

activity.   

 

Statistical significance was ≤0.05.  Cohen’s d (1988) determined the magnitude of the 

effect for Paired T-Test and One-way ANOVA, and interpreted using the scale outlined 

by Batterham & Hopkins (2006); trivial (< 0.2), small (> 0.2-0.6), moderate (>0.6-1.2), 

large (>1.2-2.0) or very large (>2.0-4.0).  Cohen’s d was calculated using the formula; d 

= Mean group 1 - Mean group 2 / SD pooled, where SD pooled = SQRT [(SD2 group 1 + 

SD2 group2) / 2].  Eta2 (Ƞ) measured effect size for repeated measures ANOVA, where 

0.10 = small, 0.30 = medium and 0.50 = large (Cohen, 1988).  Eta2 was calculated using 

the formula; Sum of SquaresEffect / Sum of SquaresTotal (Field, 2013).  All statistica l 

procedures were completed using SPSS 20.0 (SPSS Inc. Chicago, USA).  

 

3.3 Results 

3.3.1 Tri-axial PlayerLoad 

There was a significant effect of playing position on total PL; F (4, 49) = 2.62, p = 0.05.  

Follow up tests revealed significant differences; CMF vs. CD (p = 0.04, d = 1.26).  There 

was no significant effect of playing position on ML or CC load respectively; F (4, 49) = 

2.08, p = 0.10; F (4, 49) = 21657.74, p = 0.08.  There was a significant effect of playing 

position on AP load; F (4, 49) = 12444.54, p = 0.02.  Follow up tests revealed significant 

differences; CMF vs. CD (p = 0.01, d = 1.56) (See Table 7).  
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3.3.2 Distance covered in different acceleration/deceleration zones 

CMF (5923 m) completed the greatest total acceleration distance (FW: 5621 m; WD: 

5567 m; WMF: 5366 m; CD: 4909 m).  CMF (3165 m) completed the greatest total 

deceleration distance (WD: 3121 m; WMF: 2963 m; FW: 2947 m; CD: 2710 m).  Activity 

in zones 3-5 accounted for 93 % of the total acceleration/deceleration distance (see Table 

8, p.99).   

 

There was a significant effect of playing position on the distance covered in zone 1; F (4, 

35) = 9.77, p <0.001.  Follow up tests revealed significant differences: WMF > WD (p < 

0.01, d = 1.60), CD (p < 0.01, d = 2.53), CMF (p < 0.01, d = 1.53) and FW > CD (p < 

0.01, d = 2.69).  There was a significant effect of playing position on the distance covered 

in zone 2; F (4, 35) = 3.669, p = 0.02.  Follow up tests revealed significant differences : 

WMF > CD (p = 0.02, d = 2.79), and FW > CD (p = 0.04, d = 3.38).  There was no 

significant effect of playing position on the distance covered in zone 3: F (3, 35) = 1.965, 

p = 0.13.  There was no significant effect on the distance covered in zone 4: F (3, 35) = 

2.296, p = 0.08.  There was no significant effect on the distance covered in zone 5: F (3, 

Table 7:  The tri-axial PlayerLoad load of match-play by playing position 
(AU). Mean (SD). 

 Total load  ML axis AP axis CC axis 

WD 
982.25  
(169.40) 

247.50  
(48.05) 

257.26  
(65.63) 

477.50  
(84.26) 

CD 
745.84  
(161.40) 

191.31  
(38.61) 

191.25  
(56.50) 

363.27  
(161.40) 

CMF 
991.49a 
(223.23) 

240.66  
(58.53) 

287.54b  
(65.97) 

463.30  
(113.29) 

WMF 
866.12  
(147.40) 

208.36  
(36.17) 

262.92  
(45.14) 

394.84  
(77.90) 

FW 
892.33  
(209.21) 

222.08  
(27.57) 

258.59  
(63.38) 

411.66  
(110.19) 

Mean 
912.62 
(204.46) 

225.47 
(50.96) 

257.53 
(66.74) 

429.60 
(102.30) 

Sig: a: CMF vs.CD, p = 0.04, d = 1.26; b: CMF vs. CD, p = 0.01, d = 1.56.  
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35) = 2.243, p = 0.07.  There was a significant effect of playing position on the distance 

covered in zone 6: F (3, 35) = 3.605, p = 0.02.  Follow up tests revealed significant 

differences; WMF > CD (p = 0.03, d = 1.59). 

 

Analysis of mean TD covered in each acceleration/deceleration zone between playing 

halves showed significant declines in each zone aside from Zone 6 (see Table 9).  

 

 

 

 

 

 

Table 8: Total distance (m) covered in each acceleration/deceleration zone during 

match-play, by playing position. Mean (SD). 
 

Zone 1 2 3 4 5 6 

m·s -2 
-20.00 to  

-4.00 

-4.00 to 

-2.00 

-2.00 to  

0.00 

0.00 to  

2.00 

2.00 to  

4.00 

4.00 to 

20.00 

WD 
38.37 

(7.46) 

193.65 

(34.61) 

2889.50 

(332.58) 

5207.25 

(469.66) 

277.88 

(15.31) 

82.12 

(17.18) 

CD 
24.00 

(7.46) 

153.83 

(28.24) 

2532.67 

(395.13) 

4618.83 

(698.70) 

226.67 

(39.36) 

63.83 

(17.70) 

CMF 
39.00 

(8.82) 

207.09 

(63.56) 

2918.86 

(373.56) 

5574.18 

(686.54) 

275.45 

(59.19) 

74.73 

(17.36) 

WMF 
63.00a 

(20.41) 

239.17c 

(32.59) 

2660.83 

(180.67) 

4969.33 

(884.60) 

301.33 

(41.53) 

95.83e 

(20.03) 

FW 
49.20b 

(10.92) 

234.60d 

(18.57) 

2663.40 

(180.67) 

5269.40 

(371.76) 

297.60 

(2237) 

64.60 

(10.11) 

Sig:  a: WMF > WD, CD and CMF (p ≤0.001), b: FW > CD (p = 0.01), c: WMF > CD (p = 0.02), d: 

FW > CD (p ≤0.04), e: WMF > CD (p = 0.03). 

Table 9:  The distances (m) covered in each acceleration/deceleration zone by 

playing position during each half of match-play. Mean (SD). 
 

Zone m·s -2 First half Second half Difference  Sig. 

1 -20.0 to -4.0 22.17  19.62 -2.55 p = 0.04, d = 0.28 

2 -4.0 to -2.0 107.42 96.94 -10.48 p < 0.01, d = 0.38 

3 -2.0 to 0.0 1423.50 1345.83 -77.67 p = 0.02, d = 0.39 

4 0.0 to -2.0 2738.69 2450.19 -288.50 p < 0.01, d = 0.66 

5 -2.0 to -4.0 143.36 131.89 -11.47 p < 0.01, d = 0.42 

6 -4.0 to -20.0 38.58 37.94 -0.67 p = 0.62, d = 0.61 
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There was no significant effect of time period on distance covered in zone 1; F (5, 170) 

= 2.078, p = 0.07, Ƞ = 0.06.  For zone 2, Maulchy’s test indicated that the assumption of 

sphercity had been violated; χ2 (14) = 27.215, p = 0.02, therefore Greenhouse-Geisser 

corrected tests are reported (ɛ = 0.77).  The results show that there was a significant effect 

of time period on distance covered in zone 2; F (5, 170) = 4.479, p < 0.01, Ƞ = 0.12.  Post 

hoc tests showed that P1 > P2 (p = 0.05), P1 > P5 (p = 0.05), P1 > P6 (p = 0.01).  There 

was a significant effect of time period on distance covered in zone 3; F (5, 170) = 3.779, 

p <0.01, Ƞ = 0.10.  Post hoc test showed that P1 > P2 (p < 0.05), P1 > P5 (p = 0.05), P1 

> P6 (p < 0.01).  For zone 4, Maulchy’s test indicated that the assumption of sphericity 

had been violated; χ2 (14) = 34.165, p <0.01, therefore Greenhouse-Geisser corrected tests 

are reported (ɛ = 0.74).  The results show that there was a significant effect of time period 

on distance covered in zone 4; F (5, 170) = 8.409, p < 0.001, Ƞ = 0.20.  Post hoc tests 

showed that P1 > P4 (p < 0.01), P1 > P5 (p < 0.001), P1 > P6 (p < 0.01).  For zone 5, 

Maulchy’s test indicated that the assumption of sphericity had been violated; χ2 (14) = 

28.219, p = 0.01, therefore Greenhouse-Geisser tests are reported (ɛ = 0.75).  The results 

show that there was a significant effect of time period on distance covered in zone 5; F 

(5, 170) = 5.640, p < 0.001, Ƞ = 0.14.  Post hoc tests showed that P1 > P2 (p = 0.01), P1 

> P6 (p = 0.05), P1 > P6 (p < 0.01).  There was no significant effect of time period on 

distance covered in zone 6; F (5, 170) = 0.716, p = 0.62, Ƞ = 0.02 (see Table 10). 
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3.3.3 Distance covered during high-speed activity. 

There was no significant effect of playing position on HSR distance; F4, 35) = 1.69, p = 

0.18, d = 0.93.  There was no significant effect of playing position on LSS distance; F (4, 

35) = 1.80, p = 0.15, r = 0.93.  There was a significant effect of playing position on MSS 

distance; F (4, 35) = 7.01, p < 0.001, d = 1.88.  Follow up tests revealed significant 

differences; WMF (269.83 m ± 69.02) vs. CD (123.50 m ± 30.34, p < 0.001, d = 2.74), 

FW (256.60 m ± 61.53) vs. CD (p = 0.01, d = 2.74); WMF vs. CMF (130.64 m ± 83.50, 

p < 0.001, d = 1.81), FW (256.60 m ± 61.62) vs. CMF, p = 0.01, d = 1.71).  There was a 

significant effect of playing position on the distance covered at HSS; F (4, 35) = 5.00, p 

< 0.001, d = 1.59.  Follow up tests revealed significant differences; WMF (214.17 m 

±114.19) vs. CD (60.17 m ± 22.66, p = 0.01, d = 1.87), vs. CMF (67.55 m ± 63.72, p = 

0.01, d = 1.55).   

 

Table 10: The total distance (m) covered in each acceleration/deceleration zone 
according to time period during match-play. Mean (SD). 
 

Zone 1 2 3 4 5 6 

m·s -2 
-20.0 to    

 -4.0 

-4.0 to      

 -2.0 

-2.0 to    

0.0 

0.0 to     

2.0 

2.0 to  

4.0 

4.0 to    

20.0 

P1 
8.31 

 (4.74) 

38.80a,b,c 

(10.83) 

481.49d,e,f 

(71.59) 

933.63g,h,i 

(125.14) 

51.00j,k,l 

(11.82) 

12.57 

(4.57) 

P2  
7.47 

 (3.24) 

35.06 

(10.49) 

455.66 

(58.62) 

893.77 

(112.97) 

45.37  

(9.39) 

12.77 

(3.65) 

P3  
6.71  

(3.09) 

35.09 

(9.20) 

466.06 

(60.53) 

887.869 

(103.49) 

46.94 

(10.07) 

12.91 

(3.66) 

P4  
6.63 

 (3.52) 

34.09 

(9.23) 

456.35 

(64.23) 

844.57 

(109.98) 

46.71  

(9.28)  

13.23 

(5.00) 

P5  
6.77  

(3.35) 

33.49 

(10.83) 

455.66 

(60.46) 

849.60 

(107.40) 

44.86  

(9.95) 

12.60 

(4.22) 

P6  
6.60  

(3.65) 

30.91 

(11.23) 

441.37 

(69.23) 

844.03 

(121.58) 

41.14 

(13.95) 

11.95 

(4.29) 

Sig: a; P1 > P2 (p = 0.05), b; P1 > P5 (p = 0.05), c; P1 > P6 (p = 0.01), d; P1 > P2 (p = 0.05), e; P1 > 

P5 (p = 0.05), f; P1 > P6 (p < 0.01), g; P1 > P4 (p < 0.01), h; P1 > P5 (p < 0.001), i; P1 > P6 (p < 

0.001), j; P1 > P2 (p = 0.01), k; P1 > P5 (p = 0.05), l; P1 > P6 (p < 0.01).   
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Table 11: A comparison of distance (m) covered in each velocity zone by playing 

position during each half of match-play. Mean (SD). 
 

Locomotion category No. of events Distance covered (m) 

HSR 
31.1 (11.3) 
30.4 (9.1) 

323.7 (120.8) 
281.8 (118.2)a 

LSS 
12.6 (4.6) 
12.4 (5.3) 

154.0 (65.6) 
128.5 (60.4)b  

MSS 
7.4 (2.9) 
7.6 (3.4) 

94.3 (43.8) 
88.2 (50.8) 

HSS 
3.9 (2.6) 
3.2 (2.6) 

63.3 (51.5) 
53.7 (48.5) 

Sig: a: p = 0.02, d = 0.35; b: p < 0.001, d = 0.40 

 

Average TD was 8872 m (± 1061) and greater distance was covered in the first (4592 m 

± 525) compared to second half (4279 m ± 667, p ≤0.01, d = 0.52).  There was no 

significant effect of playing position on TD covered; F (4, 34) = 2.10, p = 0.10, d = 0.43; 

CMF (9367.36 m ± 1218.10), WMF (8994.00 m ± 619.75), WD (8896.13 m ± 881.15), 

FW (8752.00 m ± 687.79), CD (7910.33 m ± 177.00) (See Table 11). 

 

3.4 Discussion  

This study set out to investigate the external load of competitive youth soccer with a 

particular focus on acceleration/deceleration activity, total PL and individual planar 

components.  Secondary aims were to examine time dependent changes in 

acceleration/deceleration activity, profile HSA and investigate time dependent changes.  

Key findings can be summarised as follows; CMF reported higher total PL compared to 

CD (991.49 AU ± 223.23 vs. 745.84 AU ± 161.40, p = 0.04, d = 1.26) and higher AP load 

(287.54 AU ± 65.97 vs. 191.25 AU ± 56.50, p = 0.01, d = 1.56) (see Table 7, p.98).  WMF 

covered greater distance in zone 1 (-20.00 to -4.00 m·s-2) compared to WD, CD and CMF 

(p < 0.001, d = 1.53 - 2.53), zone 2 (-4.00 to -2.00 m·s-2) compared to CD (p = 0.02, d = 
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2.79) and zone 6 (4.00 to 20.00 m·s-2) compared to CD (p = 0.03, d = 1.59).   FW covered 

greater distance in zone 1 and 2 compared to CD (p ≤ 0.04, d 2.69 - 3.38) (see Table 8, 

p.99).  Distances covered in zones 2 - 5 were reported to decline significantly between 

playing halves (p ≤ 0.02, d = 0.38 - 0.66) (see Table 9, p.99).  Also, greater activity was 

found in Period 1 (0 - 15 minutes) compared to P2, P5 and P6 in zone 3 and 4 (p ≤ 0.05, 

Ƞ = 0.10 - 0.12), compared to P4, P5 and P6 in zone 5 (p ≤ 0.01, Ƞ = 0.02 - 0.20) (see 

Table 10, p.101).  Differences in MSS activity were; WMF (269.83 m ± 69.02) vs. CD 

(123.50 m ± 30.34, p < 0.001, d = 2.74), FW (256.60 m ± 61.53) vs. CD (p = 0.01, d = 

2.74); WMF vs. CMF (130.64 m ± 83.50, p < 0.001, d = 1.81), FW (256.60 m ± 61.62) 

vs. CMF, p = 0.01, d = 1.71).  Also, in HSS, WMF (214.17 m ±114.19) vs. CD (60.17 m 

± 22.66, p = 0.01, d = 1.87), ·vs. CMF (67.55 m ± 63.72, p = 0.01, d = 1.55).  However, 

reductions in distance covered between playing halves were limited to HSR (p = 0.02, d 

= 0.35) and LSS (p < 0.001, d = 0.40) (see Table 11, p.102). 

 

The positional PL data reported extends the body of literature about the external demands 

of soccer competition.  Presently the use of GPS during sport is in its infancy, but total 

PL has differentiated between playing positions in Basketball (Montgomery, Pyne & 

Minahan, 2010), Netball (Cormack et al., 2013) and Australian Rules football (Boyd, Ball 

& Aughey, 2013).  In this study, differences in total PL were evident, but for the most 

part failed to reach significance.  Given the differences in the discreet actions completed 

by players (headers, tackles, sideways or backward running, etc...) (Bloomfield, Polman 

& O’Donoghue, 2007; Carling et al., 2008) it was surprising that planar contributions 

were similar across playing positions. However, it is feasible that PL is accumulated 

differently by each playing position.  The impact of the 0.6 s event threshold is also 

unclear, but it is likely that some activities were too short to be included in the analysis.  
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Further research could investigate the impact of a shorter cut-off point on PL to determine 

the most appropriate threshold.    

 

Accelerometers are sensitive to the magnitude of acceleration caused by impact force, 

landing and physical contact (Young, Hepner & Robbins, 2012; Wundersitz et al., 

2015a).  A strong correlation (r = 0.93) between PL and TD (Scott et al., 2013b) reflects 

elevated activity in the vertical axis.  Based on this relationship it was anticipated that 

CMF would exhibit higher total PL as a product of greater TD and elevated CC impact 

force. However, differences in total PL and planar contributions were limited to CMF vs. 

CD in total PL and AP load.  The placement of GPS units at the scapula and the formula ic 

construct of total PL means it is sensitive to changes in upper body orientation, 

particularly during changes in velocity or direction (Barrett, Midgley & Lovell, 2014; 

Keller et al., 1996; Wundersitz et al., 2013).  During linear running over 14-16 km·hr-1 , 

AP load was higher due to biomechanical alterations in running mechanics (Barrett, 

Midgley & Lovell, 2014; McGregor, Busa, Yaggie & Bolt, 2009) suggesting differences 

in AP load are consistent with frequent changes in movement speed.  Support can be 

found by the greater total acceleration and deceleration distance covered by CMF in 

comparison to CD.   

 

GPS unit location and between athlete differences in posture and gait during all forms of 

locomotion can also be reasonably assumed to impact on tri-axial load.  Contemporary 

GPS is located at the scapula to optimise satellite communication, however, this reduces 

sensitivity to hip rotation at the centre of mass, leading to an underestimation of ML load 

(35 % ± 20.3) (Barrett, Midgley & Lovell, 2014).  In addition, increased vertical load at 

the scapula compared to the centre of mass (55.7 %  ± 5.3 vs. 49.5 % ± 6.9) could reflect 



 

105 
 

arm swing and forward lean during running (Barrett, Midgley & Lovell, 2014).  It is, 

therefore, recommended that comparisons of PL be made on a within-athlete basis only 

(Barrett, Midgley & Lovell, 2014).   

 

The trend for WMF to complete more distance > 2.00 m·s-2 compared to central players 

is similar to findings from Norway (Ingebrigtsen et al., 2015).  Also, positiona l 

differences suggest that there is a requirement for wide players to accelerate more often, 

compared to central players. These findings are similar to observations that higher 

running speeds are achieved by wide players (Bradley et al., 2010) highlighting they 

enjoy greater space, and are required to participate in offensive and defensive sequences 

of play (Di Salvo et al., 2010).  This combined role requires them to minimise both 

“attacking reaction time,” defined as the “lapse between winning the ball and a shot on 

target” (Garanta, Maia & Basto, 1997. P.246), and defensive reaction time, or the lapse 

between the start and end of a defensive period (Barreira, Garganta, Machado & Anguera, 

2014).  The subtle differences between the studies may reflect the tactical or strategic 

approach to competition, or the differences in technical competence between levels of 

competition (Carling, 2011) which help to shape the positional roles. 

 

Comparison between time periods showed that acceleration/deceleration activity in zones 

2-5 (-4.00 to 4.00 m·s-2) was highest during the opening period, consistent with elevated 

work rate during this stage of the game (Akenhead et al., 2013; Lovell et al., 2013a; 

Weston, Drust & Gregson, 2011).  This period has been described as atypical, and its use 

as a reference for comparison has received criticism (Carling, 2013).  Instead, relative 

comparisons using m·min-1 during 5 minute periods, revealed that elevated work rate only 

persisted for the initial 5 minutes (Lovell et al., 2013a).  However, shorter periods are 
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influenced by active playing time that may limit the opportunity to engage in game related 

activity (Bradley & Noakes, 2013; Carling & Dupont, 2011), and therefore, 15 minute 

periods were preferred in the present study.   

 

Time-dependent reductions in acceleration activity from the beginning to the end of the 

game were found in zones 1-5 (d = 0.28 - 0.66) providing support for previous studies in 

professional teams (Akenhead et al. 2013; Ingebrigtsen et al. 2015).  Reductions are 

suggested to reflect declines in the rate of force development (Thorlund, Aagaard & 

Madsen, 2009) and maximum force production (Rampinini, Bosio, Ferraresi, Petruolo, 

Morelli & Sassi, 2011), as a consequence of game related peripheral fatigue (Akenhead 

et al., 2013; Rahnama, Reilly, Lees & Graham-Smith, 2003). In contrast, Bradley et al. 

(2010) found no differences in the number of medium (2.5 to 4.0 m·s-2) or high (> 4.0 

m·s-2) accelerations between the first and last 15 minutes of the game.  Inconsistency 

between the studies might be methodological or due to differences in competition level.  

Bradley et al. (2010) quantified accelerations > 2.5 m·s-2, Ingebrigtsen et al. (2015) > 2.0 

m·s-2, whereas Akenhead et al., (2013) and the present study used > 1.0 m·s-2.   In relation 

to competition level, only Bradley et al. (2010) analysed players from an elite domestic 

league (English Premier), which is shown to complete more high-intensity running than 

domestic leagues (Bradley et al., 2010; Mohr, Krustrup & Bangsbo, 2005).  Allied to this, 

higher level players are also found to recover quicker from high intensity activity (Mohr 

et al., 2003) and repeated sprint bouts (Impellizeri et al., 2008; Rampinini et al., 2009b) 

which might also be the case for acceleration activity. 

 

HSR is an integral part of soccer activity (Mohr, Krustrup & Bangsbo, 2003) and analysis 

of HSA showed that positional differences were limited to MSS and HSS, whereby WMF 
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and FW covered greater distances than central players.  In a similar age group, MSS and 

HSS activity was less for defenders than FW (p < 0.05, d = 1.02) and midfielders (p < 

0.05, d = 0.68) respectively (Aslan et al., 2012), but comparison is limited by a lack of 

positional separation.  Similar findings are found amongst professionals, where WMF are 

widely reported to complete greater total sprint distances and CD the least (Bradley et al., 

2009; 2010; Di Salvo et al., 2009) which can be attributed to a tactical role in the team. 

However, a direct comparison between studies is complicated by methodological issues 

and the threshold for sprinting ranges from 19.80 km·hr-1 - 25.2 km·hr-1 (Bradley et al., 

2009; 2010; Di Salvo et al., 2009; 2010).   

 

Comparison of sprinting activity showed that only LSS (18.1 to 21.0 km·hr-1) reduced 

significantly between playing halves, unlike MSS/HSS (> 21.1 km·hr-1) activity.  

Interestingly, WMF and FW from the English Premier League exhibited significant 

reductions in sprint activity (> 19.8 km·hr-1) (ES < 0.5) between playing halves, whereas 

CMF and CD increased their activity (ES <0.3) (Di Salvo et al., 2009).  While the authors 

offered no explanation for these findings, wide players and FW are required to complete 

more HSR during games, and this could be a fatigue related decline.  Within the present 

study, the pattern of decline reported might represent a pacing strategy whereby players 

self-regulate their running to preserve the capacity to complete MSS and HSS.  Such 

activity is described as slow-positive where the intensity of running declines 

progressively during the match but is interrupted by periods of high speed activity when 

required (Waldron & Highton, 2014).   

 

While the acceleration/deceleration activity reported contributes to the body of 

knowledge about soccer activity, it is important to recognise the limitations associated 



 

108 
 

with measurement of distance using the Doppler shift method.  Individual sprint bouts are 

on average < 10 m (Di Salvo et al., 2010) and during this activity 5 Hz GPS exhibited 

SEE 30.9 % ± 5.8 for measuring distance (Jennings et al., 2010b).  Soccer is characterised 

by random movements and, during gradual and tight changes of direction, the same 

equipment demonstrated CV 7.9% and 9.2 % respectively, when sprinting (Jennings et 

al., 2010b).  In addition, Varley, Fairweather & Aughey (2012) demonstrated poorer 

validity measuring instantaneous velocity from a lower starting speed (1-3 m·s-2) 

compared to a higher starting speed (5-8 m·s-2) (CV 14.9 % ± 1.16 vs. 7.1 % ± 0.87).  It 

is therefore prudent to view GPS data as indicative rather than definitive, yet the data 

reported could still be used to help to prescribe position specific training programmes.  

 

The activity profile reported in this study was derived from a single collegiate academy, 

and issues arising during data collection limited the scope of the findings.  Player 

interchange during games led to bias in the dataset whereby CMF contributed more files 

than CD and WMF.  The differences in the physical performance between wide and 

central players are well documented (Buchheit et al., 2010a; Di Salvo et al., 2007; 

Gregson et al., 2010), and this would have influenced the findings.  Substitutes are also 

shown to exhibit higher work rates than starting players (Carling, Espie, Le Gall, 

Bloomfield & Jullien, 2010) and the tendency for five substitutions to be made per game, 

might have influenced the overall work rate of the team.   

 

The collection was limited to home games which could be interpreted as a limitation to 

the study but could equally be advantageous.  Consistency in the match location helped 

to reduce data variability because pitch surface (Nédélec, McCall, Carling, Le Gall, 

Berthoin & Dupont, 2012), pitch dimensions, playing strategy/tactical approach (Bradley 
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et al., 2010) and the advantage of playing at home (Lago-Peñas, 2009), were all controlled 

(Morgans et al., 2014).  Nevertheless, the findings are unique to the interaction effect of 

these variables.  Home fixtures are associated with higher ball possession, regaining 

possession more quickly and attacking more frequently (Almeida, Ferreira & 

Volossovitch, 2014; Lago-Peñas, 2009; Lago-Peñas & Lago-Ballesteros, 2011).  The 

academy teams analysed are amongst the strongest in the region, and of the fixtures 

analysed, only one resulted in a loss, so it is feasible that the data reported does not 

represent the full physical potential of the players. Amongst professionals, positive score 

lines were found to reduce high speed activity because there was no requirement to chase 

the ball (Lago et al., 2010; Lago & Martin, 2007).   

 

In addition to the limitations of 5 Hz GPS discussed above, the accumulation of PL may 

have included erroneous data arising from unit artifact and player-player collisions and/or 

falls. To address this, Catapult Sprint software automatically removes data collected 

during poor GPS reception (HDOP > 2.5) in combination with excessive velocity (> 10 

m·s -2) to reduce reliability issues.   Additional steps were also taken according to 

manufacturer advice; players were fitted with appropriately sized custom fitted garments, 

and, units were calibrated periodically.  However, due to the changing availability of GPS 

units, it was not always possible to assign the same GPS unit to minimise between-unit 

variability (Jennings et al., 2010a).  Finally, although the playing surface remained the 

same throughout this study, 3G artificial surfaces are suggested to produce higher ground 

reaction forces which may complicate comparison with future studies utilising a natural 

playing surface (Nédélec et al., 2012).    
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3.5 Summary 

This study was the first to report total PL and planar contributions during competitive 

soccer.  Findings highlighted that differences in total PL were limited to CMF vs. CD and 

that only AP load differed significantly between CMF and CD.  Wide players completed 

more activity (± 2.00 m·s -2) in contrast to central players, providing some justifica t ion 

for the inclusion of position specific conditioning regimes.  In addition, time-dependent 

changes were evident for acceleration/deceleration activity, but these declines cannot be 

attributed to fatigue given the influence of game location, score line and the level of game 

competitiveness.    

 

3.6 Perspective 

A key finding from chapter two was the limited information about the 

acceleration/deceleration activity during competition.  Considering the additiona l 

energetic demands of accelerating compared to steady state motion (di Prampero et al., 

2005), it is important to quantify this activity to optimise readiness to compete.  Activity 

is quantified according to pre-determined thresholds, however, perhaps individualised 

zones would be more appropriate.  In a small cohort (n = 8) comparison of mean distance 

covered during high speed running (>14.4 km·hr-1) across 5 games, differed by ~5 % (167 

m).  However, when normalised according to respiratory compensation threshold (VT2) 

CMF1 and CMF2 differed by 41 % (2712 m vs. 3814 m) (Lovell & Abt, 2013).  Although 

these data suggest meaningful differences and have potential implications for the 

evaluation of player’s physical performance, the practical challenges of implementing 

individualised categories at the youth level are significant.   
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On a practical level, insight and understanding of physical performance can be extended 

by contextual information, and this is perhaps, more accessible to the coach than the 

advanced methodology outlined by Lovell & Abt (2013).  Whether it is possible to infer 

the likelihood of on field success from physical performance is debatable.  In fact, it is 

suggested that technical and tactical effectiveness has a greater impact on league standing 

than physical performance, although the latter underpins the former (Carling, 2013) and 

underlines the complexity of analysing soccer performance.  The present reductionist 

approach to performance analysis (Mackenzie & Cushion, 2012) seems to be at odds with 

the complex nature of competition that is reliant on the interaction of technical, strategic 

and physical components.   

 

During this study, emergent research highlighted that measure of external load are used 

increasingly to micro-manage player workload on a daily basis (Cummins et al., 2013).  

In addition, longitudinal data allows practitioners to monitor an individual’s natural 

variation in their physical performance and make inferences about their fatigue status and 

readiness to compete (Anderson et al., 2016; Hulin, Gabbett, Lawson, Caputi & Sampson, 

2015; Malone et al., 2015).  Increasingly, this approach is preferred over regular fitness 

assessment, given the challenges to scheduling because of time restrictions allied to 

congested games programmes and associated travel commitments (Casajús, 2001; Pyne, 

Spencer & Mujika, 2014).  However, financial constraints place integrated technology 

out of the reach of the majority of clubs at the sub-elite youth level.  Consequently, valid 

and reliable field based fitness tests are the only practical method of determining fitness 

status at the sub-elite youth level.  
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Among the criteria when devising a field test is, construct validity, this being how test 

performance compares to game performance (Paul & Nassis, 2015).  Given the growing 

attention paid to external load measures when analysing competition, and the emphasis 

on these metrics when micro-managing players, it is surprising that contemporary field 

tests have not been validated using these measures.  Further, the shelf life of contemporary 

field tests is unclear given the continual development in the physical demands of 

competition (Barnes et al., 2014; Bush et al., 2015b).  Consequently, it is necessary to 

determine the validity of contemporary field based fitness tests using measures of external 

load.   
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Chapter 4: A comparison of the external load of 

contemporary field tests and match-play. 
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4.1  Introduction 

Chapter 3 presented the tri-axial external load of competitive soccer revealing subtle 

differences between playing positions providing justification for the individualisation of 

training load.  At the elite level, the same variables are monitored during training sessions 

on an individual basis and manipulated to deliver a training load appropriate for the 

player, the training outcome and the phase of the season (Anderson, Orme, Di Michael, 

Close, Morgans, Drust & Morton, 2016).  The development of integrated technology has 

facilitated this approach and brought about a shift away from reliance on interna l 

measures.  Internal measures exhibit shortcomings when evaluating intermittent high 

speed sports (see Chapter 2 for a full review) and led to systematic underestimation of the 

energetics of competition, attributed to the omission of acceleration/decelerat ions 

(Osgnach et al., 2010).  Importantly, internal measures such as HR and BL were used to 

validate contemporary field tests, like the YYIRL, Hoff FET, and RSA, consequently, the 

tri-axial external load of field tests may not reflect the modern game necessitating a re-

evaluation of their validity.  

 

Tri-axial accelerometers measure instantaneous changes in direction in each anatomica l 

plane (Cummins et al., 2013) and for convenience, a global indicator of external load, 

termed PL, is also widely used (Barrett, Midgley & Lovell, 2014).  PL can reliably 

differentiate between playing positions, level of competition and training drills in a 

number of sports (Boyd, Ball & Aughey, 2013; Cormack et al., 2013; Ingebrigtsen et al., 

2015; Montgomery, Pyne & Minahan, 2010), but an assessment of the external load of 

contemporary field tests is absent from literature.  To satisfy scientific rigour, 

demonstrable validity, reliability, specificity and objectivity are essential (Pyne, Spencer 

& Mujika, 2014), hence addressing this shortcoming would permit existing procedures to 

be used confidently, and performance measures hold value for the practitioner.   
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Three criteria shaped the selection of tests evaluated in this study.  Firstly, the valid ity 

and/or reliability of the test should have been established within existing literature.  

Secondly, given the importance of HSA, each procedure should assess this component.  

Finally, the protocol should be maximal and widely used in the applied setting.  After 

consideration, three tests were chosen, the YYIRL1, the BST, and the Hoff FET.  The 

YYIRL1 was selected because it evaluates the ability to complete HSR, test performance 

is correlated to in game HSR, and its intermittent nature demonstrates logical valid ity 

(Bangsbo, Iaia & Krustrup, 2008; Chamari et al., 2005; Kemi et al., 2003;  Krustrup et 

al., 2005).  As a measure of RSA, the BST is unlike other protocols because it 

incorporates changes of direction and active recovery, and has demonstrable reliability 

(Wragg, Maxwell & Doust, 2000).  Finally, although the Hoff FET predicts aerobic  

capacity (Kemi et al., 2003), it demonstrates strong logical validity and provides an 

interesting comparison with the linear YYIRL1. 

 

Presently there are no studies that have described the tri-axial external load of field based 

fitness tests and this knowledge will establish whether they evoke an equitable physical 

load. It is acknowledged that the unpredictable nature of soccer renders a true 

representation impossible (Paul & Nassis, 2015), but the principle of specificity requires 

that differences between the two be minimal.  Therefore, the primary aim of this study 

was to investigate the external load of three contemporary field test in comparison with 

competition, with a focus on total PL, individual planar contributions and 

acceleration/deceleration activity.  Secondary aims were to compare HSR, LSS, MSS and 

HSS during each test with competition.  Hypothesis 2: The tri-axial external load of three 

contemporary field tests will be different in comparison to competitive sub-elite youth 

soccer 
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4.2 Methodology 

4.2.1 Participants 

Seventy six well trained male sub-elite youth soccer players (17.3 ± 0.9 yrs, 71.3 ± 8.1 

kg, 177 ± 6 cm) volunteered for the study and were divided by playing position (WD = 

15, CD = 14, WMF = 12, CMF = 16, FW = 19).  All participants were training in a high 

performance environment involving four, two hour field based sessions, two, sixty minute 

supervised strength and conditioning sessions and up to two competitive games per week.  

Players or parents/guardians provided informed consent where appropriate in accordance 

with the Declaration of Helsinki.   The experimental procedure was approved by the 

BuSH committee at the University of Central Lancashire.    

 

4.2.2. Procedures 

Acceleration/deceleration activity and PL data for the field tests was gathered during a 

scheduled battery of field based fitness tests administered to the academy playing squads 

on two separate days, separated by no more than seven days.  Due to time constraints 

imposed by the academic teaching programme, it was not possible to standardise the 

timing of testing and, consequently, some players were assessed in the morning and some 

in the afternoon.  Only the players completing the Hoff FET, YYIRL1 and BST were 

included in the analysis, and this produced an uneven number of players in each playing 

position.  An outline of the testing schedule is provided in Table 12 (see p.118).  The 

game data used for comparison is the same as reported in Chapter 3. 

 

Participants were instructed to follow their usual diet, arrive hydrated and be suitably 

attired.  Testing followed the regular warm up of approximately ten minutes that included 

a short preparatory period of ball work and dynamic flexibility.  The Hoff FET was 



 

117 
 

administered using the guidelines provided by Chamari et al. (2005), whereby players 

dribbled the ball continuously for 8 minutes around a predetermined activity course.  

Participants were familiarised with the course beforehand, and assistants were on hand to 

replace displaced equipment and provide verbal encouragement.  Completion of the 

YYIRL1 followed the procedure outlined by Bangsbo (1996) and participants were 

familiar with the test, so no practice was required.  During the trial, all participants 

received verbal encouragement.  The BST followed the procedure outlined by Bangsbo 

(1994) and to avoid participants pacing themselves, they were told that the sum of their 

seven repetitions would be the performance measure.  Participants familiar ised 

themselves with the procedure by completing two trial efforts and were fully rested before 

the recorded trial began.  Electronic timing gates (Smartspeed, Cardiff, UK) positioned 

at the start and finish line recorded time to the nearest tenth of a second.  All field tests 

were completed on a 3G artificial playing surface.   

 

Portable GPS units (Catapult Sports, Minimax, 5 Hz) equipped with 100 Hz 

accelerometer were worn by players and located securely between the scapulae in a 

custom made harness.  GPS units were switched on 10 minutes before use to allow 

satellite locking consistent with manufacturer’s guidance.  Horizontal dilution of 

precision (HDOP) indicated accuracy of GPS in a horizontal plane (Catapult Sports) and 

optimum satellite availability (HDOP = 0) is where one satellite is directly overhead with 

a minimum of four spaced equally around the horizon.  During these trials, HDOP ranged 

between 0.8-1.6 and is a good signal. Acceleration activity was calculated using the 

Doppler shift method.  
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PL was expressed as total load (AU) this being the square root of the sum of the squared 

instantaneous rate of change in acceleration in each anatomical vector (ML, AP, and CC) 

divided by 100 (see Figure 1, p.64)  (Boyd, Ball & Aughey, 2011).   Proprietary software 

also recorded and reported PL in each contributory anatomical plane.  PL is reported in 

arbitrary units (AU).  The contributions to PL were also categorised by proprietary 

software using the following scale: 0-1 AU, 1-2 AU, 2-3 AU, 3-4 AU, 4-6 AU and 6-10 

AU, and reported as a percentage of total PL.  Distance covered during 

acceleration/deceleration activity was categorise as follows; zone 1: -20.0 to -4.0 m·s-2; 

zone 2: -4.0 to -2.0 m·s.-2; zone 3: -2.0 to 0.0 m·s-2; zone 4: 0.0 to 2.0 m·s-2; zone 5: 2.0 

to 4.0 m·s-2; zone 6: 4.0 to 20.0 m·s-2).  Locomotor activity was categorised as per Aslan 

et al. (2012); HSR: 15.1 to 18.0 km·hr-1; Low speed sprint (LSS): 18.1 to 21.0 km·hr-1 ; 

Moderate speed sprint (MSS): 21.1 to 24.0 km·hr-1; High speed sprint (HSS) > 24.1 

km·hr-1).   

 
 

Table 12: The sequence of fitness assessments administered to the participants. 

Day one Day two 

Height BST 
Weight Hoff FET 
Body fat  

Counter movement jump 
Linear speed (5, 10, 30 m) 

YYIRL1 

 
 
4.2.3 Statistical analysis 

Data was uploaded to Catapult Sprint software (version 5.0), pooled into four groups; 1: 

Hoff FET; 2: YYIRL1; 3: BST; 4: Game, and was manually edited to exclude non-test 

activity.  All data was tested for normality using a Shapiro Wilks test and Levene’s 

established homogeneity.  To enable comparison between each procedure the effect of 

duration was controlled using a univariate ANCOVA.  Post hoc analysis was completed 
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using a Bonferroni correction chosen to reduce the chance of a Type 1 error (Hopkins, 

2000b).  Statistical significance was accepted p ≤0.05. Eta2 (ƞ) determined the magnitude 

of the main effect; it was calculated using the formula; Sum of SquaresEffect / Sum of 

SquaresTotal (Field, 2013) and interpreted using the scale 0.10 small; 0.30 medium and 

0.50 large (Cohen, 1988).  Cohen’s d determined the magnitude of effect for pairwise 

comparisons, and was calculated using the formula; Mean group 1 - Mean group 2 / 

(SQRT mean squared error).  It was interpreted using the scale outlined by Batterham and 

Hopkins (2006): trivial (< 0.2), small (> 0.2-0.6), moderate (>0.6-1.2), large (>1.2-2.0) 

or very large (>2.0-4.0).  Pearson’s correlation coefficient measured the strength of the 

relationship between in-game and test HSA activity (HSR + LSS + MSS + HSS).  

According to Hopkins (2015a), the magnitude of correlation coefficients was considered 

as trivial (r = 0.1), small (r = 0.1 - 0.3) moderate (r = 0.3 - 0.5), large (r = 0.5 - 0.7), very 

large (r = 0.7 - 0.9) nearly perfect (r = 0.9 - 9.9), and perfect (r = 1.0).  Agreement between 

test distance and GPS distance was examined using typical error (TE) and the magnitude 

of the difference was expressed as coefficient of variation (CV %).  Calculations were 

made using a customised spreadsheet for validity and reliability (Hopkins, 2015b).  All 

statistical procedures were completed using SPSS 20.0 (SPSS Inc. Chicago, USA).  

 

4.3 Results 

4.3.1 Tri-axial PlayerLoad 

The planar contribution to total PL was proportionally similar (see Table 13, p.120).  

There was no significant effect of duration on total PL; F (1, 183) = 0.861, p = 0.46, ƞ = 

0.01.  Estimated marginal means showed adjusted values; Hoff FET: 450.37 AU, 

YYIRL1: 424.79 AU, BST: 458.26 AU, Game: 59.09 AU.  There was no significant 

effect of duration on AP load; F (1, 183) = 0.342, p = 0.80, ƞ = 0.01.  Estimated margina l 

means show adjusted values; Hoff FET: 105.67 AU, YYIRL1: 99.31 AU, BST: 100.50 
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AU, Game: 78.32 AU.  There was no significant effect of duration on ML load; F (1, 183) 

= 0.862, p = 0.46, ƞ = 0.01.  Estimated marginal means show adjusted values; Hoff FET: 

116.43 AU, YYIRL1: 112.33 AU, BST: 125.03 AU, Game: -9.78 AU.  There was no 

significant effect of duration on CC load; F (1, 183) = 1.340, p = 0.26, ƞ = 0.26.  Estimated 

marginal means showed adjusted values; Hoff FET: 228.27 AU, YYIRL1: 213.15 AU, 

BST: 232.73 U, Game: -9.48 AU.   

 

Amongst the YYIRL1, BST and game, the highest proportion (48, 50, 70 %) of AU events 

contributing to total PL were ranked 0-1.  In, contrast 80 % of events in the Hoff FET 

were ranked 1 -2 AU (see Table 14).   

 

 
 

 

 

 

 

 

 

 

Table 13: The PlayerLoad characteristics of each test condition and match-play 
(AU). Mean (SD). 

Test Total 
load 

ML axis ML % AP axis AP % CC axis CC % 

Hoff 
FET 

166.11 
(23.95) 

38.08     
(6.19) 

23 45.99   
(11.06) 

27 82.03   
(11.65) 

50 

        
YYIRL1 205.51 

(67.34) 
51.89   
(16.88) 

26 53.27   
(22.91) 

25 100.35  
(32.18) 

49 

        
BST 70.18 

(10.79) 
18.07     
(3.03) 

25 19.02     
(5.02) 

27 33.10     
(4.53) 

47 

        
Game 912.62 

(204.46) 
225.47 
(50.96) 

25 257.53 
(66.74) 

28 429.59 
(102.30) 

47 

Table 14: The proportional contributions (%) to total PL according to 

classification of AU events. 

Test 0 -1  
AU  

1 - 2  
AU  

2 -3  
AU  

3 - 4  
AU  

4 - 6  
AU  

6 - 10  
AU  

Hoff FET 14 80 5 < 1 0 0 

YYIRL1 48 34 16 1.5 < 1 0 

BST 50 29 15 5 < 1 0 

Game 70 23 5 1.5 < 1 0 
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4.3.2 Distance covered in different acceleration/deceleration zones 

There was a significant effect of condition on distance covered in zone 1 after controlling 

for the effect of duration; F (3, 166) = 29.085, p < 0.001, ƞ = 0.35.  Estimated margina l 

means showed adjusted values; Hoff FET: 36.00 m; YYIRL1: 49.75 m; BST: 76.93 m; 

Game: -98.01 m.  Follow up tests revealed significant differences between conditions; 

YYIRL1 > Hoff FET, p = 0.03, d = 0.83; BST > Hoff FET, p < 0.001, d = 2.47; BST > 

Game, p = 0.04, d = -1.27 (see Table 15, p.123).  

 

There was a significant effect of condition on distance covered in zone 2, after controlling 

for the effect of duration; F (3, 166) = 9.557, p < 0.001, ƞ = 0.15.  Estimated margina l 

means showed adjusted values; Hoff FET: 162.99 m; YYIRL1: 193.134 m; BST: 169.43 

m; Game: -263.22 m.  Follow up tests revealed there were no significant differences 

between conditions.   

 

There was a significant effect of condition on distance covered in zone 3, after controlling 

for the effect of duration; F (3, 166) = 17.31, p < 0.001, ƞ = 0.24.  Estimated margina l 

means showed adjusted values; Hoff FET: 974.16 m; YYIRL1: 896.93 m; BST: 736.02 

m; Game: 716.50 m.  Follow up tests revealed significant differences between conditions; 

Hoff FET > BST, p = 0.01, d = 1.35.   

 

There was a significant effect of condition on distance covered in zone 4, after controlling 

for the effect of duration; F (3,166) = 8.366, p < 0.001, ƞ = 0.13.  Estimated margina l 

means showed adjusted values; Hoff FET: 1695.10 m; YYIRL1: 1543.30 m; BST: 
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1334.28 m; Game: 1514.29 m.  Follow up tests revealed there were no significant 

differences between conditions (see Table 16, p.123). 

 

There was a significant effect of condition on distance covered in zone 5, after controlling 

for the effect of duration; F (3,166) = 219.648, p < 0.001, ƞ = 0.80.  Estimated margina l 

means showed adjusted values; Hoff FET: 133.36 m; YYIRL1: 182.82 m; BST: 322.56 

m; Game: -193.32 m.  Follow up tests revealed significant differences between 

conditions; YYIRL1 > Hoff FET, p < 0.001, d = 1.69; YYIRL1 > Game, p = 0.01, d = 

0.35; BST > Hoff FET, p < 0.001, d = 6.47; BST > YYIRL1, p < 0.001, d = 4.78; BST > 

Game, p < 0.001, d = 4.42. 

 

There was a significant effect of condition on distance covered in zone 6, after controlling 

for the effect of duration; F (3,166) = 78.475, p < 0.001, ƞ = 0.59.  Estimated margina l 

means showed adjusted values; Hoff FET: 50.46 m; YYIRL1: 80.30 m; BST: 79.38 m; 

Game: -119.90 m.  Follow up tests revealed significant differences between conditions; 

Hoff FET > Game, p = 0.01, d = -5.49; YYIRL1 > Hoff FET, p < 0.001, d = 2.35; YYIRL1 

> Game, p < 0.001, d = -3.20; BST > Hoff FET, p < 0.001, d = 2.28; BST > Game, p < 

0.001, d = -3.19.   
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4.3.3 Distance covered during high-speed activity 

Comparison of HSA on an absolute basis demonstrates different characteristics between 

game and test values (see Table 17, p.125).  HSA distance completed during the Hoff 

FET, YYIRL1, BST and in game, as measured by GPS were, 96.12 m (± 85.50), 826.68 

m (± 304.73), 184.04 m (± 37.09) and 1167.41 m (± 387.76) respectively.  A greater 

Table 15: The distances (m) accumulated in each deceleration zone during each test 

condition and match-play.  Mean (SD). 

Test Zone 1  

(-20.00 to -4.00  m·s -2) 

Zone 2  

(-4.00 to -2.00  m·s -2) 

Zone 3  

(-2.00 to 0.00  m·s -2) 

 Dist. (SD) 
Total 

%  
Dist. (SD) 

Total 

% 
Dist. (SD) 

Total 

% 

Hoff FET 1.96  

(3.16) 

< 1 49.09 

(127.21) 

4 474.14d  

(120.27) 

35 

YYIRL1 25.67a  

(11.85) 

2 102.59  

(40.68) 

6 543.33  

(153.50) 

31 

BST 27.02b,c 

(41.78) 

13 2.48  

(2.18) 

1 3.12  

(1.95) 

1 

Match-play 23.37  

(20.98) 

< 1 204.39  

(50.05) 

3 2769.33 

(340.91) 

32 

Sig: a:  YYIRL1 > Hoff FET, p = 0.03, d = 0.83; b:  BST > Hoff FET, p < 0.001, d = 2.47; c:  BST > 

Game, p = 0.04, d = -1.27; d:  Hoff FET > BST, p = 0.01, d = 1.35. 

Table 16: The distances (m) accumulated in each acceleration zone during each test 

condition and match-play.  Mean (SD). 

Test Zone 4  

(0.00 to 2.00  m·s -2) 

Zone 5  

(2.00 to 4.00  m·s -2) 

Zone 6  

(4.00 to 20.00  m·s -2) 

 Dist. (SD) 
Total 

%  
Dist. (SD) 

Total 

% 
Dist. (SD) 

Total 

% 

Hoff FET 800.05 

(227.01) 

59 19.22  

(9.45) 

1 2.61j 

(3.29) 

< 1 

YYIRL1 910.36 

(272.10) 

53 102.103e,f  

(37.38) 

5 46.46k,l  

(20.85) 

3 

BST 22.37  

(6.18) 

10 155.27g,h,i  

(20.06) 

70 9.25m,n  

(2.90) 

5 

Match-play 5188.89 

(698.23) 

60 275.25  

(49.95) 

3 76.53  

(19.49) 

1 

Sig: e:  YYIRL1 > Hoff FET, p < 0.001, d = 1.69; f: YYIRL1 > Game, p = 0.01, d = 0.35; g: BST > Hoff 

FET, p < 0.001, d = 6.47; h: BST > YYIRL1, p < 0.001, d = 4.78; i: BST > Game, p < 0.001, d = 4.42;  j: 

Hoff FET > Game, p = 0.01, d = -5.49; k: YYIRL1 > Hoff FET, p < 0.001, d = 2.35; l: YYIRL1 > Game, 

p < 0.001, d = -3.20; m: BST > Hoff FET, p < 0.001, d = 2.28; n: BST > Game, p < 0.001, d = -3.19.   
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proportion of the TD was covered during HSR in the Hoff FET, and YYIRL1 compared 

to the game (90 %; 78 % vs. 52 %).  Less distance was covered in LSS during the Hoff 

FET, and YYIRL1 compared to the game (9 %; 22 % vs. 24 %).  The same pattern was 

evident in MSS activity >1 % vs. 14 %.  HSS activity comprised 10 % of HSA in the 

game, but there was no activity in the Hoff FET or YYIRL1.  Across the three tests, the 

BST test mirrored the HSA characteristics of the game the most closely.   

 

There was a significant effect of condition on HSR distance after controlling for the effect 

of duration; F (3, 166) = 149.278, p < 0.001, ƞ = 0.73.  Estimated marginal means showed 

adjusted values; Hoff FET: 581.93 m; YYIRL1: 988.35 m; BST: 810.55 m; Game: -

1426.50 m.  Follow up tests revealed significant differences between conditions; Hoff 

FET > Game, p = 0.001, d = 6.48; YYIRL1 > Hoff FET, p < 0.001, d = 3.11; YYIRL1 > 

Game, p < 0.001, d = 3.36; BST > Hoff FET, p < 0.001, d = 1.75; BST > Game, p < 0.001, 

d = -4.73.   

 

There was a significant effect of condition on LSS distance after controlling for the effect 

of duration; F (3, 166) = 27.265, p < 0.001, ƞ = 0.33.  Estimated marginal means showed 

adjusted values; Hoff FET: 433.30 m; YYIRL1: 482.29 m; BST: 695.60 m; Game: -

1460.36 m.  Follow up tests revealed significant differences between conditions; Hoff 

FET > Game, p < 0.001, d = -10.34; YYIRL1 > Hoff FET, p < 0.001, d = 0.49; YYIRL1 

> Game, p < 0.001, d = -9.84; BST > Hoff FET, p < 0.001, d = 2.64; BST > YYIRL1, p 

< 0.001, d = 2.45; BST > Game, p < 0.001, d = -7.69.  

 

There was a significant effect of condition on MSS distance after controlling for the effect 

of duration; F (3, 166) = 9.204, p < 0.001, ƞ = 0.14.  Estimated marginal means showed 
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adjusted values; Hoff FET: -3.09 m; YYIRL1: 0.35 m; BST: 18.71 m; Game: 176.49 m.  

Follow up tests revealed no significant differences between conditions. Comparison of 

HSS was not possible because no distance was recorded during the Hoff FET or the 

YYIRL1.  

 

YYIRL1 TD (1534 m ± 428) was correlated to in-game HSA r = 0.43, p = 0.05.  The R2 

value is 0.18, meaning that the correlation value accounts for 18% of the variance.  Hoff 

FET TD (1153 m ± 115) was correlated to in-game HSA r = 0.06, p = 0.73.  The R2 value 

is < 0.01, meaning that the correlation value accounts for < 1% of the variance.   

 

 

 

4.3.4 Agreement between test performance and GPS distances 

Mean YYIRL1 test performance (1534 m ± 428) and the GPS distance (1799 m ± 515) 

were strongly correlated (r = 0.97, p < 0.001).  GPS distance demonstrated TE 117.50 m 

(CV 7.8 %).  Mean Hoff FET test performance (1153 m ± 115) and GPS distance (1392 

Table 17:  The high-speed activity (m) completed during each test condition and match-
play.  Mean (SD). 

Test HSR  

(15.1 to 18.0 km·hr-1) 

LSS  

(18.1 to 21.0 km·hr-1) 

MSS  

(21.1 to 24.0 km·hr-1) 

HSS  

(>24.1 km·hr-1) 

 
Dist.  

(SD) 
%  

Dist.  

(SD) 
% 

Dist.  

(SD) 
% 

Dist. 

(SD) 

% 

Hoff FET 87.00a 

(79.28) 

90 8.77f  

(17.55) 

9 0.35  

(1.85) 

> 1   

YYIRL1 638.36b,c 

(186.49) 

78 182.08g,h 

(195.19) 

22 2.07  

(6.04) 

> 1   

BST 85.12d,e 

(24.98) 

46 73.34i,j,k 

(25.64) 

40 23.73 

(21.59) 

13 1.85 

(4.86) 

1 

Match-play 605.42 

(216.01) 

52 282.54 

(115.49) 

24 162.42 

(92.27) 

14 117.03 

(90.67) 

10 

Sig: a: Hoff FET > Game, p = 0.001, d = 6.48; b: YYIRL1 > Hoff FET, p < 0.001, d = 3.11; c: YYIRL1 > 

Game, p < 0.001, d = 3.36; d: BST > Hoff FET, p < 0.001, d = 1.75; e: BST > Game, p < 0.001, d = -4.73;    
f: Hoff FET > Game, p < 0.001, d = -10.34; g: YYIRL1 > Hoff FET, p < 0.001, d = 0.49; h: YYIRL1 > Game, 

p < 0.001, d = -9.84; i: BST > Hoff FET, p < 0.001, d = 2.64; j: BST > YYIRL1, p < 0.001, d = 2.45; k: BST 

> Game, p < 0.001, d = -7.69.  
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m ± 138), were strongly correlated (r = 0.95 p < 0.001) and GPS demonstrated TE 35.41 

m (CV 2.9 %).  

 

4.4 Discussion 

This study intended to investigate the external load of three contemporary field tests in 

comparison the match play, with a focus on total PL, individual planar contributions and 

acceleration/deceleration activity. Secondary aims were to compare HSR, LSS, MSS and 

HSS during each condition. Key findings can be summarised as follows; there were no 

differences between either condition in total PL (p = 0.46, ƞ = 0.01), AP load (p = 0.80, 

ƞ = 0.01), ML load (p = 0.46, ƞ = 0.01) or CC load (p = 0.26, ƞ = 0.26).  Differences in 

acceleration/deceleration activity were limited to zone 1 (p < 0.001, ƞ = 0.35); Zone 3 (p 

< 0.001, ƞ = 0.24); Hoff FET > BST, p = 0.01, d = 1.35; zone 5 (p < 0.001, ƞ = 0.80, and 

zone 6 (p < 0.001, ƞ = 0.59.    Differences in HSA were limited to HSR (p < 0.001, ƞ = 

0.73) and LSS (p < 0.001, ƞ = 0.33).    

 

Advocates of the Hoff FET assert that it demonstrates strong ecological validity by 

replicating the motor actions of competition, specifically, accelerations/decelerations, 

jumping and changes in direction, unlike linear protocols (Chamari et al., 2005; Hoff et 

al., 2002; Kemi et al., 2003; Zagatto et al., 2015).  It was interesting, therefore, that there 

were no differences in planar contributions to total PL after the effect of duration was 

controlled. That CC load contributed the greatest proportion to total PL was not 

unexpected, given the relationship with foot impact force (Boyd, Ball & Aughey, 2011; 

Scott et al., 2013b; Wundersitz et al., 2015a).  Equally, each condition features, 

predominantly, forwards running and similarities in AP load are therefore not 

controversial.  However, the lack of differences in ML load was unexpected, because the 
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multi-directional construct of the Hoff FET was anticipated to evoke a greater ML load 

than the linear YYIRL1, but this was not the case.   

 

Although total PL and planar PL were similar, the composition of accelerometer events 

on the AU scale was different between the tests and game data (see Table 14, p.120).  

Differences were mainly found between 1 - 3 AU, with the YYIRL1 and BST recording 

~ 10 % more events in the 2 - 3 AU category, and it is suggested that these differences 

reflect the sharper directional changes, and associated rapid deceleration and re-

acceleration (Millet, Candau, Faffori, Bignet & Varrav, 2003).  In contrast, the higher 

proportion of 1-2 AU events in the Hoff FET may reflect a consistent running speed and 

lower magnitude acceleration/decelerations.  While this discussion is speculative, 

practitioners would benefit from clarity about what type of event contributes to each 

category on the AU scale.  When applied to an analysis of game data, it could help identify 

positional differences and inform training prescription.  

 

The majority of acceleration/deceleration distance (~ 84 - 94%) was completed within ± 

0 - 2 m·s-2 in the Hoff FET and YYIRL1, which is similar to the game valves reported 

here (~ 93 %) and elsewhere (Akenhead et al., 2013).  In contrast, the differences in BST 

are consistent with its construct; the proportion of decelerations in zone 1 (12.5 %) and 

accelerations in zone 5 (71 %) reflect the frequent braking and re-acceleration. Rapid 

decelerations before turning are crucial for COD speed (Hader, Palazzi & Buchheit, 2015; 

Hewitt, Cronin, Button & Hume, 2010) and imply that a proportion of performance on 

the BST is dependent on the ability to decelerate efficiently.  That performance on a COD 

correlated with eccentric hamstring strength (r = 0.63) (Jones, Bampouras & Marrin, 

2009) serves to confirm this critical role (Chaouachi et al., 2012).  In contrast, there was 
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far less activity <  - 2.00 m·s-2 in the Hoff FET, YYIRL1 and game profile (~ 5 %, 4.5 % 

and ~ 3.5 %) respectively.  Nevertheless, performance in each test procedure is dependent 

on the capacity to withstand the fatiguing effect of repeated concentric and eccentric 

muscular contraction (Clarkson & Sayer, 1999; Howatson & Milak, 2009; Lakomy & 

Haydon, 2004).   

 

Significant differences in HSA were limited to HSR and LSS, whereby each test condition 

involved greater distance compared to the game when the effect of duration was 

controlled. Correlation between the YYIRL1 and in game HSA (r = 0.43, p = 0.04) was 

lower than young soccer players (r = 0.73) (Castagna et al., 2010), young males (r = 0.77) 

(Castagna et al., 2009) and adult males (r = 0.71) (Krustrup et al, 2003; 2005).   The 

reasons for the lower correlation in this study are unclear, but the absence of HSS activity 

in the YYIRL1 compared to the game is a possible explanation.  The average YYIRL1 

performance was 1543 m (± 428), corresponding to volitional exhaustion around 16.0 

km·hr-1 (Krustrup et al., 2003), meaning many participants failed to record distance over 

the LSS threshold (>18.1 km·hr-1).  However, whether players genuinely reached 

volitional exhaustion is unclear in the absence of HR data, but it is feasible that, on this 

occasion, YYIRL1 performance was not a reliable indicator of their capacity to complete 

repeated HSA. 

 

The inferior performance on the YYIRL1 compared to other groups is mirrored by a lower 

proportion of HSA distance covered during competition.  In this study, total in-game HSA 

distance (1167.41 m) comprised ~ 13% of TD (8872 m), which is similar to young soccer 

players (15 – 16 %), but inferior to top-class European professionals (22 – 25 %) (Bradley 

et al., 2009; Mohr, Krustrup & Bangsbo, 2003; Rampinini et al., 2007b) and moderate 
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level professionals (18 %) (Mohr, Krustrup & Bangsbo, 2003).  Differences in game 

performance could be competition related because higher standard sides are shown to 

complete more HSA than lower standard sides (Mohr, Krustrup & Bangsbo, 2003).  Also,  

amongst professionals, positive score lines were found to reduce HSA because there was 

no requirement to chase the ball (Lago et al., 2010; Lago & Martin, 2007).   The academy 

teams analysed are amongst the strongest in the region, and of the fixtures analysed, only 

one resulted in a loss, so it is feasible that the data reported does not represent the full 

physical potential of the players.  

 

When interpreting the results obtained in this study, consideration is given to the 

limitations of the technology employed.  Literature is unequivocal that high speed mult i-

directional activity limits the reliability of 5 Hz GPS when measuring distance (Jennings 

et al., 2010b; Varley, Fairweather & Aughey, 2012; Vickery et al., 2014).  During a sport 

specific simulation course involving 45o, 90o and 180o turns, the error of distance 

measurement was CV 3.71 - 3.78 %, 4.02 - 5.93 % and 5.33 - 6.11 % respectively (Portas 

et al., 2010).  In the present study, YYIRL1 test performance (1534 m ± 428) and the 

GPS distance (1799 m ± 515) were strongly correlated (r = 0.97, p < 0.001).  GPS distance 

demonstrated TE 117.50 m (CV 7.8 %) which is higher than Portas et al. (2010), but these 

trials were conducted at 12.8 km·hr-1, whereas the YYIRL1 begins at 10 km·hr-1 and the 

majority of the test is performed > 13 km·hr-1 (Krustrup et al., 2003).  In addition, 

YYIRL1 test performance represents the cumulative 2x20 m distance (Bangsbo, 1996) 

whereas the edited GPS files represented distance throughout the entire procedure, and, 

therefore, included the 10 m rest interval at the end of each bout. 
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In contrast, average Hoff FET distance (1153 m ± 115) and GPS distance (1392 m ± 138), 

were strongly correlated (r = 0.95 p < 0.001) and GPS demonstrated TE 35.41 m (CV 2.9 

%), which is slightly less than Portas et al. (2010).  As discussed previously, alterations 

in body orientation during directional changes contribute to reliability issues (Barrett et 

al., 2016b; Keller et al., 1996; Tran et al., 2010).  Also, poor technical ability would 

negatively impact Hoff FET performance because players may spend time retrieving the 

ball, which would also accrue additional GPS distance.  Finally, it is also noteworthy that 

Hoff FET distance was measured using a trundle wheel, which is susceptible to 

measurement error created by deviation from the marked course.  

 

During competition, fatigue is shown to alter running mechanics by altering hip extension 

and knee flexion causing an increase in stride frequency (Small, McNaughton, Greig, 

Lohkamp & Lovell, 2008).  This effect was suggested to explain the increase in total PL 

observed at the end of each playing half despite a reduction in activity (Barrett et al., 

2016a).  Each of the procedures investigated in this study were maximal tests, and 

whether altered running mechanics contributed to the PL profiles is unclear.  However, 

this seems unlikely because while there is a requirement to continue performing during 

competition when fatigued, test performance is limited by volitional exhaustion.  It is also 

unlikely that participants reached the level of fatigue required to elicit the changes in 

running mechanics described above. 

 

Finally, the BST incorporates seven repetitions.  This number of trials has been used 

previously in soccer (Chaouachi et al. 2010; Wragg, Maxwell & Doust, 2000) and 

suggested to be appropriate for inducing fatigue while avoiding pacing (Chaouachi et al., 

2010).  However, prior knowledge of the number of trials is associated with pacing during 
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RSA field tests (Billaut, Bishop. Schaerz & Noakes, 2011), which may have affected 

performance.  In addition to encouraging a maximum effort in each repetition, 

participants in this study were also told that the sum of their repetitions would be their 

performance measure.  Inadvertently, this may also have led some participants to regulate 

their efforts to avoid a decline in performance (Billaut et al., 2011).    

 

4.5 Summary 

Differences in total PL, and tri-axial PL, between three field tests and competition, were 

minimal.  Despite satisfying logical validity the multi-directional Hoff FET evoked a 

comparable tri-axial load to the YYIRL1, dispelling some of the criticisms leveled at 

linear shuttle running formats, and questioning the need for increasingly complex testing 

formats.  Acceleration/deceleration activity within each test highlights that performance 

is reliant on the capacity to withstand repeated bouts and represents a large proportion of 

test activity.   

 

4.6 Perspective 

The evidence presented in this study reveals that HSA does not present as large a 

proportion of in-game TD, compared to other populations.  This might be indicative of 

the competition tier or standard of competition within the tier, but, it questions whether 

HSA is as important at the sub-elite level.  In comparison, the data reported in Chapter 3 

demonstrated that acceleration underpins performance and, consequently, the capacity to 

accelerate repeatedly might be a more relevant focus for training and assessment.  
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Emergent research during the course of this thesis highlighted that the physical demands 

of soccer have evolved.  Previously, superior HSR was widely reported amongst higher 

tiered sides (Andersson et al., 2010; Bangsbo Nørregaard, & Thorsø, 1991; Ingebrigtsen 

et al., 2012; Mohr, Krustrup & Bansgbo, 2003; Mohr et al., 2008) presenting a high 

priority for training and testing.  However, more recently, second and third tiered English 

sides completed more HSR than Premier League counterparts across a full season 

(Bradley, Carling, Gomez, Antonio, Barnes, Ade, Boddy, Krustrup & Mohr, 2013a).  

Similarly, position-specific changes in physical and technical performance in the English 

Premier League, point towards an evolution in the rigours of competition imposed by the 

modern strategic and tactical approach to competition (Bush et al., 2015b). 

 

In recent years professionals have become quicker (Haugen, Tønnessen & Seiler, 2013) 

and modern soccer is characterised by an increased number of sprints of shorter bout 

distance (Barnes et al., 2014; Bush et al., 2015b).  Maximum accelerations occur at low 

velocity, and, are more frequent than maximum sprints, (Varley & Aughey, 2013) 

emphasising the integral role of acceleration during competition (Arruda, Carling, 

Zanetti, Aoki, Coutts & Moreira, 2015; Castellano & Casmichana, 2013).  Importantly, 

acceleration and maximum sprinting speed, are separate qualities, based on their 

correlation (r = 0.56 - 0.87) (Buchheit, Glynn, Michael, Al Haddad, Mendez-Villanueva, 

Samozino & Morin, 2014; Little & Williams; Mendez-Villanueva, Buchheit, Kuitunen, 

Douglas, Peltola & Bourdon, 2011). Acceleration is determined by concentric force 

production (Dorn, Schache & Pandy, 2012), whereas maximum speed is related to the 

lower-limb stiffness, the stretch-shortening cycle and hip extension (Buchheit et al., 

2014b).  Finally, the higher energetic cost of accelerating compared to steady state 

movement (di Prampero et al., 2005) provides support for quantifying acceleration 

activity during competition.  Although, current research reports the number of discreet 
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acceleration efforts (Castellano & Casamichana, 2013; Bradley et al., 2010; Dalen et al., 

2016; Ingebrigtsen et al., 2015) and/or total acceleration distance during competition 

(Akenhead et al., 2013; Dalen et al., 2016), whether repeated bouts of acceleration feature 

during competition is unclear.  
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Chapter 5: Repeated acceleration profiles in 

soccer match-play 
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 5.1 Introduction 

Acceleration is integral within soccer and predicates athletic performance (Akenhead et 

al., 2013; Ingebrigtsen et al., 2015) and Chapter 3 adds to the growing body of knowledge 

by profiling the positional activity during competition.  Recently, literature has reported 

that bouts of acceleration are increasingly frequent during competition (Barnes et al., 

2014; Bush et al., 2015b) and is concurrent with an apparent decline in the importance of 

HSR.  Previously superior HSR distance was reported amongst higher playing standards 

(Andersson et al., 2010; Bangsbo Nørregaard, & Thorsø, 1991; Ingebrigtsen et al., 2012; 

Mohr, Krustrup & Bangsbo, 2003; Mohr et al., 2008) presenting a higher priority for 

training and testing.  However, recently second and third tiered English sides completed 

more HSR than Premier League peers (Bradley et al., 2013a) across a full season in direct 

contrast to previous research. It is difficult to explain this observation definitively because 

physical performance is subject to influence from a myriad of factors, includ ing 

competitiveness (Rampinini et al., 2009a), playing formation (Bradley et al., 2011) and 

ball possession (Bradley et al., 2013b).  However, it is plausible that the move to compact 

formations, for example 4-2-3-1 and 4-1-4-1 (Bush et al., 2015a; Wallace & Norton, 

2014), and a higher priority on ball retention (Collet, 2013; Vogelbein, Nopp & 

Hökelmann, 2013) have facilitated a greater reliance on acceleration. 

 

Research is unequivocal that maximal accelerations are more frequent than maximal 

sprints, and are completed at low velocities (Varley & Aughey, 2013), and they underpin 

performance (Arruda et al., 2015; Castellano & Casmichana, 2013).  Further, superior 

acceleration may present a competitive advantage, particularly in goal scoring situations 

(Davis, Brewer & Atkin, 1992; Faude, Koch & Meyer, 2012; Little & Williams, 2005; 

Lockie, Murphy, Knight & Janse de Jonge, 2011).  Subsequently, any impairment in 

acceleration capacity would negatively affect a player’s work rate affording competitive 
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advantage to an opponent.  Of concern to practitioners are the time dependent reductions 

in acceleration activity reported in the second half, both in Chapter 3, and in literature 

(Akenhead et al., 2013; Ingebrigtsen et al., 2015; Russell et al., 2016), and the temporary 

impairments in acceleration activity following the most intense period of match-play 

(Akenhead et al., 2013). 

 

Reflecting on the above findings, the bias towards HSR both regarding conditioning and 

fitness assessment is somewhat contentious.  On the basis of recent evidence the capacity 

to accelerate repeatedly during a game is crucial and evidence shows that acceleration 

activity declines during periods of fixture congestion (Arruda et al., 2015), despite no 

decline in HSR (Dellal, Lago-Peñas, Rey, Chamaria & Orhant, 2015; Djaoui, Wong, 

Pialoux, Hantier, Da Silva, Chamari & Dellal, 2014; Lago-Peñas et al., 2012; Rey et al., 

2010).   Accordingly, the focus should be on the capacity to accelerate repeatedly and this 

may be a more sensitive measure of physical performance (Arruda et al., 2015), but an 

investigation of activity during competition is lacking from literature.   

 

To date, research into the acceleration activity in soccer has reported distance and 

frequency metrics without examining periods of repeated activity.  Akenhead et al. (2013) 

examined the temporal patterns of acceleration during 18, 5 minute periods and defined 

peak activity in relation to the mean.  Although insightful, TD was reported rather than 

the number of bouts and rest intervals.  This provides convincing evidence of the impact 

of transient fatigue following elevated periods of activity and emphasises that this is an 

important physical component.   
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Repeated acceleration activity (RAA) was defined by Barberó-Álvarez, Boullosa, 

Naknamura, Andrín, & Weston (2014) as, as three consecutive accelerations (> 1.5 m·s-

2) interspersed with a maximum of 45 s.  In the only study to date of referees and assistant 

referees, RAA distance constituted ~37 % and ~20 % respectively of total acceleration 

distance representing a sizeable proportion. Field referees completed 7 (± 3.9) RAA bouts 

across the game, and the mean number of accelerations per bout was 3.9 (± 1.5). The 

capacity to recover from repeated bouts is, therefore, an important element of 

performance for referees and allied with an absence of RSA during matches (Barberó-

Álvarez et al., 2014), presents a valid focus for referees’ training programmes.  Given the 

high prevalence of acceleration activity during match-play amongst outfield players, it is 

feasible that RAA is also an important component.  Evidence of RAA, would support the 

inclusion of repeated acceleration training in conditioning programmes and highlights the 

need to evaluate an individual’s capacity to complete this work.   

 

The primary aim of this study was, therefore, to investigate positional RAA during 

competitive sub-elite youth competition. Secondary aims were to investigate the 

variability in RAA performance and differences in activity between playing halves. 

Hypothesis 3: The repeated acceleration activity during competitive sub-elite youth 

soccer will demonstrate positional differences. 

 

5.2 Methodology  

5.2.1 Participants 

Sixty one well trained sub–elite youth soccer players (17.3 ± 0.9 yrs., 176.93 ± 4.31 cm, 

63.96 ± 4.76 kg) volunteered for the study, and were classified by playing position (WD 

= 13, CD = 17, CMF = 11, WMF = 10, FW = 10).  All participants were training in a high 
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performance environment involving four, two hour field based sessions, two, sixty minute 

supervised strength and conditioning sessions and up to two competitive games per week.  

Players or parents/guardians provided informed consent where appropriate in accordance 

with the procedures outlines in the declaration of Helsinki.  The experimental procedure 

was approved by the BuSH committee at the University of Central Lancashire.   

 

5.2.2 Procedures 

Fourteen home English College fixtures were monitored during the competitive phase of 

the 2014-2015 season.  All games were played on a full sized synthetic 3G surface, a 4-

2-3-1 formation was preferred and only players completing 90 minutes, in the same 

playing position, were included.  Consequently, this produced uneven group numbers 

given the tendency for WD, WMF, and FW to be substituted more often.  There were also 

periods of limited GPS unit availability and, therefore, WMF and FW were prioritised for 

data collection.  Game activity was limited to 90 minutes and excluded additional time at 

the end of each playing half.   

 

Portable GPS units (Catapult Sports, Minimax, 5 Hz) equipped with 100 Hz 

accelerometer were worn by players and located securely between the scapulae in a 

custom made harness.  GPS units were switched on 10 minutes before use to allow 

satellite locking consistent with manufacturer’s guidance.  Horizontal dilution of 

precision (HDOP) indicated the accuracy of GPS in a horizontal plane (Catapult Sports) 

and optimum satellite availability (HDOP = 0) is where one satellite is directly overhead 

with a minimum of four spaced equally around the horizon.  During these trials, HDOP 

ranged 0.8-1.6, which is a good signal.   
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The original definition of RAA (Barberó-Álvarez et al., 2014) was adopted in order to 

facilitate comparison, but, also expanded to investigate RAA using thresholds of >1.0 

m·s-2, > 2.0 m·s-2 and > 3.0 m·s-2.   

 

5.2.3 Statistical analysis 

Data was uploaded to Catapult Sprint software (version 5.1) and files were filtered to 

exclude non–game activity.   All data were tested for normality using a Shapiro-Wilk’s 

test, and Levene’s test established homogeneity.  Data are presented as Mean ± SD unless 

otherwise stated. 

 

For normally distributed data, a one-way ANOVA was used to detect the main differences 

between playing positions. All significant main effects were investigated with a 

Bonferroni post hoc test, chosen to minimise the chance of a Type 1 error (Hopkins, 

2000b).  Eta2 (ƞ) determined the magnitude of the main effect; it was calculated using the 

formula; Sum of SquaresEffect / Sum of SquaresTotal (Field, 2013) and interpreted using the 

scale 0.10 small; 0.30 medium and 0.50 large (Cohen, 1988).  Cohen’s d determined the 

magnitude of effect for pairwise comparisons, and was calculated using the formula; 

Mean group 1 - Mean group 2 / (SQRT mean squared error).  It was interpreted using the 

scale outlined by Batterham & Hopkins (2006): trivial (< 0.2), small (> 0.2-0.6), moderate 

(>0.6-1.2), large (>1.2-2.0) or very large (>2.0-4.0). 

 

For data violating the assumption of normality, a Kruskal-Wallis test was used to detect 

the main differences between playing positions. Effect size (ES) was calculated using the 

formula; r = Test statistic / (SQRT n), where n = the number of participants (Field, 2013).  
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Effect size was interpreted using the scale 0.10 small; 0.30 medium and 0.50 large 

(Cohen, 1988).   

 

A paired T-Test established significant differences between playing halves for all 

variables.  Cohens’s d determined the magnitude of the effect and was calculated as above 

and interpreted using the scale outlined by Batterham & Hopkins (2006).  Variability in 

performance was presented as CV %, calculated by (SD/mean) * 100.  All statistica l 

procedures were completed using SPSS 20.0 (SPSS Inc, Chicago, USA).   

 

5.3 Results 

5.3.1 RAA activity (> 1.0 m·s-2) 

Across all positions, the mean total RAA bouts were 24.24 (± 5.23) and there was no 

significant main effect for playing position; F (4, 60) = 0.980, p = 0.43, ƞ = 0.06.  The 

mean number of efforts per RAA bout was 5.29 (± 0.90), there was no significant main 

effect for playing position; H (4, 61) = 6.551, p = 0.47, r = 0.45.  The mean effort duration 

was 0.61 s (± 0.05), there was no significant main effect for playing position; H (4, 61) = 

1.749, p = 0.78, r = 0.22.  The mean recovery between efforts was 17.02 s (± 1.65) and 

there was a significant main effect of playing position; F (4, 60) = 3.042, p = 0.02, ƞ = 

0.18, although follow up tests revealed no positional differences.  The mean recovery 

between bouts was 217.34 s (± 106.22) and there was no main effect of playing position; 

H (4, 61) = 7.367, p = 0.12, r = 0.94 (see Table 18, p.144). 

 

On average, there were significantly more RAA bouts in the first half compared to the 

second (11.05 ± 2.81 vs. 9.95 ± 3.18); t (60) = 2.221, p = 0.03, d = 1.56.  The mean 

number of efforts per bout were similar between playing halves (5.32 ± 1.34 vs. 5.26 ± 
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1.32), and were not significantly different; t (60) = 0.327, p = 0.75, d = 0.15.  The mean 

duration of efforts showed no significant difference between playing halves (0.66 s ± 0.63 

vs. 0.60 ± 0.07); t (60) = 0.702, p = 0.49, d = 0.20.  The mean duration of recovery between 

efforts was not significantly different between playing halves (17.39 s ± 2.22 vs. 17.19 s 

± 2.48); t (60) = 0.501, p = 0.62, d = 0.32.  The mean recovery between RAA bouts was 

not significantly different between playing halves (169.86 s ± 70.92 vs. 189.19 ± 85.62); 

t (60) = -1.483, p = 0.14, d = -5.35. 

 

5.3.2 RAA activity (> 1.5 m·s-2) 

Across all positions, the mean for total RAA bouts was 7.09 (± 4.70).  There was a 

significant main effect for playing position; F (4, 61) = 3.12, p = 0.02, ƞ = 0.18, and post 

hoc testing revealed no significant positional differences. WMF vs. CD was approaching 

significance (p = 0.06, d = 0.88).  The average number of efforts per RAA bout was 3.58 

(± 0.81) and there was no effect of playing position; F (4, 61) = 1.09, p = 0.37, ƞ = 0.07.  

The average recovery between efforts was 18.64 s (± 4.81 s) and there was no effect of 

playing position; F (4, 61) = 0.80, p = 0.53, ƞ = 0.05.  The average recovery per bout was 

476.82 s (± 321.85 s), and there was no effect of playing position; F (4, 61) = 0.52, p = 

0.72, ƞ = 0.04. Average recovery per bout was 476.82 s (± 321.85) and there was not 

significant effect of playing position; F (4, 61) = 0.518, p = 0.72, ƞ = 0.03 (see Table 18, 

p.144).   

 

The mean number of RAA bouts per half was not significantly different (1.27 ± 1.20 vs. 

1.16 ± 1.72); t (60) = 0.209, p 0.23, d = 0.23.  The mean number of efforts per bout were 

similar between playing halves (2.52 ± 1.85 vs. 2.40 ± 1.97), and were not significantly 

different; t (60) = 0.413 p = 0.49, d = 0.91.  The mean duration of efforts showed no 
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significant difference between playing halves (0.37 s ± 0.26 vs. 0.33 s ± 0.26); t (60) = -

0.06, p = 0.09, d = 0.24.  The mean duration of recovery between efforts was not 

significantly different between playing halves (13.21 s ± 10.93 vs. 12.22 s ± 10.90); t (60) 

= -0.419, p = 0.33, d = 0.86.  The mean recovery between RAA bouts was not significantly 

different between playing halves (87.46 s ± 140.16 vs. 42.08 ± 98.02); t (60) = -0.495, p 

= < 0.05, d = 5.34. 

 

5.3.3 RAA activity (> 2.0 m·s-2) 

Across all positions, the mean total for RAA bouts was 1.82 (± 2.00) and there was no 

significant main effect for playing position; H (4, 61) = 8.016, p = 0.09, ES = 1.02.  The 

mean number of efforts per bout was 2.29 (± 1.72) and there was a significant main effect 

of playing position; H (4, 61) = 9.579, p = 0.04, ES = 1.23, although post hoc testing 

revealed no positional differences.  The average duration of efforts was 0.33 s (± 0.52) 

and there was no significant main effect of playing position; H (4, 61) = 8.533, p = 0.07, 

ES = 1.09.  The mean recovery between efforts was 13.56 s (± 10.76) and there was no 

significant main effect of playing position; H (4, 61) = 8.558, p = 0.07, ES = 1.09.  The 

mean recovery between bouts was 728.23 s (± 1079.80) and there was no significant main 

effect of playing position; H (4, 61) = 4.077, p = 0.39, ES = 0.53. 

 

The mean number of RAA bouts playing halves was not significantly different (0.62 ± 

0.92 vs. 0.65 ± 0.97); t (60) = -0.231, p = 0.82, d = 0.09.  The mean number of efforts per 

bout were not significantly different between playing halves (1.38 ± 1.75 vs. 1.39 ± 1.76); 

t (60) = -0.030, p = 0.98, d = -0.01.  The mean duration of efforts was not significantly 

different between playing halves (0.29 s ± 0.64 vs. 0.21 s ± 0.27); t (60) = 1.032, p = 0.31, 

d = 0.31.  The mean duration of recovery between efforts was not significantly different 
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between playing halves (7.55 s ± 10.68 vs. 10.08 s ± 17.23); t (60) = -1.149, p = 0.26, d 

= -1.71.  The mean duration of recovery between RAA bout was not significantly different 

between playing halves (135.45 s ± 341.31 vs. 175.00 ± 429.30); t (60) = -8.13, p = 0.42, 

d = -5.67 (see Table 18, p.144). 

 

5.3.4 RAA activity (> 3.0 m·s-2) 

Across all positions, the mean total for RAA bouts was 0.08 (± 0.42) and there was no 

significant main effect for playing position; H (4, 61) = 2.554, p = 0.63, ES = 0.33.  The 

mean number of efforts per bout was 0.15 (± 0.65) and there was a significant main effect 

of playing position; H (4, 61) = 2.530, p = 0.63, ES = 0.32, although post hoc testing 

revealed no positional differences.  The average duration of efforts was 0.02 s (± 0.10) 

and there was no significant main effect of playing position; H (4, 61) = 2.510, p = 0.64, 

ES = 0.32.  The mean recovery between efforts was 0.99 s (± 4.86) and there was no 

significant main effect of playing position; H (4, 61) = 2.513, p = 0.64, ES = 0.32.  The 

mean recovery between bouts was 0.99 s (± 4.85) a lack of data meant it was not possible 

to complete inferential analysis (see Table 15, p.144). 

 

Given the very low incidence of RAA bouts within this category, differences between 

playing halves were not examined.  
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Table 18:  The RAA for all playing positions.  Mean (SD). 

 RAA bouts Efforts per bout  Effort duration (s) Recovery per effort (s) Recovery per bout (s) 

 Mean (SD) CV (%) 95 % CI Mean (SD) 95 % CI Mean (SD) 95 % CI Mean (SD) 95 % CI Mean (SD) 95 % CI 

 RAA threshold: > 1.0 m·s
-2
   

WD 27.79 (2.49) 9.12  25.26 - 28.27 5.38 (0.75) 4.93 - 5.83 0.61 (0.03) 0.59 - 0.62 16.45 (1.21) 15.72 - 17.18 168.92 16.17) 159.15 - 178.69 

CD 23.70 (6.19) 26.11 20.52 - 26.89 5.00 (0.67) 4.66 - 5.34 0.60 (0.06) 0.57 - 0.63 17.64 (1.83) 16.70 - 18.58 247.43 (169.33) 160.37 - 334.49 

CMF 23.18 (6.88) 29.70 18.55 - 27.80 5.30 (0.87) 4.71 - 5.89 0.60 (0.00) 0.60 - 0.60 17.95 (1.92) 16.66 - 19.24 236.28 (82.52) 180.85 - 291.72 

WMF 23.60 (4.69) 19.90 20.24 - 26.96 5.78 (1.48) 4.72 - 6.83 0.63 (0.07) 0.58 - 0.67 16.44 (1.05) 15.69 - 17.19 204.55 (75.05) 150.86 - 258.25 

FW 23.70 (4.39) 18.50 20.55 - 26.84 5.18 (0.65) 4.71 - 5.65) 0.61 (0.05) 0.59 - 0.62 16.29 (1.33) 15.33 - 17.23 221.09 (70.40) 170.73 - 271.45 

All positions 24.24 (5.23) 21.60 22.90 - 25.59 5.29 (0.90) 5.06 - 5.52 0.61 (0.05) 0.60 - 0.62 17.02 (1.65) 16.59 - 17.44 217.34 (106.22) 190.14 - 244.54 

 RAA threshold: > 1.5 m·s
-2
   

WD 9.15 (3.71) 40.55 6.90 – 11.39 3.78 (0.50) 3.47 -  4.08 0.55 (0.60) 0.50 – 0.59 19.75 (2.63) 18.16 – 21.35 477.09 (353.72) 263.34 – 690.84 

CD 5.56 (3.32) 59.71 3.89 – 7.21 3.52 (0.98) 3.03 -  4.01 0.49 (0.14) 0.43 – 0.56 19.23 (5.85) 16.32 – 22.15 515.34 (394.45) 319.19 – 711.50 

CMF 5.46 (3.86) 70.70 2.86 – 8.04 3.16 (1.09) 2.42 -  3.90  0.47 (0.16) 0.36 – 0.58 18.58 (6.97) 13.90 – 23.26 418.71 (323.55) 201.35 – 636.07 

WMF 10.50 (7.16) 68.20 5.37 – 15.63 3.68 (0.54) 3.29 -  2.42 0.54 (0.07) 0.49 – 0.59 18.48 (2.01) 17.03 – 19.92 385.15 (184.37) 253.26 – 517.04 

FW 6.80 (3.94) 57.94 3.98 – 9.61 3.75 (0.95) 3.33 -  4.18 0.50 (0.07) 0.45 – 0.55 16.35 (4.01) 13.47 – 19.22 562.74 (257.78) 253.26 – 517.04 

All positions 7.29 (4.70) 64.47 6.09 – 8.48 3.58 (0.81) 3.36 -  3.78 0.51 (0.11) 0.48 – 0.54 18.64 (4.80) 17.42 – 19.86 476.82 (321.85) 395.08 – 558.56 

 RAA threshold: > 2.0 m·s
-2
   

WD 2.84 (2.44) 85.92 1.37 - 4.33 3.10 (1.04) 2.47 - 3.72 0.46 (0.15) 0.37 - 0.55 19.28 (7.82) 14.56 - 24.00 725.98 (902.97) 179.65 - 1270.98 

CD 1.00 (1.73) 173.00 0.11 - 1.89 1.19 (1.67) 0.33 - 2.05 0.18 (0.26) 0.05 - 0.32 7.14 (10.23) 1.87 - 12.40 340.08 (590.59) 36.42 - 643.74 

CMF 1.63 (1.50) 92.02 0.63 - 2.65 2.20 (1.80) 0.98 - 3.41 0.30 (0.25) 0.14 - 0.48 15.00 (12.16) 6.84 - 23.18 1123.99 (1214.13) 308.33 - 1939.65 

WMF 2.10 (2.37) 112.86 0.39 - 3.80 2.50 (1.78) 1.23 - 3.77 0.32 (0.27) 0.12 - 0.50 14.90 (10.80) 7.18 - 22.62 434.45 (596.17) 7.98 - 860.82 

FW 1.80 (1.55) 86.11 0.69 - 2.91 2.95 (1.60) 1.80 - 4.09 0.42 (0.25) 0.24 - 0.59 14.05 (9.66) 7.14 - 20.96 1250.32 (1788.25) - 0.28 - 2529.56 

All positions 1.82 (2.00) 109.89 1.30 - 2.33 2.29 (1.72) 1.85 - 2.72 0.33 (0.52) 0.26 - 0.39 13.56 (10.76) 10.79 - 16.30 728.23 (1079.80) 451.68 - 1004.78 

 RAA threshold: > 3.0 m·s
-2 

WD 0.07 (0.28) 400.00 -0.09 - 0.24 0.23 (0.83) -0.27 - 0.74 0.04 (0.14) - 0.45 - 0.12 2.54 (9.15) - 2.99 - 8.06 2.53 (9.15) - 2.99 - 8.06 

CD 0.00 (0.00) N/A 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 

CMF 0.09 (0.30) 333.33 -0.12 - 0.29 0.27 (0.90) -0.33 - 0.88 0.05 (0.15) - 0.06 - 0.15 1.20 (3.97) - 1.47 - 3.87 1.20 (3.97) - 1.47 - 3.87 

WMF 0.30 (0.95) 316.67 -0.38 - 0.98 0.30 (0.95) -0.38 - 0.97 0.04 (0.13) - 0.05 - 0.13 1.46 (4.62) - 1.84 - 4.77 1.46 (4.61) - 1.84 - 4.77 

FW 0.00 (0.00) N/A 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 0.00 (0.00) 0.00 - 0.00 

All positions 0.08 (0.42) 525.00 -0.03 - 0.19 0.15 (0.65) -0.20 - 0.32 0.02 (0.10) - 0.03 - 0.05 0.99 (4.86) - 0.25 - 2.24 0.99 (4.85) - 0.254 - 2.24 
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5.4 Discussion 

The current study is the first to profile RAA during competition and findings demonstrate 

that bouts frequently occur during youth soccer.  Wide players tended to complete the 

most RAA bouts, and the most efforts per bout on average, however, the lack of 

significant differences suggest RAA is a generic feature of competition, and, it may be an 

important physical component to develop at this level.  

 

The uneven distribution of workload during competition (Carling & Dupont, 2011; 

Impellizzeri et al., 2008; Withers et al., 1982) has led to a focus on repeated sprint 

activity, yet the absence of evidence reported in Chapter 3 and elsewhere (Carling, Le 

Gall & Dupont, 2012; Gabbett & Mulvey, 2008; Gabbett, Wiig & Spencer, 2013; 

Schimpchen et al., 2016), suggests RAA could be a more appropriate focus for analysis.  

While RSA is a valid modality for developing game related fitness (Taylor, Macpherson, 

Spears & Weston, 2016), it is not recommended as a valid method of assessing fitness or 

physical performance (Taylor, Macpherson, Spears & Weston, 2016).    

 

The lack of RAA studies makes comparison impossible, but the RAA > 1.5 m·s-2 data 

reported here is similar to elite referees (Barberó-Álvarez et al., 2014), who completed 

7.0 (± 3.9) bouts, and 3.9 (± 1.5) efforts per bout.  Given the varied roles of referees and 

players, any direct comparison is tentative, yet, it appears RAA might be worth 

developing for both groups.  Unlike Barberó-Álvarez et al. (2014) this study analysed 

RAA across a range of acceleration thresholds (> 1.0 m·s-2 to > 3.0 m·s-2), and the mean 

number of RAA bouts decreased as the rate of acceleration increased (see Table 18, 

p.144).  Although no significant differences were found between playing positions in the 

number of RAA bouts, wide players tended to complete more bouts, and moderate effect 
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sizes suggest meaningful differences.  Similarly, 95 % CI data highlights that wide players 

complete more bouts of RAA than suggested by the mean.    These profiles are consistent 

with the positional differences reported in chapter 3, and literature reporting greater sprint 

and acceleration activity amongst wide players compared to central positions (Bradley et 

al., 2009; Di Salvo et al., 2009; Ingebrigtsen et al., 2015; Varley & Aughey, 2013).   

 

Interestingly, at the professional level the tendency towards compact playing formations 

(4-2-3-1, 4-1-4-1), and, the tactical requirement for WMF to occupy more central 

positions (Bush et al., 2015a) to promote compactness, increases player density in central 

areas (Wallace & Norton, 2014).  Given the commonality in playing formation between 

this study and the aforementioned, central players within this study could have been 

expected to complete more RAA in order to navigate congested areas effectively, but this 

was not the case.  Rather, wide players completed more RAA, and this may be associated 

with their combined offensive and defensive roles.  At the professional level, WD and 

WMF are required to press forwards to participate in offensive play, and then track back 

when possession is lost, (Bush et al., 2015a; Di Salvo et al., 2007). 

 

Further insight into the frequency of RAA is provided by examining the recovery periods.  

In each category of RAA, there were no significant positional differences in the duration 

of recovery between efforts or bouts.  However, analysis of consecutive sprints amongst 

professionals highlights that recovery is significantly influenced by playing position 

(Carling, Le Gall & Dupont, 2012; Schimpchen et al., 2016).  Recovery between efforts 

for RAA > 1.0 m·s-2 and 1.5 m·s-2 was 17.02 s (± 1.65) and 18.64 s (± 4.80) respectively, 

which is longer than the mean interval between 3, 4 and 5 consecutive sprints in a single 

bout of RSA during international football (8.1 s ± 7.6; 6.1 s ± 5.4; 3.2 s ± 3.1) 
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(Schimpchen et al., 2016).  In contrast, recovery times between efforts for RAA > 2.0 

m·s-2 was shortest (13.56 s ± 10.76) but disproportionally affected by a single bout of 

RAA completed by a CD.  Recovery between bouts for RAA > 1.0 m·s-2 and > 1.5 m·s-2  

was also shorter than the average for RSA amongst internationals (217.34 s ± 106.22; 

476.82 s ± 321.85) vs. 2743.3 s ± 287.4) (Schimpchen et al., 2016).   

 

Examining the consistency in physical performance is important to evaluate the impact 

of training interventions (Bush et al., 2015a).  Understanding the natural variation in game 

to game performance can also be used to identify a decline in physical work attributab le 

to factors other than contextual.  The between match variation in RAA (1.0 – 1.5 m·s-2) 

was CV ~ 22 – 65 %, which is greater than the CV 14.4 – 24.8 % reported for high speed 

running (> 19.8 km·hr-1) (Bush et al., 2015a; Carling, Bradley, McCall & Dupont, 2016; 

Rampinini et al., 2007b; Mohr et al., 2003).  Higher variation is found for sprint activity 

compared to HSR (CV 22.6 – 32.3 %) (Bush et al., 2015a) which is similar to the 

variability in RAA > 1.0 m·s-2 (CV 21.60 %) but less than > 1.5 m·s-2 (CV 64.47 %).  

High levels of variability within a physical performance measure may question the 

appropriateness for evaluating work rate (Carling et al., 2016), casting doubt on the 

usefulness of RAA.  But, the impact of contextual factors should be considered.  Perhaps 

the greatest influence on work rate this level is the standard of opposition, which can be 

markedly inconsistent leading to a varied physical work rate between games.  Although 

not analysed in this study, against stronger opposition CD exhibited lower CV for HSR 

compared to a similar, or weaker, standard opponent, whereas WMF produced lower 

variation against weaker opponents (Bush et al., 2015a).   
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The trend for central players to exhibit greater variability in high speed running and 

sprinting (Bush et al., 2015a; Carling et al., 2016; Gregson et al., 2010), is similar to 

variation in RAA reported here; RAA (> 1.0 m·s-2) central players: CV 18.50 – 29.70 %; 

wide players: CV 9.12 – 19.90 %; RAA (> 1.5 m·s-2) central players: CV 40.55 – 68.20 

%; wide players: 57.94 – 72.53 %.  Given the consistency in game venue, playing surface, 

playing formation, tactics, and strategy, the high variation in RAA is perhaps surprising.  

Also, the broader tactical role of wide players could have been expected to lead to greater 

variation in RAA performance, but this was not the case.  Rather, greater variability 

amongst central players is suggested to reflect higher player density in central areas (Bush 

et al., 2015a) and suggests that central players are more sensitive to the tactical and 

strategic decisions during competition (Gregson et al., 2010).  However, this might also 

be reflective of the varied roles of central midfielders in the modern game.  In recent years 

several sub-categories have been defined, including holding midfielders, man-markers, 

box-box midfielders and playmakers, and these varied roles would evoke different 

physical work profiles as a consequence of the tactical restrictions imposed, but were not 

separated in this study.   

 

After collapsing data, only the greater number of RAA bouts > 1.0 m·s-2 in the first half 

reached statistical significance (p = 0.03, d = 1.56).  The lack of differences between 

playing halves seems at odds with the reduction of acceleration activity (0.0 – 4.0 m·s-2) 

reported in chapter 3.  Reductions in the number and distance of accelerations are widely 

reported, and it is interesting that RAA did not show a similar decline (Dalen et al., 2016; 

Ingebrigtsen et al., 2015; Russell et al., 2016).   On reflection, analysis of 45 minute 

periods may not illustrate the fluctuation in work rate throughout the half and be 

insensitive to the reduction in activity following an intense period (Akenhead et al., 

2013).  Temporal reductions in activity could be supposed to impact on an individua l’s 
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functional role by negatively affecting their ability to react to the changing configurat ions 

of competition (Gréhaigne, Bouthier & Godbout, 1999; Folgado, Fernandes, Duarte & 

Sampaio, 2014).  Future research could explore the temporal characteristics of RAA, and, 

the interaction with the technical and tactical elements of competition. 

 

Despite the lack of statistical significance, moderate and large effect sizes suggest 

meaningful differences in the duration of recovery intervals, at > 1.5 m·s-2 (13.21 s ± 

10.93 vs. 12.22 s ± 10.90, d = 0.86) and > 2.0 m·s-2 (7.55 s ± 10.68 vs. 10.08 s ± 17.23, d 

= -1.71), and, recovery between RAA bouts at > 1.0 m·s-2 (169.86 s ± 70.92 vs. 189.19 s 

± 85.62, d = -5.35), > 1.5 m·s-2 (87.46 s ± 140.16 vs. 42.08 s ± 98.02, d = -5.34); > 2.0 

m·s-2 (135.45 s ± 341.31 vs. 175.00 s ± 429.30, d = -5.67).  A lack of uniform trend 

between playing halves suggests RAA might not exhibit the same temporal characterist ics 

as locomotor activities and recovery intervals between HSR, which generally decline in 

the second half (Bangsbo, Nørregaard & Thorsø, 1991; Bradley et al., 2009; Carling & 

Dupont, 2011; Mohr, Krustrup & Bangsbo, 2003).   

 

Importantly acceleration occurs from varied movement velocities and a limitation of this 

study is that the starting velocity of RAA bouts was not considered.  Greater inaccurac ies 

occur in the measurement of instantaneous velocity when acceleration commences from 

a lower starting speed (Varley, Fairweather & Aughey, 2012), and the impact on the RAA 

profile is unclear.  Conceivably central players might commence more RAA bouts from 

lower starting speeds, compared to wide players, due to the limited space in which they 

patrol.  When interpreting the findings from this study, it is noteworthy that RAA was 

assessed using absolute thresholds and this may have underestimated the work rate of 

players during concentrated periods of activity.  Future research could investigate RAA 
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using individualised thresholds determined from peak velocity achieved during 5 or 10 m 

linear sprints.  The impact of the 0.6 s event threshold on positional profiles is also 

unclear, but could feasibly impact on the positional profile.  Finally, the limitat ions 

relating to the acceleration dependent validity of the 5 Hz GPS employed suggest that the 

data reported is the minimum RAA completed during competition.  

 

5.5 Summary 

This is the first study to report the RAA of sub-elite youth competitive soccer.   Evidence 

shows that RAA is a generic attribute at this level, although wide players tend to complete 

more bouts.  Time dependent changes between playing halves were minimal, but 

moderate and large effect sizes suggest meaningful differences in the duration of recovery 

between efforts, and bouts. 

 

5.6 Perspective 

This thesis has added to the understanding of the external load of competitive sub – elite 

youth soccer, and this study provides insight in to periods of elevated acceleration 

activity.  Clarifying this activity is an important step, and these findings will be useful to 

practitioners seeking to prescribe interventions to limit the decrements in performance 

found peak activity (Akenhead et al., 2013).   

 

As described previously literature has long proposed that superior HSA is desirable, and 

consequently training and testing protocols have focussed on this component.  However, 

the evidence provided in this thesis, and contemporary research, demonstrate that 

acceleration is increasingly central to performance warranting a change of emphasis.  

Further, the reliance on RSA field tests to assess the most intense periods of match-play 
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are misguided in light of the low incidence of RSA during games.  By comparison, RAA 

bouts are more frequent and may be a more relevant focus given the reductions in 

acceleration activity found following peak activity (Akenhead et al., 2013) and during 

periods of fixture congestion (Arruda et al., 2015), despite no concurrent decline in HSA 

(Dellal et al., 2015; Djaoui et al., 2014; Lago-Peñas et al., 2012; Rey et al., 2010).  In 

light of these findings the derivation of a valid and reliable field test of RAA is a necessary 

step and would address the absence in literature. 
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Chapter 6: The validity and reliability of the 

Repeated Acceleration Performance test (RAPT) 
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6.1 Introduction 

The preceding chapters of this thesis support the standpoint that HSA is central to 

competitive soccer, but asserts that the focus on HSR and RSA within literature is 

misaligned with the demands of the modern game.  Compelling evidence of the 

longitudinal changes within soccer demonstrates the increasing reliance on acceleration 

during match-play (Barnes et al., 2014; Bush et al., 2015b) and a shift in the physical 

rigours of the game.  Chapter 5 evidences that repeated efforts constitute an important 

proportion of acceleration activity warranting a special focus, particularly in the light of 

limited evidence of RSA.  The review of existing literature revealed a valid and reliable  

procedure for the assessment of RAA is lacking, and this is an important omission.   

 

During running, the acceleration phase is divided into the starting acceleration and the 

main acceleration when peak velocity is achieved (Maćkala, Fostiak & Kowalski, 2015).  

The frequency and magnitude of these actions during three contemporary field tests are 

reported in Chapter 4 (p.96) emphasising their crucial role in athletic performance.  

Although each procedure is a valid and reliable assessment of the respective fitness 

component, there is sufficient evidence to question whether they remain crucial to the 

modern game.   

 

Acceleration and maximal speed are separate skills (Little & Williams, 2005) and the 

prevalence of short sprints during soccer supports their separate assessment.  Despite 

soccer being multi-directional, linear assessment of acceleration prevails with 0-10 m 

trials most common (Buchheit et al., 2014b; Little & Williams, 2005).  Alternative ly, 

COD trials incorporate several turns but are single trials and assess peak speed with no 
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consideration for the repeated efforts abundant in soccer (Dellal et al., 2010a; Wong, 

Chan & Smith, 2012).   

 

Dellal et al. (2010a) recognised that soccer is characterised by repeated COD 

necessitating consecutive accelerations and decelerations, but these do not feature in 

linear RSA protocols prompting researchers to distinguish between RSA and RCOD 

(Wong, Chan & Smith, 2012).  RCOD is defined as “repeated COD with minimal 

recovery between bouts” (Wong, Chan & Smith, 2012. p.2325) and assessed via the  

RCOD test, a 6x20 m format adapted from the Change of Direction Performance Test 

(CODT) (Beckett, Schneiker, Wallman, Dawson & Guelfi, 2009).  The RCOD  

incorporates four 100o turns every 4 m and trials are separated by 25 s active recovery 

(Wong, Hjelde, Cheng & Ngo, 2015) (see Figure 5).   

 

Figure 5: The structure and dimensions of the Repeated Change of Direction Test 

(RCOD) (Wong, Chan & Smith, 2012) (m). 

 

 

Figure 6: The structure and dimensions of the Change of Direction and Acceleration test 

(CODAT) (Lockie et al., 2013) (m). 
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The RCOD can be differentiated from the range of COD tests used in soccer because the 

derivation of the CODT was informed by in game analysis of AFL (Dawson, Hopkinson, 

Appelby, Stewart & Roberts, 2004) and field hockey (Keogh, Weber & Dalton, 2003).  

In contrast, the 505 (Maio Alves, Rebelo, Abrantes & Sampaio, 2010), the Illinois agility 

run (Vescovi, Brown & Murray, 2006), the T-Test (Sporis et al., 2010) and the CODAT 

(Lockie et al., 2013) (see Figure 6) seek to replicate general athletic movement rather 

than a specific sport.  Repeating any of the former tests a designated number of times 

would not produce a valid assessment of RAA, because specificity is achieved by 

replicating the movement patterns and energetics of the activity accurately (Balsom, 

1994; Bangsbo, Mohr, Poulsen, Perez-Gomez & Krustrup, 2006).  The CODT, and 

therefore RCOD, reflect the rigours of AFL and hockey, but, not soccer because the 100o 

turns do not mimic the 0-90o turns most common in soccer (Bloomfield, Polman & 

O’Donoghue, 2007).  This is a significant discrepancy because sprint speed and fatigue 

development are angle dependent (Buchheit et al., 2012) requiring different footwork 

patterns and force reduction/development (Young, Hawken & McDonald, 1996).  

Therefore a valid RAA procedure should be informed by the RAA characteristics of 

soccer.   

 

The construct of the RCOD and CODAT are reflective of the sprint distances found in 

soccer.  A high proportion of sprints are 5 m (Barnes et al., 2014; Di Salvo et al., 2010; 

Haugen et al., 2014; Vigne et al., 2010) and the total distances are 20 and 24 m 

respectively, similar to the longer sprints in soccer (Haugen et al., 2014; Vigne et al., 

2010).  However, there is a paucity of information relating to the validity of each 

procedure.  Physical assessment is also reliant on the ability of a test to separate random 

error, or “noise”, and reliably reflect the actual performance (Hopkins, 2000a).  Simila r ly, 

tests are required to be sensitive, or able to identify changes in performance, seasonal 
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variation or differences between groups.  At this time, the lack of information means 

neither could be adopted confidently in soccer and further work is required to support 

their use.   

 

In summary, the preceding chapter highlighted the prevalence of RAA during competitive 

soccer accentuating its importance as a training and testing priority.  To evaluate the 

efficacy of training interventions a measurement of the capacity to complete RAA is 

necessary. However, a valid and reliable procedure is lacking, and literature remains 

biased towards the YYIR and RSA protocols.  The aims of this study were threefold.  

Firstly, to examine the test-rest reliability of the Repeated Acceleration Performance Test 

(RAPT), secondly to determine the sensitivity of the RAPT to changes in performance 

following a training intervention.  Finally, to determine the validity of the RAPT through 

comparison with acceleration/deceleration activity and RAA during match-play. 

 

6.2 Methodology 

6.2.1 Participants 

All participants were training in a high performance environment involving four, two 

hour field based sessions, two, sixty minute supervised strength and conditioning sessions 

and up to two competitive games per week.  A precise breakdown of participants in each 

element of the study is provided below.  Players or parents/guardians provided informed 

consent where appropriate in accordance with the procedures outlines in the declaration 

of Helsinki.  The experimental procedure was approved by the BuSH committee at the 

University of Central Lancashire.     
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Portable GPS units (Catapult Sports, Minimax, 5 Hz) equipped with 100 Hz 

accelerometer were worn by players during the trials and located securely between the 

scapulae in a custom made harness.  GPS units were switched on 10 minutes before use 

to allow satellite locking consistent with manufacturer’s guidance.  Horizontal dilution of 

precision (HDOP) indicated the accuracy of GPS in a horizontal plane (Catapult Sports) 

and optimum satellite availability (HDOP = 0) is where one satellite is directly overhead 

with a minimum of four spaced equally around the horizon.  During these trials, HDOP 

ranged 0.8-1.6, which is a good signal.    

 

6.2.2 Procedures 

There were three separate elements to this study, and these are detailed below. 

 

6.2.2.1 Short term reliability 

Participants (n = 28, 17.4 ± 0.7 yrs, 177.1 ± 3.8 cm, 65.1 ± 5.4 kg) completed the RAPT 

during two scheduled field based training sessions separated by 24 hours.  Before the test, 

participants completed the regular 15 minute group warm up, comprising ball work and 

dynamic flexibility, followed by two submaximal attempts, although players were already 

familiar with the procedure.   

 

6.2.2.2 Sensitivity 

Participants (n = 26, 17.4 ± 0.7 yrs, 176.8 ± 3.4 cm, 66.0 ± 4.8 kg) completed the RAPT 

either side of a 6 week training intervention designed to improve repeated acceleration.  

Each session comprised of two drills varied to progress the training stimulus and mainta in 

motivation.  Two sessions were completed each week immediately after the regular group 
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warm up and in the presence of the coaching team.  Each drill was typically < 10 s in 

duration and adhered to a 1:5 work/rest ratio to ensure adequate recovery (Reilly & 

Williams, 2003).  Poles/mannequins marked the drills in preference to cones because they 

evoke a more sport specific cutting action (McLean, Lipfert & Van Der Bogert, 2004).  

The content of the programme can be found in Table 19 and detail about each drill in 

Appendix 2. 

 

To be considered for analysis, participants were required to complete 85 % of the training 

sessions, meaning nine were withdrawn (Young & Rogers, 2014).  Also, five were 

unavailable for re-testing due to injury or absence reducing the sample size further.  

However, the final total was comparable with studies examining the reliability of RSA 

(Chelly, Fathloum, Cherif, Ben Amar, Tabka & Van Praagh, 2009; Impellizzeri et al., 

2008; Meylan, McMaster, Cronin, Mohammed, Rogers & DeKlerk, 2009; Pettersen & 

Mathien, 2012; Tønnessen, Shalfawi, Haugen & Enoksen, 2011) and COD tests (Jullien, 

Bisch, Largouet, Manouvrier, Carling & Amiard, 2008; Lockie et al., 2013; Mujika, 

Santiseban, Castagna, 2009; Pettersen & Mathien, 2012; Thomas, French & Hayes, 2009) 

incorporating a training intervention.   
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6.2.2.3 Validity  

Acceleration/deceleration and RAA data for the RAPT was collected during trials within 

the short term reliability and sensitivity stages of the study, and then pooled for analysis.  

Firstly, comparison of RAPT external load data was made with external load data from 

match-play reported in Chapter 3.  Specifically, acceleration/deceleration distance was 

categorised as; zone 1: -20.0 to -4.0 m·s-2; zone 2: -4.0 to -2.0 m·s.-2; zone 3: -2.0 to 0.0 

m·s-2; zone 4: 0.0 to 2.0 m·s-2; zone 5: 2.0 to 4.0 m·s-2; zone 6: 4.0 to 20.0 m·s-2.  

Secondly, RAA (> 1.5 m·s-2) data reported during match-play in Chapter 5 was compared 

to RAPT data.  Specifically, the number of RAA bouts, efforts per RAA bout, duration 

of each RAA effort, recovery per RAA effort and recovery between each RAA bout. 

Finally, to establish that acceleration was an integral element of the RAPT test, correlation 

was measured between linear speed performance (5 m, 10 m and 20 m), and, the duration 

of the fastest RAPT repetition (RAPTBest), the total duration of the RAPT trial (sum of 

six repetitions) (RAPTTotal), and, the performance decrement across the RAPT trial 

(RAPTDec).  Performance decrement was calculated using the formula; RAPTDec = 100 * 

Table 19:  The structure of the 6 week training intervention implemented during the 

sensitivity study. 

 No. of accelerations 
Total 
accelerations 

% 
Change 

Content 
(drill/reps) 

Week 1 
Session 1: (30+20) = 50 
Session 2: (25+20) = 45 

95 N/A 
Drill 1 & Drill 2 (x5) 
Drill 3 & Drill 4 (x5) 

Week 2 
Session 1: (30+25) = 55 
Session 2: (25+24) = 49 

104 +10% 
CODAT (x6) & Drill 6 (x5) 
Drill 5 (x5) & Drill 7 (x6). 

Week 3 
Session 1: (30+30) = 60 
Session 2: (25+30) = 55 

115 +10% 
Drill 1 (x6) & Drill 2 (x6) 
Drill 3 (x5) & Drill 5 (x5) 

Week 4 
Session 1: (30+25) = 55 
Session 2: (25+24) = 49 

104 -10% 
CODAT (x6) & Drill 6 (x5) 
Drill 5 (x5) & Drill 7 (x6) 

Week 5 
Session 1: (30+30) = 60 
Session 2: (24+30) = 55 

114 +10% 
Drill 1 (x6) & Drill 2 (x6) 
Drill 4 (x6) & Drill 5 (x5) 

Week 6  
Session 1: (35+28) = 63 
Session 2: (35+28) = 63 

126 +10% 
Drill 3 (x7) & Drill 4 (x7) 
Drill 6 (x7) & Drill 7 (x7) 
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(1 - [Rep1 +Rep2+…Rep6) / Rep1 * 6]) as per Bishop et al. (2001), Fitzsimmons, 

Dawson, Ward & Wilkinson (1993), McGawley & Bishop (2006), Spencer et al. (2005) 

and Wragg, Maxwell & Doust (2000). 

 

6.2.2.4 Derivation of the Repeated Acceleration Performance Test. 

The RAPT was adapted from the reactive agility test proposed by Young & Rogers (2014) 

and the dimensions are shown in Figure 7 (p.161).  To begin the test, participants adopt a 

stationary athletic stance 0.3 m behind the start line and each trial begins with a 3, 2, 1 

countdown.  Sprinting forwards to the centre pole, they turn 60o left towards pole 2 and 

then turn 180o.  On reaching the centre pole for the second time, they turn left 60o towards 

pole 3 and turn 180o.  On reaching the centre pole for the final time, they turn 60o left 

before sprinting through the finish line.  The full procedure consists of six maximal 

repetitions, separated by 20 s of active rest, alternating between left and right first turns.  

Chapter 2, and literature informed the dimensions and turning angles adopted, and 

represents the activity of players (Barnes et al., 2014; Bloomfield, Polman & 

O’Donoghue, 2007).  The TD of one repetition is 36 m and the number of repetitions, and 

rest periods, was informed by the RAA data presented in Chapter 5.   

 

Before assessment, participants completed the regular group warm up of ~15 minutes, 

comprising ball work and dynamic flexibility, and two submaximal repetitions were 

completed before assessment, regardless whether participants were familiar with the 

procedure.  To discourage a pacing strategy, participants were instructed that the 

performance measure would be the sum of their six repetitions.  No technical advice was 

given about the most efficient movement technique.  All trials were completed in the 

presence of a coach, and strong verbal encouragement was given throughout to discourage 
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pacing.  All trials were completed during a scheduled training session, on the same 

artificial 3G surface and participants were required to wear appropriate footwear.   

 

Electronic timing gates (Smartspeed, Cardiff, UK), positioned at the start/finish line 

measured performance to the nearest tenth of a second.  During the test, participants wore 

portable GPS units (Catapult Sports. Minimax, 5 Hz) equipped with 100 Hz 

accelerometer, during the trials, HDOP ranged 0.9-1.4, which is a good signal (Catapult 

Sports).   

 

Figure 7:  The structure and dimensions of the Repeated Acceleration Performance Test 

(RAPT) (m). 

 

 

 

6.2.3 Statistical analysis 

Data was uploaded to Catapult Sprint software (version 5.1) and files were manually 

edited to exclude non-test activity.  All data was tested for normality using a Shapiro-
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Wilk’s test and Levene’s established homogeneity.  All statistical procedures were 

completed using SPSS 20.0 (SPSS Inc., Chicago, USA).  Data is presented as Mean ±SD 

unless otherwise stated.  

 

6.2.3.1 Short term reliability 

Relative and absolute reliability, were examined.  Relative reliability being the degree to 

which individuals maintain their position in a sample with repeat measure, and absolute 

reliability, being the degree to which repeat measures vary for individuals (Impellizze r i 

et al., 2008).  Relative reliability was assessed using inter-class correlation (ICC), 

whereby > 0.90 was high, 0.90-0.80 was moderate and < 0.80 was low (Vincent & Weir, 

2012), although above 0.70 was acceptable (Lockie et al., 2013).  Paired T-Test compared 

performance between trial 1 and trial 2.  Cohen’s d measured the size of the effect and 

was calculated using the formula; d = Mean group 1 - Mean group 2 / SD pooled, where 

SD pooled = SQRT [(SD2 group 1 + SD2 group2) / 2].  Cohens d was interpreted using 

the scale outlined by Batterham & Hopkins (2006): trivial (< 0.2), small (> 0.2-0.6), 

moderate (> 0.6-1.2), large (> 1.2-2.0) or very large (> 2.0-4.0).  Absolute reliability was 

assessed using the total error of the measure (TEM) and expressed as a percentage using 

the coefficient of variation (CV).  Calculations were made using a custom designed 

spreadsheet (Hopkins, 2000c). 

 

6.2.3.2 Sensitivity   

ICC determined the relative reliability of test scores before and after the intervention.  A 

Paired T-Test compared RAPT test performance either side of the training intervention.  

Cohen’s d measured the size of the effect and was interpreted according to Batterham & 

Hopkins (2006) (see p.131).  Absolute reliability was assessed using TEM and expressed 
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as a percentage using CV, and calculations were made using a custom designed 

spreadsheet (Hopkins, 2000c). Smallest Worthwhile Change (SWC) was determined by 

multiplying the combined mean SD of both trials by 0.2, which is a small effect, and 0.5, 

which is a large effect (Hopkins, 2015a).   If the SWC was greater than TEM the test was 

rated as good, if the TEM was similar it was rated OK and if the TEM was higher, the 

test was rated marginal (Hopkins, 2004) (see p.131).  

 

6.2.3.3 Validity 

Distances completed in each acceleration zone during the RAPT and game were 

compared using ANCOVA with duration selected as the covariate.  Post hoc analysis was 

completed using a Bonferroni correction chosen to reduce the chance of a Type one error 

(Hopkins, 2000b).  Eta2 (ƞ) determined the magnitude of the main effect; it was calculated 

using the formula; Sum of SquaresEffect / Sum of SquaresTotal (Field, 2013) and interpreted 

using the scale 0.10 small; 0.30 medium and 0.50 large (Cohen, 

1988).  Cohen’s d determined the magnitude of effect for pairwise comparisons, and 

was calculated using the formula; Mean group 1 - Mean group 2 / (SQRT mean squared 

error).  It was interpreted using the scale outlined by Batterham & Hopkins (2006). 

 

The number of RAA bouts, efforts per RAA bout, duration of each RAA effort, duration 

of recovery per RAA effort and recovery between each RAA bout, within the game and 

RAPT test, was compared using an independent Mann-Whitney U test.  Effect size (ES) 

was calculated using the formula; r = Test statistic / (SQRT n), where n = the number of 

participants (Field, 2013).  Effect size was interpreted using the scale 0.10 small; 0.30 

medium and 0.50 large (Cohen, 1988).   
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Pearson’s correlation coefficient measured the strength of the relationship between linear 

sprint performance (5 m, 10 m and 20 m) and RAPT performance.  Across three sprint 

trials the fastest repetition (mBest) and mean time (mMean) were correlated with RAPTBest, 

RAPTTotal and RAPTDec.  According to Hopkins (2015a), the magnitude of correlation 

coefficients was considered as trivial (r = 0.1), small (r = 0.1 - 0.3) moderate 

(r = 0.3 - 0.5), large (r = 0.5 - 0.7), very large (r = 0.7 - 0.9) nearly perfect (r = 0.9 - 9.9), 

and perfect (r = 1.0). 

 

6.3 Results 

6.3.1 Short term reliability 

RAPTBest showed significant differences between test and retest performance (p = 0.03, 

d = 0.09), but there were no differences between RAPTTotal and RAPTDec (see Table 20).  

Relative reliability was high for RAPTBest and RAPTTotal (ICC 0.94-0.95), but low for 

RAPTDec (ICC 0.35).   Absolute reliability was high for RAPTBest and RAPTTotal (TE: 

0.10-0.53 s, CV 1.2-1.0 %) and poor for RAPTDec (TE 1.09 %, CV 46.4 %).   

 

 

Table 20: The short term test, and re-test, descriptive and inferential data for the 

RAPTBest, RAPTTotal and RAPTDec performance measures. Mean (SD). 

    Relative reliability Absolute reliability 

 
Test Re-test Mean 

(SD) 

Sig. d  ICC TEM CV 

RAPTBest    
(s) 

8.40 
(0.43) 

8.36 
(0.39) 

8.38 
(0.40) 

p = 0.03 0.09 0.94 0.10 s 1.2 % 

RAPTTotal  
(s) 

52.02 
(2.37) 

51.69 
(2.19) 

51.86 
(2.27) 

p = 0.11 0.23 0.95 0.53 s 1.0 % 

RAPTDec 
(%) 

3.15 
(1.38) 

3.04 
(0.31) 

3.10 
(1.38) 

p = 0.70 0.10 0.35 1.09 % 46.4 % 
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6.3.2 Sensitivity 

RAPTBest, RAPTTotal and RAPTDec all showed significant differences between trials (p 

<0.05, d = -2.11 - 0.69), and ICC was low (0.15-0.25), demonstrating poor relative 

reliability (see Table 21).  As a measure of absolute reliability, TE ranged between 0.32-

1.94 s (CV 4.0 %) for RAPTBest and RAPTTotal, whereas RAPTDec was TE 1.30 (CV 44.2 

%).  TE was greater than SWC0.2 and SWC0.5 representing a marginal rating. 

 

Table 21: The test, and re-test, descriptive and inferential data for the sensitivity study. 

Mean (SD). 

    Relative reliability  Absolute reliability 

 Pre-
test 

Post-
test 

Mean 
(SD) 

Sig. d  ICC TEM SWC

0.2 
SWC 

0.5 

CV 

RAPTBest    

(s) 

7.84 

(0.37) 

8.25 

(0.36) 

8.04 

(0.42) 

p < 

0.001 

0.69  0.25 0.32 s 0.08 0.21 4.0 % 

RAPTTotal   

(s) 

48.50 

(2.22) 

51.64 

(2.16) 

50.07 

(2.68) 

p < 

0.001 

-2.11  0.22 1.94 s 0.54 1.34 4.0 % 

RAPTDec 

(%) 

3.17 

(1.27) 

4.32 

(1.52) 

3.75 

(1.51) 

p < 0.01 -0.98  0.15 1.30 % 0.30 0.76 44.2 % 

 

6.3.3 Validity 

Distances accumulated in each acceleration/deceleration zone is presented in Tables 22 

& 23 (p.167).  The majority of distance was covered ± 2.00 m·s-2 in the RAPT and match-

play (76 % vs. 93 %.  Greater activity was reported during the RAPT compared to match-

play in zone 2 (7 % vs. 2.38 %), zone 5 (8.77 % vs. 3.22 %) and 6 zone (4.84 % vs. 0.89 

%).  There was a non-significant effect of duration on distance covered in zone 1 after 

controlling for the effect of duration; F (2, 81) = 0.062, p = 0.80, ƞ = 0.001.  Estimated 

marginal means showed adjusted values; RAPT: 460.10 m; Game: -562.88 m.  There was 

a non-significant effect of duration on distance covered in zone 2 after controlling for the 

effect of duration; F (2, 81) = 0.002, p = 0.97, ƞ = < 0.001.  Estimated marginal means 
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showed adjusted values; RAPT: -224.51 m; Game: 523.37 m.  There was a non-

significant effect of duration on distance covered in zone 3 after controlling for the effect 

of duration; F (2, 81) = 0.005, p = 0.94, ƞ = <0.001.  Estimated marginal means showed 

adjusted vales; RAPT: -2626.93 m; Game: 6333.11 m.  There was a non-significant effect 

of duration on distance covered in zone 4 after controlling for the effect of duration; F (2, 

81) = 0.00, p = 0.98, ƞ = < 0.001. Estimated marginal means showed adjusted values; 

RAPT: 146.00 m; Game: 5147.94 m.  There was a non-significant effect of duration on 

distance covered in zone 5 after controlling for the effect of duration; F (2, 81) = 0.00, p 

= 0.98, ƞ = < 0.001.  Estimated marginal means showed adjusted values; RAPT: 134.84 

m; Game: 120.18 m.  There was a non-significant effect of duration on distance covered 

in zone 6 after controlling for the effect of duration; F (2, 81) = 0.002, p = 0.96, ƞ = 

<0.001.  Estimated marginal means showed corrected values; RAPT: 115.45; Game: -

63.87 m. 

 

RAA demands of the RAPT are displayed in Table 25 (p.169).  Average efforts during 

the RAPT was 7.70 (± 2.65), average effort duration was 0.58 (± 0.01 s) and average 

recovery per effort was 17.60 (± 4.10 s).  The mean number of efforts per bout was 

significantly different between match-play and RAPT, U = 7.25, p < 0.001, ES = 0.69.  

The mean effort duration was significantly different between match-play and RAPT, U = 

3.706, p < 0.001, ES = 0.35.  The mean effort recovery duration was significantly different 

between match-play and RAPT, U = -2.101, p = 0.04, ES = -0.81.  The mean bout 

recovery was significantly different between match-play and RAPT, U = -8.480, p < 

0.001, ES = 0.20. 
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Table 22:  The distances (m) accumulated in each deceleration zone during the RAPT and match-

play.  Mean (SD) 

 Zone 1 (-20.00 to -4.00 m·s-2) Zone 2 (-4.00 to -2.00 m·s-

2) 

Zone 3 (-2.00 to 0.00 m·s-2) 

 Dist. 
(SD) 

CI 95% % Dist. 
(SD) 

CI 95% % Dist. 
(SD) 

CI 95% % 

RAPT 6.60 
(2.34) 

5.92 - 
7.28 

3.12 14.79 
(4.12) 

13.53 - 
15.93 

7.00 45.89 
(11.74) 

42.87 - 
49.30 

21.71 

Match-
play 

41.78 
(10.09) 

36.33 - 
47.22 

0.48 204.38 
(50.04) 

187.75 - 
222.02 

2.38 2769.33 
(340.91) 

2655.11 - 
2873.27 

32.37 

          

Table 23:  The distances (m) accumulated in each acceleration zone during the RAPT and 

match-play.  Mean (SD). 

 Zone 4 (0.00 to -2.00 m·s-2) Zone 5 2.00 to 4.00 m·s-2) Zone 6 (4.00 to 20.00 m·s-2) 

 Dist. 
(SD) 

CI 95% % Dist. 
(SD) 

CI 95% % Dist. 
(SD) 

CI 95% % 

RAPT 115.29 
(23.22) 

108.55 - 
122.03 

54.56 18.54 
(5.08) 

17.06 - 
20.01 

8.77 10.17 
(3.20) 

9.24 - 
11.10 

4.84 

Match-
play 

5188.89 
(698.23) 

4933.04 - 
5428.57 

60.65 275.25 
(49.96) 

258.35 - 
292.15 

3.22 76.53 
(19.49) 

69.93 - 
83.12 

0.89 
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Correlations between RAPT performance and sprint times are reported in Table 24.  

RAPTBest showed the strongest correlation with 10mMean (r = 0.62) and 10mBest (r = 0.61).  

The weakest correlations were found with 5mMean (r = 0.51).  RAPTTotal showed the 

strongest correlation with 10mBest (r = 0.69 very large), the weakest correlation was with 

10mMean (r = 0.34).  RAPTDec showed the strongest correlation with 5mBest (r = 0.48) and 

the weakest correlation was with 20mmean (r = 0.44).   

 

Table 24:  The descriptive data for 0 - 20 m linear sprint tests (s) and correlation with 

RAPT (r). Mean (SD).    

 5mBest  5mMean  10mBest  10mMean  20mBest  20mMean  

Duration of 
sprint trial (s) 

0.97    
(0.05) 

1.01     
(0.09) 

1.69     
(0.09) 

1.72    
(0.07) 

3.00   
(0.11) 

3.03    
(0.11) 

RAPTBest (r) 0.51 0.48 0.67 0.61 0.58 0.55 

RAPTTotal (r) 0.56 0.53 0.69 0.62 0.54 0.54 

RAPTDec (r) 0.48 0.38 0.35 0.34 0.49 0.44 
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Table 25: The RAA characteristics of the RAPT and positional activity during match-play. Mean (SD). 

Position Total bouts  Average efforts per bout  Average effort duration  

(s) 

Average recovery per 

effort (s) 

 

Average recovery per 

bout (s) 

 Mean  

(SD) 

CI 95 % Mean  

(SD) 

CI 95 %  Mean  

(SD) 

CI 95 % Mean  

(SD) 

CI 95 %  Mean  

(SD) 

CI 95 % 

WD 9.15     

(3.71) 

6.90 –   

11.39 

3.78     

(0.50) 

3.47 –     

4.08 

0.55     

(0.60) 

0.50 –    

0.59 

19.75   

(2.63) 

18.16 –

21.35 

477.09 

(353.72) 

263.34 – 

690.84 

CD 5.56     

(3.32) 

3.89 –    

7.21 

3.52     

(0.98) 

3.03 –    

4.01 

0.49     

(0.14) 

0.43 –    

0.56 

19.23   

(5.85) 

16.32 –

22.15 

515.34 

(394.45) 

319.19 – 

711.50 

CMF 5.46     

(3.86) 

2.86 –    

8.04 

3.16     

(1.09) 

2.42 –    

3.90 

0.47     

(0.16) 

0.36 –    

0.58 

18.58   

(6.97) 

13.90 –

23.26 

418.71 

(323.55) 

201.35 – 

636.07 

WMF 10.50    
(7.16) 

5.37 –   
15.63 

3.68     
(0.54) 

3.29 –    
2.42 

0.54     
(0.07) 

0.49 –    
0.59 

18.48   
(2.01) 

17.03 – 
19.92 

385.15 
(184.37) 

253.26 – 
517.04 

FW 6.80     
(3.94) 

3.98 –    
9.61 

3.75     
(0.95) 

3.33 –    
4.18 

0.50     
(0.07) 

0.45 –    
0.55 

16.35    
(4.01) 

13.47 – 
19.22 

562.74 
(257.78) 

253.26 – 
517.04 

All 
positions 

7.29     
(4.70) 

6.09 –    
8.48 

3.58a     
(0.81) 

3.36 –    
3.78 

0.51b     
(0.11) 

0.48 –    
0.54 

18.64c   
(4.80) 

17.42 –
19.86 

476.82d 
(321.85) 

395.08 – 
558.56 

RAPT 1.06     
(0.24) 

0.99 -     
1.13  

7.70     
(2.65) 

6.93 -     
8.47 

0.58     
(0.01) 

0.55 -     
0.61 

17.60    
(4.10) 

16.40 - 
18.79 

4.70   
(18.73) 

-0.73 -  
10.13 

Sig. a:  vs. RAPT p < 0.001, ES = 0.69; b: vs. RAPT p < 0.001, ES = 0.35; c: vs. RAPT p = 0.04, ES = -0.20, d: vs. RAPT p < 0.001, ES = -0.81. 
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6.4 Discussion 

This study aimed to address the absence of a valid and reliable field test for the assessment 

of RAA within literature, and the data presented demonstrate the suitability of the RAPT 

to assess this important component.  Validity and reliability were strong, and the RAPT 

provides a suitable low cost and simple measure of the capacity to accelerate repeatedly.   

The RAPT reported large correlations between RAPTBest and RAPTTotal and 10 mBest and 

10 mMean (r = 0.61 – 0.69).  Values are not available for the RCOD (Wong, Chan & Smith, 

2012), but are comparable with the CODAT and 10 mMean (r = 0.76) and the Illino is 

Agility Run (r = 0.71) (Lockie et al., 2013).    10 m sprint times are widely used to assess 

acceleration in soccer players (Buchheit et al., 2014b; Köklü, Alemdaroglu, Özkan, Koz, 

Ersöz, 2015; Little & Williams, 2005; Nikolaidis, Dellal, Torres-Luque & Ingebrigtsen, 

2015, Sporis et al., 2010) and the strength of the correlation confirms acceleration is a 

central feature of the RAPT.  The small differences between the protocols may be 

explained by the increased frequency, and acute turns in the RAPT, which increases 

deceleration time.  Acceleration is crucial following a change of direction (Wheeler & 

Sayers, 2010; Wong, Chan & Smith, 2012) and the frequent COD in the RAPT elicit 

repeated efforts mimicking elements of soccer match-play.  To assess the extent to which 

COD speed contributes to RAPT performance it would have been useful to compare with 

the CODAT or similar procedure.  

 

Inferential analysis revealed that the acceleration/deceleration activity in the RAPT was 

not significantly different to match-play after the effect of duration was controlled.  This 

demonstrates strong construct validity serving to differentiate the RAPT from the RCOD 

(Wong, Chan & Smith, 2012).  In contrast, the RCOD and CODAT (Lockie et al., 2013) 
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also involve a prominent acceleration component, yet whether they mirror match-play is 

unclear.   

 

The RAA data reported in Chapter 5 informed the construct of the RAPT, yet there were 

significant differences between the two.  The RAPT featured an average of 7.70 (± 2.65) 

efforts per bout compared to 3.58 (± 0.81) (p < 0.001, ES = 0.69) during competition, 

which is an apparent shortcoming.  However, work rate periods are unevenly distributed 

during match-play (Akenhead et al., 2013), and during intense periods consecutive RAA 

may be completed.  It would, therefore, be useful for future work to examine the 

occurrence of RAA in relation to game events, such as scoring, or conceding, a goal.   

 

On reflection, the RAPT is better suited to assessing the capacity to complete consecutive 

RAA bouts because it exposes players to prolonged intense periods of activity.  WMF 

and WD are required to complete a greater number of RAA bouts (CI 95 % 6.90-11.90; 

5.37-15.63) increasing the likelihood of consecutive bouts.   

 

The findings of the short term reliability study showed that RAPTTotal was the measure 

with the greatest absolute and relative reliability, and RAPTDec was the least reliable.  

RAPTBest performance was not significantly different between the trials, yet a trivia l 

effect size (p = 0.03, d = 0.05) renders the strength of these findings questionable.  ICC 

for both RAPTBest and RAPTTotal (ICC 0.94; 0.95) is similar to the Illinois Agility Run 

(ICC 0.91) and superior to the CODAT (ICC 0.84) (Lockie et al., 2013).  CV ranged 1.0 

% - 1.2 % for RAPTBest and RAPTTotal.  In contrast, RAPTDec reported poor reliability 

(ICC 0.35, CV 46.4 %), and the large CV is greater than reported for  from RSA 

assessments (CV 14.9 % - 36.7 %),  (Bishop et al., 2001; Fitzsimmons et al., 1993; 
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Impellizeri et al., 2008; McGawley & Bishop, 2006).  The limitations with this metric 

may be methodological because the calculation incorporates each repetition, and variation 

in a single trial will affect the overall measure (McGawley & Bishop, 2006).  Therefore, 

these findings support the cautious use of decrement calculations in soccer (Impellizze r i 

et al., 2008).   

 

The results from the sensitivity study highlighted that measured performance declined 

significantly from trial one to trial two, across all variables (p < 0.01, d = 0.15-0.25 

moderate/large, ICC 0.15 – 0.25).  CV 4 % for the RAPTBest and RAPTTotal represents an 

acceptable level of absolute reliability (Hopkins, 2004), which was greater than the short 

term study, but not unexpected because fitness levels are subject to fluctuation during a 

longer period.  Also, the demonstrable short term reliability of RAPTBest and RAPTTotal, 

imply that the findings of the sensitivity study reflect a real decline in performance.   

 

A possible contributor to performance decline may be a change in the fatigue status of 

the group.  The 6 week progressive training intervention incorporated drills to improve 

the capacity to accelerate repeatedly. This exposed the group to an increased training load 

that was compounded by the accommodation of rearranged fixtures into the programme. 

The accumulation of external load during this period is likely to have increased 

neuromuscular fatigue, which has been shown to impact negatively on acceleration 

(Cormack et al., 2013).  Also, the absence of structured recovery interventions may also 

have contributed to the decline in RAPT performance.   

 

The length of the training intervention may also have been too short to produce a 

meaningful change in performance.  Amongst Youth AFL players, 6 weeks of COD 
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training did not improve performance in a COD field test (8.65 s ± 0.45 vs. 8.64 s ± 0.32) 

(Young & Rogers, 2014).  However, unlike the present study, this group was already 

exposed to regular COD training.  Therefore, an improvement in performance would 

require a larger increase in the volume, and intensity, of training.  The specificity of the 

training intervention was also criticised because it replicated the demands of AFL, but 

not necessarily, the COD used.  In contrast, the training intervention in the present study 

incorporated a range of turning angles, and distances, found in the RAPT and competition 

and was sport specific.   

 

In each variable, TEM was greater than the SWC, indicating that the RAPT was not able 

to detect a small or moderate, worthwhile change in performance.  However, the relative ly 

small number of participants drawn from the same demographic influences these findings.  

Limited homogeneity of an athletic group produces a narrow SD and therefore a lower 

SWC, however by increasing the number, and heterogeneity of the group, the SD would 

increase, as would the SWC, leading to a change in the sensitivity of the RAPT (Lockie 

et al., 2013).   

 

There were a number of withdrawals during the study, reflecting the limitations working 

in an applied environment, yet, final totals were comparable with similar research (Jullien 

et al., 2008; Lockie et al., 2013; Mujika, Santisteban, Castagna, 2009; Pettersen & 

Mathisen, 2012; Thomas, French & Hayes, 2009; Young & Rogers, 2014).  The short 

term study reported good relative reliability, and a change in participant number is 

unlikely to modify the results (Buchheit, Lefebvre, Laursen &Ahmaidi, 2011; Young & 

Rogers, 2014).  However, the sensitivity study may have benefitted from a larger, and 

more heterogeneous, group (Lockie et al., 2013). 
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In addition to the limitations mentioned above, there are other factors relating to the test 

procedure worthy of discussion. Firstly, the RAPT commences from a standing start, 

unlike a large proportion of accelerations within match-play that commence from a 

variety of movement velocities.  Replicating the myriad of accelerations, and situations 

in which they occur within competition is fundamentally impossible given the stochastic 

nature of the sport.  However, a standing start does, at least, standardise the procedure.   

 

Establishing the validity of the RAPT against metrics measured during competition also 

presents issues because of the inherent variability of physical performance during match-

play (Drust, Atkinson & Reilly, 2007).  Chapter 5 reported CV ~ 65 % for the number of 

RAA bouts (> 1.5 m·s-2), emphasising the difficulty measuring validity against game data. 

These CV values would, therefore, partly account for the significant differences reported 

between the RAPT and game activity for RAA metrics.    

 

6.5    Summary 

In conclusion, the RAPT is a valid measure of RAA based on the demonstrable 

relationships with linear acceleration, and acceleration activity reported during match-

play.  The differences in RAA between the RAPT and competition suggested a lack of 

validity but also emphasises the difficulty validating a procedure based on match-play 

given its inherent variability.  RAPTBest and RAPTTotal are the most reliable measures of 

performance while the use of RAPTDec should be avoided.  Short term reliability was 

strong demonstrating the RAPT provides a reproducible measure of RAA, however, the 

sensitivity study was likely compromised by a number circumstantial factors, most 

notably the fatigue status of the group.   
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6.6    Perspective 

Soccer performance is predicated on the ability to accelerate, and accelerate repeatedly 

without fatigue, and this is increasingly important in the modern game (Barnes et al., 

2014; Bush et al., 2015b).  Therefore, it is important that provision is made for the reliable 

assessment of RAA so that physical preparation can be optimized and readiness to 

compete determined.  The RAPT is the first reliable field test for the evaluation of RAA.  

Common obstacles to the incorporation of regular fitness testing into the applied setting 

are often time related and the perception that assessment is time wasted.  A counter 

argument to this standpoint is that as the physical demands of soccer increase, along with 

demands of the fixture list, it is prudent to focus on the most relevant elements of 

performance.  Measurement of the capacity to repeatedly accelerate would, therefore, 

inform the development of an important physical component.  When resistance is met 

from coaches and players, they should be reminded that changes to coaching strategy 

cause the physical demands of the sport to evolve, not the other way around.  The priority 

placed on aerobic capacity evolved to focus on HSR, and now the modern game has 

shifted again to be reliant on the capacity to accelerate repeatedly.   
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Chapter 7: Synthesis of findings 
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7.1 Introduction 

The overall aim of this thesis was to evaluate the positional physical demands of sub-elite 

youth football using acceleration/deceleration profiles, and accelerometer derived 

metrics, to inform the derivation of a field based testing protocol.  

 

At the outset of this project, portable GPS technology was a relatively new concept in 

soccer and publications about the external load of competition were limited to the elite 

population (Boyd et al., 2013; Scott et al., 2013a).  Insight into the positional demands of 

match-play at the sub-elite level was absent, and, given the size of this demographic, 

presented a significant shortcoming.  Moreover, my employer at this time had a large 

football academy allied to a Further Education (16 - 19 years old) academic programme.  

Students train in a high-performance environment, comprising four, two hour field based 

sessions, two, sixty minute strength and conditioning sessions, and, up to two competitive 

games per week.  I determined that understanding the positional physical demands of 

competition in greater detail, would support the physical training programme, and 

optimise readiness to compete.  Finally, the findings from this analysis were intended to 

inform the design and implementation of an innovative field test used to monitor and 

evaluate the fitness status of the academy players.  

 

7.2 Summary of results 

The aims of this research were first met using 5 Hz Minimax GPS and accelerometer 

technology to quantify the positional demands of match-play.  The findings showed that 

total PL and AP load was greatest in CMF compared to CD (p < 0.04, d = 1.26 - 1.56), 

and that the acceleration/deceleration demands of competition were higher for WMF and 

FW compared to other positions (Chapter 3).   
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Chapter 4 compared the external load of three contemporary field tests with match-play 

data from Chapter 3.  After controlling for the effect of duration, comparison between the 

YYIRL1 and multi-directional Hoff FET showed no significant differences in total PL or 

individual contributory planes.  The analysis also highlighted that field test performance 

is reliant on the capacity to accelerate/decelerate repeatedly.    

 

Analysis of RAA during competition (Chapter 5) found non-significant differences 

between playing positions suggesting it is a generic requirement. However, wide players 

tended to complete more bouts compared to central players.  Finally, Chapter 6 

established the validity of the RAPT as a field test of RAA, through correlation with 10 

m sprint time (r = 0.61 - 0.69).  Also, acceleration/deceleration activity within the field 

tests was comparable with competition, after the effect of duration was controlled.  The 

number of RAA efforts per bout, effort duration, average recovery per effort, and 

recovery per bout, were higher in the RAPT than the game, suggesting the RAPT is more 

suited to assessing consecutive RAA bouts.  Short term reliability was strongest for 

RAPTTotal measured 24 hours apart (p = 0.11, d = 0.23, ICC 0.95, TE 0.53 s, CV 1.0 %).  

However, sensitivity of RAPTTotal was poor either side of a six week training intervention 

(p < 0.001, d = -2.11, ICC 0.22, TE 1.94 s, CV 4.0 %).  

 

7.3 Review of hypotheses 

During this course of investigations, a series of hypotheses were formulated, and it is 

appropriate to review whether the findings led to their acceptance or rejection; 

Hypothesis 1: Positional differences in tri-axial external load will be exhibited and will 

demonstrate time dependent changes.   
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This hypothesis was accepted.  WMF completed greater distance during accelerations and 

decelerations ± 2.0 m·s-2.  MF reported higher CC load consistent with greater TD 

covered, which was and significantly more than CD.  Acceleration/deceleration activity 

< ± 4.0 m·s-2 was significantly higher in the opening 15 minute period of the first half 

(P1), compared to all other periods. 

 

Hypothesis 2: The tri-axial external load of three contemporary field tests will be 

different in comparison to competitive sub-elite youth soccer. 

The hypothesis was partially accepted. Differences in total PL, and tri-axial PL, between 

the tests and match-play, were minimal and did not reach statistical significance.  

Acceleration activity in zone 5 (2.00 - 4.0 m·s-2) and zone 6 (> 4.00 m·s-2) during the field 

tests was higher than match-play. 

 

Hypothesis 3: The repeated acceleration activity during competitive sub-elite youth 

soccer will demonstrate positional differences. 

The hypothesis was rejected.  Within the four categories of RAA, there were no 

significant differences between positions in terms of the number of RAA bouts, efforts 

per RAA bout, effort duration, recovery per effort and recovery per bout. 

 

7.4 Examination of results in relation to existing literature 

The ability to accelerate and overcome inertia is integral to soccer performance (Lockie , 

Murphy, Callaghan & Jeffriess, 2011) and the elevated energetic cost of changing 

movement velocity frequently is suggested to contribute to fatigue (Osgnach et al., 2010; 

Russell et al., 2016).  Accordingly, research into the acceleration/deceleration demands 
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of competition has increased substantially in recent years, to inform athlete preparation.  

Chapter 3 highlighted the positional differences in acceleration/deceleration activity at 

the sub-elite youth level, reporting greater activity amongst WMF.  A tendency for wide 

players to complete more acceleration/deceleration activity has been reported elsewhere, 

albeit in different populations (Akenhead et al., 2013; Dalen et al., 2016; Ingebrigtsen et 

al., 2015; Varley & Aughey, 2013), and is likely explained by their combined offensive 

and defensive roles within the team.   However, any direct comparison between studies 

is made cautiously, given the differences in physical maturity between the participants, 

and methodological differences.  This study quantified accelerations > 1.0 m·s-2 similar 

to Akenhead et al. (2013), whereas Dalen et al., (2016) and Ingebrigtsen et al. (2015) 

opted for 2.0 m·s-2, and, Bradley et al. (2010) 2.5 m·s-2.  Given the majority of 

accelerations/decelerations occur < ± 2.0 m·s-2, as reported in Chapter 3 and elsewhere 

(Akenhead et al., 2013), omitting this category omits a large proportion of activity.  The 

explanation for the contrasting approaches is unclear, but reflects a lack of consensus 

within literature about a uniform system of classification.   

 

An apparent shortcoming within literature is that acceleration/deceleration activity is not 

categorised according to the starting velocity.  Importantly, an acceleration of 1.0 m·s-2  

is fundamentally different when commencing from an initial velocity of 0.0 km.hr-1, 10.0 

km.hr-1 or 19.8 km.hr-1, and would, therefore, require a different approach to training.  

Considering the different movement profiles of playing positions, it is speculated that CD 

may accelerate more frequently from a lower starting velocity compared to wide players 

who have a greater tendency to be on the move.  Recently sprints have been delineated 

into leading sprints or explosive sprints based on the prior movement velocity (Barnes et 

al., 2014; Di Salvo et al., 2009) providing an evidence based approach for the 

enhancement of training interventions.   
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As a measure of external load, tri-axial accelerometers are used widely in an applied 

setting to monitor workload, and a common method of summarising this information is 

termed Playerload.  Playerload has demonstrated acceptable test-retest reliability during 

treadmill running (CV 5.3 - 14.8 %) (Barrett, Midgley & Lovell, 2014), Australian 

football (CV 1.9 %) (Boyd, Ball & Aughey, 2011) and soccer (CV 6.4 ± 2.4 %) (Barrett 

et al., 2016).  However, published information about the rigours of team sports is scarce 

and limited to a handful of studies (Barrett et al., 2016; Boyd, Ball & Aughey, 2013; Scott 

et al., 2013a).  A unique contribution of Chapter 3 was, therefore, a quantification of the 

positional total PL and planar contributions during competitive youth football.  CMF 

accumulated significantly higher total PL than CD, and this is linked to the greater total 

distance covered during the game, and associated increased footfall, supporting the use 

of PL as a proxy measure of workload.   

 

Information about the planar contributions to PL during team sports is also scarce.  Barrett 

and colleagues (2016) detailed the temporal characteristics of planar contributions during 

soccer, reporting within-match variability (CV 7.3 - 9.0 %) linked to changes in 

locomotor efficiency.  However, the same study did not differentiate between playing 

positions.  Chapter 5 reported a lack of significant differences in planar contributions to 

PL between playing positions, and this was surprising given the differences in positiona l 

activity profiles (Bloomfield, Polman & O’Donoghue, 2007).   

 

On reflection, a normalised version of PL, either PL per minute (PL·min-1) or PL per 

metre of TD (PL·m), and equivalent planar versions might have been more sensitive to 

positional differences.  Recently, Dalen et al. (2016) reported significantly higher PL·m 

for CD than all other positions, despite significantly lower TD, suggesting PL is 



 

182 
 

accumulated differently according to each playing position.  A second possible 

explanation for the lack of differences might be the sub-optimal location of the 

accelerometer unit.  The centre of mass is the recommended location for an accelerometer 

(Halsey et al., 2011) unlike the standard practice within sport that seeks to ensure player 

safety and maintain the GPS signal, by locating the unit between the scapula.  In contrast 

to the centre of mass, a scapula mounted accelerometer underestimated ML load, due to 

reduced sensitivity to hip rotation, and increased CC load, due to forward lean of the 

upper body, during treadmill running (Barrett, Midgley & Lovell, 2014).  Differences in 

tri-axial load between playing positions are likely, therefore, to reflect the varied running 

mechanics of individual participants to some degree, questioning the efficacy of between-

participant comparisons (Barrett, Midgley & Lovell, 2014).   

 

The chaotic nature of match-play dictates that work efforts are often condensed into 

intense periods (Dawson, 2012) and historically RSA has been purported to replicate 

these periods providing a tool for training and testing.  However, the limited evidence of 

RSA during competition reported in Chapter 3 and elsewhere (Carling, Le Gall, Dupont, 

2012; Gabbett & Mulvey, 2008; Gabbett, Wiig & Spencer, 2013; Schimpchen et al., 

2016) renders the importance of RSA contentious.  Considering the temporal reductions 

of acceleration activity following intense periods (Akenhead et al., 2013), it was 

surprising that repeated acceleration activity has not been investigated previously.  The 

evidence reported in Chapter 5 demonstrates RAA is prevalent during competition and 

suggests it is a general requirement for all playing positions.  The tendency for wide 

players to complete more RAA bouts was similar, but not identical, to the pattern of 

acceleration activity reported in Chapter 3, suggesting wide players might benefit from 

developing this physical capacity. 
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Presently there is no comparable research about RAA during competition, but an 

improved tolerance to repeated bouts of acceleration might be advantageous during 

match-play.  Tactical synchronisation is reliant on the ability of players to continua lly 

adjust their position in relation to their teammates and opponents (Folgado et al., 2014).  

The higher amount of time spent in synchronisation against better teams (Folgado et al., 

2014) is consistent with a higher work rate produced by higher standard opponents (Lago-

Penas, 2012), suggesting that the RAA demands of competition may be dependent on the 

level of competition.   

 

Unlike Barberó-Álvarez et al. (2014) this study profiled RAA at four thresholds ranging 

> 1.0 to > 3.0 m·s-2, and the greatest differences between playing positions were observed 

at > 1.5 m·s-2.  However, RAA was quantified on an absolute basis and a relative 

threshold, perhaps based on individual 5 or 10 m sprint time, may change the 

interpretation of physical performance (Lovell & Abt, 2013).  However, there are 

significant practical limitations to this approach, including, the need to re-evaluate each 

individuals threshold periodically. Clarity about the starting velocity of each RAA effort 

would have also provided greater insight and might have helped to differentiate between 

playing positions.     

 

Variability measures the consistency of physical performance over time, and variation in 

RAA (> 1.5 m·s-2) for all positions was CV ~ 65 %, which is higher than total HSR (~ 14 

- 25 %) (Bush et al., 2015; Carling et al., 2016; Gregson et al., 2010: Mohr et al., 2003: 

Rampinini et al., 2007b).  Although this is a large difference, acceleration is more 

sensitive to fatigue (Akenhead et al., 2013; Arruda et al., 2015) and may be expected to 

exhibit greater variability, unlike HSR that remains more stable (Dellal et al., 2015; 
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Djaoui et al., 2014; Lago-Peñas et al., 2012; Rey et al., 2010).  This study reported less 

variability for WD (CV 40.55 %) compared to FW (CV 57.94 %), CD (59.71 %), WMF 

(CV 68.20 %) and CMF (CV 70.70 %) which is similar, but not identical, to the tendency 

for wide players to report less variation in locomotor activity versus central players 

(Carling et al., 2016; Gregson et al., 2010). The range of variability may be explained by 

a small sample size that magnified the SD of the mean and contributes to a greater CV.  

Also, the number of unique contributors to each position was unequal and would 

introduce bias into the data set.  As such, the data reported for CMF and WMF might 

reflect differences in the execution of positional roles between individuals.  This 

emphasises that variability should be interpreted on a case-wise basis to monitor an 

individual’s physical performance.  Finally, the broad CV may suggest that RAA is not 

appropriate for monitoring physical performance over time (Carling et al., 2016), but 

further research is required to establish how the variation reported here, compares to 

different groups.  

 

Speed is considered an important prerequisite for soccer performance (Lockie et al., 

2011) and a defining quality in game changing scenarios (Buchheit et al., 2014; Faude, 

Koch & Meyer, 2012; Macadam, Simperingham & Cronin, 2016).  The evolutionary 

trend in English Premier League soccer describes an increased frequency of sprint bouts 

over shorter distances (Barnes et al., 2014; Bush et al., 2014) emphasising the importance 

of developing this capacity.  Importantly, the majority of sprints in soccer are < 20 m, so 

players do not reach maximum velocity (Macadam, Simperingham & Cronin, 2016) and 

the capacity to accelerate is, therefore, paramount. Speed and acceleration are separate 

qualities evidenced by the magnitude of their correlation (r = 0.56 - 0.87) (Little & 

Williams, 2005; Mendez-Villanueva et al., 2011; Vescovi & McGuigan, 2008).  Speed is 

suggested to be related to muscular-tendon stiffness, the stretch-shortening cycle and hip 
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extensor activity (Buchheit et al., 2014; Murphy, Lockie & Coutts, 2003), whereas 

acceleration is reliant on the concentric extension of the knee and hip (Dorn, Schache & 

Pandy, 2012).  Subsequently, speed and acceleration need a different approach to training 

and assessment.  

 

Within soccer, acceleration ability is often determined using 5 m and/or 10 m split times 

during longer sprint trials (Lockie, Moreno, Lazar, Orjalo, Giuliano, Risso, Davis, 

Crelling, Lockwood, Jalivand, 2016; Manson, Brughelli & Harris, 2014), without 

consideration for the repeated efforts featuring in match-play.  In response, Chapter 6 

aimed to validate a procedure to assess the capacity to complete repeated accelerations.  

In relation to logical validity, correlation with 5 m and 10 m sprint times (r = 0.67 - 0.69) 

confirmed acceleration is an integral element of the RAPT, and, acceleration/decelera t ion 

activity between the RAPT and match-play showed no significant differences.  However, 

the RAPT featured more accelerations per RAA bout (7.70 ± 2.65) than match-play (3.58 

± 0.81, p < 0.001, ES = 0.35) suggesting it reflects consecutive bouts of RAA.  The 

construct of the RAPT aimed to reflect the common turning angles reported in match-

play (Bloomfield, Polman & O’Donoghue, 2007) and the distances of shorter sprints 

(Barnes et al., 2014). However, this introduced a change of direction element to the 

procedure which might have added measurement error.  Other important considerations 

for fitness assessment are test re-test reliability and sensitivity.  Reliability was strong for 

RAPTTotal (p = 0.11, d = 0.23, ICC 0.95, TE 0.53 s, CV 1.0 %), however TE (1.94 s) was 

greater than SWC (0.54 - 1.34 s) suggesting the RAPT was unable to detect systematic 

changes in performance. The decline in RAPT performance after the training intervention 

seems at odds with the observation that fitness levels of professionals tend to remain 

relatively stable during the season (Impellizzeri et al., 2008).  However, it is plausib le 
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that the congested fixture period, on top of the training intervention, increased the training 

load leading to residual fatigue explaining this finding.   

 

7.5 Implications for applied practice 

This study has highlighted that acceleration/deceleration activity is integral to sub-elite 

youth competition, with wide players, in particular, exposed to higher demands than 

central players. While the cost implications and administrator burden, present significant 

limitations to the adoption of GPS at the sub-elite level, the evidence within this thesis 

justify the incorporation of a structured training programme to develop these qualities.  

 

Explosive sprinting activities over short distances (< 20 m) would, in time, improve 

acceleration (Lockie et al., 2014; Rumpf, Lockie, Cronin & Jalilvand, 2015) but should 

commence from a variety of initial movement velocities, and incorporate a mult i-

directional stimulus, to achieve specificity.  Further, evidence of repeated acceleration 

presented in this thesis highlights that activity is condensed into intense periods.  Players 

would benefit from enhancing their immunity to the fatiguing effects of repeated 

accelerations, and this seems particularly important for wide players who complete more 

RAA.  The number of efforts per RAA bout, rest periods between efforts and bouts, 

presented in Table 25 (p.169) provide guidance for structuring these sessions.   

 

In relation to strength training, key elements would be, firstly, the development of the hip, 

knee and ankle extensors to increase force development improving acceleration.  Lower 

body strength, assessed by back squat performance, is strongly associated with superior 

sprint performance over shorter distances (Comfort, Bullock & Pearson, 2012; Wisløff, 

Castagna, Helgerud, Jones & Hoff, 2004). However, access to gym equipment at the sub-
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elite level may be limited.  Instead, plyometric exercises comprising body weight 

exercises could be incorporated into field based training sessions after the warm up.  

Examples of exercises shown to significantly improve sprint performance, include : 

maximal bilateral, or unilateral, countermovement jumps, depth jumps, horizontal/ late ra l 

hopping and skipping, (Buchheit, Mendez-Villanueva, Delhomel, Brughelli & Ahmaid i, 

2010; Ozbar, Ates & Agopyan, 2014; Sáez de Villarreal, Suarez-Arrones, Requena, Haff 

& Ferrete, 2015).   

 

The second area of focus would be the development of eccentric strength in the knee 

flexors to minimise the risk of injury during the terminal swing phase of sprinting (Rey, 

Paz-Dominguez, Porcel-Almendral, Paredes-Hernández, Barcala-Furelos & Abelairas-

Gómez, 2017).  In the absence of conventional gym based strength training equipment, 

the implementation of field based techniques may prove advantageous.  Nordic hamstring 

exercises have shown to reduce injury incidence amongst footballers, and would be a 

straightforward addition to a warm up, or cool down, period (Arnason, Andersen, Holme, 

Engebretsen & Bahr, 2008; Rey et al., 2017). 

 

7.6 Research limitations 

The following section outlines limitations associated with the research process and is 

divided into broad themes for simplicity. 

 

1. Technological limitations 

This study used 5 Hz GPS to measure acceleration/deceleration activity during 

competition, but this system exhibits its greatest limitations during these activit ies.  

For example, the error when measuring distance during sprinting and tight 
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changes of direction (Jennings et al., 2010b), and, underestimations of movement 

velocity (Varley, Fairweather & Aughey, 2012) are significant.  Finally, interunit 

reliability also presents limitations for the interpretation of data.  Moderate 

reliability was found when measuring distance during walking, jogging and 

sprinting through a course with gradual changes of direction (CV 7.9 - 10.0 %) 

and tight changes of direction (CV 8.6 - 9.7 %) (Jennings et al., 2010a).  Also, 

poorer values are found during linear, and shuttle running, over 10 - 40 m (CV 

13.6 - 30.0 %) (Petersen et al., 2009).  Between unit agreement when measuring 

peak speed (CV 7.5%, ICC = 0.52) has also led authors to conclude that 5 Hz GPS 

in unsuited to the quantification of movement during intermittent team sports 

(Scott, Scott & Kelly, 2016).   

 

In contrast, the latest 10 and 15 Hz systems demonstrate improved accuracy, 

validity and reliability. During linear shuttle running measurement error of 

distance, ranged 2.95 - 3.16 % for walking, jogging, running and sprinting for 15 

Hz GPS (Rawstorm et al., 2014).  Measurement of velocity during a 15 m sprint 

(CV 8.4 %) reaffirms that suggest 15 Hz is superior to 5 Hz (Vickery et al., 2014).  

However, the assumption that increased sampling frequency is preferable is 

contradicted by findings during a team sports simulation circuit.  15 Hz GPS 

showed moderate interunit reliability (TEM = 8.1 %, ICC = - 0.14), but 

significantly, this was poorer than 10 Hz GPS (TEM 1.6 %, ICC = 0.97) (Johnston 

et al., 2014).   

 

During the course of the study the GPS units were subject to periodic software 

updates, and, on reflection, it would have been prudent to check the impact of 

these updates on the data collected.  Following routine software updates, Buchhe it 
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and colleagues (2014a) reported significant decreases in the number of 

accelerations (> 1.5 m·s-2: -29.48 %; > 3.0 m·s-2: - 24.06 %; > 4.0 m·s-2: - 48.0 %) 

and decelerations (> - 1.5 m·s-2: - 14.71 %; > - 3.0 m·s-2: - 14.70 %; > - 4.0 m·s-2 : 

- 22.22 %). Acceleration/deceleration data from match-play obtained during the 

2012-2013 playing season (Chapter 3) was used for comparison in Chapter 4, and 

Chapter 6, but the effect of software updates occurring between these studies is 

unknown.   

 

Integral to this study was the use of GPS housed accelerometers to report 

Playerload and individual planar contributions.  During team sports activity 

between device reliability was acceptable (CV 1.9 %), and, the noise (< 2.0 %) 

was below the SWD (5.88 %) demonstrating that tri-axial accelerometers can 

detect differences in team sports activity (Boyd, Ball & Aughey, 2011).  Players 

were issued with the same unit wherever possible to minimise between device 

reliability issues. However, this was not always possible due to equipment 

availability.  Finally, players were fitted with an appropriate custom made harness 

to minimise the noise within the data arising from unit artefact.  

 

2. Generalisability 

The studies within this thesis were completed on one FA chartered football 

Academy presenting limitations with the generalisability of the findings.  As such, 

the data reported is specific to this tier of competition and reflects the particular 

combination of strategy and tactics employed.  The Academy studied is amongst 

the strongest in the region, and during the period of analysis, game losses were 

few.  Positive score lines are linked to reductions in HSR because there is no need 

to try and regain a foothold in the game (Lago et al., 2010; Lago & Martin, 2007), 
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and, therefore, the data presented may not reflect the full physical potential of the 

players.  As such, the acceleration/deceleration and RAA data could be considered 

to be the minimum achieved by the players, effectively emphasising that RAA is 

more prevalent than suggested. 

 

Analysing soccer performance is problematic because of the myriad of situationa l 

variables that can influence match-play.  The 4-2-3-1 playing formation remained 

consistent throughout the study, but, the impact of the opposing team’s approach 

was not examined.  However, research suggests that the formation of the reference 

team, and the opponents, has minimal impact on work rate (Bradley et al., 2011; 

Carling, 2011).   Significantly, in this thesis, only home games were monitored 

and, while this can be viewed as a limitation, it helped to reduce the variability in 

physical performance because, playing surface (Nédélec et al., 2012), pitch 

dimensions, and, the advantage of playing at home (Lago-Pénas, 2009) were all 

consistent (Morgans et al., 2014).  The effect of player interchange during games 

introduced some bias into the data set because WMF and FW tended to be 

substituted most often, according to the academy policy of sharing field time.  In 

response, these positions were prioritised for data collection during periods of 

limited GPS unit availability, to try and ensure they were equally represented in 

the final analysis.  

 

The outcome of this thesis was the RAPT which aims to evaluate the capacity to 

complete repeated accelerations.  Football performance is multifaceted and reliant 

on the complicated combination of physical, technical and strategic components 

(Drust, Atkinson & Reilly, 2007), and, therefore, it is acknowledged that any 

improvement in RAPT performance, or capacity to complete repeated 
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accelerations, does not necessarily translate into enhanced football performance.   

Rather, the RAPT intends to evaluate a physical element that is prevalent during 

match-play, at this level, in order to inform training prescription. 

The RAPT was validated against the acceleration/deceleration activity, RAA and 

accelerometer metrics, during match-play.  However, on reflection, this approach 

presents limitations, given the variability in RAA (> 1.5 m·s-2) (CV 64.47 %), 

reported in Chapter 5.  The amount of variation might have been reduced by 

increasing the number of participants significantly.  However, this would have 

distorted the data and reduced the usefulness of findings for the reference academy 

(Carling et al., 2016). 

Finally, the training intervention within the sensitivity study (Chapter 6) presents 

two key issues.  Firstly, fitness is typically maintained during the competitive 

phase, due to difficulties scheduling developmental work during periods of fixture 

congestion (Reilly & Williams, 2003).  In reality, the intervention coincided with 

a re-arranged games programme and residual fatigue may have contributed to the 

decline in RAPT performance. Secondly, the intervention was six weeks in 

duration, which may have been too short to elicit a training effect.  However, the 

duration was governed by the time constraints of the academic calendar and was, 

unfortunately, unavoidable.   

 

7.7 Recommendations for future research. 

The present study has highlighted several areas for future research, and these include; 

1. Expanding the current research on RAA to provide a comparison with higher tiers 

of competition.   



 

192 
 

2. Investigating the impact of normalised thresholds, based on 5 m or 10 m sprint 

times, on RAA activity during competition. 

3. Exploring the interaction between RAA and game related variables.  For example, 

score line, ball possession and playing position.  

4. Investigating the impact of a range of minimum event durations, for example, 0.3 

s, 0.4 s, 0.3 s, rather than the default 0.6 s, on RAA performance during 

competition.   

5. Providing greater clarity about how physical actions are categorised and 

contribute to PL according to the AU scale. 

 

7.8 Conclusions 

Based on this series of studies it is concluded that acceleration/deceleration is central to 

sub-elite youth soccer and that repeated bouts of acceleration (RAA) are prevalent during 

competition.  Positional differences highlight that wide players are exposed to higher 

demands than central players, suggesting these players, in particular, might benefit from 

developing these capacities.  Finally, the RAPT presents a valid and reliable field test for 

the assessment of the capacity to accelerate repeatedly within the sub-elite youth tier.   

 

7.9 Personal reflection 

Doing a PhD has been described as an experience in learning (Hanrahan, Cooper & 

Burroughs-Lange, 1999) but this was not at the forefront of my mind when deciding to 

undertake one.  Instead, the desire to test myself and see whether I was equal to the 

challenge of study at this level was strong, and, I was mindful that as a HE lecturer, a PhD 

was a vehicle to advance my academic career.  I was also keen to complete applied 
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research within soccer to positively impact the preparation of players at the home 

academy, and, more broadly, to learn more about the game I have loved since childhood.   

The existing research about “soccer science,” and that which emerged during this six year 

period, required voluminous reading.  In addition to adding to my academic knowledge 

about this topic, this process made me more mindful about the depth of reasoning required 

to critically analyse published material.  Pleasingly this is something I have improved 

significantly, and I am now more proficient in presenting a discussion about academic 

material in an objective, and coherent, manner.   

 

Although perhaps not appreciated at the time, throughout the process of this study I have 

become more proficient in the research process (Hanhrahan, Cooper & Burroughs-Lange, 

1999).  Specifically, an increased understanding of research methodologies, the 

complexities of analysing data and, concluding findings.  Wider skills also include 

managing time, resources and large data sets effectively, and, importantly when 

completing applied research, organising and communicating with participants, and 

coaches.  The publication of two peer reviewed academic papers were important 

landmarks and provided useful reviewer feedback enabling me to refine how I prepare 

academic papers, and the final thesis.   

 

In relation to the final thesis, the overall aim was to evaluate the positional physical 

demands of sub-elite youth football using acceleration/deceleration profiles, and 

accelerometer derived metrics, to inform the derivation of a field based testing protocol.  

Accordingly, the first step (Chapter 3) was to establish the acceleration/decelera t ion 

characteristics of competition, and, Chapter 4, determined the extent these were replicated 

in contemporary field tests.   



 

194 
 

The commencement of Chapter 5, around 2013/2014, saw a slight change in the direction 

of the study.  At this time the importance of acceleration/deceleration activity during 

competition was apparent (Barnes et al., 2014; Bradley et al., 2010; Varley & Aughey, 

2013), along with the fatigue related decline in activity (Akenhead et al. 2013).  Emergent 

work by Barberó-Álvarez et al. (2014) concerning repeated acceleration activity, 

highlighted a gap in literature and led me to explore this topic in my home academy.  

While Chapter 5 presents evidence of RAA the impact of situational variables was not 

considered and given the complexity of soccer performance (Carling, 2013) this is 

something that would, in hindsight, provide greater depth to this chapter.  Implementing 

a validity, reliability and sensitivity study (Chapter 6) was challenging and presented 

several logistical issues.  Scheduling quality time with the playing squads and collecting 

data in a time constrained environment was difficult.  Consequently, this led to the 

training intervention being six weeks long and limited to two training sessions per week 

for each group of players.    

 

In summary, while I have been able to satisfy my reasons for undertaking a PhD, I have 

benefitted to a greater extent by the process of learning I have undergone during this 

period of study.  Reflecting on the process has highlighted some limitations, and a range 

of decisions that I would take differently now I have acquired a greater understanding of 

both the research process, and, the complexities of applied research in soccer.  

Completing this PhD is an important first step, and I look forwards to conducting future 

research in applied sport.  
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10.1: APPENDIX 1: Informed consent  

 

University of Central Lancashire 

School of Psychology 

 

Informed Consent Form 

 

 

Investigation:  

Investigator:  David Barron  

Participant No: 

 

Full Name ________________________________________________ 

 

I have read the participant information sheet and discussed the project with the 

investigator. The nature, demands and the risks associated with the project have been 

explained to me. I knowingly accept the risks involved and feel confident that I can 

undertake the requirements of the test without undue strain. As such I agree to 

participate in the above named study. I understand that I may withdraw my consent and 
discontinue participation at any time without having to give an explanation. 

 

Participant’s signature:  ------------      Date: 

 ____________________________________________________________________ 

 

Parent’s signature in the case of a    minor Date: 

_____________________________________________________________________ 

 

I certify that I have explained to the above individual the nature, purpose and possible 

risks associated with participation in this research study, have answered any questions 

that have been raised, and have witnessed the above signature 

 

Signature of  --------------------------     investigator: Date: 

_____________________________________________________________________ 
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10.2: APPENDIX 2:  Structure of training intervention  

 

 

 

No. Diagram Instructions 

1 

 

From an athletic stance, the 

participant accelerates towards the 
first turn and proceeds to zig zag 

through the course sprinting 
through the finish point. 

2 

 

From an athletic stance, the 
participant accelerates to the first 

pole and checks before sprinting 
to pole two. Two more 180o turns 

are completed at poles two and 
three before a sprint through the 
finish line. 

3 

 

From an athletic stance, the 
participant sprints towards pole 
one and turns left to reach pole 

two.  Turning 180o at pole two 
before sprinting towards pole two 

and turning left again to reach the 
finish line. This exercise would 
also be completed in the opposite 

direction to balance left and right 
turns. 

4 
 

From an athletic stance, the 

participant accelerates to the first 
pole and proceeds to zig zag 
through the course sprinting 

through the finish point.  This 
exercise would be completed in 

the opposite direction to balance 
left and right turns. 

5 

 

From an athletic stance, the 
participant accelerates to pole one 

where they turn right.  At pole two 
they turn 180o before sprinting 

towards pole two where they turn 
125o and sprint through the finish 
line.  
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6 

 

 

From an athletic stance, the 

participant accelerates to pole a 
and turns left (45o) towards pole b. 
At pole b they turn 180o before 

turning left (75o) at pole a, and 
reaching pole c.  At pole c they 

turn 180o and sprint around pole a 
(40o), towards the finish line. 

7 

 

 

From an athletic stance, the 

participant accelerates to the first 
pole and turns right (45o) toward 
the second pole.  Turning 180o the 

participant runs the reverse route 
back to the finish line. 

 

 

 


