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Abstract 

With 440 commercial nuclear reactors in use globally, nuclear energy contributes 

to 11 % of the world’s energy demands[1]. Like most forms of energy, nuclear 

energy generates waste. To help manage contaminated aqueous streams 

generated from the nuclear cycle, i.e., reactor primary coolant and the clean-up 

of spent fuel systems, ion exchange media are being utilised[2].  

This thesis focuses upon the synthesis of vanadium-paranatisite and vanadium-

natisite, inorganic zeotypes[3], which have not been previously reported. 

Optimisation of the synthesis showed that with an increased percentage of 

vanadium the time taken for the progressive transformation of vanadium-

paranatisite to vanadium-natisite increased. 5 %-vanadium-paranatisite and 

natisite formed during 7 and 72 hours of synthetic heating, whilst 10 %-vanadium-

paranatisite and natisite formed during 72 and 288 hours, respectively. 

Increasing the percentage of vanadium also showed to increase the crystallinity 

of the vanadium-paranatisite framework, with attempts to form Ti-paranatisite 

failing. 

The respective abilities of vanadium-paranatisite and vanadium-natisite to 

remove ions commonly found within nuclear waste such as strontium, cesium, 

cobalt, cerium (inactive surrogate for plutonium) and neodymium (inactive 

surrogate for uranium) was also investigated. The results showed that both 

vanadium-paranatisite and vanadium-natisite have the potential to act as ion 

exchange media for the removal of radioactive ions from aqueous effluent within 

the nuclear industry.  

Vanadium-paranatisite and vanadium-natisite frameworks showed higher 

affinities towards strontium and cobalt. During ion exchanges involving 
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vanadium-paranatisite, up to 32 % (± 0.62) and 29 % (± 0.82) of strontium and 

cobalt ions respectively, were exchanged during a 24 hour period. Ion exchanges 

involving vanadium-natisite showed that up to 30 % (± 0.53) and 28 % (± 0.26) 

of strontium and cobalt ions respectively, were exchanged in the same 24 hour 

period.  

Further to this, vanadium-paranatisite frameworks showed increased affinities for 

all the ions tested when compared with vanadium-natisite. A plausible reason for 

the increased affinity shown by vanadium-paranatisite could be due to the 

structure. Unlike natisite, which is a layered titanium silicate, the framework of 

paranatisite is less regimented, with exchangeable cations fragmented 

throughout the framework. 
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Chapter One- Introduction 

1.0.0.0:  Background 

With the need for a sustainable, reliable energy pathway that can meet the 

growing energy demands, nuclear power is becoming an increasingly viable 

option. With targets set to reduce greenhouse emissions within the United 

Kingdom (UK), the growing interest in the use of nuclear energy is becoming of 

paramount importance[4].  

The dependence upon nuclear energy can be seen in a relatively brief period 

across the world, in particularly from 1990 - 2015. During this period countries 

such as France, the Czech Republic and the United Kingdom increased their 

reliance upon nuclear fuel by 39.3 %, 113.3 % and 7.0 % respectively[5]. With 

France relying upon nuclear energy to generate 76.3 % of the country’s total 

energy demand, it is one of the countries with the highest percentages of energy 

generated by nuclear fission[6].  

Currently the UK generates 21.0 % of its electricity from the nuclear fuel cycle[7], 

with plans to increase this due to the sustainability and low carbon impact that 

this energy exhibits[1].    Plans to build new reactors within the UK are in place 

with eight new sites already being selected and the construction of Hinckley Point 

C to be completed by 2025[8, 9].  

Waste is generated during most energy pathways with nuclear power being no 

different. Various disposal methods within the nuclear industry need to be used 

to protect human health and the environment against adverse effects of 

radioactive waste. The method by which the waste is treated is dependent upon 

the nuclear cycle adopted by a given country.  
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1.1.0.0: Radioactive Waste Material 

Radioactive waste is any waste that contains above the background level of 

radioactivity and has the potential to cause detrimental effects to the 

environment, human and animal health. Although radioactivity is present in many 

different forms from various sources, where it exceeds the defined background 

level, it needs to be subjected to special treatment and disposal.  

In the UK, the way in which radioactive waste generated by nuclear plants in the 

public sector is dealt with is in accordance with regulations set by the Office of 

Nuclear Regulations (ONR), the Environmental Agency (EA), the Scottish 

Environmental Protection Agency (SEPA), Natural Resources Wales (NRW) and 

the Department for Transport (DFT).  The agencies provide a policy framework 

for the National Decommissioning Authority (NDA) to follow[10, 11]. An outline is 

shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Outline of the way in which radioactive waste generated from the nuclear industry, in 

the public sector, is dealt with[12]. 

Government 
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•Provide Policy Frameworks for the National Decommissioning 
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Materials which emit radiation can be classified as: alpha emitters, beta emitters 

or gamma emitters.  

Alpha Emitters- Alpha emitters are the result of helium nuclei (containing 2 

neutrons and 2 protons) being emitted from common materials used within the 

nuclear industry such as uranium, thorium and plutonium. Alpha particles are 

deemed the least detrimental to human health as penetration can be prevented 

by skin, paper and air, however adverse effects can happen if they are inhaled 

or are able to enter the bloodstream[13, 14].  

Beta Emitters- Beta emitters are charged particles that have comparable 

properties to electrons. Unlike alpha radiation, beta radiation is the result of 

emission from lighter elements such as strontium, a fission product. Beta 

particles tend to have a higher penetration capacity and will not be stopped by 

skin, paper or air; instead materials such as metal (Pb, steel) or wood are 

required to absorb the radiation[13, 14].  

Gamma Emitters-Gamma rays are electromagnetic waves that possess high 

ionisation capacities and therefore concrete or lead are required to completely 

stop the radiation[14]. Gamma-rays are generally emitted from materials like 

cesium which is a fission product[13]. Penetration capabilities of all emitters are 

shown in Figure 2. 

 

 

 

 

 

 

Figure 2: Diagram of alpha, beta and gamma penetration capabilities. 
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1.2.0.0: Radioactivity  

To help deal with the way in which alpha, beta and gamma emitters are classified, 

several categories have been developed based upon the concentrations emitted 

and these categories are named: High-Level Waste, Intermediate-Level Waste 

and Low-Level Waste. 

High-Level waste-High-Level Waste (HLW) is generated by the reprocessing of 

spent fuel and spent fuel that will not be reused. Generally, this comprises of 

fission products, actinides and transuranic elements. The radioactivity mainly 

arises initially due to fission product activity in which high-levels of heat are 

generated. To treat this category, waste must first be separated into long or short-

lived radioactive components, cooled and shielded. HLW is said to constitute ~ 3 

% of the amount of waste generated but ~ 95 % of the radioactivity associated 

with all nuclear wastes[15]. The radioactivity within this category arises from 

relatively high concentrations of alpha, beta and gamma emitters[14].  

Intermediate-Level waste- Intermediate-Level waste (ILW) consists of fuel 

cladding, sludge, contaminated material and resins. ILW requires shielding but 

does not generate as much heat as HLW. To treat ILW, the waste is typically 

mixed with bitumen or concrete and solidified before disposal. In contrast to HLW, 

ILW constitutes ~ 7 % of the total waste and ~ 4 % of the total radioactivity[15]. In 

intermediate waste, radioactivity arises from lower levels of beta and gamma 

radiation and sometimes alpha emitters[14].  

Low-Level Waste- Low-Level Waste (LLW) generated by the nuclear industry 

arises from the contamination of materials such as paper, clothing and filters. The 

radioactivity seen within this group does not require any shielding and can be 

buried in shallow land fill sites. Solid wastes fall into this category when < 4 
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GBq/te of alpha emitters and < 12GBq/te of beta/gamma emitters are present. 

Typically, LLW waste constitutes ~ 90 % of the total radwaste whilst only 

contributing ~ 1 % of the total radioactivity. Radioactivity within this category 

arises from low concentrations of beta and gamma decay and sometimes even 

low levels of alpha decay. To reduce the volume of LLW, it is often compacted 

before disposal in land fill sites[14, 15]. A chart showing the composition of 

radioactive waste is shown in Figure 3. 
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Figure 3: A chart to show the composition of radioactive waste. 

A: Blue charts represent the volume of waste generated from each category. 

B: Orange charts represents the total radioactivity generated from each category. 
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1.3.0.0: Open and Closed Fuel Cycles 

Countries that are dependent on nuclear fuel typically opt for either an open or 

closed fuel cycle[16], although there are some countries that are still undecided 

upon the best cycle to primarily adopt and therefore tend to use both. 

Countries which have opted for the open fuel cycle work on a once through basis. 

This means any spent fuel that is generated through the cycle is stored 

intermittently in fuel rods ready for treatment at geological disposal facilities 

(GDF) [17]. Open fuel cycles focus upon ‘Spent Fuel Management’ which 

produces lower levels of ILW and LLW and higher levels of HLW due to waste 

not being pre-treated before disposal. To date, no country which has opted for 

the open fuel cycle has begun geological disposal[18], although countries such as 

France, Finland and Sweden are expected to open their first GDF sites in 

2025[19].  

Countries which have opted for the closed fuel cycle reprocess spent fuel to 

recuperate uranium and plutonium that can then be reused[16]. This method also 

allows for the separation of radioactive cesium and strontium (the main 

constituents of heat generating radionuclides), other fission products and minor 

actinides. After being separated, they are kept in storage for a number of years 

to allow for the reduction in temperature and radioactivity. The waste is then 

vitrified, ready to be sent for disposal to underground repositories.  

A schematic diagram of closed and open nuclear cycles is shown in Figure 4. A 

list of the countries operating on either an open or closed fuel cycle being shown 

in Table 1.  

 

 



7 | P a g e  
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Simplistic schematic diagram of open and closed fuel cycles[16].  

  

 

Table 1: A list of countries operating on open and closed fuel cycles[20]. 

 

Countries that have Adopted the 
Open Fuel Cycle 

Countries that have Adopted the 
Close Fuel Cycle 

Canada China 
Czech Republic France 

Finland India 
Republic of Korea Japan  

Romania Netherlands 
Sweden Russian Federation 

Switzerland Switzerland 
United Kingdom United Kingdom 

United States of America  

High-Level Waste 
Storage

MOX Fuel Fabrication

Reprocessing Plant

Interim Storage of 
Spent Fuel

Power Station

Uranium Mine 

Uranium Ore

Refining/ Conversion/ Enrichment and 
Fabrication

Uranium Fuel

 Open Fuel Cycle 

 Closed Fuel Cycle 
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In the UK, most of the nuclear power stations or reactors operate within a closed 

fuel cycle. Spent fuel is reprocessed and fissile material is recovered and reused 

with a process called Plutonium Uranium Redox Extraction (PUREX)[21]. 

However, many of the reprocessing plants in use within the UK are deemed to 

be out of date and are coming to an end of their usable life. Prime examples 

being the Thermal Oxide Reprocessing Plant (THORP) and the Magnox  

reprocessing plant at Sellafield which are scheduled to close by 2018 and 2020 

respectively[22].  

Upon their closure, the UK will move to an open fuel cycle process, i.e. spent 

nuclear fuel  may be stored on nuclear reactor site until a geological depository 

site is chosen, this is believed to be available for high active waste by 2075[23].  

Even though the UK is set to move to an open fuel cycle, three main scenarios 

are still in place regarding the continuation of the nuclear cycle, these scenarios 

are Baseline, Replacement or Expansion.  

Baseline- upon the current generation of nuclear reactors, this scenario will allow 

for a phase out of nuclear energy[24]. 

Replacement- currently the government has promised to support the build of 

nuclear reactors that have a 16 GW combined capacity[24].  

Expansion- increased reliance upon nuclear energy may lead the UK to 

introduce both 40 and 75 GW combined capacity[24].  
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Currently the UK government has decided to shift emphasis towards open fuel 

cycle and implement the replacement scenario[24]. All spent fuel generated 

following this change will be stored until a viable solution, such as a geological 

depositary facility site is available[23].  

However, if the expansion scenario is adopted, the UK will most likely revert back 

to the closed fuel cycle to deal with the increasing amount of spent fuel that will 

require reprocessing[24]. This will take advantage of advanced reprocessing 

technologies such as the PUREX process and a process known as Group 

Actinide Extraction Process (GANEX) which aims to completely remove all 

actinides[25].  

There are also questions being raised regarding the sustainability of uranium at 

a global level. The introduction of fast breed reactors as well as advanced 

reprocessing technologies will help preserve the Earth’s uranium resources[25].  

Regardless of the cycle adopted the European Union (EU) suggests that the 

international accepted policy will be to dispose both low and intermediate waste 

in near surface facilities whilst HLW and spent fuel will be disposed deep in 

geological disposal facilities[24, 26].  
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1.4.0.0: Generation of Nuclear Waste 

Upon switching to the open fuel cycle, it is predicted that around 7,700 tonnes of 

used fuel from Advanced Gas Reactors (AGRs), Sizewell B Pressurised Water 

Reactors (PWRs) and legacy exotic fuels will be disposed of in an underground 

facility. A further 1,500 tonnes of material is predicted to be generated from the 

use of mixed oxide (MOX) fuel and from recycling the UK’s Plutonium stock[24].  

Dealing with the increasing amount of waste produced and the waste already in 

storage is therefore of paramount importance. Currently, in the UK alone there is 

approximately 5 million tonnes of existing waste that needs to be treated[15].  

It has been reported that one light water reactor in the UK is responsible for 

producing around 200 - 350 m3 of both low and intermediate type waste per year 

and 20 m3 of used fuel. The composition of the spent nuclear fuel produced from 

light water reactors is noted in Table 2 and a list of radioisotopes present after 

4.5 % enrichment, with a burn-up of 45 GWd/t U after 8 years cooling being 

shown in Table 3. Combined production of nuclear waste from all light water 

reactors has shown the total production of low and intermediate waste to be 

200,000 m3 whilst 10,000 - 12,000 tonnes of high level waste is generated 

yearly[15].  
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Table 2: Typical composition of the spent nuclear fuel generated from  

LWR[15].  

 

 

 

Table 3: A list of radioisotopes present after 4.5 % enrichment, with a burn-up of 45 GWd/t U 

after 8 years of cooling[12]. 

 

Radioisotopes TBq/t U Heat Rating 
Factor (fW/Bq) 

Heat Rating 
Contribution 

(WtU) 

Y-90 3140 150 470 
Sr-90 3140 31 98 

Rh-106 89 260 23 
Sb-125 47 85 4 
Cs-134 502 275 138 
Cs-137 4380 30 131 

Ba-137m 4140 106 439 
Ce-144 33 18 0.6 
Pr-144 33 198 7 
Eu-154 172 242 40 
Am-241 77 904 69 
Cm-242 0.01 995 0.01 
Cm-244 121 946 114 

  Total   1530 
 

 

 

 

 

Isotope Percentage Composition (%) 

Uranium 
(< 1% of which is U-235) 

95.6 

Plutonium 0.9 
Stable fission products 2.9 
Cesium and Strontium 0.3 
Iodine and Technetium 0.1 

Other long-lived fission products 0.1 
Minor actinides 

(Americum, curium and neptunium) 
0.1 
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1.5.0.0: Treatment of Nuclear Waste  

Whether open fuel cycles or closed fuel cycles are adopted by a country, both 

solvent extraction and ion exchange processes will play a significant role in the 

sustainability of the nuclear industry with ion exchange mediums being deployed 

for waste clean-up[27].  

The function in which the ion exchange medium (can be organic or inorganic 

base) generally depends upon the chemical composition of the medium[28]. 

Compared to inorganic materials organic materials have higher mechanical 

strength and tend to have a higher exchange capacity[2].  

Organic and inorganic materials, are applied to roles such as the removal of 

radioactivity from decontamination liquors where the complete removal of these 

radionuclides is not necessary providing they are within the dose uptake limits to 

operators. A good example of the application of inorganic materials for liquor 

clean-up is the Site Ion Exchange Plant (SIXEP) which uses Clinoptilolite [29].  

Inorganic materials are finding an array of applications as they can remove 

specific radionuclides efficiently even in the presence of highly concentrated 

competing ions[29]. A prime example being the IONSIV materials which have high 

affinities towards cesium. Due to their high affinities towards cesium over other 

competing ions, the IONSIV family were utilised during the Fukushima, 

Chernobyl and Three Mile Island incidents[30].  

Inorganic materials can be separated into three main categories clays, oxides 

and zeolites. The function given to the material greatly depends upon the 

composition and structure of the materials[2].  
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Chapter 2- Zeolites 

2.0.0.0: Composition of Zeolites 

Zeolites are a class of microporous aluminosilicates[31] first discovered in the 18th 

century. Since then many natural and man-made zeolites have been discovered 

and to date there are over 231 different structures recognised by the International 

Zeolite Association (IZA)[32].  

By strict definition zeolites are materials which comprise of only aluminium, 

silicon and oxygen within the framework, where both silicon and aluminium must 

have tetrahedral coordination and all pore sizes must be less than 20 Å[33].  

Introduction of aluminium tetrahedra within the framework of the zeolite 

introduces a net negative charge[34]. To maintain electrochemical neutrality, 

counterbalancing cations are loosely bound to the zeolite framework in the cages, 

cavities or channels[35]. The size and shape of the cages or channels can 

influence the nature of the charge balancing cation preferred, with larger pore 

zeolites favouring larger cations. Typical cations found such as Na+, K+ or Ca2+ 

are in hydrated forms, introducing extra water species into the pores. The general 

zeolite formula is given in Equation 1[36].  

{[𝑀𝑛+]𝑥

𝑛
∙ [𝑚𝐻2𝑂]}  {[𝐴𝑙𝑂2]𝑥[𝑆𝑖𝑂2]1−𝑥}                    Equation 1 [36]. 

 

The replacement of silicon tetrahedra with aluminium tetrahedra can only happen 

to an extent within the zeolite framework, which is known as Lowenstein’s rule[37]. 

The rule states that the ratio of silicon to aluminium must be equal to or greater 

than one. A ratio of 1:1 implies that the aluminium and silicon tetrahedra alternate 

throughout the zeolite structure[38]. If this condition is not met, it would imply that 

Sorbed Species  Framework  
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Al-O-Al bonds would be present within the zeolite framework. To date, the 

presence of Al-O-Al bonds have not been observed experimentally[39].  

2.1.0.0: Structure of Zeolites 

The primary building blocks within the zeolite structure compose of tetrahedrally 

bonded silicon and/or aluminium oxygen units[33], [𝑆𝑖𝑂4]4− or [𝐴𝑙𝑂4]5− as shown 

in Figure 5.  

 

 

 

Figure 5: Illustration of primary building blocks of zeolites. (Oxygen atoms- red and silicon and 

aluminium atoms- blue). 

 

It is these primary building blocks that can link together to form the secondary 

building blocks of the zeolite structure. The primary building blocks link through 

2, 3 or 4 corners via oxygen bridges forming Si/Al-O-Si/Al bonds varying in bond 

angles of 120 - 180 °[40].  The sharing oxygen atoms lead to either 4, 6, 8, 10 or 

12 membered rings being produced with no unshared oxygen atoms within the 

framework, as shown in Figure 6[41].  

 

 

 

 

Figure 6: Illustration of secondary building blocks of zeolites forming single four ring (S4R) and 

single six ring (S6R) structures. 

 

Single four-ring (S4R) Single six-ring (S6R) 
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The manner in which the rings connect together gives rise to cages, cavities 

and/or channels, forming the tertiary building blocks and giving zeolites their 

physical and chemical properties[42]. Channels extend throughout the whole 

structure of the zeolite and in doing so allows for the diffusion of any guest 

molecule along the entire pore. Cavities however, do not extend throughout the 

entire framework and instead allow for the passage of guest molecules in and out 

of the cavity[43]. For example Zeolite A forms both beta (β) and alpha (α) cages. 

Beta cages are the result of 4 and 6 membered rings formed from alternating 

silicon and aluminium units, whilst alpha cages are larger in diameter having 

been formed from 4, 6 and 8 membered rings. The formation of β cages via four 

membered rings exhibit an internal pore size of ~ 6.5 Å whilst α cages formed via 

six membered rings have an internal diameter of ~ 11.5 Å. Both cage types are 

shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Illustration of double four ring (D4R) structures forming β cages and double six ring 

(D6R) structures forming α cages. 

 

Double four-ring (D4R) β cage 

Double six-ring (D6R) α cage 
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2.2.0.0: Applications of Zeolites 

Since being discovered in 1756[35], zeolites have shown to have a diverse range 

of applications due to their physical properties and chemical composition. To date 

zeolites are used in processes such as catalysis, separation, adsorption and ion 

exchange[44].  

2.2.1.0: Adsorption 

The open porous structure that zeolites exhibit when dehydrated has meant that 

they have found applications in both the environmental and nuclear industry for 

the removal of carbon dioxide (CO2) [45] and radioactive xenon isotopes (such as 

Xe133 and Xe135) [46].  

With current aims to reduce carbon dioxide emissions, the environmental industry 

aims to separate CO2 from hydrogen (H2), nitrogen (N2) and methane (CH4) gas 

mixtures using zeolites such as Chabazite. Due to the location of 

counterbalancing cations within the ring system, Chabazite has shown to be able 

to act as a molecular sieve by adsorbing and separating CO2 from CO2/N2 and 

CO2/CH4 mixtures[45].  

Zeolites such as Zeolite Socony Mobil–5 (ZSM-5) are finding applications within 

the nuclear industry as adsorption mediums too. Research of loaded silver 

ZSM-5 conducted by D. Farrusseng et al. has shown to be able to adsorb Xenon, 

a harmful radioactive contaminant of off-gas streams generated upon aqueous 

reprocessing of nuclear fuels[46].  

As shown from these examples, the ability to act as an adsorption medium is 

dictated by the size of the rings and the location of counterbalancing cations in a 

particular zeolite structure[47]. Zeolites which have smaller ring sizes and internal 

surfaces tend to adsorb smaller molecules.  
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2.2.2.0: Ion Exchange 

Counterbalancing ions that are present in aluminium containing zeolite 

frameworks are responsible for their ion exchange properties[48]. These cations 

can be exchanged with other ions in aqueous solutions[49]. As a result, zeolites 

have found applications in water treatment industries, in commercial detergents 

as water softeners and in the treatment of nuclear waste. 

In the UK, before disposal or release back into the environment, spent fuel pond 

water generated by uranium fission, currently undergoes a pre-treatment 

process, such as ion exchange with zeolites. This allows for the removal of fission 

products such as strontium and cesium and allows for the recirculation of certain 

isotopes such as uranium and plutonium[50]. Within the nuclear cycle, waste that 

is no longer deemed viable to the nuclear cycle is said to be ‘spent nuclear fuel’ 

and is placed within storage pools to cool and reduce radioactivity for several 

years[51]. During this time the water in the ponds become contaminated through 

leakage of the cladding and particulates present upon fuel elements[52]. The water 

is circulated through ion exchange mediums such as zeolites to remove 

radioactive ions. 

Finally, nuclear disasters such as the Three Mile Island, Chernobyl and 

Fukushima, have resulted in the release of radioactive species into the 

environment. In all three incidents, zeolites have been used to remove any 

contaminants present in the environment such as strontium and cesium[53].  

The treatment of radioactive waste with ion exchange mediums therefore allows 

for recirculation of certain isotopes, the reduction in the amount of nuclear waste 

sent for long-term disposal, allows for water to be reintroduced into the 

environment as well as the reduction upon the burden of uranium resources[2].  



18 | P a g e  
 

2.2.3.0: The Site Ion Exchange Plant (SIXEP) Process 

Within the SIXEP process the naturally occurring zeolite Clinoptilolite is used to 

remove cesium (Cs-137) and strontium (Sr-90) from aqueous effluent in legacy 

pools found at Sellafield[54]. Clinoptilolite used at Sellafield has the general 

formula of Na6Al6Si30O72·24H2O[55], the HEU typology with a space group of 

C2/m[56]. The structure of Clinoptilolite is shown in Figure 8. 

The framework of Clinoptilolite consists of three channels which intersect and 

which are all located within the same plane. Both the a and b channels run 

parallel to the c axis and are formed by 10 and 8 membered rings respectively[57]. 

The counterbalancing cations, mainly sodium and potassium predominately 

located in the intersections of A and C channels can be exchanged with Cs-137 

and Sr-90[54].  

When the maximum exchange capacity i.e. the total capacity of Clinoptilolite to 

hold an exchangeable cation, has been reached (this generally takes a few 

months in the nuclear industry) Clinoptilolite is removed and stored in either bulk 

storage tanks or Medium Active Waste Export Plant (MASWEP) storage vessels. 

The spent Clinoptilolite and sand will be stored in these premises until packaging 

plants become fully operational in 2020.  

Until this time elapses key issues with regards to the storage and the treatment 

of waste arising from the SIXEP process will need to be addressed. These issues 

include treating waste so that it can be stored in a passive manner, the way in 

which waste is immobilised pending long term disposal and reducing the 

concentration of fission products and alpha emitters emitted to long term storage. 

Reports suggest that 20 % of the cesium sent for deep disposal is from spent 

Clinoptilolite and sand following the treatment in the SIXEP process[58].  
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Figure 8: Structural representation of clinoptilolite. (Sodium atoms- yellow, oxygen atoms- 

purple and silicon atoms- green). 
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2.3.0.0: Zeotypes 

Zeotypes are a family of synthetic materials based upon the zeolite structure. 

Unlike zeolites, zeotypes are 3 D crystalline frameworks which can exhibit micro-

, meso- or nanopore structures[59]. They do not adhere to the strict definition of a 

zeolite as both silicon (Si) and aluminium (Al) can be replaced by other 

heteroatoms. Further to this, Lowenstein’s rule is not followed, so for example, 

where titanium (Ti) atoms have replaced Al atoms, Ti-O-Ti bonds can be 

formed[60].  

Due to the versatility of zeotypes several families have been formed such as 

gallophosphates[59] and titanium silicates[30]. In this study, titanium silicates have 

been the primary focus in the replacement of zeolites.  

2.3.1.0: Titanium silicates  

The increase of interest in titanium silicates over zeolites for certain applications 

is due to various characteristics that are seen within the titanium silicate family 

compared to zeolites. 

Firstly, titanium silicates have shown to have higher selectivity towards common 

radionuclides such as strontium, cesium and actinides even in the presence of 

high levels of competing ions such as sodium and magnesium, common ions 

found within seawater[61]. This would be advantageous in the event of another 

nuclear incident such as Fukushima. The nuclear disaster was the result of an 

earthquake followed by a tsunami. This caused the power supply to be cut and 

in turn the cooling operation systems failed[62]. It is estimated that levels of highly 

radioactive material were released into the environment, namely, iodine-131, 

cesium-134 and cesium-137. Due to the soluble nature of cesium, the migration 

of the ions was vast. To this date, it has been reported that cesium-134, a 
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fingerprint ion for the incident, has been recorded off the west coast of the United 

States of America and low levels of the ion have been found in salmon in 

Canada[63]. Implementing the use of titanium silicates could be used to remove 

undesired radionuclides from seawater[64].  

Unlike zeolites, titanium silicates do not contain aluminium within their structure 

and so have shown greater stability across a wide range of pH environments, 

especially environments that are acidic. The pH environment has previously had 

to be taken into account within the nuclear waste management programme[65]. 

Within the SIXEP process, the liquor is too acidic for Clinoptilolite to be used and 

so it first must be neutralised by a carbonation process[66]. It is therefore hoped 

that steps like these could be avoided by using a material that is more stable in 

extreme pH environments.   

As mentioned previously, the versatility of the elements that can be introduced 

allows for the manipulation of the structure so that it can be tailored to the desired 

application allowing for changes within atomic size, bond length and ultimately 

the pore size in which cations can migrate into[67]. The synthesis of titanium 

silicate structures is also deemed economically friendly and therefore large-scale 

syntheses are economically viable. 

Finally, titanium silicates are also ideal for long-term disposal as they can be 

vitrified. Vitrification is a process used within the nuclear industry in order to 

produce a vitrified solid in which contaminants are securely immobilised[68]. To 

produce the solid mass, the waste generated by industry is heated to 1000 ⁰ C 

and mixed with borosilicate glass, producing a melt. The melt is then poured into 

vessels and allowed to cool, entrapping HLW into the borosilicate glass. This 

process is known as vitrification. Research has shown that titanium silicates have 
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the potential to immobilise contaminates, forming part of the melt and vitrified 

mass[69]. Following immobilisation, the vitrified mass can be stored within the 

environment.  

 

2.4.0.0: Titanium Silicates and their Use/Potential in Industry  

Throughout industry titanium silicates such as IONSIV IE-911 and ETS-10 are 

becoming more widely used in applications such as ion-exchange and catalysis. 

2.4.1.0: The IONSIV Family 

The IONSIV IE-910 series constitutes of IE-910, a zirconium bound crystalline 

sodium silicotitanate (CST)[70], with the idealised CST formula of 

Na4Ti9O20·nH2O[71]. Manipulation of the IE-910 formula following the introduction 

of niobium into the framework forms IE-911 with the commercial formula of Na3Si2 

(Nb0.3Ti0.7)4 O13 (OH) ·4H2O + 0.93 Zr(OH)4
[72].  Both frameworks are said to 

exhibit a sitinakite like structure as shown in Figure 9.  

The success of this family is due to the increased affinity towards cesium in the 

presence of extreme pH and competing non-radioactive ions compared to other 

exchange resins. This increased affinity is attributed to the comparable size of 

the unique tunnel system of the IONSIV material and the ionic radius of cesium.  

The comparable size allows for the cesium ion to occupy more favourable sites 

within the IONSIV framework when compared to other ionic species. In turn an 

increased exchange capability, or increased affinity, towards the ion is noted. 

 The increased affinity towards cesium can be especially seen within IE-911, 

which following niobium doping provides further lattice spacing apt for cesium 

sorption[73]. Substituting Nb5+ for Ti4+ reduces the number of counterbalancing 

sodium ions present within the tunnel. The less crowded tunnel system therefore 
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facilitates the exchange for cesium hydrated ions and overall increasing the 

affinity to the cesium ion present within effluent.  

IONSIV families have been incorporated into the removal of cesium and 

strontium from radioactive waste, alkaline supernatant, nuclear fuel storage pool 

water and during nuclear incidents such as Three Mile Island, Chernobyl and 

Fukushima[73].  

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Structural representation of sitinakite. (Titanium atoms- purple, silicon atoms- light 

blue, oxygen atoms - red, sodium atoms- yellow and potassium atoms- purple). 
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2.4.2.0: Engelhard Titanium Silicate 10 (ETS-10) 

ETS-10 is a titanium silicate with mixed coordination, with titanium being 

octahedrally coordinated and silicon being tetrahedrally coordinated[36] exhibiting 

the general formula of M2-TiSi5O13·nH2O (where M can be K and Na). The 

octahedrally coordinated titanium shares four oxygen atoms with the 

tetrahedrally coordinated silicon[74]. The connection in this way gives rise to a 12 

ring pore structure forming channels of diameters of 8.6 by 9.2 Å[75]. The 

structural representation is shown in Figure 10. 

Research into ETS-10 has shown that when it is supported via hollow carbon 

nanotubes it has potential to act as an adsorption medium to capture radioactive 

iodine that is typically produced via off-gas emissions from aqueous reprocessing 

of nuclear fuels[76].  

Removing volatile radionuclides from the environment is a necessary precaution 

if nuclear fuel reprocessing facilities are to meet the conditions of licenses set by 

the Environmental Protection Agency (EPA) in the United States of America, 

which states that 99.4 % of the mass of iodine emissions must be captured and 

immobilised[77].  

Current research is suggesting that materials such as ETS-10 have a good 

affinity for adsorbing iodine (I2) and krypton, common species emitted by the 

nuclear industry. In the future it is therefore hoped that these materials will be 

instrumental in the reduction of volatile radionuclides entering the environment.  
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Figure 10: Structural representation of engelhard titanium silicate 10 (ETS-10). (Silicon atoms- 

red, oxygen atoms- green and titanium atoms- purple). 
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2.4.3.0: Paranatisite  

Paranatisite, as shown in Figure 11, is a naturally occurring mineral which was 

first discovered as intergrowths within natisite in the Yukspor Mountain in Khibiny 

Massif, Russia[78]. It adopts the empirical formula, Na2TiO(SiO4), an orthorhombic 

crystal system (space group of P m m a) with unit cell parameters where a =  

9.82700 Å, b =  9.16700 Å and c =   4.79900 Å with a unit cell volume of 432.3136 

Å3[79]. Research has shown that paranatisite can be synthesised using 

hydrothermal methods, appearing as a white powder. 

Paranatisite is a titanium silicate which contains two distinct titanium (Ti) sites, 

one silicon (Si) site and three distinct sodium (Na) sites. The titanium sites, which 

are in square pyramidal and octahedral coordination, are connected through O-

Si-O bonds, resulting in silicon being tetrahedrally coordinated. The framework is 

said to be fragmented by the three sodium sites, in which all sodium 

environments are octahedrally coordinated[3].  

 

 

 

 

 

 

 

 
Figure 11: Structural representation of paranatisite. (Silicon atoms- blue, oxygen atoms- purple, 

titanium atoms- green and sodium atoms- yellow). 
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2.4.4.0: Natisite  

Naturally occurring natisite has been found within a variety of locations such as 

the Yukspor Mountain in Khibiny Massif, Russia[80]. Adopting the same empirical 

formula as paranatisite, Na2TiO(SiO4), natisite forms crystals of yellow/green 

complexion, a tetragonal crystal system (space group of P 4 / n m m) and unit 

cell parameters of a = b = 6.50 Å (1) and  c = 5.07 Å (1) and a cell volume of 

214.444 Å3[81].   

Natisite, as shown in Figure 12, is a layered titanium silicate with corner sharing 

SiO4 and TiO5 units forming a layered structure. The introduction of titanium into 

the framework leads to an overall negative charge which must be 

counterbalanced. Counterbalancing cations, Na+ ions, reinstate net neutrality 

and are located between the titanium silicate layers[3]. These counterbalancing 

ions are weakly bound to the silicate layer of natisite and therefore can undergo 

exchange with other ions[82].  

 

 

 

 

 

 

 

 

 

Figure 12: Structural representation of natisite. (Silicon atoms- blue, oxygen atoms- purple, 

titanium atoms- green and sodium atoms- yellow). 
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2.5.0.0: Aims of Research  

Research has shown that titanium silicates may offer a promising alternative in 

the removal of radioactive waste from bulk solution. This project aims to 

investigate the potential of vanadium-paranatisite and vanadium-natisite, 

titanium silicates as ion exchange materials for use in the nuclear industry.  

The first part of this project aimed to optimise the synthesis of the vanadium 

doped materials with doping levels of 5 and 10 %-vanadium. Vanadium was 

selected to dope the titanium silicate frameworks due to the versatility of the 

element. Vanadium has a variety of oxidation states, ranging from +2 to +5[83], 

and has shown comparable properties to titanium regarding ionic radii and 

coordination behaviour. Further to this research into vanadium silicates such as 

VSH-1K has shown that vanadium silicates have increased adsorption abilities, 

ion exchange capabilities and improved stability in a variety of environments[84].   

Characterisation techniques such as powder X-ray Diffraction (XRD), X-ray 

Fluorescence (XRF), Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) 

and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-Ray 

Spectroscopy (EDX). 

The second part of the project focussed upon the ion-exchange capacity and 

selectivity of the materials synthesised. Ions commonly found in nuclear waste 

such as strontium (Sr), cesium (Cs) and cobalt (Co) were of interest, together 

with cerium (Ce) and neodymium (Nd) which are inactive surrogates for 

plutonium (Pu) and uranium (U). 

Finally, the ion exchange capacity and selectivity will be compared to the parent 

Ti-natisite. The ion exchange results for the parent material was carried out by 

another student, R. Hall[85].  
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Chapter 3-Characterisation Techniques 

The main characterisation techniques used within this study were: X-ray 

Diffraction (XRD), X-ray Fluorescence (XRF), Inductively Coupled Plasma-Mass 

Spectroscopy (ICP-MS) and Scanning Electron Microscopy (SEM) coupled with 

Energy Dispersive X-Ray Spectroscopy (EDX).   

3.1.0.0: X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) is the primary technique used in the characterisation of 

solid inorganic materials due to its ability to provide full structural determination, 

phase identification and phase purity information.  

X-rays are generated by the interaction of an electron beam (generated from a 

tungsten wire) with a metal target such as copper. Upon contact of the electron 

beam and the metal target, core electrons from the inner K shell become ionised 

and leave the atom[38]. To regain stability, electrons from higher energy shells 

such as the L and M shells drop to fill the vacancies created. Characteristic Kα 

radiation is the result of L shell electrons dropping to the K shells, whilst Kβ 

radiation is the result of M shells dropping to the K shell energy level[86].  

Upon realising that crystalline solids could diffract X-rays, Bragg realised that 

crystals could be described in terms of layers and planes. Each layer/plane is 

treated as a semi-transparent mirror, in which some X-rays are reflected, whilst 

others, travel further into the crystal and are reflected off by a parallel layer/plane. 

Bragg reported the difference in length in terms of the incident angle and plane 

separation (d hkl) in the form of Equation 2[87]. In the equation CD and BD 

represent path lengths, θ represents the angle of incidence and d represents the 

lattice spacing.  

CB + BD = 2d hkl Sin θ                         Equation 2[88]. 
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To obtain a peak within the diffraction pattern, constructive interference must take 

place in order to cause amplification of two waves traveling in the same direction 

and at the same wavelength. Amplified waves are said to be in phase and 

therefore the path difference of two waves travelling in the same direction and of 

the same wavelength are said to be of an integer number, n. Conversely non-

integer numbers result in destructive interference and thereby Bragg’s Law is not 

satisfied and no peak is seen within the X-ray diffraction pattern[89]. Bragg was 

able to combine these factors generating Equation 3, which is commonly known 

as Bragg’s Law. In the equation λ represents wavelength, n represents the order 

of reflection, θ represents the angle of incidence and d represents the distance 

between lattice planes.  An illustrative diagram of Bragg’s Law is also shown in 

Figure 13.  

 

n λ= 2d hkl Sinθ                                  Equation 3[88]. 

 

 

 

 

  

 

 

 

 

Figure 13: Illustration of Bragg’s law[90]. 

 

θ θ 
A 

B 

C D 



31 | P a g e  
 

An X-ray diffraction pattern can provide a wealth of structural information. Firstly, 

the positions of the peaks on the pattern is determined by the unit cell size and 

symmetry of the material. Peak intensities, on the other hand, are determined by 

the position and nature of the atoms within the unit cell[91]. To calculate intensities, 

Equation 4 is used. In the equation I represents the intensity factor, Fℎ𝑘𝑙 

represents the structure factor amplitude, LP represents the combined 

polarisation and geometry factor and A represents the absorption correction 

factor. 

 

Iℎ𝑘𝑙 = |Fℎ𝑘𝑙|
2 ∙ LP ∙ A                              Equation 4[90]. 

 

 

As shown in Equation 4, peak intensities are proportional to the square of the 

structure amplitude (|Fℎ𝑘𝑙|
2). To obtain peak intensities, the structure factor must 

first be calculated using Equation 5. In the equation Fℎ𝑘𝑙 represents the structure 

factor, f (j) represents the atomic scattering factor, h k l represents the Miller 

indices, x, y, z represent the atomic positions and i represents the atom. 

 

 

F(h,k,l)= ∑ 𝑓 (𝑗) exp[2𝜋 ∙ 𝑖(ℎ𝑥(𝑗) + 𝑘𝑥(𝑗) + 𝑙𝑥(𝑗)]𝑎𝑡𝑜𝑚𝑠
𝑗=1      Equation 5[90]. 

 

The structure factor equation combines both amplitude and phase. In doing so, 

structure factors help to provide solutions and refinements of the crystal 

structures.  
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To allow for phase identification powdered samples were studied on a Bruker D2 

Phaser powder diffractometer. The powder diffractometer was equipped with a 

Lynxeye solid state detector fitted with 1 mm solar slits, 6 mm slits and a 1 mm 

knife edge. A copper radiation (λ= 1.5418 Å) source was used in conjunction with 

a nickel Kβ filter. The samples were rotated about the phi axis to improve powder 

averaging.  

3.2.0.0: Powder Analysis 

3.2.1.0: Pawley Fit Refinements  

Initial analysis took place using Pawley fit refinements using the TOPAS[92] 

software package with jEdit[93]. Synthesised materials and ion exchanged 

materials that underwent Pawley Fit refinements were placed within the 

diffractometer for 30 minutes on a scan that ranged between 5 - 80 °.  A step size 

of 0.020 ° and a scan time per step of 0.450 s. The parameters were refined were 

a Chebyshev background function and a Thompson-Cox-Hastings peak shape 

function. Unit cell parameters and zero point error were also refined.  

Pawley fit refinements were initially conducted on powdered samples in order to 

provide an indication of the best possible fit that could be achieved via Rietveld 

refinements. Unlike, Rietveld refinements, Pawley fits do not use a structural 

model to compare observed data with known literature. Instead, peak fitting is 

conducted by constraining the observed peaks at 2θ values with known unit cell 

and space group dimensions. In doing so, Pawley refinements gives an indication 

of whether the observed data fits with known literature as well as indicating if 

impurities are present within the sample[94].  
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3.2.2.0: Rietveld Refinements  

Following Pawley fitting, synthesised materials underwent further structural 

analysis by Rietveld refinements. In this study Rietveld refinements were 

conducted upon samples which were placed in Bruker D2 Phaser power 

diffractometer on a 4-hour scan ranging between 5 - 80 °. A step size of 0.020 ° 

and a scan time per step of 3.65 s was adopted. Refinements took place using 

the TOPAS[92] software package with jEdit[93]. The parameters were refined were 

a Chebyshev background function and a Thompson-Cox-Hastings peak shape 

function. In addition to the refinement of atomic positions, isotropic thermal 

parameters, lattice parameters and zero point error were also refined.  

By minimising the differences between the calculated and observed data: atomic 

coordinates/ bond lengths, bond angles and phase quantities can all be obtained 

from the refinement. To improve the fit of the calculated and observed patterns 

manual refinements upon lattice parameters, intensities and background 

functions must all take place[95, 96].  

In doing so, the quality of the refinement i.e. the fit of the calculated and observed 

patterns is assessed. Both a visual and mathematical representation is provided 

from the refinement that takes place[96]. When comparing a synthesised material 

to known literature an Rwp value (goodness of fit value) of 10 % or lower should 

be achieved. Within this study Rwp values for both vanadium-paranatisite and 

vanadium-natisite lied within the range of 5- 6 %. Therefore, the synthesised 

materials of vanadium-paranatisite and natisite were deemed to be true 

representations of the known literature structures.  
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3.3.0.0: X-Ray Fluorescence Spectroscopy (XRF) 

X-ray Fluorescence Spectroscopy (XRF) is an elemental analysis technique that 

can be used for qualitative and quantitative determination of elements within a 

sample. 

X-ray fluorescence occurs following the interactions of X-rays with matter. Upon 

interaction with the X-rays, which are also known as incident rays, inner shell 

electrons within the atoms become ionised[97]. This can only occur when the 

incident X-ray is higher than the binding energy of the electrons within the atom. 

Following the formation of vacancies in the inner shell, the atom becomes 

unstable and electrons from higher energy levels fill the vacancy. As an electron 

from a higher energy level drops to the lower energy level, secondary X-rays 

equivalent to the energy between the two shells are emitted. This emission is 

known as X-ray fluorescence. Each emission is characteristic for each element 

and can therefore act as a fingerprint in order to allow for elemental detection[98]. 

A schematic diagram is shown in Figure 14. 

A Bruker Tracer VI handheld XRF was used in this work.  Due to the handheld 

configuration, the XRF used was unable to provide quantitative results and was 

unable to detect elements that appeared below aluminium within the periodic 

table.  

 

 

 

 

 

 

Figure 14: Illustration of the production of secondary X-rays from L and M shells[97]. 
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3.4.0.0: Inductively Coupled Plasma–Mass Spectroscopy (ICP-MS)  

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), is an analytical 

technique which is able to detect most metals and certain non-metals within 

samples that have concentrations as low as part per trillion (ppt)[99].  

ICP-MS was the primary technique chosen for quantitative analysis to determine 

the percentage of titanium replacement with vanadium within the paranatisite and 

natisite frameworks as well as the ion exchange capacities of the materials.  

ICP-MS analysis took place upon an ICP-MS Thermo Scientific Electron 

Corporation, X-Series and was chosen over other techniques such as flame 

ionisation and ICP-OES. The advantage of using plasma technology, over 

techniques such as flame ionisation is due to the inert environment it takes place 

in. By conducting analysis in an inert environment formation of oxide complexes 

is prevented. As well as preventing oxide formation, the torch within the ICP-MS 

is said to have a more uniform temperature profile, which reduces the self-

absorption effects which are commonly seen with other ionisation techniques[100].  

ICP-MS analysis was chosen over ICP-OES analysis as it offers clear 

differentiation between elemental ions such as cesium, cerium, neodymium, 

strontium and cobalt. Unlike ICP-OES, which quantises elements based on the 

concentration of excited atoms and ions at a certain wavelength, ICP-MS 

quantises elements based upon their masses using mass spectroscopy[101].  

As referred to in Table 4, elemental characterisation using ICP-OES cannot 

always be relied upon due to spectral overlap of certain ions. The characteristic 

wavelengths of cesium, cerium, neodymium and strontium, as denoted in Table 

4, have the tendency to overlap with each other and therefore if competitive ion 
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exchanged experiments are to be investigated then this technique would not be 

suitable for elemental analysis.  

In saying this, ICP-MS suffers from spectroscopic interferences. Spectroscopic 

interferences are caused when atomic or molecular ions have the same mass-

to-charge ratio. Nevertheless, ICP-MS software can correct any isobaric 

interferences or interferences caused by overlapping isotopes. As a result, for 

the scope of work investigated in this study, ICP-MS analysis will provide 

adequate quantisation of the elemental ions present within solution, without fear 

of spectroscopic interferences[102].  

 

Table 4: Characteristic wavelengths of cesium, cerium, cobalt, neodymium and strontium used 

in ICP-OES analysis[103].  

 

Element Wavelength (nm) 

Cesium 455.531 
672.239 

Cerium 456.236  
 404.076 

Cobalt 228.616  
 238.892 

Neodymium 401.225 
406.109  
430.358 

Strontium 407.771 
421.552 

 

ICP-MS constitutes of two main features, an inductively coupled plasma, which 

is responsible for converting atoms into gaseous ions and a mass spectrometer, 

which is responsible for detecting and determining the concentration of specific 

ions and their isotopes. 

For elemental detection, the sample is introduced into the plasma as an aerosol 

and travels to the ICP torch which converts the elements in the aerosol to 
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gaseous ions[104]. Once ionised, the ions are directed to the mass spectrometer 

by interface cones. The mass spectrometer is where the ions are separated and 

identified due to their mass-to-charge ratio. An overview of the process of how 

the ICP-MS works is shown in Figure 15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Schematic diagram of the inductively coupled plasma-mass spectroscopy 

technique[104].  
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3.5.0.0: Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) linked to Energy Dispersive X-ray (EDX) 

analysis was used to determine particle morphology and elemental composition 

of the samples respectively. SEM uses electrons to view the surface of a sample 

and therefore, analysis must take place within a vacuum. A vacuum environment 

ensures that the electron beam can travel to the sample without any interference 

from dust or air particles[105].  

To produce a high-quality image, samples must have a conductive layer upon 

the surface. If samples are non-conductive, they must undergo pre-treatment 

before being placed within the SEM.  To improve conductivity, which minimises 

specimen charging, a thin layer of sample must be sputtered with a gold coating 

under an argon environment to enhance the conductivity of the sample[106].  

 EDX analysis is connected to the SEM and allows for elemental analysis of the 

sample. Similar to XRF spectroscopy, EDX takes place through electron 

excitation of the inner shell electrons. A high energy electron beam hits the 

sample, causing the ionisation of an inner shell electron forming vacancies. To 

regain stability an electron from a higher energy shell fills the vacancy, the energy 

difference between the shells is released in the form of characteristic X-rays. The 

areas of the peaks in the resulting spectra are proportional to the number of 

atoms of each element present[107].  

Within this study both a FEI Quanta 200 SEM with an EDX system attached and 

a SEM JCM-6000 PLUS were used to monitor changes to particle morphology 

during both the synthesis and ion exchange experiments. Approximately 0.0030g 

of synthesised or exchanged material was prepared on a stub and spluttered with 

a gold coating. 
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Chapter 4- Optimisation of Hydrothermal Synthesis 

This section describes the synthesis of vanadium-natisite. Attempts to produce 

samples with doping levels of 5 and 10 %-vanadium-natisite were carried out. 

However, during the optimisation of the synthesis conditions it was found that 

paranatisite was first formed and transformed to natisite through prolonged 

heating.  

4.0.0.0: Synthesis of Vanadium-Natisite 

All chemicals used in this study were purchased from Sigma Aldrich, Fisher and 

used without further purification. Sodium hydroxide and tetraethyl orthosilicate 

were bought from Sigma Aldrich whilst vanadium acetylacetonate and titanium 

isopropoxide were bought from Fisher. Two methods were initially tested to 

determine the most efficient way to synthesise 5 %-vanadium-natisite. Method 1 

(M1) followed the synthesis suggested by Kostov-Kytin et al[3]. whilst Method 2 

(M2) followed the synthetic method suggested by Dimitri. G. Medvedev et al[61].  

4.0.1.0: Method 1 (M1): Synthesis Following ‘Hydrothermal Synthesis and 

Successive Transformation of Paranatisite into Natisite,’ Kostov-Kytin et 

al[3]. 

5 %-vanadium-natisite was synthesised using the molar ratios of 0.15 VO2: 2.85 

TiO2: 10 SiO2: 20.00 Na2O: 370 H2O. In a typical reaction, 6.95 g of sodium 

hydroxide was added to 29 ml of deionised H2O in a Teflon beaker and stirred at 

300 rpm until the sodium hydroxide pellets fully dissolved, producing a clear 

solution. To this, 3.8 ml of titanium isopropoxide was added, causing the clear 

solution to turn a white precipitate, indicating the formation of Ti(OH)x. Upon 

stirring, 0.175 g vanadium acetylacetonate was added to the beaker forming a 

dark orange/brown coloured solution, indicating dissolved vanadium in the 
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solution. Finally, 9.6 ml of tetraethyl orthosilicate is added and the mixture was 

stirred for an hour. It was found that 5 %-vanadium-natisite was synthesised in 

an oven at 200 ⁰C for 5 days. Once cool, the resulting brown powder was washed 

with 1 litre of deionised water and left to dry.  

4.0.1.1: Method 2 (M2): Synthesis following ‘Crystallization of Sodium 

Titanium Silicate with Sitinakite Topology: Evolution from the Sodium 

Nonatitante Phase,’ Dimitri. G. Medvedev et al[61].  

To synthesise 5 and 10 %-vanadium-natisite the reagents were added in the 

following molar ratios, 0.06 VO2: 1.14 TiO2: 0.88 SiO2: 12.38 Na2O: 208 H2O and 

0.24 VO2: 1.08 TiO2: 0.88 SiO2: 12.38 Na2O: 208 H2O respectively. Typically, for 

the synthesis of 10 %-vanadium-natisite, 37.5 ml of deionised H2O was added to 

a Teflon beaker. To which 4.95 g of sodium hydroxide was added and the mixture 

was left to stir until dissolved. Next, 3.07 g of titanium isopropoxide is added and 

the mixture was further stirred. Addition of titanium isopropoxide turns the 

colourless solution white following the appearance of a white precipitate. 

Following this, 0.319 g of vanadium acetylacetonate is added turning the solution 

dark orange/brown. Finally, 2.49 g of tetraethyl orthosilicate is added and the 

solution is left to stir for an hour. After an hour has elapsed, the solution appeared 

lighter in colour and was transferred to a hydrothermal autoclave. Optimisation 

of synthetic times as referred to in Table 5 saw that when the synthesis gel was 

placed in an oven at 200 ⁰C for 12 days 10 %-vanadium-natisite was formed. 

Once cool, the brown powder was washed with 1 litre of deionised water and left 

to dry. 
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4.0.1.2: Results and Discussion of the Synthetic Methods 

Both methods were carried out via hydrothermal synthesis. Hydrothermal 

synthesis allows for experimentation to take place at elevated pressures and 

temperatures by employing the use of autoclaves. Autoclaves are stainless steel 

vessels that are lined with a Teflon beaker which is corrosion resistant against 

acidic and alkaline solutions, can withstand elevated temperatures and 

pressures. Autoclaves can therefore mimic the natural environment for crystal 

formation, making them ideal apparatus for the synthesis of paranatisite and 

natisite.  

Analysis of the experimental data collected following the M1 method suggested 

by Kostiv-Kytin et al. showed that pure phase 5 %-vanadium-natisite could be 

yielded after 5 days. Comparison to the M2 method, which is primarily used to 

synthesise sodium silicates with sitinakite typology, both pure phase 5 %-

vanadium-paranatisite and natisite could be yielded at 7 and 72 hours of heating, 

respectively. The main difference in synthetic times between the M1 and M2 

methods is believed to be attributed to the differences in molar ratios. 

Due to time restraints, the M2 method was primarily adopted as the method 

yielded crystalline 5 % and 10 %-vanadium-paranatisite and natisite in a shorter 

period of time. To avoid repetition, unless stated otherwise analysis conducted 

will focus on the synthesis following the M2 method for 10 %-vanadium-natisite. 

Work conducted by Kostov-Kytin et al. suggested that the synthesis of Ti-natisite 

(un-doped natisite) took place after heating the synthesis gel for 6 days[3]. 

However, during the synthesis of 10 %-vanadium-natisite it was seen that heating 

the synthesis gel between 4 - 11 days yielded mixed phases.  
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4.0.2.0: X-Ray Diffraction Analysis  

X-ray diffraction patterns collected from synthesised materials showed that when 

compared to known Ti-paranatisite[108] and Ti-natisite[109] diffraction patterns, both 

vanadium-paranatisite and vanadium-natisite were present within samples that 

were placed in an oven for 4 - 11 days. When overlaid with known literature[110] 

patterns it could be seen that no other impurities were within the sample and all 

peaks present were the result of either 10 %-vanadium-paranatisite or 10 %-

vanadium-natisite. Synthesis times and products formed are given in Table 5. 

The X-ray diffraction pattern collected from 7 day synthesis is shown in Figure 16 

with comparison to known literature of Ti-paranatisite[108] and Ti-natisite[109].  
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Table 5: Synthetic conditions and products after heating the 10 %-vanadium synthesis gel 

following the M2 method for 3 - 12 days. 

 

 

 

Figure 16: X-ray diffraction pattern of 10 %-vanadium doping following 7 day synthesis 

following the M2 method[110]. (Ti-paranatisite- red overlay and Ti-natisite- blue overlay). 
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Analysis conducted on the samples showed the progressive transformation of 

vanadium-paranatisite to vanadium-natisite took place over a period of 12 days. 

In the X-ray diffraction patterns, characteristic paranatisite peaks such as those 

seen at 20.81 ⁰, 20.95 ⁰, 22.75 ⁰ and 32.54 ⁰ 2θ reduced in intensity over time 

until they were no longer present within the pattern. As these peaks continually 

reduced in intensity, characteristic natisite peaks were seen to appear and 

increase in intensity. Peaks seen at 17.45 ⁰, 19.38 ⁰, 22.27 ⁰, 27.54 ⁰and 32.76 ⁰ 

2θ being prime examples.  

Transformation of paranatisite to natisite is believed to take place through 

Ostwald ripening. Ostwald’s rule states that the product formed first within the 

series is most like the parent structure and typically possesses the highest 

entropy and lowest thermodynamic stability. Through time a metastable form is 

produced allowing for the reaction to proceed to a product which possesses the 

lowest entropy and highest thermodynamic stability. Such transformation is 

believed to take place between paranatisite and natisite due to the super and 

undersaturated areas found around the titanium atom within the paranatisite 

structure. These areas allow for the influx of OH- ions causing the structure to 

break apart and act as the secondary building blocks for the natisite structure. 

Figures 17 and 18 shows the progressive transformation of vanadium-

paranatisite to vanadium-natisite over the range of 12 days with Figure 17- 3 day 

synthesis representing pure phase vanadium-paranatisite and Figures 17- 4 - 11 

day synthesis showing both phases and Figure 17- 12 day synthesis showing 

pure phase vanadium-natisite. (X-ray diffraction analysis for the successive 

transformation of 5 %-vanadium-paranatisite to 5 %-vanadium-natisite is shown 

in A1). 
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Figure 17: stack view of X-ray diffraction patterns following the successive transformation of 10 %-vanadium-paranatisite to 10 %-vanadium-natisite. 
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Figure 17: Stack view of X-ray diffraction patterns following the successive transformation of 10 %-vanadium-paranatisite to 10 %-vanadium-natisite. 
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Figure 18: Close stack view of X-ray diffraction patterns following the successive transformation of 10 %-vanadium-paranatisite to 10 %-vanadium-natisite. 
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The peaks between 32.00⁰ - 33.00⁰ 2θ, as shown in Figure 19, clearly shows 

paranatisite to natisite phase transition. Samples which contained pure phase 

vanadium-paranatisite after heating for 3 days had a single peak at 32.54 ⁰ 2θ. 

Prolonged heating brought about the transformation into vanadium-natisite. A 

shoulder appears at 32.76 ⁰ 2θ after 4 days of heating which is characteristic of 

natisite. The peak increases in intensity with time, whilst the vanadium-

paranatisite peak at 32.54 ⁰ 2θ decreases in intensity until after 12 days of heating 

where only vanadium-natisite is present as shown in Figure 19.  

In comparison to the synthetic times of Ti-paranatisite and Ti-natisite where Ti-

paranatisite forms after heating for 28 hours and Ti-natisite forms after heating 

for 6 days[3], introducing vanadium into the frameworks increases the synthetic 

times by 44 hours and 6 days respectively to Ti-paranatisite and Ti-natisite. One 

possible explanation for the increase in synthetic times could be due to vanadium 

stabilising the paranatisite phase by lowering the Gibbs Free energy value, as 

explained in Chapter 4.0.5.0. 

 

 

 

 

 

 

 

 

 

 

Figure 19: Peaks analysis at 32.00 ° - 33.00 ° 2θ following the successive transformation of 10 

%-vanadium-paranatisite to 10 %-vanadium-natisite. 
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4.0.3.0: Rietveld Refinements 

Rietveld refinements were used to monitor the phase transition of vanadium-

paranatisite to vanadium-natisite through quantitative phase analysis. Atomic 

positions were analysed in order to determine any changes taking place during 

the progressive transformation.  

Rietveld refinements upon the batch synthesised for 3 days showed the formation 

of 10 %-vanadium-paranatisite, whilst 4 - 7 days synthesis showed that 10 %-

vanadium-paranatisite was the main phase within the samples, with natisite type 

impurities. Batches that were left for a synthesis time of 8 - 11 days showed that 

vanadium-natisite had become the main phase. After synthesis time of 12 days 

pure phase vanadium-natisite was present with no type of paranatisite impurities. 

Further analysis of the Rietveld results showed that there was little variation in 

lattice parameters and atomic coordinates indicating no distortion of the 

structures during the phase transition. Quantitative phase percentages are given 

in Table 6. (Bond lengths and angles are shown in A2 and A3. Refined lattice 

parameters, refinement statistics and final Rietveld fits for 3 - 12 day synthesis 

are shown in A4- A13). 
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Table 6: Percentage composition of vanadium-paranatisite and vanadium-natisite within mix 

phased synthesised batches. 

Synthetic Time (Days) Vanadium-
Paranatisite (%) 

Vanadium- 
Natisite (%) 

3 100.00 0.00 
4 79.09 20.91 
5 76.19 23.81 
6 69.28 30.72 
7 53.39 46.61 
8 42.80 57.20 
9 39.90 60.10 
10 30.42 69.58 
11 17.94 82.06 
12 0.00 100.00 

 

4.0.4.0: SEM Analysis 

SEM analysis conducted upon all samples showed only one morphology was 

present during the phase transition even though two phases co-exist as shown 

in Figure 20. Between 3 - 6 days synthesis time the morphology showed a cross 

like particle. 7 - 8 days synthesised batches had equal distribution of both 

vanadium-paranatisite and vanadium-natisite whilst electron micrographs 

obtained from 9 - 12 days syntheses showed the spherical particles with a 

protruding cross typical of natisite[82].  
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Figure 20: SEM images of synthesised material following 3-12 day synthesis. A: 3 day synthesis- paranatisite, B: 4 day synthesis- mix phase, C: 5 day 

synthesis- mix phase, D: 6 day synthesis- mix phase, E: 7 day synthesis- mix phase, F: 8 day synthesis- mix phase, G: 9 day synthesis- mix phase H: 10 day 

synthesis- mix phase, I: 11 day synthesis- mix phase, J, K and L: 12 day synthesis-vanadium-natisite. 
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4.0.5.0: Conclusion of Mixed Phased Synthesis 

Comparison with the work conducted by Kostov-Kytin et al[3]. showed that doping 

the Ti-frameworks with vanadium altered the synthesis times required for the 

synthesis of 5 % and 10 %-vanadium-natisite.  

Introducing 5 %-vanadium into the synthesis gel, saw a decrease in synthesis 

times, producing vanadium-paranatisite after 7 hours of heating and vanadium-

natisite formed after 3 days of heating.  

Increasing the percentage of vanadium to 10 % within the synthesis gels showed 

an increase in synthesis times. Vanadium-paranatisite formed after 3 days of 

heating, whilst vanadium-natisite formed after heating the synthesis gel for 12 

days. All synthetic conditions are referred to in Table 7. 

Transformation of paranatisite to natisite occurs through Ostwald’s rule of 

successive transformation with increase length in synthetic time favouring the 

formation of natisite. It can therefore be inferred that vanadium-paranatisite is the 

phase which exhibits highest entropy and lowest thermodynamic stability, when 

compared to vanadium-natisite[3, 79, 111].  

As stated by Ehrenfest, a first order phase transition occurs as both phases i.e. 

paranatisite (phase 1) and natisite (phase 2), can co-exist. According to 

Ehrenfest’s rule, phase 1, paranatisite, has the highest Gibbs free energy value 

and lingers within a metabolic phase when the synthetic batch has exceeded the 

critical temperature, Tc. Once the Tc has surpassed and conditions are no longer 

in equilibrium, the new phase, phase 2, can begin to form. Exceeding the Tc and 

equilibrium conditions allows phase 2 to dominate the crystal batch until phase 1 

is no longer present. Phase 2, natisite, is known to be the more stable phase as 

the Gibbs free energy value is lower than that of phase 1, paranatisite[112].  
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Table 7: Synthetic conditions for vanadium-natisite following the M1 and M2 methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 


Method 

Molar Ratios of Batch Synthesis Experimental 
Conditions 

Na2O TiO2 SiO2 VO2 H2O Time 
(Hours) 

Temperature  
(°C) 

M1 5 %-Vanadium- 
Natisite  

20.00 2.85 10.00 0.15 370.00 144.00 200.00 

M2 5 %-Vanadium-
Paranatisite  

12.38 1.14 0.88 0.06 208.00 7.00 200.00 

M2 5 %-Vanadium- 
Natisite 

12.38 1.14 0.88 0.06 208.00 72.00 200.00 

M2-10 %- Vanadium- 
Natisite 

12.38 1.08 0.88 0. 24 208.00 72.00 200.00 

M2-10 %- Vanadium- 
Paranatisite 

12.38 1.08 0.88 0. 24 208.00 288.00 200.00 
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4.1.0.0: Characterisation of Vanadium-Paranatisite 

4.1.1.0: X-Ray Diffraction Analysis of Vanadium-Paranatisite 

4.1.1.1: 5 %-Vanadium-Paranatisite following the M2 Method 

X-ray diffraction analysis showed that 5 %-vanadium-paranatisite had been 

synthesised. However, on most occasions a poorly crystalline phase with a 

degree of amorphous content was produced. Upon a few attempts (around 20 

%), crystalline phases were achieved.  

Refined cell parameters were a = 9.8172 Å (2), b = 9.2017 Å (2), and c = 4.82602 

Å (7), a cell volume of 435.96 Å3 (1) and an Rwp value of 5.750 %. When 

compared to Ti-paranatisite[108], 5 %-vanadium-paranatisite showed a reduction 

in the a axis by -0.010 Å (3 d.p.) and an increase in both b and c axes by 0.035 

Å (3 d.p.) and 0.035 Å (3 d.p.) respectively, with an overall increase in volume by 

3.646 Å3 (3 d.p). Such changes to the unit cell dimensions when compared to 

known Ti-paranatisite literature could be attributed to several factors. These 

factors include the introduction of vanadium within the titanium silicate 

framework, the position of vanadium within the framework and the synthetic 

conditions used within the synthesis process such as aging of the synthesis gel, 

the rate of speed the gel was stirred at during the aging process and the molar 

ratio used to produce the synthetic gel.  

Both amorphous and crystalline 5 %-vanadium-paranatisite materials were 

overlaid with Ti-paranatisite[108] and shown in Figure 21.  
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Figure 21: Overlay of amorphous and crystalline 5 %-vanadium-paranatisite XRD patterns with known Ti-paranatisite literature[108]. (Amorphous 5 %-

vanadium-paranatisite pattern- black, crystalline 5 %-vanadium-paranatisite pattern- blue and known Ti-paranatisite literature pattern- red[108]) 
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4.1.1.2: 10 %-Vanadium-Paranatisite following the M2 Method 

In contrast, 10 %-vanadium-paranatisite was more crystalline with a high degree 

of purity, as shown in Figure 22. The refined lattice parameters were a = 9.8282 

Å (1), b = 9.2060 Å (1) and c = 4.82489 Å (7), a cell volume of 436.54 (1) Å3 and 

an Rwp of 5.408 %. Comparison of 10 %-vanadium-paranatisite with Ti-

paranatisite[108] showed an increase in all three axes with the a axis increasing 

by 0.0012 Å (3 d.p.), the b axis increasing by 0.039 Å (3 d.p.) and the c axis 

increasing by 0.026 Å (3 d.p.). The overall elongation of the cell parameters saw 

the unit cell volume increase by 4.226 Å3 (3 d.p). Such changes to the unit cell 

dimensions when compared to known Ti-paranatisite literature could be 

attributed to several factors. These factors include the introduction of vanadium 

within the titanium silicate framework, the position of vanadium within the 

framework and the synthetic conditions used within the synthesis process such 

as aging of the synthesis gel, the rate of speed the gel was stirred at during the 

aging process and the molar ratio used to produce the synthetic gel.
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Figure 22: Overlay of 10 %-vanadium-paranatisite XRD pattern with known Ti-paranatisite literature[108]. (10 %-vanadium-paranatisite pattern- black and 

known Ti-paranatisite literature pattern- red[108]).  
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4.1.1.3: Results and Discussion of the Synthetic Methods  

Following the method suggested by Dimitri. G. Medvedev et al[61]. several 

changes were made to the hydrothermal synthesis of vanadium-paranatisite in 

order to obtain a pure phase product.  

The first factor affecting the successful synthesis of vanadium-paranatisite was 

the heating time. It was noted that increasing the percentages of vanadium within 

the framework increased the length of the heating stage needed for the synthesis 

of pure paranatisite. The optimum heating time for pure phase 5 %-vanadium-

paranatisite was 7 hours whilst 10 %-vanadium-paranatisite was produced after 

72 hours.  

It was also noted that the age of the reagents used had a role to play in the 

successful synthesis of pure phases with titanium isopropoxide being the main 

factor. Using a bottle of titanium isopropoxide that had been opened for a longer 

period would favour formation of the two phases. However, unopened bottles of 

titanium isopropoxide favoured the formation of pure vanadium-paranatisite 

when using times reported in Table 7. Upon contact with moisture within the 

atmosphere titanium isopropoxide becomes hydrolysed to Ti(OH)x. The 

increased age of the bottle therefore contains an increased concentration of 

Ti(OH)x due to increased exposure to the atmosphere. It is therefore postulated 

that hydrolysis of titanium isopropoxide to Ti(OH)x prevents the formation of 

crystalline phases such as paranatisite and natisite.  

Furthermore, increasing the percentage of vanadium introduced into the 

synthesis gel increased the crystallinity of the material formed. Attempts following 

the methods given by Dimitir. G. Medvedev et al[61]. and Kostov-Kytin et al[3]. to 

synthesise Ti-paranatisite were not successful. 
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4.1.2.0: Rietveld Refinement  

Rietveld refinement of the powder diffraction data was carried out to compare 

crystal structures to known literature. Vanadium was not included in the 

refinements due to the almost identical X-ray scattering power. The ability of an 

atom to cause X-ray scattering is dependent upon the electron density 

surrounding the nucleus of the atom. As titanium and vanadium both have 22 

and 23 electrons respectively, their ability to scatter X-rays is almost identical and 

therefore both elements can be treated as Ti within the refinement.  

To avoid repetition complete structural analysis via Rietveld refinements will 

solely focus upon 10 %-vanadium-paranatisite. Refined atomic coordinates of 10 

%-vanadium-paranatisite are denoted in Table 8, selected bond distances are 

shown in Table 9 and bond angles are denoted in Table 10. Refined lattice 

parameters and refinement statistics for 10 %-vanadium-paranatisite are shown 

in Table 11 and the final Rietveld fit of 10 %-vanadium-paranatisite is shown in 

Figure 23. (Refined atomic coordinates, bond lengths. Refined lattice 

parameters, refinement statistics and final Rietveld fits for 5 %-vanadium-

paranatisite are shown in A15). 

 

Table 8: Refined atomic coordinates for 10 %-vanadium-paranatisite. 

 

Site X Y Z Occ beq 

Ti1 0 0 0 0.75 9.1 (3) 
Ti2 0.25 0.5 0.536 (1) 1 6.7 (2) 
Si1 0 0.2486 (9) 0.5 1 5.9 (2) 
Na1 0.25 0 0.417 (2) 1 8.8 (4) 
Na2 0 0.5 0 1 5.1 (3) 
Na3 0.25 0.2432 (8) 0.988 (2) 1 5.6 (2) 
O1 0.6124 (5) 0.351 (1) 0.354 (1) 1 5.9 (2) 
O2 0.4299 (5) 0.151 (1) 0.259 (1) 1 5.0 (2) 
O3 0.312 (1) 0 0.839 (3) 0.5 2.9 (6) 
O4 0.25 0.5 0.178 (2) 1 4.7 (5) 
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Table 9: Refined bond lengths of 10 %-vanadium-paranatisite. 

 

 

 

 

 

 

Table 10: Refined bond angles of 10 %-vanadium-paranatisite. 

 

Bond  Angle (⁰) Bond  Angle (⁰) Bond  Angle (⁰) 

O3-Na1-O2 121.1 (3) O1-Na3-O3 107.4 (3) Na3-O3-Na1 69.4 (2) 

O3-Na1-O2 95.8 (2) O1-Na3-O4 82.1 (2) Ti2-O4-Na3 110.6 (2) 

O3-Na1-O3 175.7 (1) O2-Na3-O2 98.0 (2) Na3-O4-Na2 83.4 (1) 

O3-Na1-O3 151.9 (4) O2-Na3-O3 69.5 (2) Na2-O4-Na2 141.8 (3) 

O2-Na1-O2 96.2 (2) O2-Na3-O3 90.8 (3) O1-Si1-O1 110.8 (4) 

O2-Na1-O2 71.6 (2) O2-Na3-O4 98.6 (2) O1-Si1-O2 106.6 (2) 

O2-Na1-O3 62.1 (2) O3-Na3-O4 165.9 (2) O2-Si1-O2 112.4 (4) 

O2-Na1-O3 80.7 (2) Si1-O2-Ti1 133.8 (2) O2-Ti1-O2 88.9 (2) 

O2-Na1-O2 142.4 (4) Si1-O2-Na3 120.3 (3) O2-Ti1-O2 180.000 

O2-Na1-O2 93.2 (2) Si1-O2-Na1 114.0 (2) O2-Ti1-O3 94.3 (2) 

O1-Na2-O1 68.9 (2) Ti1-O2-Na3 100.2 (2) O2-Ti1-O3 85.7 (2) 

O1-Na2-O1 111.1 (2) Ti1-O2-Na1 92.8 (2) O2-Ti1-O2 91.1 (2) 

O1-Na2-O1 180.000 Na3-O2-Na1 80.0 (2) O2-Ti1-O3 64.2 (3) 

O1-Na2-O4 78.4 (1) Ti1-O3-Na1 129.2 (2) O3-Ti1-O3 180.000 

O1-Na2-O4 101.6 (1) Ti1-O3-Na3 95.8 (2) O4-Ti2-O1 105.6 (1) 

O1-Na3-O1 70.1 (2) Ti1-O3-Na1 78.9 (3) O1-Ti2-O1 84.2 (2) 

O1-Na3-O2 95.8 (1) Na1-O3-Na3 103.3 (3) O1-Ti2-O1 148.8 (2) 

O1-Na3-O2 165.8 (2) Na1-O3-Na1 151.9 (4) O1-Ti2-O1 87.5 (2) 

O1-Na3-O3 91.3 (3) Na3-O3-Na3 133.8 (4)   

Bond Length (Å) Bond Length (Å) 

Na1-O2 2.379 (5) Na3-O4 2.516 (5) 
Na1-O3 2.11 (1) O1-Si1 1.607 (4) 
Na1-O3 2.86 (1) O2-Si1 1.634 (4) 
Na2-O1 2.456 (4) O2-Ti1 1.987 (4) 
Na2-O4 2.600 (2) O3-Ti1 2.029 (8) 
Na3-O1 2.344 (6) O1-Ti2 2.008 (4) 
Na3-O3 2.444 (5) O4-Ti2 1.741 (8) 
Na3-O2 2.345 (5)   
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Table 11: Refined lattice parameters and refinement statistics for 10%-vanadium-paranatisite 

 

 

 

 

  

 

 

Figure 23: Final Rietveld fit of 10 %-vanadium-paranatisite. (Synthesised pattern –blue, known literature- red[108] and difference plot (Isyn-Iknown)-grey). 

Parameter Ti-Paranatisite[108] 10 %-Vanadium-Paranatisite 

System Orthorhombic  Orthorhombic 
Space Group P m m a P m m a 

a (Å) 9.827 9.8282 (1) 
b (Å) 9.167 9.2060 (1) 
c (Å) 4.799 4.82489 (7) 
V (Å3) 432.3136 436.54 (1) 

RWP (%) - 5.408 
RP (%) - 4.094 

Rexp (%) - 2.647 
Pure Phase Paranatisite
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4.1.3.0: Structural Determination 

4.1.3.1: Titanium/ Vanadium Environments 

Titanium holds two crystallographic sites in the paranatisite structure. The first 

titanium site (Ti1) has a coordination number of six. Each octahedral environment 

has four Ti1-O2 bonds and two Ti1-O3 bonds which are of 1.987 (4) Å and 2.029 

(8) Å respectively and has an overall -2 negative charge. As shown in Figure 24. 

 

 

 

 

 

 

 

Figure 24: Ti1 octahedrally coordinated to O2 and O3 atoms. (Titanium atoms- light blue and 

oxygen atoms- red). 

 

The second titanium site (Ti2) has square pyramidal coordination, as shown in 

Figure 25. With four Ti2-O1 bonds with a length of 2.008 (4) Å and a single Ti2-

O4 bond of 1.741 (8) Å with an overall -1 charge. 

 

 

 

 

 

Figure 25: Ti2 coordinated in a square pyramidal environment to O1 and O4 atoms. (Titanium 

atoms- light blue and oxygen atoms- red). 
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4.1.3.2: Silicon Environment  

There is only one silicon site in the structure denoted as Si1 which is tetrahedrally 

coordinated to two O1 and two O2 atoms, as shown in Figure 26. The lengths of 

the bonds shown as Si1-O1 are 1.607 (4) Å and the bonds shown as Si1-O2 are 

1.634 (4) Å in length.  

 

  

 

Figure 26: Si1 coordinated in a tetrahedrally coordinated environment to O1 and O2 atoms. 

(Silicon atoms- dark blue and oxygen atoms- red). 

 

4.1.3.3: Sodium Environments 

In the paranatisite structure there are three crystallographic sites, Na1, Na2 and 

Na3. The first sodium environment (Na1), as shown in Figure 27, is coordinated 

to six different oxygen atoms, four of which have slightly longer bond distances. 

The oxygen atoms labelled O2, form four bonds at 2.379 (5) Å, whilst the oxygen 

atoms labelled O3 from two bonds. These bonds can be located at the positions 

labelled as O3 at a distance of 2.860 (1) Å (0.5 occupancy), forming a pseudo 

octahedral coordinated site. 

 

 

 

 

 
 

Figure 27: Na1 in a pseudo octahedral coordinated environment to O2 and O3 (0.5 occupancy) 

atoms. (Sodium atoms-yellow and oxygen atoms- red). 
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The second sodium site (Na2) has a coordination number of six, as shown in 

Figure 28. From Rietveld refinements, there are two Na2-O4 bonds of a distance 

of 2.600 (2) Å and four Na2-O1 bonds at 2.455 (4) Å.  It is noted that this 

environment also forms layers. The Na2 atoms form layers between the silicate 

layers. 

 

 

  

 

Figure 28: Na2 coordinated in an octahedral environment to O1 and O2 atoms. (Sodium 

atoms- yellow and oxygen atoms- red). 

The third and final sodium site (Na3) is six coordinated as shown in Figure 29 

and connects the other two sodium atoms through bridging oxygens. There are 

two Na3-O1 bonds at a distance of 2.344 (6) Å, two Na3-O2 bonds at a distance 

of 2.345 (5) Å, one Na3-O4 bond of a distance of 2.516(5) Å and one Na3-O3 

bond of 2.444 (5) Å which can be located at either position labelled as O3 (0.5 

occupancy), forming a distorted octahedron. 

 

 

 

 

Figure 29: Na3 six coordinated (distorted octahedron) to O1, O2, O3 (0.5 occupancy) and O4. 

(Sodium atoms- yellow and oxygen atoms- red). 

 



64 | P a g e  
 

4.1.3.4: 10 %-Vanadium-Paranatisite Overall Structure.  

The overall structure of the refined 10 %-vanadium-paranatisite structure is 

shown in Figure 30. 

 

Figure 30: Overall structure of 10 %-vanadium-paranatisite. A- direction 001 and B- direction 

100. (Titanium atoms- light blue, silicon atoms- dark blue, sodium atoms- yellow and oxygen 

atoms- red). (Labels were removed for clarity). 
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4.1.3.5: Results and Discussion of Paranatisite, 5 %-Vanadium-

Paranatisite and 10 %-Vanadium-Paranatisite. 

Rietveld refinements conducted upon 5 % and 10 %-vanadium-paranatisite 

materials showed that increasing the vanadium content from 5 % to 10 % caused 

a general increase in Ti-O bond distances, specifically the Ti2-O4 and Ti2-O1 

bonds of the five-coordinate site. The bonds of the six-coordinate site showed an 

elongation of the Ti1-O3 bonds and contraction of the Ti1-O2 bonds.  

It is believed that the increase in Ti-O bond lengths with regards to the five 

coordinated environments can be attributed to the slight increase of the vanadium 

ionic radius when compared to titanium. When titanium is in a +4-oxidation state 

and is five-coordinate the ionic radius is ~ 0.51 Å whilst the ionic radius of 

vanadium in this coordination is ~ 0.53 Å[113]. 

For the six-coordinate site there is a decrease in the length of the Ti-O bond. The 

literature states that the ionic radius of titanium in this coordination is ~ 0.605 Å 

whilst vanadium has an ionic radius ~ 0.58 Å[113].  

It can be postulated that the increase of Ti-O bond lengths cause contraction of 

the Na-O and O2-Si1 bond lengths allowing for similar lattice parameters 

compared to the un-doped material. All bond lengths are depicted in Table 12. 

It must be noted that the variation in both ionic radii and bond lengths is minimal 

and therefore may be the result of synthetic conditions. To verify that the 

differences in bond length are the result of vanadium doping, further research 

would have to be conducted.  

 

 



66 | P a g e  
 

Table 12: Bond lengths of Ti-paranatisite, 5 %-vanadium-paranatisite and 10 %-vanadium-

paranatisite and the difference in lengths between 5 %-vanadium-paranatisite and 10 %-

vanadium-paranatisite. 

 
 

 
Bond 

Paranatisite 
 
 

Length 
(Å)[108] 

5 %-
Vanadium- 

Paranatisite 
Length (Å) 

10 %-
Vanadium- 
Paranatisite 
Length (Å) 

Difference in 
length of bond 

between 10 % and 
5 %-Vanadium 
Paranatisite (Å) 

Na1-O2 2.3785 2.387 (6) 2.379 (5) -0.0078 
Na1-O3 2.3194 2.11 (1) 2.11 (1) -0.001 
Na1-O3 2.6091 2.88 (1) 2.86 (1) -0.021 
O3-O3 1.1203 1.26 (2) 1.18 (2) -0.08 
Na2-O1 2.4340 2.465 (5) 2.456 (4) -0.0098 
Na2-O4 2.6610 2.609 (3) 2.600 (2) -0.0094 
Na3-O1 2.3484 2.359 (7) 2.344 (6) -0.0146 
Na3-O2 2.3998 2.366 (6) 2.345 (5) -0.0214 
Na3-O3 2.4492 2.450 (7) 2.444 (5) -0.006 
Na3-O4 2.4354 2.523 (7) 2.516 (5) -0.0067 
O1-Si1 1.6273 1.614 (6) 1.607 (4) -0.0062 
O2-Si1 1.6377 1.618 (6) 1.634 (4) 0.0162 
O2-Ti1 1.9355 1.997 (6) 1.987 (4) -0.0102 
O3-Ti1 1.9921 1.978 (9) 2.029 (8) 0.0503 
O1-Ti2 1.9375 1.975 (5) 2.008 (4) 0.0337 
O4-Ti2 1.7132 1.714 (9) 1.741 (8) 0.0268 
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4.1.4.0: Vanadium-Paranatisite Morphology 

Although there has been some research into the structure of paranatisite, little 

information has been published upon the morphology of the particles. During this 

study, it was observed that changes to the percentage of vanadium had no real 

effect upon the particle morphology.  

SEM images showed that vanadium-paranatisite typically adopts a cross like 

structure. Some of the units have a larger proportion of protruding rectangular 

shapes on the surface of the structure, whilst others, have only a few. Electron 

micrographs of vanadium-paranatisite is shown in Figure 31.  

Particle size was measured from the images obtained for both 5 % and 10 %-

vanadium-paranatisite and particle sizes ranging between 15 - 23 µm in diameter 

were recorded.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

10.0 µm X 3012, 20.00 kV 

B 

X 1202, 20.00 kV 20.0 µm 

C 

X 2000, 10.00 kV 10.0 µm 
10.0 µm 

D 

X 2000, 5.00 kV 

Figure 31: SEM images of vanadium-paranatisite. A: 10 %-vanadium-

paranatisite, B. 5 %-vanadium-paranatisite, C: 5 %-vanadium-paranatisite 

and D: 10 %-vanadium-paranatisite. 
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4.1.5.0: EDX Analysis  

The EDX results showed that the atomic percentage of vanadium had doubled 

from 5 % to 10 %-vanadium doping and the percentage of titanium had 

decreased from 5 % to 10 %-vanadium materials suggesting the successful 

replacement of titanium with vanadium.  

However, the percentage of vanadium within the framework is lower than to be 

expected. One possible explanation for this is due to the overlap of titanium and 

vanadium emission lines. EDX analysis conducted was unable to differentiate the 

two elements and therefore quantitative analysis of the two elements was not 

possible. With regards to oxygen, sodium and silicon; between the two 

frameworks, the difference of atomic percentage was negligible. Average 

elemental compositions over a number of data points are recorded in Table 13. 

(EDX Spectra for 5 % and 10 %-vanadium-parantisite are shown in A16 and A17 

respectively).  

 

Table 13: Elemental composition of 5 % and 10 %-vanadium-paranatisite. 

 

 

 

 

 

Element 5 %-Vanadium-Paranatisite 
 

10 %-Vanadium-Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 

O K 38.77 (± 2.67) 55.74 (± 3.07) 39.05 (± 5.49) 54.72 (± 5.02) 
Na K  19.75 (± 3.21) 19.76 (± 3.17) 22.63 (± 6.34) 22.05 (± 5.22) 
Si K 13.55 (± 3.79) 11.10 (± 3.09) 16.01 (± 2.64) 12.80 (± 2.68) 
Ti K 27.42 (± 3.07) 13.17 (± 1.50) 20.45 (± 5.69) 9.60 (± 2.96) 
V K 0.51 (± 0.44) 00.23 (± 0.29) 1.87 (± 1.41) 0.83 (± 0.62) 
Total  100.00 100.00 100.00 100.00 
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4.1.6.0: XRF Analysis  

Analysis conducted via XRF indicated the presence of both silicon titanium and 

vanadium in the samples. Although quantitative data could not be provided by 

the model used, the intensities of the peaks could be used semi-quantitatively. A 

list of characteristic XRF emission lines for silicon, titanium and vanadium within 

10 %-vanadium-paranatisite is shown in Table 14. 

 

Table 14: List of characteristic XRF emission lines for silicon, titanium and vanadium within 10 

%-vanadium-paranatisite.  

Element Energies (keV)  Emission 

Silicon 1.73 Kα1, Kα2 
Titanium 4.51 

4.95 
Kα1, Kα2 

Kβ1 
Vanadium 4.95 

5.43 
Kα1, Kα2 

Kβ1 

 

 

Analysis of both 5 % and 10 %-vanadium-paranatisite showed the Kβ1 peak 

appearing at 5.43 keV suggesting that vanadium was present within both 

materials. It can also be seen that the peak at 5.43 keV increases in intensity 

from 5 % to 10 %-vanadium doping which may be indicative of an increase of 

vanadium within the framework. The XRF spectra of 5 % and 10 %-vanadium-

paranatisite are shown in Figure 32. 
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Figure 32: Overlay of XRF spectra for 5 and 10 %-vanadium-paranatisite.
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4.1.7.0: ICP-MS Analysis  

The filtrate was analysed and a percentage average was recorded for the 

vanadium-paranatisite frameworks. Assuming no vanadium was lost during 

sample preparation, on average, 5 %-vanadium-paranatisite contained 4.60 % (± 

53) vanadium and 10 %-vanadium-paranatisite contained on average, 7.97 % (± 

0.19) vanadium within the framework. (Vanadium percent doping levels of 

individual samples for 5 % and 10 %-vanadium-paranatisite are shown in A18). 

4.1.8.0: Conclusion of the Synthesis of Vanadium-Paranatisite  

Analysis conducted of the X-ray diffraction patterns showed that synthesis of 5 

%-vanadium-paranatisite produced a phase which was poorly crystalline whilst 

10 %-vanadium-paranatisite synthesis resulted in a more crystalline product. 10 

%-vanadium-paranatisite showed high purity with X-ray diffraction patterns being 

overlaid with known Ti-paranatisite literature patterns[108].  

Refined lattice parameters showed that both materials varied little from the known 

literature values for un-doped materials. Changes were seen within unit cell axes 

with 5 %-vanadium-paranatisite showing contraction of the a axis and elongation 

within the b and c axes whilst 10 %-vanadium-paranatisite showed elongation of 

all three axes. 

Replacement of titanium with vanadium was also confirmed with XRF and ICP-

MS analysis, as well as visible changes to the powder. Upon introducing 

vanadium, the white powder turned brown and appeared darker in colour upon 

increased doping.  
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4.2.0.0: Characterisation of Vanadium-Natisite 

4.2.1.0: X-Ray Diffraction Analysis of Vanadium-Natisite  

4.2.1.1: Phase Aa M1 5 %-Vanadium-Natisite  

X-ray diffraction showed that 5 %-vanadium-natisite had been synthesised 

following M1, as shown in Figure 33. Comparison with known pattern for Ti-

natisite[109] showed that the material produced here exhibited the same unit cell 

and space group. Refined lattice parameters obtained by Rietveld refinements 

were carried out using TOPAS [92] with  jEdit [93]. The reported parameters were 

a = b = 6.4836 Å (3) and c = 5.1015 Å (3) with an overall cell unit of 214.450 Å3 

(2) and an Rwp value of 6.399 %. Compared to known literature of Ti-natisite[109, 

110], 5 %-vanadium-natisite showed contraction by -0.016 Å (3.d.p.) in the a = b 

axes and elongation within the c axis by 0.032 Å (3.d.p.) and an overall increase 

in volume by 0.076 Å3 (3 d.p.). Such changes to the unit cell dimensions when 

compared to known Ti-paranatisite literature could be attributed to several 

factors. These factors include the introduction of vanadium within the titanium 

silicate framework, the position of vanadium within the framework and the 

synthetic conditions used within the synthesis process such as aging of the 

synthesis gel, the rate of speed the gel was stirred at during the aging process 

and the molar ratio used to produce the synthetic gel. It must be also noted that 

diffuse scattering can be seen at lower 2θ values indicating amorphicity in the 

sample that may have arisen from unreacted species such as SiO2 within the 

synthetic batch. 
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Figure 33: Overlay of phase A M1 5 %-vanadium-natisite XRD pattern with known Ti-natisite literature. (M1 5 %-vanadium-natisite pattern- black and known 

Ti-natisite literature pattern- red[109])
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4.2.1.2: Phase B M2 5 %-Vanadium-Natisite   

X-ray diffraction showed that 5 %-vanadium-natisite had been synthesised by 

M2. Overlaying the known literature pattern of natisite[109] with the synthesised 

material showed that there were no visible impurities. Therefore, it can be 

concluded that the synthesised material had the same unit cell and space group 

as Ti-natisite[109]. Refined lattice parameters obtained by Rietveld refinements 

were a = b = 6.48993 Å (7) and c = 5.09595 Å (9) and a cell volume of 214.637 

Å3 (6) were reported. In comparison to Ti-natisite[109], 5 %-vanadium-natisite 

showed contraction by -0.010 Å (3 d.p.) within the a = b axes and elongation by 

0.0260 Å (3 d.p.) within the c axis with an overall increase in cell volume by 

0.0193 Å3 (3 d.p.). with an Rwp value of 5.934 % Such changes to the unit cell 

dimensions when compared to known Ti-paranatisite literature could be 

attributed to several factors. These factors include the introduction of vanadium 

within the titanium silicate framework, the position of vanadium within the 

framework and the synthetic conditions used within the synthesis process such 

as aging of the synthesis gel, the rate of speed the gel was stirred at during the 

aging process and the molar ratio used to produce the synthetic gel. An overlay 

of 5 %-vanadium-natisite with Ti-natisite[109] is shown in Figure 34.
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Figure 34: Overlay of phase B M2 5 %-vanadium-natisite XRD pattern with known Ti-natisite literature[109]. (M2 5 %-vanadium-natisite pattern- black and 

known Ti-natisite literature pattern- red[109].
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4.2.1.3: Phase C M2 10 %-Vanadium-Natisite  

Synthesis of 10 %-vanadium-natisite was also synthesised by the M2 method 

and was analysed by comparison to Ti-natisite[109]. The material that was 

synthesised was highly crystalline with the same unit cell and space group as Ti-

natisite[109].  Refined lattice parameters obtained by Rietveld refinement were of 

a = b = 6.48729 Å(7) and  c= 5.0973 Å (1) and a unit cell volume of 214.520 Å3 

(6). In comparison to Ti-natisite, a contraction by -0.013 Å (3 d.p.) in the a = b 

parameter occurred whilst elongation by 0.027 Å (3 d.p.) occurred in the c 

parameter. Overall expansion was seen within the unit cell by 0.094 Å3 (3 d.p.) 

with an Rwp value of 5.602 %. Such changes to the unit cell dimensions when 

compared to known Ti-paranatisite literature could be attributed to several 

factors. These factors include the introduction of vanadium within the titanium 

silicate framework, the position of vanadium within the framework and the 

synthetic conditions used within the synthesis process such as aging of the 

synthesis gel, the rate of speed the gel was stirred at during the aging process 

and the molar ratio used to produce the synthetic gel. Overlay of 10 %-vanadium-

natisite with Ti-natisite[109] is shown in Figure 35.
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Figure 35: Overlay of phase C M2 10 %-vanadium-natisite XRD pattern with Ti-natisite. (M2 10 %-vanadium-natisite pattern- black and known Ti-natisite 

literature pattern- red[109]). 
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4.2.1.4: Results and Discussion of the Synthetic Methods  

The methods suggested by Kostov-Kytin et al[3]. (M1) and Dimitir. G. Medvedev 

et al[114]. (M2) yielded pure phase vanadium-natisite the majority of times the 

experimental procedure was attempted. However, it was noted that the age of 

titanium isopropoxide affected the purity and synthesis time. It was also observed 

that the increase percentage in vanadium increased the synthetic time length 

required to synthesise pure phase vanadium-natisite.  

Comparison of the the M1 and M2 methods diffraction patterns showed that the 

M1 synthesised batch produced an XRD pattern which showed diffuse scattering 

at lower 2θ values indicating slight amorphicity within the sample. The 

background of the pattern produced from the M2 method was flat indicating the 

synthesised batch contained a higher degree of crystallinity. Synthesis of 5 %-

vanadium-natisite following the M2 method also showed a reduction in synthesis 

time from 144 hours to 72 hours. Due to time restraints, synthesis of vanadium-

natisite focused upon the M2 method and so here on in, any analysis conducted, 

unless referred to, will be the result of the material obtained from the M2 method.  

All synthetic conditions are referred to in Table 15.
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Table 15: Synthetic conditions for vanadium-natisite following the M1 and M2 methods. 

 

 


Method 

Molar Ratios of Batch Synthesis Experimental 
Conditions 

Na2O TiO2 SiO2 VO2 H2O Time 
(Hours) 

Temperature  
(°C) 

Phase A M1 5 %-
Vanadium-Natisite  

20.00 2.85 10.00 0.15 370.00 144.00 200.00 

Phase B M2 5 %-
Vanadium-Natisite  

12.38 1.14 0.88 0.06 208.00 72.00 200.00 

Phase C M2-10 %- 
Vanadium- Natisite 

12.38 1.08 0.88 0. 24 208.00 288.00 200.00 
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4.2.2.0: Rietveld Refinement  

Both 5 % and 10 %-vanadium-natisite underwent Rietveld refinements to 

investigate the structures of the materials. Vanadium was not included in the 

refinements due to the almost identical X-ray scattering power. The ability of an 

atom to cause X-ray scattering is dependent upon the electron density 

surrounding the nucleus of the atom. As titanium and vanadium both have 22 

and 23 electrons respectively, their ability to scatter X-rays is almost identical and 

therefore both elements can be treated as one within the refinement.  

To avoid repetition complete structural analysis via Rietveld refinements will 

solely focus upon 10 %-vanadium-natisite. Refined atomic coordinates of 10 %-

vanadium-natisite are denoted in Table 16, selected bond distances are shown 

in Table 17 and bond angles are denoted in Table 18. Refined lattice parameters 

and refinement statistics for phase C M2 10 %-vanadium-natisite are shown in 

Table 19. Final Rietveld fit of phase C M2 10 %-vanadium-natisite is shown in 

Figure 36. (Refined atomic coordinates, bond lengths, bond angles, refined lattice 

parameters, refinement statistics and final Rietveld fits for phase Aa, phase Ab 

and phase B are shown in A19, A20 and A21 respectively to the phase).  

 

Table 16: Refined atomic coordinates for phase C M2 10 %-vanadium-natisite. 

Site X Y Z Occ beq 

Na1 0.75 0.2500 0.5000 1 4.65 (7) 
O1 1.0000 0.7906 (2) 1.1785 (2) 1 2.40 (6) 
O2 1.0000 0.5000 0.7402 (9) 1 3.5 (1) 
Si1 0.5000 0.5000 1.0000 1 2.80 (8) 
Ti1 1.0000 0.5000 1.0630 (3) 1 3.43 (5) 
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Table 17: Refined bond lengths for phase C M2 10 %-vanadium-natisite. 

 

 

 

 

 

 

Table 18: Refined bond angles for phase C M2 10 %-vanadium-natisite. 

 

 

 

 

 

 

Bond Length (Å) 

Na1-O1 2.32 (1) 
Na1-O2 2.60 (2) 
O1-Si1 1.63 (2) 
Ti1-O1 1.97 (2) 
Ti1-O2 1.65 (5) 

Bond Angle (°) Bond Angle (°) 

O1-Na1-O1 70.11 (7) Ti1-O2-Na1 118.07 (5) 
O1-Na1-O1 180.00 Na1-O2-Na1 77.21 (9) 

O1-Na1-O1 109.89 (7) Na1-O2-Na1 123.86 (2) 

O1-Na1-O2 91.88 (8) O1-Si1-O1 112.39 (1) 

O1-Na1-O2 88.12 (8) O1-Si1-O1 108.03 (5) 

Si1-O1-Ti1 128.9 (1) O2-Ti1-O1 107.34 (6) 

Si1-O1-Na1 119.16 (5) O1-Ti1-O1 145.33 (1) 

Ti1-O1-Na1 95.86 (6) O1-Ti1-O1 84.91 (4) 

Na1-O1-Na1 88.66 (8)   
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Table 19: Refined lattice parameters and refinement statistics for phase C M2 10 %-vanadium-natisite 

 

 

 

 

 

 

 

 

Figure 36: Final Rietveld fit of phase C M2 10 %-vanadium-natisite. (Synthesised pattern –blue, known literature- red and difference plot (Isyn-Iknown)-grey). 

Parameter Ti-Natisite[109] 10 %-Vanadium-Natisite 

System Tetragonal Tetragonal 
Space Group P 4/n m m  P 4 / n m m 

a (Å) 6.50000 6.48747 (7) 
b (Å) 6.50000 6.48747 (7) 
c (Å) 5.07000 5.0975 (1) 
V (Å3) 214.444 214.538 (6) 

Rwp (%) - 5.605 
Rp (%) - 4.534 

Rexp (%) - 2.697 

Pure Phase Natisite 12 Day Synthesis
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4.2.3.0: Structural Determination  

4.2.3.1: Titanium/ Vanadium Environment 

Within the natisite structure, titanium holds one crystallographic site in which the 

titanium atoms have square pyramidal coordination. Four bonds are coordinated 

to O1, with a Ti1-O1 distance of 1.975 (2) Å, whilst the remaining bond is 

connected to O2 forming a Ti1-O2 bond of 1.647 (5) Å. The overall charge of this 

environment is -1. The titanium environment is depicted in Figure 37. 

 

 

 

  

 

Figure 37: Ti1 coordinated in a square pyramidal environment with O1 and O2 atoms. 

(Titanium atoms- light blue and oxygen atoms- red). 

 

4.2.3.2: Silicon Environment 

Within the layered structure there is one silicon site. Within the framework silicon 

forms four Si1-O1 bonds with each bond being of equal distance, 1.635 (2) Å. 

The coordination of this site is shown in Figure 38. 

 

 

 

 

 

Figure 38: Si1 coordinated in a tetrahedral environment to O1 atoms. (Silicon atoms- dark blue 

and oxygen atoms- red). 
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4.2.3.3: Sodium Environment 

Within the natisite structure sodium has only one crystallographic site, denoted 

as Na1. In this environment, sodium is octahedrally coordinated forming four 

Na1-O2 bonds and two Na1-O1 bonds. Na1-O2 bonds were at a distance of 

2.600 (2) Å whilst Na1-O1 bonds were 2.321 (1) Å in length. The sodium 

environment is depicted in Figure 39. 

 

 

 

 

 
 

Figure 39: Na1 coordinated in an octahedral environment with O1 and O2 atoms. (Sodium 

atoms- yellow and oxygen atoms- red). 

 

4.2.3.4: Overall Structure of 10 %-Vanadium-Natisite 

The resulting structure of 10 %-vanadium-natisite is shown in Figure 40.  

 

 

 

 

 

 

 

 

Figure 40: Overall structure of 10 %-vanadium-natisite. A- direction 001 and B- direction 010. 

(Titanium atoms- light blue, silicon atoms- dark blue, sodium atoms- yellow and oxygen atoms- 

red). (Labels removed for clarity).  

 

A B 
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4.2.4.0: Vanadium-Natisite Morphology 

As previously reported natisite can adopt different morphologies as a result of 

varying synthetic conditions, such as altering the synthesis gel composition.  

Three different morphologies for vanadium-natisite were reported in this work; 

both pillow shaped particle morphology, phase Aa and phase Ab and, coin 

shaped particle morphology[82], phase C, have been previously seen. One other 

morphology, phase B, was observed and is believed to be previously unseen. 

Changes to particle morphology is believed to be the result of changes to the gel 

composition during the experimental procedure.  

SEM images of 5 % and 10 %-vanadium-natisite, synthesised using the molar 

ratios of 0.15 VO2: 2.85 TiO2: 10 SiO2: 12.38 Na2O: 370H2O and 0.24 VO2: 1.08 

TiO2: 0.88 SiO2:12.38 Na2O: 208.00 H2O respectively, produced a particle 

morphology commonly known as pillow shaped (phase Aa and phase Ab). Phase 

Aa (the M1 method, 5 %-vanadium-natisite) showed particle diameters of around 

6 µm whilst phase Ab (the M2 method, 10 %-vanadium-natisite) showed an 

increased size in particle morphology of ~ 15 µm diameter. This phase is shown 

within Figure 41- A, B and C, D respectively.  

The second particle morphology observed, was a sphere with a protruding cross 

on the surface (phase B). This particle morphology resulted from a synthesis gel 

with the molar ratio of 0.06 VO2: 1.14 TiO2: 0.88 SiO2: 12.38 Na2O: 208 H2O and 

had an diameter of 18 µm. This morphology was also seen when the doping level 

was increased to 10 %-vanadium with negligible effect to particle size. This phase 

is shown in Figure 41- E and F. 
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The third particle morphology, denoted as phase C, was synthesised with the 

molar ratio, 0.24 VO2: 1.08 TiO2: 0.88 SiO2: 12.38 Na2O: 208.00 H2O. Electron 

micrographs taken of the powdered sample showed a disc like structure with a 

hole in the shape of a cross in the middle of the disc. This is typical of the coined 

shape morphology. Phase C had a diameter of 15 µm and was often present 

alongside the second morphology. This phase is shown in Figure 41- G and H.  
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Figure 41: SEM images of vanadium-natisite. A and B-phase Aa, C and D- phase Ab, E and 

F -phase B and G and H-phase C. 
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4.2.5.0: EDX Analysis 

EDX analysis was used to determine the elemental composition of the 

synthesised vanadium-natisite samples. The results showed that the atomic 

percentages for oxygen, sodium and silicon remained constant regardless of the 

morphology observed. This is to be expected as the molar ratios of these 

elements remained unchanged during each synthesis. With regards to vanadium, 

atomic percentages were lower than what was to be expected. The high degree 

of overlap between titanium and vanadium emission lines and the inability to 

distinguish between these two elements could be the possible explanation of the 

relatively low vanadium content recorded from EDX analysis. 

Although there is a high degree of overlap between the titanium and vanadium 

emission lines, it is believed that the atomic percentage increase of vanadium 

from 5 % to 10 %-vanadium materials is indicative of the increased doping within 

the natisite framework with all average data points for EDX analysis being 

referred to in Table 20. (EDX Spectra for phase Aa, phase Ab, phase B and 

phase C are shown in A23, A24, A25 and A26 respectively). 
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Table 20: Elemental composition of phase Aa, Ab, B and C. 

 

 
 Phase Aa M1 5 %-

Vanadium-Natisite 
Phase Ab M2 10 %-
Vanadium-Natisite 

Phase B M2  
5 % -Vanadium-

Natisite 

Phase C M2  
10 %- 

Vanadium-Natisite 
Element Weight  

(%) 
Atomic  

(%) 
Weight  

(%) 
Atomic 

(%) 
Weight 

(%) 
Atomic  

(%) 
Weight 

(%) 
Atomic 

(%) 

O K 39.80  
(± 17.20) 

57.40  
(± 28.48) 

38.36  
(± 02.27) 

54.20  
(± 02.55) 

45.68  
(± 12.60) 

64.97  
(± 16.63) 

37.66  
(± 11.01) 

53.24  
(± 00.45) 

Na K 14.27  
(± 05.25) 

14.97 
 (± 02.81) 

24.01  
(± 01.99) 

23.61  
(± 01.74) 

09.56 
(± 00.12) 

09.17 
 (± 00.14) 

24.79  
(± 0.22) 

24.39  
(± 0.12) 

Si K 14.27  
(± 01.34) 

11.91  
(± 01.03) 

13.45  
(± 03.22) 

10.82  
(± 02.81) 

12.42  
(± 01.97) 

10.26  
(± 02.49) 

14.01 
 (± 00.14) 

11.30  
(± 03.10) 

Ti K 30.62 
(± 10.75) 

15.23  
(± 08.30) 

22.65  
(± 01.73) 

10.69  
(± 00.95) 

31.31  
(± 25.74) 

15.25  
(± 04.70) 

22.03  
(± 00.23) 

10.41  
(± 00.25) 

V K 100.0  
(± 00.41) 

0.49  
(± 00.31) 

01.53  
(± 00.93) 

00.68  
(± 00.40) 

00.74  
(± 00.24) 

00.34 
 (± 00.17) 

1.51  
(± 00.89) 

0.67  
(± 00.51) 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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4.2.6.0: XRF Analysis 

XRF analysis was used in conjunction with EDX to confirm the presence of 

titanium, silicon and vanadium within each sample. Within the spectra, shown in 

Figure 42, it can be seen that all three elements of interest are present in each 

sample at the characteristic emission energies as referred to in Table 21. 

 

Table 21: List of characteristic XRF emission lines for silicon, titanium and vanadium within 

vanadium-natisite. 

Element Energy (keV)  Emission 

Silicon 1.73 Kα1, Kα2 
Titanium 4.44 

4.88 
Kα1, Kα2 

Kβ1 
Vanadium 4.88 

5.43 
Kα1, Kα2 

Kβ1 

 

 

Although quantitative analysis cannot be carried out using the portable XRF 

used, comparison of the relative peaks intensities can give an indication of an 

increase in the amount of an element. The characteristic vanadium emission line, 

Kβ1, which occurs at 5.34 keV, shows an increase in intensity from 5 % to 10 %-

vanadium samples. Due to no other overlap of the emission line it can be inferred 

that the vanadium percentage has increased.  
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Figure 42: XRF spectra for 5 and 10 %-vanadium-natisite phases Aa, phase Ab, phase B and phase C.
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4.2.7.0: ICP-MS Analysis  

Due to the limitations of both EDX and XRF, ICP-MS analysis was conducted to 

provide quantitative analysis.  

First attempts to obtain a solution suitable for ICP-MS analysis were to degrade 

the solid material in acidic conditions (1 M of nitric acid and the sample was left 

to stand for several weeks) to provide a solution of metal ions, however the 

sample did not dissolve completely. 

Instead, analysis took place using the filtrate from the synthesis product and a 

percentage average was taken. To determine the percentage of successful 

doping, it was assumed that no vanadium was lost through transfer of material. 

As a result, it was determined that, on average, for samples labelled 5 %-

vanadium-natisite, 4.61 % (± 0.71) of titanium had been replaced with vanadium 

whilst samples labelled as 10 %-vanadium-natisite, 7.97 % (± 0.38) of titanium 

had been replaced with vanadium.  (Vanadium percent doping levels of individual 

samples for 5 and 10 %-vanadium-natisite are shown in A27). 

4.2.8.0: Conclusion of the Synthesis of Vanadium-Natisite 

X-ray diffraction analysis showed that vanadium-natisite could be synthesised by 

both the M1 and M2 methods with XRD patterns showing high purity and 

crystallinity of all materials.  

Refined lattice parameters obtained from Rietveld refinements showed that the 

presence of vanadium within the Ti-natsitie framework caused contraction in the 

a and b axes with elongation along the c axis by varying amounts. Phase Aa (5 

%-vanadium-natisite) showed the largest contraction and elongation in the a = b 

and c axis when compared to all other phases, whilst phase Ab (10 %-vanadium-
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natisite) showed the shortest contraction in the a = b axes and elongation in the 

c axis. All lattice refinements are shown in Table 22.  

Previous work by S. Fedrov conducted comparative analysis upon pillow (phase 

A) and coin (phase C) morphologies[82]. It was reported that when compared to 

pillow morphology, coin morphology showed longer a = b axes and a shorter c 

axis. The c axis within pillow morphology is believed to be longer in order to 

compensate for the shorter a = b axis. This compensation is attributed to the 

increase in length of the axial (terminal) Ti1-O2 bond[82].  

 However, analysis conducted on the samples produced in this work, namely 

phase Ab (10 %-vanadium-natisite, pillow morphology) and phase C (10 %-

vanadium-natisite, coin morphology) showed that phase C exhibited shorter a = 

b axes and a larger c axis when compared to Ab. 

Further to this Rietveld refinements conducted upon all phases did not cohere to 

the reported findings of S.Fedrov[82]. Instead phase Aa (5 %-vanadium-natisite, 

pillow morphology) and phase Ab (10 %-vanadium-natisite, pillow morphology) 

had shorter Ti1-O2 bonds compared to all the other phases. Comparison of all 

phases also showed that phase B (5 %-vanadium-natisite) exhibited an increase 

length of the Ti1-O2 bond with all bond lengths being depicted in Table 23. 

To verify these results further analysis would need to be conducted. Synthesis of 

single crystals of vanadium-paranatisite and vanadium-natisite could be 

conducted to act as a better comparison with the results seen with S.Fedrov. 

Further analysis upon the powdered framework samples could also be 

conducted. Firstly, more in-depth studies of the effect of synthetic conditions such 

as molar composition and the pH of solution could be undertaken to understand 

the true effect these conditions have upon particle morphology.  
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As well as this in depth structural analysis could be conducted using Extended 

X-ray Absorption Fine Structure Spectroscopy (EXAFS). EXAFS would provide 

greater information upon interatomic distances and near neighbour coordination 

numbers. This would allow for further indication of successful vanadium doping 

as well as the effect of vanadium upon the unit cell parameters.  

Although the full extent of the effect of vanadium doping is not known, analysis 

from EDX showed that there is slight variation in the elemental composition 

between the two phases indicating that changes within the lattice parameters are 

the result of the variation of structural changes. As mentioned previously, due to 

time restraints and the ease of synthesis, all ion exchange material used was 

synthesised based upon the M2 method.  
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Table 22: Refined lattice parameters for phase Aa, phase Ab, phase B and phase C. 

 

 

 

 

 

 

 

Table 23: Refined bond lengths for phase Aa, phase Ab, phase B and phase C. 

 

 

Compound Phase Aa 
M1-5 %-Vanadium-

Natisite 

Phase Ab 
M2-10 %-Vanadium-

Natisite 

Phase B 
M2-5 %-Vanadium-

Natisite 

Phase C 
M2-10 %-Vanadium-

Natisite 

Molar Ratio  0.15 VO2-2.85 TiO2-
10.00 SiO2-20.00 
Na2O-370.00 H2O 

0.24 VO2-1.08 TiO2-
0.88 SiO2-12.38 

Na2O-208.00 H2O 

0.06 VO2-1.14 TiO2-
0.88 SiO2-12.38 
Na2O -208 H2O 

0.24 VO2-1.08 TiO2-
0.88 SiO2-12.38 

Na2O-208.00 H2O 
Crystal System Tetragonal Tetragonal Tetragonal Tetragonal 
Space Group P 4/ n m m P 4/ n m m P 4/ n m m P 4/ n m m 

Unit Cell 
Dimensions (Å) 

a= b = 6.4836(3) 
and c = 5.1015 (3) 

a= b = 6.4942 (4) 
c = 5.0888 (5) 

a = b = 6.48993 (7) 
c = 5.09595 (9) 

a = b = 6.48729 (7) 
c = 5.0973 (1) 

Volume (Å3) 214.450 (2) 214.62 (3) 214.637 (6) 214.538 (6) 

Compound Phase Aa 
M1-5 %-Vanadium-

Natisite 

Phase Ab 
M2-10 %-Vanadium-

Natisite 

Phase B 
M2-5 %-Vanadium-

Natisite 

Phase C 
M2-10 %-Vanadium-

Natisite 

Na1-O1  2.354 (3) 2.355 (4) 2.295 (1) 2.321 (1) 
Na1-O2 2.614 (9) 2.60 (1) 2.562 (2) 2.600 (2) 
O1-Si1 1.644 (5) 1.601 (5) 1.635 (2) 1.635 (2) 
Ti1-O1 1.92 (6) 1.987 (5) 2.0181(2) 1.975 (2) 
Ti1-O2 1.60(2) 1.60 (2) 1.722 (5) 1.646 (5) 
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Chapter 5- Ion Exchange Analysis of Vanadium-Paranatisite 

and Vanadium-Natisite 

5.0.0.0: Experimental Procedures 

All ion exchanges that took place during this study were based upon the batch 

operation method and the ions of interest were in nitrate form. For each 

experiment, a 0.05 M, pH 7 solution of the ion of interest was made up in 250 ml 

of deionised water in a conical flask. Once the desired ion had fully dissolved, 0.5 

g of the silicate material was added and stirred at 300 rpm for 24 hours. The 

conical flask was sealed with parafilm and left to stir at room temperature within 

a fume cupboard. 

Following ion-exchange experiments 50 ml of the ion exchange solution was 

centrifuged at 1000 rpm for 2 minutes. Once 2 minutes had elapsed the filtrate 

was poured into a new conical flask, leaving the powder within the centrifuge 

tube. More ion exchange solution was then added, and the method repeated. 

This process continued until the powder was washed with 1 litre of deionised 

water. The powder sample was ground and the particle size within the powder 

were as those reported in Chapter 4. The powder was retained for XRD, SEM, 

EDX and XRF analysis whilst the filtrate was retained for ICP-MS analysis.  

Upon drying both vanadium-paranatisite and natisite materials following cobalt 

ion exchange experiments, an uncharacteristic green powder was seen. As a 

result, cobalt chloride species were also investigated with 5 %-vanadium-natisite. 

Again, a similar green powder was recorded with comparable ion exchange 

properties, morphology and changes to unit cell parameters. (Pawley 

refinements, ion exchange percentages and morphologies of 5 %-vanadium-

natisite-cobalt ion exchange are shown in A28). 



97 | P a g e  
 

 

5.1.0.0: Vanadium-Paranatisite Ion Exchange Analysis 

5.1.1.0: ICP-MS Analysis  

To determine the percentage uptake of each specific ion ICP-MS was conducted 

upon the filtrate collected post ion exchange.  

The results shown in Table 24 indicate that when compared to 10 %-vanadium-

paranatisite, 5 %-vanadium-paranatisite had a higher affinity to cerium, cobalt, 

strontium and neodymium whilst 10 %-vanadium-paranatisite had a slightly 

higher affinity towards cesium, by 1 %. 

Both materials showed the same general trends with regards to the affinity 

towards particular ions. The trend seen for 5 %-vanadium-paranatisite was 

determined to be Ce<Nd<Cs<Co<Sr with strontium being the highest exchanged 

and cerium being the lowest. For 10 %-vanadium-paranatisite, the trend as 

reported in Table 24 is Ce<Nd<Cs<Co<Sr. Each ion exchange experiment was 

conducted separately and analysed as a cohort of samples.  

Ion exchange materials commonly used within the nuclear industry such as 

Clinoptilolite and IONSIV materials show to have the highest affinities towards 

cesium and strontium removal. Similarly, to these materials both vanadium-

paranatisite and natisite showed to have higher affinities towards strontium and 

cesium. However, unlike common industrial materials, both vanadium-

paranatisite and natisite showed to have the highest affinity towards cobalt. To 

date, there is no ion exchange material which is used for the removal of 60Co, a 

common radioactive containment following neutron absorption to the graphite 

moderator. Initial experiments may indicate that vanadium-paranatisite and 
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natisite could be primarily used for the removal of 60Co, however, further tests 

such as competitive ion exchanges would need to be investigated.  

 

Table 24: Ion percentage uptake from 24 hour ion exchange in pH 7 solution for vanadium-

paranatisite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 %-Vanadium-Paranatisite 
Ion Percentage Exchanged 

into Framework (%) 

10 %-Vanadium-Paranatisite 
Ion Percentage Exchanged 

into Framework (%) 

Cesium 
 

24 (± 0.23) 25 (± 0.42) 

Cerium 20 (± 0.23) 18 (± 0.29) 

Cobalt 
 

29 (± 0.82) 26 (± 0.61) 

Strontium 
 

32 (± 0.62) 28 (± 0.52) 

Neodymium 
 

23 (± 0.41) 22 (± 0.79) 



99 | P a g e  
 

5.1.2.0: X-Ray Diffraction Analysis  

Analysis of 5 %-vanadium-paranatisite diffraction patterns following all ion 

exchanges saw that cobalt exchanged and cesium exchanged materials retained 

crystallinity with minimal changes in the patterns as shown in Figure 43. There 

was little variation in the position of the peaks and no new peaks were observed, 

suggesting minimal changes had occurred to space group and unit cell size.  

Only slight variations in peak intensities took place with regards to the cobalt and 

cesium ion exchanged materials. The most prominent changes to peak 

intensities occurred at lower 2θ values in the range of 18.130 ° - 32.571 °. Of the 

two exchanges, where the solid remained crystalline, cesium, showed greater 

variation from un-exchanged samples with peak positions at 20.570 °, 20.878 

°and 22.786 ° 2θ showing changes of 6.1 %, 3.5 % and 4.2 peak positions at 

20.570 °, 20.878 °and 22.786 ° 2θ showing changes of 6.1 %, 3.5 % and 4.2 %. 

Increased variation following cesium exchange could be indicative of the 

increased ionic radius of cesium when compared to the other ions investigated. 

The greater ionic size of cesium is believed to have caused greater structural 

changes to the atomic positions within the framework. As the framework tries to 

accommodate the cesium ions in place of the smaller sodium ions, the vanadium-

titanium silicate framework distorts to a greater extent when compared to the 

exchange of sodium ions with the other smaller ions being investigated. As a 

result, increased variation of peak intensities of the cesium exchanged material 

were noted.  

Peak by peak analysis of cobalt and cesium ion exchange materials can be seen 

in Table 25 and a stacked view of 5 %-vanadium-paranatisite, cobalt and cesium 

ion exchanged material shown in Figure 43.  
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Analysis of 10 %-vanadium-paranatisite following ion exchange experiments 

showed that crystallinity was retained during ion exchange experiments involving 

strontium, cobalt and cesium. Peak by Peak analysis, as shown in Table 26, 

shows that peak positioning and peak intensities were as to be expected with 

minimal changes. The greatest change in peak intensities were seen at lower 2θ 

values following cobalt ion exchange. Increased variation to intensity values may 

be indicative of the increased exchange to this particular ion.  Peaks positioned 

at 18.485 °, 20.570 °, 20.878 ° and 22.786 ° 2θ saw peak intensities vary by 3.6 

%, 4.6 %, 7.3 % and 1.4 %. Peak analysis is shown in Table 26 and a stack view 

of 10 %-vanadium-paranatisite, strontium, cobalt and cesium ion exchanged 

materials can be seen in Figure 44.  
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Table 25: Peak analysis of 5 %-vanadium-paranatisite-cesium and cobalt ion 

exchanged material. 

 

hkl 2 Theta 
(Degrees) 

5 %-Vanadium-
Paranatisite (%) 

Cobalt 
(%) 

Cesium 
(%) 

200 18.130 3.5 3.8 - 

001 18.485 11.9 10.6 13.2 
210/101 20.570 22.4 20.4 28.5 

011 20.878 23.7 22.0 30.2 
111 22.786 7.9 6.7 12.1 
220 26.624 13.1 13.0 14.2 
021 26.859 2.7 3.7 - 
211 27.737 1.4 2.2 - 
221 32.571 100.0 100.0 100.0 

230/311/031 34.588 6.9 8.1 5.8 
131 35.961 6.2 7.4 9.8 
400 36.647 8.6 6.9 9.6 
002 37.376 3.6 4.6 - 
012 38.642 1.8 1.6 - 
231 39.243 5.3 4.4 9.6 
112 39.807 7.2 8.4 8.5 

122/240/041 43.532 1.1 1.5 - 
141 44.701 4.3 5.3 7.5 
241 47.490 1.1 0.9 - 
501 50.193 0.7 1.2 - 

514/431 51.313 0.7 - - 
232/341 51.776 1.0 1.4 - 

250/402/051 53.317 3.7 3.9 - 
440 54.732 5.6 6.1 7.9 
042 55.271 4.2 4.2 5.5 
600 56.145 0.9 1.6 - 

441/103/013 58.262 0.5 - - 
242 59.248 0.3 - - 

531/113 60.447 0.2 - - 
203 60.448 0.3 - - 

260/621/052 63.336 2.4 2.1 - 
225/152/552 64.342 2.3 2.3 3.5 

261 68.104 1.3 0.7 - 
322/442 68.164 0.7 0.9 - 
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Figure 43: Stack view of XRD patterns of 5 %-vanadium-paranatisite, cobalt and cesium ion exchanged materials.
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Table 26: Peak analysis of 10 %-vanadium-paranatisite-cesium, cobalt and strontium ion 

exchanged material. 

hkl 2 Theta 
(Degrees) 

10 %-Vanadium-
Paranatisite (%) 

Strontium 
(%) 

Cobalt 
(%) 

Cesium 
(%) 

200 18.130 2.5 2.7 4.7 2.4 
001 18.485 7.6 7.3 11.2 6.4 

210/101 20.570 17.6 17.7 22.3 15.8 
011 20.878 19.0 19.6 26.3 19.6 
111 22.786 6.7 6.0 8.1 6.3 
220 26.624 10.1 10.5 12.4 10.3 
021 26.859 2.5 2.7 3.4 2.5 
211 27.737 1.0 0.8 2.5 1.1 
221 32.571 100.0 100.0 100.0 100.0 

230/311/031 34.588 7.0 6.9 7.5 7.5 
131 35.961 6.7 7.5 5.5  
400 36.647 8.7 9.3 7.2 9.3 
002 37.376 3.6 3.6 4.0 4.1 
012 38.642 1.7 1.7 1.0 1.9 
231 39.243 6.1 7.4 5.3 6.7 
112 39.807 8.2 8.4 7.6 10.5 

122/240/041 43.532 1.0 1.0  0.9 
141 44.701 5.2 5.5 4.8 6.2 
241 47.490 1.3 1.3 1.2 1.4 
501 50.193 0.9 0.8 - 1.2 

514/431 51.313 1.0 1.2 - 1.2 
232/341 51.776 1.1 1.4 1.0 1.4 

250/402/051 53.317 5.0 5.2 1.2 6.1 
440 54.732 6.9 7.5 3.7 8.5 
042 55.271 4.7 5.7 5.6 6.6 
600 56.145 1.5 1.7 3.7 1.8 

441/103/013 58.262 0.5 0.5 1.0 0.9 
242 59.248 0.4 - - - 

531/113 60.447 0.4 - - - 
203 60.448 0.4 0.6 - 0.7 

260/621/052 63.336 3.1 3.2 2.2 2.9 
225/152/552 64.342 2.8 3.1 2.1 3.6 

261 68.104 1.8 1.6 1.0 1.8 
322/442 68.164 11.1 - - 1.7 
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Figure 44: Stack view of XRD patterns of 10 %-vanadium-paranatisite, strontium, cobalt and cesium ion exchanged materials.
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5 %-vanadium-paranatisite diffraction analysis showed that exchanges involving 

strontium, neodymium and cerium caused peak broadening and a reduction in 

peak intensities indicating a loss of long range order. Diffraction pattern analysis 

conducted upon cerium and neodymium showed the presence of the same three 

characteristic paranatisite peaks situated at 27.737 °, 32.571 ° and 47.490 ° 2θ. 

Strontium analysis however, showed the presence of four characteristic 

paranatisite peaks at 25.315 °, 26.624 °, 32.571 ° and 36.467 ° 2θ. These 

changes to peak intensities and positioning is indicative that ion exchange 

experiments had caused structural damage to the framework or that new phases 

were forming. A stack view of X-ray diffraction patterns of 5 %-vanadium-

paranatisite, strontium, cerium and neodymium ion exchanged material is shown 

within Figure 45. 

Similarly, to 5 %-vanadium-paranatisite, 10 %-vanadium-paranatisite showed 

reduced crystallinity with respects to cerium and neodymium exchange but less 

structural damage when compared to 5 %-vanadium-paranatisite as shown in 

Figure 46. It can be seen within the analysis of neodymium that characteristic 

paranatisite peaks at lower 2θ values are present but at low intensities. After 

around 50.000 ° 2θ, crystallinity and peak positioning is lost. With regards to 

cerium, three main peaks were present at 20.731 °, 21.014 ° and 32.645 ° 2θ, 

these peaks have the highest intensities within the un-exchanged materials. 

Again, it is postulated that such changes are the result of damage to the 

framework.  

Previous work conducted by R. Hall[115] showed that cerium dioxide and 

neodymium hydroxide formed during the ion exchange procedure. One possible 

reason for increased structural changes to the vanadium-titanium silicate 
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framework may be due to the fact both cerium dioxide and neodymium hydroxide 

are forming between vanadium-titanium silicate layers. Although the mechanism 

is not fully understood, when looking at Pourbaix diagrams both cerium 

dioxide[116], and neodymium hydroxide[117] are species that typically form within 

solution at pH 7. The increased size of the cerium dioxide and neodymium 

hydroxide species within the framework may be forcing the layers further apart 

and reducing the long range order in the materials resulting in increased variation 

in the unit cell parameters noted.  
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Figure 45: Stack view of XRD patterns of 5 %-vanadium-paranatisite, strontium, cerium and neodymium ion exchanged materials. 
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Figure 46: Stack view of XRD patterns of 10 %-vanadium-paranatisite, cerium and neodymium ion exchanged materials. 
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5.1.3.0: Lattice Refinements Analysis via Pawley Refinements 

5.1.3.1: 5 %-Vanadium-Paranatisite  

Unit cell parameters following ion exchanges were determined by using 

TOPAS[92] with jEdit[93].  

All ion exchanges showed an increase in at least one of the lattice parameters. 

Strontium, cobalt and cerium showed elongation in only the a axis and 

contraction in the b and c axes. Cesium showed expansion in the a and b axes 

and contraction in the c axis, whilst neodymium showed expansion within the a 

and c axes but contraction in the b axis. Changes to lattice parameters may be 

indicative of the size of the exchanged ion. Cobalt and cerium possess the 

smallest ionic radii and so it was seen that only the a axes expanded, whilst 

cesium possesses the largest ionic radius and in turn it was observed that two of 

the axes had expanded upon ion exchange experiments. As the ionic radius 

increases it is believed that the vanadium-titanium silicate framework distorts to 

accommodate the larger sized ions. As a result, greater variations are shown in 

the axes of the unit cell parameters. It must be remembered that strontium, 

cerium and neodymium produced amorphous XRD patterns and so variation to 

the axes may be the result of the lack of crystallinity exhibited. 

Both cobalt and cesium lattice refinements showed smaller variations from the 

original un-exchanged framework. ICP-MS analysis indicated that these two ions 

possessed some of the greatest exchange capacities with X-ray diffraction 

analysis showing minimal changes to crystallinity. It is therefore postulated that 

the frameworks were able to withstand the exchange of cobalt/cesium for sodium 

ions within the vanadium-paranatisite structure. All lattice parameters are shown 

in Table 27. (Refined lattice parameters, Rietveld statistics and final Pawley fits 
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for 5 %-vanadium-paranatisite-cesium, cerium, cobalt, strontium and neodymium 

ion exchanged material is shown in A29, A30, A31, A32 and A33). 

 

Table 27: Refined lattice parameters for 5 %-vanadium-paranatisite, cesium, cerium, cobalt, 

neodymium and strontium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a (Å)  b (Å) c (Å) RWP (%) 

5 %-
Vanadium-

Paranatisite 

9.8172 (2) 9.2017 (2) 4.8260 (1) 5.750 

Cesium 
 

9.820 (2) 9.202 (1) 4.8253 (8) 10.966 

Cerium 10.0 (1) 9.2 (1) 4.75 (5) 7.539 

Cobalt 
 

9.8240 (7) 9.1999 (6) 4.8231 (3) 5.742 

Strontium 
 

9.83 (2) 9.13 (3) 4.819 (1) 18.911 

Neodymium 
 

10.18 (3) 9.15 (2) 4.84 (1) 6.616 
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5.1.3.2: 10 %-Vanadium-Paranatisite  

Pawley refinements took place upon all ion exchange experiments. With regards 

to the ion exchange experiments involving strontium and cesium, the a axis of 

the unit cell parameter showed to expand whilst both the b and c axes contracted. 

With regards to cobalt, cerium and neodymium all three axes of the unit cell 

parameters, contracted. Changes to lattice parameters may be in accordance to 

size of the exchanged ion as both strontium and cesium possess larger ionic radii 

compared to the other exchange ions.  

Comparison to the un-exchanged lattice parameters showed that both cerium 

and neodymium showed the greatest variation. Refinements upon neodymium 

exchanged material showed contraction by -0.0032 Å, -0.086 Å and -0.00689 Å 

with respects to a, b and c whilst cerium showed contraction by -0.0182 Å, -0.014 

Å and -0.1189 Å with respects to a, b and c. It is believed that such variation is 

the result of damage to the structural framework following the exchange of 

sodium ions with cerium/neodymium.  

Of the crystalline phases, cobalt showed the greatest variation from the un-

exchanged lattice parameters with a, b and c varying by 0.00054 Å, -0.00105 Å 

and -0.00879 Å, in accordance to the higher exchange capacity. Cesium 

exchanged material showed the lowest variation with contraction of the a, b and 

c axes as followed, -0.0046 Å, -0.0032 Å and -0.00379 Å, in accordance with the 

lower exchange capacity. All refined lattice parameters are shown in Table 28. 

(Refined lattice parameters, Rietveld statistics and final Pawley fits for 10 %-

vanadium-paranatisite-cesium, cerium, cobalt, strontium and neodymium ion 

exchanged material is shown in A34, A35, A36, A37 and A38). 
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Table 28: Refined lattice parameters for 10 %-vanadium-paranatisite, cesium, cerium, cobalt, 

neodymium and strontium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a (Å) b (Å) c (Å) RWP (%) 

10 %-
Vanadium-

Paranatisite 

9.8282 (1) 9.2060 (1) 4.82489 (7) 5.408 

Cesium 
 

9.8328 (4) 9.2028 (4) 4.8211 (2) 10.073 

Cerium 9.810 (6) 9.192 (4) 4.813 (2) 8.379 

Cobalt 
 

9.8228 (5) 9.1955 (5) 4.8161 (2) 6.280 

Strontium 
 

9.8314 (5) 9.1972 (5) 4.8189 (4) 10.373 

Neodymium 
 

9.825 (4) 9.120 (3) 4.818 (2) 11.615 
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5.1.4.0: SEM Analysis  

Electron micrographs were recorded to determine if any structural changes to 

particle morphology could be observed. As mentioned in Chapter 4 paranatisite 

adopts a cross like structure with varying amounts of protruding surfaces.  

Electron micrographs obtained upon the ion exchanged material showed no real 

variation from the un-exchanged particle morphology. In all cases the 

characteristic cross shape of vanadium-paranatisite could be seen with 5 %-

vanadium-paranatisite exchanged material, shown in Figure 46 and 10 %-

vanadium-paranatisite being shown in Figure 47.  

Although the characteristic cross shape structure could still be seen, all images 

obtained from analysis showed varying amounts of surface texture when 

compared to the un-exchanged material. Cerium showed the greatest changes, 

with particle morphology appearing to break apart following ion exchange, as 

shown in Figures 47 B and 48 B. The electron micrographs obtain from cerium 

exchange mirror the loss of crystallinity seen from X-ray diffraction patterns.  

As mentioned previously, it is believed that the loss of crystallinity seen in X-ray 

diffraction patterns and SEM images is the result of neodymium hydroxide and 

cerium oxide formation.  
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20.0 µm 
X 1857, 20.00 kV 

F 

A 

20.0 µm X 3193, 20.00 kV 

B 

20.0 µm 
X 2226, 20.00 kV 

C 

20.0 µm 
X 3995, 20.00 kV 

D 

20.0 µm 
X 4147, 20.00 kV 

E 

10.0 µm 
X 5049, 20.00 kV 

Figure 47: SEM images of 5 %-vanadium-paranatisite, cesium, cerium, cobalt, strontium 

and neodymium ion exchanged material. A- cesium ion exchange, B- cerium ion exchange, 

C-cobalt ion exchange, D- strontium ion exchange, E- neodymium ion exchange and F- 5 %-

vanadium-paranatisite. 
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Figure 48: SEM images of 10 %-vanadium-paranatisite, cesium, cerium, cobalt, strontium 

and neodymium ion exchanged material. A- cesium ion exchange, B- cerium ion exchange, 

C-cobalt ion exchange, D- strontium ion exchange, E- neodymium ion exchange and F- 5 %-

vanadium-paranatisite. 

A 

20.0 µm 
X 2186, 20.0 kV 

B 

10.0 µm 
X 4392, 20.0 kV 

C 

5.0 µm X 5396, 20.0 kV 

D 

20.0 µm 
X 1948, 20.0 kV 

E 

5.0 µm 
X 2727, 20.0 kV 

F 

20.0 µm 
X 2737, 20.0 kV 
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5.1.5.0: EDX Analysis  

5.1.5.1: Cesium Analysis 

Analysis for both vanadium doping levels saw that the percentage of cesium 

exchanged from 5 % to 10 %-vanadium-paranatisite had increased, as shown in 

Table 29. However, overlap of titanium and cesium, shown in Figure 49, saw 

cesium L emission lines present within the spectra at ~ 4.2 keV - 4.6 keV overlap 

with titanium K emission lines present at ~ 4.5 keV - 4.9 keV. As a result, the 

quantitative analysis upon the sample was deemed inaccurate and was solely 

used as a guide. (EDX Spectrum for 5 %-vanadium-paranatisite-cesium ion 

exchanged material shown in A39). 

 

 

 

 

 

 

 

 

 

Figure 49: EDX spectrum of 10 %-vanadium-paranatisite-cesium ion exchanged material. 

Table 29: Elemental composition of vanadium-paranatisite-cesium ion exchanged material. 

 

 5 %-Vanadium-Paranatisite 10 %-Vanadium-Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K  33.33 (± 05.80) 59.28 (± 09.20) 39.00 (± 12.01) 53.84 (± 08.91 
Na K 10.39 (± 00.42) 12.86 (± 01.20) 26.14 (± 15.20) 25.11 (± 08.01) 
Si K 05.60 (± 00.28) 5.67 (± 01.29) 16.84 (± 10.10) 13.24 (± 04.50) 
Cs L 20.85 (± 12.10) 4.46 (± 02.03) 01.61 (± 0.60) 00.27 (± 00.09) 
Ti K  29.84 (± 19.80) 17.73 (± 07.45) 15.57 (± 05.21) 07.18 (± 03.42) 
V K  00.00 00.00 00.84 (± 00.12) 00.36 (± 00.10) 
Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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n
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5.1.5.2: Cerium Analysis 

As seen in Figure 50, cerium L emission lines appear at ~ 4.84 keV causing 

overlap with titanium K emission lines present at ~ 4.94 keV, meaning that EDX 

analysis could only be used as a guide. 

There was a greater percentage of cerium within the 5 %-vanadium-paranatisite 

framework. However, comparison of EDX analysis with other exchanged 

material, where no overlap (except for vanadium) takes place with titanium, 

shows the reported atomic weight percentage to be ~ 10 % of the total atomic 

percentage weight. Within Table 30, Ti K constitutes to 4.86 % and 7.69 % 

respectively to 5 % and 10 %-vanadium-paranatisite. It is therefore believed that 

the high atomic percentages reported for cerium are due to the overlap of cerium 

L emission lines with titanium K emission lines. (EDX Spectrum for 5 %-

Vanadium-Paranatisite-Cesium ion exchanged material shown in A40). 

 

 

 

 

 

 

 

Figure 50: EDX spectrum of 10 %-vanadium-paranatisite-cerium ion exchanged material. 

Table 30: Elemental composition of vanadium-paranatisite-cerium ion exchanged material. 

 5 %-Vanadium- Paranatisite 10 %-Vanadium- Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 35.47 (± 22.79) 65.96 (± 25.90) 51.58 (± 30.12) 68.78 (± 35.01) 
Na K 01.59 (± 00.42) 02.05 (± 01.20) 09.56 (± 05.91) 08.87 (± 03.59) 
Si K 05.18 (± 03.25) 05.49 (± 04.28) 18.30 (± 06.23) 13.90 (± 02.34) 
Ce L 34.32 (± 25.12) 21.32 (± 17.24) 17.27 (± 05.27) 07.69 (± 02.43) 
Ti K 22.89 (± 09.56) 04.86 (± 00.27) 02.34 (± 00.51) 00.36 (± 00.09) 
V K 00.56 (± 00.12) 00.33 (± 00.07) 00.94 (± 00.19) 00.40 (± 00.03) 

Total 100.00 100.00 100.00 100.00 

Energy (keV) 

In
te

n
s
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y
 (
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u

n
ts
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5.1.5.3: Cobalt Analysis 

EDX analysis shown in Figure 51, saw the presence of an extra peak at ~ 7.0 keV 

characteristic of the cobalt emission line. Elemental composition analysis 

suggested that 10 %-vanadium-paranatisite had higher levels of cobalt within the 

framework when compare to 5 %-vanadium-paranatisite as shown in Table 31. 

(EDX Spectrum for 5 %-vanadium-paranatisite-cobalt ion exchanged material 

shown in A41). 

 

 

 

 

 

 

 

 

 

 

Figure 51: EDX spectrum of 10 %-vanadium-paranatisite-cobalt ion exchanged material. 

Table 31: Elemental composition of vanadium-paranatisite-cobalt ion exchanged material. 

 

 

 

 

 5 %-Vanadium-Paranatisite 10 %-Vanadium-Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 48.52 (± 32.10) 65.71 (± 29.10)  39.88 (± 21.11) 57.43 (± 35.61) 
Na K 12.80 (± 00.12) 12.07 (± 00.11) 18.62 (± 02.13) 18.66 (± 03.64) 
Si K 15.98 (± 04.17) 12.32 (± 03.26) 13.26 (± 05.16) 10.88 (± 00.91) 
Ti K 17.86 (± 06.20) 08.08 (± 05.12) 20.47 (± 10.12) 09.84 (± 00.12) 
V K  00.79 (± 0.42) 00.34 (± 00.12) 02.46 (± 00.43) 01.11 (± 00.51) 

Co K 04.05 (± 02.10) 01.49 (± 00.23) 05.30 (± 00.12) 02.07 (± 00.99) 
Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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n
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5.1.5.4: Neodymium Analysis 

Characteristic neodymium emission lines can be clearly seen within the spectrum 

shown in Figure 52, confirming that successful ion exchange had taken place. 

Analysis collected from Table 32, indicated that 5 %-vanadium-paranatisite 

showed greater exchange capacity towards neodymium. Nevertheless, slight 

overlap of vanadium K emission lines with neodymium L emissions lines means 

that full quantitative data was unreliable. (EDX spectrum for 5 %-vanadium-

paranatisite-neodymium ion exchanged material shown in A42). 

 

 

 

 

 

 

 

 

 

Figure 52: EDX spectrum of 10 %-vanadium-paranatisite-neodymium ion  

exchanged material. 

Table 32: Elemental composition of vanadium-paranatisite-neodymium ion exchanged material. 

  

 

 

 5 %-Vanadium-Paranatisite 10 %-Vanadium-Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 41.62 (± 29.18) 59.97 (± 31.13) 49.41 (± 17.12) 69.95 (± 30.12) 
Na K 15.21 (± 04.15) 15.25 (± 02.59) 10.86 (± 00.98) 10.70 (± 00.23) 
Si K 13.78 (± 05.89) 11.31 (± 03.98) 11.09 (± 02.37) 08.95 (± 01.21) 
Ti K 21.46 (± 11.59) 10.33 (± 02.14) 16.71 (± 05.17) 07.90 (± 02.99) 
V K  00.78 (± 0.42) 00.35 (± 00.12) 02.19 (± 00.19) 00.97 (± 00.24) 
Nd L 07.14 (± 05.21) 02.79 (± 00.71) 09.74 (± 00.42) 01.53 (± 00.24) 
Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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n
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5.1.5.5: Strontium Analysis 

The overlap of characteristic strontium L emission lines with silicon K emission 

lines meant that full determination could not be conducted. Within Figure 53, it 

was observed that there was no presence of strontium K emission lines at ~ 14.00 

keV indicating only a small amount of strontium had been exchanged during ion 

exchange experiments. This concurred with XRD patterns suggesting that 

minimal changes to the structure had occurred. Elemental composition analysis 

of the strontium ion exchanged material is shown in Table 33. (EDX spectrum for 

5 %-vanadium-paranatisite-strontium ion exchanged material shown in A43). 

 

 

 

 

 

 

 

 

 

Figure 53: EDX spectrum of 10 %-vanadium-paranatisite-strontium ion exchanged material. 

Table 33: elemental composition of vanadium-paranatisite-strontium ion exchanged material. 

 

 

 5 %-Vanadium-Paranatisite 10 %-Vanadium-Paranatisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 40.36 (± 30.12) 55.26 (± 25.01) 43.56 (± 20.12) 58.71 (± 28.10) 
Na K 25.75 (± 11.12) 24.54 (± 10.13) 23.12 (± 09.13) 21.68 (± 08.13) 
Si K 14.73 (± 10.87) 11.49 (± 09.87) 14.60 (± 04.99) 11.21 (± 02.37) 
Sr L 00.00 00.00 00.00 00.00 
Ti K 17.40 (± 07.55) 07.96 (± 05.39) 17.46 (± 04.78) 07.86 (± 02.31) 
V K 01.75 (± 00.23) 00.75 (± 00.35) 01.25 (± 00.14) 00.53 (± 00.21) 

Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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5.1.6.0: XRF Analysis  

XRF analysis upon all vanadium-paranatisite exchanged materials was carried 

out to confirm the presence of all target ions. A list of energy values in which the 

peaks occurred are shown in Table 34, whilst a stack view of XRF data for 10 %-

vanadium-paranatisite, cesium, cerium, cobalt, neodymium and strontium ion 

exchanged material is shown in Figure 54. (List of characteristic XRF emission 

lines for 5 %-vanadium-paranatisite-cesium, cerium, cobalt, neodymium and 

strontium ion exchanged material and the stack view of XRF spectra is shown in 

A44). 

 

Table 34: List of characteristic XRF emission lines for 10 %-vanadium-paranatisite-cesium, 

cerium, cobalt, neodymium and strontium ion exchanged material. 

 

 

 

Element Energy (keV) Emission 

Cesium 4.86 
5.33 

Lα1, Lα2 
Lβ1 

Cerium 4.22 
5.59 
5.23 

Lα1, Lα2 
Lβ2 
Lβ1 

Cobalt 6.83 
7.54 

Kα1, Kα2 
Kβ1 

Neodymium 4.88 
5.65 
5.99 
6.49 
6.83 

Lα2 
Lα1 
Lβ1 
Lβ2 

Lγ1 
Strontium 13.98 Kα1, Kα2 
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Figure 54: Stack view of XRF spectra of 10 %-vanadium-paranatisite, cesium, cerium, cobalt, strontium and neodymium ion exchanged material.
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5.1.7.0: Conclusion of Vanadium-Paranatisite Ion Exchange Capabilities 

Analysis conducted via ICP-MS, refined lattice parameters via Pawley 

refinements, EDX and XRF provided information regarding ion exchange 

capacity and affinity for 5 %-vanadium-paranatisite and 10 %-vanadium-

paranatisite ion exchange behaviours.  

ICP-MS analysis concluded that 5 %-vanadium-paranatisite when compared to 

10 %-vanadium-paranatisite had higher affinities towards strontium, cobalt, 

neodymium and cerium, whilst 10 %-vanadium-paranatisite showed to possess 

higher affinities towards cesium.  

XRD analysis conducted upon 5 %-vanadium-paranatisite concurred with the 

results obtained through ICP-MS analysis. XRD analysis showed that 5 %-

vanadium-paranatisite lost crystallinity during exchanges involving strontium, 

cesium and neodymium with refined lattice parameters showing the greatest 

variations for cerium and neodymium ion exchanges. EDX analysis suggested 

that when compared to 10 %-vanadium-paranatisite, 5 %-vanadium-paranatisite 

contained higher percentages of cerium and neodymium. Finally, XRF analysis 

confirmed the presence of all ions within the exchanged materials. 

Analysis conducted on the 10 %-vanadium-paranatisite ion exchanged materials 

showed that both cerium and neodymium exchanges showed the greatest 

variation of the lattice parameters compared to the un-exchanged lattice 

parameters. Of the crystalline phases, cobalt showed the greatest variation of 

peak intensities and refined lattice parameters, indicating the increased uptake 

of the ion in comparison to the other ions used in exchange experiments. EDX 

analysis did not concur with ICP-MS results with regards to cesium, however the 

increased overlap of emission lines could have caused inaccuracies within the 
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analysis yielded from this technique. Finally, XRF analysis conducted also 

concluded that all appropriate ions were present within the exchanged materials.   
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5.2.0.0: Vanadium-Natisite Ion Exchange Analysis 

5.2.1.0: ICP-MS Analysis 

To determine the percentage uptake of each specific ion, ICP-MS was used and 

analysis was conducted on the filtrate collected post the ion exchange 

experiment. 

ICP-MS analysis showed that 5 %-vanadium-natisite had higher affinity towards 

strontium, cobalt, neodymium and cerium when compared to 10 %-vanadium-

natisite. 10 %-vanadium-natisite showed the highest affinity towards cesium in 

comparison to 5 %-vanadium-natisite.  

Both materials showed similar trends with respect to ions which had the highest 

and lowest exchange affinity. The trend seen for 5 %-vanadium-natisite was 

Ce<Nd-Cs<Co<Sr with strontium having the highest exchange affinity and 

cerium being the lowest. However, with 10 %-vanadium-natisite, the trend as 

reported in Table 35 is Ce<Nd<Cs<Sr<Co. 

 

Table 35: Ion percentage uptake from 24 hour ion exchange for vanadium-natisite. 

 

 

 

 5 %-Vanadium-Natisite 
Ion Percentage 
Exchanged into 
Framework (%) 

10 %-Vanadium-Natisite 
Ion Percentage 
Exchanged into 
Framework (%) 

Cesium 
 

19 (± 0.28) 21 (± 0.71) 

Cerium 16 (± 0.42) 14 (± 0.62) 

Cobalt 
 

28 (± 0.26) 24 (± 0.23) 

Strontium 
 

30 (± 0.53) 23 (± 0.61) 

Neodymium 
 

19 (± 0.90) 17 (± 0.37) 
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5.2.2.0: XRD Analysis  

Analysis of the 5 % and 10 %-vanadium-natisite diffraction patterns following 

exchange with strontium, cobalt and cesium showed minimal changes, 

suggesting little/no damage had occurred to both frameworks.  

There was little change in the position of the peaks compared to the un-

exchanged materials implying there was no change in the space group upon 

exchange. 

Changes to peak intensities varied with the nature of the exchanged cation, with 

the greatest variation to peak intensities within all patterns being seen at lower 

2θ values ranging from 17.47 ° - 32.79 ° 2θ. Both levels of vanadium doping 

showed the greatest changes to intensities after strontium exchange. Peak 

intensities at 17.46 °, 19.42 ° and 22.25 ° 2θ showed an increase following 

strontium exchange by 31.3 %, 2.8 % and 2.3 % and 20.9 %, 1.8 % and 3.5 % 

for 5 % and 10 %-vanadium-natisite respectively.  

The diffraction patterns for the cesium exchanged materials showed the fewest 

changes to the peak intensities for both vanadium-natisite frameworks. 

Monitoring the same peak positions at 17.46 °, 19.42 ° and 22.25 ° 2θ showed a 

decrease in intensities for 5 %-vanadium-natisite by -3.9 %, -0.7 % and -0.8 %, 

whilst 10 %-vanadium-natisite saw variations by 8.7 %, -0.1 % and 1.6 %. 

Comparison of the two frameworks following strontium and cobalt ion exchanges 

showed that there were greater variations in intensities for 5 %-vanadium-natisite 

when compared to the original un-exchanged patterns. This tied in with ICP-MS 

results that showed both strontium and cobalt showed the greatest exchange 

capacities with 5 %-vanadium-natisite. However, for cesium, 10 %-vanadium-

natisite showed greater variation to peak intensities at lower 2θ values between 
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17.47 °- 32.79 ° 2θ, tying in with ICP-MS results that showed 10 %-vanadium-

natisite had higher capacity towards the cesium ion. 

The diffraction peak relative intensities for 5 %-vanadium-natisite after strontium, 

cobalt and cesium ion exchange are shown in Table 36 with a stack view of the 

X-ray diffraction patterns shown in Figure 55. 10 %-vanadium-natisite peak 

analysis of cesium, cobalt and strontium ion exchanged material is shown in 

Table 37 with a stack view of the X-ray diffraction patterns shown in Figure 56.   

 

Table 36: Peak analysis of 5 %-vanadium-natisite-cesium, cobalt and strontium ion exchanged 

material. 

 

 

hkl 2 Theta 
(°) 

5 %-Vanadium-
Natisite (%) 

Strontium 
(%) 

Cobalt  
(%) 

Cesium 
(%) 

001 17.466 39.6 70.7 43.9 35.7 
110 19.42 5.2 8.0 6.1 4.5 
011 22.249 16.8 19.1 18.7 16.0 
020 27.560 16.8 18.6 28.0 16.5 
021 32.791 100.0 100.0 100.0 100.0 
002 35.288 3.2 3.7 3.8 3.1 
211 35.671 11.4 11.1 12.3 11.2 
012 38.002 12.0 13.8 12.3 12.7 
220 39.344 9.5 9.6 10.8 9.8 
310 44.204 3.6 4.6 4.9 3.6 
031 45.623 4.3 4.3 5.1 4.9 
222 53.833 9.8 9.1 9.3 10.4 
032 55.859 2.5 2.9 2.3 2.9 
040 56.814 6.3 5.9 5.8 6.9 
312 57.726 0.4 - - - 
041 59.887 0.3 - - 0.4 
330 60.602 0.5 - - 0.7 
023 61.688 2.3 2.3 2.2 2.7 
213 63.497 2.0 1.9 2.3 2.5 
421 67.01807 3.7 3.2 2.4 3.8 
042 68.7074 0.7 - - 0.9 
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Figure 55: Stack view of XRD patterns of 5 %-vanadium-natisite, strontium, cobalt and cesium ion exchanged material. 
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Table 37: Peak analysis of 10 %-vanadium-natisite-cesium, cobalt and strontium ion 

exchanged material. 

 

 

 

 

hkl 2θ 
(°) 

10 %-
Vanadium-
Natisite (%) 

Strontium 
(%) 

Cobalt 
(%) 

Cesium 
(%) 

001 17.500 32.2 53.1 43.9 40.9 
110 19.436 4.7 6.5 6.1 4.6 
001 22.272 13.6 17.1 18.7 15.2 
020 27.582 16.4 19.7 28.0 16.5 
021 32.810 100.0 100.0 100.0 100.0 
002 35.348 2.5 2.1 3.8 2.2 
211 35.690 11.8 10.5 12.3 10.5 
012 38.028 9.5 8.1 12.3 7.9 
220 39.362 10.3 9.3 10.8 9.7 
310 44.222 3.4 3.5 4.9 3.5 
031 45.647 4.6 3.2 5.1 4.0 
311 47.901 1.4 - - 0.6 
222 53.857 10.9 8.3 9.3 8.6 

032/013 55.817 2.6 1.8 2.3 1.8 
040 56.847 6.7 5.5 5.8 6.5 
023 61.735 2.3 1.1 2.2 1.8 
213 63.503 2.4 2.0 2.3 2.0 
421 67.162 3.9 3.0 2.4 3.7 
042 68.721 0.8 - - 0.4 
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Figure 56: Stack view of XRD patterns of 10 %-vanadium-natisite, strontium, cobalt and cesium ion exchanged material. 
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5 % and 10 %-vanadium-natisite diffraction patterns following cerium and 

neodymium ion exchanges showed a loss of crystallinity and broadening of the 

diffraction peaks.  

The X-ray diffraction patterns collected after cerium ion exchange saw the 

presence of peaks at 19.436 °, 27.582 ° and 32.810 ° 2θ. These three peaks 

were some of the most intense peaks within the un-exchanged material’s X-ray 

diffraction patterns. Following the lost in crystallinity it is noted that no other peaks 

can be easily distinguished within the pattern.  

X-ray diffraction patterns collected following ion exchanges with neodymium saw 

peak broadening and the reduction of peak intensities. With regards to 5 %-

vanadium-natisite extra peaks can be seen within the diffraction pattern at 16.834 

° and 29.273 ° 2θ. When compared to known literature the extra peaks were due 

to neodymium hydroxide[118]. It is therefore believed that neodymium hydroxide 

was formed during the exchange experiments, although the mechanism is not 

known.  

Following the exchange of cerium and neodymium, typical peaks within the 

diffraction patterns where h k l values of h k 0 (such as 0 2 0 and 1 1 0) were 

primarily seen. This indicates that although the layers themselves remained 

intact, the way in which they became stacked altered. Increasing the percentage 

of vanadium within the material used for exchange saw the addition of 

characteristic natisite peaks within the pattern. The peaks that were noted in 

addition held an h k l value (such as 1 1 1 and 0 2 1), indicating that disruption of 

the stacking of layers decreased following the increase of vanadium doping. The 

decrease in disorder validates results shown from ICP-MS analysis that a lower 

percentage of cerium and neodymium were exchanged with 10 %-vanadium-
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natisite.  Diffraction patterns of 5 %-vanadium-natisite, cerium and neodymium 

ion exchanged material is shown in Figure 57. Diffraction patterns of 10 %-

vanadium-natisite, cerium and neodymium exchanged diffraction patterns are 

shown in Figure 58. 
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Figure 57: Stack view of XRD patterns of 5 %-vanadium-natisite, cerium and neodymium ion exchanged material. 
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Figure 58:  Stack view of XRD patterns of 10 %-vanadium-natisite, cerium and neodymium ion exchanged material.
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5.2.3.0: Lattice Refinements via Pawley Fits 

5.2.3.1: 5 %-Vanadium-Natisite  

Unit cell parameters following ion exchanges were determined using Pawley fits.  

All ion exchanges, except for neodymium showed an increase in at least two of 

the lattice parameters. Cesium and cerium showed elongation of all three lattice 

parameters a, b and c, whilst cobalt and strontium showed increases in a and b 

and contraction in c when compared to un-exchanged 5 %-vanadium-natisite.   

Of the crystalline phases, strontium, cobalt and cesium; strontium showed the 

greatest variation from the lattice parameters, showing elongation in the a = b 

axes by 0.005 Å (3 d.p.) and contraction by -0.008 Å (3 d.p.) followed by cobalt 

which showed elongation in the a = b axes by 0.003 Å (3 d.p.) and contraction by 

-0.003 Å (3 d.p.). Cesium showed the lowest variation of elongation in a = b axes 

by 0.0007 Å (3 d.p.) and in the c axis by 0.0017 Å (3 d.p.).  

The errors reported in Table 38 for cerium and neodymium, were of an order of 

magnitude bigger than the other exchanged material. Such variation could be 

attributed to the possible formation of cerium dioxide/ carbonate and neodymium 

hydroxide/ carbonate. As specified by Pourbaix diagrams these species typically 

form within solutions varying from pH 6-8[117]. Another explanation for such 

variation in lattice parameters is the degradation of the natisite framework upon 

contact with both cerium and neodymium. Further research utilising EXAFS 

analysis should be carried out to clarify the coordination environments of both 

cerium and neodymium.  (Refined lattice parameters, Rietveld statistics and final 

Pawley fits for 10 %-vanadium-natisite-cesium, cerium, cobalt, strontium and 

neodymium ion exchanged material is shown in A45, A46, A47, A48 and A49). 
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Table 38: Refined lattice parameters for 5 %-vanadium-natisite-cesium, cerium, cobalt, neodymium and strontium. 

 

 

 

 

 a (Å) b (Å) c (Å) α (°) β (°) γ (°) RWP (%) 

5 %-Vanadium-
Natisite 

6.48993 (7) 6.48993 (7) 5.09595 (9) 90 90 90 5.595 

Cesium 6.491 (1) 6.491 (1) 5.098 (2) 90 90 90 9.440 
Cerium 6.51 (2) 6.51 (2) 5.13 (3) 90 90 90 10.467 
Cobalt 6.493 (4) 6.493 (4) 5.093 (4) 90 90 90 5.383 

Strontium 6.495 (4) 6.495 (4) 5.088 (5) 90 90 90 10.274 
Neodymium 6.49 (4) 6.49 (4) 5.09 (4) 90 90 90 11.923 
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5.2.3.2: 10 %-Vanadium-Natisite  

Lattice refinements conducted following ion exchange experiments on the 10 %-

vanadium-natisite frameworks showed elongation in the a = b axes and 

contraction in the c axis with regards to strontium, cobalt, cesium and 

neodymium. Within each refinement contraction of the c axis was nearly double 

that of the elongation of the a = b axes, for example, in the refinement conducted 

upon the cobalt ion exchanged material the a = b axis expanded by 0.022 Å (3 

d.p.) whilst the c axis contracted by -0.041 Å (3 d.p.). Unlike the other ion 

exchanged materials, lattice refinements collected following cerium and 

neodymium, ion exchanges showed that all three lattice parameters expanded. 

It must however, be noted that the errors within this refinements for cerium and 

neodymium are substantial. Such variation could be attributed to the possible 

formation of cerium dioxide/ carbonate and neodymium hydroxide/ carbonate. As 

specified by Pourbaix diagrams these species typically form within solutions 

varying from pH 6-8[117]. Another explanation for such variation in lattice 

parameters is the degradation of the natisite framework upon contact with both 

cerium and neodymium. Further research utilising EXAFS analysis should be 

carried out to clarify the coordination environments of both cerium and 

neodymium.   All lattice parameters obtained from refinements were obtained 

from XRD patterns conducted within 7 days of experimental procedures. 

Similarly, XRF, SEM and ICP-MS data was collected in the same period. All 

lattice parameters obtained from refinements are shown in Table 39. (Refined 

lattice parameters, Rietveld statistics and final Pawley fits for 10 %-vanadium-

natisite-cesium, cerium, cobalt, strontium and neodymium ion exchanged 

material is shown in A50, A51, A52, A53 and A54). 
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Table 39: Refined lattice parameters for 10 %-vanadium-natisite-cesium, cerium, cobalt, neodymium and strontium. 

 

 

 

 

 

 

 

 

 a (Å) b (Å) c (Å) α (°) β (°) γ (°) RWP (%) 

10 %-
Vanadium-

Natisite 

6.48747 (7) 6.48747 (7) 5.097 (1) 90 90 90 5.605 

Cesium 6.489 (3) 6.489 (3) 5.093 (3) 90 90 90 10.615 
Cerium 6.51 (4) 6.51 (4) 5.13 (4) 90 90 90 10.948 
Cobalt 6.51 (2) 6.51(2) 5.07 (1) 90 90 90 4.477 

Strontium 6.490 (3) 6.490 (3) 5.093 (4) 90 90 90 10.927 
Neodymium 6.49 (3) 6.49 (3) 5.06 (3) 90 90 90 7.119 
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5.2.4.0: SEM Analysis  

SEM microscopy was used to examine the particle morphology of 5 % and 10 %-

vanadium-natisite after the ion exchange. As discussed previously, in Chapter 4, 

vanadium-natisite can adopt a variety of morphologies. The majority of samples 

had the phase B morphology. On a few occasions, mixed morphology, with phase 

A was seen within the samples. 

The resulting images show minor changes took place to morphology upon ion 

exchange with all ions of interest. In all cases the characteristic cross could still 

be observed upon the surface of the natisite particle.  The greatest change to 

particle morphology was seen during 5 %-vanadium-natisite-cerium and 

neodymium ion exchanges. The electron micrographs shown in Figure 59 B and 

59 E shows that changes to the morphology can be seen with some particles 

retaining morphology, whilst others lost morphology. The changes to particle 

morphology mirrors the loss of crystallinity seen in X-ray diffraction patterns. To 

determine whether such changes were due to the reduction in particle size, the 

formation of oxide and hydroxide species or the degradation of the titanium 

silicate framework, extra analysis such as EXAFS and PDF should be conducted. 

5 %-vanadium-natisite exchanges are shown in Figure 59, whilst 10 %-

vanadium-natisite ion exchanges are shown in Figure 60.  
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Figure 59: SEM images of 5 %-vanadium-natisite, cesium, cerium, cobalt, strontium and 

neodymium ion exchanged material. A- cesium ion exchange, B- cerium ion exchange, C-

cobalt ion exchange, D- strontium ion exchange, E- neodymium ion exchange and F- 5 %-

vanadium-natisite, 2695x magnification and 20.00 kV. 

A 

10.0 µm X 4509, 20.0 kV 

B 

20.0 µm X 1768, 20.0 kV 

20.0 µm 

C 

X 2023, 20.0 kV 

D 

10.0 µm X 4818, 20.0 kV 

E 

20.0 µm X 1916, 20.0 kV 

F 

20.0 µm X 2695, 20.0 kV 
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Figure 60: SEM images of 10 %-vanadium-natisite, cesium, cerium, cobalt, strontium and 

neodymium ion exchanged material. A- cesium ion exchange, B- cerium ion exchange, C-cobalt 

ion exchange, D- strontium ion exchange, E- neodymium ion exchange and F- 10 %-vanadium-

natisite. 

A 

5.0 µm 
X 4000, 15.0 kV 

B 

10.0 µm 
X 3000, 10.0 kV 

C 

20.0 µm 
X 4000, 15.0 kV 

D 

10.0 µm 
X 2906, 20.0 kV 

E 

5.0 µm 
X 5000, 5.0 kV 

F 

20.0 µm X 2649, 20.0 kV 
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5.2.5.0: EDX Analysis 

EDX analysis was carried out to determine the elemental composition of each 

ion exchanged material. However, due to overlap of the peaks from the 

exchanged ions and framework atoms, the reliability and accuracy of the results 

is questionable. 

5.2.5.1: Cesium Analysis 

In the spectrum, shown in Figure 61, cesium L emission lines, which appear ~ 

4.23- 5.28 keV overlap with titanium and vanadium K emission lines. Elemental 

composition analysis indicated that 10 %-vanadium-natisite showed greater 

exchange capacity towards cesium compared to 5 %-vanadium-natiste. 

Nevertheless, due to the overlap of emission lines EDX analysis can only act as 

a guide. Atomic weight percentages are referred to in Table 40. (EDX spectrum 

for 5 %-vanadium-natisite-cesium ion exchanged material shown in A55). 

 

 

 

 

 

Figure 61: EDX spectrum of 10 %-vanadium-natisite-cesium ion exchanged material. 

Table 40: Elemental composition of vanadium-natisite-cesium ion exchanged material.  

 

 

 5 %-Vanadium-Natisite 10 %-Vanadium-Natisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K  47.64 (± 27.80) 62.39 (± 30.12) 32.95 (± 19.99) 50.26 (± 26.01) 
Na K 24.10 (± 14.10) 21.97 (± 04.78) 21.08 (± 02.53) 22.37 (± 04.50) 
Si K 10.64 (± 02.13) 07.94 (± 05.61) 13.58 (± 01.14) 11.80 (± 01.14) 
Cs L 00.00 00.00 02.74 (± 00.74) 00.50 (± 00.23) 
Ti K  17.35 (± 05.41) 07.59 (± 02.37) 28.20 (± 12.21) 14.37 (± 04.75) 
V K  00.27 (± 00.05) 00.11 (± 00.21) 01.45 (± 00.47) 00.70 (± 00.24) 
Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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5.2.5.2: Cerium Analysis 

As shown in Figure 62, cerium L emission lines overlap with titanium and 

vanadium K emission lines. From Table 41, the atomic percentage of titanium is 

relatively low when compared to other samples where no overlap (except for 

vanadium) occurs. Typically, titanium has an atomic percentage weight of ~ 10.00 

%, however, within the samples, where titanium overlaps with cerium, the atomic 

weight is reported to be ~ 0.78 %.  

It is therefore believed that the atomic percentage of cerium within the samples 

are not accurate and the atomic percentage weight is the combination of cerium 

L and titanium K emission lines. (EDX Spectrum for 5 %-vanadium-natisite-

cerium ion exchanged material shown in A56). 

  

 

 

 

 

 

 

Figure 62: EDX spectrum of 10 %-vanadium-natisite-cerium ion exchanged material. 

Table 41: Elemental composition of vanadium-natisite-cerium ion exchanged material. 

 

 

 5 %-Vanadium-Natisite 10 %-Vanadium-Natisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 37.40 (± 17.20) 60.31 (± 14.10) 37.40 (± 11.10) 60.31 (± 15.21) 
Na K 01.13 (± 00.13) 01.27 (± 00.07) 01.13 (± 00.10) 01.27 (± 00.20) 
Si K 18.00 (± 05.01) 16.53 (± 02.31) 18.00 (± 04.51) 16.53 (± 02.31) 
Ce L 38.42 (± 22.58) 20.70 (± 10.01) 38.42 (± 10.25) 20.70 (± 09.78) 
Ti K 04.25 (± 00.15) 00.78 (± 00.20) 04.25 (± 00.96) 00.78 (± 00.09) 
V K 00.81 (± 00.20) 00.41 (± 00.10) 00.81 (± 00.29) 00.41 (± 00.13) 

Total 100.00 100.00 100.00 100.00 

Energy (keV) 
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5.2.5.3: Cobalt Analysis 

EDX analysis showed the presence of two extra peaks at ~0.8 keV and ~7.0 keV, 

these peaks are said to be characteristic of cobalt L and K emission lines 

respectively, as shown in Figure 63. The elemental composition as shown in 

Table 42 further suggests that 5 %-vanadium-natisite had a higher affinity 

towards cobalt compared to the 10 % doped material. (EDX Spectrum for 5 %-

vanadium-natisite-cobalt ion exchanged material shown in A57). 

 

 

 

 

 

 

 

 

 

Figure 63: EDX spectrum of 10 %-vanadium-natisite-cobalt ion exchanged material. 

Table 42: Elemental composition of vanadium-natisite-cobalt ion exchanged material. 

 

 

 

 

 5 %-Vanadium-Natisite 10 %-Vanadium-Natisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 44.85 (± 29.91) 63.33 (± 30.01) 44.44 (± 27.88) 61.10 (± 29.97) 
Na K 13.96 (± 05.21) 13.72 (± 04.12) 16.20 (± 03.39) 15.49 (± 04.17) 
Si K 12.31 (± 05.29) 09.90 (± 03.99) 17.30 (± 08.71) 13.55 (± 03.56) 
Ti K 22.25 (± 07.77) 10.49 (± 02.31) 17.85 (± 05.78) 08.20 (± 01.12) 
V K  00.38 (± 01.21) 00.17 (± 00.08) 01.52 (± 00.42) 00.66 (± 02.31) 

Co K 06.25 (± 00.25) 02.40 (± 01.40) 02.69 (± 00.45) 01.00 (± 00.06) 
Total 100.00 100.00 100.00 100.00 
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5.2.5.4: Neodymium Analysis 

EDX analysis conclusively showed the presence of neodymium within the 

sample, as shown in Figure 64. The elemental composition shown in Table 43, 

suggested that 5 %-vanadium-natisite had a higher capacity of exchange for 

neodymium.  However, quantitative analysis cannot be fully trusted using this 

technique due to the overlap of neodymium L lines with vanadium K emission 

lines. (EDX Spectrum for 5 %-vanadium-natisite-neodymium ion exchanged 

material shown in A58). 

 

 

 

 

 

 

 

 

 

 

Figure 64: EDX spectrum of 10 %-vanadium-natisite-neodymium ion exchanged material. 

Table 43: Elemental composition of vanadium-natisite-neodymium ion exchanged material. 

 

 

 5 %-Vanadium-Natisite 10 %-Vanadium-Natisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 44.64 (± 10.01) 76.93 (± 29.99) 32.71 (± 28.71) 58.93 (± 29.97) 
Na K 05.16 (± 02.31) 06.19 (± 02.17) 10.01 (± 01.71) 12.55 (± 02.67) 
Si K 02.21 (± 01.17) 02.17 (± 01.17) 08.67 (± 02.99) 08.89 (± 01.99) 
Ti K 13.93 (± 03.25) 08.02 (± 00.21) 22.29 (± 04.59) 13.42 (± 02.17) 
V K  00.51 (± 00.10) 00.28 (± 00.04) 02.59 (± 0.09) 01.47 (± 00.07) 

Nd L 33.55 (± 12.97) 06.41 (± 01.49) 23.73 (± 12.79) 04.74 (± 01.28) 
Total 100.00 100.00 100.00 100.00 
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5.2.5.5: Strontium Analysis 

Figure 65 shows the overlap of strontium L emission lines with silicon K emission 

lines. Nevertheless, the atomic percentage weight of silicon close to the expected 

value and so as a result, other analysis techniques were also used to confirm the 

presence of strontium.  Table 44 shows the elemental composition of vanadium-

natisite-strontium ion exchanged material. (EDX spectrum for 5 %-vanadium-

natisite-neodymium ion exchanged material shown in A59). 

 

 

 

 

 

 

 

 

 

Figure 65: EDX spectrum of 10 %-vanadium-natisite-strontium ion exchanged material. 

Table 44: Elemental composition of vanadium-natisite-strontium-ion exchanged material. 

 

 

 

 5 %-Vanadium-Natisite 10 %-Vanadium-Natisite 

 Weight (%) Atomic (%) Weight (%) Atomic (%) 
O K 36.22 (± 16.21) 53.54 (± 18.87) 41.74 (± 12.21) 57.22 (± 17.17) 
Na K 21.46 (± 09.97) 22.08 (± 08.79) 23.77 (± 13.01) 22.67 (± 11.07) 
Si K 13.34 (± 03.34) 11.24 (± 00.87) 13.45 (± 00.14) 10.50 (± 00.57) 
Sr L 05.22 (± 01.23) 01.41 (± 00.21) 19.96 (± 10.01) 09.14 (± 02.59) 
Ti K 23.76 (± 12.01) 11.73 (± 09.97) 01.08 (± 00.81) 00.47 (± 00.21) 
V K 00.00 00.00 00.00 00.00  

Total 100.00 100.00 100.00 100.00 
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5.2.6.0: XRF Analysis  

XRF analysis was conducted upon all the ion exchanged materials to determine 

the presence of the exchanged ions, as mentioned previously quantitative 

analysis could not be obtained. 

The XRF data has been collated into one stack plot to give an overview of each 

exchange experiment, this can be seen in Figure 66.   Characteristic emission 

lines with the Energy (keV) values they occurred at are given in Table 45. (List of 

Characteristic XRF Emission Lines for 5 %-vanadium-paranatisite-cesium, 

Cerium, Cobalt, Neodymium and Strontium Ion Exchanged Material and the 

stack view of XRF spectra is shown in A60). 

 

Table 45: List of characteristic XRF emission lines for 10 %-vanadium-paranatisite-cesium, 

cerium, cobalt, neodymium and strontium ion exchanged material. 

Element Energy (keV) Emission 

Cesium 4.84 
5.57 
5.24 

Lα1, Lα2 
Lβ2 
Lβ1 

Cerium 4.22 
5.58 
5.26 

Lα1, Lα2 
Lβ2 
Lβ1 

Cobalt 6.87 
7.63 

Kα1, Kα2 
Kβ1 

Neodymium 4.92 
5.20 
5.72 
6.06 
6.57 

Lα2 
Lα1 
Lβ1 
Lβ2 

Lγ1 
Strontium 13.98 

15.62 
Kα1, Kα2 

Kβ1 
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Figure 66: Stack view of XRF spectra of 10 %-vanadium-natisite, cesium, cerium, cobalt, strontium and neodymium ion exchanged 

material. 
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5.2.7.0: Conclusion of Vanadium-Natisite Ion Exchange Capabilities   

Analysis via XRD, refined lattice parameters using TOPAS with jEdit, EDX, XRF 

and ICP-MS provided confirmation of one another, that strontium and cobalt 

underwent the greatest degree of exchange with the materials and cerium and 

neodymium underwent the least whilst causing possible structural damage to the 

frameworks. 

Analysis via XRD and refined lattice parameters showed the greatest variation 

from the un-exchanged materials was the result of ion exchanges with strontium 

and cobalt. Further to this it showed that the greatest variation occurred with 5 

%-vanadium-natisite in agreement with ICP-MS analysis that both strontium and 

cobalt exchange capacities were highest when 5 %-vanadium-natisite was used. 

Further to this XRD analysis showed that changes upon the exchange of cesium 

varied the greatest with regards to 10 %-vanadium-natisite, in alliance with ICP-

MS analysis that cesium underwent greatest exchange upon contact with 10 %-

vanadium-natisite. 

EDX analysis also acted as a guide, indicating that 10 %-vanadium-natisite 

allowed for the greater exchange of cesium, whilst 5 %-vanadium-natisite allowed 

for greater exchange of cobalt and neodymium, acting in accordance with ICP-

MS and XRD analysis.  

Finally, XRF analysis showed the presence of all ions within each material, 

further indicating that although cerium and neodymium caused structural 

damage, ion exchange could take place with all ions. 
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5.2.8.0: Comparison of Vanadium-Paranatisite and Vanadium-Natisite Ion 

Exchange Capacitates 

Comparison undertaken on all materials showed that altering the percentage of 

vanadium within the framework altered both the overall capacity and affinities to 

certain ions.  

For example, 5 %-vanadium-paranatisite exhibited the highest affinity towards 

strontium, cobalt and neodymium whilst 10 %-vanadium-paranatisite showed the 

highest affinity towards cesium and cerium when compared to one another and 

vanadium-natisite.  

Vanadium-natisite showed similar general trends to vanadium-paranatisite, with 

5 %-vanadium-natisite showing increased affinity to strontium, cobalt, cerium and 

neodymium. From the data presented in Table 24, Table 35 and Figure 67, the 

ion exchange capabilities of vanadium-paranatisite and vanadium-natisite are 

comparable, with 5 %-vanadium frameworks differing between 5-1 % exchange 

capabilities and 10 %-vanadium frameworks differing between 5 and 2 % 

exchange capabilities. Although the capabilities of both frameworks are similar, 

vanadium-paranatisite structures showed greater levels of exchange towards the 

ions when compared to vanadium-natisite materials.  

The increased affinity of paranatisite to all ions when compared to natisite may 

be attributed to the overall structure of both frameworks. Paranatisite exhibits a 

less ordered structure, with the sodium ions adopting three unique environments. 

Natisite however, is more structured and the sodium ions adopt only one unique 

environment. The increase variation in sodium environments means there may 

be an increase likelihood that the ions under investigation can find a position 

within the framework that is more favourable.  It therefore can be postulated that 
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the increased variation of sodium environments within the paranatisite framework 

as well as the possible increase access to the structure, enhances the ion 

exchange abilities of paranatisite.  

Finally, the work conducted during this study were compared to the results 

obtained from another student following Ti-natisite[85] ion exchange experiments. 

It was seen that doping the frameworks of Ti-natisite and Ti-paranatisite with 

varying amounts of vanadium showed an overall increase in the exchange 

capacities of both frameworks with regards to cesium, cobalt and strontium.  

The increase in exchange capabilities following vanadium doping may be 

explained via other research. Previous research conducted has shown that 

vanadium doped/ vanadium silicate frameworks have shown increased affinity 

towards such ions[84]. Although the mechanism to why the affinity increases is not 

fully understood, it can be assumed that altering the bond lengths of the unit cell 

alters the ion exchange environment available. This therefore changes the 

affinities towards certain ions, and in this way, the framework can be manipulated 

to suit the needs of the end user. An overview of the exchange capacities of each 

material and Ti-natisite are shown in Figure 67. 

 

 

 

 

 

 

 

 

Figure 67: Comparison graph of Ti- natisite[85], 5 %-vanadium-paranatisite, 10 %-vanadium-

paranatisite, 5 %-vanadium-natisite and 10 %-vanadium-natisite ion exchange capabilities. 
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Future work 

Continuation of the work presented in this thesis could be conducted in a number 

of areas, such as further research into ion exchange experiments.  

Further ion exchange experiments could be conducted in order to determine the 

optimum capacity of both titanium silicate frameworks, the rate of exchange, their 

ability to undergo ion exchange in acidic conditions, common environments within 

the nuclear industry[2]. Their ability to exchange with the desired radioactive ions 

in the presence of highly competing non-radioactive ions such as sodium and 

magnesium, environments seen during the Fukushima, Three Mile Long and 

Chernobyl incidents could be investigated.[30, 70] Also the ability to regenerate and 

reuse both vanadium-paranatisite and vanadium-natisite following ion exchange 

experiments, as seen with Clinoptilolite in the SIXEP process[58] could be studied. 

Leach testing could also be undertaken to determine the mobility of the ions in 

the structures. It would be undesirable for the ions to exchange back out of the 

materials during long term storage. Comparison of ion exchange capabilities 

could then be compared to other materials in use in industry today. 

     Further quantitative analysis could also be conducted. In addition to ICP-MS 

analysis, other techniques such as Wavelength Dispersive X-ray Fluorescence 

(WDXRF) could be used in to provide complementary quantitative analysis of the 

ion exchange percentages.  

As well as conducting research into the exchange capacities of each framework, 

radiation tests at the Dalton Cumbrian Facility (DCF) at the University of 

Manchester could be undertaken. The facility uses Co-60, a gamma irradiator, to 

provide information upon the structural integrity of the materials. Following 

exposure to gamma radiation, the material would undergo X-ray diffraction 
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analysis to investigate the structure and then do further leach testing. As a result, 

both vanadium-paranatisite and vanadium-natisite could be tested to determine 

their capabilities in withstanding such radiation.  

Finally, in depth structural analysis of both vanadium-paranatisite and vanadium-

natisite could be conducted. Due to the similar X-ray scattering powers of 

vanadium and titanium, techniques such as V51 MAS NMR could be used in order 

to determine the environments in which vanadium is in. In doing so, it may be 

possible to obtain information upon the environment in which vanadium is within. 

Further analysis such as X-ray absorption spectroscopy (XAS) could be 

conducted at Diamond Light Source, Didcot. XAS would allow for obtaining local 

geometries and electronic structures, giving information such as the valency and 

coordination numbers of specific atoms. Running at energies between 2.05 – 20 

keV would provide you with characteristic knife edges of individual atoms 

providing information on the oxidation states of specific atoms. It could therefore 

be used to obtain information upon the positioning of the cations within the 

frameworks. Gaining a greater understanding of how the frameworks behave 

following exchange experiments could mean that adaptations to the framework, 

i.e. the percentage of vanadium used to dope the framework, could be used in 

order to tailor to the needs of the nuclear industry. 
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Appendix  

A1: stack view of XRD patterns following the transformation of 5 %-vanadium-paranatisite to 5 %-vanadium-natisite 

 

Figure A: Stack view of XRD patterns following the successive transformation of 5 %-vanadium-paranatisite to 5 %-vanadium-

natisite. 
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 A2: Paranatisite rietveld refinements of bond length and angles variation from 10 %-vanadium-paranatisite to 10 %-

vanadium-natisite 
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Figure A2.a: 10 %-vanadium-paranatisite rietveld refinements of bond lengths from 3-11 Days. A: Na1-O2, Na1-O3 and Na1-O3, 

B: Ti1-O3, Ti1-O2, Ti2-O2 and Ti2-O4, C:O3-O3, Na2-O1 and Na2-O4, D: Na1-O1, Na1-O2, O1-Si1, Ti1-O1 and Ti1-O2, E: O1-Si1 

and O2-Si1 and F: Na3-O1, Na3-O2, Na3-O3-Na3-O4. 
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Figure A2.b: 10 %-vanadium paranatisite rietveld refinements of bond angles from 3-11 Days:  G: O3-Na1-O3, O3-Na1-O2, O3-Na1-O2, O3-
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A3: Natisite rietveld refinements bond length and angles variation from 10 %-vanadium-paranatisite to 10 %-vanadium-

natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.a: 10 %-vanadium-natisite rietveld refinements of bond lengths from 4-12 Days A: Na1-O1, Na1-O2, O1-Si1, Ti1-O1 and 

Ti1-O2 
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Figure A3.b:10 %-vanadium-natisite rietveld refinements of bond angles from 4-12 Days: B: O1Na1-O1, O1-Na1-O1 and O1-

Na1-O2, C: Si-O1-Tio1, Si1-O1-Na1, Ti1-O1-Na1, Na1-O1-Na1 and Ti1-O2-Na1, D: Si1-O1-Ti1, Si1-O1-Na1, Ti1-O1-Na1, Na1-

O1-Na1 and To1-O2-Na1, E: Na1-O2-Na1, Na1-O2-Na1, O1-Si1-O1 and O1-Si1-O1 and F: O2-Ti1-O1, O1-TI1-O1 and O1-Ti1-
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A4: Crystallographic Data of 3 Day Synthesis  

Table A4.a: Refined lattice parameters and refinement statistics for 3 day synthesis  

 

 

 

 

 

 

 

Figure A4.b: Final rietveld fit of 3 day synthesis 

 

Parameter 10 %-Vanadium-Paranatisite 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8282 (1) 
b (Å) 9.2060 (1) 
c (Å) 4.82489 (7) 
V (Å3) 436.54 (1) 

RWP (%) 5.408 
RP (%) 4.094 

Rexp (%) 2.647 
Pure Phase Paranatisite
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A5: Crystallographic Data of 4 Day Synthesis  

Table A5.a: Refined lattice parameters and refinement statistics for 4 day synthesis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5.b: Final rietveld fit of 4 day synthesis 

 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8292 (2) 6.5084 (2) 
b (Å) 9.1976 (2) 6.5084 (2) 
c (Å) 4.82003 (8) 5.0656 (3) 
V (Å3) 435.75 (1) 214.57 (2) 

RWP (%) 5.547 5.547 
RP (%) 4.180 4.180 

Rexp (%) 2.363 2.363 
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A6: Crystallographic Data of 5 Day Synthesis  

Table A6.a: Refined lattice parameters and refinement statistics for 5 day synthesis 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure A6.b: Final rietveld fit of 5 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8269 (2) 6.4973 (2) 
b (Å) 9.1948 (2) 6.4973 (2) 
c (Å) 4.81871 (9) 5.0805 (3) 
V (Å3) 435.40 (1) 214.47 (2) 

RWP (%) 6.025 6.025 
RP (%) 3.020 3.020 

Rexp (%) 4.567 4.567 
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A7: Crystallographic Data of 6 Day Synthesis  

Table A7.a: Overview of crystallographic data of 6 day synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.b: Final rietveld fit of 6 day synthesis 

 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8352 (2) 6.4917 (2) 
b (Å) 9.1922 (3) 6.4917 (2) 
c (Å) 4.8178 (1) 5.0918 (2) 
V (Å3) 435.57 (2) 214.58 (1) 

RWP (%) 6.351 6.351 
RP (%) 2.740 2.740 

Rexp (%) 4.871 4.871 
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A8: Crystallographic Data of 7 Day Synthesis  

Table A8.a: Refined lattice parameters and refinement statistics for 7 day synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A8.b: Final rietveld fit of 7 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8457 (3) 6.4873 (2) 
b (Å) 9.1738 (3) 6.4873 (2) 
c (Å) 4.8061 (2) 5.0946 (2) 
V (Å3) 434.09 (3) 214.41 (1) 

RWP (%) 8.291 8.291 
RP (%) 2.878 2.878 

Rexp (%) 6.325 6.325 
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A9: Crystallographic Data of 8 Day Synthesis  

Table A9.a: Refined lattice parameters and refinement statistics for 8 day synthesis 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure A9.b: Final rietveld fit of 8 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8389 (4) 6.4924 (2) 
b (Å) 9.1834 (5) 6.4924 (2) 
c (Å) 4.8119 (2) 5.088 (2) 
V (Å3) 434.78 (3) 214.46 (1) 

RWP (%) 8.161 8.161 
RP (%) 2.706 2.706 

Rexp (%) 6.269 6.269 
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 A10: Crystallographic Data of 9 Day Synthesis  

Table A10.a: Refined lattice parameters and refinement statistics for 9 day synthesis 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure A10.b: Final rietveld fit of 9 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8435 (3) 6.4868 (1) 
b (Å) 9.1740 (3) 6.4868 (1) 
c (Å) 4.8058 (1) 5.0932 (1) 
V (Å3) 433.98 (2) 214.312 (9) 

RWP (%) 5.860 5.860 
RP (%) 2.765 2.765 

Rexp (%) 4.507 4.507 
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A11: Crystallographic Data of 10 Day Synthesis  

Table A11.a: Refined lattice parameters and refinement statistics for 10 day synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A11.b: Final rietveld fit of 10 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8412 (3) 6.48381 (9) 
b (Å) 9.1714 (4) 6.48381 (9) 
c (Å) 4.8040 (2) 5.0934 (1) 
V (Å3) 433.59 (3) 214.125 (8) 

RWP (%) 5.730 5.730 
RP (%) 2.589 2.589 

Rexp (%) 4.366 4.366 
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A12: Crystallographic Data of 11 Day Synthesis  

Table A12.a: Refined lattice parameters and refinement statistics for 11 day synthesis 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure A12.b: Final rietveld fit of 11 day synthesis 

Parameter 10 %-Vanadium-Paranatisite 10 %-Vanadium-Natisite 

System Orthorhombic Tetragonal  
Space Group P m m a P 4 / n m m 

a (Å) 9.8479 (5) 6.4877 (2) 
b (Å) 7.1714 (6) 6.4877 (2) 
c (Å) 4.8045 (3) 5.0945 (2) 
V (Å3) 433.93 (4) 214.43 (1) 

RWP (%) 7.533 7.533 
RP (%) 2.979 2.979 

Rexp (%) 5.696 5.696 
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A13: Crystallographic data of 12 Day Synthesis  

Table A13.a: Refined lattice parameters and refinement statistics for 12 day synthesis 

 

 

 

 

 

 

 

Figure A13.b: Final rietveld fit of 12 day synthesis 

 

 

Parameter 10 %-Vanadium-Natisite 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.48747 (7) 
b (Å) 6.48747 (7) 
c (Å) 5.0975 (1) 
V (Å3) 214.538 (6) 

RWP (%) 5.605 
RP (%) 4.534 

Rexp (%) 2.697 
Pure Phase Natisite 12 Day Synthesis
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A14: Crystallographic Data of 5 %-Vanadium-Paranatisite 

Table A14.a: Refined atomic coordinates for 5 %-vanadium-paranatisite 

 

 

 

 

 

 

 

 

 Table A15.b: Bond lengths of 5 %-vanadium-paranatisite 

 

 

 

 

Site X Y Z Occ beq 

Ti1 0 0 0 0.75 9.6 (2) 
Ti2 0.25 0.5 0.539 (9) 1 6.6 (1) 
Si1 0 0.250 (6) 0.5 1 5.8 (1) 
Na1 0.25 0 0.424 (2) 1 10.0 (3) 
Na2 0 0.5 0 1 6.6 (2) 
Na3 0.25 0.2452 (6) 0.991 (2) 1 6.4 (1) 
O1 0.6139 (4) 0.3517 (7) 0.3568 (8) 1 5.5 (1) 
O2 0.4307 (4) 0.1511 (7) 0.2615 (9) 1 5.1 (4) 
O3 0.3141 (9) 0 0.842 (2) 0.5 3.7 (4) 
O4 0.25 0.5 0.184 (2) 1 4.7 (4) 

Bond Length (Å) Bond Length (Å) 

Na1-O2 2.387 (6) Na3-O3 2.450 (7) 
Na1-O3 2.111 (1) Na3-O4 2.523 (7) 
Na1-O3 2.881 (1) O1-Si1 1.613 (6) 
O3-O3 1.258 (2) O2-Si1 1.618 (6) 
Na2-O1 2.465 (5) O2-Ti1 1.997 (6) 
Na2-O4 2.610 (3) O3-Ti1 1.974 (9) 
Na3-O1 2.359 (7) O1-Ti2 1.975 (5) 
Na3-O2 2.366 (6) O4-Ti2 1.714 (9) 
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Table A15.c: Bond angles of 5 %-vanadium-paranatisite 

Bond  Angle (⁰) Bond  Angle (⁰) Bond  Angle (⁰) 

O3-Na1-O2 122.4 (3) Na1-O3-Na3 134.1 (5) Na1-O3-Na1 150.1 (4) 

O3-Na1-O2 95.3 (3) O1-Na3-O3 91.6 (3) Na3-O3-Na1 70.0 (3) 

O3-Na1-O3 175.3 (2) O1-Na3-O3 108.6 (4) Ti2-O4-Na3 111.6 (4) 

O3-Na1-O3 150.1 (4) O1-Na3-O4 82.9 (3) Na3-O4-Na2 82.8 (1) 

O2-Na1-O2 141.5 (5) O2-Na3-O2 97.1 (3) O1-Si1-O1 109.2 (5) 

O2-Na1-O2 71.3 (3) O2-Na3-O3 91.0 (3) O1-Si1-O2 108.3 (2) 

O2-Na1-O3 80.8 (3) O2-Na3-O4 82.9 (3) O2-Si1-O2 111.5 (5) 

O2-Na1-O3 61.1 (3) O3-Na3-O4 164.6 (2) O2-Ti1-O2 180.0 

O2-Na1-O2 96.0 (3) Si1-O2-Ti1 134.3 (3) O2-Ti1-O2 88.2 (3) 

O2-Na1-O2 71.2 (3) Si1-O2-Na3 120.1 (4) O2-Ti1-O3 85.9 (3) 

O1-Na2-O1 180.0 Si1-O2-Na1 114.0 (3) O2-Ti1-O3 94.1 (3) 

O1-Na2-O1 112.8 (3) Ti1-O2-Na3 99.3 (2) O2-Ti1-O2 180.0 

O1-Na2-O1 67.2 (3) Ti1-O2-Na1 93.2 (2) O3-Ti1-O3 180.0 

O1-Na2-O4 100.9 (2) Na3-O2-Na1 80.7 (2) O4-Ti2-O1 104.8 (2) 

O1-Na3-O1 69.0 (3) Ti1-O3-Na1 130.0 (5) O1-Ti2-O1 87.4 (3) 

O1-Na3-O2 165.7 (3) Ti1-O3-Na3 97.1 (3) O1-Ti2-O1 85.1 (3) 

O1-Na3-O2 96.9 (2) Ti1-O3-Na1 79.9 (3) O1-Ti2-O1 150.5 (2) 
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Table A15.d: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A15.e: Final rietveld fit of 5 %-vanadium-paranatisite 

Parameter 5 %-Vanadium-Paranatisite 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8172 (2) 
b (Å) 9.2017 (2) 
c (Å) 4.8260 (7) 
V (Å3) 436.00 (1) 

RWP (%) 5.750 
RP (%) 2.899 

Rexp (%) 4.484 
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A16: EDX Spectrum of 5 %-Vanadium-Paranatisite  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A16: EDX spectrum of 5 %-vanadium-paranatisite  
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A17: EDX Spectrum of 10 %-Vanadium-Paranatisite  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A17: EDX spectrum of 10 %-vanadium-paranatisite 
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A18: 5 % and 10 %-Vanadium-Percentage in Framework Samples Determined 

by ICP-MS 

 

 

 

 

 

 

  

Sample : 5 %-Vanadium-

Paranatisite 

Vanadium  (%) 

1 4.80 

2 4.81 

3 4.87 

4 4.78 

5 4.34 

Average: 4.72 

Sample : 10 %-

Vanadium-Paranatisite 

Vanadium  (%) 

1 8.01 

2 7.92 

3 8.01 

4 7.99 

5 7.92 

Average: 7.97 
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A19: Crystallographic data of Phase Aa M1 5 %-Vanadium-Natisite 

 

Table A19.a: Refined atomic coordinates for phase Aa M1 5 %-vanadium-natisite 

Site X Y Z Occ beq 

Na1 0.75 0.2500 0.5000 1 7.8 (3) 
O1 1.0000 0.7837 (8) 1.1683 (9) 1 3.2 (2) 
O2 1.0000 0.5000 0.746 (4) 1 6.8 (6) 
Si1 1.5000 0.5000 1.0000 1 4.8 (3) 
Ti1 1.0000 0.5000 1.059 (1) 1 4.4 (2) 

 

Table A19.b: Bond lengths of phase Aa M1 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

 

Bond Length (Å) 

Na1-O1 2.356 (3) 
Na1-O2 2.614 (9) 
O1-Si1 1.644 (5) 
Ti1-O1 1.921 (6) 
Ti1-O2 1.60 (2) 
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Table A19.c: Bond angles of phase Aa M1 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bond Angle (°) Bond Angle (°) 

O1-Na1-O1 68.6 (4) Ti1-O2-Na1 118.3 (7) 
O1-Na1-O1 180.0 Na1-O2-Na1 123.4 (1) 

O1-Na1-O1 111.4 (5) Na1-O2-Na1 77.0 (6) 

O1-Na1-O2 89.2 (6) O1-Si1-O1 106.2 (3) 

O1-Na1-O2 90.8 (6) O1-Si1-O1 116.2 (7) 

Si1-O1-Ti1 132.7 (7) O2-Ti1-O1 105.4 (4) 

Si1-O1-Na1 118.4 (4) O1-Ti1-O1 149.2 (9) 

Ti1-O1-Na1 94.8 (4) O1-Ti1-O1 85.9 (2) 

Na1-O1-Na1 86.4 (3)   
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Table A19.d: Refined lattice parameters and refinement statistics for phase Aa M1 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A19.e: Final rietveld fit of phase Aa M15 %-vanadium-natisite  

 

Parameter Phase Aa  
M1 5 %-Vanadium-Natisite 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4836 (3) 
b (Å) 6.4836 (3) 
c (Å) 5.1015 (3) 
V (Å3) 214.45 (2) 

RWP (%) 6.399 
RP (%) 3.177 

Rexp (%) 5.271 
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A20: Crystallographic data of Phase Ab M2 10 %-Vanadium-Natisite 

 

Table A20.a: Refined atomic coordinates for phase Ab M2 10 %-vanadium-natisite 

Site X Y Z Occ beq 

Na1 0.75 0.2500 0.5000 1 7.6 (3)  
O1 1.0000 0.7924 (8) 1.1691 (1) 1 3.9 (2) 
O2 1.0000 0.5000 0.732 (4) 1 8.0 (6) 
Si1 1.5000 0.5000 1.0000 1 6.0 (4) 
Ti1 1.0000 0.5000 1.052 (2) 1 4.4 (2) 

 

 

Table A20.b: Bond lengths of phase Ab M2 10 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

Bond Length (Å) 

Na1-O1 2.354 (4) 
Na1-O2 2.581 (9) 
O1-Si1 1.598 (5) 
Ti1-O1 1.989 (5) 
Ti1-O2 1.63 (2) 
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Table A20.c: Bond angles of phase Ab M2-10 %-vanadium-natisite  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Bond Angle (°) Bond Angle (°) 

O1-Na1-O1 69.4 (2) Ti1-O2-Na1 117.3 (4) 
O1-Na1-O1 180.0 Na1-O2-Na1 125.4 (8) 

O1-Na1-O1 110.6 (2) Na1-O2-Na1 77.9 (3) 

O1-Na1-O2 91.9 (3) O1-Si1-O1 106.8 (2) 

O1-Na1-O2 88.1 (3) O1-Si1-O1 115.1 (4) 

Si1-O1-Ti1 130.1 (3) O2-Ti1-O1 107.4 (2) 

Si1-O1-Na1 118.8 (2) O1-Ti1-O1 84.9 (1) 

Ti1-O1-Na1 95.9 (2) O1-Ti1-O1 145.2 (4) 

Na1-O1-Na1 87.1 (2)   
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Table A20.d: Refined lattice parameters and refinement statistics for phase Ab M2 10 %-vanadium-natisite 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

  

 

Figure A20.e: Final rietveld fit of phase Ab M2 10 %-vanadium-natisite 

 

Parameter Phase Ab 
 M2 5 %-Vanadium-Natisite 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4912 (4) 
b (Å) 6.4912 (4) 
c (Å) 5.0858 (4) 
V (Å3) 214.29 (3) 

RWP (%) 10.129 
RP (%) 3.248 

Rexp (%) 7.811 
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A21: Crystallographic Data of Phase B M2 5 %-Vanadium-Natisite 

 

Table A21.a: Refined atomic coordinates for phase B M2 5 %-vanadium-natisite 

Site X Y Z Occ beq 

Na1 0.75 0.2500 0.5000 1 6.14 (7) 
O1 1.0000 0.7950 (2) 1.8660 (3) 1 4.67 (6) 
O2 1.0000 0.5000 0.7234 (9) 1 5.5 (1) 
Si1 1.5000 0.5000 1.0000 1 5.71 (9) 
Ti1 1.0000 0.5000 1.0614 (3) 1 5.91 (6) 

 

 

Table A22.b: Bond lengths of phase B M2 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

Bond Length (Å) 

Na1-O1 2.295 (1) 
Na1-O2 2.562 (2) 
O1-Si1 1.635 (2) 
Ti1-O1 2.018 (2) 
Ti1-O2 1.722 (5) 



Page | 198  
 

Table A22.c: Bond angles of phase B M2 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bond Angle (°) Bond Angle (°) 

O1-Na1-O1 72.3 (7) Ti1-O2-Na1 116.4 (9) 
O1-Na1-O1 180.0 Na1-O2-Na1 78.6 (8) 

O1-Na1-O1 107.7 (7) Na1-O2-Na1 127.2 (2) 

O1-Na1-O2 86.7 (8) O1-Si1-O1 109.8 (5) 

O1-Na1-O2 93.3 (8) O1-Si1-O1 108.9 (1) 

Si1-O1-Ti1 126.0 (9) O2-Ti1-O1 108.4 (6) 

Si1-O1-Na1 120.5 (5) O1-Ti1-O1 84.3 (4) 

Ti1-O1-Na1 95.7 (6) O1-Ti1-O1 143.1 (1) 

Na1-O1-Na1 90.0 (6)   
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Table A22.d: Overview of crystallographic data of phase B M2 5 %-vanadium-natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A22.e: Final rietveld fit of phase B M2 5 %-vanadium-natisite 

Parameter Phase B 
M2 5 %-Vanadium-Natisite 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.48964 (7) 
b (Å) 6.48964 (7) 
c (Å) 5.09580 (9) 
V (Å3) 214.612 (6) 

RWP (%) 5.934 
RP (%) 2.803 

Rexp (%) 4.562 
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A23: EDX Spectrum of Phase Aa M1 5 %-Vanadium-Natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A23: EDX spectrum of phase Aa M1 5 %-vanadium-natisite 
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A24: EDX Spectrum of Phase Ab M2 10 %-Vanadium-Natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A24: EDX spectrum of phase Ab M2 10 %-vanadium-natisite 
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A25: EDX Spectrum of Phase B M2 5 %-Vanadium-Natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A25: EDX spectrum of phase B M2 5 %-vanadium-natisite 
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A26: EDX Spectrum of Phase C M2 10 %-Vanadium-Natisite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A26: EDX spectrum of phase C M2 10 %-vanadium-natisite 
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A27: 5 % and 10 %-vanadium-natisite doping in samples as determined by 

ICP-MS  

  

 

Sample : 5 %-Vanadium-

Natisite 

Vanadium  (%) 

1 4.67 

2 4.50 

3 4.64 

4 4.68 

5 4.54 

Average: 4.61 

Sample : 10 %-

Vanadium-Natisite 

Vanadium  (%) 

1 7.79 

2 7.91 

3 7.81 

4 8.16 

5 8.17 

Average: 7.968 
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A28: 5 %-Vanadium-Natisite-Cobalt Chloride Ion Exchanged Material  

Table A28.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-natisite-cobalt chloride ion exchanged 

material. 

 

   

   

 

 

    

  

 

 

 

 

 

 

 

 

 

Figure A28.b: Final pawley fit of 5 %-vanadium-natisite-cobalt chloride ion exchanged material

Parameter 5 %-Vanadium-Natisite-Cerium Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.494 (2) 
b (Å) 6.494 (2) 
c (Å) 5.087 
V (Å3) 214.4 (1) 

RWP (%) 4.515 
RP (%) 3.479 

Rexp (%) 3.806 
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Figure A28.c: SEM imagery of 5 %-vanadium-natisite-cobalt chloride ion exchanged 

material 

 

Table A28.d: Percentage of cobalt (chloride) ion species exchanged into the 

framework of 5 %-vanadium-natisite 

 

Ion Exchange Attempt Percentage Exchanged- into 
framework (%) 

Attempt 1 25 (± 0.79) 
Attempt 2 24 (± 0.92) 
Attempt 3 26 (± 0.67) 
Average 25 

 

 

 

 

 

 

 

 

 

 

Figure A28.e: Images of A: un-exchanged 5 %-vanadium-natisite and B: exchanged 

5 %-vanadium-natisite with cobalt nitrate and cobalt chloride

A 

B 
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A29: 5 %-Vanadium-Paranatisite-Cesium Ion Exchanged Material  

Table A29.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite-cesium ion exchanged 

material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A29.b: Final pawley fit of 5 %-vanadium-paranatisite-cesium ion exchanged material 

Parameter 5 %-Vanadium-Paranatisite-Cesium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.820 (2) 
b (Å) 9.202 (1) 
c (Å) 4.8253 (8) 
V (Å3) 436.0 (1) 

RWP (%) 10.966 
RP (%) 8.798 

Rexp (%) 8.756 
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A30: 5 %-Vanadium-Paranatisite-Cerium Ion Exchanged Material   

Table A30.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite-cerium ion exchanged 

material 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

Figure A30.b: Final pawley fit of 5 %-vanadium-paranatisite-cerium ion exchanged material 

Parameter 5 %-Vanadium-Paranatisite-Cerium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 10.0 (2) 
b (Å) 9.2 (2) 
c (Å) 4.75 (7) 
V (Å3) 430 (2) 

RWP (%) 7.520 
RP (%) 7.008 

Rexp (%) 5.893 
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A31: 5 %-Vanadium-Paranatisite-Cobalt Ion Exchanged Material 

Table A31.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite-cobalt ion exchanged 

material 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A30.b: Final Pawley Fit of 5 %-Vanadium-Paranatisite-Cobalt Ion Exchanged Material 

 

Figure A31.a: Final pawley fit of 5 %-vanadium-paranatisite-cobalt ion exchanged material 

Parameter 5 %-Vanadium-Paranatisite-Cobalt 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8240 (7) 
b (Å) 9.1999 (6) 
c (Å) 4.8231 (3) 
V (Å3) 435.91 (5) 

RWP (%) 5.742 
RP (%) 5.192 

Rexp (%) 4.524 
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A32: 5 %-Vanadium-Paranatisite-Strontium Ion Exchanged Material 

Table A32.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite-strontium ion exchanged 

material 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure A32.b: Final pawley fit of 5 %-vanadium-paranatisite-strontium ion exchanged material 

Parameter 5 %-Vanadium-Paranatisite-Strontium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.83 (2) 
b (Å) 9.12 (3) 
c (Å) 4.82 (1) 
V (Å3) 432 (2) 

RWP (%) 18.901 
RP (%) 16.594 

Rexp (%) 14.803 
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A33: 5 %-Vanadium-Paranatisite-Neodymium Ion Exchanged Material 

Table A33.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-paranatisite-neodymium ion exchanged 

material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A33.b: Final pawley fit of 5 %-vanadium-paranatisite-neodymium ion exchanged material 

Parameter 5 %-Vanadium-Paranatisite-Neodymium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 10.18 (3) 
b (Å) 9.15 (2) 
c (Å) 4.84 (1) 
V (Å3) 450 (2) 

RWP (%) 6.616 
RP (%) 6.316 

Rexp (%) 5.258 
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A34: 10 %-Vanadium-Paranatisite-Cesium Ion Exchanged Material  

 

Table A34.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-paranatisite-cesium ion exchanged 

material 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure A34.b: Final pawley fit of 5 %-vanadium-paranatisite-cesium ion exchanged material 

Parameter 10 %-Vanadium-Paranatisite-Cesium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8328 (4) 
b (Å) 9.2028 (4) 
c (Å) 4.8211 (2) 
V (Å3) 436.25 (3) 

RWP (%) 10.073 
RP (%) 7.704 

Rexp (%) 7.321 
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A35: 10 %-Vanadium-Paranatisite-Cerium Ion Exchanged Material  

Table A35.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-paranatisite-cerium ion exchanged 

material 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure A35.b: Final pawley fit of 10 %-vanadium-paranatisite-cerium ion exchanged material 

Parameter 10 %-Vanadium-Paranatisite-Cerium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.81 (6) 
b (Å) 9.192 (4) 
c (Å) 4.813 (2) 
V (Å3) 434.0 (4) 

RWP (%) 8.379 
RP (%) 7.942 

Rexp (%) 6.577 
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A36: 10 %-Vanadium-Paranatisite-Cobalt Ion Exchanged Material  

Table A36.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-paranatisite-cobalt ion exchanged 

material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36.b: Final rietveld fit of 10 %-vanadium-paranatisite-cobalt ion exchanged material 

 

Parameter 10 %-Vanadium-Paranatisite 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8228 (5) 
b (Å) 9.1955 (5) 
c (Å) 4.8161 (2) 
V (Å3) 434.9 (3) 

RWP (%) 6.280 
RP (%) 4.884 

Rexp (%) 5.543 
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A37: 10 %-Vanadium-Paranatisite-Strontium Ion Exchanged Material  

 

Table A37.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-paranatisite-strontium ion exchanged 

material 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure A37.b: Final pawley fit of 10 %-vanadium-paranatisite-strontium ion exchanged material 

Parameter 10 %-Vanadium-Paranatisite-Strontium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.8312 (5) 
b (Å) 9.1971 (4) 
c (Å) 4.8188 (2) 
V (Å3) 435.70 (3) 

RWP (%) 10.360 
RP (%) 7.470 

Rexp (%) 7.667 
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A38: 10 %-Vanadium-Paranatisite-Neodymium Ion Exchanged Material 

Table A38.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-paranatisite-neodymium ion 

exchanged material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A38.b: Final pawley fit of 10 %-vanadium-paranatisite-neodymium ion exchanged material 

Parameter 10 %-Vanadium-Paranatisite-Neodymium 
Ion Exchanged Material 

System Orthorhombic 
Space Group P m m a 

a (Å) 9.815 (5) 
b (Å) 9.194 (4) 
c (Å) 4.815 (3) 
V (Å3) 434.6 (4) 

RWP (%) 11.584 
RP (%) 7.014 

Rexp (%) 8.300 
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A39: EDX Spectrum of 5 %-Vanadium-Paranatisite-Cesium Ion Exchanged Material 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure A39: EDX spectrum of 5 %-vanadium-paranatisite-cesium ion exchanged material 
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A40: EDX Spectrum of 5 %-Vanadium-Paranatisite-Cerium Ion Exchanged Material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A40: EDX spectra of 5 %-vanadium-paranatisite-cerium ion exchanged material 
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A41: EDX Spectrum of 5 %-Vanadium-Paranatisite-Cobalt Ion Exchanged Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A41: EDX spectrum of 5 %-vanadium-paranatisite-cobalt ion exchanged material 
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A42: EDX Spectrum of 5 %-Vanadium-Paranatisite-Neodymium Ion Exchanged Material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A42: EDX spectrum of 5 %-vanadium-natisite-neodymium ion exchanged material 
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A43: EDX Spectrum of 5 %-Vanadium-Paranatisite-Strontium Ion Exchanged Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A43: EDX spectrum of 5 %-vanadium-paranatisite-strontium ion exchanged material 
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A44: XRF Spectra of Ion Exchanged 5 %-Vanadium-Paranatisite 

 

Table A44.a: A list of energies presence within the XRF spectra following cesium, cerium, cobalt, neodymium and strontium ion 

exchanges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Energy (keV) Emission 

Cesium 4.41 
5.63 

Lα1, Lα2 
Lβ1 

Cerium 4.46 
5.87 
5.20 

Lα1, Lα2 
Lβ2 
Lβ1 

Cobalt 6.75 
7.45 

Kα1, Kα2 
Kβ1 

Neodymium 4.78 
5.07 
5.55 
6.07 
6.41 

Lα2 
Lα1 
Lβ1 
Lβ2 

Lγ1 
Strontium 13.98 

15.63 
Kα1, Kα2 

Kβ1 
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Figure A44.b : Stack view of XRF spectrums collected from 5 %-vanadium-paranatisite, cerium, cesium, cobalt, neodymium and 

strontium ion exchanged material. 
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A45: 5 %-Vanadium-Natisite-Cesium Ion Exchanged Material 

Table A45.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-natisite-cesium ion exchanged 

material  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure A45.b: Final pawley fit of 5 %-vanadium-natisite-cesium ion exchanged material 

 

Parameter 5 %-Vanadium-Natisite-Cesium Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4901 (1) 
b (Å) 6.4901 (1) 
c (Å) 5.0973 (2) 
V (Å3) 214.70 (1) 

RWP (%) 9.440 
RP (%) 7.633 

Rexp (%) 6.939 
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A46: 5 %-Vanadium-Natisite-Cerium Ion Exchanged Material  

Table A46.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-natisite-cesium ion exchanged material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A46.b: Final pawley fit of 5 %-vanadium-natisite-cerium ion exchanged material  

Parameter 5 %-Vanadium-Natisite-Cerium Ion 
Exchanged Material 

System Tetragonal 
Space Group P4/nmm 

a (Å) 6.508 (3) 
b (Å) 6.508 (3) 
c (Å) 5.132 (3) 
V (Å3) 217.4 (2) 

RWP (%) 10.467 
RP (%) 8.215 

Rexp (%) 8.290 

787674727068666462605856545250484644424038363432302826242220181614

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

0

-100

-200

Natisite 0.00 %

2 Theta (Degrees) 

In
te

n
s
it
y
 (

a
.u

.)
 



Page | 226  
 

A47: 5 %-Vanadium-Natisite-Cobalt Ion Exchanged Material 

Table A47.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-natisite-cobalt ion exchanged material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47.b: Final pawley fit of 5 %-vanadium-natisite-cobalt ion exchanged material 

Parameter 5 %-Vanadium-Natisite-Cobalt Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4925 (4) 
b (Å) 6.4925 (4) 
c (Å) 5.0927 (4) 
V (Å3) 214.67 (3) 

RWP (%) 5.382 
RP (%) 4.593 

Rexp (%) 4.202 
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A48: 5 %-Vanadium-Natisite-Strontium Ion Exchanged Material 

Table A48.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-natisite-strontium ion exchanged 

material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A48.b: Final pawley fit of 5 %-vanadium-natisite-strontium ion exchanged material 

Parameter 5 %-Vanadium-Natisite-Strontium 
Ion Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4947 (4) 
b (Å) 6.4947 (4) 
c (Å) 5.0879 (5) 
V (Å3) 214.58 (3) 

RWP (%) 10.274 
RP (%) 7.776 

Rexp (%) 7.947 
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A49: 5 %-Vanadium-Natisite-Neodymium Ion Exchanged Material 

Table A49.a: Refined lattice parameters and refinement statistics for 5 %-vanadium-natisite-neodymium ion exchanged 

material  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure A49.b: Final pawley fit of 5 %-vanadium-natisite-neodymium ion exchanged material 

Parameter 5 %-Vanadium-Natisite-Neodymium 
Ion Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.489 (4) 
b (Å) 6.489 (4) 
c (Å) 5.094 (4) 
V (Å3) 214.7 (3) 

RWP (%) 11.923 
RP (%) 8.464 

Rexp (%) 9.075 
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A50: 10 %-Vanadium-Natisite-Cesium Ion Exchanged Material  

Table A50.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-natisite-cesium ion exchanged 

material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A50.b: Final pawley fit of 10 %-vanadium-natisite-cesium ion exchanged material 

Parameter 10 %-Vanadium-Natisite-Cesium Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4892 (3) 
b (Å) 6.4892 (3) 
c (Å) 5.0931 (3) 
V (Å3) 214.43 (2) 

RWP (%) 10.615 
RP (%) 8.284 

Rexp (%) 7.895 
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A51: 10 %-Vanadium-Natisite-Cerium Ion Exchanged Material  

Table A51.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-batisite-cerium ion exchanged material  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure A51.b: Final pawley fit of 10 %-vanadium-natisite-cerium ion exchanged material 

Parameter 10 %-Vanadium-Natisite-Cerium Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.505 (4) 
b (Å) 6.505 (4) 
c (Å) 5.132 (4) 
V (Å3) 217.0 (3) 

RWP (%) 10.948 
RP (%) 9.453 

Rexp (%) 8.757 

787674727068666462605856545250484644424038363432302826242220181614

700

600

500

400

300

200

100

0

-100

natisite 0.00 %

2 Theta (Degrees) 

In
te

n
s
it
y
 (

a
.u

.)
 



Page | 231  
 

A52: 10 %-Vanadium-Natisite-Cobalt Ion Exchanged Material  

Table A52.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-natisite-cobalt ion exchanged material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A52.b: Final pawley fit of 10 %-vanadium-natisite-cobalt ion exchanged material 

Parameter 10 %-Vanadium-Natisite-Cobalt Ion 
Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.51 (2) 
b (Å) 6.51 (2) 
c (Å) 5.07 (1) 
V (Å3) 213.94 (6) 

RWP (%) 4.477 
RP (%) 4.010 

Rexp (%) 3.990 
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A53: 10 %-Vanadium-Natisite-Strontium Ion Exchanged Material  

Table A53.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-natisite-strontium ion exchanged 

material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A53.b: Final pawley fit of 10 %-vanadium-natisite-strontium ion exchanged material 

 

Parameter 10 %-Vanadium-Natisite-Strontium 
Ion Exchanged Material 

System Tetragonal 
Space Group P 4 / n m m 

a (Å) 6.4899 (3) 
b (Å) 6.4899 (3) 
c (Å) 5.0933 (4) 
V (Å3) 214.52 (2) 

RWP (%) 10.927 
RP (%) 9.388 

Rexp (%) 8.290 
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A54: 10 %-Vanadium-Natisite-Neodymium Ion Exchanged Material  

Table A54.a: Refined lattice parameters and refinement statistics for 10 %-vanadium-natisite-neodymium ion exchanged 

material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A54.b: Final pawley fit of 10 %-vanadium-natisite-neodymium ion exchanged material 

Parameter 10 %-Vanadium-Natisite-Neodymium 
Ion Exchanged Material 

System Tetragonal 
Space Group P4/nmm 

a (Å) 6.493 (3) 
b (Å) 6.493 (3) 
c (Å) 5.063 (3) 
V (Å3) 213.4 (3) 

RWP (%) 7.119 
RP (%) 6.258 

Rexp (%) 5.649 
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A55: EDX Spectrum of 5 %-Vanadium-Natisite-Cesium Ion Exchanged Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A55: EDX spectrum of 5 %-vanadium-paranatisite-cesium ion exchanged material 
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A56: EDX Spectrum of 5 %-Vanadium-Natisite-Cerium Ion Exchanged Material  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A56: EDX spectrum of 5 %-vanadium-paranatisite-cerium ion exchanged material 
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A57: EDX Spectrum of 5 %-Vanadium-Natisite-Cobalt Ion Exchanged Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A57: EDX spectrum of 5 %-vanadium-paranatisite-cobalt ion exchanged data 
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A58: EDX Spectrum of 5 %-Vanadium-Natisite-Strontium Ion Exchanged Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A58: EDX spectrum of 5 %-vanadium-paranatisite-strontium ion exchanged material 
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A59: EDX Spectrum of 5 %-Vanadium-Natisite-Neodymium Ion Exchanged Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A59: EDX spectrum of 5 %-vanadium-paranatisite-neodymium ion exchanged material 

   

 

In
te

n
s
it
y
 (

C
o

u
n

ts
) 

Energy (keV) 



Page | 239  
 

A60: XRF Spectrum of Ion Exchanged 5 %-Vanadium-Natisite   

Table A60.a: A list of energies presence within the XRF spectra following cesium, cerium, cobalt, neodymium and strontium ion 

exchanges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Energy (keV ) Emission 

Cesium 4.41 
5.63 

Lα1, Lα2 
Lβ1 

Cerium 4.20 
5.58 
5.26 

Lα1, Lα2 
Lβ2 
Lβ1 

Cobalt 6.87 
7.59 

Kα1, Kα2 
Kβ1 

Neodymium 4.91 
5.19 
5.71 
6.11 
6.41 

Lα2 
Lα1 
Lβ1 
Lβ2 

Lγ1 
Strontium 13.98 

15.63 
Kα1, Kα2 

Kβ1 
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Figure A60.b: Stack view of XRF spectrums collected from 5 %-vanadium-natisite, cerium, cesium, cobalt, neodymium and 

strontium ion exchanged material.  
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