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ABSTRACT 

The current studies envisage unravelling the underlying cellular internalisation mechanism of 

the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched 

self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and 

cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-

MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. 

Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their 

internalisation through flow cytometry and fluorescence microscopy, establishing it to be 

“clathrin-mediated” endocytic pathway. Apoptosis assay (65% cell death) and cell cycle 

distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-

SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies 

indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical 

anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model 

construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo 

studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as 

promising delivery systems for breast tumour therapeutics including TNBC. 

Keywords: Breast cancer; triple negative breast cancer (TNBC); Poly unsaturated fatty acid 

(PUFA); self-nanoemulsifying drug delivery systems; clathrin mediated endocytosis 

apoptosis. 
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1. Background 

Breast cancer is one of the most commonly diagnosed carcinoma in women throughout the 

world. Among the subtype of breast cancers, triple negative breast cancer (TNBC)  which are 

tumours that do not express oestrogen, progesterone and human epidermal growth factor 

receptors, account for almost 20% of breast cancers (Bauer et al., 2007). Since TNBC does 

not have the receptors for hormones, they do not benefit from treatment with hormonal 

therapy and treatment options are limited to chemotherapy and radiotherapy (Kalimutho et al, 

2015). However being clinically aggressive type of cancer its responsiveness to 

chemotherapy is very poor (Marotti et al., 2017). Treating this type of cancer presents a major 

challenge due to the poor disease prognosis and therefore the need for newer and safer 

therapies. 

The first-line drug currently employed for the management of breast cancer belongs to the 

group of semi-synthetic taxanes, i.e., docetaxel (DTH), being marketed as intravenous 

preparation, namely Taxotere® and Docefrez®. DTH, an antimitotic chemotherapeutic drug, 

promotes the assembly of tubulins into microtubulins, stabilizes microtubules, and thus 

inhibits cell proliferation (Stanton et al., 2011). The clinical applications of DTH are 

hampered by severe side effects such as neutropenia, anaemia, febrile neutropenia, 

hypersensitivity, thrombocytopenia, peripheral neuropathy, musculoskeletal toxicity and 

hypersensitivity (Montero et al., 2005). Besides, DTH, being a biological classification 

systems (BCS) Class II drug, encounters several physico-chemical challenges, i.e., practically 

insoluble in water with quite high log P of 2.9, poor oral bioavailability (8%) coupled with 

high hepatic first-pass metabolism and significant efflux by permeability glycoprotein (P-gp) 

transporter systems leading to multi-drug resistance (Khurana et al., 2016). 

 

Polyunsaturated fatty acids (PUFA)-based drug delivery systems have been increasingly 



4 

 

investigated for improved bioavailability owing to the enhanced oral drug absorption (Sandhu 

et al., 2017). Studies have shown improvement in anticancer eficacy of chemotherapeutic 

drugs when administered along with PUFA(). Further their advantage in breast cancer 

therapeutics in prevention of metastatic growth has been recogonised (Bougnoux et al., 

2010). Our previous study demonstrated significant improvement in the biopharmaceutical 

attributes of DTH, when formulated as self-nanoemulsifying lipidic system (SNELS)  

containing PUFA-rich lipid with long chain omega-6 and omega-9 fatty acids. PUFA SNELS 

solubilised DTH due to micellization leading to augumented bioavailability with absorption 

through lymphatic pathways (Khurana et al., 2017 (a)).   

Present study further investigates  the potential of PUFA lipid rich SNELS of DTH.in breast 

cancer therapeutics.  DTH-SNELS was evaluated for its efficacy in two different mammary 

human adenocarcinoma cells, MCF-7 and MDA-MB-231. While MCF-7, molecularly 

classified as Luminal A exhibiting ER+/PR+/HER2- receptors, MDA-MB-231 are more 

aggressive TNBC cell lines not exhibiting ER-/PR-/HER2-receptors (Wiggins et al., 2015). In 

the current research article, the major emphasis has been laid on exploring cellular 

internalisation and its underlying mechanisms which has never been investigated in both 

TNBC and non-TNBC cells for SNELS till date. In addition, mechanism of DTH action has 

also been elucidated through cell cycle analysis and apoptosis assay. The MDR reversal assay 

using rhodamine 123 (RH-123) and DiOC2 dye has been used to investigate the inhibitory 

activity of DTH-SNELS on MDR1 and BCRP transporters, respectively. Toxicity of DTH-

SNELS has been evaluated through biodistribution of drug, histopathology of the excised 

vital organs and haematology studies. Further preclinical in vivo tumour efficacy has been 

established in 7,12-dimethylbenzantracene (DMBA)-induced tumor model. The results of our 

research provide valuable evidence, which supports the development of DTH-SNELS for 
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improved breast cancer therapeutics especially triple negative breast cancer which is known 

for its poor prognosis (Joyce 2017). 

2. Methods 

2.1 Preparation of DTH-SNELS 

 The optimal composition of DTH-SNELS was systematically derived using QbD 

approach employing PUFA rich lipid Maisine-35-1, which is a blend of partially digested 

long-chain glycerides: 33.5% monoglycerides, 50.9% diglycerides, and 14.7% triglycerides, 

predominantly of linoleic acid (51.1%, omega 6 C18:2) and oleic acid (32.8%, omega 9 

C18:1) was employed to fabricate the DTH-SNELS. Tween 80 and Transcutol HP were used 

as surfactant and co-surfactant respectively. The brief on its development, characterization 

and evaluation studies has been mentioned under “Supplementary-Section (1)”. Briefly, 20 

mg of DTH was added to glass vial containing the mixture of PUFA-enriched Maisine-35-1 

(338 mg), Tween 80 (434 mg) and Transcutol HP (227 mg), followed by vortexing for 2 min 

to obtain a homogenous mixture. The resultant mixture was allowed to incubate in shaker 

water bath (Lab Tech, Korea) operated at 50 strokes/min for 24 h at 37°C to attain the 

equilibrium and form an isotropic formulation of liquid DTH-SNELS. DTH-SNELS were 

analysed for self-emulsification time, globule size, zeta potential and drug loading as per 

standard protocols provided in “Supplementary-Section (2)”. 

2.2 MCF-7 and MDA-MB-231 Cell Culture Experiments 

 The details on the cell line procurement, cell culture experiments and conditions have 

been elaborated in “Supplementary-Section (3)”. 

2.2.1 Cell Viability Assay 

 The cytotoxicity of DTH, blank SNELS and DTH-SNELS was assessed on MCF-7 

and MDA-MB-231 cells using PrestoBlue (Invitrogen, USA). Details on the experimental 

technique have been mentioned in “Supplementary-Section (3.1)”. 



6 

 

2.2.2 Qualitative and Quantitative Cellular uptake 

 Qualitative cellular uptake investigations were conducted by fluorescence microscopy 

on MCF-7 and MDA-MB-231 cell lines employing rhodamine-123 (Rh-123) as a tracker dye, 

loaded on DTH-SNELS. Cells (1×105) per well for both cell lines were plated in 6-well plate 

containing cover-slips, and allowed to adhere for an overnight (Lin Mei, 2009, Khurana et al., 

2018). Once adhered, the cells were treated with 0.078µM loaded Rh-123 DTH-SNELS 

(Rh123-DTH-SNELS) (50µg) for 15min to 4h separately at 37°C. Subsequently, the cells 

were washed thrice with pre-warmed PBS and fixed for 20min at room temperature using 4% 

(v/v) paraformaldehyde. Cells were washed thrice with PBS prior to mounting these on the 

microscope slides with Vectashield® mounting medium containing 300nM DAPI for staining 

the cell nuclei. Cells were imaged on a modified Zeiss Cell Observer Imaging System using a 

Zeiss EC-Plan-Neofluar 40x/1.3 oil objective, while Rh-123 and DAPI were imaged using a 

filter set with Ex/Em of 450-490nm/500-550nm and 335-383nm/420-470nm, respectively 

and analysed using the Zeiss ZEN desk Imaging Software. For quantitative measurement, 

1x105 cells were seeded in each well of the six-well plate and incubated for an overnight. Rh-

123-SNELS (100µg/mL) was added to each well and cells were incubated for different time 

intervals, in a manner quite similar to qualitative measurement. The medium containing 

SNELS was removed after respective time point, cells were tyrpsinized after intense washing 

and re-suspended in PBS for immediate Flowcytometry analysis. Rh-123 signals were 

detected in FL-1 channel (530/30nm) of BD-FACSAria flow cytometer. A total of 10,000 

events were acquired and data were analysed using Flowing software version 2.5.1 

(University of Turko, Finland). 

2.2.3 Mechanism of Cellular Uptake 

 To confirm the mechanism of cellular uptake, specific pharmacological inhibitors 

were used while cell number and culture conditions were similar to those employed during 
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cellular uptake experiments (Martins S, 2012). Briefly, sucrose (0.45 M) for clathrin-

dependent, nystatin (5µg/mL) for caveolae-dependent, and cytochalasin-B (5µg/mL) for 

phagocytosis-dependent were used. After 30 min of respective inhibitor treatment, cells were 

further exposed to Rh-123-DTH-SNELS for 30 min. Cells were incubated at 4°C instead of 

37°C, in order to inhibit the endocytosis process, washed with warm PBS, and counter 

stained with DAPI for fluorescent microscopy. Trypsinized cells from separate plates were 

used for flowcytometric based measurement.  

2.2.4 Cell Death Assay  

 To study the mechanism of cell death, Annexin-propidium iodide (PI) assay was used. 

Briefly, 1x105 MCF-7 and MDA-MB-231 cells were seeded in each well of 24-well plate and 

allowed to adhere for an overnight (Morse et al., 2005). Cells were treated with DTH, blank 

SNELS and DTH-SNELS for 24h. After incubation, the cells were harvested using trypsin 

and washed with PBS. Cell pellet was reconstituted in annexin binding buffer (100µL) and 

stained as per the manufacturer’s instructions (Molecular Probes Inc, Oregon USA). 

Untreated cells, serving as control, were used to set the quadrant in dotplot. Stained cells 

were acquired immediately using benchtop flowcytometer (Acuri C6, BD, US BD 

Biosciences, CA USA). A total of 10,000 cells per treatment were acquired from 3 

independent experiments.  

2.2.5 Cell Cycle Analysis 

 To study the effect of free drug and DTH-SNELS on distribution of cells in different 

phases, PI cell cycle analysis was conducted (Pozarowski P, 2004). Cells (1x104 per well) 

were seeded in 24-well plate, incubated for an overnight and treated with IC50 dose of the 

drug and SNELS containing an equivalent amount. Post-treatment, cells were de-adhered 

using trypsin and washed with PBS. Re-dispersed cells were fixed using 70% ice-chilled 

ethanol, added drop-wise and stored at -20°C at least for 24h. Fixed cells were stained with 
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50µg/mL of PI (Sigma Aldrich, UK) in the presence of 100µg/mL RNAse (Sigma, USA) at 

37°C for 30 min. Stained nuclei were analysed on BD-FACSAria flowcytometer (BD 

Biosciences, CA, USA) (Cecchini et al., 2012).  

2.2.6 P-gp efflux assay 

 Overexpression of P-gp on MCF-7 and MDA-MB-231 cells is well documented in 

literature (He et al., 2010; Bao et al., 2012). P-gp confers resistance by preventing enough 

accumulation of anticancer drugs within the cell, thereby avoiding their cytotoxic or 

apoptotic effects (Liang et al., 2010). For evaluating the P-gp efflux, the multi-drug 

resistance dye efflux assay kit (M/s Chemicon International, USA) was employed, the 

detailed procedure is mentioned in Section 3.2. 

2.2.7 Cellular Uptake by Macrophages 

 RAW 264.7, mouse monocyte macrophage was procured from ECACC, Public 

Health England, Salisbury, England. To understand the macrophage uptake, 1×105 cells/well 

were seeded in DMEM media supplemented with FBS and glutamine, incubated in 6-well 

culture plate for overnight. These cells were treated with Rh-123-DTH-SNELS for 4h and 

were analyzed as per the procedure described in Section 2.2.2 for qualitative and quantitative 

analysis. Intensity of the fluorescence indicated the extent of cellular uptake. 

2.3 In Vivo Studies 

2.3.1 Toxicity study 

 The short-term repeated dose toxicity studies were performed as per the guidelines of 

Organization Economic Cooperation and Development (OECD; TG 407). The animals were 

procured from Panjab University Centre Animal House, after obtaining the requisite approval 

from Animals Institutional Committee, Chandigarh (PU/IAEC/S/14/104). Details of the 
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experimental details on histopathological, haematological and biodistribution studies are 

mentioned under “Supplementary-Section 4”. 

2.3.2 In vivo antitumor efficacy 

 In vivo antitumor efficacy was evaluated in DMBA induced breast cancer model in 

female Wistar rats (weighing 200-225g) (Wang and Zhang, 2017). Mammary tumor was 

induced by administration of DMBA solution in soybean oil i/p at a dose of 45mg/kg at 

weekly intervals for 3 weeks. When tumor reached measurable size, all the tumor-bearing 

animals were segregated and divided into 3 groups, i.e., free DTH (20mg/kg), DTH-SNELS 

(equivalent to 20mg/kg DTH) and normal saline. Length of the tumour was measured using 

vernier calliper, and tumor volume (V) was measured according to the following formula 

(Eq-1): 

                                       ...... Eq 1 

 where, r is the radius of the tumor. All the animals were weighed and tumor size was 

recorded prior to treatment. The treatments were administered thrice a week for a total of 4-

week period, and tumor growth was monitored for 30 days. Tumor size and animal weight 

were measured over a period of 60 days and animals were observed for any sign(s) of 

mortality (Athawale et al., 2014). 

 

3. Results 

3.1 Self-emulsification time 

 Emulsification time of DTH-SNELS in 0.1 N HCl (pH 1.2) was found to range 

between 130 and 190 seconds, i.e., < 3min. Lower values of emulsification in the current 

study indicated the spontaneity of the emulsification process of the DTH-SNELS to produce 

the nanoemulsion with transparent bluish tinge appearance (Beg et al., 2013). 

3

3
4 rV p=
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3.2 Globule size and zeta potential 

 DTH-SNELS showed globule size of <115 nm indicating its nano-micelllar nature 

while zeta potential of -30 mV confirmed its stability (Beg et al., 2013).  

3.3 Cell Viability Assay 

 The concentration and time-dependent cytotoxicity of DTH, blank SNELS and DTH-

SNELS was investigated for MCF-7 and MDA-MB-231 cell lines using Presto blue cell 

viability assay (Figure 1). DTH-SNELS exhibited an early onset of action in MCF-7 cells as 

compared to MDA-MB-231 (Figure 1). The IC50 value for MCF-7 cells was 4.7, 5.96, 8.68 

folds and for MDA-MB-231 cells 1.87, 2.09, 3.35 fold higher than DTH at 24, 48 and 72h 

respectively, clearly demonstrating superior cytotoxic performance of DTH-SNELS in both 

type of cells. From our results it was delineated, DTH is less effective for TNBC cells than 

the other breast cancer cell lines. It is noteworthy that the DTH-SNELS showed higher 

cytotoxicity as compared to the free drug not only for MCF-7 but as well as for TNBC MDA-

MB-231 cells. TNBC being more aggressive is the difficult type of cancer to cure and has 

higher rate of recurrence as compared to other types of breast cancers (Ovcaricek et al., 

2011). DTH-SNELS showed promise with required low drug concentration in order to 

achieve the same in vitro therapeutic efficiency, than free DTH for MDA-MB-231. This 

could be due to the advantages of nanomedicine, including the high drug transportation 

efficiency across the cell membrane by the mechanism of endocytosis, and also the ability of 

the nanocarrier to overcome multi-drug resistance (MDR). 

3.4 Qualitative and Quantitative Cellular Uptake 

 For investigating the cellular uptake in MCF-7 and MDA-MB-231 cells, it has been 

observed that Rh-123-DTH-SNELS started appearing within first 10 min in MCF-7 and 30 

min in MDA-MB-231 cells as visualized by the presence of green signals mostly localized 

around the nuclei in the cytoplasm [Figure 2 (A) and (D)]. Qualitative analysis using 
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photomicrographs displayed the fluorescent signals due to Rh-123-DTH-SNELS uptake at 

various time points in MCF-7 [Figure 2(A)] and MDA-MB-231 cells [Figure 2(D)]. The 

corresponding overlay histograms generated after the data were analysed through flowing 

software, further corroborated the substantial cellular uptake of SNELS at the given time 

points, i.e., 30min, 2h and 4h in both TNBC [Figure 2(E)] and non-TNBC cells [Figure 2(B)], 

though the intensity of fluorescence was more for MCF-7 cells than MDA-MB-231 cells 

suggesting that the SNELS encountered less hindrance with MCF-7 cells. The results are 

contradictory to some of reports documented in literature where MDA-MB-231 cells seems 

to be more sensitive (Reddel et al., 1985; Jia et al., 2014).  

 Further quantitative analysis made through the FITC value generated for various time-

points supported the increase of its value upto 4h. Interestingly, it was observed that there 

was no increase in FITC fluorescence value after 4h, in both the cell lines [Figure 2(C) & 

(F)]. Fluorescence signals were recorded upto 24h exposure (data not shown) proposing that 

1 ×105 concentration of cells were getting saturated with the micelles formed from 100µg of 

Rh-123-DTH-SNELS, with no further increase in the FITC value observed after 4h. 

Literature also supports the saturation effect of cells after a certain period (Garanti et al., 

2016). After 30min, the faster cellular uptake was observed for MCF-7, as depicted from 

higher FITC value, than for MDA-MB-231 cells. 

3.5 Cellular Uptake Mechanisms 

 Mechanistic insights to investigate the uptake mechanisms were provided by both 

qualitative and quantitative measurement. Figure 3 (A&C), displays histograms of flow 

cytometry and their corresponding fluorescent images, delineating that the prime pathway of 

SNELS uptake for both MCF-7 and MDA-MB-231 cell lines to be clathrin-mediated 

endocytosis (CME), as significantly lower fluorescent intensity was observed when metabolic 

inhibitor sucrose hypertonic treatment was employed. Figure 3 (B& D) further, corroborate 
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the same, as the fluorescence intensity in the cells treated with sucrose as inhibitor is 

significantly less. Mechanistically, CME involves engulfment of receptors associated with 

their ligands to a coated pit. The coated pit forms due to polymerization of a cytosolic protein 

called clathrin-1, which also requires assembly proteins like AP180 and AP-2 (Harush-

Frenkel et al., 2007). Poly(lactic-co-glycolic acid) (Panyam and Labhasetwar, 2003), silica-

based (Nan et al., 2008) and cationic chitosan nanoparticles (Huang et al., 2002) have been 

shown to utilize CME for cellular internalization. The authors here for the very first time 

report the mechanism by which the SNELS are being uptaken by the cancerous cells. 

3.6 Apoptosis Assay 

 Detection of phosphatidylserine by fluorescence-assisted detection with PI is well 

established technique to measure apoptosis. Intact cells are stained negative for both Annexin 

V and PI (Rieger et al., 2011). Early apoptotic cells and late apoptosis can be distinguished 

based on “Annexin-positive” and “Annexin with PI positivity” respectively, while necrosis or 

cell death during processing can be identified using “PI only” signal. Flow cytometric study 

with Annexin V assay showed that 99.69% and 99.83% of control MCF-7 and MDA-MB-

231 culture cells (p>0.05) were viable (Figure 4 A&E). The percentages of apoptotic cells 

(including early and late) in MCF-7 cells treated with Blank SNELS, DTH and DTH-SNELS 

were 25.58%± 2.21%, 47.88%± 5.32%, and 79.28± 6.89%, respectively (Figure 4 B-D), 

while the percentages of apoptotic cells in MDA-MB-231 cells treated with blank SNELS, 

DTH and DTH-SNELS were 21.69%± 1.78%, 41.34%± 4.72%, and 81.81%± 7.38%, 

respectively (Figure 4 F-H). 

 These results indicate that the percentage of apoptotic cells induced by DTH-SNELS 

was much higher than free drug in both MCF-7 cells (1.65 fold) and MDA-MB-231 cells (≈ 2 

folds). This significant increased percentage of apoptotic cells caused by DTH-SNELS in 



13 

 

comparison with free drug may be attributed to the improved cellular uptake of DTH-SNELS 

indicating the superiority of DTH-SNELS and its potential use in aggressive TNBC. 

3.7 Cell Cycle Arrest  

 It has been reported that DTH acts at molecular level by debilating mitosis, impairs 

proliferation of tumor cells and inducing cell cycle arrest (Harush-Frenkel et al., 2007; 

Hernandez-Vargas et al., 2007). Flow cytometry studies were performed to determine the 

differences in cell cycle distribution among the treatments [Figure 5(i)]. Table 1 depicts the 

results after treating MCF-7 and MDA-MB-231 cells for 24 h with free DTH or DTH-SNELS 

at IC50 values. DTH-SNELS treatment induced accumulation in G2/M with a significant 

decrease in G0/G1 phase versus control cells. After exposure to DTH SNELS, there was 1.86 

folds decrease of MDA-MB-231 (from 72.5% to 38.9%), and 1.48 folds decrease of MCF-7 

cells (from 60.3% to 40.6%) in the G1 phase. The accumulation in G2/M phase after DTH-

SNELS treatment was 2.21 and 2.17 times greater than free DTH in MCF-7 and MDA-MB-

231 cells respectively. The rapid decrease in cell cycle progression, testified by the increased 

percentage of cells G2/M phase evidence for potential clinical applications of DTH-SNELS 

in both TNBC and non TNBC (Liu et al., 2011; Yuan et al., 2014b). Figure 5(i) portrays the 

ratio of early and late apoptotic stages and have been summarized in Table 1. 

3.8 P-gp Efflux Assay 

 The P-gp efflux assay revealed that both the dyes (i.e., Rh-123 and DiOC2), were 

efflux out at 37 °C, as evident from lack of intracellular accumulation of the fluorescent dye 

in MCF-7 and MDA-MB-231 cells (Figure 4 J&K ). On the other hand, incubation with P-gp 

efflux inhibitor, i.e., vinblastine showed that dyes after coupling with the former, block both 

MDR1 and BCRP transporters at 37°C, eventually leading to higher fluorescence intensity 

without any efflux. DTH-SNELS interfered with the microenvironment of P-gp and 

weakened the P-gp mediated efflux, as apparent from higher accumulation of Rh-123 and 
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DiOC2 dyes in both the cell lines, suggesting MDR1 and BCRP transporters were not 

functional. Accordingly, the excipients of DTH- SNELS, i.e., Tween 80 play a major role in 

inhibiting the P-gp efflux and significantly reduced transporter efficiencies for the P-gp 

substrate, i.e., Rh-123 and DiOC2 dyes (Khurana et al 2017 (b). 

3.9 Macrophage uptake 

 Nanoparticles are very efficiently scavenged from circulating blood and tissues by 

macrophages resident in tissue and filtration organs (MPS system), severely limiting particle 

targeting Gustafson et al., 2015). Though qualitative and quantitative estimation confirmed 

higher uptake of DTH-SNELS by MCF-7 (fluorescence intensity of 98) and MDA-MB-231 

(fluorescence intensity of 71) cells [Figure 4 (M&N)]. Nevertheless, DTH-SNELS were 

uptaken to much lower extent (fluorescence intensity of 19) by the macrophages when 

incubated for 4h with RAW 264.7 [Figure 4(L)]. This would limit rapid blood clearance of 

DTH-SNELS and would lead to accumulation at target delivery sites (Beddoes et al., 2015) 

3.10 In vivo toxicity studies 

 Figure 5(ii) shows histopathological findings on comparing with (A) normal rat after 

administering, (B) plain DTH, (C) blank SNELS formulation, (D) DTH-SNELS. (1) Kidney 

(A) glomeruli, tubules and blood vessels are within normal limits; (B) glomeruli, tubules and 

blood vessels are within normal limits while the interstitium shows focal moderate to dense 

lymphocytic inflammatory infiltrate; (C) glomeruli, tubules and blood vessels are within 

normal limits; (D) renal medulla shows multiple foci of microscopic hemorrhage and rest of 

renal parenchyma is within normal limits. (2) Heart (A) endocardium, epicardium and 

myocardium do not show significant changes; (B) endocardium and epicardium are normal 

whereas the myocardium shows degenerative changes in the myocytes, extensive interstitial 

oedema and inflammatory cells (which are chiefly macrophages); (C) endocardium, 
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epicardium and myocardium do not show any significant changes; (D) subendocardial 

inflammation which extends into the underlying myocardium and the inflammatory cells are 

chiefly lymphocytes. (3) Small intestine (A-D) Ileum shows normal villi and brush borders. 

No other significant changes are observed. (4) Large intestine (A-D) Mucosa, submucosa, 

muscularis serosae are within normal limits. (5) Spleen (A-D) Spleenic red and white pulp 

doesn’t show are within normal limits. (6) Pancreas (A,B,C&D) pancreatic acini and islets 

do not show any significant changes. (7) Liver (B) Liver shows occasional focus of necrosis 

in mid zone; (A,C&D) the portal tracts, central vein sinusoids do not show any significant 

changes. (8) Stomach (A-D) Mucosa, submucosa, muscularis and serosa do not show any 

significant changes. 

 The whole blood count revealed that the plain DTH solution was significantly 

(p<0.001) affecting the white blood cells (WBC) count, red blood cells (RBC) count, 

haemoglobin (HGB), haematocrit (HCT) and platelet (PLT) count, in consonance the well-

known fact that the chemotherapy could decrease the whole blood count. Further, with DTH-

SNELS, there was a significant reduction in the whole blood count (p<0.05). No significant 

effect on blood count, however, was observed with blank SNELS on comparison with control 

(p>0.05). Table 2 depicts the precise values of the whole blood count parameters for all the 

treatments.  

 Further, the slides of blood samples were prepared and observed under upright light 

microscope. Results showed that there were agglomerations with plain DTH [Figure 5 (iii)B] 

while the blank and DTH-SNELS didn’t show any morphological changes in the shape of 

RBC and were more or less similar to control [Figure 5 (iii) C & D]. 

 Figure 5 (iv) shows the amount of DTH distributed in various organs. It was observed 

that the DTH concentration was significantly higher than DTH-SNELS in kidney, heart and 

liver (p<0.05). Also, insignificant DTH concentration (p>0.05) was recorded in other vital 
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organs. Further, it was examined that the results of histopathology are inconsonance with 

biodistribution.  

3.11 In Vivo Antitumor Efficacy 

 Figure 6 B shows slight tumor regression after repetitive oral administration of DTH 

vis-a-vis control tumor (Figure 6A) while major tumor size inhibition after treating with DTH 

SNELS (Figure 6 C) for 30 days. The volume of the control tumor after 30 days was recorded 

as 14.14 cm3 (Figure 6 (A), while of DTH treated animals showed some regression with 

tumor volume of 10.31 cm3 (p<0.05) (Figure 6 (B). While DTH-SNELS treated animals 

showed 8.96 times lower tumor volume (1.1508 cm3; p<0.001). These results were confirmed 

with histopathology of the excised tumor (Figure 6 (D,E,F) tissue (Garg et al., 2016). The 

residual tumor burden in percentage was 27.08% and 91.86% in case of DTH-SNELS and 

DTH, respectively, whereas the untreated animal group showed an increase in tumor volume 

up to 141.40% (Figure 6G). Figure 6H represents the Kaplan−Meier survival plot after 60 

days of repetitive treatment with DTH and DTH formulations. No mortality was recorded in 

the animal group treated with DTH-SNELS, whereas about 50% deaths occurred in the 

animal groups treated with DTH. 

4. Discussion 

 DTH has generated keen interest among several scientists across the world owing to 

its clinical utility in many of the solid tumors, like breast, stomach, lung and prostate cancers 

(Hekmat et al., 2016). Being active cytotoxic agent, it is known to promote the 

polymerization of tubulin and stabilization of microtubules by preventing their disassembly. 

However, its clinical application is hampered primarily owing to several of its severe side 

effects, such as myelosuppression, neutropenia, anemia, hypersensitivity reaction and dose-

related toxicity (Yuan et al., 2014a). Apart from the clinical issues, other ostensible 

physicochemical challenges encountered with DTH include, poor aqueous solubility, low 
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intestinal permeability with poor and inconsistent bioavailability (Feng and Mumper, 2012; 

Valicherla et al., 2016). Therefore, in order to surmount the challenges and minimise its side 

effects, while keeping its antitumor activity intact, there is an ardent need to develop its 

newer nano formulations with improved safety and efficacy. Several nanotechnology-based 

formulations have already proved to exhibit promising results, like polymeric nanoparticles 

(Hwang et al., 2008), solid lipid nanoparticles (Xu et al., 2009), emulsions (Yanasarn et al., 

2009), liposomes (Liang et al., 2007), self nanoemulsifying drug delivery systems (Seo et al., 

2013) and micelles (Elsabahy et al., 2007). 

 Compared with other nanoformulations, the SNELS enhance the bioavailability of 

BCS Class II drugs like DTH, exhibiting poor solubility and lower permeability. It has other 

added advantages, including easier preparation, improved stability, enhanced scalability, 

better safety and market potential. Also, Omega-3 PUFA such as linolenic acid are naturally 

occurring energy resources utilized as cellular membrane components and play an important 

role in cell growth (Ojima et al., 2012). PUFAs have been uptaken more rapidly by tumor 

tissue than normal cells. Being lipophilic in nature, it has shown that PUFAs get readily 

incorporated into the lipid bilayer of tumor cells, and thereby disrupting the morphology of 

the cell and presumably influences the susceptibility of the tumor cells to anticancer agents. 

Therefore, PUFAs can be used as an applicable carrier to increase the therapeutic efficacy of 

anticancer drugs (Wang et al., 2012). 

 The current research work testifies the immense drug delivery potential of PUFA 

based DTH-SNELS through improved in vitro and in vivo efficacy and thereby, enhanced its 

anti-tumor activity. The systematically optimized SNELS comprised of isotropic mixture of 

omega-6 Maisine-35-1, Tween 80 (a hydrophilic surfactant) and Transcutol HP (a 

cosurfactant). Characterization of the DTH-SNELS proved spontaneous formation of the 

nanoemulsions, with low emulsification time (< 3min) and smaller globule size (~100nm) 
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(Khurana et al., 2017(a). The extent and rate of absorbed drug in the gastrointestinal tract are 

related to the carrier size and surface properties (Bandyopadhyay et al., 2015;Tripathi et al., 

2016).  

 Many previously reported studies have shown that DTH suppresses growth of tumor 

cells (Yuan et al., 2014a; Vardhan et al., 2016; Zhu et al., 2016). Further, DTH-SNELS was 

evaluated for cell viability, cellular uptake quantitation and mechanism, apoptosis and cell 

cycle assay in MCF-7 and MDA-MB-231 cells, and in vivo safety and efficacy studies in SD 

rats. Cell lines of luminal and basal origin were selected to study any differential behavior in 

DTH sensitivity, as basal phenotype is known to show chemo-resistance (Choi et al., 2014). 

 Cell viability assay indicates cell-line dependent behavior of DTH-SNELS. DTH is 

known to have lower activity in MDA-MB231 as compared to MCF-7 cells (Alami et al. 

(2007) Of significance is that DTH-SNELS showed 3.3 times lower IC50 in MDA-MB-231 

TNBC cells as compared with free DTH showing its potential in treatment of TNBC (Table 

S1). Presently TNBC have poor prognosis with a recent study after a 38 month follow up 

showed only 72% of TNBC patients were still alive as compared with 92% of non-TNBC 

patients (Joyce et al., 2017). Obviously, as expected DTH-SNELS proved to be highly 

efficacious in MCF-7 cells with 9 times lower IC50 as compared to free DTH authenticating 

its promise in non TNBC also. Cell uptake studies corroborated with the findings obtained in 

cell viability studies, as overall drug accumulation was higher in MCF-7 cells vis-à-vis 

MDA-MB-231 cells (Wawruszak et al., 2015). Difference in activity profile between both 

cell lines could be attributed to variation in intracellular DTH accumulation. Already, Britton 

et al. (2012) have reported the drug resistance behavior of MDA-MB-231 cells and 

expression of high levels of efflux protein, (ABCG-2) (Britton et al., 2012). 

Further, MDA-MB-231 cells are known to attenuate intracellular gradient of 

chemotherapeutics. On the similar lines, the authors have also observed higher and faster Rh-
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123-DTH-SNELS loading inside the MCF-7 cells as compared to MDA-MB-231. Moreover, 

no additional increase in fluorescence intensity was observed signifying that the cells were 

getting saturated after a particular time-point, i.e., 4h (Jiang et al., 2013).   

For studying the mechanism of drug uptake, various kinds of endocytotic inhibitors 

were employed, and it was observed that the micelles were taken-up by Clathrin-mediated 

pathway, as the fluorescent intensity was significantly lower in sucrose pre-treated cells, for 

both MCF-7 and MDA-MB-231 cells. Also, no fluorescence was observed at 4°C, suggesting 

that the cellular uptake of DTH-SNELS was by active transport only (Kam et al., 2006; 

Thurn et al., 2010; Vilella et al., 2015). 

         While DTH-SNELS showed significant level of cell death, it is imperative to check 

whether or not it is induced as programmed cell death, i.e. apoptosis. Annexin-V apoptosis 

assay was conducted to analyse the apoptosis in MCF-7 and MDA-MB-231 cells, which 

revealed that DTH-SNELS are quite effective in killing both the cell types (Attia et al., 

2016). Again, the observation was that DTH-SNELS were more senstive to MCF-7 than to 

MDA-MB-231 cells. Further, cell cycle analysis results revealed that both the cell lines were 

arrested at G2/M phase, thus vividly supporting the results of cytotoxicity (Nehme et al., 

2001; Morse et al., 2005). Further, the excipients of SNELS inhibit the P-gp efflux enabling 

the DTH-loaded formulation to enter the cancerous cells and are measured as a function of 

increased fluorescence intensity. The usage of surfactant in these nano micellar systems bring 

upon membrane perturbation and P-gp inhibition with enhanced drug permeability (Wu et al., 

2006). Tween 80 having both lipophilic and hydrophilic attributes, partitions between lipid 

and protein domains in the intestinal membrane disrupting its integrity and plausibly 

increasing the permeability of DTH (Khurana et al., 2017 (a). 

 Interestingly DTH-SNELS showed much lower uptake by Raw 264.7 macrophage cells. 

This could be due the small size of SNELS (<100 nm) coupled with hydrophilic barrier due 
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to prescence of Tween 80 that plausibly sterically prevents protein adsorption and 

subsequently adhesion of nanoparticles to macrophage cells and thus decrease the uptake by 

macrophage cells. (Perry et al., 2012; Moayedian et al., 2015). This would also prolong the 

blood circulation of the nanoparticles with significant reduction in opsonization and thus 

improved delivery to the target tissues. 

 Besides effective cell killing during cell viability and apoptosis assay, 

histopathological changes were observed only with the plain DTH, which showed 

morphological alterations in kidney’s glomeruli, tubules and blood vessels, and were more 

severe with plain DTH. Heart histopathology also showed changes in endocardium, 

epicardium and myocardium, while cerebral cortex showed occasional microglial nodules, 

which again was found to be bit severe with plain DTH. Further, WBC, RBC, HGB and HCT 

levels were depleted with plain DTH, which indicated toxicity. However, no toxicity was 

observed with blank SNELS as well as DTH-SNELS. This vouches distinct utility of SNELS 

in improving the safety profile of DTH. In vivo tumor efficacy revealed significant reduction 

in the tumor size (p < 0.05), when treated with optimized SNELS, thus ratifying the effective 

anti-tumor activity and potential patient benefit in this deadly disease.  

5. Conclusions 

In this study, systematically developed PUFA incorporated self-nanoemulsifying lipidic 

micellar systems have proven to be significantly efficacious (p<0.05) in terms of inhibiting 

the growth of TNBC and non-TNBC cell lines in vitro as well as tumor growth in DMBA 

induced tumor model in vivo. Furthermore, this is the first report on the lipidic nano micelles 

in terms of unearthing their clathrin-mediated endocytic uptake in the cancerous cells which 

is hitherto uncovered in the literature. Overall, these results suggest that DTH-SNELS has 

great potential in breast cancer therapeutics. Its usefulness in triple negative breast cancer is 
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of significance as current treatments have poor prognosis of the disease and there is dire need 

of new treatments .  
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FIGURES 
 

 
Figure 1: Time and dose dependent inhibition of cell growth by different 
concentrations of DTH, blank and DTH SNELS at 24 h (A, D), 48 h (B, E), 72 h 
(C,F) in MCF-7 and MDA-MB-231 cells. Data shown here is Mean ± SD from 3 
independent experiments. 
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Figure 2: (A, D) Qualitative analysis indicating the increased cellular uptake with 
the increase in the Rh-123 intensity for MCF-7 and MDA-MB-231 cells; (B, E) Flow 
cytometry histogram overlays for MCF-7 and MDA-MB-231 cells of Rh-123 SNELS 
following     30min,      2h and     4h incubation at 37 °C with     control cells as 
untreated cells; (C, F) Fluorescence intensity plotted vs time also corroborated the 
cellular uptake for MCF-7 and MDA-MB-231 cells 
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                                      MDA-MB-231 

 
Figure 3: Effect of endocytic inhibitors and low temperature on accumulation of 
Rh-123 loaded SNELS was measured relative to fluorescent intensity at 30min, for 
both, MCF-7 and MDA-MB-231. It is quite evident from the histograms (A and C) 
and the corresponding fluorescent images that SNELS are majorly being uptaken 
by the clathrin dependent pathways; Bargraphs (B and D) represent the mean ± 
SD (n=3) for the fluorescent intensity obtained after each treatment at different 
time points, validating the same results. However, precise values also generate 
very vital information that the uptake of SNELS is by energy dependent pathway. 

(A)

(B)
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Figure 4: MCF-7: (A) Control, (B) Blank SNELS, (C) DTH, (D) DTH SNELS; MDA-
MD-231:  (E) Control, (F) Blank SNELS, (G) DTH, (H) DTH SNELS; (I) Histogram 
of necrosis, late apoptosis, early apoptosis and viable cells for both MCF-7 and 
MDA-MB-231; Effect of DTH SNELS on efflux of MDRI transporter Rh-123 and 
BCRP transporter DiOC2 as measured by fluorescence in (J) MCF-7 and (K) MDA-
MB-231 cells; Histograms and fluorescent images indicating the extent of cellular 
uptake in (L) raw, (M) MCF-7 and (N) MDA-MB-231 cells of optimized 
formulation. 
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Figure 5: (i) Pictures depicting G2/M phase arrest for both MCF-7 and MDA-MB-231; 
(ii) Histopathological findings were examined on comparing with the (A) normal rat 
after administering (B) plain DTH, (C) blank SNELS formulation, (D) DTH-SNELS on 
various vital organs (1) Kidney; (2) Heart; (3) Small intestine; (4) Large intestine;  (5) 
Spleen; (6) Pancreas; (7) Liver;  (8) Stomach. (iii) Haematological pictures of rats when 
treated as (A) Control (B) DTH (C) Blank SNELS (D) DTH SNELS; (iv) Biodistribution 
of DTH and DTH SNELS in various body organs of rats  

 

 
Figure 6: In vivo antitumor efficacy of DTH SNELS. Picture of excised tumor tissue (A) 
Control; (B) DTH ; (C) DTH SNELS ; H&E stained images (D) Control and (E) Plain 
DTH: showing an invasive tumor arranged in closely packed clusters surrounded by 
desmoplastic stromal reaction consistent with invasive mammary carcinoma, (F) H&E 
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sections of DTH SNELS treated rat shows no residual malignancy and only 
fibrocolagenous tissue. (G) Tumor progression after repetitive oral administration of 
DTH SNELS (20 mg/kg equivalent to free DTH), DTH (20 mg/kg). (H) Kaplan−Meier 
survival curve of tumor-bearing rat treated with DTH and DTH SNELS. Tumor 
volume was taken as 100% at the start of drug treatment and tumor progression 
monitored till the end of the study. Each data point is represented as mean ± SEM (n = 
6). 
 
 
Table 1: Depicting the various percentages of cells in different cell cycles for 
various treatments 
    
 

Groups 

MCF-7 MDA-MB-231 MCF-7 MDA-MB-231 MCF-7 MDA-MB-

231 

G0/G1 S G2/M 

Control 63.3 + 2.8 72.5 + 2.5 20.4+ 1.3 18.8 + 1.5 14.1 + 0.6 7.9 + 1.2 
Blank 
SNELS 

65.3 + 3.7 70.6 + 1.7 31.2+ 2.2 31.0 +2.7 14.5 + 0.9 12.3 + 1.0 

DTH 50.1 + 5.4 48.8 + 3.4 17.5+ 1.6 18.9 + 2.1 19.6 + 1.2 21.9 + 2.3 
DTH 
SNELS 

40.6 + 2.7 38.9 + 1.4 24.7+ 1.9 23.7 + 1.9 43.5 + 1.1 47.5 + 3.1 

* SD: mean ± 3 

      Table 2: Whole blood count parameters 

 

Mode 

Control DTH Blank SNELS DTH SNELS 

Count Count Count Count 

WBC 22.9  x 103/µL  6.6  x 103/µL 21.7 x 103/µL 15.9 x 103/µL 

RBC 9.95 x 106/µL 7.10 x 106/µL 8.32 x 106/µL 8.18 x 106/µL 

HGB 16.1 g/dL 12.5 g/dL 15.8  g/dL 14.8 g/dL 

HCT 49.8 % 38.6 % 46.7 % 40.1 % 

PLT AG* 880 x 

103/µL 

AG* 277  x 103/µL AG* 812 x 103/µL AG* 640 x 

103/µL 

 

• SD mean ± 3 
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SUPPLEMANTARY MATERIAL 

Section 1: Brief preparation and optimisation of DTH-SNELS 

Lipidic systems facilitate the dissolution of poorly soluble drugs with moderate log P, and tend to 

augment oral biopharmaceutical performance by circumventing first-pass effect and enhancing 

lymphatic uptake too.  

The current studies, therefore are the extension of the earlier reported work in which the SNELS of 

DTH with varied lipidic chain length were developed by applying Quality by Design (QbD) approach, 

in order to augment the oral absorption and intestinal permeability of DTH.  

In lieu of the development, Placket Burman Design suggested that while preparing SNELS, oils, 

emulgents and co-emulgents are the most influential critical quality materials (CQMs). Equilibrium 

solubility studies revealed that maximum solubility of DTH was found in Maisine-35-1 and Capmul 

MCM (lipids), Tween 80 (nonionic emulgent) and Transcutol HP (co-emulgent). Further, D- and I-

optimal mixture designs were employed to obtain the optimal formulations. Various critical quality 

attributes (CQAs) were “traded off” to attain the desired objectives, i.e., smaller globule size (Dnm), 

minimum emulsification time (Temul), with maximum release in 15 min (Rel15min) and higher 

permeability in 45 min (Perm45min). In order to attain the stated objectives, the selection criteria 

embarked upon to search the optimized formulation were Temul<5 min, Dnm<100 nm and 

Rel15min>80%. Numerical optimization methodology was carried out for identifying the optimum 

formulation, where all the CQAs exhibited desirability close to unity.  

The optimum DTH-SNELS contained Maisine-35-1 (338 mg), Tween 80 (434 mg) and Transcutol HP 

(227 mg), with the values of CQAs as Dnm of 98 nm, Temul of 1.3 min, Rel15min of 75% and Perm45min 

82%.. The developed DTH SNELS formulations were further extensively characterized.  

Supplementary Section 2: Characterization of DTH-SNELS 

2.1 Self-emulsification time: One gram of optimized DTH-SNELS were prepared and added to 250 

mL of 0.1 N HCl (pH 1.2) under continuous stirring (50 rpm) using a USP XXXI Apparatus II (DS 

8000, M/s Labindia Instruments, Mumbai, India) at 37 ± 0.5 °C. The time required for complete 

dispersion of the formulation in aqueous phase to form nanoemulsion was recorded as self-

emulsification time.  
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2.2 Globule size and zeta potential: Aliquots of 1 mL each of the diluted DTH-SNELS were 

subjected for globule size analysis and zeta potential measurement employing dynamic light 

scattering technique (Zetasizer ZS 90, M/s Malvern Instruments, Worcestershire, UK). 

2.3 Transmission electron microscopy (TEM)  

Optimized DTH-SNELS formulation was diluted and subsequently stained with 1% phosphotungstic 

acid for 1 min, before subjecting for TEM analysis (JEM-2100 F, M/s Jeol, Tokyo, Japan). 

TEM imaging of optimized SNELS, comprising of Maisine-35-1 revealed the size range between 60.4 

and 70.7 nm 

Supplementary Section 3: MCF-7 and MDA-MB-231 Cell Culture Experiments 

The MCF-7 cell lines were obtained from University of Manchester, UK while MDA-MB-231 cell 

lines were purchased from ECACC, Public Health England, Salisbury, England. MCF-7 cell lines 

were grown in tissue culture flasks (75 cm2) and maintained under 5% CO2 atmosphere at 37 °C. The 

growth medium comprised of Dulbecco's Modified Eagle's Medium (DMEM, Sigma). The cultured 

cells were trypsinized once 90% confluent with 1% trypsin. Similarly, MDA-MB-231 cells were 

grown in L-15 Medium (Leibovitz) media. 

3.1 Cell Viability Assay 

Briefly, 1 × 103 cells in 100 µL per well in 96-well  culture plate (Costars, Corning Inc., NY, USA) 

were seeded and incubated for 24 h. The medium was replaced with 90 µL of medium containing 

different concentrations (10-1000 nM) of DTH or SNELS containing an equivalent amount of DTH. 

Cells were treated for 24, 48 and 72 h in separate culture plates and 10 µL of PrestoBlue was added 1 

h before each of the respective time interval. Cell viability was calculated using fluorescence 

measurement at 560 nm excitation and 590 nm emission wavelength, and expressed as percentage 

normalized to untreated controlled cells. 

3.2 P-gp Efflux Studies 

For evaluating the P-gp efflux, the multi-drug resistance dye efflux assay kit (M/s Chemicon 

International, USA) was employed. The efflux activity was measured to determine the intracellular 

accumulation of the fluorescent dyes, Rh-123 and DiOC2, to access the inhibitory activity of SNELS 

on MDR1 and BCRP transporters, respectively. MCF-7 and MDA-MB-231 containing 2.5 × 105 cells 

were incubated with Rh-123 alone, Rh-123 and vinblastine, Rh-123 loaded DTH-SNELS for 2 h at 
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37°C. All the formulations were suspended in RPMI-1640 medium (M/s Sigma-Aldrich, UK). 

Likewise, to estimate the potential of the developed SNELS formulation for blocking the activity of 

BCRP transporters, DiOC2 dye was employed. Similarly, MCF-7 and MDA-MB-231 (2.5 × 105) cells 

were incubated with DiOC2 alone, DiOC2 and vinblastine, DiOC2 loaded DTH-SNELS for 2 h at 37 

°C. The cells were washed with pre-warmed PBS and the fluorescence intensity was measured in a 

TECAN fluorescence microplate reader at an excitation wavelength of 485 nm and an emission 

wavelength of 530 nm. 

Supplementary Section 4 

A total of 12 Sprague Dawley (SD) female rats were divided into four groups of animals (n=3 each). 

Standard housing conditions were maintained and animals were allowed for regular solid feed and 

water ad-libitum. Free DTH, DTH-loaded and blank SNELS were administered by oral gavage at 

dose of 20mg/kg (equivalent of DTH), thrice a week for a total period of 4 weeks. Animals of control 

group were administered with normal saline. At the end of treatment in all groups, blood samples 

were collected using cardiac puncture, and animals were euthanized using diethyl ether. 

Haematological analysis was performed on blood samples and complete blood count and 

haemoglobin content (%) were measured. Also DTH levels in blood plasma were estimated by a 

previously reported method by our group. 

Afterwards, the animals were sacrificed using cervical dislocation procedure and vital organs (i.e., 

kidney, heart, small intestine, large intestine, spleen, pancreas, liver and stomach were carefully 

isolated with the help of surgical scissors. The organs were kept in petriplate and thoroughly washed 

with ice cold PBS (pH 7.4) to remove the cellular debris. Further, the organs were minced and 

crushed in a tissue homogenizer. The tissue homogenates were subjected to centrifugation at 5,000 

rpm (1,118 × g) and supernatant was collected for extraction of the drug by liquid-liquid extraction 

process using acetonitrile as the extracting solvent. The samples were filtered and subsequently 

analyzed employing a previously developed and validated UPLC method of DTH for analyzing drug 

concentration in various organs. 

All the vital organs were collected from all the groups, fixed in 10% formalin in saline, dehydrated in 

ascending grades of ethyl alcohol, cleared in xylol and mounted in molten paraplast at 58-62ºC. 

Sections of 5µm thickness were obtained on poly-L-lysin pre-coated slides and were stained using 

hematoxilin and eosin. Slides were evaluated for any structural change(s) under an upright light 

microscope (Olympus, Tokyo, Japan). 
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Table S1: IC50 Values DTH, blank and DTH SNELS at 24 , 48 h, 72 h in MCF-7 and MDA-MB-231 
cells 

 

IC50 MCF-7 Cells (nM) 

 24 h 48 h 72 h 

DTH 25.38 12.23 9.99 

BLANK SNELS 121.50 95.66 81.20 

DTH SNELS 5.39 2.05 1.15 

IC50 MDA-MB-231 Cells (nM) 

DTH 185.61 165.25 154.29 

BLANK SNELS 122.10 97.63 52.10 

DTH SNELS 98.97 78.97 45.95  

Data shown here is Mean ± SD from 3 independent experiments. 

 

 


