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Coumarin therapy has been associated with high levels of inter- and intra-individual 

variation in the required dose to reach a therapeutic anticoagulation outcome. 

Therefore, a dynamic system that is able to achieve accurate delivery of a warfarin 

dose is of significant importance. Here we assess, the ability of 3D printing to fabricate 

and deliver tailored individualised precision dosing using an in-vitro model. Sodium 

warfarin loaded filaments were compounded using hot melt extrusion (HME) and 

further fabricated via fused deposition modelling (FDM) 3D printing to produce 

capsular-ovoid-shaped dosage forms loaded at 200 and 400 µg dose. The solid 

dosage forms and comparator warfarin aqueous solutions were administered by oral 

gavage to Sprague–Dawley rats. In vitro, warfarin release was faster at pH 1.2 in 

comparison to pH 2. A novel UV imaging approach indicated that the erosion of the 

methacrylate matrix was at a rate of 16.4 and 15.2 µm/min for horizontal and vertical 

planes respectively. In vivo, 3D printed forms were as proportionately effective as 

their comparative solution form in doubling plasma exposure following a doubling of 

warfarin dose (184% versus 192% respectively). The 3D printed ovoids showed a 

lower Cmax of warfarin (1.51 and 3.33 mg/mL versus 2.5 and 6.44 mg/mL) and a longer 

Tmax (6 and 3.7 versus 4 and 1.5 h) in comparison to liquid formulation. This work 

demonstrates for the first time in vivo, the potential of FDM 3D printing to produce a 

tailored specific dosage form and to accurately titrate coumarin dose response to an 

individual patient. 
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1. Introduction  44 

For over 50 years now, coumarins have been the most prescribed oral anticoagulants.[1] 45 
Nevertheless, despite their wide use, coumarin therapy has been associated with a high level of 46 
inter-individual variation in dose required to achieve therapeutic anticoagulation response.[2] 47 
The administration of an inappropriate warfarin dose for example may place a patient in a 48 
hypercoagulable state or increase the patient's risk of bleeding complications early in therapy. 49 

As a consequence of over-anticoagulation response, there is an increased risk of major bleeding 50 
following the use of anticoagulants by 9.1% [3]. The American College of Chest Physicians 51 
(ACCP) supports an “induction” dose of 2 to 5 mg per day which needs to be adjusted 52 
according to the patient's International Normalised Ratio (INR)[4]. The pharmacodynamics 53 
and pharmacokinetics of coumarins are largely influenced by many factors such as patient age, 54 

body weight, dietary vitamin K intake, concomitant medications, as well as various disease 55 
states.[2] Hence to ensure that the patient's INR remains within the target range, regular 56 
coagulation monitoring and dose modification is necessary.[5] 57 

Nevertheless, limited doses of warfarin tablets are available in the market and dose 58 

modification usually requires multiple tablet ingestion or cutting or splitting of larger dose 59 
tablets, which could lead to variations in drug content.[6, 7] An area of potential improvement 60 
to warfarin therapy would be the ability to produce flexible on-demand precision tailored dose 61 
adjustments (particularly given warfarin’s due to narrow therapeutic index). One technology 62 

that can potentially easily benefit anticoagulant therapy is 3D printing, owing to its flexible and 63 
precise manufacturing capability, which enables administration of the lowest effective dose of 64 
the drug to maintain the target INR. Indeed, recently, Vuddanda et al. (2017) demonstrated the 65 

potential of a re-engineered thermal inkjet printer to address the challenge of warfarin dosage 66 
personalisation, achieving highly reproducible minute warfarin dose of approximately 50 μg 67 

[8] . 68 

3D printing potential and feasibility has been revealed in several fields such as aerospace, 69 

engineering, arts, as well as in fabricating medical implants and devices. Although still at its 70 

infancy in the field of personalised medicine, it is expected to revolutionise healthcare and set 71 
an innovative platform for pharmaceutical product design and extemporaneous preparation of 72 
patient-tailored dosage forms.[9] Fused deposition modelling (FDM) 3D printing, in particular, 73 

has been proposed as a platform for controlling the dose.[10] It has demonstrated its capability 74 
to manufacture mechanically stable tablets fabricated from pharmaceutical grade polymers 75 
without post-processing steps.[10-13] For instance, FDM 3D printing has been viably 76 

established using pharmaceutical grade polymers such as PVP [9, 14], methacrylate [15] and 77 
cellulose [12] based polymers.  78 

The use of animal models is commonly used to predict formulation behaviour in humans. 79 

The use of rats in particular is favoured due to their small size, relatively low cost of breeding 80 
and up-keep, as well as the presence of large databases of drug pharmacokinetic data in rats 81 
and in humans.[16] Nevertheless, the testing of solid dosage forms in rats presents a challenge 82 

in terms of ease of administration. Owing to the need to use a small dosage form size, crushed 83 
tablets filled in capsule or suspended in liquid have often been used as an inferior alternative 84 
to test the in vivo performance of a tablet in rats.[17, 18] However, such approaches 85 
significantly alter the nature of the dosage form. More recently, the formulation of mini-tablets 86 

for animal use have been attempted [19, 20]. It is therefore important to develop strategies that 87 
authentically test intact scaled down human dosage forms for animal studies to enable more 88 
reliable extrapolation of human pharmacokinetic responses.  89 
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This work aimed to assess the suitability of FDM 3D printer technology for i) fabricating 90 

purposely designed solid dosage forms, and ii) tailoring the dose of a narrow therapeutic index 91 
drug, namely warfarin. To achieve this goal, rat-tailored FDM 3D printed warfarin ovoid 92 
tablets were printed and administered to Sprague–Dawley rats for testing to obtain their 93 
pharmacokinetics (PK) parameters.  94 

2. Materials and methods 95 

 96 
2.1 Materials 97 

Warfarin (sodium salt) was purchased from Arcos (UK). Eudragit E was donated from 98 
Evonik Industries (Darmstadt, Germany). Triethyl citrate (TEC) and tri-calcium phosphate 99 
(TCP) were supplied by Sigma–Aldrich (UK). Acetonitrile and methanol were supplied by 100 
British Drug Houses (BDH, London, UK). Scotch Blue Painter’s tape 50 mm was supplied by 101 
3M (Bracknell, UK). 102 

2.2 Preparation and optimisation of filaments 103 

In order to fabricate drug-loaded filaments, a hot melt extrusion method was implemented 104 
using a Thermo-Scientific HAAKE MiniCTW extruder (Karlsruhe, Germany). A 10 g sample 105 
of Eudragit E: TEC: TCP: sodium warfarin 46.75 : 3.25 : 49:1) was accurately weighed and 106 
added gradually to counter flow twin-screw hot melt extruder, HAAKE MiniCTW (Karlsruhe, 107 

Germany). To allow homogeneous distribution of the powders, the molten mass was mixed in 108 
the extruder for at least 5 min prior to extrusion. The specific temperature of initial feeding and 109 

extrusion for the filament were 100 and 90 °C respectively. A torque control of 0.8 Nm was 110 
used to extrude the filaments. Filaments were stored in sealed plastic bags at room temperature 111 
before 3D printing. 112 

2.3 Design and printing of tablets 113 

Tablets were constructed with the pre-prepared filaments using a MakerBot Replicator® 2X 114 

Experimental 3D Printer (MakerBot Industries, New York, USA) equipped with 0.4 mm 115 
nozzle size. The templates used to print the tablets were designed in a caplet shape using 116 
Autodesk® 3ds Max® Design 2016 software version 18.0 (Autodesk, Inc., USA). The design 117 

was saved in a stereolithography (.stl) file format and was imported to the 3D printer’s 118 
software, MakerWare Version 3.9.1.1143 (Makerbot Industries, LLC., USA).  119 

Two sets of 3D printed tablets were fabricated: 120 

In order to establish the ability of the system to control the low dose of drug for clinical 121 

use, a series of tablets with increasing volumes were then printed by increasing the dimensions 122 
of the design: length × width × heights (L, H, W). The ratios between dimensions 123 
(W = H = 0.4 L) remained constant. The size of the printed tablet (M) was changed to achieve 124 
target doses of 0.5, 1, 3 or 5 mg (Table 1S).  125 

To assess in vivo performance of this tablets in rats, a separate set of 3D printed ovoid 126 

shapes were manufactured with a cylindrical diameter of 2 mm and lengths of 5.5 or 11 mm to 127 
achieve a dose of 200 and 400µg respectively. Objects were printed using modified settings of 128 
the software as described earlier in our previous work at a temperature of 135 oC. [15] 129 

2.4 Thermal analysis 130 
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Samples (raw materials, extruded filaments and printed tablets) were characterised using 131 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). For DSC 132 
analysis, a differential scanning calorimeter DSC Q2000 (TA Instruments, Elstree, 133 
Hertfordshire, UK) with a heating rate of 10 °C/min was used. Samples were heated to 100 °C 134 
for 5 min to exclude the effect of humidity then cooled to −20 °C. This was followed by a heat 135 

scan from −20 °C to 300 °C. Analysis was carried out under a purge of nitrogen (50 mL/min). 136 
The data was analysed using TA 2000 analysis software. Standard 40 µL TA aluminium pans 137 
and pin-holed lids were used with an approximate sample mass of 5 mg. All measurements 138 
were carried out in triplicate. 139 

For TGA analysis, raw materials, extruded filaments and 3D printed tablets were analysed 140 
using a TGA/SDTA851e Mettler Toledo (Leicester, UK). Samples (5 mg, n=3) were placed in 141 

40 µL aluminium pans and were then heated from 25 to 500 ̊C at a heating rate of 10°C/min 142 
and nitrogen gas flow of 50 mL/min. The thermal decomposition (or degradation) profile was 143 
analysed using STARE software version 9.00.  144 

 145 

2.5 X-ray powder diffraction (XRD) 146 

Samples (raw materials extruded filaments and printed tablets) were characterised using 147 
an X-ray diffractometer, D2 Phaser with Lynxeye (Bruker, Germany). Samples were scanned 148 

from (2θ)= 5° to 50° using 0.01° step width and a 1 second time count. The divergence slit was 149 
1 mm and the scatter slit 0.6 mm. The wavelength of the X-ray was 0.154 nm using Cu source 150 
and a voltage of 30 kV. Filament emission was 10 mA using a scan type coupled with a 151 

theta/theta scintillation counter over 60 min. 152 

 153 

2.6 Characterisation of tablet properties 154 

The hardness of six ovoid tablets was measured using a TBH 200 (Erweka GmbH, 155 

Heusenstamm, Germany). The mean crushing strength was determined, whereby an increasing 156 

force was applied to the tablet until it fractured or deformed. 157 

In order to assess the friability of the tablets, 20 tablets were randomly selected, weighed 158 

and placed in a friability tester Erweka TAR 10 (Erweka GmbH, Heusenstamm, Germany) and 159 
the drum was then rotated at 25 rpm for 4 min. The tablets were reweighed and the differences 160 

in weight were calculated and displayed as a percentage of the original sample weight. In order 161 
to assess weight uniformity, 10 tablets were randomly selected and weighed. The average 162 
weights were measured and the percentage deviation of the individual tablets from the mean 163 

was determined. 164 

     To assess the impact of both HME and FDM 3D printing on drug content, 3 tablets from 165 
each formulation, were randomly selected and weighed. Tablets were then individually placed 166 

in a 1000 mL volumetric flask containing 0.1 M HCl and sonicated for 2 h. The solutions were 167 

filtered through 0.22 μm Millex-GP syringe filters (Merck Millipore, USA) and prepared for 168 

HPLC analysis. 169 

    Warfarin concentration in samples was assessed using an Agilent UV-HPLC 1260 series 170 
(Agilent Technologies, Inc., Germany) equipped with Kinetex C18 column (100 × 2.1 mm, 171 
particle size 2.6 μm) (Phenomenex, Torrance, USA) and set at temperature 26 °C. The mobile 172 
phase was 4:1 mixture of methanol: pH 3 water (adjusted with orthophosphoric acid) at a flow 173 
rate of 1 mL/min. The injection volume was 100 μL and the stop time was 10 min. The 174 
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wavelength was set to 230 nm and the retention time of the drug was 6.3 min with a limit of detection 175 
of 0.05 mg/L.  176 

2.7 In vitro dissolution studies.  177 

    a.Surface dissolution imaging. A Sirius SDi2, the second generation UV imaging system, 178 
designed to accommodate whole dosage forms, was used to visualize surface dissolution of 179 
sodium warfarin from the 3D printed dosage forms as a whole (Fig. 1). The 3D printed tablets 180 

were introduced into the SDi2’s flow cell. The dissolution medium (0.1M HCl at 37oC) applied 181 
at a flow rate of 8.2 mL/min. The dissolution medium was introduced into the flow cell in the 182 
open loop configuration, from bottom to top, with an equivalent linear velocity of 1 cm/min. 183 
Dissolution experiments were recorded for a total duration of 60 min. The two dimensional 184 
detection area on the SDi2 is significantly larger than for the SDI (24 mm width x 28 mm 185 

height) to accommodate dissolution imaging profiling of intact whole dosage forms, with a 186 
spatial resolution of 13.75 µm. The flow cell was illuminated using alternate pulses from two 187 
255 and 520 nm wavelength LEDs. The dual wavelength enables two separate video captures 188 

to be produced from a single experiment. Real-time data were then used to measure and 189 
differentiate between drug release into solution and tablet erosion from the 255 and 520 nm 190 
light obtained videos, respectively. 191 

 192 

Figure 1. Schematic diagram of SDi2 instrument. LED’s of different wavelength are em ployed to 193 
illuminate the 3D printed tablet in flow through cell filled with gastric medium. The obscuration or 194 
absorbance of the sample was recorded using an Actipix detector. The medium is pre-heated to 37oC 195 
before going through the Whole Dosage Flow Cell and is recirculated in a closed loop configuration.  196 

b. USP II dissolution studies. The in vitro release of warfarin from 3D printed tablets was 197 
investigated using a USP II Erweka DT600 dissolution tester (Erweka GmbH, Heusenstamm, 198 
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Germany). Three tablets were randomly selected and individually placed in the dissolution 199 

vessels each containing 900 mL of a fasted state simulated gastric fluid (FaSSGF) (1.75 mM 200 
SLS, 0.01N HCl, 0.2% NaCl, pH 2.0) at 50 rpm and 37 ± 0.5 °C. Aliquots (5 mL) were 201 
manually collected using 5 mL Leur-Lock syringes at 0, 5, 10, 15, 20, 25, 30, 40, 50 and 60 min 202 
time intervals and filtered through an Agilent 0.22 μm filter. Each aliquot withdrawn was 203 

replaced with 5 mL of 0.1 M HCl and analysed using the above described HPLC method. 204 

2.8 In vivo studies 205 

     Adult heathy male Sprague–Dawley rats with an average weight of 240±15 g 206 

accommodated at the University of Petra’s Animal House (Amman, Jordan) under controlled 207 
temperature (22 °C–24 °C), humidity (55%–65%), and a 12 hours photoperiod cycle. All rats 208 
were acclimatized for 10 days before experimentation. Rats were weighed and randomized into 209 
groups (n=6 rats per cage). Rats were offered standard pellet diet (Jordan Feed Company Ltd., 210 
Amman, Jordan) and served clean tap water ad libitum. However, animals were fasted for 18 211 

hours before the day of testing. All experiments were carried out in accordance with University 212 

of Petra’s Institutional Guidelines on Animal Use that adopts the guidelines of the Federation 213 

of European Laboratory Animal Sciences Association (FELASA). The animal study protocols 214 
were revised and approved by the Higher Research Council at the Faculty of Pharmacy and 215 
Medical Sciences, University of Petra (Amman, Jordan). 216 

    3D printed tablets (200 or 400 µg) were administered to the rats via any oral capsule stainless 217 
steel feeding needle. Comparison control 1 mL warfarin solutions (200 or 400 µg), equivalent 218 
to the tablet doses, were freshly prepared and administered to the rats by a stainless steel oral 219 

gavage needle (Harvard Apparatus, Kent, UK). Following oral administrations, blood samples 220 
were pooled from rat’s tail (n=6 rats per group) at different time intervals namely at; 1, 2, 3, 4, 221 

6 and 8 hours post administration. Blood was left to clot, centrifuged for 10 min at 2000G, and 222 
then serum was separated and transferred directly into Eppendorf tubes, and kept in a freezer 223 
at −20 °C until analysis.  224 

2.9 Analysis of warfarin 225 

   For the analysis of warfarin an MS/MS system: API 3200 (Applied Biosystems, MDS 226 

SCIEX, USA) attached to Agilent 1200 HPLC (Agilent Technologies, USA) controlled by 227 
Analyst 1.6.1 software, was utilised. For the extraction of warfarin from the samples, 100 µL 228 
of spiked/blank plasma were pipetted into previously labelled Eppendorf tube, 25 µL of the 229 
internal standard (IS) Fenofibric acid (FFA) from 100.0 µg FFA/mL IS solution was added to 230 

the tubes and vortexed for 30 sec. Afterwards, the precipitation solution, acetonitrile (400.0L) 231 

was added to the tube and vortexed for further 1 min. Samples were then centrifuged for 5 min 232 
at 14,000 rpm and the supernatant was collated and transferred into an auto-sampler micro vial 233 

for analysis. The mobile phase used for analysis comprised of (30:70) mixture of ammonium 234 
chloride 0.001M: acetonitrile respectively eluted at a flow rate of 0.7 mL/min through a 235 
Thermo BDS Hypersil C18 (50×2.1 mm, particle size 5 µm) column (Thermo Fisher Scientific, 236 

Germany) at the temperature 30˚C. The injection volume was 5 μL and the stop time was 237 

0.7 min. The retention time of the drug was 0.3 min with a limit of detection of 10 ng/mL.  238 

2.10 Statistical Analysis 239 

   Independent sample T-test was also employed using a SPSS Software (22.0.0.2) to analyse 240 
the in vitro tablet characterisation results. Differences in results where p ≤0.05 were considered 241 
significant.  242 
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3. Results and discussion 243 

In this study, we explored the adaptability of FDM based 3D printing to engineer and control 244 
the dose of immediate release warfarin tablets. When a series of warfarin tablets with increasing 245 
dimensions were printed (Fig. 2A, Table S1), a high level of correlation was identified between 246 
the theoretical volume of the tablet design and their weights (R2=0.9934) (Fig. 2B). This 247 
indicated the ability of FDM 3D printing method to achieve a sufficient control of the mass of 248 

3D printed tablets. To establish the ability of such 3D printing method to control dosage, 249 
theoretical doses based on tablet mass and measured dose of warfarin in the tablet were 250 
compared. The range of dose accuracy was between 91.5% and 102.4% (Fig. 2C). The 251 
coefficient of determination between target and achieved dose (R2 = 0.9902) showed that it is 252 
possible to fabricate tablets with desired dose of warfarin through volume modification even 253 

at a minute dose of 500 µg (Fig. 2D). With the advances in 3D printers, additional safeguards 254 
and quality control mechanisms can be introduced to the evolving technology [21], which are 255 
expected to minimise dose variation in the near future.  256 

 257 

Figure 2. Precision of 3D printing to control low dose sodium warfarin. (A) Images of warfarin 258 
loaded FDM 3D printed tablets with increasing dose, (B) Correlation between the theoretical volume 259 
and tablet mass, (C) warfarin dose accuracy in the 3D printed tablets and (D) correlation between 260 

theoretical volume and warfarin dose (n=3, SD).  261 

Profiles from thermogravimetric analyses of warfarin and other additives as well as HME 262 

processed filaments and 3D printed tablets are shown if Fig. 3A. Sodium warfarin alone or 263 

incorporated in filaments did not suffer a significant weight loss at the printing temperature 264 
135 oC. Therefore, it can be assumed that minimal or no degradation of warfarin occurs in the 265 
HME as well as in the FDM’s nozzle under the utilised temperatures (Fig. 3A). The processing 266 
temperatures were lower than the melting point of sodium warfarin (161 oC). Differential 267 
scanning calorimetry was also conducted to examine the plasticising effect of components on 268 
the methacrylic filament. As demonstrated in Fig 3B, the addition of TEC as a plasticizer 269 
significantly depressed the Tg of filament to 34 oC from 54oC. However, warfarin was found 270 

http://www.sciencedirect.com/science/article/pii/S0928098714004370#f0010
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to have no significant effect on the Tg of Eudragit E. This could be attributed to the minute 271 

percentage of the drug used in the polymeric structure (1% w/w), which was insufficient to 272 
significantly influence the mobility of methacrylic polymer chains within the filament matrix. 273 
XRD spectra showed that β-calcium tribasic phosphate displayed peaks at 2-theta=17°, 27.8°, 274 
31°, 34.4° corresponding to calcium tribasic phosphate [22], whilst warfarin drug substance 275 

showed peaks at 2-theta=12.4° and 18°. XRD spectra of the warfarin filament and tablet 276 
showed an absence of these specific peaks [23, 24], suggesting the warfarin is present in an 277 
amorphous form within the tablet structure (Fig. 3C). 278 

From determination of the mechanical properties of the 3D printed tablets, the friability of 279 
all batches was found to be zero percent. This highlights a prime advantage of FDM 3D printing 280 
in generating mechanically stable tablets over its rival technologies such as extrusion 3D 281 

printing [25] and powder-based 3D printing. [26, 27] The lack of a drying step or any post-282 
printing finishing procedures, clearly demonstrates the potential of this technology to instantly 283 
produce a ready-to-use dosage form within minutes following a healthcare team request.  284 

 285 

Figure 3. Thermal analysis of Eudragit E based 3D printing filaments. (A) Thermal degradation profiles 286 
for Eudragit E, sodium warfarin, TCP, warfarin loaded filament and tablet, (B) DSC thermograph for 287 
warfarin loaded filament and tablet, (C) XRD spectra of Eudragit E, TCP, warfarin, and warfarin loaded 288 
filament and tablet. 289 

 290 

The release pattern of warfarin from the methacrylic matrix was investigated using a 291 
modified FaSSGF [28] as a dissolution medium (Fig. 4). All tablets showed a release pattern 292 

of > 80% dissolution at 45 min regardless of their individual sizes. The dissolution release 293 
profile was attributed to the ionisation of the amino groups of the cationic methacrylic polymer 294 
in modified FaSSGF (pH 2.0), which leads to electrostatic repulsion between cationic polymer 295 

chains and facilitates polymer dissolution and drug release. The release was compliant with 296 
British Pharmacopeia criteria for warfarin tablets [29]. 297 
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298 
Figure 4. In vitro release pattern of sodium warfarin from 3D printed tablets of different doses from a 299 
USPII dissolution test in modified FaSSGF (pH 2.0) (n=3, ±SD). 300 

To better understand the drug release from the 3D printed tablets, the dissolution behaviour 301 
of the tablets at the dissolving surface in contact with the dissolution media was explored. A 302 

single wavelength system has been previously used to study drug powder dissolution [30]. Here 303 
we employ a UV imaging technology capable of generating visual images from simultaneous 304 
spectroscopic evaluation for a complete dosage form (Fig. 5A, B). A clear advantage of using 305 

such a novel UV-VIS imaging technique over the other well-established imaging techniques 306 
lies in the simplicity of operation and interpretation of generated data, analogous to findings 307 
by Østergaard.[31] The measurement of light intensity passing through an area of a quartz tube 308 
as a function of position and time can also enable quantification of the drug substance at 309 
different time intervals. During the dissolution process, drug concentration increased in the 310 

first 20 min in the closed loop of the flow-through system. Simultaneously the tablet size was 311 
eroded at a rate of 16.4 and 15.2 µm/min for horizontal and vertical planes respectively. It is 312 

worth noting that surface analysis indicated no significant swelling in the first 5 min. The 313 
simultaneous drug release data suggested that under the dissolution conditions of study, the 314 

majority of drug release took place by a diffusion mechanism before the erosion of the 315 
methacrylic matrix within the flow-through cell is complete. 316 
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 317 

Figure 5. Changes in tablet height (A) and width (B) at 0, 10, 20, 30, 40, 50 and 60 min of the flow 318 
through dissolution test using Actipix SDI 2 dissolution imaging technology. (C) UV absorbance image 319 
following the illumination of follow cell containing warfarin 3D printed tablet at 255 nm wavelength. 320 

(D) Percentage sodium warfarin release from 3D printed tablet during dissolution test (n=3, SD). 321 

A prime advantage of 3D printing technologies lies in their highly flexible nature and 322 
capacity to construct dosage forms with accurate spatial distribution of ingredients compared 323 

to traditional manufacturing techniques. Therefore, constructs can now be printed to suit the 324 
anatomy of not only a particular animal but according to the weight and size of that subject. 325 
Rats are commonly considered most suitable for determining the mechanism of drug absorption 326 

and bioavailability values from powder or solution formulations [32] as well as micro- or nano-327 
particles [33].  328 

Two different warfarin tablets were specially designed (Fig. 6A1) to mimic the dimensions 329 

of commonly used hard capsules intended for oral delivery to rats. Tablets were successfully 330 
printed (Fig. 6A2) and were orally gavaged to rats. The pharmacokinetic parameters of warfarin 331 
following oral administration either as 3D printed tablets or in a solution form were evaluated 332 
(Table 1, Fig. 6B, C). Warfarin plasma exposure was significantly different when an equal dose 333 

was administered either as solutions or as 3D printed tablets. The solution showed a markedly 334 
higher Cmax (2.5 and 6.44 mg/mL) and shorter Tmax (2.67 or 1.5h) for the 200 or 400 µg/mL 335 
solution respectively, in comparison to Cmax values (1.51and 3.33 mg/mL) and Tmax values (6 336 

or 3.7 h) for 200 µg (p<0.05) and 400 µg (p<0.01) warfarin tablets respectively. 337 

  338 
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Table 1. Summary of pharmacokinetic parameters of warfarin following oral gavage of 200 or 400µg 339 
from sodium warfarin solution and 3D printed tablets to adult heathy male Sprague–Dawley rats. 340 

Dose Cmax* (µg/mL) Tmax* (h) AUC1-8
*
 

(mg/mL.h) 

Solution (200 µg) 2.5±0.3 
 

2.67±1.15 20.64±1.9 

Solution (400 µg) 6.44±0.1 
 

1.5±0.6 39.56±7.4 

3D printed tablet (200 µg) 1.51±0.09 
 

6±1.6 10.8±2 

3D printed tablet (400 µg) 3.33±0.5 
 

3.7±1 
 

19.93±1 
 

* Cmax, Maximum serum concentration; Tmax, Time at which Cmax is observed; and AUC1-8, area under 341 
curve. 342 
 343 

Figure 6. (A1) Rendered images and (A2) photographs of purpose designed 3D printed tablets for oral 344 
gavage in rats, (B) Plasma concentration- time profile of warfarin following the oral dosing of 200 or 345 
400µg from (B) warfarin solution and (C) warfarin loaded 3D printed tablets to adult heathy male 346 
Sprague–Dawley rats (n=4), error bars ±SD. 347 

Contributing to the finding above, the additional erosion step of Eudragit E in the 3D printed 348 
tablets is thought to  slow down the release of warfarin from the tablets.. In reality, in an in vivo 349 

situation, dissolution is expected to be slower than suggested by in vitro dissolution techniques 350 
since a significantly higher pH of the stomach contents in rats pH 3.2 (fed) and pH 3.9 (fasted) 351 
[34] exists compared to the in vitro human simulation media conditions. Furthermore, the low 352 
fluid volume (3.2±1.8 mL) in the fasted rats are likely to contribute to slower dissolution rates 353 

of the methacrylate polymer in vivo than in vitro. The longer Tmax of the tablets might also be 354 
attributed to the slower transit time of the relatively large oral units in rodents as previously 355 
observed to be the case for oral pellets. Such effects are likely to be minimal in healthy human 356 

adults where greater volumes of gastric fluids [35, 36] and a lower pH [37] at fasted state are 357 
known. In summary, when extrapolating the findings to the human situation, it should be 358 
considered that such delay has been augmented by the slower erosion of cationic polymer is 359 
rat gastric environments rats due to their relatively higher gastric pH and lower fluid contents 360 
in comparison to humans. A key driver in the uptake and use of  these polymer-rich tablets 361 
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(yielded by FDM 3D printing) is that they match the release from standard compressed 362 

powdered tablets. The data we present suggests that dissolution of 3D tablets requires 363 
acceleration. However recently, there has been reports of utilizing 3D printer geometry to 364 
fabricate tablet with complex structure to accelerate drug release [38, 39]. 365 
 366 

On the other hand, 3D printed tablets were proportionately effective as solution 367 

formulations, in that a doubling of warfarin dose from the either tablet or solution resulted in a 368 
rough doubling of measured plasma exposure with AUC1-8 values doubling from 20.64±1.9 to 369 
39.56±7.4 µg/mL for the 200 and 400 µg/mL solutions respectively and from 10.8±2 to 370 
19.93±1 µg/mL for the 200 and 400 µg 3D printed capsules, respectively (184 % versus 192% 371 
respectively). Envisioning a future scenario, a healthcare staff member may be able to use 372 

computer software to digitally directly tailor and manufacture an individualised precision dose 373 
and consequently provide plasma levels of warfarin appropriate to an individual patient’s need. 374 

In summary, the findings in this study clearly demonstrate the potential of 3D printing as a 375 

platform to design animal-suitable solid dosage forms and thus in principle provide a pathway 376 

for human use with the potential advantage of digitally titrating an individuals dose in response 377 
to clinical data. We have also shown the utility of a novel dissolution imaging system to give 378 
mechanistic insights into the dissolution process of a 3D-printed tablet dosage form. 379 

  380 
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4. Conclusions 381 

This study demonstrates the flexibility of FDM 3D printers to fabricate solid dosage forms 382 
to purposely suit the anatomy of an animal subject. UV imaging indicated that the erosion of 383 
methacrylic matrix takes place at 16.4 and 15.2 µm/min for horizontal and vertical planes 384 

respectively and resulted in delayed plasma exposure in comparison to warfarin solutions. 385 
Moreover, the titration of dose of a narrow therapeutic index drug, warfarin, has been 386 
demonstrated in vitro and in vivo. In principle, the technology holds the promise to provide a 387 
much more dynamic and responsive anticoagulant regime to suit a constantly changing 388 
patient’s INR profile. Such an approach can provide patients with a safer, more accurate and 389 
computerised alternative to the more commonly used approach of dosing using multiple tablets 390 

to include tablet splitting.  391 
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Table 1S. Summary of length, width, height and volume of cuboid containing sodium warfarin loaded 551 

3D printed tablets 552 

 553 
Target dose 

(µg) 
Volume (mm3) X 

(mm) 

Y 

(mm) 

Z 

(mm) 

300 19.06 5.09 1.86 2.00 

500 40.74 6.55 2.40 2.58 

1000 94.93 8.68 3.18 3.42 

1500 149.12 10.09 3.69 3.98 

2000 203.31 11.19 4.09 4.41 

2500 257.51 12.10 4.43 4.77 

3000 311.70 12.90 4.72 5.08 

4000 420.08 14.24 5.21 5.61 

5000 528.47 15.38 5.62 6.06 

 554 

 555 

 556 


