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As human longevity increases, recent research has focused on the maintenance of
optimal health during old age. One such area of focus is that of muscle function
in the elderly, with a loss of muscle mass increasing the risk of negative outcomes
such as sarcopenia and a decrease in bone mineral density. In this mini-review, we
focus on the impact of a single nucleotide polymorphism in ACTN3, shown to impact
muscle phenotype in elite athletes, on loss of muscle function, maintenance of bone
mineral density, and metabolic disorder risk in an elderly population. From the surveyed
research, this polymorphism has a clear and demonstrable impact on muscle phenotype
and bone mineral density in this population, and acts as a potential modulator for
metabolic disorders. As such, knowledge of an individual’s ACTN3 genotype may better
inform the management of risk factors in the elderly, as well as driving innovations in
exercise program design. Subsequently, such insights may contribute to the prolonged
maintenance of health and function long into old age.
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INTRODUCTION

There is a frequently quoted axiom, often attributed to Benjamin Franklin, suggesting that “nothing
is certain but death and taxes.” Whilst recent scandals suggest that, for some, taxes may be optional,
death remains a universal certainty. Fortunately, life expectancy has increased dramatically over a
very short time-frame. Within the United Kingdom, for example, the expected lifespan has roughly
doubled over the past 150 years, such that a child born today can expect to live until 80 years of age
(Majeed, 2013). Whilst reductions in infant mortality undoubtedly play a role, they only provide
a partial explanation. This substantial leap in life expectancy is attributable to multiple – medical,
societal, cultural, economic, and public health – factors. As a consequence, the number of people
surviving into old age is rising, a trend which is expected to continue (He et al., 2016).

This trend has piqued interest in healthy aging, particularly as longer lifespans don’t always
correlate with sustained wellbeing (Christensen et al., 2009; Kuh et al., 2014). As health is
multifactorial, the research in this field has a wide scope, including disease avoidance and the
maintenance of physical function into old age (Christensen et al., 2009; Kuh et al., 2014). Focusing
on the latter, a number of physical performance measures are associated with healthy aging,
including grip strength, standing balance, and walking speed, with lower scores in these tests
typically associated with increased all-cause mortality (Rantanen, 2003; Cooper et al., 2010;
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Studenski et al., 2011). As such, along with the absence of disease
states such as type-II diabetes, muscle strength is an important
component of healthy aging.

A second population to which muscle strength is important
are elite athletes (Maughan et al., 1984; Häkkinen and Keskinen,
1989). With both muscle strength and elite athlete status being
heritable traits (De Moor et al., 2007; Silventoinen et al.,
2008), over the last 20 years there has been an increased
focus on identifying the specific genes and single nucleotide
polymorphisms (SNPs) impacting the inter-individual variation
evident in athletic performance (Hughes et al., 2011; Timmons,
2011). At present, over 100 SNPs associated with elite athlete
status (Ahmetov and Fedotovskaya, 2015) and the exercise
training response (Bray et al., 2009) have been identified.
One such SNP with a well-established influence on muscle
phenotype is rs1815739, a C-to-T base substitution in ACTN3
(Yang et al., 2003; Ma et al., 2013). This SNP results in
the transformation of an arginine base (R) to a premature
stop codon (X), with X allele homozygotes deficient in the
α-actinin-3 protein (North et al., 1999). The main function of
α-actinin-3 appears to be as a structural protein, forming part
of the Z-line of the muscle fiber, which acts to anchor the
actin filaments within the sarcomere (Yang et al., 2009). This
protein is expressed exclusively in type-II muscle fibers, and
as a result, XX genotypes tend to have a lower percentage of
these fibers (Vincent et al., 2007). As such, the XX genotype
is significantly under-represented in elite speed, power, and
strength athletes (Yang et al., 2003; Roth et al., 2008), although
these results are not unequivocal (Scott et al., 2010; Sessa et al.,
2011).

Both strength and muscle mass are protective against all-cause
mortality in the elderly (Li et al., 2017). As ACTN3 genotype
can modify muscle phenotypes, this narrative mini-review will
explore the relationship between this common polymorphism
in ACTN3 and healthful aging, with a particular focus on
muscle. Such exploration provides a basis for an enhanced
understanding of individualized risk factors for the morbidities
associated with the aging muscle, and may soon guide the
customization of prophylactic exercise interventions such as
resistance training.

ACTN3, MUSCLE MASS, AND HEALTHY
AGING

Sarcopenia is the loss of skeletal muscle mass and function
associated with increased age (Rosenberg, 1997; Cruz-Jentoft
et al., 2010). This process begins relatively early in life, with
reported onset at age 25 (Lexell et al., 1988), a 10% loss in
peak lean mass at age 40, and 40% loss at age 70 (Porter
et al., 1995). This loss of muscle mass and strength can be
troubling for a variety of reasons, such as a reduction in overall
function (Janssen et al., 2002; Rantanen, 2003) and an increase
in fall risk (Wickham et al., 1989). In knock-out (KO) mouse
studies, those without ACTN3 have a greater muscle mass loss
with aging (Seto et al., 2011); are these results mirrored in
humans?

A number of studies have examined the impact of ACTN3
on muscle strength and function in an elderly population.
Delmonico et al. (2008) undertook an observational study of
over 3000 well-functioning elderly subjects over a 5-year period.
In males, increases in 400 m walk time were significantly greater
in XX homozygotes than RR genotypes, with a non-significant
difference between XX homozygotes and RX genotypes
(p = 0.075). In females, RR genotypes had approximately a 35%
lower risk of persistent lower extremity limitation (defined as
difficultly walking 400 m or climbing 10 steps without resting)
than XX genotypes. Interestingly, there were no significant
differences between genotypes with regards to other muscle
and performance phenotypes. Kikuchi et al. (2015) reported
a similar loss of function in elderly Japanese subjects, with a
significantly poorer chair stand test score in XX genotypes
compared to RR and RX genotypes. Judson et al. (2011)
examined ACTN3 genotype interaction on fall risk in over 4000
elderly Caucasian females. Here, subjects with at least one X
allele had a significantly increased risk of falling than R allele
carriers; this was true at both baseline and at multiple follow-up
points. These results were mirrored by Frattini et al. (2016),
who reported that falls were more prevalent in XX genotypes
than R allele carriers. Walsh et al. (2008) reported that, in
females, the XX genotype was associated with significantly lower
total-body and lower-limb fat free mass (FFM). In addition, these
female subjects had lower peak torque values compared to R
allele carriers. There were no genotype effects in male subjects.
Similar lower values for muscle mass in elderly female XX
homozygotes were reported by Zempo et al. (2010), with mean
thigh cross-sectional area 4.5 cm2 lower in XX vs. R allele carriers
(p < 0.05). Finally, Cho et al. (2017) reported a significantly
higher sarcopenia risk in XX genotypes than RR genotypes
in a cohort of elderly Koreans. However, other studies have
found no effect of this polymorphism on muscle phenotype and
function in the elderly (San Juan et al., 2006; Bustamante-Ara
et al., 2010; McCauley et al., 2010), and one study (Lima et al.,
2011) reported significantly greater FFM values in X allele
carriers.

The general consensus from these studies is that ACTN3
genotype exhibits a potentially modifying effect on muscle mass,
maintenance of muscle function, and sarcopenia risk in elderly
subjects, with the R allele associated with greater maintenance
of strength and function, and sarcopenia protection. From a
muscle phenotype perspective, an association between ACTN3
genotype and sarcopenia seems logical; specific type-II muscle
fiber atrophy is a hallmark of sarcopenia (Lexell et al., 1988;
Fielding et al., 2011), and, in athletic populations at least, the
R allele is associated with an increase in type-II muscle fibers
(Vincent et al., 2007). This ability to more effectively maintain
fast-twitch fiber size and mass with age is perhaps the mechanism
by which ACTN3 genotype modifies the age-related loss in
muscle function, and concurrent increased fall and sarcopenia
risk.

Given that resistance training is an important tool in
sarcopenia prevention and treatment (Roth et al., 2000), and
thatACTN3 genotype may modify resistance training adaptations
(Kikuchi and Nakazato, 2015), it is important to explore whether
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such a relationship exists in an elderly population. In elderly
Caucasian females undertaking a 12-week resistance training
program, Pereira et al. (2013) reported that ACTN3 RR genotypes
exhibited greater leg extension and bench press one-repetition
maximum (1RM) improvements than XX genotypes. Delmonico
et al. (2007) put elderly subjects through a 10-week unilateral
knee extensor strength training program. In the male sub-
group, absolute peak power increased to a greater extent in
RR homozygotes compared to XX homozygotes, although this
difference was not significant (p = 0.07). In females, relative peak
power change was greater in the RR group compared to the XX
group. As far as we are aware, these are the only two studies to
examine the impact of ACTN3 on resistance training response in
an elderly cohort, with the consensus being that the R allele, and
specifically the RR genotype, is associated with enhanced strength
and power improvements. Based on these findings, it appears
that elderly R allele carriers are more responsive to resistance
training.

ACTN3 GENOTYPE AND BONE MINERAL
DENSITY WITH AGING

Alongside age-related loss of muscle mass and function, a further
risk factor is the loss of bone mineral density (BMD) and
its related disease state, osteoporosis, with a well-established
association between lower BMD scores and increased all-cause
mortality (Browner et al., 1991; Johansson et al., 1998), stroke
death (Browner et al., 1991), and fracture risk (Marshall et al.,
1996). A small number of studies have examined the interaction
between ACTN3 genotype and BMD loss in elderly populations.
Min et al. (2016), for example, reported a significant difference in
BMD at both the spine and pelvis between genotypes, with XX
and RX genotypes having lower scores than RR genotypes. Cho
et al. (2017) reported similar findings, although the lower BMD
in XX genotypes wasn’t significant after covariate correction
(p = 0.075). Yang et al. (2011) found that, in postmenopausal
women, ACTN3 genotype was significantly associated with BMD,
with XX genotypes having the lowest scores. Accordingly, overall
it appears that the ACTN3 R allele is somewhat protective against
age-related BMD loss.

As discussed, ACTN3 genotype is likely associated with muscle
function in the elderly. This may be the driving force between
genotype differences in BMD, with individuals possessing greater
muscle function able to be more active day-to-day. Such
individuals are subsequently more likely to experience regular
skeletal loading, thereby promoting structural maintenance, and
diminishing BMD loss over time. Indeed, grip strength is
positively correlated with BMD (Iida et al., 2012), as is increased
muscle mass (Visser et al., 1998), indicating that perhaps the
increased muscle mass and strength associated with the R allele
is protective in this manner. However, using KO mice, Yang et al.
(2011) reported a lower BMD in mice deficient in α-actinin-3.
They reported evidence that a-actinin-3 is expressed in bone
tissue and involved in osteogenesis, with KO mice having a
reduced osteoblast and increased osteoclast activity. Perhaps both
mechanisms play a role in the relationship between ACTN3 and

BMD, with further research required to understand the relative
contributions of each.

ACTN3 GENOTYPE AND METABOLIC
HEALTH WITH AGING

Alongside muscle and BMD loss, aging populations also have
to contend with an increased prevalence of a number of
metabolic issues, including insulin resistance and type-II diabetes
(Gunasekaran and Gannon, 2011; Suastika et al., 2012). These
disease states are associated with a reduced mortality (Panzram,
1987), as well as an increased risk of further health issues
(Williams et al., 2002) and cognitive decline (Strachan et al.,
1997). Given that higher levels of muscle mass are associated with
better insulin sensitivity (Srikanthan and Karlamangla, 2011),
and that ACTN3 genotype can modify muscle cross sectional area
and fiber type, there is the potential that ACTN3 genotype may
impact type-II diabetes risk, either directly or indirectly. There
is a paucity of research in this area; however, Riedl et al. (2015)
reported that the prevalence of XX genotypes was greater in type-
II diabetes patients than controls, indicating that it may increase
risk, although there were no differences between genotypes in
terms of metabolic control or obesity. Research on ACTN3 KO
mice indicates that deficiency of Actn3, characterized by the
XX genotype, does alter skeletal muscle metabolism (MacArthur
et al., 2007), potentially by increasing fatty acid oxidation and
glycogen storage.

As of yet, any relationship between this SNP and type-II
diabetes requires further elucidation. The tentative findings of
Riedl et al. (2015) are further complicated by research on the
relationship between ACTN3 and extreme longevity. In a cohort
of Spanish centenarians, the XX genotype frequency was the
highest reported in non-athletic Caucasians (24%), although
there were no significant differences between X allele frequency
in centenarians and controls (Fiuza-Luces et al., 2011). The
authors concluded that this preliminary data suggests a potential
survival advantage of the XX genotype. Similar complex results
were found in a cohort of Japanese centenarians. Whilst there
were no significant differences in genotype distribution between
centenarians and controls, the frequency of the XX genotype
in supercentenarians (over 110 years) was the highest seen in a
non-American population, at 33% (Fuku et al., 2016). Indeed,
whilst it appears that the evidence suggests that the R allele
may confer a longevity advantage, likely mediated through its
impact on muscle function, bone health, and metabolic wellbeing
as discussed in this review, the lack of increased RR genotype
frequencies seen in centenarians (Fiuza-Luces et al., 2011; Fuku
et al., 2016) does not support this. Such a finding is mirrored
in the longevity of elite athletes, with elite endurance athletes
tending to live for longer than power athletes (Sarna et al., 1993;
Teramoto and Bungum, 2010; Clarke et al., 2015). As the R allele
is more prevalent in elite power athletes than elite endurance
athletes (Yang et al., 2003), this again appears to suggest a
paradox. The mechanisms underpinning the longevity advantage
of elite endurance athletes is currently unclear, although there
is the potential that the enhanced cardiorespiratory fitness
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FIGURE 1 | An overview of the main associations between ACTN3 and healthy aging.

exhibited by elite endurance athletes offers greater longevity than
the improved muscle strength and function expected in former
elite power athletes (Wisløff et al., 2005). This is particularly
pertinent given evidence of more efficient aerobic metabolism
in XX homozygotes (North, 2008). Alternatively, the X allele
could confer some as of yet unclear survival benefit; if this
is the case, then there is the possibility that RX heterozygotes
may have the greatest longevity benefit, by enjoying the benefits
associated with each allele. Such an explanation would provide a
potential mechanism explaining the lack of expected increases in
RR genotypes in centenarian populations.

Nevertheless, given that loss of muscle mass increases risk
of insulin resistance, a precursor to type-II diabetes (Srikanthan
and Karlamangla, 2011), and that type-II diabetes itself increases
the risk of sarcopenia (Park et al., 2009; Kim et al., 2010),
it appears that ACTN3 genotype may modify type-II diabetes
risk in the elderly. Again, it would be expected that the R
allele, which is associated with increased muscle mass and
performance, would be protective against age-related metabolic
decline. Further research in this field should attempt to uncover
such a relationship, should one exist.

In addition, ACTN3 may alter health through other metabolic
disturbances. In mouse models, there is evidence that the XX
genotype may be protective against obesity (Houweling et al.,
2017), although as of yet this association has not been replicated
in humans (Moran et al., 2007; Houweling et al., 2017), with

Deschamps et al. (2015) reporting increased obesity in XX
genotypes. Similarly, there is evidence in younger populations
that this polymorphism may impact other health markers, such
as blood pressure (Deschamps et al., 2015) and high-density
lipoprotein cholesterol (Nirengi et al., 2016); in both cases, the
X allele was beneficial, although it’s not clear if this clinically
meaningful, with further replication required.

IS THIS TRIFECTA CAUSED BY ACTN3’s
INFLUENCE ON MUSCLE?

In this paper, we have examined the potential influence of ACTN3
on three conditions associated with poorer outcomes with aging;
sarcopenia and the resulting loss of muscle function, a loss of
BMD, and a potential increase in metabolic disturbances, such
as insulin resistance. These conditions likely have some degree of
inter-relation; a loss of muscle function is likely associated with
a lack of movement, which in turn reduces bone loading and
turnover, leading to a loss of BMD (Vincent and Braith, 2002;
Korpelainen et al., 2006). This loss of movement capacity could
further cause a behaviorally mediated loss of type-II muscle fibers,
further reducing muscle strength and function. Again, this loss
of function might change habitual movement behaviors, thereby
subsequently altering the metabolic profile of the individual and
increasing the likelihood of some negative metabolic changes.
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Accordingly, it seems feasible to speculate that the impact
of ACTN3 on these three risk-factors occurs either due to
its directly modifying effect on skeletal muscle, or through
separate mechanisms for all three. This raises the question
of whether elderly X allele carriers have lower BMD because
they have less muscle mass and function, or if there is
mechanism through which ACTN3 influences bone turnover and
mineral content. As detailed in Section “ACTN3 Genotype and
Bone Mineral Density with Aging,” there are tentative results
that ACTN3 genotype influences both of these considerations,
although whether its influence is greater on one than the
other is currently unclear. As the results regarding ACTN3
and insulin resistance are under-explored (Riedl et al., 2015),
this leg of the trifecta is the most unknown; whilst there
is a mechanism underpinning muscle mass and insulin
resistance (Srikanthan and Karlamangla, 2011), and ACTN3
does modify muscle mass and type in athletic cohorts (Vincent
et al., 2007), it isn’t clear whether this holds true in the
elderly.

If, as seems likely, the potentially modifying impact of
ACTN3 genotype on these three morbidities occurs primarily,
although not exclusively, through its role in regulating muscle
fiber type and strength, then this further underscores the need
for elderly adults to undertake resistance training in order
to maintain their health and function as they age. Whilst
there is a clear protective effect of resistance training on the
reduction of sarcopenia (Johnston et al., 2008), enhancing BMD
(Rhodes et al., 2000), and reducing risk of insulin resistance
and type-II diabetes (Dunstan et al., 2002) in the elderly, the
insights outlined here do suggest some additional questions.
Do those with the XX genotype, who would be expected to
exhibit small improvements with resistance training, need to
increase their training frequency and/or intensity (as suggested
with regards to aerobic endurance training by Montero and
Lundby, 2017), or should they undertake lower-load, higher-
volume resistance training, as suggested by Kikuchi and Nakazato
(2015) and supported by Jones et al. (2016)? Do other SNPs,
such as those found in ACE (Pescatello et al., 2006) or AGT
(Aleksandra et al., 2016), influence the resistance training
response in the elderly, and to what extent? There is also
the possibility that ACTN3 genotype may interact with other
SNPs to modify the aging process in individuals. This has
perhaps been most well studied in regard to ACE I/D, a
SNP in the gene encoding for angiotensin-converting enzyme.
Here, the results are equivocal, with some studies finding no
effect of the ACE I/D polymorphism on muscle phenotype
(McCauley et al., 2010; Garatachea et al., 2012), and others
reporting that it modified the response to resistance training
(Pereira et al., 2013), both on its own and in combination
with ACTN3. Like ACTN3, ACE may also impact longevity
through a variety of different pathways, including metabolic
disease risk (Kajantie et al., 2004), blood pressure control
(Yoshida et al., 2000; Santana et al., 2011), and Alzheimer’s
disease risk (Narain et al., 2000). Further work exploring the
impact of resistance training on the elderly should perhaps take
into consideration differences in genotype, either for single or
multiple SNPs, to inform the design of more efficient and effective

personalized exercise guidelines targeting positive outcomes for
this population.

CONCLUSION

ACTN3 has a demonstrable, clear and robust effect on muscle
phenotypes in young, athletic populations (MacArthur and
North, 2007; Vincent et al., 2007). Based on the research cited
in this review, it appears to have a modifying effect on muscle
strength, size and function in the elderly (Delmonico et al.,
2008; Walsh et al., 2008; Frattini et al., 2016), as summarized
in Figure 1. In particular, the R allele of ACTN3 tends to be
associated with better maintenance of muscle mass, strength and
function (Delmonico et al., 2008), a greater adaptive response
to training (Pereira et al., 2013), and is protective against
the development of sarcopenia (Cho et al., 2017). There also
appears to be a (less robust) relationship between ACTN3
genotype and BMD in the elderly, with the R allele again
being protective (Min et al., 2016; Cho et al., 2017). It is
not clear whether this is due to ACTN3 directly influencing
bone metabolism, or whether the increased muscle mass and
function of R allele carriers leads to greater bone loading,
and therefore BMD maintenance. Similarly, there is an unclear
relationship between ACTN3 genotype and metabolic health;
one study (Riedl et al., 2015) indicates that the XX genotype is
present with an increased frequency in type-II diabetes patients,
but clearly further research is required to better understand
this relationship. Overall, whilst this indicates that the R allele
should be associated with increased health and function in
the elderly, the picture is made more complex by research
on centenarians (Fiuza-Luces et al., 2011; Fuku et al., 2016);
in this case, the XX genotype is potentially more frequent
in those over 100 years of age, although such a relationship
is not statistically significant. If further research does support
the early evidence that the ACTN3 R allele is associated with
a decrease in frailty risk factors, then knowledge of ACTN3
genotype may better inform patients and medical practitioners
as to each individuals’ risk factors. Such information could
consequently inform personalized management strategies for the
aging individual.
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