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Abstract

This thesis presents the work carried out on static and dynamic analysis of near infra-red

dorsal hand vein images for biometric applications. It focuses on the investigation of the

classification of old and young groups of people, and analyses vital signs underlying

dorsal hand vein images.

All research is based on the database used in this work. Focusing on the aged group

of dorsal hand vein images, a database including static images and video images was

first created. The static database contained 1000 images from 50 individuals and the

dynamic database included 40 videos from 20 old participants.

For static analysis, dorsal hand vein images were pre-processed by geometry

correction, regions of interest extraction (ROI), grey level normalisation, noise

reduction and image enhancement. Then, skin and vein areas from the dorsal hand were

segmented using maximum curvature based algorithms. Due to varying haemoglobin

and water levels in the vein and skin, intensity based parameters were investigated and

extracted as features for the classification of old and young groups. Two classifiers,

linear discriminant analysis (LDA) and k-nearest neighbours (KNN) were adopted for

comparative discussions. The experimental results turned out to be satisfactory and the

two groups were well classified, using statistical intensity based features.

For dynamic analysis, mean grey levels were extracted from the ROI of each frame

of the dorsal hand vein image videos. Then, all parameters were connected to form a

biometric signal. The signal was analysed in a spectrum to detect a major peak for

liveness. A fake dorsal hand video was introduced for comparative studies.

Experimental results showed that a respiratory like signal was detected as the main

peak in the spectrum, verifying the vital signs of dynamic dorsal hand vein images and

proposing a new method of liveness detection in biometric applications
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Chapter 1

INTRODUCTION

1.1 Background

Over the last few decades, biometric applications have become increasingly explored due to

significant advances in the field of computer technology and image processing. More and

more human characteristics have been used for biometric technologies, mainly for human

identification in security access control and surveillance systems. These characteristics

are known as biometric identifiers, they are used to label and describe individuals, and

they can be categorised as physiological or behavioural [Jain et al., 2000, 2011]. The

former characteristics are related to the shape of the body such as face, iris, fingerprint,

palm and dorsal hand vein, while the latter reflects the behaviour of a person, including but

not limited to gait, voice and typing rhythm.

Significant characteristics are often selected for, based on several factors: uniqueness,

stability, universality, collectability, acceptability and security [Bolle and Pankanti, 1998;

Clarke, 1994]. However, none of these characteristics are absolutely reliable or secure when

threats like spoofing, artificially created biometrics and database attacks exist [Schuckers

and Abhyankar, 2004]. Hence, the increasing demand for more reliable and convenient

security systems, thereby generating renewed interest in biometrics. Emerging into this

field is an area of novel research exploring biometric applications such as multi-modal

biometrics [Akhtar, 2012; Ross and Jain, 2004], soft biometrics [Dantcheva et al.,

2011] and liveness detection [Kang et al., 2003; Pan et al., 2008], Therefore, biometrics
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technology is developing extensively in addition to personal identification when biometric

applications are increasingly enlarged.

1.1.1 Current research on biometric application

In general, biometric applications refer to biometric authentication which simply enables

the identification of humans. There are numerous applications for the use of biometric

recognition systems, e.g. PC Logon, National Border Crossing, Prison System and Physical

Access [Day, 2009]. While there is a large body of research exploring biometrics as a

means of verifying identity, very little work has been done to see if biometric measures can

determine specific human attributes. Due to their properties, various biometric characteris-

tics are adopted for exploring biometric applications. Some widely studied and popular

biometric characteristics are:

• The face

The face is the most intuitive biometric for identity documents. Major advances and

initiatives in the past ten years have propelled face recognition into the spotlight

[Jain and Li, 2005]. One key advantage of face biometrics is that it does not

require cooperation of the test subject to function, face recognition is not perfect

and struggles to perform under certain conditions like poor lighting, sunglasses or

long hair. In fact, there is abundant information in the face that could be further

investigated for biometric applications.

Other face biometric applications include: facial expression analysis [Kanade et al.,

2000]; the perception of face for gender classification [O’Toole et al., 1998]; face

age estimation and classification [Gao and Ai, 2009] and face liveness detection

[Tan et al., 2010]. In addition, researchers have detected human vital signs on the

face, using dynamic analysis of video based face images, and successfully extracted

human heart rates and monitoring patient’s physiological signals [Ming-Zher et al.,

2011].
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• The iris

Using the iris for authentication is more accurate than other biometric features as

there are more characteristics within this organ. However, authentication methods

makes users feel uncomfortable when placing items close to the eye. There are also

difficulties when registering blind people [Negin et al., 2000]. Although it is highly

secure to use irises, spoofing still occurs. In their work, Bowyer et al., Ruiz-Albacete

et al. and Tome-Gonzalez et al. explored ‘direct attack’ on an iris biometric system

by printing images of an iris [Bowyer et al., 2013; Ruiz-Albacete et al., 2008],

Bodade and Talbar proposed a novel approach using multiple images of the same

eye to look at variations in pupil dilation to detect iris spoofing [Bodade and Talbar,

2009] In addition, Thomas et al. employed machine learning techniques to develop

models that predicted gender, based on iris texture features [Thomas et al., 2007].

• The fingerprint

Of all the biometric techniques, fingerprint-based identification is the oldest method

successfully used in many applications as it is convenient with an inherent ease in

acquisition [Maltoni et al., 2009]. However, the fingerprint is easy to forge which

makes it susceptible to anti-spoofing biometric applications. Some researchers have

introduced liveness detection for anti-spoofing [Abhyankar and Schuckers, 2006;

Galbally et al., 2012; Moon et al., 2005]. In addition, gender classification has been

investigated for fingerprint biometric applications [Badawi et al., 2006; Kaur and

Mazumdar, 2012; Tom et al., 2013].

• The gait

Biometric gait recognition, which is recognising people by the way they walk, is

a behavioural biometric technique. It is also a remote biometric technique which

enables the filtering of people of interest in public areas such as stations, airports

and shops [Gafurov, 2007]. However, there are several confounding factors to

this approach, such as footwear variation, terrain, fatigue, injury and passage of

time, which makes gait biometrics complicated [Boulgouris et al., 2005; Boyd and

Little, 2005]. However, gait biometrics have been increasingly explored for gender
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classification [Yoo et al., 2005; Yu et al., 2009] and investigated for age estimation

in combination with medical diagnoses [Barth et al., 2011; Makihara et al., 2011].

• Vein patterns

Vein pattern recognition technology, has its own unique features and advantages,

and thus far has maintained a dominant position in biometrics. The commonly used

vein recognition patterns come from the hand, wrist or finger and is carried out by

using near infra-red imaging. When a user’s hand is placed on a scanner, a near

infra-red light maps vein locations. Thanks to the optical attributes of venous blood,

vein patterns are displayed as black lines, while the remaining parts shows up as

white [Kumar and Prathyusha, 2009; Wang and Leedham, 2006; Wilson, 2010].

Vein pattern recognition is emerging as one of the fastest-growing technologies for

commercial development, and is proving successful in this arena. Fujitsu, Japan

have built an authentication system based on palm vein patterns with a reliability of

100% [Fujitsu, 2003]. However, in terms of exploring biometric applications, little

research has been done to determine if vein measures can determine specific human

attributes such as gender, age or liveness indices.

Other biometric characteristics exist; the voice, the signature and the ear etc. Indeed,

since each human is unique, potential human biometric traits are simply limited by our

own imagination. In developing such biometrics, applications beyond human identification

will be explored and exploited for commercial use.

1.1.2 Dorsal hand vein biometrics

This research is focused on the analysis of dorsal hand vein (DHV) biometrics. The dorsal

hand vein pattern is a vein pattern which has been favoured for representing personal

identity. To investigate dorsal hand vein images, it is important to understand the veins and

the skin of the hand (Figure 1.1).

A vein pattern is a vast network of blood vessels beneath the skin. Anatomically,

aside from surgical intervention, vascular patterns in the body are distinct from each other,
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Figure 1.1: Anatomy of the dorsal hand veins, modified from [Gray and Standring, 2008]. There
are two types of dorsal hand veins, the cephalic and basilica veins. The latter are the main focus of
this project.

and are stable over long periods of time [Lingyu and Leedham, 2006]. In addition, as

blood vessels are hidden beneath the skin and are practically invisible to the eye, vein

patterns are extremely difficult for intruders to copy, when compared to other biometric

features. The uniqueness, stability and high immunity to vein pattern forgeries, makes

these veins excellent biometric features, offering secure and reliable qualities for person

identity verification [Choi, 2001].

However, three key processes may alter vascular patterns in the hand: 1) natural

changes in the vascular system throughout the life span, 2) natural changes in the vascular

system, associated with disease and 3) changes in the vascular system induced by other

factors [Nadort, 2007].

Firstly, during life, vein length extends while the body is growing, since the function

of the vascular network is to provide oxygen to the entire body. Therefore, the vascular

system must adapt to the size of the body. It will extend and shrink throughout life, with

major changes before the age of 20 and minor changes during the aging process, from 20

onwards. Similarly, there is an inevitable decline in bone and muscle strength in the body,
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due to a time-dependent weakening of blood supply to muscles [Cross and Smith, 1995;

Riggs et al., 1999; Rubin, 2003].

Secondly, due to the dynamic character of the vascular system, it is sensitive to

body conditions that deviate from normal or healthy forms. Diabetes, hypertension,

atherosclerosis, metabolic diseases or tumours can significantly remodel vascular systems.

They induce effects on the mechanical properties of vessel walls, generating hemodynamic

changes. The remodelling process results in thickening or thinning of vessel walls in the

lumen and in the external diameter. Another process influencing the vascular system during

disease is angiogenesis, a hallmark of cancer and various ischaemic and inflammatory

diseases [Carmeliet and Jain, 2000; Carretero, 2005; Risler et al., 2005].

Thirdly, other factors that influence the vascular system are environmental temperatures,

physical activities and alcohol. This last factor should be considered not as unhealthy use

of alcohol causing permanent pathological changes in the vessels, but rather the temporary

influence of alcohol while in the body. In this way, alcohol is a vessel dilator. Vessels also

dilate if body temperatures are too high; blood flow can increase by up 150 times to expel

excess heat. In cold weather, skin constricts blood vessels and causes heat loss. During

physical activity, blood vessels will also dilate to provide enough oxygen to muscles

[Conrad and Green, 1964; Nadort, 2007].

Figure 1.2: Anatomy of skin tissue
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As shown in Figure 1.2, the skin is made up of three layers: the epidermis, the dermis

and the hypodermis (also known as subcutaneous tissue). The top layer of skin is called the

epidermis. It protects underlying skin layers from the outside environment and contains

cells that make keratin, a protein that waterproofs and strengthens the skin. The epidermis

contains cells that express melanin, the dark pigment that gives skin its colour. Other

cells in the epidermis allow the sensation of touch and provide the body with immunity

against foreign invaders like germs and bacteria. The bottom layer of the skin is the

hypodermis [Carlson, 2013]. It contains fat cells, or adipose tissue, which insulates the

body to conserve heat. The layer between the epidermis and the hypodermis is the dermis,

which contains cells that give the skin strength, support, and flexibility [Kusuma et al.,

2010].

As a person ages, the cells in the dermis lose strength and flexibility, causing the skin

to lose its youthful appearance [Papakonstantinou et al., 2012]. Changes in aging skin

dynamics occur: skin becomes more transparent, which is caused by epidermal thinning;

skin becomes slack due to the loss of elastic tissue and loss of fat below the skin may result

in a loosening ‘skeletal’ appearance [Gniadecka et al., 1998; Waller and Maibach, 2005;

Wilhelm et al., 1991].

1.2 Aim of the Research

According to literature reviews on current biometric applications and physiological and

anatomic characteristics of dorsal hand veins, potentially, there are significant applications

of dorsal hand veins to the biometrics arena. Due to varying optical traits between veins

and skin of the dorsal hand, and considering aging issues, an investigation was carried

out on the classification of hands from old and young groups. Furthermore, inspired by

liveness detection studies for various biometrics, dorsal hand vein images were analysed to

detect human vital signs for liveness detection.

The aim of this research was to investigate the classification of hands from old and

young participants based on NIR dorsal hand vein images. The aim was to find possible de-
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scriptors from NIR dorsal hand vein images for liveness detection. The specific objectives

are:

• Set up a dorsal hand vein (DHV) image database.

• Static analysis on DHV images for classification of old and young groups.

• Dynamic analysis on DHV videos for liveness detection.

1.3 Theis Structure

The thesis is structured into six chapters:

Chapter 2 introduces data acquisition systems, including near infra-red imaging meth-

ods and hardware. DHV databases are then created for static and dynamic analyses.

Chapter 3 introduces pre-processing methods including ROI extraction, image normali-

sation and noise reduction.

Chapter 4 compares segmentation methods. A maximum curvature based segmentation

algorithm is adopted for the extraction of vein pattern and skin areas for further analysis.

Chapter 5 investigates static DHV images for intensity based feature extraction before

classification analysis between old and young groups. Two classifiers KNN and LDA are

adopted for discussion.

Chapter 6 investigates dynamic DHV images to find descriptors representing vital signs

for liveness detection.

Chapter 7 draws conclusions and assesses the thesis contributions to knowledge. The

chapter describes future work in developing dorsal hand vein biometric applications.



Chapter 2

IMAGE ACQUISITION AND

DATABASE

2.1 Introduction

In this chapter, a database of near infra-red dorsal hand vein images will be introduced.

These were captured at North China University of Technology (NCUT) under a project

funded by the National Natural Science Foundation of China (grant number: 61271368).

The database comprises two parts: static dorsal hand vein images and dynamic video based

dorsal hand vein images.

Since hand dorsal veins are unique, they are of convenient access, and they have a higher

security when compared to other biometrics like fingerprints, face and irises, researchers

have set up hand dorsal vein image databases for biometric applications. However, for

these biometric practices, personal identification is the primary focus. All databases are

built up for individual identification when age information is not taken into account.

Thus, to further explore dorsal hand vein biometric applications, a new database, includ-

ing static and dynamic images, was established, and importantly took into consideration,

participant ages. Based on the near infra-red dorsal hand vein image capturing system from

NCUT, image acquisition principles and hardware set-ups are presented in the following
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sections. Similarly, the new database, including static and dynamic components. is also

introduced.

2.2 Image Acquisition Principle and Set-up

2.2.1 Near infra-red illumination

Due to the absorption and reflection properties of human tissue and blood, the NIR imaging

method is based on irradiation of the dorsal hand with near infra-red light. Being composed

of water, proteins and lipids, the chemical make-up of the skin influences optical absorption

properties.

Figure 2.1: Infrared absorption spectrum of water and haemoglobin [Chen and Lu, 2000]

As depicted (Figure 2.1), for wavelengths > 900 nm, water strongly absorbs photons,

whereas haemoglobin (Hb), including OxyHb and DeoxyHb (with or without oxygen),

reaches its absorption peak between 700-900 nm (DeoxyHb: 760 nm; OxyHb: 900 nm),

which is higher than that of water. The region between 700-900 nm is known as the

‘tissue optical window’ (the NIR region) [Ntziachristos et al., 2003]. Importantly, as

DeoxyHb and OxyHb are the main blood components in dorsal hand veins, and these veins

absorb more irradiating light than surrounding tissues, NIR wavelengths could be used

for illumination. Considering costs, the authors adopted an 850 nm NIR source for DHV

image capture [Wang et al., 2010].



2.2 Image Acquisition Principle and Set-up 11

2.2.2 NIR imaging mode

Normally, there are three modes of NIR imaging: transmission, reflection and hybrid

modes (Figure 2.2).

Figure 2.2: The three main modes of NIR imaging

Figure 2.3: Different imaging modes

Images from different imaging modes can be observed in Figure 2.3 and a comparison

of the three modes is shown in Table 2.1.

As part of their research, Li et al, selected reflection modes as they were unsusceptible

to the environment, had low running costs and emitted low power [Li, 2013]. Moreover,

generated dorsal hand vein images were good enough. Hand veins were visible and could

be improved by increasing illumination intensity and coverage and image processing.
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Table 2.1: Comparison of the three different modes of imaging

Imaging Mode Advantages Disadvantages

Reflection
High contrast after optimising High Quality requirement for NIR

low cost sources and components
low power

Transmission Relatively high contrast
Inhomogeneity in images

Requires higher power

Hybrid High contrast and definition Complicated and high cost

2.2.3 NIR imaging module

An NIR imaging module functions as follows: incident light is controlled by the optical

filter and lens for image quality improvement. A camera captures light from the lens and

optical filter to form an image (Figure 2.4).

Figure 2.4: Structure of an imaging module

1. The optical filter

Infra-red filters can be applied to pass or block infra-red light. There are three types

of infra-red filters: 1) infra-red pass filters, 2) infra-red cut-off filters, and 3) infra-red

band-pass filters. Considering NIR imaging principles, the infra-red band-pass filter,

the BPF-850 was selected. The selected filter had a centre wavelength of 850 nm,

a half-main-lobe width of 60±10 nm and the transmittance at 850 nm was 91.99%

(Figure 2.5).

2. The camera

Charge-Coupled Device (CCD) camera is a good choice for capturing vein images

because of its high precision [Chih-Lung and Kuo-Chin, 2004]. In the dorsal hand
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Figure 2.5: Spectral response of the BPF-850 filter, modified from [Accute Optical Technology Co.,
2012]

vein image acquisition system, some main parameters of a CCD camera should

be taken into account: the effective pixels, the resolution, the capturing frame

rate, scanning system, S/N, minimum illumination. According to the parameters

assessment and integrating the various requirements in [Li, 2013], a WATEC 902B

CCD camera is selected, of which main parameters are listed in Table 2.3. Figure

2.6 shows the picture of a WATEC 902B CCD camera.

Figure 2.6: WATEC 902B CCD camera Figure 2.7: A PENTAX H1214-M (1/2’)

3. The lens

The lens is an important factor for imaging quality. There are two basic parameters
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for an optical lens: the focal length f and the maximum aperture D. The maximum

available aperture of a lens is specified as the focal ratio or f -number F [Smith,

2005], which can be calculated by:

F =
f
D

(2.1)

These parameters exert great effects on the optical performance (Table 2.2).

Table 2.2: Lens parameters and optical performance

Parameters Optical Performance

Focal length (short)
Depth of focus: deep

Distortion: high
Vignetting: high

Aperture (small)
Illumination: weak
Depth of field: deep

Resolution: low

Image field (small)
Resolution in centre: high

Illumination: Strong

Incident wavelength (short) Resolution:high

As shown (2.2), some parameters are evaluated for optical performance. In the

capturing system, a PENTAX H1214-M (1/2’) lens was used (Figure 2.7). Its main

parameters are listed (Table 2.3) in the following section.

Figure 2.8: The Mine 2860 USB capture card
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4. The Capture Card

The capture card transforms data and converts Analogue/Digital (A/D) to digital

image processing in the PC. Depending on CCD camera choice, several parameters

have to be considered: colour depth, decoder mode, output resolution, interface

mode and Software Development Kit (SDK). Based on the acquisition system, a

Mine 2860 USB capture card was employed (Figure 2.8). And the Mine 2860 USB

capture card parameters are shown (Table 2.3) in the following section.

2.2.4 Hardware

Figure 2.9a shows the capturing hardware. The hand reflects NIR light coming from

infrared LED arrays to CCD sensors through an infrared filter and lens, forming an image

of the dorsal hand. As illustrated in Figure 2.9b, the acquisition system was composed of

an illumination and an imaging module: the green constitutes the imaging module and the

blue shows the illumination module.

(a) The capturing hardware (b) Schematic of the DHV image acquisi-
tion system

Figure 2.9: (a) The capturing hardware: the hand reflects NIR light coming from infra-red LED
arrays. (b) Schematic of the DHV image acquisition system: the green (camera, lens and infra-red
filter) represents the imaging module and the blue indicates the illumination module and the black
line surrounding the diagram indicates a box, covering the illumination and imaging components to
reduce visible light.
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As discussed, the main parameters of the hardware implemented in the dorsal hand

vein system are concluded and listed in Table 2.3.

Table 2.3: Components and main parameters of acquisition devices [Li, 2013]

Modules Components Parameters

Illumination

Size: ϕ 8mm
LED Type: Round LED

2 Near infra-red LED series Power: 1.5V×200mA
(reflection) Wavelength: 850nm

Array Series: 3×3
Lighting distance: 100mm
Distance between 2 LED series: 56mm

Imaging

Size: 35.5×36×58mm
Scanning system: 1/2 inch
Resolution: 570 TVL

Camera: WATEC 902B CCD Frame rate: 25 fps
(1/2’) Effective pixels: 752×582

S/N: 50dB
Power: DC12V×160mA
Minimum illumination: 0.003 Lux F1.2

Size:ϕ34.0×43.5mm
Focal length: 12mm

Lens: Pentex H1214-M(KP) Relative aperture: F1.4
(1/2’) FOV(D/H/V,mm):

(102.3 47.6/81.3 38.2/60.4 28.7)

Size:ϕ30.0×3mm
Optical filter: 850nm Half-main-lobe width: 6010nm

Transmittance: 91.99%

Size:103×60×19mm
Interface port: USB 2.0

Capture card: Standard: PAL, NTSC
Mine V2860 USB Resolution: 640×480

Dynamic adjusting

2.3 Database

A database of dorsal hand vein images was created based on NIR imaging. The database

was divided into two categories: a static and a dynamic database. Both databases were

captured using the devices as previously mentioned. Also, participants were told to hold

their hands steady during image capture.
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The target aged participants were from an elderly activity centre in NCUT, where most

people were over 60 years old. The capturing process was carried out according to capturing

agreements and protocols with the participants. Acquisition time took approximately one

week, three hours per day, including waiting times.

2.3.1 Static dorsal hand vein images

With regard to the age between old and young groups, individuals older than 60 years

were defined as “old” and those younger than 30 were defined as “young” in this research.

The static DHV database contained approximately 1000 images from 50 individuals, of

which 40 were termed as “old” and the rest (10) were termed as “young”. Ten images of

each hand were captured from each participant. The left and the right hand were placed

alternately under the imaging device and images captured.

Figure 2.10: Age distribution of young and old groups

As shown (Figure 2.10), the 10 young participants had an average age of 26, with

smaller deviations than those of the old group. The median age of the old group was

75 years old. For more details see Appendix A. Since no databases of dorsal hand vein

images existed for this aged group, this work was instrumental in setting up a new DHV
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image database for the classification of young and old people, based on near infra-red

dorsal hand vein biometrics. Figure 2.11 and 2.12 show some DHV images from old and

young participants.

Figure 2.11: DHV images from old participants

Figure 2.12: DHV images from young participants

2.3.2 Dynamic dorsal hand vein images

Dynamic DHV images are the video records of specific participants acquired during static

DHV image capturing. Since the capturing process was designed mainly for old group,

and considering the capturing time suitable for old people, a short period (10 seconds) of

video recordings were conducted on those participants who agreed.

Table 2.4: Video parameters

Video Type AVI

Length 10 seconds

Frame Rate 25 frames/second

Resolution 640 × 480

All videos were recorded as grey images at 25 frames per second (fps) with a pixel

resolution of 640 × 480. Images were saved in AVI format (Table 2.4).

Not all old participants agreed to endure the 10s video capturing; in total there were 40

video recordings from 20 old participants, each having their left and right hand recorded.
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Some videos of young participants were captured as possible supplements for comparative

studies.

2.4 Concluding Remarks

In this chapter, NIR imaging methods and the databases used for storage were described.

The capturing system was based on low-cost and non-invasive principles, factors easily

adopted when exploring biometric applications. Since nearly all dorsal hand vein databases

are static and used for personal identification, it would be innovative to investigate old

dorsal hands by establishing a database of old DHV images. In addition, establishing

the video based DHV database was also important for dynamic analysis. Based on the

principle of NIR imaging and age distributions within the database, further biometric

applications beyond personal identification will be discussed later.



Chapter 3

DORSAL HAND VEIN IMAGE

PRE-PROCESSING

3.1 Introduction

In general, most of the dorsal hand vein images collected contained not only vein structures

but other information such as knuckles and fingers, which was redundant for this research.

The original vein images could not be used for direct features extraction for the following

reasons: geometrical variations such as shift, rotation and scale caused by different hand

poses, non-uniform and non-constant illumination resulting in different image qualities

and inherent noise in the vein images.

Therefore for this research, pre-processing methods were applied prior to segmentation

of the vein images. To ensure that key features relevant to hand orientation were maintained,

geometry correction was done prior to the extraction of regions of interest (ROI) from

dorsal hand vein images. Grey-level processing methods, including image normalisation

and filtering, were employed followed by image enhancement to enlarge image contrast

for segmentation of vein patterns and skin areas.

Figure 3.1: Pre-processing of DHV images
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3.2 Geometry Correction

Geometry correction was divided as plane (2D) or space (3D) corrections. In this research,

the former correction method was adopted. It is based on affine transformation including

shift, scaling, shearing and rotation (Figure 3.2).

Figure 3.2: Affine transformations

Based on the databases established by this research, there were no shifts, scaling or

rotation effects thanks to the fixed cushion on which participants laid their hands. Shearing

effects occurred over different DHV images, which may have led to different orientations

(Figure 3.3). Thus, it was necessary to correct shearing effects by angle adjusting to

generate good data from ROI extractions.

Figure 3.3: DHV images with shearing distortion

Geometry corrections comprised of:

1. Calculating the centroid point of DHV images

The binary image is first obtained using a global threshold, which can be regarded
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as an irregular object (Figure 3.4). For a digital binary image denoted by F(x,y), its

centroid (x0,y0) can be calculated as:

x0 =

∑
i, j

i× f (i, j)

∑
i, j

f (i, j)
; y0 =

∑
i, j

j× f (i, j)

∑
i, j

f (i, j)
(3.1)

Where i, j represent the image coordinates and f(i,j) denote the grey value of the

pixel (i,j).

Figure 3.4: Calculating the centroid point (red) of DHV images

2. Finding the reference line and calculating the slope

After calculating the centroid point, four boundary points (P1, P2, P3, P4) of the

dorsal hand were obtained by setting two horizontal lines: one positioned at 50

pixels from the bottom and the other across the centroid point. Then, two middle

points of the two lines are calculated as A and B, and the shearing factor determined,

based on the slope of the connected line AB (Figure 3.5).

For this research, the slope is:

θ = tan−1 |AC|
|BC| (3.2)

Where C is the vertical projection of B.
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Figure 3.5: Shearing correction

With the use of the shearing factor , the DHV images were corrected (Figure 3.6).

Figure 3.6: Shearing correction examples

3.3 Region of Interest Extraction

For dorsal hand vein features, ROI extractions have been widely discussed [Kumar and

Prathyusha, 2009; Li, 2013]. From the DHV static database, once the centroid point of a

DHV image was calculated (as discussed previously), the ROI can be extracted by selecting

a rectangular area, based on the centroid point.
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The size of the square ROI was decided by comparing different R values (Figure 3.7).

(a) Image after geometry correction

(b) R=260 (c) R=280 (d) R=300 (e) R=320

Figure 3.7: ROI extraction data

As seen from Figure 3.7, with different R value selections, dorsal hand vein information

was different. When choosing R values above 300 pixels, redundant background informa-

tion appears. DHV images with R = 260 pixels contain less vein information than those of

R = 280 pixels and R = 300 pixels. From the examination of all dorsal hands, the choice

of R = 300 pixels would include useful information with some redundant background

information.

3.4 Grey-level Normalisation

To simplify segmentation and reduce illumination variations of DHV images, normalisation

was carried out. In image processing, normalisation changes the range of pixel intensity

values. The process transforms a grey-scale image f with intensity values in the range

( fmin, fmax), into a normalised image N. The normalisation of a grey-scale digital image is

performed according to the formula:
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N = 255× f − fmin

fmax − fmin
(3.3)

Through normalisation, image contrast is stretched (Figure 3.8).

(a) Before normalisation (b) After normalisation

Figure 3.8: Normalisation images

3.5 Noise Reduction

From NIR capture of dorsal hand veins, noise appeared almost everywhere. During

imaging, randomness occurs in light entering a CCD camera, leading to noise. Inside the

camera, dust also may affect imaging quality. Noise also appears during object capturing

when the hand is not absolutely fixed. As noise is always unwanted in vein images, it was

important to measure and remove noise during vein image pre-processing.

3.5.1 Noise measurement

Since veins mainly appeared in vertical directions along the dorsal hand, the grey value

variations in images were often subjected to noise. Therefore, the grey level profiles along

the middle row of a dorsal hand vein image was adopted as an example to illustrate the

noise effect (Figure 3.9).
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Figure 3.9: Profile of grey levels along the middle of an ROI image

Instead of a smooth grey level profile, there were significant local fluctuations through-

out profiles due to noise effects. The low and high grey level values indicated vein and

skin areas. To measure the extent of local fluctuations, a metric based on total variation

(TV) was employed [Wang et al., 2010]:

TV (F) =∑
i

∑
j
[( f (i, j)− f (i−1, j))2 +( f (i, j)− f (i+1, j))2

+( f (i, j)− f (i, j−1))2 +( f (i, j)− f (i, j+1))2]1/2

(3.4)

Where f(i,j) denotes the grey value of the pixel (i,j).

Figure 3.10: TV value pixels
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3.5.2 Noise reduction

Different image filters were investigated and compared for noise reduction.

1. Median filters

This method is nonlinear, and is used in image processing to reduce salt and pepper

noise. The median filter works by moving through the image pixel by pixel, replacing

each value with the median value of its neighbouring pixels. The pattern of neighbour

is called the ‘window’. The median was calculated by first sorting all pixel values

from the window into numerical order, and replacing the pixel with the middle

(median) pixel value. In this work, a 2-D median filter [Lim, 1990] was applied for

filtering (Figure 3.11b).

2. Mean filter

Mean (or average) filtering is a method of ‘smoothing’ images by reducing the

intensity variation between neighbouring pixels. The mean filter works by moving

through the image pixel by pixel, replacing each value with the average value of its

neighbour pixels, including itself. The filtering is processed by formula:

g(i, j) =
1

MN ∑
(i, j)∈S

f (i, j) (3.5)

Where g(i,j) and f(i,j) denote the pixel values of the original and filtered image and

S is the M×N neighbourhoods. In this work, a square region was used with M×M

neighbourhood.

3. Wiener filter

A Wiener filter is the most important approach for the removal of blur in images.

The filter is designed based on the minimum mean-square error principle. In this

work, a pixel-wise adaptive Wiener method was applied based on statistics estimated

from the local neighbourhood of each pixel [Lim, 1990]. It estimates the local mean
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and variance around each pixel:

µ =
1

NM ∑
n1,n2∈η

a(n1,n2) (3.6)

σ
2 =

1
NM ∑

n1,n2∈η

a2(n1,n2)−µ
2 (3.7)

Where η is the N-by-M local neighbourhood of each pixel in the image A. Then a

pixel-wise Wiener filter is created using these estimates,

b(n1,n2) = µ +
σ2 −ν2

σ2 (a(n1,n2)−µ) (3.8)

Where ν2 is the noise variance. In this work, as the noise was not known, the average

of all the local estimated variances were used.

4. Gaussian filter

A Gaussian filter is similar to the mean filter, but it uses a different kernel shape,

like a Gaussian hump. In image processing, the Gaussian filter is a 2-D convolution

operator used to remove detail and noise in an image. The Gaussian function can be

expressed as:

g(x,y) =
1

2πσ2 e−
x2+y2

2σ2 (3.9)

Where σ is the standard deviation of the Gaussian distribution. A Gaussian mask

template is given by the formula (3.10) and (3.11) [Haddad and Akansu, 1991].

Different Gaussian kernel functions can decided by choosing different standard

deviations and template sizes M×M;

h(i, j) =
hg(i, j)

∑
i

∑
j

hg(i, j)
(3.10)

hg(i, j) = e−
i2+ j2

2σ2 (3.11)
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3.5.3 Filtering results

By observing vein pixels in DHV images, the width of the dorsal hand accounted for 10

to 15 pixels. Hence, all template windows used in filters were set to 15×15 pixels. The

setting of this template window size was to retain as much vein information as possible and

reduce noise information. The filtered results of DHV images are shown in Figure 3.11.

(a) Original normalised ROI image

(b) Median filtered (c) Mean filtered

(d) Wiener filtered (e) Gaussian filtered

Figure 3.11: Results of filtering

It can be seen from the filtering results (Figure 3.11), that images become smoother.

To further compare these results (Figure 3.11), the grey value profiles of the middle row

were plotted for each filtered image in terms of noise measurement (Figure 3.12).
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(a) Original profile

(b) Profile after Median filtering (M=15) (c) Profile after Mean filtering (M=15)

(d) Profile after Wiener filtering (M=15) (e) Profile after Gaussian filtering (M=15, σ=1)

Figure 3.12: Grey level profiles of middle row forms before and after filtering images. The X-axis
represents the pixel position, and Y-axis represents the grey level.
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Table 3.1: TV values comparison

Before Filtering
After Filtering

Median Mean Wiener Gaussian

TV 2403.0 1121.0 1315.2 1124.3 1607.3

For Gaussian filtering, the parameter σ was set to 1 based on the comparison between

TV values obtained from Gaussian filtered images. All filtered results were further mea-

sured by calculating their TV (Table ). In this work, the Median filtering was used as it had

the lowest TV value.

3.6 Image Enhancement

Image enhancement improves the interpretability or perception of information in images

for viewers. It provides better inputs for further image processing. Therefore, it was

optimal to apply image enhancement to enhance contrast and visibility of vein images

before segmentation.

• Histogram equalisation (HE)

Histogram equalisation is a common technique for enhancing the appearance of

images. Before histogram equalisation, the intensity levels are changed so that

histogram peaks are stretched and valleys are compressed [Kadhum, 2012]. If an

image has N pixels distributed in L discrete intensity levels and nk is the number

of pixels with intensity level ik , then the probability density function (PDF) of the

image is given by Equation (3.12). The cumulative density function (CDF) is defined

in Equation (3.13).

fi(ik) =
nk

N
(3.12)

Fk(ik) =
k

∑
j=0

fi(i j) (3.13)
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For histogram equalisation techniques, the PDF is manipulated. It changes the PDF

of a given image to generate a uniform PDF. The CDF is a self-contradictory phrase,

resulting from confusion between probability functions and cumulative distribution

functions. One drawback of this method is that it may increase the contrast of the

background noise, while usable information is decreased (Figure 3.13).

• Contrast Limited Adaptive Histogram Equalisation (CLAHE)

For image enhancement, Pizer et al., proposed an improved HE algorithm called

Contrast Limited Adaptive Histogram Equalisation (CLAHE) [Pizer et al., 1987].

The method operates on small regions in the image rather than the entire image.

However, it not only applies the partial histogram equalisation inside windows, but

also takes into consideration its mapping within the global histogram. The algorithm

is expressed as:

hL(a) = αhw(a)+(1−α)hG(a) 0 ≤ α ≤ 1 (3.14)

Where hL(a) is the partial normalised histogram; hw(a) is the normalised histogram

inside window; hG(a) is the normalised histogram outside window and α is the local

weight.
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(a) Original image (b) After HE (c) After CLAHE

Figure 3.13: Image enhancements

The results of HE and CLAHE are shown (Figure 3.13). From the figure, it can be seen

that all sharp edges are maintained after CLAHE, while after HE, parts of the skin areas

are wrongly segmented as vein areas.

3.7 Concluding Remarks

In this chapter, DHV image pre-processing steps and methods were introduced. Regarding

ROI extractions, thanks to the geometry correction of the original DHV images, the ROI

was easily selected based on the centroid points of DHV images. Noise filters were

investigated and discussed, with the median filter adopted as the ideal choice for noise

reduction. Finally, the CLAHE image enhancement method was adopted to enhance

contrast between vein and skin areas on dorsal hand images. This provided better ‘quality’

images for segmentation.



Chapter 4

DORSAL HAND VEIN

SEGMENTATION

4.1 Introduction

Image segmentation divides images into a number of specific, unique areas. It is a key step

spanning image processing and image analysis. Current image segmentation methods are

divided into the following categories: threshold-based segmentation methods, region-based

segmentation methods, edge-based segmentation methods and segmentation methods based

on specific theory.

For those dorsal hand vein images captured under near infra-red light, the unique

regions of interest are the veins and the skin areas. Considering the vast computing times,

nearly all researchers have adopted threshold-based algorithms [Otsu, 1975; Wang and

Leedham, 2006; Wang et al., 2010].

In this research, some threshold-based methods were studied and compared for im-

proved segmentation of DHV images. To improve extraction of vein patterns and segment

them with skin areas, a theory based on the curvature of vein image profiles was used

[Miura et al., 2007]. Morphological filtering methods were adopted for further post-

processing of segmented DHV images.
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4.2 Segmentation Algorithms

4.2.1 Threshold methods

The threshold based algorithm is the simplest way of image segmentation. It uses a

threshold to create binary images from grey-scale images. Whether fixed or local dynamic

thresholds, the threshold methods are based on the following principles:

g(x,y) =


255, f (x,y)> T

0, f (x,y)≤ T
(4.1)

Where g(x,y), denotes the image after threshold based segmentation, f(x,y) is the

original image and T is the threshold value.

1. Otsu’s method

The premise of this method is to determine the threshold value, where the sum of

foreground and background spreads is at a minimum, which means the intra-class

(within-class) variance is minimal [Otsu, 1975]. This turns out to be the same as

maximising the inter-class (between-class) variance.

Consider the pixels of a given image be represented in L grey levels, and the threshold

is t. The pixels are divided into two classes: class 1 and class 2, whose probabilities

are estimated as:

q1(t) =
t

∑
i=1

P(i) q2(t) =
L

∑
i=t+1

P(i) q1(t)+q2(t) = 1 (4.2)

And the class means are given by:

µ1(t) =
t

∑
i=1

iP(i)
q1(t)

µ2(t) =
L

∑
i=t+1

iP(i)
q2(t)

(4.3)
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The mean grey level value over the whole image (grand mean) is

µ =
t

∑
i=1

iP(i) (4.4)

The individual class variances are:

σ1
2(t) =

t

∑
i=1

[i−µ1(t)]2
P(i)
q1(t)

(4.5)

σ2
2(t) =

L

∑
i=t+1

[i−µ2(t)]2
P(i)
q2(t)

(4.6)

And variance of the whole image is:

σ
2 =

L

∑
i=1

(i−µ)2P(i) (4.7)

The weighted intra-class variance is:

σw
2(t) = q1(t)σ1

2(t)+q2(t)σ2
2(t) (4.8)

To pick the value that minimises σw
2(t), the full range of t values would be run

through. But the relationship between the intra-class and inter-class variances can

be exploited to generate a recursion relation that permits a much faster calculation.

For any given threshold, the total variance σ is the sum of the intra-class variances

(weighted) and the inter-class variance:

σ
2 = σw

2(t)+σB
2(t) (4.9)

Since the total is constant and independent of t, the effect of changing the threshold is

merely to move the contributions of the two terms back and forth. Hence, minimising
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(a) Before segmentation (b) After Otsu’s segmentation

(c) Before segmentation (d) After Otsu’s segmentation

Figure 4.1: Otsu’s segmentation

the intra-class variance is the same as maximising the inter-class variance.

σB
2(t) = q1(t)[1−q1(t)][µ1(t)−µ2(t)]2 (4.10)

Now, the quantities in σB
2(t) could be computed recursively as we run through the

range of t values to get the threshold that maximise σB
2(t).

Since the threshold of this method is fixed, it often results in under-segmentation in

some parts of the image and over-segmentation in others. In Figure 4.1d, the vein

area is over-segmented as the threshold value is too low for that part of the image. In

general, single fixed thresholds cannot meet the demands of good segmentation.

2. Niblack’s method

As a local dynamic threshold method, Niblack’s algorithm is effective in image

segmentation [Niblack, 1985]. The main idea of the segmentation method is

calculating the mean m(x,y) and variance s(x,y) of the points in r×r neighbourhood
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(a) Before segmentation (b) Niblack(k=0.2) (c) Improved Niblack(k=0.2)

(d) Before segmentation (e) Niblack(k=0.2) (f) Improved Niblack(k=0.2)

Figure 4.2: Niblack segmentation

of every pixel, then segmentation is carried out using Equation (4.10),

σB
2(t) = q1(t)[1−q1(t)][µ1(t)−µ2(t)]2 (4.11)

Where, T(x,y) is the threshold, k is the coefficient of correction. If a pixel value

is lower than the threshold, it can be considered as a pixel from the vein area. An

improved Niblack method was proposed by [Shi and Yi-Ding, 2008] who changed

the calculation of the variance s(x,y) as:

s(x,y) =

√√√√ 1
r2

x+r/2

∑
i=x−r/2

y+r/2

∑
j=y−r/2

(( f (i, j)−m(x,y))2 (4.12)

In this work, r value is set to 15, reflecting the average vein width in DHV images was

approximately 10 to 15 pixels. There will be missing vein information when r is too small,

and the vein will be cut when r is too big. The correction coefficient k is determined by

experiments. If k is too small, some skin area will be mistaken for vein area. If k is too
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(a) k=0.2 (b) k=0.1 (c) k=0.5

(d) k=0.2 (e) k=0.1 (f) k=0.5

Figure 4.3: Comparative segmentation data using different k selections

big, some vein area will be missed. In this work, k was set to 0.2. Figure 4.2 shows the

images after Niblack and improved Niblack methods. Figure 4.3 shows the influence of

segmentation results using different k selections.

As can be seen (Figure 4.1 and Figure 4.2), the Otsu’ method performed better than

Niblack’s method when analysing old hands with more complete hand patterns. However,

using the improved Niblack’s method was much better when processing samples from

young hands.

It was concluded that these threshold based algorithms were not robust enough for the

segmentation of DHV images. Therefore, a specific method using the maximum curvature

of the vein image profiles was employed.

4.2.2 Maximum curvature based segmentation

This section describes an algorithm used in the extraction of finger vein patterns [Miura

et al., 2007]. The algorithm robustly extracted vein patterns when vein width and brightness

fluctuated. The idea of the algorithm was to develop a method of calculating local maximum

curvatures in cross-sectional profiles of vein images. In this research, the robust algorithm

was adopted for dorsal hand vein pattern extraction and segmentation:
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1. Find the vein centre

Figure 4.4: Cross-sectional profile of veins

As shown (Figure 4.4), the cross-sectional profile of a vein looks like a dent, since the

vein is darker than the surrounding skin. These concave curves have large curvatures,

thus the vein centres can be obtained by calculating local maximum curvatures in

cross-sectional profiles.

Let F be an ROI image of DHV, and F(x,y) is the intensity of pixel (x,y). Pf (z) is

defined as a cross-sectional profile acquired from F(x,y) at any direction and position,

where z is a position in a profile. Then the curvature c(z) can be represented as:

c(z) =
d2Pf (z)/dz2[

1+(dPf (z)/dz)2
] 3

2
(4.13)

A profile is classified as concave or convex depending on whether c(z) is positive or

negative. Thus the local maximums of c(z) in each concave area is calculated. These

points indicate the centre positions of the veins. The positions of these points are

defined as z′i, where i=0,1,...,N-1, where N is the number of local maximum points

in the profile. Scores are then assigned to the centre positions. A score Scr(z), is

defined as follows:

Scr(z′i) = c(z′i)×Wr(i) (4.14)
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Where, Wr(i) is the width of the region where the curvature is positive and one of the

z′i is located. The width and the curvature of regions are considered in their scores,

which are assigned to a plane, V, that is:

V (x′i,y
′
i) =V (x′i,y

′
i)+Scr(z′i) (4.15)

All profiles are analysed in four directions: horizontal, vertical and vertical at 45◦.

Then, all centre positions of the veins are located.

2. Connecting vein centres

In this step, two neighbouring pixels on the right and left sides of pixel (x,y) are

checked first. An operation is then applied to all pixels, represented as follows:

Gd1(x,y) = min{max(V (x+1,y),V (x+2,y))+max(V (x−1,y),V (x−2,y))}

(4.16)

Accordingly, calculation of the other directions are made with Gd2(x,y), Gd3(x,y),

Gd4(x,y) obtained. Lastly, a final image G(x, y) is obtained by selecting the max-

imum Gd1, Gd2, Gd3 and Gd4 for each pixel. That is, G = max(Gd1, Gd2, Gd3,

Gd4).

The advantage of using the maximum curvature method is the robustness of selecting

vein patterns. The centre points extracted ensure that pixels are within the vein areas,

which retains key vein information (Figure 4.8c) and Appendix B.
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(a) Original image (b) Binarised veins (c) Maximum curvature

Figure 4.5: Dorsal hand vein segmentation using the maximum curvature method

4.3 Post-processing

As previously discussed, maximum curvature based segmentation algorithms can extract

accurate vein pixels from the vein area. However, the segmentation process may cause new

noise, such as spots, holes and burrs (Figure 4.6).

Figure 4.6: Wrongly segmented veins

To remove certain kinds of noise, which are caused by segmentation, morphological

filtering methods are adopted for post-processing of vein images.

Opening and closing are the basic operations of morphological processing. Opening

is operated with erosion followed by dilation. This process removes small objects in the

foreground. On the other hand, closing is operated with dilation followed by erosion,

which removes small holes [Serra, 1983].
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To remove small spots, segmented binary images are processed by closing followed

by opening. Regarding some extra vein patterns, occupying only a small region (much

smaller than the normal hand dorsal vein pattern) in most cases of the database, filters of

removing small connected region are applied for cutting off the wrong pattern.

Figure 4.7 shows morphological filtering. Most spots are removed and holes filled,

while the opening and closing operations lead to dilation of vein patterns. Since the vein

pattern is extracted with the centre point of veins, the dilation process does not cause more

noise when the filtering window size is small. Instead, the dilation process enriches vein

pattern information.

Figure 4.7: Morphological processing

After post-processing, vein patterns are adjusted while skin areas are extracted by sub-

tracting the whole image containing the dilated vein patterns. Figure 4.8 shows examples

of veins and skin areas from one DHV image.

(a) Original image (b) Vein area (c) Skin area

Figure 4.8: Segmented veins and skin areas from a DHV image
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4.4 Concluding Remarks

In this chapter, some commonly used hand vein segmentation methods were investigated

including Otsu, Niblack and improved Niblack. When using threshold methods, the

segmentation results were satisfactory in high contrast areas, however, they bring noise to

vein areas. This research adopted maximum curvature based algorithms for a more accurate

vein pattern segmentation. The algorithm ensured the segmentation process retained key

features of the veins, which extracts the centre points of all vein patterns. Similarly, the

skin area was easily removed by subtracting the whole image from the dilated vein pattern.

For better segmentation results, some morphological filters were discussed and used.



Chapter 5

STATIC ANALYSIS OF DORSAL

HAND VEIN IMAGES FOR

BIOMETRIC APPLICATION

5.1 Introduction

In this research, the static dorsal hand vein image database can be divided into two groups:

the old group (over 60 years old), and the young group, (under 30 years old). According

to human dorsal hand attributes, age factors lead to differences between dorsal hands of

young and the old. When viewed under near infra-red light, an old dorsal hand is different

to a younger one. This quality makes it interesting to classify the two particular groups

based on near infra-red hand vein biometrics.

The classification of old and young groups is conducive to the computing time of human

identification using dorsal hand vein, which develops the vein biometric applications. On

the other hand, the classification will be fundamental to research of age detection of people

using dorsal hand vein biometrics, which explores further biometric applications.

This chapter focuses on features of the dorsal hand from two perspectives: consideration

of dorsal hand images as a whole and consideration of segmented veins and skin areas

separately. Regarding these features, intensity based statistics were investigated because
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the skin and veins have different optical responses to infrared light. Both vein and skin

features were investigated for classification of both groups. Additionally, other classifiers

were introduced and studied.

5.2 Statistical Parameters Analysis

When one gets old, both haemoglobin and water levels change, indicating that intensity

levels are different between old and young DHV images when viewed under near infra-

red light. This section therefore, introduces intensity based parameters of DHV images

considering integral areas, vein and skin areas.

5.2.1 Histogram analysis

Histograms are statistical representations of features, they are the basis for numerous

spatial domain processing techniques. Through analysis of DHV histogram images, the

distribution of intensity can be calculated.

• Histograms of ROI images

DHV ROI images from aged groups were found to be brighter than those from young

groups (Figure 5.1). Similarly, image contrasts were higher in old dorsal hands when

compared to young dorsal hands (Figure 5.1). This suggests histogram distributions

from both images would be different.

(a) ROI from the old group (b) ROI from the young group

Figure 5.1: ROI images of old and young veins
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(a) Histogram of ROI from the old (b) Histogram of ROI from the young

Figure 5.2: Histograms of ROI images from old and young veins

As can be seen (Figure 5.2), histogram distribution centres are different between old

and young DHV images, suggesting dorsal hand vein images of the young appear

darker than those from old groups. These ROI histograms are compatible with the

fact that old dorsal hands appear brighter than young dorsal hands under NIR light,

due to decreasing haemoglobin and water levels in veins and skin tissue, respectively.

To further confirm these differences and investigate the impact of haemoglobin and

water levels, vein and skin areas were analysed separately.

• Histograms of vein areas

For DHV images, vein areas are much smaller than those of the skin. Similarly,

blood levels are lower than water levels in the skin area. However, vein areas do

contain venous blood, of which haemoglobin levels decrease as a dorsal hand gets

older. Thus, it was significant to analyse vein area histograms for classification.
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(a) Vein image of old veins (b) Vein image of young veins

Figure 5.3: Vein image of old and young veins

(a) Vein histogram from old hands (b) Vein histogram from young hands

Figure 5.4: Histograms of vein areas from old and young hands

Figure 5.4 shows the different intensity distributions between old and young groups.

For vein areas, intensities appeared brighter from aged groups when compared to

young groups. These differences prove that haemoglobin levels decrease when

individuals start to get old [Botonjic-Sehic et al., 2009].
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• Histograms of skin areas

As for most dorsal hands, the skin occupies most of the area. Hence, histograms

of skin areas would be as similar as the whole ROT histogram. However, despite

the vein area, it was significant to investigate histograms of skin areas to ascertain

differences (if any) between old and young groups.

(a) Skin image of old participants (b) Skin image of young participants

Figure 5.5: Vein image of old and young veins

(a) Skin histogram from old participants (b) Skin histogram from young participants

Figure 5.6: Histograms of skin areas from old and young participants

As observed (Figure 5.6), distribution of skin areas from old and young participants

were similar to that of ROI histograms. These data verified that with increasing

age, skin becomes brighter under NIR light, due to decreasing water levels. In

appearance, skin from the dorsal hand of the aged group appeared tight and loose.
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5.2.2 Statistical parameters

As discussed previously, histograms reflect the intensity differences between old and young

groups. These histogram distributions led to the analysis of all dorsal hands to confirm

these results. Every pixel grey level in DHV images was directly related to the intensity,

which indicated the absorption activity of NIR light. Considering computing time, it was

necessary to examine basic statistical parameters of intensities from all dorsal hands. In

this work, the statistical parameters were extracted as: maximum, minimum, mean, median,

mode and standard deviation (Figure 5-7).

Figure 5.7: Sketch map of statistical parameters

In the static DHV database, images were derived from 40 old people and 10 young

people. Since DHV images differ between the left and the right hand, the database

contained a total of 100 hands. For 100 dorsal hands, 100 DHV images of ROI (300×300)

were selected for statistical analysis. All basic statistical parameters were extracted from

each hand. Boxplots examined the overall distribution of the 100 hands.

For all boxplots presented, the line at the centre of each boxplot reflected the median

value of the data, and the top and bottom edges were 75% and 25% of the data. ‘Outliers’

were shown by (+) in red.



5.2 Statistical Parameters Analysis 51

1. Minimum grey levels

Using minimum grey values of skin area was unreliable (Figure 5.8). This was

Figure 5.8: Comparison of hands from young and old groups based on minimum grey levels of
skin areas

Figure 5.9: Comparison of hands from young and old groups based on minimum grey levels of
vein areas

because, it was difficult to ascertain differences between the two groups from 100

dorsal hands, since the minimum grey value usually refers to ‘noise’. Regarding

vein areas, the differences exist, but are not obvious.
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2. Maximum grey levels

When using maximum grey values of skin area from DHV images, differences

Figure 5.10: Comparison of hands from young and old groups based on maximum grey levels of
skin areas

Figure 5.11: Comparison of hands from young and old groups based on maximum grey levels of
vein areas

became obvious between the young and the old (Figure 5.10). Specifically in

skin areas, the maximum grey value could guarantee the pixel from the skin when

considering the segmentation errors. Likewise, the maximum grey values of vein

areas similarly showed a difference.
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3. Median grey levels

Using a median grey level approach performed better than maximum and minimum

Figure 5.12: Comparison of hands from young and old groups based on median grey levels of skin
areas

Figure 5.13: Comparison of hands from young and old groups based on median grey levels of vein
areas

grey values when applied to both skin and vein areas (Figure 5.12 and Figure 5.13).

The median value was effective as it usually represents the pixel from the exact vein

and skin area.
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4. Mode grey levels

Mode grey levels denoted pixel grey values that appeared most often in skin areas

Figure 5.14: Comparison of hands from young and old groups based on mode grey levels of skin
areas

Figure 5.15: Comparison of hands from young and old groups based on mode grey levels of vein
areas

or vein areas, ensuring that pixels were precisely selected from the vein or skin area.

The mode parameter is and the contrast results were reliable (Figure 5.14 and Figure

5.15).
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5. Mean grey levels

As shown (Figure 5.16 and Figure 5.17), young and old group distributions were

Figure 5.16: Comparison of hands from young and old groups based on mean grey levels of skin
areas

Figure 5.17: Comparison of hands from young and old groups based on mean grey levels of vein
areas

completely separated. When using mean statistical parameters, all pixels (in veins

or in skin areas) contributed to a representative value for contrasting old and young

hands.
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6. Standard Deviation (SD) of grey levels

The standard deviation is a measure quantifying the variance or dispersion of a set

Figure 5.18: Comparison of hands from young and old groups based on SD grey levels of skin
areas

Figure 5.19: Comparison of hands from young and old groups based on SD grey levels of vein
areas

of data values. As depicted (Figure 5.18 and Figure 5.19), the distribution of SD

values of old participants was notable when compared to both skin or vein areas in

young participants.
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5.2.3 Selection of parameters for classification

Based on these analyses, statistical parameters were extracted as features for classification.

As vein and skin areas represented different materials absorbing NIR light, it was important

to separately analyse their features.

Six types of basic statistical parameter were discussed in this work: maximum, mini-

mum, mean, median, mode and standard deviation values. As presented in former sections,

minimum values were disappointing for classification purposes. Hence, the remaining 5

parameters were extracted from the skin and vein areas, as follows:

Fskin = [Smax,Smean,Smedian,Smode,Sstd]; (5.1)

Fvein = [Vmax,Vmean,Vmedian,Vmode,Vstd]; (5.2)

Where, Fskin and Fvein represent the features extracted from skin and vein areas using

the maximum, mean, median, mode and standard deviation parameters.

(a) Samples using vein image parameters (b) Samples using skin image parameters

Figure 5.20: Plot profiles of sample averages from 500 DHV images of the right hand

As shown (Figure 5.20), class 1 and class 2 represents features extracted from young

and old participant samples, respectively. The distribution of average variables of vein

and skin areas indicates the discrimination between old and young participants. Thus, the

five statistical parameters will be effective for classifying old and young groups of DHV

images.
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5.3 Classification Analysis and Experiments

5.3.1 Classifiers

For this work, the classification of old and young groups is a binary process. Binary

classification classifies the elements of a given set into two groups based on a classification

rule. The classifier refers to a mathematical function, implemented by a classification

algorithm, which classifies input data to class (category). Since the database was not

large and the features extracted were simple, LDA and KNN methods were used for binary

classification.

• Linear discriminant analysis (LDA)

The linear discriminant analysis approach is a classification method originally de-

veloped in 1936 by R.A. Fisher [Fisher, 1936]. It is simple and mathematically

robust. The algorithm is based on a concept of searching for a linear combination of

variables that best separates two classes. In other words, LDA finds most discrimi-

nant projection by maximising between-class distance and minimising within-class

distance. After projection of data onto the linear discriminant dimension, a classi-

fication threshold is placed at the midpoint between the two class means [Misaki

et al., 2010].

In a two-class classification problem, the normal vector of the hyper-plane w is

estimated as follows:

w ∝ S−1
w (m1 −m2) (5.3)

y(x) = wT (x−m) (5.4)

Where, m1 and m2 are the mean of each class, and S−1
w is a within-class covariance

matrix. When the discriminant value y(x) for a sample x is positive, it is classified as

class 1, otherwise as class 2. In LDA, each class covariance is assumed to be the

same and estimated from the training xn as the sample covariance:

Sw =
1

N1
∑

n∈C1

(xn −m1)(xn −m1)
T +

1
N2

∑
n∈C2

(xn −m2)(xn −m2)
T (5.5)
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The between-class covariance is:

SB = (m2 −m1)(m2 −m1)
T (5.6)

Then the objective is a Fisher linear discriminant:

J(w) =
wT SBw
wT Sww

(5.7)

The LDA is to project on line in the direction wT which maximizes J(w).

• K-Nearest Neighbourhoods (KNN)

The KNN algorithm is among the simplest of all classification algorithms. The

algorithm also has a relatively high convergence speed. It is a non-parametric

technique, no a priori assumptions regarding the type of probability distribution are

made [Cover and Hart, 1967].

Suppose each sample in one data set has n attributes (features) which is combined to

form an n-dimensional vector:

x = (x1,x2, ...,xn) (5.8)

Each sample is also denoted by C, which indicated the class the sample belongs

to. Thus, there is a function f, which assigns a class C=f(x) to every vector. As the

function is unknown, we assume it is smooth in some sense. Then a training set of T

including the vectors together with their corresponding classes is given:

x(i),C(i) f or i = 1,2, ...,T (5.9)

Supposed a new sample u where x=u. The problem is to find the class that the new

sample belongs to. Since the function f is unknown for computation of the class

v=f(u) , how to classify the new sample become difficult. KNN methods aims to
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identify k samples in the training set and to use these k samples to classify the new

sample into a class v. The neighbours indicate a dissimilarity measure is needed

for calculations between samples, based on independent variables. Normally, the

Euclidean distance is used for the measure of distance. The Euclidean distance

between points x and u is:

d(x,u) =

√
n

∑
i=1

(xi −ui)2 (5.10)

When k=1, KNN becomes the NN algorithm. In this case, we find the sample in the

training set that is the nearest neighbour to u and set v=y where y is the class of the

nearest neighbouring sample. For k>1 the idea of 1-NN is extended as follow: find

the nearest k neighbours of u and then use a majority decision rule to classify the

new sample.

When applying KNN, the optimal value of k must be searched for. One option for

selecting k is by means of a Cross Validation (CV) procedure. There are many

CV methods, the venetian blinds method was adopted for this work. With venetian

blinds, each test set is determined by selecting every sth object in the data set, starting

at object numbered 1 through s, where s is the number of data splits specified for the

cross validation procedure.

5.3.2 Classification Parameters

To evaluate the classifier and confirm classification results, several classification parameters

should be considered [Friedman et al., 2001].

• The confusion matrix

The confusion matrix is a square matrix with G×G+1, where G is the number of

classes. Each element ngk represents the number of samples belonging to class g and

assigned to class k. The last column collects the number of samples not assigned.

• Sensitivity

Sensitivity (also called the true positive rate) measures the proportion of positives
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Table 5.1: Confusion matrix

Assigned class Not assigned

1 2 ... G G+1

1 n11 n12 ... n1G n1G+1
True 2 n21 n22 ... n2G n2G+1
class ... ... ... ... ... ...

G nG1 nG2 ... nGG nGG+1

that are correctly identified as positive,

Sng =
ngg

ng
(5.11)

Where ng is the total number samples belonging to the g-th class, ngg is the number

of samples belonging to class g and correctly assigned to class g.

• Specificity

Specificity (also called the true negative rate) measures the proportion of negatives

that are correctly identified as negative,

Spg =
∑

G
k=1(nk −ngk)

n−ng
f or k ̸= g (5.12)

Where n′k is the total number of samples assigned to the class k-th,

nk =
G

∑
g=1

ngk (5.13)

Non assigned samples are not considered for the specificity calculation.

• Accuracy (AC)

The accuracy is the ratio of correctly assigned samples:

AC =
∑

G
g=1 ngg

n
(5.14)



5.3 Classification Analysis and Experiments 62

• Error rate (ER) and non-error rate (NER)

The non-error rate is the average of class sensitivities:

NER =
∑

G
g=1 Sng

G
(5.15)

The error rate is defined as:

ER = 1−NER (5.16)

5.3.3 Training experiments

For classification experiments, training and testing datasets were selected as follows: 500

ROI images from the left hands of all subjects were selected as the training set, 100 of

which were from the young group and the rest from the old group. All right hand samples

were selected as the testing set.

Selection was on the basis that left and right dorsal hands are normally different in

terms of vein structures. This selection would make training and testing datasets both

independent and representative. Thus the training set was organised as follows:

Training set

• Class young: 100 images from left hands of all young subjects

• Class old: 400 images from left hands of all old subjects

Testing set

• Class young: 100 images from right hands of all young subjects

• Class old: 400 images from right hands of all old subjects

Once the training datasets were set, the features representing DHV images were trained

for classifier models and classified. Then, the relevant testing datasets were used for

predictions of the aged groups from classification.

Regarding the KNN classifier, there was a disadvantage in selecting k. If k was too

small, the results could be too sensitive to noise. If k was too big, then the resulst could be
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incorrect, where neighbours included too many points from other classes (Cunningham

and Delany 2007) (Zeidat, Wang et al. 2005). For this work, the optimal k was selected by

cross validation using ‘venetian blinds’ for each sample.

Figure 5.21: Parameter K plots for training skin features

Figure 5.22: Parameter K plots for training vein features

As shown (Figure 5.21 and Figure 5.22), the optimalK for the KNN classifiers were

selected using the cross validation method according to different features. As an evaluation,

the error rate (ER) was adopted.
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Regarding the vein features training using KNN, the optimal K was 6. For the skin

features training, the optimal K was 9. The skin and vein features would then be trained

using classifier KNN and LDA for comparison.

Table 5.2: Classification performances with KNN

Optimal K Features
The confusion matrix Classification Parameters

True class Assigned O Assigned Y Sens Spec ACC NER

K=6 Fvein
O 375 25 0.94 0.86

0.92 0.90
Y 14 86 0.86 0.94

K=9 Fskin
O 376 24 0.94 0.92

0.94 0.93
Y 8 92 0.92 0.94

Table 5.3: Classification performances with LDA

Features
The confusion matrix Classification Parameters

True class Assigned O Assigned Y Sens Spec ACC NER

Fvein
O 370 30 0.93 0.80

0.90 0.86
Y 20 80 0.80 0.93

Fskin
O 379 21 0.95 0.79

0.92 0.87
Y 21 79 0.79 0.95

As shown (Table 5.2 and Table 5.3), classification results were satisfactory using KNN

or LDA classifiers. In terms of the features used, the skin feature performed better than the

vein feature: 93% compared to 90% using KNN and 87% compared to 86% using LDA.

These data can be explained that the skin area is much bigger than that of the vein, and the

water levels in the skin area are much higher than haemoglobin levels in the venous blood

of veins. Regarding the classifiers used, KNN performed better than LDA.

Since both the skin and vein features worked well in classification, the features could

be further tailored for classification. Of the five parameters of skin or vein features, the

parameters ‘Mean’, ’Median’ and ‘Mode’ were prominent and similar to each other. Here,

the ‘Mean’ parameter was extracted for discussion. In consideration of both vein and skin

areas, mean parameters were extracted respectively and connected as a new feature F,

described as:

F = [Smean,Vmean] (5.17)
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Figure 5.23: Parameter plots of K for training feature F

Table 5.4: Classification performances using feature F with KNN

Optimal K Features
The confusion matrix Classification Parameters

True class Assigned O Assigned Y Sens Spec ACC NER

K=5 F
O 378 22 0.94 0.83

0.92 0.89
Y 17 83 0.83 0.94

Table 5.5: Classification performances using feature F with LDA

Features
The confusion matrix Classification Parameters

True class Assigned O Assigned Y Sens Spec ACC NER

F
O 376 24 0.94 0.79

0.91 0.86
Y 21 79 0.79 0.94

As depicted (Table 5.4 and 5.5), when parameters were reduced to feature F, the NER

was reduced, whereas the classification result were reasonable.

5.3.4 Testing experiments

Once classifiers were trained, the testing dataset was used to predict the testing samples for

classification of old and young DHV images. Specifically, testing samples were projected

in the classifier models (but not used to calculate the model).
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The prediction results were measured mainly by the classifier’s performance parameter

NER, since the prediction is about to identify whether the new dorsal hand image is old

or not (young). However, calculation of the non-error rate was modified, considering the

un-balanced samples between young and old, described as the correctly prediction rate

(CPR):

CPR = Sens(Y )×0.2+Sens(O)×0,8 (5.18)

Where, Sens(Y) and Sens(O) denote the sensitivity of class young and class old, which

means correctly classified as young and correctly classified as old.

Table 5.6: Results of correct prediction rates

LDA KNN

Fvein Fskin F Fvein Fskin F

CPR 89.6% 91.8% 86.2% 90.4% 92.6% 89.4%

Overall, KNN performed better than LDA as a classifier. The skin area parameters

performed the best, attaining 92.6% correction rate with KNN. The features extracted from

vein areas could be used for classification as it reached over 90% CPR. The reduced F

feature was reasonable due to the meaningful parameters connection from skin and vein

areas. All in all, the intensity statistical parameter based features were satisfactory for

classification of old and young DHV images.

Regarding the 2-dimensinal feature F, the plotting of the predictions of the testing

dataset and the classification boundaries are depicted (Figure 5.24). The coloured regions

show the decision boundaries induced by the optimal KNN classifier and the training set.

The testing data points, which are denoted by ‘+’ (red represents the young group while

blue represents the old group), are evaluated with the classified model. That red ‘+’ falling

in the red region and blue ‘+’ falling in the green region are assigned as correctly predicted

points. As depicted (Figure 5.24), most of the test data points fell into the correct regions,

confirming the classification results.
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Figure 5.24: Plotting the testing set using F features by KNN

5.4 Concluding Remarks

In this chapter, static DHV images were analysed based on statistical parameters extracted

from skin and vein areas. Five basic parameters were justified as features for vein and

skin images. Two classifiers, KNN and LDA were adopted for the classification of old

and young groups. The static DHV database was split into a training set and a testing set,

considering the size and number of samples.

Experimental results showed that old and young groups were classified with a relatively

high prediction rate, due to differences in intensity based features extracted from skin and

vein areas of DHV images. There were no overlaps of dorsal hands between training and

testing datasets, ensuring classification and prediction results. KNN performed better as a

classifier tool when compared to LDA.

From this chapter, it was concluded that features interrelated with intensity grey levels

can effectively distinguish between young and old groups. This distinction was based upon

decreasing haemoglobin and water supplies to veins and skin areas. The distinction could

be used for the recognition of old and young groups, via hand vein biometric applications.



Chapter 6

DYNAMIC ANALYSIS OF DORSAL

HAND VEIN IMAGES FOR

BIOMETRIC APPLICATION

6.1 Introduction

Up to now, nearly all dorsal hand vein biometric applications have focussed on personal

identification. Little research has concentrated on exploring the characteristics of certain

biometrics. In terms of DHV images, and despite the age related features as discussed,

some dynamic attributes could be investigated for biometric applications. Several groups

are devoted to the dynamic analysis of biometrics [Ming-Zher et al., 2011; Takano and

Ohta, 2007; Xu et al., 2014]. Inspired by this work, this chapter investigated the changing

variations underlying dorsal hand vein images.

According to NIR imaging and the absorption attributes of veins and skin, intensity

based values were selected to detect changing patterns, which were used as clues for

dynamic analyses (Figure 6.1) of DHV images for vital sign (liveness) detection. In this

work, changing patterns were decided by peak detection of the signal interested in the

spectrum.
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Figure 6.1: Dynamic DHV analysis

6.2 Signal Extraction and Filtering

As time progresses, variations occur inside the veins and skin [Field et al., 1924]. As

previously discussed, the mean intensity is a fundamental parameter for vein and skin

areas. Thus, mean grey ROI levels in dorsal hand vein image sequences could be extracted

for dynamic analyses.

6.2.1 Signals extracted from regions of interest

Using centroid based ROI extraction, the centre part of the dorsal hand was extracted by

representing each frame of the DHV image. In this case, the 300×300 ROI was extracted

for dynamic DHV analysis.

Figure 6.2: DHV video sequences and ROI extraction for each frame

After extraction, each ROI image was spatially averaged over all pixels to yield a

measurement value for each frame and to form the ROI raw signal y(t). To reduce the DC

component, the raw signal was subtracted from its mean value.

y′(t) = y(t)−µ t = 1,2, ...,T (6.1)
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Where,µ is the mean of y(t), and T denotes the length of the video. In this work, all

videos were 10 seconds long with a frame rate of 25. Thus, the signal length was 250

frames.

Figure 6.3: An example of a ROI based signal y’(t)

As can be seen (Figure 6.3), it was obvious that certain changing patterns existed in

the ROI raw signal. The signal tendency was moving upward, which meant the averaged

value on the dorsal hand increased over time. In observing all dynamic videos, the upward

tendency was explained as a changing illumination of DHV images due to moving dorsal

hands.

On the other hand, with different ROI rectangular sizes, signals were plotted showing

likely tendency and patterns (Figure 6.4(a)-(d)). In this work, 300×300 areas were selected

for discussion.
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(a) 280×280 (b) 260×260

(c) 240×240 (d) 220×220

Figure 6.4: Signals from different ROI selections

6.2.2 Signal Filtering

Randomness appeared in videos, thereby generating noise. On one hand, noise occurred

from light entering the camera during imaging processes. On the other hand, motion

artefacts were bound to happen in DHV videos. This noise would have an extreme impact

on changing patterns, thus it was important to apply filtering methods before the signal

spectrum analysis.

A band-pass filter was used to reduce the noise. This device attenuates frequencies

outside the band of interest. The band of interest was adopted according to the physiological

activities of an individual. Here a second-order Butterworth filter was used. The cut off

frequencies were set to contain the band of interest: 0.2-3 Hz (Figure 6.5).

A Butterworth filter was adopted because:
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Figure 6.5: Frequency response to the Butterworth filter

1. It is an IIR filter and the order required for a given bandwidth is much lower than

that of an FIR filter. Lower orders usually mean less computation and therefore

faster operations.

2. It has flat pass-bands and stop-bands when compared to other IIR structures that

show ripples. This avoids the favouring of certain frequencies over others in the

valid range.

Figure 6.6: ROI signals after band pass filtering
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As shown (Figure 6.6), the changing pattern became more obvious after band pass filtering,

and the original upward tendency caused by hand motion was removed.

To reduce leakage, the input intensity based signal was multiplied by a function,

forcing the resulting boundary values to zero. Here, the Hanning window filtering was

used because it offered good resolution and good leakage rejection. As observed (Figure

6.7), the Hanning window length was the same size of the signal.

Figure 6.7: The Hanning window for the 250 frame signal

Figure 6.8: ROI signals after Hanning window
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6.3 Spectrum Analysis of the Extracted Signals

To make clear the changing patterns underlying the DHV image sequences, it was ideal

to analyse signals in the frequency domains, to assess its frequency components. The

changing pattern in the time domain indicated there should be dominant frequency peaks

representing cycles of variation.

For this research, a simple Discrete Fourier Transform (DFT) investigated the most

prominent peaks in the spectrum. Inspired by (Takano and Ohta) some physiological

parameters could be detected using low-cost and non-contact methods [Takano and Ohta,

2007]. Such parameters included the Respiration Rate (RR), normally 12-20 breaths per

minute [Ganong and Barrett, 2005], and the heart rate (HR). Based on analysis of extracted

signals in former sections, it was assumed that RR related patterns were present and that

frequency interest band components could be set in [0.2Hz 3Hz] for discussion, which

including the normal RR range of frequency and HR range of frequency.

6.3.1 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is the computational basis of spectral analysis. It

identifies component frequencies in data. For signals known as N instants separated by

sample times T, the DFT can be expressed as:

F( jw) =
N−1

∑
k=0

f [k]e− jwkT (6.2)

Where, f[k] denotes the sample points from a continuous signal, T is the sampling

period and N is the length of the finite sequence of data. Since there are only a finite

number of input data points, the DFT treats the data as if it were periodic, i.e. f(N) to

f(2N-1) is the same as f(0) to f(N-1).

In this work, the signals are computed with a fast Fourier transform (FFT) algorithm

[Duhamel and Vetterli, 1990]. Since the frequency resolution is determined by the number

of samples included in the FFT, it can be increased by including more samples. Specifically,

the video sequences were recorded at a frame rate of 25 fps (e.g. sampling rate Fs = 25Hz).
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If the frequency resolution δ f was 1/60 Hz, the length should be:

L =
Fs

∆ f
=

25
1

60

= 1500 f rames (6.3)

The frequency resolution was determined to meet the requirements of a normal human

respiration rate. As the signal was 250 frames long, it was padded by zeros to 1500 points

FFT.

6.3.2 Peak detection

According to the time domain analysis of extracted signals, a periodic signal existed. Thus,

a prominent frequency or peak should be detected using FFT.

Figure 6.9: ROI main peak detection

As shown (Figure 6.9), a dominant peak appeared in the spectrum from ROI images.

This indicated that there were RR like indices existing as cycles of variation. The peak

conformed to former observations of signals from the ROI. Although there were no

verification references for the ‘peak’, it was assumed the peak was representative of a live

dorsal hand under NIR light, because it was so close to a normal human respiratory cycle

(12 times/minute to 24 times/minute).



6.4 Dynamic Analysis of live dorsal hands 76

To further investigate the underlying cycle of activity from live dorsal hands and

considering the computing time, the ROI (300×300) signals were extracted from all DHV

images in the video database and analysed in spectrum to obtain their ‘main peaks’ (Figure

6.10).

Figure 6.10: Peak frequency detection of all ROI signals in the video database

As depicted (Figure 6.10), the main peak frequency values from both left and right

dorsal hands centred in the range 0.2-0.4Hz. This corresponded to respiratory like activity

(12 times/minute to 24 times/minute).

6.4 Dynamic Analysis of live dorsal hands

As previously discussed, certain changing patterns occurred with regard to time scales.

Although the underlying index of dorsal hands could not be verified as respiration activity,

the cycle observed from ROI intensity based signals indicated that a dorsal hand under

NIR light exhibited characteristics representing human vital signs, namely liveness.
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6.4.1 Live and fake dorsal hand vein images contrast

For biometric applications, liveness detection is an effective way of anti-spoofing. Within

spoofing circles, a common deceit is to print images of biometric features. Thus printed

paper may sometimes cheat biometric identification systems. In this research, liveness

detection was based on DHV videos, which focused on dynamic analyses of underlying

patterns caused by human vital signs.

A fake dorsal hand plus veins was made of paper and recorded under NIR light for 10

seconds. Extraction of ROI signals from the fake hand was the same as that of the real

hand (Figure 6.11).

Figure 6.11: A fake dorsal hand ROI image sequences

Sharing the same extraction DHV signal procedure, the intensity based raw signal of

the fake video was extracted as a red signal (Figure 6.12). The spectrum of the ROI signal

from the fake video was illustrated as a red curve (Figure6.13).

Signals from the fake hand video and the live hand video were plotted in the same

figure (Figure 6.12). Signal amplitudes from the fake hand were much smaller than those

of the live hand signals, suggesting the mean grey level variations of the fake hand were

too low for detection, when compared with the live hand.
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Figure 6.12: Comparison of a fake signal (red) with a real signal (blue)

Figure 6.13: Spectrum comparison of a fake signal (red) with a real signal (blue)
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(a) Left hand (b) Right hand

Figure 6.14: Peak detection in hands from the same person

When applied to spectrum analysis, no obvious peaks appeared in the band of interest

(Figure 6.13). Therefore, the signal peak of a live dorsal hand represented liveness of the

biometric. These observations could help develop anti-spoofing techniques for biometric

applications.

6.4.2 Possible vital signs analysis

As shown (Figure 6.9), except for the main peak, other peaks were present. Inspired by

measurements of physiological parameters on webcam videos (Ming-Zher, McDuff et al.

2011), these indistinctive peaks were analysed for heart rate (HR).

Since there were no verification references for a human heart rate, a comparative

analysis between left and right hands from the same individual was carried out. Based on

observations that the heart rate is normally steady over a short period of time, the dynamic

database was used to investigate left and right hands from the same person.

It was assumed that HR, like peak frequencies, was consistent in both hands from one

person. Monitoring the Heart Rate would be regarded as another important soft biometric

for liveness detection.

Figure 6.14 shows a comparison of the left dorsal hand with the right dorsal hand when

extracting indistinctive peaks in the frequency domains. The peaks extracted were similar

yet not the same. To further verify a putative consistency of ‘HR’ frequencies between
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hands, all DHV video samples (from 20 people) were extracted and the peaks plotted

(Figure 6.15).

Figure 6.15: Right hand peak values versus left hand peak values from 20 samples

As shown (Figure 6.15), a point near the diagonal line indicates a symmetrical pair

of indistinctive peak ROI signals from the left and right dorsal hand. The scattering data

show that 12 out of 20 samples were consistent in terms of latent peaks. All points were

within the band of interest (0.5 Hz - 2 Hz) which included normal heart rate frequencies.

6.5 Concluding Remarks

In this chapter, dynamic DHV images were used to extract time-related signals. With

filtering and spectral analysis, dominant peaks were selected. Compared with a fake dorsal

hand video, the dominant peak extracted from the live dorsal hand potentially reflected

liveness detection in dorsal hand veins. Dynamic analysis of dorsal hand vein images had

potential biometric applications and provided a preliminary clue to the detection of human

respiration rates and heart beat rates.



Chapter 7

CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

The research presented in this thesis investigated dorsal hand vein biometric characteristics.

Analytical techniques incorporated static and dynamic analysis of dorsal hand vein images

based on near infra-red imaging. Employing this technological approach enabled us to

explore biometric applications beyond personal identification.

Through literature reviews and background research, dorsal hand vein biometrics

were found to be effective and secure for personal identification, Using dorsal hand vein

biometrics, based on low cost near infra-red for multiple biometric applications is a

challenging, but valuable research strategy.

By understanding the acquisition systems of near infra-red dorsal hand vein images,

it was ascertained that reflection modes of imaging were suitable for dorsal hand vein

patterns. Dorsal hand veins and skin areas were different in their optical responses to NIR

light, suggesting separate analyses of dorsal hand vein images.

A database of dorsal hand vein images was built and segregated into two categories:

static DHV images and dynamic DHV images. The main subjects of the database were from

old group of people, who were investigated for dorsal hand vein biometric applications.
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With regards to static DHV images, two groups were defined: a young group (people

under 30) and an old group (people over 60). The database contained 1000 images from

50 individuals (40 young people and 10 old people). Within the old group, 20 subjects

recorded dynamic hand videos.

Dorsal hand vein images were pre-processed by geometry correction, ROI extraction,

grey level normalisation, noise reduction and image enhancement. The centroid ROI

extraction yielded good data. When mean filtering was applied, it provided the best

performance with a smooth grey level profile and low local fluctuations. Regarding

segmentation processes, some approaches were studied and evaluated. The threshold

based methods worked well in high contrast areas. A specific method of segmentation, the

maximum curvature based algorithm was finally adopted for this research. The algorithm

ensured that the segmentation process retained key vein features, maintaining the centre

points of all vein patterns.

Regarding static analysis of DHV images, intensity based features were extracted for

classification of young and old groups. It was based on physiological knowledge that

both vein and skin characteristics change as people aged. Haemoglobin levels in vein

areas and water concentrations in skin areas decrease with age, reflecting a brighter NIR

intensity in old hands when compared to the young. Based on this, and analysis of basic

intensity statistics of vein and skin areas, a classification of young and old groups was

attained. These observations lay the foundation for exploring dorsal hand vein biometric

applications.

Regarding dynamic analysis of DHV images, time dimensions were included for the

analysis of variations. Mean grey level values were extracted from the ROI of each frame

and connected as biometric signals. These were used for spectrum analysis to find a

prominent peak for liveness investigation. A fake dorsal hand video was introduced and

compared to the live dorsal hand video. This approach validated the vital signs of the live

dorsal hand.

The analysis of static and dynamic dorsal hand vein images carried out in this thesis,

focused on new avenues in biometric technology. Experimental results confirmed differ-
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ences between old and young groups based on dorsal hand vein images. The research also

propose a new method of liveness detection for biometrics.

7.2 Original Contributions

The main original contributions from this study are:

• New attributes of dorsal hand vein biometrics, such as aging factors and vital signs

underlying dynamic dorsal hand vein images, were discovered via quantitative static

analysis. These approaches lay the foundation for further research on age recognition

and respiration rate detection.

• Features based on intensity and basic statistical parameters were proposed and

yielded satisfactory performances in the classification of young and old groups from

biometrics perspectives. The means to predict groups of people, can reduce comput-

ing times of one-to-one recognition in dorsal hand vein biometric applications.

• Potentially, a new method of liveness detection was proposed based on dynamic

analyses using near infra-red dorsal hand vein images.

7.3 Future Work

Based on these research findings and data collected, some potential future objectives are

summarised;

• Englaring the database

Ideally, the database should be enlarged for further research. The classification

results of old and young groups could be validated and expanded when more data

are included. Regarding the video based DHV images, more detailed information

should be recorded during acquisition processes. For example, respiratory rates and

heart rates could be recorded using appropriate devices for further investigation and

validation.
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• Exploring the classification of different age groups

Further static analyses could focus on the classification of old group in the database.

Since vein and skin alters with age, intensity based features could be used for the

classification of different age groups. As shown in Figure 7.1, young and old groups

were separate while sub-groups of old group could not be classified easily. Thus,

more features should be taken into consideration and combined for classification of

groups.

Figure 7.1: Age distribution using combined mean values

• Combining dorsal hand vein images with other biometric modalities

For this research, dorsal hand vein biometrics could be combined with other bio-

metric features, like characteristics from the face or wrist. At the same time, dorsal

hand vein images based on NIR could be combined with other imaging methods.

Employing these combinations would be advantageous to research on dorsal hand

vein biometrics.
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Appendix A

The AGE DISTRIBUTION OF THE

DATABASE

This appendix gives the detailed age information of the subjects in the static DHV database,

shown as follows:

Table A.1: Age distribution of the static DHV database

Group Age Number

Young

25 3
26 4
27 2
28 1

Old
60-69 11
70-79 21
80-89 8



Appendix B

SEGMENTATION RESULTS OF OLD

HANDS

This appendix gives the results of the segmentation of the DHV images from 40 different

old individuals.

Figure B.1: Segmentation result of Old No.1

Figure B.2: Segmentation result of Old No.2
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Figure B.3: Segmentation result of Old No.3

Figure B.4: Segmentation result of Old No.4

Figure B.5: Segmentation result of Old No.5

Figure B.6: Segmentation result of Old No.6

Figure B.7: Segmentation result of Old No.7
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Figure B.8: Segmentation result of Old No.8

Figure B.9: Segmentation result of Old No.9

Figure B.10: Segmentation result of Old No.10

Figure B.11: Segmentation result of Old No.11

Figure B.12: Segmentation result of Old No.12
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Figure B.13: Segmentation result of Old No.13

Figure B.14: Segmentation result of Old No.14

Figure B.15: Segmentation result of Old No.15

Figure B.16: Segmentation result of Old No.16

Figure B.17: Segmentation result of Old No.17
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Figure B.18: Segmentation result of Old No.18

Figure B.19: Segmentation result of Old No.19

Figure B.20: Segmentation result of Old No.20

Figure B.21: Segmentation result of Old No.21

Figure B.22: Segmentation result of Old No.22
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Figure B.23: Segmentation result of Old No.23

Figure B.24: Segmentation result of Old No.24

Figure B.25: Segmentation result of Old No.25

Figure B.26: Segmentation result of Old No.26

Figure B.27: Segmentation result of Old No.27
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Figure B.28: Segmentation result of Old No.28

Figure B.29: Segmentation result of Old No.29

Figure B.30: Segmentation result of Old No.30

Figure B.31: Segmentation result of Old No.31

Figure B.32: Segmentation result of Old No.32
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Figure B.33: Segmentation result of Old No.33

Figure B.34: Segmentation result of Old No.34

Figure B.35: Segmentation result of Old No.35

Figure B.36: Segmentation result of Old No.36

Figure B.37: Segmentation result of Old No.37
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Figure B.38: Segmentation result of Old No.38

Figure B.39: Segmentation result of Old No.39

Figure B.40: Segmentation result of Old No.40



Appendix C

SEGMENTATION RESULTS OF

YOUNG HANDS

This appendix gives the results of the segmentation of the DHV images from 10 different

young individuals.

Figure C.1: Segmentation result of Young No.1

Figure C.2: Segmentation result of Young No.2
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Figure C.3: Segmentation result of Young No.3

Figure C.4: Segmentation result of Young No.4

Figure C.5: Segmentation result of Young No.5

Figure C.6: Segmentation result of Young No.6

Figure C.7: Segmentation result of Young No.7
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Figure C.8: Segmentation result of Young No.8

Figure C.9: Segmentation result of Young No.9

Figure C.10: Segmentation result of Young No.10


	Table of contents
	List of figures
	List of tables
	1 INTRODUCTION
	1.1 Background
	1.1.1 Current research on biometric application
	1.1.2 Dorsal hand vein biometrics

	1.2 Aim of the Research
	1.3 Theis Structure

	2 IMAGE ACQUISITION AND DATABASE
	2.1 Introduction
	2.2 Image Acquisition Principle and Set-up
	2.2.1 Near infra-red illumination
	2.2.2 NIR imaging mode
	2.2.3 NIR imaging module
	2.2.4 Hardware

	2.3 Database
	2.3.1 Static dorsal hand vein images
	2.3.2 Dynamic dorsal hand vein images

	2.4 Concluding Remarks

	3 DORSAL HAND VEIN IMAGE PRE-PROCESSING
	3.1 Introduction
	3.2 Geometry Correction
	3.3 Region of Interest Extraction
	3.4 Grey-level Normalisation
	3.5 Noise Reduction
	3.5.1 Noise measurement
	3.5.2 Noise reduction
	3.5.3 Filtering results

	3.6 Image Enhancement
	3.7 Concluding Remarks

	4 DORSAL HAND VEIN SEGMENTATION
	4.1 Introduction
	4.2 Segmentation Algorithms
	4.2.1 Threshold methods
	4.2.2 Maximum curvature based segmentation

	4.3 Post-processing
	4.4 Concluding Remarks

	5 STATIC ANALYSIS OF DORSAL HAND VEIN IMAGES FOR BIOMETRIC APPLICATION
	5.1 Introduction
	5.2 Statistical Parameters Analysis
	5.2.1 Histogram analysis
	5.2.2 Statistical parameters
	5.2.3 Selection of parameters for classification

	5.3 Classification Analysis and Experiments
	5.3.1 Classifiers
	5.3.2 Classification Parameters
	5.3.3 Training experiments
	5.3.4 Testing experiments

	5.4 Concluding Remarks

	6 DYNAMIC ANALYSIS OF DORSAL HAND VEIN IMAGES FOR BIOMETRIC APPLICATION
	6.1 Introduction
	6.2 Signal Extraction and Filtering
	6.2.1 Signals extracted from regions of interest
	6.2.2 Signal Filtering

	6.3 Spectrum Analysis of the Extracted Signals
	6.3.1 Discrete Fourier Transform
	6.3.2 Peak detection

	6.4 Dynamic Analysis of live dorsal hands
	6.4.1 Live and fake dorsal hand vein images contrast
	6.4.2 Possible vital signs analysis

	6.5 Concluding Remarks

	7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Original Contributions
	7.3 Future Work

	References
	Appendix A The AGE DISTRIBUTION OF THE DATABASE
	Appendix B SEGMENTATION RESULTS OF OLD HANDS
	Appendix C SEGMENTATION RESULTS OF YOUNG HANDS



