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ABSTRACT 

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour 

in adults. Despite current treatment options, including surgery followed by radiation and 

chemotherapy with temozolomide (TMZ) and cisplatin, the median survival rate remains 

below 16 months. Epidemiological studies have shown a positive correlation between 

consumption of fruits and vegetables in the reduced risk and prevention of cancers, 

resulting in improved mortality rates. This is due to various fruits encompassing differing 

antioxidant abilities, which are derived from their phytochemical components. Research has 

emphasised the importance of antioxidants and their ability to neutralise reactive oxygen 

species (ROS) which cause oxidative damage to lipids, proteins and nucleic acids. This 

study examined the presence of polyphenolic compounds within five fruits: cranberry, 

strawberry, goji berry, maqui berry and acai berry, and their effect on cell viability. 

Through High Performance Liquid Chromatography, it was possible to identify the 

potential of all fruits to contain antioxidants; specifically, gallic acid, punicalagin, cyanidin-

3-glucoside and malvidin. Subsequently, flavonoid and phenolic assays quantified the 

levels of antioxidants present within the fruits whereby, cranberry had the highest total 

flavonoid content (670.93 ±45.30 µg/CE/serving) and strawberry had the highest total 

phenolic content (2835.11± 26.48 µg/GAE/serving). Also, the DPPH· radical scavenging 

assay quantified antioxidant activity of fruits and phytochemical compounds showing 

punicalagin to have the highest antioxidant activity (6522.74 ± 59.30 µM TROLOX 

equivalents). The results presented a significant difference in each assay, between all fruits 

samples (p<0.001). This identified cranberry to contain the highest antioxidant activity 

when compared to the other fruits. This study examined the effect of the fruit extracts and 

antioxidant compounds in comparison to cisplatin and determined effects on cell viability. 
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Cyanidin-3-glucoside and maqui berry significantly reduced the viability of U87-MG cells. 

These results suggest a potential for antioxidants as chemotherapeutic agents in the 

treatment of glioblastoma multiforme.  
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1.1 Brain Tumours 

Cancers are a huge research topic as 292,680 invasive malignant cancer diagnoses were 

registered in 2013, in England (Office for National Statistics, 2015; Cancer Registration 

Statistics, England, 2013). Of these, 133,000 deaths occurred, in England in 2013, from a 

total of 162,000 in the UK (Macmillan Cancer Support). Specifically, little significance is 

given to brain tumours in comparison to other cancers such as breast cancer. Brain tumour 

incidences within the UK range from 2,398 in males and 1,803 in females (Figure 1.1) 

(Office or National Statistics, 2016).  

 

Like other cancer, the cause of brain tumours is unknown. However, several risk factors 

have been established such as age, medical radiation, recurrence from previous cancers and 

other medical conditions such as HIV or AIDS (cancer Research, UK). This report 

emphasises    the challenges that remain in the diagnosis and treatment of brain cancers and 

understands the importance of developing new treatments. 
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1.2. Glioblastoma Multiforme  

Glioma can be astrocytic, oligodentritic and ependymal in origin and accounts for 70% of 

brain tumours; of which the most frequent (65%) is glioblastoma (Ohgaki et al., 2005). 

Current classification is based on the widely accepted World Health Organisation (WHO) 

grading system. As shown in Table 1.1, glioma are identified by the type of cell affected: 

divided into astrocytoma, oligodendroglioma, mixed oligoastrocytomas and glioblastoma. 

They are also classified by grade (II-IV), based on abnormal nuclear structure, cellular 

proliferation, microvascular proliferation and necrosis. Tumours can be classified as grade I 

which are usually solid and non-infiltrative (Vigneswaran et al., 2015; Louis et al., 2016). 
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Table 1.1: World Health Organisation examples of classification of gliomas. This is in 

accordance with type, grade, and survival rate alongside a description of the cancer (Louis 

et al., 2016). 
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1.3 Treatment of Glioblastoma Multiforme 
 

 

Despite medical advances in cancer, GBM has limited success. Current treatment consists 

of surgery followed by radiation therapy (RT) in the form of fractionated external beam 

radiotherapy (EBRT) and chemotherapy with temozolomide (TMZ) (Stupp et al., 2005). 

 

Initial treatment begins with surgery to obtain a histological diagnosis and safely remove as 

much tumour as possible. Resection can be problematic due to the invasiveness, increased 

vascularisation or position such as proximity to the motor cortex. In such cases, the tumour 

is partially removed if safe to do so. Full or partial removal of the tumour can be 

advantageous by decreasing symptoms thus reducing the need for additional radiation and 

chemotherapies, reducing side effects resulting in improved quality of life (Watts et al., 

2014). However, risks are associated with surgery as it is difficult to clearly differentiate 

between tumorous and healthy tissue which has potential for error (Watts et al., 2014).  

 

RT is assumed to be effective at delivering a high dose, localised treatment with minimal 

invasion to surrounding tissue. Studies explored the success rate of RT, however Souhami 

et al. (2004) found RT to have no significant difference within the survival rates. Although 

there have been steady advances in treatment to improve survival rates whilst improving 

the quality of life amongst patients (Barani and Larson., 2015). 

 

Medical therapy in the form of alkylating agents such as TMZ have been found 

advantageous due to their rapid and complete absorption upon oral administration and their 

excellent penetration into body tissues including the brain. TMZ is able to select a 

methylation site upon DNA, specifically N7 and O6 on guanine and O3 on adenine resulting 
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in a cascade of events leading to repetitive futility in base pair mismatch repair causing 

chronic strand breaks, triggering an apoptotic response (Stupp et al., 2001). The exploration 

into the combination of TMZ and RT were found to increase cytotoxicity which established 

a success in the relationship and was suggested to be used as a combination therapy (Stupp 

et al., 2001). 

 

Another medical therapy consists of cisplatin or Cis-diamminedichloroplatinum (CDDP), 

considered one of the most potent and widely used drugs for cancer treatment. Cisplatin is a 

metallic- platinum coordination compound with a square planar structure which is 

composed of a doubly charged platinum ion surrounded by four ligands. Within this 

structure, the amine ligands form stronger bonds with the platinum ion and the chloride 

ions forming leaving groups allowing the platinum ion to bond with DNA bases (Dasari 

et.al., 2014). The mode of action of its cytotoxicity is mediated by its interaction with 

DNA, activating several pathways including those with the involvement of ATR, p53, p73 

and MAPK, all which cumulate in activation of apoptosis as summarised in Figure 1.2. 

Although TMZ is the current drug treatment for GBM, cisplatin therapy is used for 

recurrent childhood brain tumours. However, due to cisplatin’s interaction with DNA it is 

known to have cytotoxic effects including nephrotoxicity, hepatotoxicity and cardiotoxicity 

(Yousef et.al.,2009) 
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Figure 1.2: shows the pathways through which cisplatin leads to apoptosis dependent 

upon crosstalk between pathways and the intensity of signal67tnming (Siddik, 2003). 

 

Despite these combinations, as well as advances in each treatment option individually, 

prognosis is still poor. This could be due to the GBM cell resistance to TMZ and cisplatin 

possibly due to the role of a specific microRNA (Clarke et al., 2010). In TMZ, 

methylguanine methyltransferase (MGMT), a DNA repair protein which is able to bind to 

damaged substrate DNA, resulting in a conformational change of the DNA, detaching and 

then allowing the DNA to go through the degradation system. MGMT is able to protect 

cells against carcinogens however, it can also protect cancer cells from chemotherapeutic 

agents such as TMZ (Zhang et al., 2012) (Figure 1.3). As well as investigations into 

intensity modulated radiotherapy and other therapies, there are still few approved treatment 
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alternatives. Recurrence of the disease has been found problematic, where the same 

treatment is administered and fails to show the same success; as well as the difficulty of 

drugs crossing the blood brain barrier (Clarke et al., 2010). 

Figure 1.3: Shows the pathway through which TMZ interacts with MGMT and other 

DNA repair mechanisms leading to cytotoxicity within cells (Liu, 2006).  

 

 

1.4 Reactive Oxygen Species and Antioxidants 
 

 

Reactive oxygen species (ROS) are chemically reactive by-products of oxygen metabolism 

and can be generated in response to xenobiotics, cytokines and bacterial invasion; and 

external exposure such as air pollutants, X-rays and industrial chemicals (Lobo, 2010). 

Under normal cellular conditions, ROS can be obtained through enzymatic and non-
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enzymatic reactions. Where enzymatic reactions are a source of ROS through involvement 

in defence mechanisms such as phagocytosis and redox signalling; non-enzymatic reactions 

form ROS through oxygen and organic compound reactions having similar beneficial 

effects (Lobo, 2010; Halliwell, 2007).  

 

 In high concentrations ROS can have damaging effects upon cellular components 

including DNA, proteins and lipids; contributing to the development of diseases such as 

cancer, atherosclerosis, cardiovascular disease, diabetes mellitus and neurodegenerative 

disease (Gordon 1996; Gey, 1990; Scalbert et al., 2005). Free radicals known to create such 

damage consist of the hydroxyl (·OH), superoxide anion and hydrogen peroxide. For 

example, the reduction of molecular O2 produces superoxide (·O2−) which can be further 

converted to hydrogen peroxide (H2O2) and hydroxyl radical (·OH).  

 

Cell damage can occur due to protein and lipid peroxidation leading to apoptosis. In 

proteins, as a result of oxidative stress, physical and chemical changes can occur causing 

biological consequences including disease and aging. Specifically, oxidative modifications 

of proteins take place at the side chains of amino acids. Cysteine and methionine are 

especially susceptible to oxidation due to the presence of reactive sulphur atoms which is 

rich is electrons and can be removed. ROS can directly attack the backbone of proteins to 

cause conformational changes in the secondary and tertiary structures (Zhang et al., 2013). 

 

Lipid peroxidation takes place due to an antioxidant deficiency (α-tocopherol). The process 

consists of the formation and propagation of lipid radicals, uptake of oxygen, and a 

rearrangement of the double bonds in unsaturated lipids, specifically within 

polyunsaturated fatty acids (PUFA). This causes an increase in radical formation by 
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hydrogen abstraction due to the susceptibility of a weak C-H bond within the methylene 

bridge resulting in the formation of a peroxyl radical (ROO·) and hydroperoxides. This 

leads to a chain reaction, where the ROO· alongside a yield of alcoxyl (RO.) or hydroxyl 

(·OH) radicals is able to start the procedure of forming and propagating lipid radicals again. 

Under high levels of lipid peroxidation, the membranes under attack are overwhelmed by 

oxidative damage such that they are unable to put repair mechanisms in place, inducing 

apoptosis or necrosis. This leads to the eventual destruction of PUFA and therefore lipid 

membranes, with breakdown products including: alcohols, ketones, alkanes, aldehydes and 

ethers (Dianzani et al., 2008; Repetto, 2012; Ayala et al., 2014).  

 

To defend against such damage, oxidative mechanisms are put in place with the aid of 

antioxidants which can prevent radical formation, remove radicals before they can cause 

damage to key components and repair oxidative damage. However, it is imperative for an 

exacting amount of ROS to remain, to carry out necessary processes and so the aim of these 

mechanisms is not to remove all ROS but to maintain the levels to prevent such damage 

from occurring (Ames et al., 1993; Gordon, 1996).  

 

According to Lobo et al., (2010), proposed defence mechanisms consist of the donation of 

an electron from the antioxidant, neutralising the free radical; removal of ROS by 

quenching the chain initiating catalyst; metal ion chelation; co-antioxidants or gene 

expression regulation. These antioxidants can be generated naturally or obtained via the 

diet.  
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Reduction of molecular O2 produces superoxide (·O2−) which can be further converted to 

hydrogen peroxide (H2O2) and hydroxyl radical (·OH). Naturally occurring enzymatic 

antioxidants found within cells, have the ability to convert ROS in to less toxic products. 

The antioxidant superoxide dismutase (SOD) enzyme catalyses the dismutation (alternately 

adding or removing an electron from the superoxide molecules it encounters) of the ·O2− 

radical to produce the less harmful products H2O2 and O2 (Figure 1.3). Alongside SOD, 

another enzymatic antioxidant catalase, prevents the increased production of H2O2, also a 

harmful by product; decomposing it to O2 and H2O.  Other antioxidants include, ascorbic 

acid (vitamin C), α-tocopherol (vitamin E), uric acid and the glutathione (GSH) (all non-

enzymatic) which also target H2O2. 

 

  

Figure 1.4: Equation showing the breakdown of ·O2− (adapted from Gordon, 1996). 

 

1.5 Phytochemicals  
 

 

Phytochemicals are bioactive non-nutrient plant compounds which have particular roles 

within plants such as contributing to reproduction and growth, defence mechanisms against 

pathogens and parasites, as well as colour of the plant (Liu, 2004; Lampe et al., 2007). 

Upon human consumption of these phytochemicals, studies have indicated a potential for 

them to have chemotherapeutic advantages (Ames, 1983; Gey, 1990). Phytochemicals can 

be classified into five categories; phenolics, carotenoids, nitrogen-containing compounds, 

organosulfur compounds and alkaloids, of which carotenoids and phenolics are the most 
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studied and phenolics are the most common and widely distributed (Figure 1.4) (Tsao, 

2010). 

 

 

 

Figure 1.5: Classification of phytochemicals recognising those which have been widely 

researched (Adapted from Liu, 2004) 

 

Carotenoids and phenolics from the same basic chemical structure and are differentiated by 

the addition of functional groups which also differentiate the phytochemicals’ roles within 

plants (Table 1.2). It is their roles within plants that have been identified to aid in 

antioxidant defence mechanisms due to their ability to quench ROS and prevent lipid 

peroxidation (Gordon 1996). 
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1.5.1 Flavonoids 

 

Flavonoids are the most widely studied of the phenolics with over 4000 discovered to date.  

They are typically found in glycosylated or esterified forms, all leading to variation in role, 

and can be further divided into subgroups: flavonols, catechins, flavones, flavanones, 

anthocyanins and isoflavones (Liu, 2004; Manach, 2004). The general structure of 

flavonoids contains a C6-C3-C6 backbone, of which rings A and B are phenolic in nature 

(Table 1.3). Ring C is the part of the structure which further sub-divides the flavonoids 

where variations can occur due to hydroxylation patterns, and positioning of the connection 

between rings B and C, which can result in the flavonoids existing as glycosides (Tsao, 

2010).  

 

Like other phytochemicals, the variants of flavonoids have antioxidant capabilities as they 

are hydroxylated phenolic substances. The sub-divisions of flavonoids are structure 

dependent which in turn arranges their chemical nature through their degree of 

hydroxylation polymerisation and substitutions. The variant consists of the functional 

hydroxyl group which determines the flavonoids antioxidant capability which allows the 

scavenging of free radicals (Kumar et al., 2013).   
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Table 1.2: Classification of phytochemicals explained according to subtype, chemical structure, examples, and sources alongside 

additional information to understand each type (continued on page 29). 
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Table 1.3: Classification of flavonoids, divided into their subtypes, chemical structure, 

examples and structure. 
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RATIONALE 

 

The aim of this project was to measure the phytochemical and antioxidant levels of a 

variety of fruits: strawberry, cranberry, acai berry, maqui berry and goji berry, to determine 

their chemotherapeutic effects alone and in combination with current therapies within 

human cell lines - human brain glioblastoma, astrocytoma; classified as grade IV compared 

to human foetal astroglia as a control for the treatment of glioma. These five particular 

fruits were chosen due to emerging claims promoting their health benefits being advertised 

to the public due to their high antioxidant levels and their current frequency in the regular 

diet in freeze dried form. 

 

Initial studies focussed on determining the presence of particular polyphenolic compounds 

present with the fruit samples via the conduction of High Performance Liquid 

Chromatography (HPLC). The abundance of phytochemicals within each fruit extract were 

identified with the use of previously optimised flavonoid and phenolic assays.  Further 

characterisation of the antioxidant effects were measured by 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) method.  Following this, the mechanism of action of cell death in glioma cells was 

measured by cell viability, cell cycle, proliferation, apoptosis and metabolic assays in 

increasing concentrations. 

  

Cell culture studies were performed alone and compared with current chemotherapeutic 

agents used in the treatment of glioma, namely cisplatin in cell viability, cell cycle, 

proliferation and apoptosis assays.   
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HYPOTHESIS AND AIMS 

 

Working Hypothesis: Can polyphenolic compounds found in cranberry, strawberry, goji 

berry, maqui berry and acai berry become a potential chemotherapeutic agent in in vitro 

models of glioma? 

 

Main Aim: The main aim of this study was to analyse fruit extracts, determine the 

composition of antioxidants and study their effects on glioma cell lines. 

 

Specific Aims:  

 

1. To determine the composition of antioxidants present within freeze-dried cranberry, 

strawberry, goji berry, maqui berry and acai berry. 

 

2. To determine the total flavonoid, total phenolic and total antioxidant capacity of the 

five fruit extracts. 

 

3. To investigate the time course and dose dependant effects of cisplatin, antioxidants 

and the five fruit extracts on glioma cell lines. 
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Chapter 2 

METHODS AND MATERIALS
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2.1 Chemicals and Plastics 

All chemicals used were of the highest quality available. 

 

Scientific Laboraestory Supplies (Nottingham, UK) 

Sodium nitrite (NaNO2), aluminium chloride (AlCl3), sodium hydroxide (NaOH), 2N 

Folin-Ciocalteu’s reagent, sodium carbonate (Na2CO3), gallic acid, (+) catechin hydrate, 

2,2-diphenyl-1-picrylhydrazyl (DPPH) and (±)-6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid (TROLOX) 

 

Fisher Scientific, (Loughborough, UK) 

HPLC Grade methanol, 96 well plates, PBS tablets, 25 and 75 cm2 filter cap, angled 

neck tissue culture flasks, serological pipettes, 50 and 15 ml centrifuge tubes, multi-well 

plates and Foetal Bovine Serum, 20ml syringes 

 

BMG LABTECH (Offenburg, Germany) 

FLUOstar OPTIMA plate reader 

 

Sigma Aldrich (Poole, UK) 

SUPELCO Analytical LC18, 5µm, 25cm x 4.6mm column, (+) catechin hydrate, gallic 

acid, myricetin, elagic acid, kaempferol, quercetin, green tea catechin mix, punicalagin 

and 2 ml vials with screw tops, Trypan blue, cisplatin and DMSO 
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Greyhound Chromatography (Merseyside, UK) 

Cyanidin chloride, malvidin chloride, deplphinidin chloride and pelargonidin chloride 

 

Chemfaces (Hubei, Wuhan, China) 

Cyanidin-3-O-glucoside chloride 

 

Agilent Technologies (Waldbronn, Germany) 

Agilent Technologies Series 1200 system: G1322A degasser, G11311A quaternary 

pump, G1329A standard auto sampler, G1316A thermostatted column compartment, 

G1315D diode array detector and multi wavelength detector and G1159A six position 

column selector valve.  

 

Life Technologies (Paisley, UK) 

PrestoBlue® Cell Viability Reagent 

 

Lonza (Slough, UK) 

Eagle’s MEM w/o L-Glut, NEAA (100x), L-Glutamine (2mM), Trypsin (10x) and 

sodium pyruvate (100mM) 

 

ECACC (Porton Down, UK) 

U-87 MG Grade IV Human Glioblastoma cell line 
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ATCC (Masassas, VA, USA)  

SVG-P12 human foetal astroglia cell line 

 

www.healthysupplies.co.uk: Healthy Supplies & Sussex Wholefoods (Lancing, 

West Sussex, UK) 

Freeze-Dried Strawberry Powder (100g), Freeze-Dried Cranberry Powder (100g), Goji 

Juice Powder - organic (150g), Freeze Dried Maqui Berry Powder - organic (100g), 

Freeze-Dried Acai Berry Powder- Organic (100g)   

GE Healthcare Life Sciences (Buckinghamshire, UK) 

Puradisc™ 25mm Sterile and Endotoxin Free 0.2µm PES Filter Media 

 

2.2. Sample Preparation 

 

The fruit samples used within experimentation were prepared with the mind – set of the 

consumer. This was defined by interpreting the serving suggestions given by the 

manufacturer: 
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Table 2.1: description of fruit sample preparation. Each fruit had serving 

suggestions which were applied to the sample preparation in accordance to the 

experiments conducted in order to obtain results as per these serving suggestions. 

Fruit Serving Suggestions Fruit sample (g) Solvent (ml) 

Cranberry 1:5 ratio of powder to liquid 1.29 25 

Strawberry 1:5 ratio of powder to liquid 1.48 25 

Goji berry 2 tsp in 250 ml 2.69 250 

Maqui berry 2 tsp in 250 ml 4.11 250 

Acai berry 2 tsp in 250 ml 5.39 250 

 

 

2.3. High Performance Liquid Chromatography (HPLC) 

 

The fruit samples, cranberry, strawberry, goji berry, maqui berry and acai berry were 

weighed out in accordance to their serving suggestions and dissolved in HPLC grade 

methanol and filtered using a 0.2 µm filter (Table 2.1). These were compared against 

the 12 standards consisting of catechin, quercetin, myricetin, kaempferol, punicalagin, 

ellagic acid, gallic acid, cyanidin, cyanidin-3-glucoside, delphinidin, malvidin, 

pelargonidin. All standards were prepared as 1mg/ml and were stored at -20°C. Two 

HPLC methods were preliminarily explored with the use of an Agilent Technologies 

Series 1200 system consisting of a degasser, quaternary pump, standard auto sampler, 

thermostatted column compartment, diode array detector and multi wavelength detector 

and a six position column selector valve.  
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2.3.1 HPLC: Method 1 

 

All standards and samples were analysed following a gradient elution programme 

(modified from Huang et al., 2012). This required solution A, 0.1% formic acid, and 

solution B, 100% methanol. This was used to follow a graduated method consisting of: 

0-10 min,  where solution B was increased from 0%–10%; at 10–25 min, solution B was 

increased from 10%–20%; at 25–35 min, solution B increased from  20%–23%; at 35–

45 min, solution B increased from 23%–28%; at 45–60 min,  solution B increased from 

28%–35%; at 60–75 min, solution B increased from 35%–50%; at 75–80 min, solution 

B increased from 50%–55%; at 80–85 min, solution B increased from 55%–75%; at 85–

90 min, solution B increased from 75%. The flow rate was 0.8 ml/min and the injection 

volume was 20 μl. Detection was monitored at 280 nm. 

 

2.3.2 HPLC: Method 2 

 

All standards and samples were analysed following a method modified from Brauch et 

al., 2016. Elution solvent A consisted of water/methanol/formic acid (77/13/10), while 

solvent B was a mixture of water/methanol/formic acid (30/60/10). Separation was 

achieved using: 0-15 min, 6% (solvent B), increased to 30% (solvent B), 15-20 min, 

30% - 36% (solvent B), 20-25 min, 36%- 100% (solvent B), 25-27 min, 2 min isocratic 

period, 27-30 min, 100% - 6% (solvent B), 30-35 min, re-equilibration at 6% (solvent 

B). Total run time was 35 min at a flow rate of 0.8 mL/min. The injection volume was 

10µl. Samples were monitored at 520 nm. 
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2.3.3 Identification of Phytochemicals in Fruit Extracts 

 

Running the HPLC methods gave an indication of what could be present within the fruit 

extracts. To seek confirmation of what was observed, the process of spiking was 

undertaken. Spiking was the process in which a standard antioxidant was added to a 

fruit sample to determine the presence of that antioxidant within the fruit extract. This 

was expressed as a larger peak on the resulting chromatograms. Fruit extracts and 

standards were prepared in a 1:1 ratio and subjected to HPLC using a modified version 

of method 1. 

 

 

2.3.4 Quantification of Phytochemicals in Fruit Extracts 

 

The determination of the presence of antioxidants within the fruit samples led to the 

progression of quantifying this. This was achieved by creating a standard curve per 

relevant antioxidant against which each fruit sample could be quantified. This was 

accomplished by serial, 1:2 dilutions of the antioxidant standard from 1mg/ml to 0.0009 

mg/ml. From this, it was possible to interpolate the amount of antioxidant present within 

the fruit sample. 
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2.4. Determination of Phytochemical Content and 

Antioxidant Capacity of Fruit Extracts 

 

The fruit samples, cranberry strawberry, goji berry, maqui berry and acai berry were 

prepared as recommended by the serving suggestions (Table 2.1) and dissolved in 

dH2O. 

 

2.4.1 Measurement of Total Phenolic Content  

 

The total phenolic content (TPC) was determined using a modified Folin-Ciocalteu 

method (Yang et al., 2012).  Samples consisted of undiluted and diluted, in dH2O, at 

1:10, 1:100 and 1:1000 using serial dilutions and 12.5μl was added in triplicate to the 

wells, incubated with 62.5μl of a master mix containing 50μl dH2O and 12.5μl of 1N 

Folin- Ciocalteu reagent for 5 minutes at room temperature. 125µl of 7% Na2CO3 was 

added per well and samples incubated for 30 minutes at room temperature. Absorbance 

was measured at 750nm. TPC was quantified using a standard calibration curve, 

prepared using 0.5mg/ml gallic acid in dH20, and expressed as mg of gallic acid 

equivalents (GAE)/ml of sample (Appendix 2.2). 

 

2.4.2 Measurement of Total Flavonoid Content 

 

The total flavonoid content (TFC) of the samples was determined using a modified 

AlCl3 method (Marinova et al., 2005). Samples consisted of undiluted and diluted, in 

dH2O, at 1:10, 1:100 and 1:1000 using serial dilutions and 20μl added in triplicate to the 
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wells. 6μl of 5% NaNO2 and 80μl of dH2O added to each well and incubated for 5 

minutes, after which 94μl of a master mix containing 6μl 10% AlCl3, 40μl 1M NaOH 

and 48μl of dH2O was added and the absorbance was measured at 510nm. The TFC of 

the samples was quantified using a standard calibration curve, prepared using 1mg/ml 

catechin in dH2O, and expressed as mg of catechin equivalents (CE)/ml of sample 

(Appendix 2.1). 

 

2.4.3 DDPH Radical-Scavenging Capacity 

 

The antioxidant capacity (AC) was determined by the DPPH· radical scavenging 

method modified from Kodama et al., (2012) and Thaipong et al., (2006). Samples 

consisted of undiluted and diluted, in MeOH on ice, at 1:10, 1:100 and 1:1000 using 

serial dilutions. 50μl of sample was incubated with 250µl of 0.5mM DPPH per well for 

20 minutes at room temperature. Absorbance was measured at 515nm. AC was 

quantified using a standard calibration curve, prepared using 1mM TROLOX in MeOH 

and expressed as μM TROLOX equivalents (TE)/ ml of sample (Appendix 2.3.1). 

Percentage scavenging was also calculated using a standard calibration curve (Appendix 

2.3.2). 

 

2.5 Cell Culture 

 

Fruit samples, cranberry, strawberry, goji berry, maqui berry and acai berry were 

prepared in accordance to the serving suggestions and dissolving in media, in sterile 

conditions in a Labcaire laminar flow hood. 
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2.5.1 Cell Maintenance 

 

U-87 MG and SVG-p12 cells were maintained in EMEM supplemented with, Foetal 

Bovine Serum, L-Glutamine (2mM), NEAA (1%), and sodium pyruvate (1mM) in an 

environment of 37oC and 5% CO2 atmosphere within an IncuSafe incubator. Upon 

confluency of cells at approximately 80%, cell monolayers were washed with 3ml PBS 

solution, replaced with 2ml trypsin and the flask was returned to the incubator to allow 

the cells to detach. After detachment, 4ml of the supplemented EMEM (media) was 

added to the flask to neutralise the trypsin. The cells were gently pipetted to ensure a 

single cell suspension was obtained before passaging into suitable ratios or seeded into 

plates for experimental analysis. 

 

2.5.2 Growth Curves 

 

In order to determine the growth rate of the cell lines, performed over seven days. 6 well 

plates were seeded with 20,000 cells/ml and topped with 2ml media. Cells were 

trypsinised and the cell number was determined by manually counting the cells with the 

use of a haemocytometer on 2-5 days, with an interval of 2 days and then read on the 

7th day. This process was repeated in triplicate.   

 

2.5.3 Presto Blue® Cell Viability Assay 

 

Concentration dependent effects of each treatment on cell viability were measured by 

the addition of PrestoBlue®, resulting in a resazurin reduction by metabolically active 
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cells, changing in colour from blue to red (absorbance 570 nm) and becoming highly 

fluorescent (excitation 535 nm/ emission 612 nm), over a 7 day period and repeated in 

triplicate. Thus, allowing it to be possible to quantify changes. This was accomplished 

by expressing viability via linearity of fluorescence versus cell number. Cells were 

seeded at 0, 500, 1000, 2000, 2500, 5000 and 10,000 cells/ well per 100µl of media in 

96-well plates. These plates were then left to incubate over a period of 7 days within 

normoxic and hypoxic conditions.  

 

After 24, 48, 72, 96 and 120 hrs of incubation, 10 µl of PrestoBlue® was added to each 

well and the plate was returned to incubate for one hour after which the fluorescence 

was obtained by the Tecan GENius PRO plate reader. 

 

2.5.4 Concentration Response Curves 

 

The concentration response assay was conducted to determine the IC50 values for 

cisplatin, punicalagin, cyanidin-3-glucoside, cranberry, strawberry, maqui berry and 

acai berry fruit samples in SVG-p12 and U-87 MG cells in normoxic conditions.  

This was accomplished by seeding cells at 1000 cells/ well in 100 µl media and 

incubated for 24 hours before (11 µl) drug treatments were added (ranging from 1µM- 

300µM) in order to determine the dose response. This was left to incubate for another 

24 hours before 10µl of PrestoBlue® was added for the fluorescence to be measured 

one hour later at the same wavelength as the cell viability assay. 
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2.6. Statistical Analysis 

 

Statistical analyses were performed using Microsoft Excel 2013, GraphPad Prism 5 and 

IBM SPSS Statistics Version 22. Fruit samples were compared by performing one-way 

and two-way ANOVA tests with Tukey’s and Gabriel’s post- hoc analysis on SPSS and 

GraphPad Prism 5, with p<0.05 considered as indicating a statistically significant 

difference. Results were expressed as an average ± the Standard Deviation or ± the 

Standard Error of Mean (SEM) where appropriate. HPLC used ChemStation to aid in 

the analysis of chromatograms. 
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3.1 High Performance Liquid Chromatography 

3.1.1 Comparison of HPLC Methods for Sample Separation 

 

 

Based on previously published protocols, investigations into the phytochemical 

composition of the five fruit samples were undertaken using two different graduated 

HPLC methods. Method 1 comprised of a 90 minute run time with a mobile phase of 

methanol and 0.1% formic acid and read at 280 nm. Method 2 consisted of a 30 minute 

graduated method with a mobile phase of two solvent mixtures containing water: 

methanol: formic acid in the ratios of 77:13:10 (Solvent A) and 30:60:10 (Solvent B).  

Peaks in method 2 were detected at 520nm.  Method 2 had been demonstrated 

previously to be optimal for detecting anthocyanidins in fruit samples and so was of 

particular interest for this study.  

 

Initial investigations using HPLC Method 1 showed an elution time for the fruit samples 

of between 3.38 ± 0.28 - 3.59 ± 0.06 mins (Figure. 3.1 and Table 3.1).  All of the 

standards used were eluted from the column within 3.00 ± 0.90 – 84.27 ± 2.04 mins 

except catechin, quercetin, myricetin and kaempferol, which did not show discernible 

peaks using this method (Table 3.1).  Comparison of the traces and peak elution times 

suggested that the fruit samples may contain punicalagin (3.46 ± 0.45 mins), gallic acid 

(3.35 ± 0.11 mins), cyanidin-3-glucoside (3.33 ± 0.15 mins) and malvidin (3.47 ± 0.04 

mins) (Table 3.1). 

 

Method 2 showed elution times between 4.04 ± 0.00 mins (maqui berry) and 4.66 ± 

0.03 mins (strawberry) for the fruit extracts (Figure. 3.2).  The standards showed a more 

wide-ranging elution rate ranging from 4.23 ± 0.01mins (cyanidin-3-glucoside) to 27.75 

± 2.7 mins (malvidin) (Table 3.2).  Based on these results, and as this method was 
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known to be favourable for separating anthocyanidins, it was suggested that the samples 

contained only cyanidin-3-glucoside which had shown a retention time of 4.23 ± 

0.01mins (Table. 3.2). 

 

3.1.2 Identification of Phytochemicals Present in Fruit Extracts 
 

 

Having identified a number of antioxidants which may have been present in the fruit 

extracts, further investigation was undertaken.  Fruit extracts and standards were 

prepared in a 1:1 ratio and subjected to HPLC using Method 1.  This process of 

‘spiking’ the samples with the addition of a known reference material can help to 

confirm the identity of the sample component peaks. 

 

Each fruit extract was mixed with punicalagin, gallic acid, cyanidin-3-glucoside or 

malvidin.  As the retention times for the extracts and standards was within the first 5 

minutes, the run time for Method 1 was decreased to 20 mins.  

 

Analysis of the spiked samples showed an increase in the height of the peaks detected 

on the chromatograms with no additional peaks observed (Figure. 3.3).  Retention times 

for the spiked samples were comparable to those obtained from the fruit extracts and 

standards alone (Table 3.3) indicating that punicalagin, gallic acid, cyanidin-3-glucoside 

and malvidin could be present in the fruits investigated. This demonstrated that there is 

tentative evidence that punicalagin, cyanidin-3-glugoside, and malvidin could be 

present within the fruit extracts. 

 

3.1.3 Quantification of Phytochemical Components used with the 

HPLC system and comparison of Fruit Extracts between HPLC, TFC 

and TPC 
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Having determined the presence of 4 antioxidant compounds within each of the fruit 

extracts, a standard curve was generated in order to measure the amount of each 

compound in each extract. Decreasing concentrations of the standards (1 – 0.0009 

mg/ml) were run through HPLC using Method 1. The minimum amount of standard that 

could be reliably detected was determined (limit of detection; LOD) and plotted as 

concentration vs average peak area (Figure 3.4) thus expressing the validity of the 

system used. 

 

From this, we were able to use the peak areas from the fruit extracts obtained from the 

HPLC method 1 and compare them to the results obtained from the TFC and TPC 

assays. This showed similarities where by the  

 

3.2 Determination of the Phytochemical Content and 

Antioxidant Capacity of Fruit Extracts 

 

Phenolics are products of secondary metabolism in plants and provide essential 

functions for the maturation and reproduction. They are compounds which have one or 

more aromatic benzene rings, with one or more hydroxyl groups attached to it.  The 

phenolics are further divided into 5 subgroups according to the number of phenol rings 

that they contain and the structural elements that bind these rings to one another. 

Flavonoids, the largest sub-group of phenolics, have been shown to possess antioxidant, 

anti-proliferative and anti-inflammatory activity. 

The therapeutic potential of plants can be measured by a variety of parameters including 

the ratio of flavonoid to phenolic compounds present in the extract, and the overall 

antioxidant activity observed.  The ratio of flavonoids to overall phenolic content in 

plant extracts, in combination with the measurement of the antioxidant capacity of these 
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extracts can be used as an indicator of the therapeutic potential of these compounds.    

Having identified the presence of antioxidant compounds within the fruit extracts, total 

phenolic, total flavonoid and overall antioxidant capacity was measured.   

 

3.2.1 Total Phenolic and Total Flavonoid Content 

 

To determine the total phenolic content (TPC) of the fruit extracts, a modified Folin-

Ciocalteu assay was used (Section 2.4.1).  The average TPC ranged from 281.55 ± 6.97 

(goji berry) to 2835.11 ± 26.48 (strawberry) mg/ml GAE as calculated for a ‘serving’ as 

specified by the manufacturer (Table 3.5; Figure 3.6; Section 2.4). Within these 

samples, a significant difference was found (p<0.001) in the range of TPC values (Table 

3.6). A Tukey’s post hoc analysis revealed a significant difference in the mean TPC 

between: cranberry and strawberry and goji berry (p<0.05); strawberry and all fruit 

extracts (p<0.05 cranberry; P<0.001) as shown in table 3.7. 

 

Using a modified AlCl3 method (Section 2.4.2), total flavonoid content (TFC) of each 

extract was quantified.  The TFC of the extracts was found to range from 166.37 ± 

33.38 (goji berry) to 670.93 ± 45.30 µg/ml CE (cranberry) per serving (Table. 3.5; 

Figure 3.5; Section 2.2).  Significant differences (p<0.001) in the TFC were found 

between all fruit extracts (Table 3.6). Further analysis identified the most significant 

differences in the mean TFC between: cranberry and goji berry (p<0.05); cranberry and 

acai berry (p<0.05) was observed (Table 3.7). 
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3.2.2 Flavonoid to Phenolic Ratio 

 

Although flavonoids are the most abundant phenolic, there are four other sub-groups 

present within this classification. Therefore, the flavonoid to phenolic ratio expresses 

the TFC as a proportion of the TPC. The flavonoid to phenolic ratio states the 

proportion of flavonoids that make up the phenolic content within the fruit extracts.  

The flavonoid: phenolic ratio ranged from 0.14 in strawberry to 0.59 in goji berry.   This 

ratio is expressed for all the fruits extracts as shown is table 3.5. 

 

3.2.3 Total Antioxidant Capacity 
 

 

Following determination of a high ratio of flavonoid to phenolic compounds in a 

number of the fruit extracts, the antioxidant capacity (AC) of each fruit was measured.   

The AC of the compounds previously identified by HPLC as being present in the fruit 

extracts were also measured in parallel (gallic acid, punicalagin, cyanodin-3-glucoside 

and malvidin).   Using the DPPH· radical scavenging method (Section 2.4.3), the 

average AC as shown in table 3.8 was found to range from 2239.07 ± 1021.27 

(cranberry) to 16.84 ± 82.60 mM TE (goji berry) per serving (p<0.001) (Figure 3.7; 

Table 3.9). Table 3.9 shows that the Gabriel’s post hoc test for the DPPH assay revealed 

a significant difference in the mean AC between: cranberry and strawberry, goji berry, 

and punicalagin (p<0.05, excluding maqui berry, acai berry, gallic acid, cyanidin-3-

glucoside and malvidin, p<0.001). 
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3.3. Cell Culture 

3.3.1 Growth Curves 

 

Proliferation and the conditions in which it occurs are factors influencing cell growth. 

This affects any lag periods or plateaus in growth following prolonged incubation of 

SVG-p12 and U87-MG cells. In this case, growth curves were performed in conditions 

of normoxia and hypoxia over a period of 7 days. Both cell lines expressed an 

exponential growth over a period of seven days, displaying signs of a lag phase over the 

first 48 hours (Figure 3.8). A significant difference was found between the incubation 

conditions of normoxia and hypoxia within both cell lines at 168 hours (p<0.001). 

 

3.3.2 Cell Viability 
 

 

The relationship between fluorescence and cell number as measured by the PrestoBlue® 

viability assay was determined by an assay using increasing numbers of cells (Section 

2.5.4)).  SVG-p12 and U87-MG cell lines displayed a linear relationship between 0-24 

hours between 0-10,000 cells. However, following this at 48 hours, fluorescence was 

linear to 2,500 cells and 72 - 168 hours a linearity is only present between 0-1000 cells 

(Figure 3.9). 
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3.3.3 Dose Response Curves 
 

 

The results obtained from the TAC, indicated punicalagin and cyandin-3-glucoside to 

contain the highest AC as measured by the radical scavenging activity. Conversely, goji 

berry consistently showed low levels of potential antioxidants throughout the study. 

Therefore, punicalagin and cyandin-3-glucoside were taken forward for in vitro analysis 

of their activity. Of the fruits, goji berry was not analysed further. Concentration 

response assays were undertaken in SVGp12 and U87-MG cell lines to establish the 

IC50 values for the fruit extracts, the previously identified standards punicalagin and 

cyanodin-3-glucoside and the standard chemotherapeutic agent, cisplatin.  

 

Following treatment with cisplatin, a reduction in cell viability was observed in SVG-

p12 and U87-MG cell lines at 24hrs (37.04 µM vs10.82 µM), 48hrs (10.11 µM vs 7.13 

µM) and 72hrs (9.42 µM vs 1.94 µM). Punicalagin showed SVG-p12 and U87-MG IC50 

values at; 24 hrs (85.42 µM vs 149.90 µM), 48 hrs (48.56 µM vs 45.55 µM) and 72 hrs 

(46.50 µM vs 57.11 µM). Cyanidin-3-glugoside displayed a decrease in cell viability in 

both cell lines at 24hrs (103.60 µM vs 101.30 µM), 48hrs (109.40 µM vs 46.24 µM) 

and 72hrs (36.65 µM vs 31.43 µM). Further analysis found there to be a significant 

difference between cyanidin-3-glucoside and cisplatin and punicalagin (p<0.001) in 

SVGg-p12 cells (Figure 3.10 and Table 3.10).  

 

In addition, concentration response assays were conducted with fruit extracts prepared 

at 1mg/ml in EMEM (Section 2.2). IC50 values for cranberry showed a decrease in cell 

viability at 24hrs (3.88 mg/ml). In the U87-MG cell line, IC50 values at 48hrs (0.13 

mg/ml) and 72 hrs (0.01 mg/ml). Strawberry at 48 hours in SVG-p12 resulted in an IC50 
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value of 0.11 mg/ml. U87-MG showed IC50 values at 24 hrs (0.24 mg/ml), 48 hrs (3.43 

mg/ml) and 72 hrs (0.01 mg/ml) when strawberry was added to the cell line. Maqui 

berry had an IC50 value of 0.001 mg/ml at 72 hrs in SVG-p12 cells (Figure 3.11 and 

Table 3.11).  Further analysis from this expressed a significant difference between 

maqui and cranberry (p<0.001 at 24, 48 and 72 hrs); maqui and strawberry (p<0.001 at 

24 and 48 hrs); and maqui and acai berry (p<0.001 at 24 and 48 hrs; p<0.05 at 72 hrs) in 

the SVG-p12 and U87-MG cell lines. 
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Figure 3.1 (A-F): Example of Chromatograms of fruit samples obtained from 

method 1. Fruit samples obtained from Method 1; A. cranberry- entire 

chromatogram; B. cranberry; C. strawberry; D. goji; E. maqui; F. acai. These samples 

were run on a 90 minute graduated method alongside 12 standards. Results shown were 

obtained from one independent experiment. 

 

 

Table 3.1 (A & B): Average retention times, peak areas and percentage peak areas 

for all standards (A) and samples (B) obtained using Method 1. Average retention 
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times, peak areas and percentage peak areas were obtained from two independent 

experiments (A). The averages for the fruit samples were obtained from the biggest 

peak found from two independent experiments. This information led to the possibility of 

punicalagin, gallic acid, cyanidin-3-glucoside and malvidin to be present within the fruit 

samples.   
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Figure 3.2 (A-E): Zoomed chromatograms of fruit samples obtained from Method 

2. Fruit samples obtained from method 1; A. cranberry – entire chromatogram; B. 

cranberry; C. strawberry; D. goji; E. maqui; F. acai. These samples were run on a 30 

minute graduated method alongside 12 standards. Results shown were obtained from 

one independent experiment. 
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Table 3.2 (A & B): Average retention times, peak areas and percentage peak areas 

for all standards (A) and samples (B) obtained from Method 2. Average retention 

times, peak areas and percentage peak areas were obtained from two independent 

experiments (A). The averages for the fruit samples were obtained from the biggest 

peak obtained from two independent experiments. This information led to the 

possibility cyanidin-3-glucoside to be present within the fruit samples.  
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Figure 3.3 (A-D): Zoomed chromatograms of spiked samples obtained from 

method 1 as compared to non-spiked sample. Example of fruits spiked with 

compounds obtained from method 1; A. Cranberry; B. Cranberry + punicalagin; C. 

Cranberry + gallic acid; D. Cranberry + cyanidin-3-glucoside; E. Cranberry + malvidin. 
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Table 3.3: Average retention times spiked samples obtained from Method 1. Average retention times and peak areas were obtained from two 

independent experiments. Percentage presence represents the percentage increase in the peak areas of the fruit sample compared to the corresponding 

standard, once the samples were spiked. 
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Figure 3.4 (A-D): Standard curves of compounds obtained via LOD from Method 

1. Standard curve used to quantify the concentration of the compounds; A. Punicalagin 

(a positive correlation was observed between peak area and concentration at r2=0.93); 

B. Gallic Acid; (a positive correlation was observed between peak area and 

concentration at r2= 0.99) C. Cyanidin-3-glucoside (a positive correlation was observed 

between peak area and concentration at r2= 0.99); D. Malvidin (a positive correlation 

was observed between peak area and concentration at r2= 0.89) within the fruit samples 

expressed as mg/ml. 
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Fruit Fruit Sample Average Peak area Total Flavonoid Content Total Phenolic Content 

                            (mAU) Avg µg/serving Catechin  Avg µg/serving Gallic acid 

Cranberry 15145.05 ± 427.45 670.93 ± 45.30  1439.16 ± 7.59  

Strawberry 20876.90 ± 3319.44 394.72 ± 39.09  2835.11 ± 26.484  

Goji berry 4615.724 ± 869.16 166.37 ± 33.38  281.55 ± 6.97  

Maqui berry 9818.40 ± 518.87 427.83 ± 151.46  1104.52 ± 23.32  

Acai berry 857.86 ± 279.11 251.57 ± 52.45  851.60 ± 18.17  

Table 3.4: Comparison between the average peak areas of the fruit extracts and the TFC and TPC. The HPLC values were obtained from n=2 of 

HPLC method 1; TFC and TPC values were expressed as µg/serving Catechin and µg/serving Gallic acid from n=3 independent experiments. The TFC 

and TPC values are also expressed individually in figures 3.5 and 3.6. 
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Figure 3.5: Shows the total flavonoid content results obtained for each fruit extract 

 

 

 

Figure 3.6: Shows the total phenolic content results obtained for each fruit extract 
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Figure 3.7: Shows the antioxidant capacity and the percentage scavenging results obtained via the DPPH assay for each fruit type within each 

fruit form in ascending order. 

T.E =  TROLOX equivalence
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Table 3.5: Total Flavonoid Content, Total Phenolic Content, Flavonoid to Phenolic 

Ratio and Total Antioxidant Capacity: TFC per fruit extract expressed as µg/serving 

catechin equivalence; TPC per fruit extract expressed as µg/serving gallic acid 

equivalence; flavonoid to phenolic ratio as obtained from n=3 independent experiments. 

 

 

 

 

 

Table 3.6: One- way ANOVA for antioxidant activity: Showing the degrees of 

freedom (df), mean square and p values within each antioxidant assay; total flavonoid 

content, total phenolic content and DPPH.    
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Table 3.7: Post hoc analysis: A Tukey’s post hoc analysis was conducted to show the 

difference between the fruit extracts within total flavonoid and total phenolic content. 

n.s. = No Significant Difference. a = TFC, b = TPC   

 

 

 

Table 3.8: Total antioxidant capacity of fruit extracts and antioxidants. Total 

antioxidant capacity for each sample was expressed as µM/serving TROLOX 

equivalence as obtained from n=6 independent experiments. 
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Table 3.9: Post hoc analysis for DPPH assay. A Gabriel’s post hoc analysis was conducted to show the difference between the fruits within the total 

antioxidant capacity assay. 

n.s. = No significant difference 
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Figure 3.8: Growth rate for SVG –p12 and U87 MG cells. Upon initial seeding of 

20,000 cells per well, proliferation was determined by a manual cell count of a seven 

day period.SVG-p12 demonstrated a doubling time of approximately 30-72 hours. U87-

MG demonstrated a doubling time of 30-42 hours. The data illustrates mean cell 

number ± SEM generated from n=3. 
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Figure 3.9: The relationship between fluorescence and increasing cell number for 

SVG –p12 (A) and U87 MG (B) cells. The data illustrates ± SEM generated from three 

independent experiments per cell line.   
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Figure 3.10 (A-F): Graphs illustrating the effect of dose-dependent treatment on of cisplatin, punicalagin, and cyanidin-3-glucoside on SVG-

p12 and U87-MG cell lines. A-C display the dose – dependent effect of the three compounds on the SVG-p12 cell line over 24, 48 and 72 hours 

respectively. D-F display the dose – dependent effect of the three compounds on the U87-MG cell line over 24, 48 and 72 hours respectively.  The data 

illustrates ± SEM generated from n=3 experiments per cell line.   

D E F 
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Figure 3.11 (A-F): Graphs illustrating the effect of dose-dependent treatment on of cranberry, strawberry, maqui berry and acai berry on 

SVG-p12 and U87-MG cell lines. A-C display the dose – dependent effect of the three compounds on the SVG-p12 cell line over 24, 48 and 72 hours 

respectively. D-F display the dose – dependent effect of the three compounds on the U87-MG cell line over 24, 48 and 72 hours respectively. . The 

data illustrates ± SEM generated from n=3 experiments per cell line.   
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Table 3.10 (A & B): IC50 values for SVG-p12 cell line (A) and IC50 values for U87-MG cell line (B) following 24, 48 and 72 hours incubation 

with cisplatin, punicalagin and cyanidin-3-glucoside. 
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Table 3.11: IC50 values for SVG-p12 cell line and U87-MG cell line following 24, 48 and 72 hours incubation with cranberry, strawberry, 

maqui berry and acai berry fruit extracts. 
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Chapter 4 

DISCUSSION 
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4.1 Discussion 

Due to increasing media influences surrounding healthy lifestyle choices and the claims 

that berries such as maqui and goji contain high levels of antioxidants, this study 

investigated the levels of potential antioxidant compounds within freeze-dried extracts 

of strawberry, cranberry, maqui, goji and acai berries; and their potential to be used as   

alternative therapies for the treatment of glioma.  

 

These five fruits were of particular interest for this study due to the increasing level of 

media coverage they have received over the past 2-3 years. The fruits themselves, as 

well as products containing these fruits are heavily promoted via blogs and websites 

stating information regarding how these berries benefit health 

(www.purehealingfoods.com; www.globalhealingcentre.com). In addition to this, the 

NHS, a trusted public resource within the UK, provides information regarding 

superfoods, and in particular, goji berries (NHS Choices, 2015). Products such as 

powder mixes are also advertised to the general public which are aimed at those who 

take an interest in healthy living, claiming to ‘contribute to normal immune and nervous 

system function’ (www.myprotein.com). Due to the unavailability of the fresh fruit in 

the UK, the uncommon fruits such as maqui and acai berries are readily available online 

and particularly, within freeze dried forms. This form is claimed to retain the benefits of 

fresh fruit, particularly when referring to the presence of antioxidants 

(www.HealthySupplies.co.uk; www.Lio-Licious.com; www.MamasHealth.com).  

 

The aim of this study was therefore to investigate the claims made within public forums 

suggesting that these berries contain higher levels of antioxidants than other fruits, and 

therefore bestow greater health benefits to the consumer. To maintain similarity to the 

http://www.mamashealth.com/
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end user, the freeze-dried powders used within the study were prepared according to the 

serving suggestions advertised to the consumer, accounting for the requirements of the 

experiment being conducted. 

 

4.2 HPLC 

 

HPLC analysis provided an indication of the presence of antioxidants within the chosen 

fruit extracts. Due to the preliminary nature of this analysis, the presence of antioxidants 

was identified by comparing the fruit extracts to a range of the most abundant 

phytochemicals within the phenolic subtype in particular, phenolic acids, flavonols and 

anthocyanidins.  

 

Initial HPLC studies were performed using a protocol optimised for the separation of 

strawberry samples. The strawberry extract was found to contain a number of 

phytochemicals as previously reported, confirming the suitability of this method for 

sample separation within our system (Huang et al., 2012).  Ideally the protocol for 

separation of each berry would have been optimised however, as this was not the sole 

purpose of this study, and the fact that not all fruits had an associated published 

protocol, each fruit sample was analysed using the strawberry protocol. The results 

concluded that the strawberry extract contained the highest number of antioxidants as 

compared to all other fruit extracts measured however, this may have been influenced 

by the fact that the method used was optimised for this particular berry. 

In addition, as the berries chosen for this study are known to contain high levels of 

anthocyanidins, contributors to the bright red, blue and purple colours of fruits and 

vegetables; a protocol optimised for this phenolic subgroup was also investigated 

(Wang and Stoner, 2008; Aabay et al., 2007; Brauch et al., 2016). On comparison of the 
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separation of the samples using the two protocols, it was found that there was no 

enhanced separation of anthocyanidins and confirmed that strawberry extract contained 

the highest amount of antioxidants; suggesting that the strawberry protocol was suitable 

for this study.  Furthermore, the fruit extracts tested, displayed similar results to 

previously published studies showing the presence of gallic acid, punicalagin and 

cyanidin-3-glucoside (Thermo Scientific., 2012).  

 

It was evident from comparison to the literature that a varying level of sensitivity exists 

within HPLC. Antioxidants such as cyanidin can exist with attached moieties for 

example, glucose or galactose, which contribute to the antioxidant capacity of the 

compound.  These small differences in the structure of the compound can be detected by 

altering the HPLC conditions such as solvent, solvent ratios, column type and 

temperature.  Upon further optimisation of the protocol, there may have been potential 

to distinguish these structural differences. 

 

In an attempt to confirm the peaks seen were those of the antioxidant standards, samples 

were spiked.  A single, higher peak at the same retention time suggests that the sample 

contains the compound of interest.  In order to absolutely define the compound present 

within the sample, further experimentation could be performed. A previous study used 

gas chromatography-mass spectrometry (GC-MS) to identify polyphenolic compounds 

within a root extract (Ajayi et al., 2011). This process consisted of using GC to separate 

compounds to a greater degree of resolution however, this alone does not achieve an 

identification of the compound. In combination with MS, which has the ability to 

identify compounds through their molecular weight, detailed structural information can 

be obtained, which has the potential to identify a compound.  
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4.3 Flavonoid: Phenolic Ratio and Antioxidant Capacity 

 

Following the identification and quantification of the polyphenolic compounds within 

the fruit extracts, it was important to recognise the type of antioxidants that were 

contributing to this activity. The flavonoid to phenolic ratio (F: P) was calculated to 

quantify the amount of flavonoid present in the total phenolic content of each fruit 

extract. As flavonoids are a subgroup of phenolics, the F: P ratio determines how much 

the flavonoid subgroup contributes to the overall phenolic content (Marinova et al., 

2005).  It was hypothesised that this result would be comparable with the concentrations 

of antioxidants as measured by HPLC. Unexpectedly, these two results were not 

analogous as goji berry showed the largest F: P with strawberry displaying the lowest. 

One factor which may have influenced these results is that the HPLC method was 

optimised for strawberry as previously stated, therefore the full potential of the other 

fruits was not exhibited. However, this may not be a true representation of the full 

potential of the fruit extracts, as previous studies have found cyanidin-3-glucoside to be 

the main antioxidant contributor for these berries (Del Pozo-Insfran et al., 2006; Aaby et 

al., 2007; Brito et al., 2014). Further optimisation of the TFC assay could investigate the 

use of a cyanidin compound as the measurement standard.  

 

 

4.4 Antioxidant Capacity (AC) 

 

The DPPH assay is an end point assay which measures the AC through the ability of 

neutralisation of DPPH molecules by TROLOX, resulting in discolouration which can 
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expressed as total antioxidant capacity (TAC) and percentage scavenging. Percentage 

scavenging is defined as the percentage at which the DPPH free radicals accept 

hydrogen atoms available from the hydrogen donor; this was obtained from the fruit or 

antioxidant tested with a given TROLOX equivalent. 

 

DPPH· radical scavenging assay is known as a gold standard assay for measuring the 

AC. This method is defined as the standardised method to use when calculating the AC 

and is known to be of superior quality in comparison to other available methods of AC 

calculation. The values yielded from this are utilised as reference points for the AC 

value in other fruits (Naik et al., 2015).  

 

Upon comparison of the fruits to their F: P ratio goji berry would have been expected to 

contain the highest AC, followed by cranberry>maqui berry>acai berry>strawberry. 

However, goji berry displayed the lowest antioxidant capacity and was surpassed by 

maqui an acai berry. In conjunction with this, the percentage scavenging was displayed 

to be above 100% for punicalagin, cranberry and cyanidin-3-glucoside vs TROLOX. 

This display of the percentage scavenging being above 100% is due to it being 

expressed as a TROLOX equivalence which may introduce the possibility to compare 

these fruits to a different antioxidant with a higher scavenging ability.  A lack of 

knowledge on how the fruits were freeze dried makes it difficult to establish the 

reasoning behind this. A study by Asami et al., (2003) compared freeze-dried 

strawberry to other available forms, showing the freeze-dried form to display the 

highest AC values. It could be possible that this process contributed to enhance the 

antioxidant availability, particularly within the cranberry sample. 

 



78 
 

 Freeze drying is the method by which water is removed via the sublimation of ice 

crystals. There have been many known advantages to this form of food preservation 

along with obvious explanations such as efficient food storage of heat sensitive 

biological material, the retention of morphological, biochemical and immunological 

properties as well as high viability or activity levels. The process of freeze drying can 

instigate these attributes from the food sample which may be an explanation of the high 

cranberry result. In addition to this, pre-treatment of the fruit may have occurred for the 

company to save in production costs (Ciurzyńska and Lenart., 2011).  

 

Other factors contributing to this result may include the combination of antioxidants 

present within the sample. Although the results display four antioxidants it may be 

possible that the AC is contributed to by these in combination with other antioxidants 

not detected at this time. Although this study was able to determine four antioxidants to 

be present within the fruit samples, in comparison to other studies it is conceivable to 

suggest that these compounds are not the only antioxidants present within the fruit 

extracts. For example, goji berries were found to contain a variety of antioxidants 

particularly vitamin C with maqui berry found to contain anthocyandins and 

proanthocyanidins contributing to their AC (Ionică et al., 2012; Fredes et al., 2012). 

Sources have found acai berry to contain a multitude of antioxidants consisting of 

anthocyanidins and proanthocyanidins as well as catechin, and phenolic acids (Schauss 

et al., 2006; Pacheco-Palencia et al., 2008).  

 

Although the DPPH assay is of gold standard, this is not bound by its comparisons to 

TROLOX. It may be possible to utilise another antioxidant that could prove to be a 

better comparison of antioxidant activity within the fruit samples e.g. ascorbic acid 

(Floegel et al., 2016). The comparison between TROLOX and the samples may have 
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been a limitation for expressing the percentage scavenging as there were clear 

indications of punicalagin having a higher scavenging capability. 

  

Also, despite the reputation of this assay, there are other assays available that express 

the AC of samples. The oxygen radical absorbing capacity (ORAC) assay expresses AC 

by the use of a free radical generator mixed with a fluorescein probe. Upon heating of 

the generator, the fluorescein is damaged resulting in a loss of fluorescence. When 

antioxidants interact with the free radicals, the loss in fluorescence is delayed and this is 

used to calculate the AC (Floegel et al., 2016; FLUOstar OPTIMA; Bmglabtech.com; 

2014).  The ferric reducing antioxidant power (FRAP) assay follows a single electron 

transfer mechanism where the antioxidants are oxidised by oxidants such as Fe (III). 

This is measured by obtaining an absorbance value to quantify the reducing capabilities 

of the antioxidant (Ou et al., 2002).  

 

The antioxidant content of the fruits is not the only factor to consider when exploring 

antioxidant capacity. It is also conceivable that although there is a low amount of a 

particular antioxidant present within the fruit, the antioxidant itself, regardless of 

amount may have the ability to exceed the capabilities of the other antioxidants which 

are more highly present. 

 

Another factor to consider when exploring the results obtained from this experiment 

consist of the DPPH assay being and in vitro assay in which there is no consideration of 

the living organism (the consumer) and the effect this fruit would have in an in vivo 

environment. This concerns the bioavailability of the fruit within the consumer. The 

question is raised as to how this fruit affects the body. This is due to the assumption of 
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the entire fruit being utilised within the assay whereas, due to bioavailability it may be 

possible that the fruit portions contributing the antioxidant activity may not impact the 

consumer. Miller et al., (2013) showed that absorption of vitamin E, C, carotenoids and 

catechins are well established and that diets high in fruits and vegetables increased 

blood serum antioxidant activity by 10%. An avenue to explore could be of 

bioavailability as conducted by Lila et al., (2013) in which the anthocyandins from 

maqui berry were tested within a model of the human gastrointestinal tract which 

showed that less than 10% of anthocyandin is bioaccessible. This is imperative to the 

exploration of the administration of antioxidants as a potential chemotherapeutic agent 

due to it the antioxidants being primarily present within the fibrous aspects of the fruits 

which are generally not consumed or are excreted without being digested.  

 

4.5 Growth Curves and Cell Viability 

 

The correct use of cell lines is an imperative factor when conducting assays of this kind. 

As expected from the SVG-p12 and U87-MG cell lines, it was apparent that the 

cancerous cell line had a higher rate of proliferation. This would be expected due to the 

hallmark of cancer which causes a disruption of the negative feedback mechanisms in 

place to decrease proliferative signalling. Defects within this feedback mechanism are 

what are capable of enhancing this proliferative effect (Hanahan and Weinberg., 2011).  

 

The U87-MG cell line doubled in cell number over 48 hours and continued to grow 

exponentially over a period of seven days. In comparison, the SVG-p12 cell line 

doubled over 72 hours and continued to grow exponentially over a seven day period. 

Both cell lines expressed an initial lag phase in growth which is to be expected in order 

for the cells to become acclimatised to their new environment post- seeding. The 
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PrestoBlue® used the reducing cell environment as an indicator of viability. However, 

upon conduction of the assay it became evident that a large impacting factor is cell 

number when measuring the response of cell. The linearity assay established that 

fluorescence was proportional to cell density over 24 hours. In combination with the 

doubling time of the cells, the results recognised that the appropriate time for 

subsequent testing would be after a 24 hour incubation period with an initial seeding 

density of 1000 cells per well.  

 

4.6 Dose Response 

 

To be able to explore the result of antioxidants within a diseased state, the antioxidant 

compounds showing the highest AC were carried into dose dependant experimentation 

in U87-MG and SVG-p12 cell lines. This was compared to the chemotherapeutic agent 

cisplatin. Cisplatin demonstrated cytotoxic effects by reducing the cell viability of both 

U87-MG and SVG-p12 cell lines in a concentration dependant manner. In comparison 

to this, punicalagin and cyanidin-3- glucoside demonstrated a decrease in viability over 

the time period in both cell lines but at a higher concentration.  

 

Cisplatin is a common chemotherapeutic treatment due to its ability to induce 

cytotoxicity through a variety of mechanisms. This could consist of the characteristics 

of the platinum anticancer drug by inhibiting molecular pathways necessary for cellular 

division. Also, platinum compounds have the ability to damage tumours by apoptosis in 

cancer cells where signalling networks that regulate proliferation and survival are 

altered. This may occur by the activation of various signal transduction pathways due to 

interactions with ROS, DNA, tumour necrosis factor (TNF), mitochondria, p53, calcium 



82 
 

signalling and caspases. This may be due to the inhibition of DNA synthesis and repair 

resulting in cell cycle arrest at the G1, S or G2-M phase – thus inducing apoptosis 

(Florea and Büsselburg., 2011).  

 

However, cisplatin is known for its side effects in normal tissue and so novel 

compounds to work alone or in combination with this are constantly being sought. The 

aim of identifying antioxidants as a potential chemotherapeutic agent is due to their 

interaction with ROS.  ROS have the ability to contribute to cancer initiation, 

progression and metastasis. Cancerous cells have increased ROS as compared to non-

cancerous cells which may contribute to oncogenic activation. Although this 

relationship remains unclear, oxidative DNA damage has been known to play a role 

within carcinogenesis and malignant transformation. ROS could mediate signalling 

cascades relating to survival, proliferation and resistance to apoptosis.  This could occur 

within cancer cells due to the ischemic environment and increased rates of metabolism 

(Wang and Yi., 2016).  

 

Clerkin et al., 2008, explained how anti-oxidative therapy could aid in the retardation of 

angiogenesis, rendering them to be a promising antiangiogenic strategy in cancer 

therapy. This may suggest antioxidants to be a suitable anti-cancer therapy due to their 

nutraceutical properties which could result in reduced side effects upon administration. 

Another avenue that could be explored may consist of a combination of therapies as 

suggested previously.  

 

As well as adding the antioxidant compounds to the cells, the fruit samples were also 

directly added to the cells. The results seem to address previous statements of how the 
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antioxidant capacity does not reflect the ability of the compound. In this instance, it is 

possible to suggest that strawberry and maqui berry have an effect upon the cell 

viability of U87-MG cells due to their ability to reduce the viability of the cells by 50%. 

To determine the effectivity of the assay, it could be possible to compare the method 

with the MTT assay ((3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) 

which has been used in studies where antioxidants have been the focus (Ghalli et al., 

2013). The commonality of the assay suggests extraction of the antioxidant from the 

fruit sample to be applied to the suitable cell line. Fruits used in this study were highly 

pigmented in their nature, this suggested that this interfered with the PrestoBlue® assay 

viability assay and so would not detect the true level of viability on the cells. 

 

4.7 Future Work 

 

In order to achieve a logical progression it would be advantageous to determine the full 

antioxidant profile of each fruit. From this it would be beneficial to identify the 

antioxidant activity of the compounds present, which could indicate the relevant 

antioxidants contributing to the AC of the fruit extract. To ensure this is accomplished it 

could be beneficial to prepare the fruit sample rather than purchasing from a company. 

This would ensure the ability of the processing to be factored in to the results obtained. 

Previous studies form this lab attempted to process the fruit extracts from the fresh form 

and at the time of expermentation however, this did not have a desirable outcome. Fresh 

fruits were processed with the aim of use within experimentation, yet the fruits were 

difficult to solubilise and utilise whilst maintaining them in their purest form. This was 

overcome within the study by diluting the fruits to suit the relevant experimentation 

(Patel, Raani and Salim; unpublished data). 
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As previously stated, the standard used in the antioxidant assays can contribute to the 

results obtained. Upon determination of the optimal standard to use to compare the 

results against, it may be ideal to explore the effect of the combination of antioxidants 

within the sample. This could enable further understanding into how the antioxidants 

interact with each other and to identify combinations that would have a higher AC thus, 

a better effect within the cell lines.  Previous research has extracted the antioxidants 

from the fruit samples prior to addition to cell culture. This would be ideal to determine 

the amount of antioxidants found in a serving size or choosing to explore a particular 

section of the fruit, for instance the skin, flesh, pith, seeds or the entire fruit which could 

solve the complication of the interference pigmentation. Having determined an AC of 

the fruit and the effect on cells, it would be beneficial to measure the bioavailability of 

the fruit. Experimentation for this could consist of the use of a model of the human 

gastrointestinal tract to quantify the bioavailability of the compound (Lila et al., 2013).  

 

The antioxidants explored within this study suggest an effect upon cell viability 

however, this does not determine cell death. Cell death could be explored with regards 

to these antioxidants through apoptosis assays. Leading on from this it could be 

beneficial to identify the interaction of the antioxidant within the cell cycle by 

considering cell cycle analysis and proliferation assays. Another avenue to explore 

could be the potential to use the antioxidant as a targeted drug therapy. In this case, 

exploration into the blood brain barrier could be beneficial.  
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4.8 Conclusions 

 

Results from this study have demonstrated that berries do contain antioxidants. Due to 

their pigmentation the flavonoid subgroup of anthocyanidins is favoured in this fruit 

type. However, this may not be the sole contributor to the antioxidant capacity. This 

study provides information about the interaction between antioxidants and glioblastoma 

multiforme cell line U87-MG. This opens the potential to explore antioxidants as a 

chemotherapeutic agent alone, or in combination with a platinum based 

chemotherapeutic agent.  
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Appendix 1: Limit of Detection 

Appendix 1.1: Limit of Detection of Punicalagin using HPLC method 1. 
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Appendix 1.2: Limit of Detection of Gallic acid using HPLC method 1 
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Appendix 1.3: Limit of Detection of cyanidin-3-glucoside using HPLC method 1. 
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Appendix 1.2: Limit of Detection of Malvidin using HPLC method 1. 
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Appendix 2: Spiking of Fruit Extracts 

Appendix 2.1: Strawberry extract spiked with punicalagin, gallic acid, cyanidin-3-

glucoside and malvidin. 
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Appendix 2.2: Goji berry extract spiked with Punicalagin, gallic acid, cyanidin-3-

glucoside and malvidin. 
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Appendix 2.3: Maqui berry extract spiked with Punicalagin, gallic acid, cyanidin-3-

glucoside and malvidin. 
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Appendix 2.3: Acai berry extract spiked with Punicalagin, gallic acid, cyanidin-3-glucoside 

and malvidin   
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Appendix 3: Standard Curves & Graphs 

Appendix 3.1: Standard curve constructed from the Total Flavonoid Content. Standard 

curve used to quantify the TFC for samples expressed as µg of catechin equivalents 

(CE)/ml. A positive correlation was observed between absorbance and catechin 

concentration at r2=0.97. 

 

Appendix 3.2: Standard curve constructed from the Total Phenolic Content. Standard 

curve used to quantify the TPC for samples expressed as µg of gallic acid equivalents 

(GAE)/ml. A positive correlation was observed between absorbance and gallic acid 

concentration at r2 = 0.99. 
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Appendix 3.3: Graphs from the DPPH assay 

 

Appendix 3.3.1: Standard curve constructed from the DPPH assay. Standard curve used 

to quantify the antioxidant capacity for samples expressed as µM of TROLOX 

equivalents (TE). A negative correlation was seen between absorbance and 

concentration of TROLOX at r2=0.99. 

Appendix 3.3.2: Percentage scavenging graph for the DPPH assay. Percentage 

scavenging curve, used to quantify the percentage at which the AAPH molecules were 

quenched by the antioxidant, for samples expressed as µM of TROLOX equivalents 

(TE). A positive correlation was found between percentage scavenging and TROLOX 

concentration at r2 = 0.85.  


