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ABSTRACT 

Rheumatoid arthritis (RA) is an autoimmune disorder characterised by its varied and 

unpredictable origin, eventual destruction of cartilage and bone and the perpetual 

length of treatment involved. Even though significant developments have taken place 

over the past couple of decades in the treatment, the efficacy of drugs for RA is a 

major concern due to the side effects involved. Methotrexate (MTX) is currently used 

as first line treatment due to its ability to modify the rheumatic conditions so that 

disease progression can be prevented. However, at the same time prolonged exposure 

to MTX can lead to severe side effects such as lung fibrosis and hepatotoxicity.  Recent 

research has focused on developing an alternative to MTX with similar efficacy but 

with reduced adverse effects. One such promising option is curcumin, an active 

compound extracted from Indian spice Turmeric. Various studies have indicated the 

synergistic properties exhibited by curcumin and its ability to modulate the underlying 

inflammatory pathways involved in RA. However, no previous studies have been 

reported with regards to using a combination of MTX and curcumin for the treatment 

of RA. A novel RP-HPLC stability indicating method was developed in order to establish 

the compatibility of the two compounds. The method was developed using Waters 

Reverse Phase (XBridgeTM Shield RP18 4.6x250 mm, 5 µM) column. A gradient system, 

consisting of two mobile phases with acetonitrile concentrations of 35% and 60% 

respectively, was designed to optimise the separation of the two compounds while 

taking into consideration the difference in hydrophobicity. The wavelengths for 

detection were 305 nm and 430 nm for MTX and curcumin, respectively. The retention 

time for MTX and curcumin was 4.8 ± 0.10 min and 12.3 ± 0.10 min, respectively. The 
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total run time of analysis was 25 minutes. The developed method was validated for 

parameters such as accuracy, precision, linearity, limit of detection and lower limit of 

quantification. The system was tested through intraday and interday repeatability and 

reproducibility. The method was used to analyse the MTX and curcumin under 

different stress conditions such as pH, UV radiation, temperature and humidity to 

establish their compatibility. The degradation products are successfully separated and 

therefore, the method can be effectively used as stability indicating method. 

Gene expression profiling was performed using HFLS-RA cells treated with MTX and 

curcumin separately and concurrently. The DNA microarray data identified 53 genes 

that were downregulated and 21 genes that were upregulated in all the treated 

samples using both stringent and non-stringent filtering. The total of 13 genes were 

selected based on the fold change obtained in the microarray data and their potential 

as therapeutic biomarkers based on previous research. The gene validation using qRT-

PCR confirmed the higher efficacy of curcumin in the inhibition of the pro-

inflammatory genes such as ANGPTL7, CD248, CH25H, COL14A1, CXCL12, CYTL1, 

IFITM1 and IL7. Curcumin was found to also increase the expression levels of genes 

associated with anti-inflammatory roles, namely BCAR4, CD274, HSPA6, OTP and RELT. 

The increased gene expression in samples treated with both MTX and curcumin 

confirmed the possible synergistic activity which is encouraging, taking in to account 

the fact that these compounds are compatible according to the stability studies carried 

out and thus could be used in combination for the treatment of RA.  This could 

improve the current treatment by reducing the severity of side-effects attributed to 

MTX while maintaining the efficacy of the treatment due to the ability of curcumin to 

modulate specific therapeutic biomarkers involved in the RA pathogenesis.  
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1.1. Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that affects 

approximately 1% of the adult population. Being predominantly genetic in nature, 

once the onset has occurred, there is no cure for the disorder, however it is possible to 

attempt remission through optimal well-timed treatment. It is a systemic autoimmune 

disease with predominant joint involvement and typically involves small joints of the 

hands and feet which when untreated has been associated with increased morbidity 

and mortality. Early intervention in particular has proven to be the best mode of action 

in RA treatment so as to prevent functional impairment that may occur and to 

preserve structural integrity. Over the past decade, early intensive treatment has also 

been proven to change the course of later RA and therefore, the aim should be to treat 

RA early and continuously until remission is present. Despite the new criteria 

developed in 2010 by American College of Rheumatology (ACR) for classification of RA 

making a correct diagnosis of RA (especially early RA) remains a challenge due to large 

number of differential diagnoses (Funovits et al. 2010, Neogi et al. 2010). 

1.2. Risk factors for rheumatoid arthritis 

Smoking is the only environmental factor that has been widely established as a risk 

factor, particularly in people who have HLA-DRB1 shared epitope alleles (Linn-Rasker 

et al. 2007). The risk of RA cannot increase dramatically by a single risk factor since 

more than 100 genetic risk factors for RA have been identified with varying allele 

frequency; several of which are frequently present in the population. Several of the 

identified genes are present in the same pathway. For example, HLA class II 

histocompatibility antigen DRB1-9 beta chain (HLA-DRB1), protein tyrosine 

phosphatase non-receptor type 22 (PTPN22), signal transducer and activator of 
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transcription 4 (STAT4), cluster of differentiation 40 (CD40), cytotoxic T-lymphocyte 

antigen 4 (CTLA4), interleukin (IL) 2, IL21 and protein kinase C theta type (PRKCQ) are 

all involved in T-cell activation, while CD40, CTLA4, IL 2, IL21, PRKCQ, PTPN22, STAT4, 

tumour necrosis factor alpha-induced protein 3 (TNF-ΑIP3) and tumour necrosis factor 

receptor-associated factor 1 (TRAF1) are involved in cell-cycle regulation (Aletaha et al. 

2010).  

1.3. Pathophysiology of RA 

RA is a chronic, progressive, inflammatory autoimmune disease associated with 

articular, extra-articular and systemic effects (Staud 2009). The synovial lining, usually 

two cell layers thick, becomes inflamed. The pannus that subsequently develops 

erodes cartilage and bone, resulting in joint destruction. T cells, B cells and the 

subsequent interaction involving pro-inflammatory cytokines play primal roles in the 

pathophysiology of RA. The cytokines most directly implicated in this process are TNF-

α, IL6, IL1 and IL17 (Smolen and Aletaha 2015).  



Page 30 of 192 
 

 

Figure 1-1 Pathophysiology of RA. (Anatomical difference between normal vs arthritic 
joint) (Adapted from Majithia and Geraci 2007) 

 More than 80% of patients carry the epitope of the HLA-DRB1*04 cluster and patients 

expressing two HLA-DRB1*04 alleles are at increased risk for major organ involvement 

and joint destruction (Jiang et al. 2013). Single-nucleotide polymorphism genotyping 

across the MHC has been identified to be related to RA, including those found on the 

conserved HLA multigene haplotype and those near the HLA-DPB1 gene. Other RA- 

associated loci are PTPN22, PADI4, STAT4, TRAF1-C5 and TNF-ΑIP3, although non-MHC 

risk alleles may represent only 35% of the genetic burden of RA (Descalzo et al. 2012). 

Numerous immune-regulators including cytokines and signalling pathways have been 

confirmed to be involved in the pathophysiology of RA. The complex interaction of 

immune modulators is responsible for the joint damage that begins at the synovial 

membrane and covers most intra-articular structures. Synovitis is caused by the influx 

or local activation or both of mononuclear cells as well as angiogenesis. The synovial 

lining becomes hyperplastic and the synovial membrane expands forming villi. The 

osteoclast-rich portion of the synovial membrane, also known as pannus, destroys 

http://rheumatology.oxfordjournals.org/content/51/suppl_5/v3/F1.large.jpg
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bone whereas enzymes secreted by neutrophils, synoviocytes and chondrocytes 

degrade cartilage (Haidar et al. 2013). Systemic manifestations include acute-phase 

protein production, anaemia, cardiovascular disease (CVD), osteoporosis, fatigue and 

depression (Dayer and Choy 2009). 

1.3.1. Effector cells involved in the pathogenesis of RA  

The initial stage of RA pathogenesis involves activation of the innate immune response, 

including activation of dendritic cells by exogenous material and autologous antigens. 

Antigen-presenting cells, including dendritic cells, macrophages and activated B cells, 

present arthritis-associated antigens to T cells. At the same time, CD4+ T cells secrete 

IL2 and IFN-g leading to penetration of the synovial membrane. These alleles share a 

homologous amino acid sequence on the HLA-DR b-chain that confers binding of 

specific peptides and affects antigen presentation to T-cell receptors. Disease-

associated HLA-DR alleles may present arthritis-related peptides, leading to the 

stimulation and expansion of autoantigen-specific T cells in the joints and lymph nodes 

(Smolen et al. 2013). 

The role of B cells in RA pathogenesis involves antigen presentation as well as the 

production of antibodies, autoantibodies and cytokines. B lymphocytes express cell 

surface proteins, including immunoglobulin and differentiation antigens such as CD20 

and CD22. RF and anti-CCP autoantibodies are commonly found in serum from patients 

with RA. Autoantibodies can form larger immune complexes that can further stimulate 

the production of pro-inflammatory cytokines, including TNF-α, through complement 

and Fc-receptor activation (Smolen et al. 2010).  

The activation of lymphocytes leads to increased production of cytokines and 

chemokines, leading to increased additional T-cell, macrophage and B-cell interactions. 
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Along with antigen presentation, macrophages are also involved in osteoclastogenesis 

and are a major source of cytokines, including TNF-α, IL1 and IL6. The inflamed 

synovial membrane has increased the number of activated fibroblast-like synoviocytes 

which also directly contributes to the destruction of cartilage and bone through 

increased production of inflammatory cytokines and Matrix Metalloproteinases 

(MMPs) which are secreted directly into the synovial fluid and by direct invasion into 

these tissues (Dayer and Choy 2009). 

1.3.2. Cytokines and the impact on effector cells 

The pro-inflammatory cytokines such as IL6 and TNF-α have been well established for 

their involvement in the pathogenesis of RA (McInnes and Schett 2011). Through 

various signal pathways, these cytokines activate genes associated with inflammatory 

responses, including additional cytokines and MMPs involved in tissue degradation. 

The CD4+ cells which secret IL17 has a critical role in synovitis, thereby enabling 

pathogenesis in many cancers and inflammatory autoimmune disorders such as RA 

(Nalbandian et al. 2009). The presence of CD4+ cells in the synovial fluid and peripheral 

blood indicates the involvement of this potent pro-inflammatory cytokine in RA 

pathology (Guggino et al. 2014). Because almost all of fibroblasts, endothelial cells, 

epithelial cells and neutrophils ubiquitously exhibit IL17 receptors, it can be concluded 

that this cytokine has the potential to influence a number of pathways and effector 

cells involved in RA (Iwakura et al. 2011). 

1.3.3. Role of IL6 signalling in RA pathophysiology 

IL6 has emerged as biomarker in RA pathogenesis due to its ability to influence distant 

target cells by way of trans-signalling cascade through ubiquitously expressed 

receptors. The classic signalling mechanism is a protein complex that includes a 
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membrane-bound, non-signalling receptor unit (IL6R) and two signal-transducing 

glycoprotein 130 (gp130) subunits. On the other hand, IL6 trans-signalling involves a 

soluble receptor (sIL6R) without transmembrane and cytoplasmic components 

generated during synovitis through partial proteolysis of membrane-bound IL6R or by 

alternative mRNA splicing. As IL6R is constitutively expressed in relatively few cell 

types, trans-signalling increases the range of IL6-responsive cells. For example, 

endothelial cells and synoviocytes express gp130 but not IL6R, however, they can 

respond to IL6 when IL6R is present (Dayer and Choy 2009). 

IL6 trans-signalling is a major factor in RA pathogenesis (Rabe et al. 2008). 

Furthermore, trans-signalling promotes T-cell recruitment by regulating chemokine 

secretion during inflammation (Fielding et al. 2008). Trans-signalling also regulates the 

B-cell development and plays a significant role in various inflammatory disorders 

through chemokine activation (Nowell et al. 2006). In humans, IL6 in combination with 

TNF-α, TGF-b, IL1b, IL6, IL21 and IL23 is responsible for the differentiation of naive T 

cells into TH17 cells (Bettelli et al. 2006). 

1.3.4. Role of cytokines in RA bone and cartilage degeneration  

Osteoclasts are multinucleated cells formed by the fusion of mononuclear progenitors 

of the monocyte/macrophage family. RA pathogenesis involves increased 

concentration of these cells in the synovial membranes and on bone surface. 

Macrophage colony-stimulating factor (MCSF) through interaction with receptor 

activator of nuclear factor κB (RANK) and the RANK ligand (RANKL) induce 

osteoclastogenesis. RANKL expression is regulated by pro-inflammatory cytokines such 

as TNF-α, IL1, IL6 and IL17 (Lutzky et al. 2007). MCSF, IL6 and IL11 can also support 
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human osteoclast formation from peripheral blood mononuclear cells by a RANKL-

independent mechanism (Kudo et al. 2003). 

The development of pannus at the juncture between cartilage and bone due to 

angiogenesis leads to bone erosion (Akhavani et al. 2009). The increased expression of 

pro-angiogenic factors in synovium increases the level of blood supply and nutrients 

that are required to sustain the pannus. IL6, IL1b and TNF-α induce the vascular 

endothelial growth factor (VEGF) production which is essential for the development of 

the new blood vessels. VEGF is both a selective endothelial cell mitogen and an inducer 

of vascular permeability. IL6, IL1b and TNF-α also activate synoviocytes, resulting in the 

secretion of MMPs into the synovial fluid while cytokines activate chondrocytes, 

leading to the direct release of additional MMPs into the cartilage which accelerate the 

degradation process (Nagai et al. 2014).  

1.3.5. Acute-phase protein production 

The acute-phase response (APR) is defined as a significant change in the concentration 

of certain plasma proteins, such as C-reactive protein (CRP), hepcidin, serum amyloid 

A, haptoglobin and fibrinogen, following alterations in protein synthesis within 

hepatocytes (Dayer and Choy 2009). IL6 has the greatest effect on acute-phase protein 

levels, although IL1, TNF-α, TGF-b1 and IFN-g are also contributing factors (Ganz 2003). 

Even though the APR generally do not have viability of more than a few days, some 

components may persist indefinitely as part of secondary immunity.  Increased levels 

of CRP directly aggravate tissue damage and contribute to the development of further 

complications, such as cardiovascular diseases (Courvoisier et al. 2008, Panichi et al. 

2000).  
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1.4. Treatment for Rheumatoid Arthritis 

Therapy for RA consists of both non-pharmacological and pharmacological measures. 

The patients are usually recommended to follow multiple movement based courses by 

health professionals such as physiotherapy and occupational therapy in early stages of 

RA. The pharmaceutical treatment includes general therapies consisting of non-

steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic 

drugs (DMARDs). 

1.4.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) 

The NSAIDs are ubiquitously used as anti-inflammatory and analgesic agents in RA and 

osteoarthritis (OA) as well as in chronic musculo-skeletal pain and diverse forms of 

acute pain. Despite the different types, all NSAIDs inhibit production of prostaglandins 

by inhibiting the activity of the enzyme cyclooxygenase (COX).  

NSAIDs are frequently used as first-line agents for the symptomatic relief of many 

different inflammatory conditions. The analgesic action of NSAIDs is due to inhibition 

of prostaglandins in peripheral tissues and in the central nervous system. COX exerts 

increased expression in central nervous system during inflammation. Centrally 

generated PG-E2 activates spinal neurons and also microglia that contribute to 

neuropathic pain.  

NSAIDs can inhibit both isoforms of COX, COX-1 and COX-2, which are expressed at 

different levels in different tissues and serve different biological functions. COX-1 is 

involved in maintenance of homeostasis and the biosynthesis of PG. COX-2 is highly 

expressed as part of inflammatory response. Inhibition of COX-2 by NSAIDs blocks PG 

production at sites of inflammation or other forms of tissue damage, however 

simultaneous inhibition of COX-1 in other tissues such as platelets and the 
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gastroduodenal mucosa can cause common adverse side-effects of NSAIDs such as 

bleeding and gastrointestinal ulceration. 

1.4.2. Disease-Modifying Anti-Rheumatic Drugs (DMARDs) 

1.1.1.1 Biological DMARDs 

The TNF-α which is a central cytokine in the inflammatory cascade has pleiotropic 

effects in the immune response and plays a vital role in RA pathogenesis. The biological 

DMARDs with a specific ability to inhibit this cytokine are used in the treatment of RA 

include infliximab, adalimumab and certolizumab. These agents provide rapid control 

of inflammation and have proven efficacy both in terms of clinical outcomes and 

structural damage (Nam et al. 2010). These however, are significantly more expensive 

than traditional DMARDs and are generally used in case of unsuccessful treatement 

with synthetic DMARDs (Schoels et al. 2010).  

1.1.1.2 Synthetic DMARDs 

In terms of DMARD therapy, several important treatments have emerged. The first is 

that of early intervention with effective and appropriate treatment. The early initiation 

of DMARD therapy is essential in achieving good clinical outcomes and minimising 

subsequent bone damage (Finckh et al. 2006). Of the synthetic DMARDs, methotrexate 

(MTX) remains the most popular choice of treatment (Smolen and Aletaha, 2015). In 

recent years, the emergence of more targeted biological DMARDs have further 

improved outcomes in RA treatment, however, due to cost and availability, they are 

mainly reserved for patients who fail to respond to synthetic DMARDs (Quinn et al. 

2005, Klarenbeek et al. 2011). Glucocorticoids are also used in the treatment of RA for 



Page 37 of 192 
 

remission induction and are often used as bridging therapy and for management for 

disease flares (Boers et al. 1997). 

Early treatment with DMARDS is one of the key principles in the treatment of early 

arthritis. Synthetic DMARDs have an effect on the disease process within weeks to 

months. MTX, sulphasalazine (SSZ) and leflunomide are commonly used DMARDs that 

have been shown to halt RA development and delay radiological progression. Of the 

synthetic DMARDs, MTX is considered the anchor drug and is generally used first for 

patients at risk of developing persistent disease or erosive disease because of its 

relatively beneficial clinical and radiological efficacy and its beneficial properties in 

combination treatment with biological DMARDs. Leflunomide and SSZ have similar 

clinical efficacy and are considered good alternatives (Nakashima and Takayanagi 

2009).  
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1.5. Methotrexate (MTX) 

Methotrexate is an antimetabolite that is a structural analogue to folic acid (Figure 1-2) 

which is essential for cellular division, due to its role in DNA and RNA synthesis. The 

methotrexate precursor Aminopterin, another folic acid analogue, was designed to 

reduce proliferation of cancerous cells via the inhibition of folate as one of the world’s 

first chemotherapeutics (Cronstein 2007, Chabner and Roberts 2005).  

Dihydrofolate reductase (DHFR) has been identified as the enzyme responsible for the 

reduction of folic acid to metabolically active tetrahydrofolate, required in de novo 

synthesis of DNA. Hence, DHFR has been established as a therapeutic target in cancer 

treatment. Isolation of this enzyme allowed for the development of potent inhibitors 

of DHFR such as MTX (Cronstein and Chan 2000). The anti-carcinogenic mechanism of 

action of MTX involves inhibition of DHFR enzyme to prevent conversion of folic acid to 

the active tetrahydrofolate required in the thymidine synthesis. Folic acid is also 

essential in the purine and pyrimidine base biosynthesis. Therefore by inhibiting DHFR 

MTX effectively inhibits the de novo synthesis of DNA, RNA, thymidylate and proteins. 

While MTX features prominently in current treatment of large cell or high grade 

lymphomas, head and neck cancer, breast cancer, bladder cancer and osteogenic 

sarcoma, it is most effectively utilised in the treatment of RA at low doses compared to 

the treatment of cancer (Smolen and Aletaha, 2015). The MTX treatment shows 

improved prognosis within three months of starting the treatment by reducing pain 

and improving joint functionality (Angeles et al. 2014). 
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Figure 1-2 Chemical structure of folic acid and its structural analogue Methotrexate. 

1.5.1. Mechanism of action 

In the cancer treatment, MTX induces cell apoptosis by blocking the folate-dependent 

de-novo synthesis of DNA and RNA (Cronstein 2005, Chan and Cronstein 2013). 

However, in the treatment of RA the ability of MTX to modulate apoptotic pathways 

enables it to exert these anti-inflammatory properties (Stamp et al. 2011, Braun et al. 

2007). MTX exerts its mechanism of action through induced release of adenosine to 

obstruct nucleotide synthesis. Reduced levels of methyl donors including 

tetrahydrofolate and methyl tetrahydrofolate through inhibition of DHFR blocks 

generation of lymphotoxic polyamines and inhibits chemotaxis in monocytes (van 

Dieren et al. 2006, Patel and Moreland 2009). The MTX metabolites are retained in 

tissues in the form of MTX polyglutamates, thus increasing the efficacy of MTX beyond 

its half-life in plasma.  
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The MTX polyglutamates increase intracellular levels of 5-Aminoimidazole-4-

carboxamide ribonucleotide (AICAR) by inhibiting AICAR transformylase (Chan and 

Cronstein 2010). Increased AICAR levels inhibit adenosine monophosphate (AMP) and 

adenosine deaminases which are essential for conversion of adenosine to inosine 

monophosphate (IMP) and inosine. The adenosine accumulated in the tissues 

downregulates the macrophage activation (Chan and Cronstein 2013, Montesinos et 

al. 2007). MTX can also increase vasodilation leading to increased blood flow through 

inhibition of adenosine deamination (Ramakers et al. 2012). 

The anti-inflammatory properties of MTX involve inhibition of T cell activation and 

alteration in the expression of T cell cytokines and adhesion molecules (Kooloos et al. 

2010). The anti-inflammatory properties of MTX are critically dependent upon the 

ability to produce reactive oxygen species in both T cells and monocytes which 

ultimately lead to apoptosis (Johnston et al. 2005).  

1.5.2. Inhibiting NF-κB activation in RA 

NF-κB, a major therapeutic target, is a family of interrelated transcription factors that 

includes five genes: NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), c-Rel and RelB. 

Activation of NF-κB may result from signalling pathways triggered by a variety of 

cytokines, growth factors and kinases. Various molecular mechanisms for NF-κB 

activation have been proposed (Aggarwal and Harikumar 2009, Chakravarti et al. 

2010).  

MTX acts as a strong transcriptional activator which is achieved via activation of JNK. 

One other proteins induced by MTX is p53, a strong transcriptional activator through 

gene expression induction, influences many cellular functions such as cell cycle arrest 

and induction of apoptosis.  
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NF-κB plays a crucial intermediatory role between external inflammatory stimuli and 

pro-inflammatory molecules since genes that encode pro-inflammatory cytokines, 

chemokines and lymphocyte adhesion molecules require the activation through NF-κB 

binding sites in their promoters. In T lymphocytes, MTX is a strong inhibitor of the 

activation of NF-κB in response to various extracellular stimuli. In T cell tissue culture 

models, MTX inhibits activation of NF-κB via JNK activation. Further, the inhibition of 

NF-κB activity in T cells by MTX is dependent upon MTX-mediated induction of p53.  

The RA progression is characterised by elevated activity of NF-κB and depressed levels 

of the pro-apoptotic factor p53. The induction of p53 by MTX results in subsequent 

reduced NF-κB activity in RA T helper cells.  

The NF-κB modulates the response to exogenous stimuli, whereas p53 modulates 

intrinsic stress responses through initiation of cell cycle arrest, apoptosis, or 

senescence, eliminating clones of cells with DNA damage and its resulting mutations. 

Generally, NF-κB and p53 act as functional antagonistic due to the ability of NF-κB as a 

pro-survival and pro-inflammatory transcription factor while p53 influences 

transcription factors in favour of anti-survival and anti-inflammatory cell-cycles. In a 

healthy cell DNA damage, hypoxia, or oncogene activation elicit p53 responses that 

activate cell cycle arrest, senescence or apoptosis, targeting genes that are pro-

apoptotic such as PUMA, or induce cell cycle arrest proteins such as p21 (Ak and Levine 

2010, Zhang et al. 2011). NF-κB is activated via post-translational modifications via 

degradation of IκB or MDM-2/MDM-4 in response to exogenous signals such as 

infectious agents, viruses, toll-like receptor agonists, antigen receptors or through 

inflammatory cytokines, such as TNF-α or interleukin-1β. NF-κB activation leads to 

transcription of mRNAs that encode inflammatory proteins such as cytokines, IL6, GM-



Page 42 of 192 
 

CSF; chemokines, IL8, MCP-1; enzymes, COX-2, PLA2 and adhesion molecules VCAM-1 

and ICAM-1. The production of pro-inflammatory cytokines such as IL1β and TNF-α 

creates an amplification loop that can lead to constitutive activation of the NF-κB 

signalling pathway. Metabolic activation of NF-κB enhances glycolysis and increases 

glucose transporters (GLUT3) leading to higher amounts of glucose uptake. 

To induce cell cycle arrest or apoptosis, the transcriptional program activated by p53 is 

mediated by induction of the long non-coding RNAs (Hung et al. 2011). MTX 

contributes to MTX-dependent activation of NF-κB in response to extracellular stimuli, 

such as TNF-α. Inhibition of DNA-PKcs, but not ATM, reverses MTX-dependent 

inhibition of TNF-α mediated NF-κB activation. Furthermore, use of siRNAs to deplete 

either p53 mRNA or lincRNA-p21 reverses the ability of MTX to inhibit TNF-α mediated 

NF-κB activation.  

1.5.3. Side effects 

Despite having relatively good safety profile MTX does exhibit adverse side effects. At 

low concentrations side-effects are limited, mild and preventable, however, with 

prolonged treatment they tend to escalate to more severe levels. The common 

toxicities relate to folate antagonism, anaemia, neutropenia, stomatitis and oral ulcer 

which can be improved with folic acid supplementation. However, the continuous folic 

acid supplements work to diminish the efficacy of methotrexate (Firestein 2010). 

A major adverse effect of methotrexate is a hepatotoxicity, primarily in the form of 

fibrosis resulting from depletion of hepatic folate concentrates and their replacement 

with methotrexate polyglutamates in the liver (Nesher et al. 2003). As de novo 

synthesis prominently occurs in proliferating tissue such as hepatic cells and bone 

marrow, these areas are more prone to damage (De Lathouder et al. 2004). 
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Interstitial pneumonitis due to acute fibrosis in alveolar cavity is another prominent 

complication with common symptoms of cough or shortness of breath. Methotrexate 

pneumonitis may occur at any time during therapy and is not dose related. The RA 

patients are usually susceptible to chronic form of interstitial lung disease and fibrosis 

which can be aggravated with prolonged methotrexate medication. 

Myelosuppression (lowering of blood counts) can also develop over time due to 

methotrexate therapy. 

Cancer risk with methotrexate is minimal even though cases of lymphoma associated 

with methotrexate therapy have been observed where the lymphoma resolved after 

discontinuing therapy. However, the correlation is not conclusive since rheumatoid 

arthritis itself presents an increased chance of developing lymphoma due to 

irregularities in autoimmune system (Keystone et al. 2004). 

The MTX is classed as a teratogen, an agent that can cause malformation of an embryo 

and hence is classified as pregnancy category X drug (Ranganathan and Mcleod 2006). 

Several anecdotal instances indicate that MTX therapy may be related to congenital 

defects such as defects in coronal sutures, oxycephaly, hypertelorism, absence of digits 

and hypoplastic mandible. Therefore, it essential to strictly regulate the MTX therapy 

in patients who are either already pregnant or of child bearing potential (Levin and 

Almog 2015). 

Due to the adverse effects involved in the prolonged use of MTX as primary 

therapeutic agent in RA treatment, it is important to identify and investigate other 

therapeutic agents, with similar or improved level of efficacy, which can be used as an 

alternative or as a supplement in RA treatment. This will reduce the amount of MTX 
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consumed thereby reducing the severity of the side-effects. One of the most promising 

candidate for such alternative treatment is curcumin.  
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1.6. Curcumin 

Curcumin also called diferuloylmethane (Figure 1-3) is an active component of 

turmeric derived from the rhizome of the tropical plant Curcuma longa. Turmeric is 

used as a dietary spice and a colouring agent in the food and textile industry. It has 

been used for centuries in Ayurveda (the knowledge of long life) to treat biliary 

disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism and 

sinusitis. Several preclinical and clinical studies indicate that curcumin may exhibit 

preventive and therapeutic significance in cancer, atherosclerosis, aging, 

neurodegenerative disease, hepatic disorders, obesity, diabetes, AIDS, psoriasis and 

autoimmune diseases. Research over the past few decades have shown that curcumin 

targets multiple signalling pathways and regulates the expression of several 

transcription factors, inflammatory cytokines, enzymes, growth factors, receptors, 

adhesion molecules, anti-apoptotic proteins and cell cycle proteins (Aggarwal and 

Harikumar 2009). 

 

Figure 1-3 Molecular structure of Curcumin 

Curcumin inhibits carcinogen activation, stimulates carcinogen detoxification and 

suppresses pro-inflammatory signalling, induction of cancer cell apoptosis, cell cycle 

arrest, inhibition of angiogenesis and metastasis and modulation of oncogenes and 
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tumour suppressor genes (Lin 2007). It regulates the expression of multiple genes 

involved in growth, metastasis, cell adhesion, cell invasion and apoptosis. Curcumin 

influences a wide range of molecular targets either by interacting physically with the 

target or by modulating the transcription factors, enzyme activity, or gene expression 

(Yan et al. 2012). 

The effects of curcumin are mediated through intrinsic, extrinsic, p53, NF-κB and NF-

κB-regulated gene expression of B cell lymphoma 2 (Bcl2), cyclin D1, cyclooxygenase-2 

(COX-2), matrix metalloproteinase-9 (MMP-9), Akt, mitogen activate protein kinase 

(MAPK), NF-E2-related factor 2 (Nrf2), β-catenin and cell–cell adhesion. It has been 

reported that NF-κB is regulated by several inflammatory cytokines including Notch 

signalling and that is highly activated in cases of human cancer. Curcumin has been 

shown to mediate anti-apoptotic effects through inhibition of NF-κB and its related 

gene products (Anand et al. 2008, Hatcher et al. 2008, Strimpakos and Sharma 2008). 

1.6.1. Effects on the NF-κB Pathway 

Curcumin inhibits activation of NF-κB which in turn represses the expression of the 

COX-2 gene and TNF-α. Curcumin blocks tumour promoter-mediated NF-κB 

transactivation by inhibiting the NF-κB-inducing kinase (NIK)/IKK signalling complex at 

the level of IKKa/b (Shin et al. 2009, Hayden and Ghosh 2004). Curcumin can suppress 

IKK, inhibit both constitutive and inducible NF-κB activation and promote the TNF-α-

induced apoptosis (Bharti et al. 2003). Other signalling pathways, such as Ras/MAPK 

and phosphoinositide 3-kinase (PI3K)/Akt, are also involved in the activation of NF-κB 

and curcumin has been reported to play an inhibitory role in these pathways (Khan et 

al. 2012). 
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1.6.2. Induction of Apoptotic Signalling Cascade 

Curcumin can induce apoptosis by mediating both intrinsic (mitochondrial) as well as 

extrinsic cell signalling pathways. The mitochondrial apoptosis is mediated by 

members of the Bcl2 family of proteins as well as the tumour suppressor protein p53, 

which increases permeability in mitochondrial membrane and releases pro-apoptotic 

proteins into the cytosol (Li and Schwarz 2003, Ashkenazi et al. 2008).  

The extrinsic signalling pathway for curcumin to induce apoptosis is mediated through 

transmembrane death receptors located on the cell surface which are members of the 

tumour necrosis factor-α (TNF-α) receptor gene superfamily, that are essential in 

apoptosis (Bush et al. 2001). Curcumin blocks NF-κB mediated cell survival pathways 

and promotes the expression of pro-apoptotic proteins (Bax, Bim, Bak, Puma and 

Noxa) as well as inhibit the expression of anti-apoptotic proteins (BCL2, BCL-xL, 

survivin and IAP) (Shankar et al. 2007). 

Curcumin has also been shown to induce apoptosis through inhibition of transforming 

growth factor-beta (TGF-β)-induced phosphorylation of Smad2, along with up-

regulation of TGF-β induced factor (TGIF). TGIF has been reported to be a negative 

regulator of the TGF-β signalling pathway (Song et al. 2011).   
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1.7. Efficacy and synergistic activity of concurrent MTX –

Curcumin treatment 

Despite being highly effective anti-rheumatic agent, the severity of prolonged MTX 

therapy raises the question on overall efficacy of MTX as first line treatment. Even 

though MTX is administered in low doses in RA treatment, complications such as 

gastrointestinal, hepatic, nephrotic and haematological disturbances, due to sustained 

exposure to the drug cannot be ignored. Research in the field rheumatism focuses on 

the development of a viable candidate that can be utilised as a supplement, if not 

replaced, for effective treatment of RA.  

The antioxidant and anti-inflammatory properties of curcumin are well documented 

(Picone et al. 2014).  The pluripotent nature of the curcumin makes it a competitive 

option to enhance the therapeutic potency of MTX treatment. 

1.7.1. Cardiovascular disorders in RA 

The cardiovascular disorders are the most common cause of death in patients with RA 

(Symmons 2003). The increased occurrence of cardiovascular disorders in RA patients 

can be attributed to the active systemic inflammation which accelerates 

atherosclerosis (Sattar 2003). Several studies, although anecdotal, have linked the MTX 

therapy with the increased chances of developing cardiovascular risk. Through the 

inhibition of homocysteine-methionine pathway, long term low dose MTX can increase 

risk of hyper-homocystinaemia which leads to increased risk of cardiovascular 

manifestations, stroke and heart failure (De Bree et al. 2002). Curcumin has 

demonstrated the ability to reduce the CVD risk significantly (Weinblatt et al. 1999, 

Rosner et al. 2012). This process involves activation of Nrf2-dependent antioxidant 

response element (Pae et al. 2007). Curcumin also reduces the expression of TLR2, 
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MCP-1 and CD68 while improving the function of connexion-43 thereby improving 

heart contractility (Kim et al. 2012). 

1.7.2. Hepatotoxicity  

As an antioxidant the curcumin can counter MTX therapy induced the serum 

concentrations of reactive oxygen species and the transaminase enzymes. The cell 

membranes in hepatic tissue are rich in phospholipids and the reactive oxygen species 

can damage the cellular integrity. The anti-oxidant properties of curcumin reduce the 

oxidative stress and prevent the MTX induced formation of lipid peroxides.  The MTX 

associated effects such as proliferation of kupffer cells, focal liver cell necrosis and 

fibrosis in hepatic cells are attenuated by curcumin (Banji et al. 2011).  

1.7.3. Nephrotoxicity  

The oxidative stress generated by MTX plays an important role in the development of 

the nephrotoxicity. The sustained oxidative stress stimulates transcription factors such 

as NF-κB and induce nitric acid synthase. The curcumin treatment reduces the activity 

of antioxidant enzymes such as glutathione peroxidase and superoxide dismutase in 

renal tissues thereby increasing the efficacy of the treatment (Tapia et al. 2012). 

1.7.4. Increased activity in folate receptors 

The curcumin exhibits the synergistic activity by increasing the activity of folate 

receptors which increases cellular uptake of folic acid as well as MTX. The mechanism 

of action of curcumin involves up-regulation of folate receptor β mRNA and FRβ 

protein. Therefore the addition of curcumin as supplement can significantly reduce the 

cytotoxicity of MTX (Dhanasekaran et al. 2013).  
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1.8. Simultaneous stability analysis of MTX and curcumin  

The anti-inflammatory and anti-rheumatic activities of both MTX and curcumin have 

been extensively studied and established. However, a comparative analysis of both 

compounds is essential in order to establish their efficacy and the overall effectiveness 

of RA treatment involving MTX and curcumin. Chemical stability of pharmaceutical 

molecules plays a crucial role in safety and efficacy of the drug combination. In order 

to establish as a viable treatment the stability of the compounds in a formulation 

needs to be established so as to evade combined drug intoxication. The simultaneous 

forced degradation and stability measurement provides useful information regarding 

chemical interaction between two compounds and safety of the drug products which 

can be determined using HPLC. 

1.8.1. High-Performance Liquid Chromatography (HPLC) 

HPLC, also called high-pressure liquid chromatography, is the analytical technique used 

in chemistry and biochemistry to separate, identify and quantify each component in a 

mixture. HPLC analysis is used in wide range of fields such as legal, research, 

manufacturing and medical.  

HPLC involves flowing pressurized liquid solvent containing the sample mixture 

through a column filled with a solid adsorbent material. Every component present in 

the sample interacts differently with the adsorbent material in the column, leading to 

different flow rates for the different components which leads to the separation of the 

components as they flow through the column. The active component of the column, 

the adsorbent, is typically a granular material made of solid particles. The pressurized 

liquid called the mobile phase which is composed of different solvents such as water, 

acetonitrile and/or methanol in varied composition. The buffering agents are used to 
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maintain constant ionic composition of the mobile phase. The composition and 

temperature of the mobile phase influences the interactions taking place between 

sample components and column. These interactions are physical in nature, such as 

hydrophobic, dipole–dipole and ionic, most often a combination. 

Due to the small sample separated, typical column dimensions are 2.1–4.6 mm 

diameter and 30–250 mm length. The active component of the column is typically a 

granular materials made of solid adsorbent particles which are 2-50 micrometres in 

size. This provide HPLC higher resolution and the ability to distinguish between 

compounds when separating mixtures, which makes it a popular chromatographic 

technique. 

The typical HPLC instrument setup includes a sampler, pump and a detector. The 

sampler brings the sample mixture into the mobile phase stream which carries it into 

the column. The pump delivers the desired flow and composition of the mobile phase 

through the column. The detector generates a signal proportional to the amount of 

sample component emerging from the column, hence allowing for quantitative 

analysis of the sample components. A digital microprocessor and user software control 

the HPLC instrument and provides data analysis. Some models of mechanical pumps 

can mix multiple solvents together in ratios changing in time, generating a composition 

gradient in the mobile phase. Various detectors are in common use, such as UV/VIS, 

photodiode array (PDA) or linked to a mass spectrometry.  

1.8.1.1. Reverse-Phase HPLC (RP-HPLC) 

RP-HPLC separates molecules on the basis of differences in their hydrophobicity. The 

components of the analyte mixture pass over stationary-phase particles bearing pores 
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large enough for them to enter, where interactions with the hydrophobic surface 

removes them from the flowing mobile-phase stream. The strength and nature of the 

interaction between the sample particles and the mobile phase, and the stationary 

phase depends on both hydrophobicity and polarity of the compounds. Since this 

elution depends on the precise distribution of hydrophobic residues in each species, 

each analyte elutes from the column at a characteristic time and the resulting peak can 

be used to confirm its identity and quantity. 

1.8.2. Forced degradation and validated Stability-indicating method  

A stability-indicating method is a validated stability profile of a compound. The 

validated method can be used to quantify the rate of degradation of the compound 

under different stress conditions. It can be used to accurately measure the changes in 

the active ingredients concentration without interference from other degradative 

products impurities and excipients. The validated stability indicating profile can also be 

used for the detailed analysis of the by-products obtained through the degradation of 

the compound. Usually reverse phase columns are used as stationary phase while 

different solvents and buffering agents are as mobile phase in different ratios for 

different stages of separation. The stability indicating method needs to be validated 

according to USP/ICH guidelines for linearity, accuracy, precision, limit of quantitation, 

limit of detection and robustness. Direct analysis of the elution of sample using the 

photo-diode array is required to establish specificity of the method. It is required to 

identify and quantitate the rate of degradation of the compounds due to stress 

inducing conditions.  

Forced degradation analysis plays crucial role in the development process of 

formulations. The information regarding the stability of compounds in given 
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formulations under different stress conditions helps determine potential risk factors of 

the treatment involving formulation while also providing regulatory guidelines for 

manufacturing and storage conditions. In order to establish a viable concurrent 

treatment for RA, it is important to establish a stability indicating method for the 

simultaneous analysis of both MTX and curcumin under different stress conditions.   
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1.9. Comparative analysis of the mechanisms of actions of 

both MTX and curcumin 

Gene expression profiling is the measurement of the simultaneous expression of the 

entire genome to establish overview of cellular activities. These profiles are an ideal 

way of establishing the difference between phenotypically distinct cells or to assess 

the effect of particular drugs on several cellular pathways. Gene expression profiling 

using DNA microarray is a powerful technique that can examine and compare the 

efficacy of MTX and curcumin in cells involved in RA pathogenesis.  

1.9.1. DNA microarray  

DNA microarray, introduced by Patrick O. Brown's group at Stanford University, allows 

one to quantify the expression of thousands genes in a single experiment. It consists of 

solid substrate usually attached to a microscopic glass slides consisting of thousands of 

DNA samples. These slides are probed with fluorescence tagged cDNA which is 

synthesised from mRNA isolated from sample cells. Each cDNA is tagged with a 

different fluorescent dye which allows the tracing of different population of cells. 

Different fluorescence dyes allow the determination of gene expression in various 

populations of cells in a single array thereby making it possible to determine the 

relative expression levels of genes by measuring the intensity of the fluorescence. 

1.9.2. Data analysis 

In order to analyse the data, statistical tools such as statistical package or Imaging 

software is used. The image processing is carried out using an imaging software 

package such as Spotfinder, ScanAnalyze, GenePix and QuantArray. These packages 

help process the images and enables adjusting the background, spotting and 

quantification. This will also involve statistical analysis of data for normalization to 
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reduce variation with the help of software known as SNOMAD (Standardization and 

Normalization of Microarray data). The identification of expressed genes, the 

quantification and analysis is carried out using ANOVA and paired-T Test utilising 

appropriate sets of gene data. 

DNA microarray is time-efficient and cost-effective since it allows the quantitation of 

thousands of genes using small quantities of sample. This technology has numerous 

applications such as analysing the gene expression profile in malignant diseases, 

analysis of copy number variations, examining potential targets for drug discoveries 

and SNP chips detecting single nucleotide polymorphisms (SNPs), genotype tool for 

identifying inheritable markers and targeted sequences. 

The data obtained from the DNA microarray following the treatment with MTX and 

curcumin should provide an insight in to the mechanism of action for both drugs. This 

should allow us to compare the efficacy of the two compounds and their concurrent 

potential use in improving RA treatment.  
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1.10. Aim of the research 

The individual effectiveness of both MTX and Curcumin as anti-inflammatory agents 

have been extensively studied and established. Both MTX and curcumin have been 

demonstrated to be successful in modulating critical pathways in RA. However, the 

specific comparison of the mechanism of action and the quantified combined effect of 

them both are yet to be determined. In order to establish whether or not these two 

compounds could be used in combination in order to help improve RA treatment, it is 

important to establish the stability and safety of these two compounds using a 

validated stability-indicating RP-HPLC method. It is also important to perform a 

detailed analysis of their effect on specific biomarkers and critical cellular pathways 

involved in RA pathogenesis.  

Therefore, the aim of the project is to first investigate the stability of MTX and 

curcumin, by developing a stability-indicating method, followed by carrying out a 

comparative analysis of the effects of both compounds on cellular functions.  

The long term benefits of the current MTX therapy in RA treatment are restricted by 

the inevitable adversities which manifest over time. The safety profile and pleiotropic 

nature of curcumin makes it an ideal candidate to modulate these adversities. 

Therefore the aim of our project is to improve the efficacy of the RA treatment by 

providing comparative evidence to establish curcumin as a viable anti-rheumatic 

agent.  

The first phase of our research focused on the development of a RP-HPLC stability 

indicating method to assess the compatibility and the stability of the compounds. The 

developed HPLC method enabled us to distinguish between the compounds and their 

forced degradation products and thus is a reliable method of monitoring the effects of 
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the active compounds when combined in different ratios. The compounds were found 

to be stable at room temperature when stored in acidic conditions. The validated 

stability profile indicated that the compounds could be administered simultaneously as 

part of RA treatment. 

The second phase consisted of measuring the effectiveness of the two compounds in 

specific cell lines which concentrated on quantifying the inhibition of specific pro-

inflammatory biomarkers.  The cells were treated with IC50 concentrations of the 

compounds to measure the effect on the RA biomarkers. 

The PhD phase of the project concentrated on understanding the effect of MTX and 

curcumin on gene expression profiling and their subsequent impact on different 

modulatory cell pathways in specific rheumatoid arthritis associated cells. A novel 

investigation of the combined effects of these two compounds using microarray 

technology was carried out. The bioinformatics data was used as a basis for further 

studies which involved specific gene analysis. The main aim of the research was to 

analyse the mechanism of action of MTX and curcumin to understand the mechanisms 

in which they influence different therapeutic biomarkers and whether they could 

exhibit synergistic behaviour which would play a crucial role in future treatment of RA. 
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CHAPTER 2  

MATERIALS AND METHODS  
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2.1. HPLC analysis 

2.1.1. Chemicals and materials 

MTX and Curcumin required HPLC analysis were purchased from Tocris Bioscience, UK. 

Acetonitrile (ACN), Water, Dimethyl Sulfoxide (DMSO), Citric Acid (CA) and Sodium 

dodecyl sulphate (SDS) were purchased from Fisher Scientific, UK. 

Tetrabutylammonium acetate (TBAA) was purchased from Sigma Aldrich, UK. All 

purchased reagents were of analytical grade.  

2.1.1. Standard solutions 

Due to sparingly soluble nature of curcumin in water, stock standard solutions were 

prepared by first solubilising MTX and Curcumin in DMSO. These solutions were used 

to prepare final working concentration of 5 mg/ 100 ml each using DMSO: ACN: H2O 

(3:35:62). 

2.1.2. Preparation of the mobile phase  

Gradient system comprised of two mobile phase with varying concentrations of 

acetonitrile (ACN). Mobile phase A consisted of 35% acetonitrile and 65% water with a 

final concentration of 10 mM TBAA, 10 mM SDS and 25 mM Citric Acid. Mobile phase B 

was made of 60% acetonitrile and 40% water with a final concentration of 10 mM 

TBAA, 10 mM SDS and 25 mM Citric Acid. The specific mobile phase concentrations 

have been previously developed by our research group (Shervington et al. 2005).   

2.1.3. Apparatus and chromatographic conditions 

Analysis was carried out on a Jasco HPLC system equipped with the multiwavelength 

detector (Jasco MD-1510), autosampler (Jasco AS-1555 intelligent sampler) and 

gradient pump (Jasco PU-2089 Plus) controlled by analysis software ChromNAV. The 
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column used was a Waters Reverse Phase Column (XBridgeTM Shield RP18 4.6x250 

mm Column, 5 µM).  

The gradient elution program, as shown Figure 2-1 in as normally run for total of 25 

min: 5.50 min Mobile phase A, followed by a gradient to Mobile phase B by 6.50 min, 

maintained until 17 min. After the analysis, the mobile phase was returned back to 

mobile phase A by 18 min and the column was re-equilibrated during 7 min at A. The 

flow rate was maintained at 1.0 ml/min until 5.50 min followed by an increase to 1.5 

ml/min at 6.50 min. This was maintained until 23 min after which it was reverted back 

to 1.0 ml/min by the 24 min. The injection volume was 20 µl. Chromatography was 

performed at room temperature.  Under these chromatographic conditions, the 

retention times achieved were 4.88 and 12.33 min for MTX and curcumin, respectively. 
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Figure 2-1 Pictorial representation of the gradient system used for degradation 

analysis of Curcumin and Methotrexate. (Solvent A contains 35% of acetonitrile and 

Solvent B contains 60% of acetonitrile)  
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2.1.4. Analytical method validation 

2.1.4.1. Linearity 

To determine the linearity, six concentrations of both MTX and curcumin were 

prepared separately and in mixtures at 20 µg/ml, 40 µg/ml, 50 µg/ml, 60 µg/ml, 80 

µg/ml and 100 µg/ml for MTX and curcumin. The samples were analysed and the peak 

area was plotted against the concentration to determine the linearity.  

2.1.4.2. Limit of Detection (LOD) and lower limit of quantification (LLOQ) 

The 10 µg/ml concentrations of both compounds were serially diluted and analysed by 

HPLC to determine the limit of detection. The peak-to-peak noise was determined by 

injecting a blank (DMSO:CAN:Water 3:35:62). The concentration of the compounds 

with peak area three times the baseline noise was considered to be the LOD. The 

concentration of the compounds that could be quantitated without any interference 

from baseline noise and having RSD of less than 2% was considered to be LLOQ. 

2.1.4.3. Intraday and interday method precision  

The Intraday and interday method precision was tested through RSD of the recoveries 

for both compounds individually and as a mixture. Solutions of different 

concentrations 20 µg/ml, 50 µg/ml and 70 µg/ml MTX and Curcumin were analysed 

individually and as a mixture on the same day and on 3 different days. The recovery of 

the compound was determined by comparing concentrations of the solutions to the 

respective theoretical values.  
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2.1.5. Forced degration studies 

2.1.5.1. Acid degradation 

The MTX, curcumin and their mixtures at a concentration of 50 µg/ml were subjected 

to 0.1 M hydrochloric acid (HCl) under three different temperatures: RT, 40°C and 

70°C. The samples were withdrawn at regular intervals and analysed. 

2.1.5.2. Base degradation 

The MTX, Curcumin and their mixture at a concentration of 50 µg/ml were treated 

with 0.1 M Sodium hydroxide (NaOH) solution under similar temperatures: RT, 40°C 

and 70°C and the samples were analysed at regular intervals. 

2.1.5.3. Oxidation 

Both MTX and curcumin at a concentration of 50 µg/ml were treated with 3% 

hydrogen peroxide solution individually and as mixture at RT and 40°C. The samples 

were analysed at regular intervals. 

An alternative oxidation method was used to for analysis. Both MTX and curcumin at a 

concentration of 50 µg/ml was treated with 0.1 mM potassium permanganate 

(KMnO4) and 0.1 mM sulphuric acid (H2SO4) and heated to 90°C for an hour. The 

solution was then quenched using 10% (v/v) ethanol and sample recovery was 

determined. 

2.1.5.4. Photolysis 

A 50 µg/ml concentration of MTX and curcumin, both individually and as a mixture, 

were subjected to photolytic conditions using Ultraviolet C bulb (wavelength range: 
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100 nm- 280 nm). Samples were eluted and analysed every hour to determine 

recovery. 

2.1.5.5. Dry heat and humidity 

Samples of known weight were prepared for MTX, curcumin and the mixture (1:1) and 

subjected to two conditions, dry heat at 70°C and at 40°C at a relative humidity of 70-

75%. The samples were removed at regular intervals and the theoretical 

concentrations of 50 µg/ml for MTX and curcumin were prepared and analysed.  
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2.2. Cell culture 

The cell culture medium was prepared according to recommendations as shown in 

Table 2-1. Medium was stored at 4˚C for 2-3 weeks within the stability period. The 

Human Fibroblast-Like Synoviocytes extracted from RA patients (HFLS-RA) were 

bought from Culture Collections, Public Heath England. The cell line was cultured in 

RPMI-1640 supplemented with 5% Fetal calf serum (v/v) and 10 mM L-glutamine 

(Sigma, UK). According to standard procedures (recommended by company), cells 

were grown in 75 cm2 tissue culture sterile polystyrene flasks (Sigma, UK) and 

maintained by incubating at 37°C in a humidified 5% CO2 atmosphere.
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Table 2-1 Reagents and supplements used for cell lines. 

Reagents 
Storage temperature 

(°C) 
Components 

Volume and 

Concentration 
Suppliers 

Roswell Park Memorial Institute, 

Culture Medium (RPMI-1640) 
2-8 

2.05 mM L-glutamine with 25 mM 

HEPES 
1000 ml Lonza,UK 

Foetal calf  serum (FCS) -20 Heat inactivated FBS (5%) 55 ml Sigma Aldrich,UK 

L-glutamine -20 8 mM L- glutamine 45 ml Sigma Aldrich, UK 

Phosphate buffer saline (1x) 2-8 
8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l 

Na2HPO4, 0.24 g/l KH2PO4, pH 7.4 
2 ml 

Fisher Chemicals, 

UK 

Trypan blue Room temperature 0.81% NaCl, 0.06% KH2PO4  Sigma Aldrich, UK 

Dimethyl Sulfoxide (DMSO) Room  temperature 99.5% DMSO, 0.81% NaCl  Sigma Aldrich, UK 
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2.2.1. Resuscitation of the cells 

Each medium was pre-warmed at 37°C in a water bath for approximately 30 min 

before thawing the frozen ampoules of cells. These ampoules were stored in liquid 

nitrogen and appropriate Personal Protective Equipment (PPE) was used. Following the 

protocol of ECACC, ampoules of cell lines were partially opened in sterile conditions to 

release trapped nitrogen and then re-tightened. Cell lines were completely thawed at 

37°C in a water bath for 1-2 min to minimise any damage to the cell membrane. Cells 

from cryotubes were resuspended in 2 ml of growth medium and centrifuged at 1000 

rpm for 5 min. The supernatant was discarded and the pellet was resuspended in fresh 

medium. After determining the appropriate volume to attain seeding density, cells 

were resuspended in labelled 25 cm2 flasks with the cell line name, passage number 

and date in a suitable volume of culture medium. The culture was mixed by shaking 

the flasks back and forth. These flasks were then incubated at 37°C with 5% CO2 in 

filtered air and the medium was changed on alternate days. In order to maintain 

nutrient levels for slow growing cells, the medium was changed after every 48 hrs of 

incubation. Cells were observed under the light microscope with 10×magnification for 

monolayer growth of cells that were 70-80% confluent. Once they became 70-80% 

confluent, the cells were sub-cultured. 

2.2.2. Subculture and cell library maintenance 

After obtaining appropriate confluence of cells, the cell culture medium was aspirated 

and the cells were washed using 2-3 ml of PBS. 1-2 ml of trypsin solution provided by 

ECACC was added to partially detach the adhered cells from the flask bottom. 

Thereafter, cell scrappers were used to remove partially adhered cells from the walls 

of the flask. To ensure 95% cells detachment, the cells were observed under the 
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microscope. The media containing trypsin neutralising agent was added to the flask to 

deactivate the effect of trypsin. The media containing the cells was transferred to a 

centrifuge tube and centrifuged at 1000 rpm for 5 min to obtain the cell pellet. The 

supernatant media was discarded and the cell pellet was resuspended in 1 ml of fresh 

media. 

2.2.3. Quantification of cells using haemocytometer 

The 20 µl of cell suspension was aliquoted on a moistened haemocytometer. The cover 

slip was attached by applying pressure to obtain Newton refraction rings to ensure 

that the cover slip had affixed. The cell suspension was diluted by adding 0.4% trypan 

blue to stain the dead cells for determining the total number of live cells. The cell 

suspension mix was pipetted at the edge of the cover slip and was allowed to run 

under the cover slip. The stained cells were visualised under a light microscope in the 

haemocytometer grid using 20 × magnifications (Figure 2-2 shown below). Only cells 

from the middle square were counted and quantified. The cell count was recorded and 

calculations were carried out to determine the cell concentration per ml of cell 

suspension using the formula highlighted below:  

𝑋 = 𝑌×𝑑𝑓×104cell/ml 

[Y is cell count in grid square, df is dilution factor] 

df = 20: (total volume of Trypan blue + total volume of cell suspension)] 
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Figure 2-2 Diagram showing haemocytometer grid under microscope. 
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2.2.4. Cell viability assay 

Methotrexate and Curcumin were dissolved in DMSO to provide a stock concentration 

of 10 mM and 20 mM, respectively. To calculate the inhibitory concentration (IC50) of 

the drugs, the stock concentrations were further diluted in culture medium to achieve 

varying concentrations. These were added to cells and incubated for 72 hrs in order to 

determine the IC50 and cell viability using HFLS-RA cells. CellTiter-Glo® Luminescent 

Cell Viability Assay determines the number of viable cells by quantifying ATP signals in 

the presence of metabolically active cells. Thus, cell viability was determined using 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega, UK) according to the product 

protocol.  

White flat clear bottom 96-well plates were seeded with 2 × 103 cells and incubated for 

24 hrs. The cells were incubated for 72 hrs after treatment with increasing drug 

concentration. Each plate was allowed to equilibrate at room temperature for 30 min 

before the wells were emptied and 100 μl of fresh media and 100 μl of CellTitre-Glo 

reagent were added to each well and mixed for 2 min on an orbital shaker to induce 

cell lysis. The plates were then incubated at room temperature for 10 min to stabilize 

the luminescent signal before the luminescent signal was detected using Tecan GENios 

Pro® (Tecan, Austria) at an integration time of 0.25—1.00 second per well. The relative 

luminescence unit (RLU) emitted per cell was plotted against the concentrations. 

  



Page 71 of 192 
 

2.3. Gene expression analysis 

2.3.1. Drug treatment for microarray analysis 

HFLS-RA cells were seeded in 75 cm2 culture flasks 24 hrs prior to treatment. Cells 

were treated with IC50 concentrations of MTX and Curcumin. The untreated cells 

(control) and drug treated cells were harvested after 48 hrs and stored in RNAprotect 

Cell reagent (Qiagen, UK) at -80°C. The cell samples were used for Gene expression 

analysis (IMGM Laboratories, Germany). 

2.3.2. Total RNA isolation 

RNeasy kit utilises selective binding properties of a silica-based membrane and speed 

micro spin technology. The specialised high-salt buffer system was used in this kit to 

obtain 100 µg of RNA. The biological sample was lysed and homogenised in the 

presence using guanidine-thiocyanate which prevents RNA degradation by inactivating 

RNases ensuring purification of intact RNA while ethanol is utilised to maintain 

appropriate binding conditions during the isolation process. Total RNA was isolated 

using the RNeasy Mini Kit (Qiagen) following the manufacturer’s protocol described in 

Figure 2-3.  

Cells were centrifuged at 300 × g for 5 min in order to remove cell medium. Buffer RLT 

and β-mercaptoethanol was added for cell lysis. Further, lysate was homogenised 

using QIAshredder spin column. 1 volume of 70% ethanol was added to the 

homogenised lysate and mixed well by pipetting. The sample (700 µl) was transferred 

to RNeasy spin column placed in 2 ml of collection tube and centrifuged for 15 s at 

8000 × g (10,000 rpm). Buffer RW1 (700 µl) was added to the RNeasy spin column and 

centrifuged for 15 s at 8000 × g (10,000 rpm). RNeasy spin column was further washed 

by adding 500 µl RPE buffer and centrifuged for 15 s at 8000 × g (10,000 rpm). Buffer 
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RPE (500 µl) was added to the RNeasy spin column and centrifuge for 2 min at ≥ 8000 × 

g (≥ 10,000 rpm) to wash the spin column membrane. RNeasy spin column was 

transferred onto new 1.5 ml collection tube and RNase-free water (50 μl) added 

directly on the spin column membrane. The lid was gently closed and centrifuged for 1 

min at 8,000 × g (10,000 rpm) and total RNA was eluted. 

 

Figure 2-3 Schematic representation of the isolation of total RNA. (Adapted from 

Qiagen RNeasy protocol) 

2.3.3. Determination of RNA concentration and Purity 

The concentration and purity of RNA was determined by using NanoDrop ND-1000 

spectral-photometer (peqLab). High quality Total RNA samples with A260/A280 ratio ≥ 

1.9 and A260/A230 ratio of ≥ 1.0 were used for microarray analysis in order to 

eliminate contaminant interrupting data. 

2.3.4. RNA integrity control  

RNA integrity number (RIN) denotes quality of RNA samples. Total RNA samples was 

analysed using capillary electrophoresis to ensure quality of RNA. The 2100 Bioanalyzer 
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(Agilent Technologies) is microfluidic electrophoretic device which produces 

electropherograms by separating RNA according to fragment size and assesses the 

RNA quality (as shown in Figure 2-4). RIN integrity is calculated by measuring 

ribosomal-RNA ratio 28s /18s r-RNA along with the entire electrophoretic profile 

including the presence or absence of degradation products. RIN value is expressed 

ranging from 1 to 10 where 1 denotes high degradation and 10 indicates excellent RNA 

quality or intact RNA. As recommended by Agilent technologies, only total RNA 

samples with RIN values ≥ 7.5 were utilised for the labelling reaction to achieve high 

quality labelled RNA and evaluable microarray results. Also, samples with similar RIN 

values were used to assure data comparability. 
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Figure 2-4 Typical electropherograms representing eukaryotic total RNA degradation 
analysed on 2100 Bioanalyzer (a) intact RNA (b) Partially degraded RNA (c) Degraded 
RNA (Adapted from Schroeder et al., 2006) 

2.3.5. Preparation of Cyanine-3 labelled cRNA 

The Total RNA samples were spiked using One-color RNA Spike-in Mix (Product 

Number 5188-5282, Agilent Technologies) with in vitro synthesised polyadenylated 

transcripts to serve as positive controls for monitoring gene expression microarray 

flow from sample amplification and labelling to microarray processing and also to 

ensure linearity, sensitivity and accuracy throughout the experiments.  

Further, the spiked total RNA (100 ng) was reverse transcribed into cDNA and then 

converted into Cyanine-3 labelled cRNA according to the manufacturer’s instructions 

Figure 2-5. Low input Quick Amp labelling kit (product no. 5190-2305, Agilent 
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technologies) was utilised for Reverse transcription in vitro transcription (RT-IVT). The 

method utilises T7 RNA Polymerase Blend for simultaneous amplification of target 

material and also incorporates Cyanine 3-CTP.  
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Figure 2-5 Schematic representation cRNA amplification procedure. (Adapted from 
Agilent technologies manual)  
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2.3.6. Quantification and quality control of labelled cRNA samples 

The quality and integrity of Total RNA was assessed before producing cRNA. For the 

same reason, the integrity and quality of labelled non-fragmented cRNA was 

determined using RNA 6000 NanoChip kit (Agilent technologies) was used on the 2100 

Bioanalyzer. Standard electropherograms for assessing cRNA have shown in Figure 2-6. 

A small initial hump followed by round curve with a few peaks indicates good quality of 

amplification and labelling. 

 

Figure 2-6 Example electropherograms of cyanine-3 cRNA analysed on 2100 
Bioanalyzer 

Further, cRNA concentration (ng/µl), RNA absorbance ratio (A260 nm: A280 nm) and 

Cyanine-3 (Cy3) dye concentration (pmol/µl) for each cRNA sample was determined 

and cRNA yield was measured based on the following calculation: 

𝑐𝑅𝑁𝐴 𝑦𝑖𝑒𝑙𝑑 (µg) = concentration of cRNA (𝑛𝑔/µl) ∗ volume of eluate(µl)/1000 

The specific activity of dye incorporated in cRNA was calculated as described below: 

Specific activity (pmol/µl)=
Concentration of cy3 (pmol/µl)

Concentration of cRNA (ng/µl)
*1000  
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2.3.7. Microarray hybridisation 

As recommended by Agilent technologies, samples with cRNA yields above 825 ng and 

specific activity above 6.0 pmol Cy3 per µg cRNA was used for 8×60K arrays and 

hybridisation. This procedure was followed by the preparation of One-Color based 

hybridisation of the Cyanine-3-labelled cRNA sample. Cyanine-3-labeled cRNA sample 

(600 ng) was fragmented and prepared for One-color-based hybridisation. Following 

the manufacturer’s protocol, samples were hybridised at 65°C for 17 hrs on separate 

Agilent SurePrint G3 Human Gene Expression version 2 8×60K microarrays (AMADID 

039494). Microarrays were washed with increasing stringency using Gene Expression 

Wash Buffers (Agilent Technologies) followed by stabilization and drying solution 

containing acetonitrile (SIGMA) to prevent ozone-related cyanine dye degradation 

affecting signal intensity. The fluorescent signal intensities were detected with Scan 

Control A.8.4.1. Software (Agilent Technologies) on the Agilent DNA microarray 

scanner and extracted from the images using Feature Extraction 10.7.3.1 software 

(Agilent Technologies) and the design file 039494_D_F_20140326. Figure 2-7 describes 

the part of the work that was carried out by IMGM laboratories in Germany. 
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Figure 2-7 Workflow of sample preparation and microarray processing  
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2.3.8. Bioinformatics data analysis 

This study used software tools Feature Extraction 10.7.3.1, GeneSpring GX 12.6.1 

(Agilent Technologies), Excel 2010 (Microsoft) and the IMGM internal tool marfin v1.9 

for quality control, statistical data analysis, transcript annotation and visualization.  

Quantile data normalization was applied to each data set in order to eliminate 

irregular noise and to maintain signal intensities to uniform levels enabling comparison 

of microarray for downstream analysis. After the application of quantile normalization 

the data was visualised as log2 transformed manner (after normalization) or as raw 

data (before normalization).  

After normalization, correlation between and within the sample groups was 

determined. Correlation analysis enabled analysing similarity between the samples. 

Pearson’s correlation coefficients (r) were calculated for all biological replicates within 

the groups and for all pairwise comparisons of the samples in the experiment. In 

general, samples representing the same experimental conditions are expected to be 

similar but samples with different experimental conditions may not show similarity. 

Therefore, Correlation coefficient heat map were produced to demonstrate relation 

between different samples.  

After normalization, the microarray probe data was filtered according to flag 

information provided by Feature Extraction 10.7.3.1 software and further classified as 

‘compromised’ if probe was not significantly distinguishable or ‘Not Detected’ if it 

indicates unequal saturation/ non-uniformity.  

The raw data was produced by calculating the average with replicated sample log2 

transformed data. Three pairwise sample comparisons were analysed. HFLS-RA 

untreated cells were used as a reference group and the gene expression data of 
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methotrexate-treated HFLS-RA, curcumin-treated HFLS-RA and HFLS-RA cells treated 

with both methotrexate and curcumin, respectively, were compared. 

2.3.9. Statistical analysis of microarray data  

Welch’s approximate Student’s t-test was applied to the comparison of different 

groups which produces a p-value (p). Benjamini and Hochberg False Discovery Rate 

(FDR) adjustment algorithm was applied to avoid multiple testing errors which could 

usually occur when there are more standard probes compared to analysed samples. 

The corrected p values were determined. Sample groups were then compared in pair-

wise manner in order to achieve the differential expressions between the groups by 

calculating fold change (FC). The ratio of raw values between the groups was 

calculated. 

Using Feature Extraction 10.7.3.1 software robust differentially expressed probes were 

detected which screens only probes that are reliably detectable in at least one out of 

all samples of the two compared groups. Following statistical analysis, data sets were 

further filtered by applying different stringency levels: 

a) Detection filtering in which a probe is only considered if it is reliably detected in at 

least 60% of the samples of one of the two compared groups. 

b)  Statistical significance in which a probe with a corrected p-value is ≤ 0.05 is only 

classified as induced if it has a Fold change value ≥ 2 or repressed if it has a Fold 

change value ≥ -2. 

The multiple testing errors were not taken into consideration while applying Non-

stringent filtering.  
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2.4. Gene transcription technique 

2.4.1. The mRNA isolation 

The mRNA isolation kit (Roche-Diagnostics, Germany) used for isolation of mRNA from 

cultured cells utilises posttranscriptional polyadenylation. Length of the poly (A)+ tails 

shortens from 200 nucleotides (approximate initial size) to 40 – 65 adenylate residues 

during aging of mRNA. These poly (A)+ tails helps differentiate between polyadenylated 

RNA species from non-polyadenylated RNA (such as rRNA and tRNA). The Principle of 

this kit is described in Figure 2-8 and the reagents and buffers used in this study are 

listed in Table 2-2 - Table 2-3. The poly (A)+ tail of 3’-ends of the mRNA is hybridised to 

a biotin-labelled oligo (dT)20 probe and captured using streptavidin-coated magnetic 

particles while non-adenylated RNA species bound weakly and easily washed off. The 

mRNA bound to streptavidin particles is eluted by lowering salt concentration.  

Following the quantification of the cultured cells approximately 2 × 106 cells were 

pelleted and stored in RNA protect reagents to be used for mRNA isolation. The 200 μl 

of ice cold PBS was used to wash thawed cells in order to remove excess reagents. 

Simultaneously in sterile eppendorf tube 50 μl of thoroughly mixed Streptavidin 

Magnetic Particles (SMP) were aliquoted. The SMPs (50 μl) were separated from the 

storage buffer using magnetic separator and storage buffer was discarded. The SMPs 

were washed in 70 μl of lysis buffer and then separated to remove the buffer. Lysis 

buffer (500 μl) was added to the cell samples and mechanically sheared six times using 

21-gauge needle (1 ml). On the 6th time, samples was transferred to eppendorf tube 

containing SMPs. Biotin labelled oligo (dT)20 (0.5 μl) was added to these samples and 

incubated at 37˚C in water bath for 5 min for immobilisation of the hybridisation mix. 

Samples were incubated at room temperature on magnetic separator and lysate was 
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discarded. Samples in SMPs were washed thrice with 200 μl washing buffer and was 

place on magnetic separator each time to discard washing buffer. Samples were 

centrifuged and placed on magnetic separator to remove remaining buffer. On 

addition of 10 μl redistilled water, samples were incubated at 65˚C for 2 min. The 

magnetic separator was used to elute mRNA by separating from the SMPs. mRNA was 

transferred to labelled eppendorf tube and then stored at -20˚C. 

 

Figure 2-8 Experimental protocol for the mRNA isolation technique. The poly (A)+ tail 
of mRNA hybridized to a biotin-labelled oligo (dT)20 probe and captured using 
streptavidin coated magnetic particles and these magnetic particles were removed  
using a magnetic separator. After washing with PBS, mRNA was eluted and incubated 
in redistilled water. (Taken from mRNA isolation kit manual Roche Applied Sciences, 
UK 2014).   
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Table 2-2 Reagents and buffers used for mRNA isolation (Roche applied sciences, UK) 

Reagents Contents 

PBS Ice cold, pH 7.4 

Lysis Buffer 
0.1 M Tris buffer, 0.3M LiCl, 10 mM EDTA, 1% lithium 

dodecylsulfate, 5mM DTT (dithiothreitol), pH 7.5 

Biotin-labelled Oligo(dT)20 

probe 

100 pmol biotin-labeled  Oligo(dT)20 per µl of redistilled 

water 

Streptavidin Magnetic 

Particles (SMPs) 

Suspension of 10 mg/ml in 50 nM Hepes, 0.1% BSA, 0.1% 

chloracetamide, 0.01% methylisothiasolone, pH 7.4 

Washing Buffer 10 mM Tris buffer, 0.2 M LiCl and 1 mM EDTA, pH 7.5 

Redistilled Water (PCR 

Grade) 
RNAse free 

Storage buffer 
10 mM Tris buffer, 0.1% chloracetamide, 0.01% 

methylisothiasolone, pH 7.5 

 

Table 2-3 Volumes of reagents and buffer used for mRNA isolation of 2 × 106 cells. 

Number of cells (2 × 106) Volume (µl) 

PBS 200 

Lysis buffer 500 

Biotin-labelled Oligo(dT)20 probe 0.5 

Volume of SMPs 50 

Lysis buffer (preparation of SMPs) 70 

Washing buffer 200 (× 3) 

Redistilled water 10 

  



Page 85 of 192 
 

2.4.2. The mRNA Quantification using NanoDrop spectrometer 

Thermo scientific NanoDrop 2000 Spectrophotometer was used to carry out the mRNA 

quantification and purity analysis. The instrument employs patented sample retention 

technology by utilising surface tension to hold sample in place and measure with high 

accuracy and reproducibility by utilising 1 μl sample. Sample was loaded on pedestal 

with fibre optic cable (the receiving fibre) and second fibre optic cable (the source 

fibre) was closed to bridge the gap between the fibre optic ends allowing 

spectrophotometer to analyse light passing through the liquid sample. This instrument 

helped to eliminate the use of cuvettes and also limits contamination since it is easy to 

clean. 

After cleaning NanoDrop, application module settings were changed from Nucleic acid 

to RNA and a volume of 1 µl Distilled water was loaded on sampling arm between the 

receiving fibre and the source fibre was then brought into contact with the liquid 

sample causing the liquid to bridge the gap between the fibre optic ends.  A 

spectrophotometer utilized linear CCD (Charged Coupled-Device) array to analyse light 

passing through the liquid sample and this was set as a blank. The mRNA sample was 

loaded to measure and 260:280 (nm) value and ng/μl was recorded to check purity of 

mRNA. The mRNA purity between 260:280 values must be in the range of 1.5-2.00 

which signified good purity.  
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2.4.3. Complimentary DNA (cDNA) synthesis 

The isolated mRNA was reverse transcribed using First strand cDNA synthesis kit. This 

kit utilised the AMV (Avian Myeloblastosis virus) enzymes isolated from Avian 

Myeloblastosis which synthesizes the new cDNA strand at the 3’-end of the poly (A)- 

mRNA where oligo dT was used as a primer. From the concentration of mRNA 

obtained, specific volume of the solution was determined which contained the 100 ng 

mRNA. The quantity of 100 ng was required to be maintained as a constant quantity 

for preparation of all samples. 

The Protocol of Roche applied sciences was followed to synthesise first strand cDNA. 

All reagents and samples were maintained at room temperature while the RNase 

inhibitor and AMV reverse transcriptase were kept on ice during the experiment. In 

order to avoid contamination, all equipment used for the experiment were autoclaved. 

The master mix of 11.8 µl was prepared using reagents provided in first cDNA synthesis 

kit (Roche applied sciences, UK) (Table 2-4). The quantified amount of mRNA (100 ng) 

was added, followed by the addition of sterile water to attain a final volume of 20 μl in 

each sample and the mixture was briefly vortexed and centrifuged. 

The experiment samples were first incubated at 25°C for 10 min for the primer to 

anneal to the mRNA template. During the second incubation at 42°C for 60 min, mRNA 

was reverse transcribed to cDNA and following incubation at 99°C for 5 min, AMV 

Reverse Transcriptase denatured on incubation. Sample was then cooled to 4°C for 5 

min and stored at −20°C.  
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Table 2-4 Reagents used in first strand cDNA synthesis for one sample. 

Reagents Volume of reagents (µl) Final concentration 

10× Reaction buffer 2.0 1× 

25 mM Magnesium Chloride 4.0 5 mM 

Primer Oligo-p(dT)15 2.0 0.04 A260 units (0.06 µɡ) 

RNAse inhibitor 1.0 50 units 

AMV-Reverse Transcriptase 0.8 ≥20 units 

Deoxynucleotide mix 2.0 1 mM 
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2.4.4. Gene sequence and Primer design 

Using GeneCards database, gene locations were determined. The mRNA sequences for 

each of the 13 gene were obtained using NCBI database. In order to carry out a study 

of genes using polymerase chain reaction (PCR), the specific primer is required to 

amplify the gene replication. This primer was designed using the Primer-BLAST online 

software provided by NCBI.  The Table 2-5 shows the parameters used while designing 

the primer for the specific mRNA sequence.  

Table 2-5 Primer design parameters  

Amplicon size Less than 200 base pairs 

Tm 57-63 (Tm difference less than 1) 

Max Tm difference 1 > 

Exon junction span 
Primer spanning exon-exon junction 

where possible 

Ending C or G at the end of Primer 

GC content 50-60% 

Self-complementary Less than 3.00 

 

2.4.5. Primer preparation 

Primers were synthesised by TIB MOLBIOL (Berlin, Germany). Each primer (sense and 

antisense) was dissolved in 250 μl of molecular biology grade water to obtain 20 μM 

stock solutions and stored at -20°C as recommended by the manufacturer. Annealing 

temperature of Primers were used using Primer-BLAST recommendations as 

mentioned in Table 2-6..
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Table 2-6 Primer sequence, annealing temperatures and amplicon size for all the 13 genes used in qRT-PCR. 

Gene Primer sequence Annealing Temperature (°C) Amplicon size (base pair (bp)) 

ANGPTL7 Sense: 5’ – GTGTAGAGATGGAGGACTGGG – 3’ 

Antisense: 5’ – ATACTGGAGGGCGTCGTTC – 3’ 

58 137 

CD248 Sense: 5’ – CCATCAAATCTCTGTGCCTGC – 3’ 

Antisense: 5’ – GTCTGGTTAGTGGGGCTCTG – 3’ 

59 87 

CH25H Sense: 5’ – CACCCTGACTTCTCGCCATC – 3’ 

Antisense: 5’ – CACGGGGAACACAAACATCAC – 3’ 

59 87 

CXCL12 Sense: 5’ – GACAAGTGTGCATTGACCCG – 3’ 

Antisense: 5’ – CTCATGGTTAAGGCCCCCTC – 3’ 

58 173 

CYTL1 Sense: 5’ – AGATCACCCGCGACTTCAAC – 3’ 

Antisense: 5’ – GTACAGCCTGGGCAGGTATC – 3’ 

58 77 

IFITM1 Sense: 5’ – CGCCAAGTGCCTGAACATC – 3’ 

Antisense: 5’ – GTCACAGAGCCGAATACCAGT – 3’ 

58 87 

IL7 Sense: 5’ – GTGACTATGGGCGGTGAGAG – 3’ 

Antisense: 5’ – GCTACTGGCAACAGAACAAGG – 3’ 

59 141 

COL14A1 Sense: 5’ – AGACGAGGTGGTGGTAGATG – 3’ 

Antisense: 5’ – AGCAGTGTGGGCATAGATTG – 3’ 

56 106 
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Gene Primer sequence Annealing Temperature (°C) Amplicon size (base pair (bp)) 

BCAR4 Sense: 5’ – ACCAGTGACCTTGAGTGAAC – 3’ 

Antisense: 5’ – CTTGGGTGGGGATAGTGATTG – 3’ 

57 84 

CD274 Sense: 5’ – CTATGGTGGTGCCGACTACA – 3’ 

Antisense: 5’ – AGGACTTGATGGTCACTGCT – 3’ 

56 174 

RELT Sense: 5’ – AACTTGCGGTGTGAGGG – 3’ 

Antisense: 5’ – CATAAGGAAGCAGGACAGGG – 3’ 

53 139 

HSPA6 Sense: 5’ – AATCTGTCGCCCCATCTTCTC – 3’ 

Antisense: 5’ – GCCCATAGCATAGCCCTGAC – 3’ 

59 174 

OTP Sense: 5’ – CCTTGGTTGTTTTGTGGTGGTC – 3’ 

Antisense: 5’ – CAGGGTTGTAGATGTCCGAGTG – 3’ 

62 91 



Page 91 of 192 
 

2.4.6. Quantitative real time polymerase chain reaction (qRT-PCR) 

The qRT-PCR is a technique enabling consistent detection and quantification of 

products generated during each cycle of the PCR process. It exponentially amplified 

short DNA sequences (usually less than 200 bases) within a longer double stranded 

DNA molecule. Thus, it enabled detection of very low copies of the target-specific 

product amplification (Roche Applied Science, UK). The genes were amplified by 

performing qRT-PCR on the Applied Biosystems 7500 Real Time PCR system. The 

experiments were carried out using LightCycler® FastStart DNA Master PLUS SYBR 

Green I kit following the manufacturer’s instructions. LightCycler reaction Master Mix 

was prepared by using the reagents from the kit provided that includes 1a (white cap) 

FastStart Enzyme and 1b (Green Cap) FastStart DNA MasterPLUS Reaction Mix. A volume 

of 14 µl of 1a was pipetted into 1b. The 1b was re-labelled as 1 to prepare the master 

mix which was stored at 4°C and protected from light. 

The reagents and samples were thawed and kept on ice throughout the experiment. 

PCR enzyme master mix was made from components of the LightCycler® FastStart DNA 

Master PLUS SYBR Green I kit (Table 2-7) with the recommended volume for each 

sample. PCR master mix was briefly centrifuged. The reaction tubes with clear caps 

were placed on the adapter 2 µl cDNA sample was loaded in each tube. Reaction tubes 

were centrifuged for a minute and then transferred to the instrument. 

  



Page 92 of 192 
 

Table 2-7 Components required for LightCycler® FastStart DNA Master PLUS SYBR 
Green I kit sample preparation for qRT-PCR primer mastermix. 

Components Volume (µl) 

Molecular biology H2O, PCR grade 12 

PCR Primer mix (Left +  Right Primer) 2  (1 µl + 1µl) 

PCR enzyme master mix 4 

cDNA template 2 

 

Following the settings described in Table 2-8, the qRT-PCR run was carried out. This 

protocol involved several steps which played an important role. Pre-incubation, 

FastStart DNA polymerase was activated and DNA was denatured. This also increased 

PCR specificity and sensitivity by preventing non-specific elongations. Target DNA was 

amplified and melting provides melting curves for analysis of the PCR product. The 

final step involved cooling of the rotor and the thermal chamber where PCR product is 

placed.
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Table 2-8 Applied Biosystems 7500 Real Time PCR system thermal profile for qRT-PCR 

Stage Temperature (°C) Hold time  Repeat  

Initiation 50 2:00 1 

Pre-incubation 95 10:00 1 

Amplification 

Denaturation 95 0:10 

45 Annealing Variable to (refer table primers) 0:10 

Extension 72 0:45 

Dissociation 

95 0:15 

1 

60 1:00 

95 0:15 

60 0:15 
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2.4.7. Copy Number Quantification 

Copy number standard curve (Figure 2-9) was generated to calculate the copy numbers 

of the unknown samples by plotting the crossing point or Ct value against copy 

numbers. In a real time PCR a positive reaction is detected by accumulation of a 

fluorescent signal. The Ct (cycle threshold) is defined as the number of cycles required 

for the fluorescent signal to cross the threshold (clearly exceed background noise 

level). This standard curve was previously established in our laboratory. 

 The external standard of known concentration or copy number was used to accurately 

determine amount of target amplicon. Previous experiments have established the 

quantification of copy numbers from the crossing point by using genomic DNA as a 

template. A standard curve was plotted for the quantitative method established on the 

Applied Biosystems 7500 Real Time PCR system. A standard genomic DNA (Qiagen, UK) 

with known concentration of 1 μg equivalent of 3.4 × 105 copies of a single gene was 

prepared using five concentrations (5 pg, 50 pg, 500 pg, 5 ng and 50 ng,   
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Table 2-9). Further amplification was achieved by using GAPDH reference gene with its 

threshold cycle (Ct) numbers in order to plot the standard curve. The reference 

genes are constitutively expressed genes which are necessary for the basic cellular 

function maintenance, and are expressed in all cells under normal and patho-

physiological conditions. The equation generated (y = -1.3124Ln(x) + 32.058) from the 

standard graph was rearranged to (=EXP {Ct value-32.058)/-1.3124}) to determine the 

copy numbers of the mRNA expression of all the genes used throughout the study. 
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Table 2-9 Genomic DNA correspondence to its average Ct values and equivalent copy 
number. 

Genomic DNA concentration (ng) Dilution factor Average Crossing point (Ct) 

50 17000 18.3 

5 1700 22.6 

0.5 170 26.42 

0.05 17 29.12 

0.005 1.7 30.15 
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(a) 

 

(b) 

 

Figure 2-9 Standard to calculate the copy number of the targeted gene. (a) Light 
Cycler quantification curve generated with known concentration of genomic DNA 
amplified, showing that the higher the concentration of DNA the lower the Ct values. 
The negative control (Primer alone) shows no fluorescence acquisition until after 30 Ct 
(straight line). (b) The standard generated from the crossing points showing the 
relationship between Ct values and the copy numbers of the amplified genomic DNA 
using GAPDH as a reference gene (n=3). 
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2.4.8. Analysis of RT-PCR amplicons using agarose gel electrophoresis 

Gene expression was determined by running PCR products of cDNA samples on 2% 

agarose gel electrophoresis (AGE). Agarose (0.8 g) was dissolved in 40 ml of 1× TAE 

buffer to obtain 2% agarose gel. This solution was heated in a domestic microwave at 

700 W power for 2 min until agarose particles were thoroughly dissolved. The solution 

was then poured into casting tray set with comb and cooled for 45 min to set gel. The 

comb was removed after solidified of the agarose gel and was placed into 

electrophoresis gel tank. 1× TAE running buffer (300 ml) was poured into gel tank until 

the level to cover the gel. The loading sample contained 2 μl of loading dye and 5 μl of 

PCR products sample amplicons. A volume of 5 μl of 100 bp molecular marker was 

loaded along with samples to determine the molecular weight as standard at 50 V for 

approximately 1 h. The gel was stained with 0.5 µg/ml of Ethidium bromide (EtBr) for 

30 min, followed by destaining in water for 20 min. The bandings patterns were 

observed using a GENE GENIUS Bioimaging system, UK and Gensnap software 

(Syngene, UK).  
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2.5. Quantitation of IL6 protein 

2.5.1. Assay principle 

IL6 ELISA kit employs the quantitative sandwich enzyme immunoassay technique to 

determine IL6 concentration in cell culture medium. A monoclonal antibody specific 

for human IL6 are pre-coated onto a microplate wells in order to capture IL6 present in 

standards and samples pipetted into the wells. After washing away unbound 

substances, an enzyme-linked polyclonal antibody specific to human IL6 is added which 

bound to the adhered IL6. The substrate solution which produces colour proportionate 

to the amount of IL6 was added to the well. The colour development is stopped using 

stop solution which develops end-point colour. The intensity of colour is measured at 

450 nm using microplate reader. The cells were treated with respective drugs for 48 

hrs and supernatant was obtained for IL6 ELISA. The particulates were removed by 

centrifugation and sample aliquots were stored at ≤ -20 °C.  

All reagents and working standards were prepared according to manufacturer’s 

protocol. 100 μL of Assay Diluent RD1W was added to each well. 100 μL of Standard, 

sample and control were added to appropriate wells. Wells were covered with the 

adhesive strips provided. The plates were incubated for 2 hours at room temperature. 

Each well was aspirated and washed four times by filling each well with 400 μL of Wash 

Buffer. Any remaining Wash Buffer was removed by decanting wells and by inverting 

the plate and blotting it against clean paper towels. 200 μL of Human IL6 Conjugate 

was added to each well and then covered with a new adhesive strip. The wells were 

further Incubate for 2 hours at room temperature. Washing was repeated as before 

and 200 μL of Substrate Solution was added to each well. Wells were covered and 

incubated for 20 minutes at room temperature while protecting them from light. 50 μL 



Page 100 of 192 
 

of Stop Solution was added to each well which turned the colour in the wells blue to 

yellow. The plates were gently tapped to ensure thorough mixing. The optical density 

was measured using a microplate reader set to 450 nm with correction wavelength set 

to 570 nm.   

The standard curve fit was created using the optical density obtained from standards. 

The standard curve generated equation which was used to determine the 

concentration of IL6 protein in untreated/treated samples. 

Figure 2-10 IL6 ELISA Standard Curve  
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CHAPTER 3  

RESULTS 
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3.1. RP-HPLC stability indicating studies 

3.1.1. Analytical Method Validation 

3.1.1.1. Linearity  

The Linearity data obtained is presented in Table 3-1. The linear regression showed 

coefficient of determination (r²) for each analysis. 

Table 3-1 Linearity Data. (n=3) 

Compound equation Slope 
Coefficient of 

determination (r²) 

MTX y = 58.87x + 4.82 58.87 0.9993 

Curcumin y = 76.83x - 3.97 76.83 0.9998 

Combination 
MTX y = 56.70x - 37.76 56.70 0.9999 

Curcumin y = 84.89x - 13.14 84.89 0.9998 
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3.1.1.2. Limit of Detection (LOD) and Lower Limit of Quantification (LLOQ) of 

stability indicating method 

The LOD and LLOQ values for Curcumin and MTX were found to be consistent when 

analysed individually and as a combination. The LOD and LLOQ values for both MTX 

and curcumin are presented in Table 3-2. 

Table 3-2 LOD and LLOQ concentrations. (n=3) 

Compound LOD (nM) LLOQ (nM) 

MTX 77 307 

Curcumin 106 424 
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3.1.1.3. Intraday and Interday precision for the stability indicating method 

The intraday and interday evaluation established the repeatability and reproducibility 

of the system as the Relative Standard Deviation (RSD) obtained for both Curcumin 

and MTX was found to be consistent at concentrations 20 µg/ml, 50 µg/ml and 70 

µg/ml as shown in Table 3-3.   

Table 3-3 Intraday and Interday precision for HPLC analysis of MTX and curcumin.  

Compound 
Concentration 

(µg/ml) 

Intraday (n= 3) Interday (n=3) 

Mean (µg/ml) RSD Mean (µg/ml) RSD 

MTX 

20 20.45 0.35 20.20 0.89 

50 49.59 1.49 50.15 1.68 

70 70.44 0.78 69.55 1.66 

Curcumin 

20 20.26 0.62 20.30 1.20 

50 49.73 0.71 50.47 0.84 

70 70.36 1.29 69.63 1.32 

Combination 

MTX 

20 20.65 1.03 20.45 1.33 

50 50.45 1.07 49.89 1.13 

70 69.98 0.55 69.53 0.88 

Curcumin 

20 20.63 1.25 19.89 1.46 

50 50.10 0.65 49.73 0.85 

70 70.36 0.49 69.89 1.09 
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3.1.2. Forced Degradation Studies  

 

Figure 3-1 Chromatograms showing elution of 50 µg/ml MTX (at 305 nm) and 50 
µg/ml Curcumin (at 430 nm) under different conditions. (A) Standard untreated 
compounds, (B) Compounds treated with 0.1 M HCL for 30 days, (C) Compounds 
treated with 0.1 NaOH for 5 days, (D) Compounds treated with 3% H2O2 for 5 days, (E) 
Compounds treated with UV radiation for 3 hours, (F) Compounds treated with 75% 
humidity at 40°C for 10 days, (G) Compounds treated with dry heat at 70°C for 10 days 
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3.1.2.1. Acid Degradation  

The partial degradation of both compounds was observed when treated individually 

and as a combination. The recovery was found to be inversely proportional to the rise 

in temperature. All degradation products were eluted before 12.32 min. and no 

degradation peaks were found to interfere with the peaks corresponding to the two 

compounds of interest. The percent recovery obtained is shown in Table 3-4. 

3.1.2.2. Base Degradation for stability indicating method 

The degradation observed in both compounds was again found to increase with rise in 

temperature (Table 3-5). Notably, Curcumin was completely degraded after only 24 

hours and 48 hours at 70°C and 40°C, respectively. The degradation products were 

detected before 12.32 min. with major degradation products being eluted within first 4 

min. No degradation peaks were found to interfere with the peaks corresponding to 

the two compounds of interest. 
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Table 3-4 Acid Degradation for stability indicating method. (n=3) 

  

Compound 

(50 μg/ml) 

Temperature (°C) 
% Recovery determined on days indicated 

1 2 5 10 20 30 60 

MTX 

RT 97.98 96.48 97.69 96.25 96.54 95.73 94.78 

40 96.52 95.21 92.33 86.61 77.13 73.15 72.43 

70 81.13 58.16 25.11 2.93 1.95 1.61 1.60 

Curcumin 

RT 99.59 99.15 97.70 95.55 86.97 84.58 84.58 

40 96.82 92.39 87.16 75.58 66.87 59.92 59.92 

70 75.66 62.13 34.08 19.74 5.44 0.33 0.33 

Combination 

MTX 

RT 95.10 94.84 93.67 94.45 94.42 92.46 91.54 

40 94.90 94.17 90.73 86.56 80.36 75.41 74.67 

70 77.34 65.37 43.74 10.26 5.95 0.40 0.39 

Curcumin 

RT 98.71 96.91 95.86 95.55 90.16 84.71 80.48 

40 96.38 93.28 85.69 75.01 61.52 53.33 49.12 

70 50.10 38.19 15.88 3.70 0.53 0.52 0.00 
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Table 3-5 Base Degradation for stability indicating method. (n=3) 

Compound (50 µg/ml) Temperature (°C) 
% Recovery determined on days indicated 

1 2 5 

MTX 

RT 63.72 51.46 42.41 

40 39.95 0.00  

70 27.98 0.00  

Curcumin 

RT 78.40 60.46 20.23 

40 4.53 0.00  

70 0.00 N/A  

Combination 

MTX 

RT 65.97 57.60 0.00 

40 55.28 0.00  

70 30.15 0.00  

Curcumin 

RT 75.74 54.42 16.92 

40 3.85 0.00 
 

70 0.00   
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3.1.2.3. Oxidation  

There was a significant decrease in peak area for curcumin and MTX over time and 

accelerated with increase in temperature. In combination, the decrease in peak area 

was accelerated due to the presence of both compounds (Table 3-6). 

From the alternative oxidation method using potassium permanganate and sulphuric 

acid, recovery for curcumin and MTX were found to be 0.53% and 4.83% respectively, 

while in the combination the recovery were found to be 0.2% and 2.74% respectively. 
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Table 3-6 Oxidation Degradation for stability indicating method. (n=3) 

Compound (50 µg/ml) Temperature (°C) 
% Recovery determined on days indicated 

1 2 5 10 20 

MTX 
RT 99.85 99.67 99.41 97.51 97.02 

40 99.74 98.01 96.83 91.48 85.18 

Curcumin 
RT 86.84 64.83 35.22 6.54 0.68 

40 21.41 6.83 0.58 0.00 
 

Combination 

MTX 
RT 99.78 99.35 98.44 91.58 86.27 

40 94.47 91.72 85.94 84.14 84.01 

Curcumin 
RT 76.14 54.39 24.16 4.60 0.65 

40 17.53 5.26 0.00 
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3.1.2.4. Photolytic Degradation Data for stability indicating method. (n=3) 

As shown in Table 3-7 the compounds were completely degraded after 3 h. The 

degradation products were eluted within first four minutes.  

Table 3-7 Photolysis Data for stability indicating method. (n=3) 

Compound (50 µg/ml) 
% Recovery determined on the hours indicated 

1 hr. 2 hrs. 3 hrs. 

MTX 61.24 28.83 0.00 

Curcumin 7.52 0.00  

Combination 
MTX 73.54 27.95 0.00 

Curcumin 12.28 0.00  
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3.1.2.5. Dry heat and Humidity 

No significant degradation could be identified in first 30 days in both dry and humid 

conditions. The recovery for MTX and Curcumin is shown in Table 3-8. After 40 days 

the percentage recovery was found to be 93.77% and 90.05% when analysed 

individually and in combination respectively. Similarly for Curcumin, the recovery after 

40 days was found to be 96.94% and 95.73% respectively. 

Table 3-8 Heat/Humidity exposure Data. (n=3) 

Compound (50 µg/ml) 
% Recovery determined after 40 days 

Relative humidity Dry heat 

MTX 96.45 93.77 

Curcumin 97.66 96.94 

Combination 
MTX 95.37 90.05 

Curcumin 92.48 95.73 
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Figure 3-2 Possible degradation products of MTX 
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Figure 3-3 Possible degradation products of curcumin  



Page 115 of 192 
 

3.2. Inhibitory concentration (IC50) of MTX and curcumin in 

HFLS-RA 

The 50% inhibitory concentrations of MTX and curcumin for 48 hours were determined 

using HFLS-RA cells. The cells were treated with increasing concentrations of the 

inhibitory compounds and the cell viability was analysed using CellTiter-Glo® 

Luminescent cell viability assay. Figure 3-4-Figure 3-5 below show decreased cell 

viability with increases in the drugs dose. The 50% inhibition concentrations (IC50) for 

MTX and curcumin in HFLS-RA cells were 53.71 nM and 15.28 µM, respectively.  

 

Figure 3-4 Dose-dependent inhibitory effects on cell viability employing different 
concentrations (0 – 0.1µM) of MTX on HFLS-RA cells. The data values are ±SD, n=3. 
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Figure 3-5 Dose-dependent inhibitory effects on cell viability employing different 
concentrations (0 – 25µM) of curcumin on HFLS-RA cells. The data values are ±SD, 
n=3.  
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3.3. Gene Expression Profiling 

The HFLS-RA cells were used for further gene expression analysis. In order to obtain 

comparative analysis of effect of MTX and curcumin, individually and in combination, 

on HFLS-RA cells DNA microarray was carried out. The gene expression profiling was 

performed on four sets (including three treated and an untreated as control) each 

consisting of two samples. Samples were analysed on Agilent SurePrint G3 Human 

Gene Expression 8x60K v2 Microarray. All the procedures were carried out according 

to manufacturer’s protocol. 

3.3.1. Total RNA concentration, purity and integrity  

Total RNA was isolated from the samples and concentrations at an A260/A280 ratios of 

each sample was determined using the NanoDrop ND-1000 instrument. RNA integrity 

was assessed on the Agilent 2100 Bioanalyzer. The results, shown in Table 3-9, show 

that RNA concentrations of all samples were found to be sufficient for microarray 

analysis and their purity (as indicated by the A260/A280 and A260/A230 ratios) was 

found to be ideal for further analysis. All total RNA samples were found to have RIN 

(RNA Integrity Number) values above 9.2, indicating excellent RNA quality. The 

electropherograms of all analysed samples along with electrophoretic gels are also 

shown in Figure 3-6 and Figure 3-7.  
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Table 3-9 Table showing quality control results for the total RNA samples for HFLS-RA 
cells 

HFLS-RA 

Sample 

Treatment 

Concentration 

(ng/μl) 

A260/A280 

ratio 

A260/A230 

ratio 
RIN 

Control 1 267.01 2.06 2.02 10.0 

Control 2 239.55 2.08 2.04 10.0 

MTX 1 286.20 2.05 1.90 10.0 

MTX 2 310.58 2.07 2.14 10.0 

Curcumin 1 305.11 2.05 1.94 9.2 

Curcumin 2 389.16 2.04 2.14 9.6 

Combination 1 445.74 2.02 2.14 9.7 

Combination 2 308.05 2.04 1.72 9.6 

 

Figure 3-6 Original electrophoresis gel for assessing RNA integrity. (Co-relating with 

Figure 3-7) 
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Figure 3-7 Original chart recordings showing electropherograms for RNA integrity in 

HFLS-RA cells   
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3.3.2. Quantification and quality control of labeled cRNA 

After conversion into Cyanine-3-labeled cRNA, the concentration of labeled cRNA and 

incorporated Cyanine-3 was assessed using a NanoDrop ND-1000 spectrophotometer 

and the NanoDrop software. The cRNA yield (µg) and the specific activity (pmol dye/µg 

cRNA) are shown in Table 3-10. the cRNA yield for all samples was above the required 

threshold proposed by Agilent (825 ng). All samples had specific activity of more than 

6.0 pmol Cyanine-3 per µg cRNA and fulfilled the quality criteria defined by Agilent 

Technologies. All eight samples were successfully labeled and were used for 

hybridization.  

Table 3-10 NanoDrop ND-1000 quality control parameters for all labeled cRNA 

samples 

HFLS-RA 

treatment 

cRNA conc. 

(ng/µl) 

A260/A280 

ratio 

Dye conc. 

(pmol/µl) 

cRNA yield 

(µg) 

Specific 

activity 

(pmol/µg) 

Control 1 187.81 2.15 2.99 5.63 15.92 

Control 2 195.52 2.24 3.20 5.87 16.37 

MTX 1 207.58 2.24 3.25 6.23 15.66 

MTX 2 205.51 2.26 3.25 6.17 15.81 

Curcumin 1 181.11 2.26 2.79 5.43 15.41 

Curcumin 2 177.01 2.20 2.82 5.31 15.93 

Combination 1 172.68 2.22 2.77 5.18 16.04 

Combination 2 155.25 2.24 2.37 4.66 15.27 
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3.3.3. Microarray quality control  

The quality control analysis, performed using Feature Extraction software, were used 

to evaluate the array results. Visual control of the corner spots in each array confirmed 

automatic corner finding and the grid placement for all arrays. Analysis of the Agilent 

One-Color RNA Spike-In signals demonstrated equal and good performance of each single 

labelling and hybridisation experiment.  

3.3.4. Effects of Quantile normalisation  

The box plot shown in Figure 3-8 demonstrates the effect of quantile normalisation for 

the analysed samples. Box plots are a visualisation of the data distribution. Normally, 

the middle 50% of the data lie within the turquoise-coloured boxes and the horizontal 

line within the box indicates the median. Quantile normalisation adjusts all microarray 

samples to an identical data distribution in order to enable the comparison.  

 

Figure 3-8 BoxWhisker plot after quantile normalisation 
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3.3.5. Correlation analysis 

The similarities of the expression profiles of samples within and between the study 

groups was analysed by determining Pearson’s correlation coefficient r (Table 3-11). 

Each microarray was analysed for quality control using standardised set of QC metrics 

to ensure samples can be accounted for bioinformatics analysis. The filtered flag 

information was applied on each array to obtain ‘Detected’ (D) and ‘Not Detected’ 

(ND) data. In Table 3-12, the number and % Detected is mentioned for each sample 

array. In total minimum of 24,928 ProbeNames of the 50,739 available probes were 

found to be detected in each sample. 
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Table 3-11 Correlation coefficient (r) values between and within the treatment samples with corrosponding heat-map. The colour range starts at a 

lowest level of r=0.920 (Green) and ends at the highest level of r= 1.000 (Red) which represents high correlation   

Group Control 1 Control 2 MTX 1 MTX 2 Curcumin 1 Curcumin 2 Combination 1 Combination 2 

Control 1 1.000 
       

Control 2 0.997 1.000 
      

MTX 1 0.960 0.965 1.000 
  

  
 

MTX 2 0.962 0.965 0.999 1.000 
    

Curcumin 1 0.922 0.920 0.923 0.923 1.000 
   

Curcumin 2 0.918 0.915 0.919 0.918 0.995 1.000 
  

Combination 1 0.929 0.926 0.929 0.929 0.996 0.992 1.000 
 

Combination 2 0.928 0.926 0.929 0.929 0.996 0.992 0.999 1.000 
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Table 3-12 Number and percentage of ProbeNames detected in each HFLS-RA sample 

HFLS-RA treatment Detected (D) % Detected (D) 

Control 1 25805 50.9 

Control 2 25420 50.1 

MTX 1 25874 51.0 

MTX 2 25524 50.3 

Curcumin 1 27522 54.2 

Curcumin 2 26810 52.8 

Combination 1 26554 52.3 

Combination 2 24928 49.1 
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3.3.6. Differential gene expression 

Following % detected samples, the data were filtered to obtain quantile normalisation 

and log2 transformed data were averaged within biological replicates. The pair-wise 

comparison was carried out using untreated HFLS-RA samples as control group and 

gene expression of MTX treated HFLS-RA, curcumin treated HFLS-RA and HFLS-RA 

treated with combination of MTX and curcumin were compared to the contrl group.  

In order to identify significantly differentially expressed genes in these pairwise 

comparisons, a filtering approach was applied using combination of FDR-corrected p-

value [p (Corr) ≤ 0.05] and Fold Change cut-off (│FC│≥ 2).  The stringent filtering, when 

applied to the data, identified 3613 (1886 upregulated and 1727 downregulated) and 

4063 (2127 upregulated and 1936 downregulated) significantly differentially expressed 

genes in pair wise comparison for Curcumin and combination treatment respectively 

while no significant differential expression was observed in case of MTX. Therefore, 

non-stringent filter (p ≤ 0.05 and │FC│ ≥ 2) was applied to data which identified 74 

genes (21 upregulated and 53 downregulated) with differential expression (Table 

3-13).  
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Table 3-13 The list of genes identified to be differentially expressed in sampled treated with MTX.  

Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

ADAMTSL2 -2 -20 -29 
Homo sapiens ADAMTS-like 2 (ADAMTSL2), transcript variant 1, mRNA 

[NM_014694] 

AKD1 3 5 -1 Homo sapiens cDNA FLJ16163 fis, clone BRCAN2014229. [AK131244] 

ANGPTL7 -5 -518 -563 Homo sapiens angiopoietin-like 7 (ANGPTL7), mRNA [NM_021146] 

ANKRD1 3 4 2 
Homo sapiens ankyrin repeat domain 1 (cardiac muscle) (ANKRD1), mRNA 

[NM_014391] 

APLN -2 -28 -33 Homo sapiens apelin (APLN), mRNA [NM_017413] 

ARHGAP32 -2 -4 -4 
Homo sapiens Rho GTPase activating protein 32 (ARHGAP32), transcript variant 2, 

mRNA [NM_014715] 

BCAR4 -1 99 149 
Homo sapiens breast cancer anti-estrogen resistance 4 (non-protein coding) 

(BCAR4), non-coding RNA [NR_024049] 

CCDC81 2 7 6 
Homo sapiens coiled-coil domain containing 81 (CCDC81), transcript variant 2, 

mRNA [NM_021827] 

CCL5 -3 -1 -1 Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA [NM_002985] 

CCRN4L 2 6 10 Homo sapiens CCR4 carbon catabolite repression 4-like (S. cerevisiae) (CCRN4L), 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

mRNA [NM_012118] 

CD248 3 -22 -23 Homo sapiens CD248 molecule, endosialin (CD248), mRNA [NM_020404] 

CD274 -3 75 90 Homo sapiens CD274 molecule (CD274), mRNA [NM_014143] 

CD300A 2 1 -2 Homo sapiens CD300a molecule (CD300A), mRNA [NM_007261] 

CH25H -4 -58 -78 Homo sapiens cholesterol 25-hydroxylase (CH25H), mRNA [NM_003956] 

CHI3L2 -3 -7 -5 
Homo sapiens chitinase 3-like 2 (CHI3L2), transcript variant 3, mRNA 

[NM_001025199] 

COL14A1 -3 -40 -33 Homo sapiens collagen, type XIV, alpha 1 (COL14A1), mRNA [NM_021110] 

CP -7 -38 -30 Homo sapiens ceruloplasmin (ferroxidase) (CP), mRNA [NM_000096] 

CRHR2 -2 -3 -2 
Homo sapiens corticotropin releasing hormone receptor 2 (CRHR2), transcript 

variant 1, mRNA [NM_001883] 

CRTAC1 -2 -2 -2 
Homo sapiens cartilage acidic protein 1 (CRTAC1), transcript variant 1, mRNA 

[NM_018058] 

CRTAM -2 -7 -14 
Homo sapiens cytotoxic and regulatory T cell molecule (CRTAM), mRNA 

[NM_019604] 

CXCL12 -3 -40 -45 Homo sapiens chemokine (C-X-C motif) ligand 12 (CXCL12), transcript variant 1, 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

mRNA [NM_199168] 

CYTL1 -3 -26 -18 Homo sapiens cytokine-like 1 (CYTL1), mRNA [NM_018659] 

DDIT4L -2 -3 -3 
Homo sapiens DNA-damage-inducible transcript 4-like (DDIT4L), mRNA 

[NM_145244] 

DIO2 -3 -12 -13 
Homo sapiens deiodinase, iodothyronine, type II (DIO2), transcript variant 1, mRNA 

[NM_013989] 

DIO3 -3 -4 -5 Homo sapiens deiodinase, iodothyronine, type III (DIO3), mRNA [NM_001362] 

DNAH10 2 9 12 Homo sapiens dynein, axonemal, heavy chain 10 (DNAH10), mRNA [NM_207437] 

ERVK13-1 2 33 27 
Homo sapiens endogenous retrovirus group K13, member 1 (ERVK13-1), non-

coding RNA [NR_040023] 

ERVMER34-1 -4 -1 -1 
Homo sapiens endogenous retrovirus group MER34, member 1 (ERVMER34-1), 

transcript variant 1, mRNA [NM_024534] 

FAM20A -2 -121 -120 
Homo sapiens family with sequence similarity 20, member A (FAM20A), transcript 

variant 1, mRNA [NM_017565] 

FGFBP2 -3 -2 -1 
Homo sapiens fibroblast growth factor binding protein 2 (FGFBP2), mRNA 

[NM_031950] 

FLJ45950 -3 2 2 Homo sapiens cDNA FLJ45950 fis, clone PLACE7008136. [AK127847] 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

GALNTL2 -2 -46 -41 
Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-like 2 (GALNTL2), mRNA [NM_054110] 

GJB2 -4 -7 -7 Homo sapiens gap junction protein, beta 2, 26kDa (GJB2), mRNA [NM_004004] 

GPR88 -2 -17 -17 Homo sapiens G protein-coupled receptor 88 (GPR88), mRNA [NM_022049] 

HEATR7B1 3 -3 -3 
PREDICTED: Homo sapiens HEAT repeat containing 7B1 (HEATR7B1), mRNA 

[XM_291007] 

HK2 -3 -4 -2 Homo sapiens hexokinase 2 (HK2), mRNA [NM_000189] 

HLF 4 -2 -2 Homo sapiens hepatic leukemia factor (HLF), mRNA [NM_002126] 

HSPA6 -2 12 77 Homo sapiens heat shock 70kDa protein 6 (HSP70B') (HSPA6), mRNA [NM_002155] 

IFITM1 -2 -15 -13 
Homo sapiens interferon induced transmembrane protein 1 (9-27) (IFITM1), mRNA 

[NM_003641] 

IGFN1 2 4 4 
Homo sapiens immunoglobulin-like and fibronectin type III domain containing 1 

(IGFN1), mRNA [NM_001164586] 

IL36A -2 2 3 Homo sapiens interleukin 36, alpha (IL36A), mRNA [NM_014440] 

IL6 -2 -6 -8 Homo sapiens interleukin 6 (interferon, beta 2) (IL6), mRNA [NM_000600] 

IL7 -3 -39 -69 Homo sapiens interleukin 7 (IL7), transcript variant 1, mRNA [NM_000880] 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

LAMTOR3 -2 3 4 
Homo sapiens late endosomal/lysosomal adaptor, MAPK and MTOR activator 3 

(LAMTOR3), transcript variant 1, mRNA [NM_021970] 

LGALS8-AS1 -2 2 3 
Homo sapiens LGALS8 antisense RNA 1 (non-protein coding) (LGALS8-AS1), non-

coding RNA [NR_034040] 

LOC649201 2 -1 -1 
PREDICTED: Homo sapiens paraneoplastic antigen like 6A-like (LOC649201), mRNA 

[XM_001127211] 

MAFB -2 -4 -5 
Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene homolog B 

(avian) (MAFB), mRNA [NM_005461] 

MCHR1 -6 -16 -8 
Homo sapiens melanin-concentrating hormone receptor 1 (MCHR1), mRNA 

[NM_005297] 

MIR17HG -3 20 23 
Homo sapiens miR-17-92 cluster host gene (non-protein coding) (MIR17HG), non-

coding RNA [NR_027350] 

MMP1 -5 2 2 
Homo sapiens matrix metallopeptidase 1 (interstitial collagenase) (MMP1), 

transcript variant 1, mRNA [NM_002421] 

MMP13 -9 -4 -4 
Homo sapiens matrix metallopeptidase 13 (collagenase 3) (MMP13), mRNA 

[NM_002427] 

MSMP -3 -7 -6 
Homo sapiens microseminoprotein, prostate associated (MSMP), mRNA 

[NM_001044264] 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

NHLH1 3 13 20 Homo sapiens nescient helix loop helix 1 (NHLH1), mRNA [NM_005598] 

NPPC -3 -1 1 Homo sapiens natriuretic peptide C (NPPC), mRNA [NM_024409] 

NR3C2 2 -3 -4 
Homo sapiens nuclear receptor subfamily 3, group C, member 2 (NR3C2), 

transcript variant 1, mRNA [NM_000901] 

OTP -2 56 87 Homo sapiens orthopedia homeobox (OTP), mRNA [NM_032109] 

PARK2 -2 -3 -2 
Homo sapiens parkinson protein 2, E3 ubiquitin protein ligase (parkin) (PARK2), 

transcript variant 1, mRNA [NM_004562] 

RBM47 -4 -1 -1 
Homo sapiens RNA binding motif protein 47 (RBM47), transcript variant 2, mRNA 

[NM_019027] 

RELT -2 9 8 
Homo sapiens RELT tumor necrosis factor receptor (RELT), transcript variant 1, 

mRNA [NM_032871] 

RND1 -3 7 7 Homo sapiens Rho family GTPase 1 (RND1), mRNA [NM_014470] 

RPGR 5 3 2 
Homo sapiens retinitis pigmentosa GTPase regulator (RPGR), transcript variant C, 

mRNA [NM_001034853] 

SLC2A5 -2 -15 -14 
Homo sapiens solute carrier family 2 (facilitated glucose/fructose transporter), 

member 5 (SLC2A5), transcript variant 1, mRNA [NM_003039] 

SNORD103A 3 10 12 Homo sapiens small nucleolar RNA, C/D box 103A (SNORD103A), small nucleolar 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

RNA [NR_004054] 

SPDYE3 3 6 20 
Homo sapiens speedy homolog E3 (Xenopus laevis) (SPDYE3), mRNA 

[NM_001004351] 

TCTEX1D1 4 1 10 Homo sapiens Tctex1 domain containing 1 (TCTEX1D1), mRNA [NM_152665] 

TLR2 -4 -6 -4 Homo sapiens toll-like receptor 2 (TLR2), mRNA [NM_003264] 

TMCO2 -2 16 27 
Homo sapiens transmembrane and coiled-coil domains 2 (TMCO2), mRNA 

[NM_001008740] 

TNFSF10 -5 -24 -12 
Homo sapiens tumor necrosis factor (ligand) superfamily, member 10 (TNFSF10), 

transcript variant 1, mRNA [NM_003810] 

TREM1 -4 -4 -3 
Homo sapiens triggering receptor expressed on myeloid cells 1 (TREM1), transcript 

variant 1, mRNA [NM_018643] 

TRIML2 3 7 5 Homo sapiens tripartite motif family-like 2 (TRIML2), mRNA [NM_173553] 

TRPA1 -3 -5 -3 
Homo sapiens transient receptor potential cation channel, subfamily A, member 1 

(TRPA1), mRNA [NM_007332] 

VAV3 -2 -10 -6 
Homo sapiens vav 3 guanine nucleotide exchange factor (VAV3), transcript variant 

1, mRNA [NM_006113] 

WDR33 5 4 3 Homo sapiens WD repeat domain 33 (WDR33), transcript variant 1, mRNA 
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Gene MTX FC Curcumin FC 
Combination FC 

(MTX + curcumin) 
Description 

[NM_018383] 

WDR66 2 7 8 
Homo sapiens WD repeat domain 66 (WDR66), transcript variant 1, mRNA 

[NM_144668] 
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3.3.7. Analysis and validation of expression of significantly regulated 

Genes 

The total of 13 genes were selected as the potential biomarkers out of which eight 

were to be upregulated in untreated HFLS-RA cells while five were downregulated. The 

fold change obtained from the microarray data for the same genes in pairwise 

comparison is presented in Table 3-14. The further qRT-PCR experiment was carried 

out to validate the effects of MTX and curcumin on the expression levels of these 

genes (Table 3-15). 

Table 3-14 Fold change of the selected genes in Microarray data in pairwise 

comparison 

Gene 
MTX  

vs Control 

Curcumin 

vs Control 

Combination 

(MTX + curcumin) 

vs Control 

ANGPTL7 -5 -518 -563 

CD248 3 -22 -23 

CH25H -4 -58 -78 

CXCL12 -3 -40 -45 

CYTL1 -3 -26 -18 

IFITM1 -2 -15 -13 

IL7 -3 -39 -69 

COL14A1 -3 -40 -33 

BCAR4 -1 99 149 

CD274 -1 75 90 

RELT -1 9 8 

HSPA6 -1 12 77 
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OTP -1 56 87 
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Table 3-15 The copy numbers obtained from qRT-PCR validation of gene expression analysis of selected genes. (Data values are mean ± SD, n=3). 

Gene Control MTX Curcumin 
Combination 

(MTX + curcumin) 

ANGPTL7 12432 ± 1706 10657 ± 1249 1436 ± 369 171 ± 40 

CD248 503528 ± 14827 373925 ± 31655 20917 ± 2484 23139 ± 6152 

CH25H 189022 ± 8538 138965 ± 22219 1811 ± 132 1222 ± 706 

CXCL12 292320 ± 12408 227935 ± 11672 31868 ± 2153 26534 ± 1768 

CYTL1 130485 ± 10838 113943 ± 26142 4270 ± 171 4291 ± 238 

IFITM1 327237 ± 12408 295525 ± 11672 43206 ± 2153 43262 ± 1768 

IL7 18304 ± 510 13549 ± 1596 999 ± 680 760 ± 481 

COL14A1 1269247 ± 123002 1045595 ± 129295 112168 ± 132235 45353 ± 27089 

BCAR4 5 ± 0 7 ± 3 416 ± 62 591 ± 139 

CD274 90631 ± 18174 141564 ± 13983 360024 ± 7353 1417841 ± 64756 

RELT 912988 ± 30910 779414 ± 90172 1855449 ± 47592 833045 ± 46630 

HSPA6 1282 ± 893 5330 ± 3664 16809 ± 11585 601754 ± 93606 

OTP 15 ± 6 17 ± 2 25± 17 1358 ± 463 



Page 137 of 192 
 

 

Figure 3-9 Bar charts showing Gene transcription levels of selected genes. (n=3)
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3.4. Interleukin-6 (IL6) Activity 

IL6 is one of the highly expressed biomarkers associated with RA. The effect of MTX 

and curcumin was analysed on cell secretion levels of IL6 using the Human IL6 

Quantikine ELISA kit (Table 3-16). Standard curves were plotted to determine IL6 levels 

in treated and untreated samples. The equation in each graph was utilised to calculate 

the IL6 concentration in cell culture supernatant.  

Table 3-16 IL6 concentration in cell culture supernatant from treated HFLS-RA cells. 

(Data values are mean ± SD, n=3) 

HFLS-RA cells Treatment IL6 concentration (ng/µl) 

Control 1.34 ± 0.07 

MTX 1.16 ± 0.01 

Curcumin 0.90 ± 0.02 

Combination 0.82 ± 0.05 
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CHAPTER 4  

DISCUSSION  



Page 140 of 192 
 

RA is a chronic inflammatory disorder with a genetic origin and requires a prolonged 

duration of treatment (Ogawa et al. 2003). RA is characterised by the autoimmune 

response that causes progressive degeneration of the cartilaginous tissues in the joints 

leading to inflammation, pain and loss of mobility. Primary treatments for RA focus on 

restricting the synovial deterioration and relieving the pain. Despite great strides in the 

therapeutic treatment over the past couple of decades, the effectiveness of the drugs 

currently used in RA treatment still remains a major concern due to the adverse effects 

involved.  

MTX is currently used as the first line treatment due to its ability to modify the 

rheumatic conditions by suppressing the de novo synthesis of nucleic acids so that the 

disease progression can be prevented (Dolezalova et al. 2005). However, the 

prolonged exposure to the drug, even at doses as low as 10-20 mg/week, can lead to a 

wide range of adverse effects from nausea and stomatitis to hepatotoxicity and lung 

fibrosis. The folate deficiency caused by the inhibition of dihydrofolate reductase can 

leads to severe anaemia and depression. While the folate supplementation is effective 

in avoiding these symptoms it is counterproductive to the RA treatment 

(Dhanasekaran et al. 2013). The most glaring problem in the MTX treatment is the 

nonspecific mode of action which involves targeting de novo synthesis of the DNA. In 

order to improve the efficacy of the existing treatment while reducing the overall level 

of the side-effects, a more specific approach is required that targets the disease-

related biomarkers. Curcumin is a promising alternative due to its ability to induce 

apoptosis and inhibit pro-inflammatory biomarkers. Therefore, it can be an ideal 

candidate that could be used to complement MTX in the treatment of RA.   
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If MTX and curcumin were to be used in combination as a therapeutic treatment, it is 

pertinent that the two compounds are compatible. A stability indicating method was 

developed and validated for monitoring the progressive degradation of the 

compounds while being subjected to stress conditions such as hydrolysis, oxidation 

and photolysis. A validated stability indicating method is defined as an accurate 

analytical method which can be used to quantitate the decrease in the concentration 

of the compounds at any given time. It can be used to detect how the stability of the 

drug substances and products changes over time. This involves subjecting the 

compounds to stress conditions and then analysing the degradation rate of the 

compounds. The forced degradation typically involves exposing the compounds to a 

range of pH values, heat, humidity and light.  

An isocratic, ion-pairing mobile phase consisting of 35% (v/v) aqueous acetonitrile 

together with tetrabutylammonium acetate, sodium dodecyl sulphate and citric acid 

(pH 3.4) which was previously developed by our research group was used to perform 

the initial analysis (Shervington et al. 2005). However, due to the extreme hydrophobic 

nature of curcumin a gradient system was designed which allowed for elution of both 

compounds within 25 minutes. The gradient system consisted of two mobile phases 

with the concentration of acetonitrile increasing from 35% to 60% over a five minute 

period after injection. The method was validated for linearity, repeatability and 

reproducibility. As previously reported in literature, the compounds are found to be 

relatively stable under acidic conditions compared with alkaline conditions (Sabry et al. 

2003). The percentage recovery of both MTX and Curcumin decreased over time under 

these conditions. The degradation was found to accelerate at higher temperatures and 

when the compounds were treated as a mixture.  
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Hydrolysis is one of the most common degradation reactions carried out over a wide 

range of pH. Hydrolytic studies under acidic and basic conditions involves catalysis of 

ionisable functional groups present in the molecule. Both MTX and curcumin were 

subjected separately as well as in combination to 0.10 M Hydrochloric acid and 0.10 M 

sodium hydroxide and the organic solvent DMSO was used to solubilise the curcumin.  

Both compounds were found to be relatively more stable in aqueous solutions at lower 

pH. The hydrolysis of MTX involves the glutamic part of the molecule undergoing 

dissociation forming degradation products such as formaldehyde, formic acid, 

aminobenzoylglutamic acid, 2,4-diamino-6-pteridinecarbaldehyde and 2,4-diamino-6-

pteridinecarboxylic acid (Sabry et al. 2003). Hydrolysis of Curcumin involves 

decomposition to form trans-6-(4-hydroxy-3-methoxyphenyl)-2,4-dioxo-5-hexenal as 

the initial degradation product. The final degradation products formed are guaiacol, 

vinyl guaiacol, feruloylmethane and ferulic acid. Vanillylidene acetone further splits to 

form vanillin and acetone (Ansari et al. 2005).  

The rate of hydrolysis was found to increase at higher temperatures with complete 

degradation of both compounds observed in basic solution within five days. However, 

the investigation did not indicate significant change in compound stability when 

treated as part of a mixture. The elution times for the degradation products were 

found not to interfere with the compounds, thereby allowing accurate quantification 

of the compounds.  

Hydrogen peroxide with 3% final concentration at neutral pH is usually used for 

oxidation of drug substances in forced degradation studies. The oxidative degradation 

of compounds involves an electron transfer mechanism to form reactive anions and 

cations (Rao et al. 2013). The major oxidation products of MTX is 7-
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hydroxymethotrexate, however, negligible methotrexate-oxidizing activity is observed 

in both in vivo and in vitro experiments (Jordan et al. 1999). The results obtained from 

the validated method correlate with these findings since less than 3% degradation was 

observed at room temperature following 20 days exposure to 3% hydrogen peroxide. 

Curcumin was found to be rapidly oxidised at increased temperatures, accelerating the 

rate of degradation. Curcumin was found to be almost completely degraded within 20 

days at room temperature and in 5 days at 40°C with major oxidation product being 

deoxygenated bicyclopentadione (Ketron et al. 2013). The oxidation rate was found to 

be higher when the compounds were treated as part of a mixture, however, the 

chromatogram did not indicate any degradation products eluting at the same elution 

time as the compounds, thereby allowing an accurate quantification. 

The purpose of the photo stability studies is to evaluate the intrinsic photosensitivity 

of the compounds to demonstrate that exposure to light does not induce degradation. 

In order to induce degradation both compounds in solution form were exposed to UV-

C light in the range of 100 nm – 280 nm. Light stress conditions can induce photo 

oxidation by free radical mechanisms. Functional groups such as alkenes, weak C–H 

and O–H bonds present in MTX and curcumin are responsible for introducing 

photosensitivity. The major degradation products of MTX are 2,4-diamino-6-

pteridinecarbaldehyde, 2,4-diamino-6-pteridinecarboxylic acid and p-

aminobenzoylglutamic acid (Chatterji and Gallelli 1978). The major degradation 

products of curcumin are vanillin, ferulic aldehydes, ferulic acid and vanillic acid. When 

subjected to UV-C (200nm - 280nm) both compounds underwent rapid degradation 

within 3 h which was further accelerated when exposed to UV as mixture. The 

degradation products were eluted separately and did not interfere with the peaks 

corresponding to the compounds thus enabling an accurate quantification of the 
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recovered compounds. 

Both MTX and curcumin are usually stored at -20°C in their solid state. When exposed 

to a relative humidity of 75% at 40°C as well as dry heat at 70°C, very little degradation 

was observed in both compounds. However, the compounds underwent rapid 

degradation when exposed to higher temperatures in solution.  The major degradation 

product of MTX under thermal degradation is 10-Methylpteroylglutamic acid while 

curcumin is broken down in to vanillin and ferulic acid (Tønnesen et al. 2002). The 

HPLC method was therefore found to be stability indicating for the simultaneous 

analysis of MTX and curcumin. The forced degradation analysis confirmed that the two 

compounds were found to be fairly stable in solution when stored at or lower than 

room temperature. 

The pathogenesis of RA includes several cell types including T and B lymphocytes and 

macrophages. The human fibroblast-like synoviocytes (HFLS), present in the synovial 

lining, play a key role in the RA progression due to their ability to produce pro-

inflammatory cytokines and proteases which at increased concentrations contribute to 

cartilage degeneration. The rheumatoid HFLS (HFLS-RA) phenotype also involves 

increased invasiveness into the extracellular matrix, thereby further accelerating joint 

destruction. Recent investigations have confirmed the role of HFLS in regulation of 

innate immune responses and intracellular signalling mechanisms (Bartok et al. 2010). 

Therefore HFLS-RA cells were chosen for the evaluation of the disease pathogenesis 

and to identify potential therapeutic biomarkers. The HFLS-RA cells were treated with 

MTX and curcumin to compare the effect of the two compounds on the expression 

levels of the biomarkers. The concurrent treatment with both compounds was also 

carried out to confirm if the compounds exhibited synergistic activity.   
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The HFLS-RA cells were cultured in the lab using appropriate and safe techniques as 

per the guidelines provided by the Cell Applications, PHE, INC. Cell growth was 

restricted to a range of 70-80% confluency to avoid external stress and media 

deprivation. The HFLS-RA cells were treated with IC50 concentrations of MTX and 

curcumin, independently and in combination, in order to compare the effect of the 

compounds on the gene expression levels. The untreated HFLS-RA cells were used as 

the control during the investigations. There have been numerous studies carried out 

analysing the inhibitory effect of the two compounds on specific pro-inflammatory 

molecules. The anti-rheumatic activity of MTX has been well documented (Chan and 

Cronstein 2013). However, while the inhibitory effect of Curcumin has been 

demonstrated in previous studies, a clear mechanism of action involved in this process 

has not been identified.  

The DNA microarray is an efficient high throughput method used to establish the 

complete expression profile of the entire genome in specific cells. Due to the accuracy 

and precision of the technique, coupled with the standardised statistical analysis, it 

was used to quantify the effect of MTX and curcumin on the HFLS-RA cells. In this 

study the DNA microarray was carried out on duplicate samples of MTX treated cells, 

curcumin treated cells and cells treated simultaneous with both MTX and curcumin. 

The quality of the total RNA extracted from the untreated as well as the treated HFLS-

RA samples was confirmed by analysing the RNA integrity so that the total RNA used 

for the microarray experiments was confirmed to be of high quality. Each array was 

subjected to a feature extraction software in order to carry out the data normalisation. 

The quantile normalisation of the data enabled comparisons between gene 

expressions under different treatment regimes. The normalisation of the raw intensity 

values obtained in each array allowed for the identical data distribution as shown in 
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Figure 3-8. The quantile normalisation enabled the comparison within different arrays. 

The similarities of the expression profiles of within samples with same treatment and 

between differently treated samples is analysed and presented in form of Pearson’s 

correlation coefficients in Table 3-11. The value of coefficient close to 1.000 indicated 

the higher correlation between the gene expressions values obtained in different 

arrays while decrease the in the value of coefficient indicated the differential 

expression of the gene within the two arrays. The value of coefficient in samples 

treated with curcumin was lower compared to samples treated with MTX indicating 

lower correlation with the untreated control samples which meant that the curcumin 

treatment induced higher differential expression. The further decrease in the 

coefficient value in samples concurrently treated with MTX and curcumin indicated 

increased differential gene expression. The differential gene expression was expressed 

in the form of fold changes, comparing the normalised treatment groups (MTX, 

curcumin and combination) against the control (untreated HFLS-RA cells). Each 

pairwise comparison group was subjected to bioinformatics analysis to establish the 

statistical significant fold change under stringent filtration which used a combination of 

false discovery rate (FDR)-corrected p-value [p (Corr) ≤ 0.05] and Fold Change cut-off 

(│FC│≥ 2). On application of the stringent filter 3613 genes were found to be 

significantly differentially expressed in pairwise comparison between curcumin treated 

cells and untreated HFLS-RA. Out of the 3613 genes 1886 were upregulated while 1727 

were downregulated. For the pair wise comparison of cells treated concurrently with 

both MTX and curcumin and the untreated HFLS-RA cells, 4063 genes were found to be 

significantly differentially expressed, of which 2127 were upregulated and 1936 were 

downregulated. Since no differential regulation was obtained in the cells treated with 

MTX under stringent filter, the non-stringent filtering, which removed the FDR 
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correction, was applied which identified 74 genes to be differentially expressed out of 

which 21 genes were upregulated while 53 genes were downregulated. A comparative 

analysis between the three pair-wise comparisons exhibited a higher cumulative fold 

change in samples treated with curcumin than MTX treated samples, indicating that 

the curcumin is more efficient than MTX in selectively targeting the genes involved the 

inflammatory and the autoimmune responses. The further increase in the fold change 

with the samples treated with a combination of both drugs indicates possible 

synergistic activity between MTX and curcumin. 

Out of the 74 genes, 13 genes were selected for further analysis and validation using 

qRT-PCR in which untreated HFLS-RA cells were used as control. The genes were 

selected based on their differential expression in pair-wise comparisons in cells treated 

with curcumin and their potential to be established as potential therapeutic 

biomarkers for further research. The 13 genes have previously been identified to be 

involved in inflammatory and cell proliferation pathways such as Wnt5a-mediated cell 

signalling, JAK-STAT signalling and JNK signalling pathways. The genes such as 

ANGPTL7, CD248, CD274, CH25H, CXCL12 and IL7 have previously been confirmed to 

play important roles in carcinogenesis and autoimmune disorders. Earlier studies 

involving our research group, identified the HSP70 protein encoding gene HSPA6 as 

therapeutic biomarker in Glioma (Shervington et al. 2015). The qRT-PCR experiments 

were carried out to confirm the effect of MTX and curcumin on the gene expression 

levels on the 13 genes in HFLS-RA cells.  

The Angiopoietin-like (ANGPTL) proteins are structurally related to the angiogenic 

factors. Though the ANGPTLs are unable to regulate blood vessel formation (Katoh and 

Katoh 2006) they appear to exhibit other functions such as induction of inflammation 
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and regulation of lipid and glucose metabolism (Xu et al. 2005). The biological 

functions of Angiopoietin-like 7 (ANGPTL7) present on chromosome 1 has not been 

completely evaluated though it is found to be significantly over-expressed in cancer 

(Parri et al. 2014). It has been identified as a target gene in WNT/β-catenin signalling 

pathway, postulating function in the promotion of cell adhesion and plays role in 

production of extracellular matrix protein fibronectin thus promoting cell adhesion and 

proliferation (Buie et al. 2011, Comes et al. 2011). In addition, another member of 

angiopoietin-like gene family ANGPTL4 has been implicated in metastatic processes in 

cancers by modulating vascular permeability (Tanaka et al. 2015). It contributes to 

tumour growth and protects the cancer cells from anoikis (programmed cell death). 

ANGPLT7 may also share similar functions in RA and cancer. In RA, Wnt5a-mediated 

signalling directly contributes towards the induction of pro-inflammatory chemokines 

such as IL6 and IL8. Therefore, as target gene, ANGPTL7 can be used as biomarker to 

determine the efficacy of the treatment (de Rooy et al. 2013). The present data shows 

ANGPTL7 downregulated 5 fold in MTX treated samples while the downregulation was 

significantly increased by 518 and 562 fold in samples treated with curcumin and the 

combination, respectively. The qRT-PCR analysis showed that the decreased 

expression of ANGPTL7 in HFLS-RA samples treated with MTX and curcumin correlates 

with the anti-inflammatory ability of both compounds. The significantly higher fold 

change in samples treated with curcumin indicate a higher efficiency of the 

compounds in inhibiting the pro-inflammatory activities.  

CD248 gene present on chromosome 11 codes for the lectin-like transmembrane 

protein Endosialin which in normal conditions is responsible for cell-cell adhesion and 

immune response to pathogens. In vitro, Endosialin is expressed by fibroblasts, 

pericytes and smooth muscle cells. The expression of the protein is strongly 
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upregulated in angiogenic endothelial cells. The over-expression of Endosialin is 

observed in glioma where it upregulates angiogenic vasculature and in arthritis where 

it results in increased adhesion to fibronectin and contributes to synovial hyperplasia. 

The downregulation of Endosialin directly results in the reduction of synovial 

hyperplasia and, therefore, can be concluded to be effective in anti-rheumatic 

treatment. The microarray data shows a 3 fold upregulation of CD248 in MTX treated 

samples which correlates with established pulmonary toxicity and lung fibrosis caused 

due to MTX. The HFLS-RA cells treated with curcumin show a 22 fold downregulation 

which the concurrent treatment using MTX and curcumin, downregulated gene 

expression 23 fold confirming the anti-rheumatic activity of the compound. The 

expression of CD248 gene has been previously shown to be upregulated in rheumatic 

cells as compared to normal synoviocytes (Maia et al. 2010). The decreased expression 

of the CD248 gene in samples treated with curcumin confirm the role of curcumin in 

the reduction of synovial hyperplasia. The Endosialin expression was also found to be 

downregulated in HFLS-RA samples treated with the MTX and curcumin combination 

which indicates the efficiency of curcumin in reducing the severe effects of the MTX 

treatment.  

The cholesterol 25-hydroxylase (CH25H) gene present on chromosome 10 encodes for 

the hydroxylase enzyme which metabolises cholesterol in to 25-Hydroxycholesterol in 

macrophages as a response to TLR activation (Bauman et al. 2009). The increased 

levels of the enzyme and the oxysterol product in RA due to increased activity of TLR 

receptors leads to the release of pro-inflammatory chemokines. The microarray data 

shows that gene expression is 4, 58 and 78 fold downregulated when treated with 

MTX, curcumin and the combination, respectively, which indicates reduced 

inflammation and a restricted auto-immune response. The expression of cholesterol 
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25-hydroxylase enzyme has been previously shown to be increased in 

neurodegenerative disorders as well as rheumatoid arthritis (Forwell et al. 2016, 

Taberner et al. 2005). The down regulation of this gene by both MTX and curcumin 

suggests the anti-rheumatic effect of both compounds, while further reduction in gene 

expression when treated with the combination confirms the synergistic effect of the 

compounds. These results were validated in the qRT-PCR data which indicated that the 

CH25H expression in RA synoviocytes was inhibited after treatment with MTX and 

curcumin.  

The COL14A1 gene, present on chromosome 8, encodes for collagen, type XIV, alpha-1 

(CXIV) protein which is a variant of the protein Undulin (UND). Both CXIV and UND are 

present on collagen fibrils where they are involved in adhesion and integration of 

collagen bundles (Schuppan et al. 2001). The COL14A1 gene has been previously 

identified as therapeutic biomarker in autoimmune rheumatic disorders, confirmed to 

be upregulated in rheumatic conditions (de la Rica et al. 2013). The increased 

expression of this gene from the family Fibril-associated collagens with interrupted 

helices (FACIT) leads to aggregation of fibroblasts and extracellular matrix in synovium 

causing inflammation and rigidity in joints. The microarray data shows downregulation 

of COL14A1 by 3 and 40 folds when treated with MTX and curcumin, respectively, 

while gene expression was downregulated 33 fold in samples treated with MTX and 

curcumin simultaneously confirming the ability of the compounds to inhibit the 

fibrogenesis in synovial cavity. The significant difference in the fold change observed in 

the samples treated with MTX and curcumin indicates that curcumin is more effective 

in reducing fibrogenesis as compared to MTX.   
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The chemokine (C-X-C motif) ligand 12 (CXCL12) gene codes for chemokine stromal 

cell-derived factor 1 (SDF-1), which upon pro-inflammatory stimuli from TNF and IL, 

activates leukocytes. The chemokine SDF-1 primarily binds to CXC receptor 4 which 

induces intracellular signalling via chemotaxis and increases the gene transcription 

levels for the proteins required in cell survival pathways. The SDF-1/CXCR4 coupling 

plays a crucial role in angiogenesis and cell proliferation. The increased expression of 

SDF-1 in rheumatoid arthritis means it could be used as a therapeutic biomarker in the 

treatment of arthritis (Orimo et al. 2005). The gene expression data confirmed 3 fold 

downregulation of gene expression of samples treated with MTX while the curcumin 

treatment downregulated 40 fold. The expression of CXCL12 has been confirmed to be 

increased in HFLS-RA cells (Pablos et al. 2003), therefore the downregulation of this 

gene following treatment with MTX and curcumin confirmed the inhibitory properties 

of MTX and curcumin and their ability to control the angiogenesis in RA progression. 

The reduced gene expression of samples treated with both MTX and curcumin (45 fold 

downregulation) indicates that both compounds exhibit synergistic activity in 

leukocyte inhibition.  

The cytokine-like 1 (CYTL1) gene present on chromosome 4 codes for protein 

specifically expressed in bone marrow and mononuclear cells. It undergoes 

conformational changes and along with the C-C motif ligand 2 (CCL2) bind to 

chemokine (C-C motif) receptor (CCR2) receptor. These proteins mediate monocyte 

chemotaxis and promote monocyte infiltration in RA leading to chronic inflammation 

and cartilage destruction (Jeon et al. 2011, Tomczak and Pisabarro 2011). The 

increased expression of CYTL1 in rheumatoid arthritis has also been confirmed to be 

associated with increased cardiovascular risk (Boyer et al. 2011). The data obtained 

from the microarray analysis showed downregulation of CYTL1 by 3 and 26 fold when 
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treated with MTX and curcumin, respectively, while samples treated with both MTX 

and curcumin showed 18 fold downregulation of gene expression.  The results from 

qRT-PCR also confirmed decrease in the expression levels of CYTL1 gene, therefore, 

confirming the anti-inflammatory properties as well as potential therapeutic benefits 

of curcumin in cardiovascular disorders. 

The interferon-induced transmembrane protein 1 (IFITM1) gene present on 

chromosome 11, also known as CD225, encodes the transmembrane protein. In 

normal cells this protein is involved in physiological processes of the immune response 

and cell maturation (Kim et al. 2010). The activation of interferon signalling pathways 

and the increased expression of IFITM1 gene has been associated with RA progression 

(van Baarsen et al. 2010). The data from microarray analysis showed a downregulation 

of gene expression by 2 and 15 fold following treatment separately with MTX and 

curcumin, respectively, while the gene expression was found to be downregulated 13 

fold in samples treated with both MTX and curcumin. The difference in the fold change 

observed confirmed that curcumin appears to be more efficient in modulating the 

interferon activity and hence, has a greater therapeutic impact compared with MTX.  

The protein encoded by interleukin 7 (IL7) gene, present on chromosome 8, plays an 

important role in lymphoid cell development and homeostasis. It is involved in the 

activation of JAK-STAT pathway which in turn upregulates the production of pro-

inflammatory molecules such as TNF and NF-kB (van Roon et al. 2003, Zuvich et al. 

2010, Puel et al. 1998). The induced expression of IL7 in RA cells has been associated 

with the production of the osteoclastogenic cytokines by T-cells leading to the 

maturation of osteoclasts and bone destruction. The increased circulating 

concentration of IL7 directly leads to chronic inflammation and joint destruction, 
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therefore selective inhibition of IL7 could be of therapeutic importance (Churchman et 

al. 2014). The microarray data showed that gene expression was downregulated by 3 

and 40 folds when treated with MTX and curcumin, respectively, while treatment 

involving a combination, the downregulation was 69 fold, thereby confirming the anti-

rheumatic properties and a synergistic effect of the two compounds.  

The Breast Cancer Anti-estrogen Resistance 4 (BCAR4) is a RNA gene present on 

chromosome 16; comprising of a region coding for long non-coding RNAs (lncRNAs) 

and non-protein coding RNAs (npcRNAs). It has been associated with the BCAR1 gene 

and breast cancer. The expression of BCAR4 was found to be significantly inhibited in 

RA cells compared to the normal synoviocytes. The lncRNAs, which in eukaryotes are 

almost 80% of the transcription products, serve as regulators for translation via several 

interrelated mechanisms. The npcRNAs code for several variations such as siRNAs, 

miRNAs and tRNAs that are also involved in regulation of related mRNA translation 

(Godinho et al. 2011). The primary function of BCAR4 is to regulate the activity of 

Breast Cancer Anti-Estrogen Resistance 1 (BCAR1) protein which coordinates the 

tyrosine kinase-based signalling in cell adhesion and migration. The overexpression of 

BCAR1 protein is associated with increased chances of developing breast cancer. The 

samples treated with MTX did not indicate significant change in the gene expression 

level, however, BCAR4 was upregulated 99 fold when treated with curcumin indicating 

the ability of the compound to indirectly modulate the interaction of related BCAR1 

(Robinson et al. 2006). This also indicates the potential anti-carcinogenic properties of 

curcumin which could be a potential candidate in breast cancer treatment. 

The CD274 gene, present on chromosome 9, encodes an immune inhibitory receptor 

ligand called programmed death-ligand 1 (PD-L1) which is expressed on the surface of 
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both T and B lymphocytes. The interaction of this ligand with the receptor inhibits the 

T-cell activation and cytokine production. During the inflammation interaction of PD-L1 

is important in order to prevent an autoimmune response. The expression of PD-L1 as 

well as the associated enzyme programmed death 1 (PD-1), which negatively regulates 

the immune response, has been found to be significantly downregulated in RA cases (Li 

and Schwarz 2013). The microarray data indicated that samples treated with MTX did 

not show significant changes in those reduced expression levels. However, CD274 was 

upregulated 75 fold when treated with curcumin, therefore, confirming the capability 

of the compound to modulate ability of PD-L1 to bind to the PD-1 receptor present on 

the T-cells, thereby inhibiting the activation of IL2 production and T-cell proliferation 

(Lee et al. 2006, Al-Chaqmaqchi et al. 2013). The ability of curcumin to induce the 

expression of CD274 indicates the potential of the compound to regulate pathogenesis 

and progression of RA. 

The HSPA6 gene encodes for the heat shock 70kDa protein 6 (HSP70B’) which is 

upregulated in stress like conditions. The qRT-PCR data showed an increased 

expression level of HSPA6 in RA cells which was further upregulated 12 fold when 

treated with curcumin. HSP70 has immunoregulatory potential such as the ability to 

modulate inflammatory response in arthritis models by promoting the production of 

anti-inflammatory cytokines. The increased expression indicates the ability of curcumin 

to induce immunosuppressive potential of this protein (Borges et al. 2012). 

The Orthopedia Homeobox (OTP) gene, present on chromosome 5, encodes a member 

of homeodomain (HD) family. A homeobox is a DNA sequence found within genes that 

regulate anatomical developments by modulating the cell fates and has been shown to 

play a crucial role in breast carcinogenesis (Kim et al. 2012). The data obtained from 
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the microarray analysis shows an upregulation of OTP by 56 and 87 fold when treated 

with curcumin, individually and in combination with MTX respectively, thereby 

confirming the ability of the compound to induce cell death.  

The RELT gene encodes for Tumour necrosis factor receptor superfamily member 19L 

(TNFRSF19). This receptor is highly expressed in embryonic developmental stages. It 

interacts with TNF receptor-associated factors (TRAFs) and activates the JNK signalling 

pathway when overexpressed, thus regulating anti-apoptotic signalling of TNF and 

activation of T cells. The RELT gene is found to be downregulated in HFLS-RA cells 

compared to the normal synoviocytes. The MTX treated samples did not show a 

significant change in the inhibited expression level; on the other hand, samples treated 

with curcumin and the combination showed an upregulation of the RELT gene by 9 and 

8 fold, respectively, in microarray data which could be attributed to its ability to induce 

apoptosis (Tamai et al. 2014).  

Interleukin 6 (IL6), a prominent pro-inflammatory pleiotropic cytokine involved in RA 

pathogenesis and plays a key role in RA by inducing the production of C-reactive 

protein and fibrinogen. It also modulates proliferation and differentiation to cytotoxic 

T-cells and Th17 cells. IL6 stimulates the proliferation of macrophages and 

megakaryocytes. It induces the expression of adhesion molecules at the endothelial 

cell surface (Schett et al. 2008). IL6 mediates osteoclastogenesis by increasing the 

release of RANK-L by bone tissue cells including osteoblasts through the STAT-

3 signalling pathway (Kudo et al. 2003). Together with TGFβ and IL1, IL6 is also involved 

in T-cell differentiation to Th17 cells. Th17 cells act as powerful osteoclastogenesis 

inductors by increasing the release of both RANK-L and IL17, which directly stimulate 

osteoclast differentiation (Bettelli et al. 2006). Along with proinflammatory cytokines 
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such as TNFα, IL6 is strongly associated with RA-related systemic bone loss and 

systemic inflammation (Walsh et al. 2005). Within the inflamed synovial membrane, 

osteoclast differentiation is activated by many cytokines such as RANK-L and TNFα 

whose production by synovial fibroblasts is stimulated by IL6 (Hashizume et al. 2008, 

Axmann et al. 2009). Both MTX and curcumin have previously been reported to inhibit 

production of IL6 which would support the effectiveness of both compounds in 

inhibition of structural joint damage and systemic bone loss in RA. The microarray data 

showed the downregulation of IL6 gene by 2 and 6 fold in samples treated with MTX 

and curcumin, respectively, which confirmed their anti-rheumatic abilities while the 8 

fold downregulation in samples treated with both MTX and curcumin indicated 

synergistic effect of the two compounds. These results were further confirmed by 

quantifying the IL6 protein present in the serum of treated cells using ELISA. The 

results showed decrease in the serum concentration levels of IL6 following treatment 

with MTX and curcumin, separately and in combination.  

The mode of action for MTX, an analogue of Dihydrofolate, in the treatment of RA is 

primarily through the inhibition of the enzymatic activity of Dihydrofolate Reductase, 

therefore, preventing the inflammatory hyperplasia and development of fibrous 

material in synovial membrane. The folate dependant suppression of de novo 

adenosine synthesis leads to the anti-inflammatory properties through the inhibition 

of intercellular adhesion molecules. However, due to the non-specificity of this 

mechanism, prolonged MTX treatment, even at low dose levels, could results in the 

development of complications such as anaemia, neutropenia, lung fibrosis and 

hepatotoxicity. Therefore, despite the effectiveness of the MTX treatment, it is 

important to develop a complementary combination which could help to reduce the 

adversities involved.  
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Curcumin, the major active component of turmeric, has been associated with 

antioxidant, anti-inflammatory, anticancer, antiviral and antibacterial activities. From 

the results obtained from microarray analysis curcumin has proven to be more 

efficient at inhibiting pro-inflammatory cytokines in rheumatoid arthritis such as 

CD248, SDF-1, CD225 and IL7, while increasing the expression levels of PD-L1 which is 

an anti-inflammatory cytokine. While the higher fold change in expression of the genes 

due to curcumin could be partly attributed to the significantly higher IC50 

concentration of 15 µM as compared to the IC50 of MTX (50 nM), curcumin could still 

be considered a viable candidate as first line treatment for RA due to the high safety 

dose levels (12 gm/day for over 3 months) over a prolonged period of time. The gene 

expression profiling confirms a significant increase in the fold change induced by 

curcumin in the expression of established therapeutic biomarkers, therefore, 

suggesting that curcumin could be a more effective therapeutic agent compared with 

MTX in specifically modulating RA progression. 

However, despite exhibiting highly pleiotropic properties the development of a 

formulation incorporating curcumin is problematical to some extent due aqueous 

insolubility, relatively low bioavailability and structural instability. Over the past 30 

years several advancements have been made such as the development of liposomal 

encapsulation and modification of compound structure which could potentially 

increase the bioavailability of curcumin. However, until such modifications are 

established, in order to achieve the required level of therapeutic effect, a large level of 

daily dosage of curcumin will be required to replace MTX as first line of treatment.  
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Therefore the most appropriate possibility in improving RA treatment would be to use 

curcumin as a supplement to MTX ideally reducing the level of MTX and thereby 

reducing the adverse effects.  
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 
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5.1. Conclusion 

This study has developed a novel gradient system for determining stability of both 

MTX and curcumin simultaneously during forced degradation. Since, the compounds 

were found to be relatively stable, they were used further for investigating their 

possible combination for the treatment of the HFLS-RA cells. Untreated HFLS-RA cells 

were used as control to compare the effect of the two compounds on the expression 

level of genes involved in RA pathogenesis. In order to understand the mechanism of 

action of the two compounds and to compare their effects on the expression of 

specific genes, DNA microarray analysis was carried out and specific genes were 

selected for further analysis to identify novel molecular biomarkers. Gene expression 

profiling identified 74 genes, based on stringent and non-stringent data, out of which a 

total of 13 genes were identified to be potential biomarkers due to their differential 

expression in normal synoviocytes and HFLS-RA cells.  

The results obtained from the microarray and qRT-PCR investigations confirm the 

ability of curcumin to selectively modulate the expression of genes involved in the RA 

pathogenesis. While both compounds are effective in restraining the progression of 

RA, the difference in their mechanisms of action determine the level of adverse effects 

associated with the treatment. Due to the high toxicity level of MTX and significantly 

low bioavailability of curcumin, neither compound can be used independently as for 

RA treatment for prolonged duration. Therefore, complementing the existing MTX 

treatment with curcumin supplement could provide a more effective treatment while 

especially when it comes to reducing the long term side-effects as a result of MTX 

treatment.  
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5.2. Future work 

The mechanism of action for curcumin, attributed to its pleotropic applications, still 

remains to be completely understood. The current data can provide insight in to these 

mechanisms and can be used to analyse the effect of curcumin on various inter-related 

signalling pathways. In depth analysis of these signalling pathways is required to better 

understand the curcumin activity. The stability analysis of the analogues of curcumin 

and comparative studies of the effects of these compounds on the RA pathogenesis 

would be beneficial for improvement of RA treatment. The novel disease biomarker 

genes identified in this study, ANGPTL7, CXCL12, CH25H, IFITM1, COL14A1, RELT and 

BCAR4, should be further investigated since the signalling pathways relating to these 

biomarkers would be more beneficial in helping to understand RA pathogenesis in 

order to further optimise the first line RA treatment. 

Gene expression profiling through DNA microarray has been well developed as reliable 

method that involves less labour-intensive sample preparations and data analysis. 

However, the limitation of this technique includes fundamental design bias, limited 

reproducibility which means that the results obtained from the expression profiling are 

more qualitative in nature (Ioannidis et al. 2009). Therefore, while cost effective DNA 

microarray is an ideal method to help identify biomarkers and specific molecules of 

interest, in order to obtain complete analysis of the quantitative expression of specific 

genes, further investigations should be carried out using more advanced techniques 

such as Next Generation Sequencing. The therapeutic biomarkers identified in this 

project could be further explored in order to help understand and improve the 

treatment of RA. 
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Table 7-1 Primer design of ANGPTL7 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

GTGTAGAGATGGAGGACTGGG Plus 21 950 970 58.96 57.14 2.00 0.00 

Reverse 
primer 

ATACTGGAGGGCGTCGTTC Minus 19 1086 1068 59.19 57.89 3.00 2.00 

 

Table 7-2 Primer design of CD248 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

CCATCAAATCTCTGTGCCTGC Plus 21 1826 1846 59.60 52.38 2.00 2.00 

Reverse 
primer 

GTCTGGTTAGTGGGGCTCTG Minus 20 1906 1887 59.75 60.00 2.00 1.00 

 

Table 7-3 Primer design of CH25H gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

CACCCTGACTTCTCGCCATC Plus 20 242 261 60.46 60.00 2.00 0.00 

Reverse 
primer 

CACGGGGAACACAAACATCAC Minus 21 328 308 60.00 52.38 2.00 0.00 

 



Page 188 of 192 
 

Table 7-4 Primer design of CXCL12 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

GACAAGTGTGCATTGACCCG Plus 20 295 314 59.76 55.00 4.00 2.00 

Reverse 
primer 

CTCATGGTTAAGGCCCCCTC Minus 20 467 448 59.82 60.00 4.00 1.00 

 

Table 7-5 Primer design of CYTL1 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

AGATCACCCGCGACTTCAAC Plus 20 135 154 60.39 55.00 4.00 1.00 

Reverse 
primer 

GTACAGCCTGGGCAGGTATC Minus 20 211 192 59.89 60.00 6.00 2.00 

 

Table 7-6 Primer design of IFITM1 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

CGCCAAGTGCCTGAACATC Plus 19 423 441 59.50 57.89 2.00 1.00 

Reverse 
primer 

GTCACAGAGCCGAATACCAGT Minus 21 509 489 59.80 52.38 3.00 2.00 
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Table 7-7 Primer design of IL7 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

GTGACTATGGGCGGTGAGAG Plus 20 529 548 59.90 60.00 3.00 0.00 

Reverse 
primer 

GCTACTGGCAACAGAACAAGG Minus 21 669 649 59.46 52.38 3.00 0.00 

 

Table 7-8 Primer design of COL14A1 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

AGACGAGGTGGTGGTAGATG Plus 20 1455 1474 58.52 55.00 2.00 0.00 

Reverse 
primer 

AGCAGTGTGGGCATAGATTG Minus 20 1560 1541 57.95 50.00 3.00 2.00 

 

Table 7-9 Primer design of BCAR4 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

ACCAGTGACCTTGAGTGAAC Plus 20 630 649 57.38 50.00 3.00 2.00 

Reverse 
primer 

CTTGGGTGGGGATAGTGATTG Minus 21 713 693 58.06 52.38 2.00 0.00 
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Table 7-10 Primer design of CD274 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

CTATGGTGGTGCCGACTACA Plus 20 459 478 59.18 55.00 3.00 2.00 

Reverse 
primer 

AGGACTTGATGGTCACTGCT Minus 20 632 613 58.64 50.00 3.00 1.00 

 

Table 7-11 Primer design of RELT gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

AACTTGCGGTGTGAGGG Plus 17 134 150 57.01 58.82 3.00 0.00 

Reverse 
primer 

CATAAGGAAGCAGGACAGGG Minus 20 272 253 57.66 55.00 2.00 0.00 

 

Table 7-12 Primer design of HSPA6 gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

AATCTGTCGCCCCATCTTCTC Plus 21 2222 2242 59.86 52.38 2.00 0.00 

Reverse 
primer 

GCCCATAGCATAGCCCTGAC Minus 20 2395 2376 60.32 60.00 2.00 1.00 
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Table 7-13 Primer design of OTP gene using PrimerBlast. 

 
Sequence (5'->3') 

Template 
strand 

Length Start Stop Tm GC% 
Self 

complementarity 
Self 3' 

complementarity 

Forward 
primer 

CCTTGGTTGTTTTGTGGTGGTC Plus 22 2281 2302 60.42 50.00 2.00 1.00 

Reverse 
primer 

CAGGGTTGTAGATGTCCGAGTG Minus 22 2371 2350 60.42 54.55 3.00 0.00 
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Figure 7-1 Agarose gel electrophoresis of validated 13 genes. Lane 1 and 6 represent 
the 100 bp molecular marker, lane 2 represents Untreated HFLS-RA cells, lane 3 
represents MTX treated HFLS-RA cells, lane 4 represents curcumin treated HFLS-RA 
cells and lane 5 represents HFLS-RA cells treated with both MTX and curcumin. 


