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ABSTRACT 

Despite advances in diagnostic procedures and treatments, the overall survival rate from cancer 

has not improved substantially over the past 30 years. One promising development is the 

encapsulation of toxic cancer chemotherapeutic reagents within biocompatible nanocomposite 

materials. The targeted stimuli triggered drug release restrict the toxic drugs to the tumour site, 

thereby reducing the effects of “free drug” on healthy tissues. One of the most versatile and safe 

materials used in medicine are iron oxide nanoparticles. This project describes the development 

of several formulations based on magnetite nanoparticles for drug delivery applications. Utilising 

magnetic nanoparticles in drug delivery systems allowed for the synergistic effects of 

hyperthermia and heat triggered drug released. The drug delivery systems developed in this 

project include magnetoliposomes, magnetic micelles, mesoporous silica-magnetite core-shell 

nanoparticles, liposome capped mesoporous silica-magnetite core-shell nanoparticles (protocells) 

and polymer capped mesoporous silica-magnetite core-shell nanoparticles.  

The drug loading and release profiles of the developed nanomaterials were assessed using two 

different anticancer drugs; Mitomycin C (MMC) and Doxorubicin (DOX). The drug loading 

content and drug loading efficiency for different nanocomposites ranged from 0.48 to 10.30% and 

16.16 to 85.85%, respectively. Drug release profiles were studied in vitro at 37°C at pH 5.5 and 

pH 7.4 and at hyperthermia elevated temperature of 43°C to evaluate the effects of pH and 

temperature on the release profiles. An AC magnetic field with frequency of 406 kHz and variable 

field of up to 200 G was used to induce magnetic heating and keep the temperature within 

hyperthermia treatment range. Compared to uncapped mesoporous silica nanoparticles capping 

the mesopores of the silica nanoparticles with liposome or polymer reduced the drug release by 

52.7% and 41.5%, respectively. 

The efficacy of doxorubicin-containing nanoparticles were evaluated in vitro against breast 

cancer and glioblastoma cell lines where different formulations demonstrated comparable or 

increased cytotoxicity compared to free drug. The cells treated with DOX loaded nanoparticles 

and hyperthermia demonstrated up to 89% lower viability compared to cells treated with free 

DOX. 

Silica coated magnetic nanoparticles were also used as enzymes (Pseudomonas Fluorescens 

Lipase (PFL) and Candida Rugosa Lipase (CRL)) supports in catalysis reactions. The enzymes 

were immobilised onto nanoparticles through physical adsorption and chemical bonding. The 

immobilised lipases were used in hydrolysis of pNPP and hydrolysis of cis-3,5-diacetoxy-1-
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cyclopentene to investigate the catalytic activity of the immobilized enzymes compared to free 

enzymes. The results indicated that free lipases provided slightly higher conversion than 

immobilised lipases in the first cycle however, the immobilised lipases were easily recycled and 

reused in sequential cycles which provides higher total yield per mg of lipase. The chemically 

immobilised lipase exhibited good reusability without loss of its activity in sequential cycles, 

however the physically adsorbed lipase showed reduced activity which could be explained by loss 

of enzyme during recycling between successive reactions. The CRL lipase activity were further 

assessed in the presence of an AC field where the results showed that exposure to the AC magnetic 

field resulted in increased lipase activity. The effect of reaction temperature on immobilised lipase 

activity were studied by performing the hydrolysis of cis-3,5-diacetoxy-1-cyclopentene at two 

temperatures of 25°C and 37°C where it was observed that both lipases exhibited higher activity 

at higher temperature which could be due to the fact that for PFL and CRL the optimum 

temperature is close to 37°C.  
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 Project Motivation 

Over the last few decades, extensive research has advanced the knowledge of physical and 

chemical properties of drug molecules along with mechanisms of cellular absorption and drug 

action resulting in numerous therapeutic strategies and pronounced improvements in 

pharmaceutical drug developments. However, in certain areas such as cancer treatments, existing 

therapy procedures mainly rely on the use of conventional cytotoxic drugs which only induce 

limited success and suffers from severe damaging side effects. Cancer is among the leading causes 

of morbidity and mortality worldwide. Over 338,000 people were diagnosed with cancer in 2012 

in the UK which is about 928 people per day (UK, 2015). Numerous research studies have 

suggested that these problems could be resulting from insufficient targeting and target specificity 

of the current antitumor agents. The motivation for the first part of this project was to address 

some of the current challenges associated with drug delivery systems particularly in case of 

delivering toxic therapeutics agents for cancer therapy. 

The cost of drugs form a significant proportion of the total expenditure of health authorities 

worldwide. For instance, the National Health Service (NHS) in England committed over 12% of 

their total budget (over £118 billion in 2014-2015) on drugs (Health, 2015). Despite such a 

significant financial contribution, the cost of many drugs remain prohibitive for a large number 

of patients. For example, Bevacizumab (Avastin), a first line treatment for patients with colorectal 

cancers is not available to English and Welsh patients through the NHS. The cost of Avastin as 

currently supplied by the manufacturer is £1,848.80 per month for a typical 70 kg patient 

(NewsMedical, 2014). An increase in efficiency and productivity of manufacturing process could 

result in lower drug cost. This could be achieved through the use of immobilized enzymes in 

multi-stepped drug syntheses. Repeated enzyme recycle/reuse will result in lower drug production 

cost and translate into significantly lower drug costs. Thus, developing the enzyme 

immobilisation support, which improves the enzyme activity and ease the separation and 

recycling/reusing of the enzymes i.e lipase, to overcome the above mentioned problems 

associated with pharmaceutical drug production inspired the second part of this project. 

 Aims and Objectives of the Project 

The first aim of this project is to develop novel nanomaterials for drug delivery system (DDS). 

The success of such drug delivery system relies on many different factors as listed below: 

1. The drug delivery system needs to be biocompatible.  

This requirement was addressed by primarily using iron oxide nanoparticles (magnetite) 

which is shown to be biocompatible (Iron oxide nanoparticles are one of the few materials 

injected into the body that are easily incorporated into the body’s natural metabolic 
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pathways) and was then further improved by applying additional biocompatible surface 

coatings of mesoporous silica, SPC lipid bilayers and PEG-PCL polymer.  

The developed nanoparticles were tested against two cell lines of MCF7 and U87 to 

evaluate the cytotoxicity and biocompatibility of the developed materials as drug delivery 

systems.  

2. The drug carriers should allow high drug loading and encapsulation capacities. 

To achieve this requirement magnetic nanoparticles were coated with mesoporous silica 

shell with high surface area and mesoporous channels which enable high loading 

capacities. 

The porosity and surface area of the core-shell nanomaterials were tested using nitrogen 

adsorption-desorption test using the well-known BET method. 

The drug loading capacity of the materials were tested in vitro using Doxorubicin and 

Mitomycin C anticancer drugs. 

3. The drug delivery system should have zero drug leaking/premature drug release before 

reaching the target tissue. 

This issue was addressed by using the lipid bilayer (liposomes) and polymer micelle 

around mesoporous coated nanoparticles as capping materials to minimise the premature 

drug release. The capping enabled optimised drug delivery system and minimised the 

premature drug release however, “zero” drug leakage was not accomplished. 

The drug release profile of the drug loaded nanoparticles were tested in vitro at body 

temperature (37°C) and hyperthermia temperature (43°C).  

4. The drug delivery system should be able to target specific area or tissue. 

The targeting ability of the drug delivery system was realised by using magnetic 

nanoparticles as drug carriers which can be directed to the target site using an externally 

applied magnetic field. 

5. The drug delivery system should possess a controlled and triggered drug release profile. 

Stimuli triggered drug release was achieved by applying an AC magnetic field triggered 

(magnetic hyperthermia) drug release strategy. Using magnetic iron oxide nanoparticles 

as core materials enables the materials to generate heat under the influence of an 

externally applied AC magnetic field. This strategy provides the advantage of synergistic 

effects of magnetic hyperthermia and chemotherapy. 

Furthermore the drug release profiles were evaluated at different pH conditions (tumours 

exhibit a lower extracellular pH than healthy tissues, the pH of blood and normal tissues 
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are 7.4, but the extracellular pH in tumour tissues is about 6.8. Besides, endosome pH 

ranges from 4.5 to 6.5) and the nanoparticles exhibited an increase in the release rate with 

a decrease in pH value. 

The second part of this project aimed to develop nanoparticles for efficient enzyme 

immobilisation and evaluated them by immobilization of CRL and PFL enzymes which are 

frequently used in pharmaceutical industry. Such materials for enzyme support should possess 

high surface area to maximise the enzyme immobilisation and should be easily separated from 

the reaction for recycle and reuse of the enzyme. 

This goal was achieved by using high surface area mesoporous silica coated magnetic 

nanoparticles which were easily separated from the reaction by using an external 

magnetic field. 

The immobilised enzyme was evaluated at different conditions and it was used in model 

catalysis reaction of hydrolysis of p-nitrophenyl palmitate and hydrolysis of 

pharmaceutically important chiral molecule “cis-3,5-diacetoxy-1-cyclopentene”, which 

demonstrated improved enzyme stability and activity with enhanced control over 

catalysis reaction. 

The specific goals of this PhD. thesis were achieved as follows:  

1. Synthesise different types of superparamagnetic iron oxide (magnetite) nanoparticles  

2. Coating the nanoparticles with silica to produce mesoporous core-shell silica-magnetite 

nanoparticles 

3. Coating the nanoparticles with liposomes to produce magnetoliposomes 

4. Synthesis of thermosensitive polymer 

5. Coating the nanoparticles with polymer to produce magnetic micelles 

6. Development of polymer capped mesoporous silica coated magnetic nanoparticles 

7. Development of liposome capped mesoporous silica coated magnetic nanoparticles 

8. Characterization of the synthesised materials using different techniques to fully 

understand their physicochemical properties 

9. Encapsulation of the drug molecules in the synthesised materials and study the drug 

loading and release profiles 

10. Evaluation of the AC field induced heating profile of the nanoparticles and hyperthermia 

triggered drug release 

11. Evaluation of the biocompatibility and cytotoxicity of the materials using cell lines 
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12. Evaluation of the efficiency of the drug delivery systems using cell lines under normal 

and hyperthermia conditions 

13. Enzyme immobilisation (CRL and PFL) onto the nanoparticle by both chemical 

conjugation via the glutaraldehyde coupling and physical adsorption methods  

14. Employment of the immobilised enzymes in catalysis reaction at different conditions to 

optimise the reaction condition 

15. Investigation of the effects of an AC magnetic field on the catalytic activity of the 

immobilised lipase   

 Nanotechnology and Its Importance 

Nanotechnology is defined as “understanding and control of matter with dimensions of 1 to 100 

nanometres” (Medina et al., 2007). Nanotechnology is a multidisciplinary field which involves 

chemistry, biology, physics, optics, electronics, biomedical and materials sciences (Sabir et al., 

2014). Nanotechnology is rapidly expanding in several directions such as nanodevices and 

nanosystems (Salata, 2004, Murray et al., 2000) with extensive ongoing research to provide 

pioneering solutions in various scientific fields. 

Nanomaterials or nanoparticles exhibit size-dependant physical and chemical properties which 

could differ significantly from fine particles and bulk material (Tsuzuki, 2009, Salata, 2004). The 

size dependant properties of a material could appear continually over a range of size reduction or 

with an abrupt change below a critical size which is the key novelty of nanoscience (Cushen et 

al., 2012). Nanoparticles’ characteristics such as optical properties, fluorescence, electrical 

conductivity, magnetic permeability, and chemical reactivity change as a function of particles size 

(Nano, 2016). In principle, the so-called quantum effects phenomena and other physical effects 

such as extended surface area to volume, control the behaviour and characteristics of the 

nanoparticles (Nano, 2016, Gupta and Gupta, 2005). 

Nanoparticles are of growing interest due to new or enhanced properties such as improved 

chemical reactivity and optical characteristics compared with bulk materials. For example, the 

antibacterial activity of silver nanoparticles, is a function of nanoparticles size e.g. smaller silver 

nuclei, shows higher antibacterial activity (Abou El-Nour et al., 2010). Similarly, zinc oxide 

become transparent at nanoscale and has been utilized in biosensors and cosmetics (Sabir et al., 

2014). Nanoscale gold particles with confined electrons are emerging as promising cancer 

treatment agents and as photothermal agents, contrast agents and radio-sensitizers (Chakraborty 

et al., 2011). The tunability of nanomaterials enables researchers to change, control and tune the 

specific property of the nanoparticles (Nano, 2016). 
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Nanotechnology has advanced to develop engineered nanoparticles as a new class of materials 

with specially tailored properties to be used in various fields (Medina et al., 2007, Gupta and 

Gupta, 2005, Srivastava et al., 2013). Nanoparticles are used in diverse industrial and biomedical 

applications such as use of carbon nanotubes in cars, aircraft and space vehicles manufacturing 

(Gohardani et al., 2014, Kireitseu et al., 2007), use of silver nanoparticles as antibacterial agents 

in food packaging and water treatment (Sanguansri and Augustin, 2006, Cushen et al., 2012, Lv 

et al., 2009), use of copper nanoparticles as conductive inks and pastes for printing numerous 

electronic components (Youngil et al., 2008, Magdassi et al., 2010). A brief summary of the 

diverse applications of nanoparticles is presented in Figure 1-1. 

 

Figure 1-1 Applications of nanoparticles  

Among all types of nanoparticles, magnetic nanoparticles attracted considerable interest due to 

their unique characteristics and have found applications in various industries. In the following, 

after briefly addressing the magnetic phenomena this chapter focuses mainly on developments in 

the synthesis of magnetic nanoparticles, and various strategies for nanoparticle coatings. Finally, 

application of magnetic nanoparticles in nanomedicine and catalysis will be extensively reviewed.  

 Magnetism and Magnetic Nanoparticles  

Magnetism is a physical phenomenon generated by the movement of electrons within atoms. 

Magnetism arise from both electrons orbital angular velocity (ω) related to electrons circulating 

the nucleus and electron spin which is the electrons revolution against its axis. The orbital and the 
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spin movement independently generate a magnetic moment on each electron. The magnetic 

moment of a material is defined as the rotational force experienced by the material placed under 

a magnetic field of unit strength acting perpendicular to its magnetic axis (UCL, 2016). The 

magnetic moment caused by orbital motion is described as: 

𝑀𝑂 = 𝜇0𝐴𝐼     Equation 1-1 

Where 𝐴 is the area circled by an electron, 𝜇0 is permeability in vacuum and 𝐼 is the current 

created by the electron. By inserting 𝐴 = 𝜋𝑟2 and 𝐼 = −
𝑒𝜔

2𝜋
 in Equation 1-1 it could be refined to  

𝑀𝑂 = −
𝜇0𝑒𝜔𝑟2 

2
    Equation 1-2 

Where 𝜔 is the angular velocity, 𝑟 is the radious and 𝑒 is the electron charge. Taking into account 

the quantization of angular momentum presented in Equation 1-3, the angular magnetic moment 

could calculated from  Equation 1-5:  

𝑝 = 𝑚𝜔𝑟2 = 𝑙ℏ    Equation 1-3 

𝑀𝑂 = −
𝜇0𝑒ℏ𝑙 

2𝑚
     Equation 1-4 

𝜇𝐵 =
𝜇0𝑒ℏ

2𝑚
     Equation 1-5 

𝑀𝑂 = −𝜇𝐵𝑙     Equation 1-6 

 

Where 𝑙 is the angular momentum quantum number and ℏ is the Dirac constant equal to Planck 

constant ℎ divided by 2𝜋 and the value can be calculated as 1.054×10−34 (J/s) and 𝜇𝐵 is Bohr 

magneton equal to 9.274×10−24 (Am2). 

The magnetic moment created by electron spin momentum is given using spin angular 

momentum:  

𝑀𝑆 = −
𝜇0𝑒ℏ𝑠 

𝑚
     Equation 1-7 

Therefore the total magnetic moment generated by an electron is  

𝑀 = 𝑀𝑂 + 𝑀𝑆     Equation 1-8 

In most of the elements the total magnetism created by the electrons cancel out, however in 

magnetic materials the magnetic moments of the electrons are aligned, generating an integrated 

magnetic field. When a material is placed in an external magnetic field, it will experience a force 

trying to align its magnetic moments with the external field to create a net magnetic field. 

Magnetic materials can be classified in terms of their magnetic behaviour. A summary of the 

different types of magnetic behaviour is presented in Table 1-1. 
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Table 1-1. A summary of the different types of magnetic behaviour 

Type of Magnetism Characteristics Magnetic moments 

Ferromagnetic 

Atoms hold parallel aligned magnetic 

moments. Molecular field within the material 

is enough to magnetise the material. 

Ferromagnetic materials possess a permanent 

magnetic field.  

Paramagnetic 

Atoms possess randomly angled magnetic 

moments. Under the influence of a magnetic 

field the magnetic moments align to create a 

low magnetisation with similar direction as 

the applied field.  

Antiferromagnetic 

Atoms hold antiparallel aligned magnetic 

moments. The magnetic fields counteract and 

the material behave similar to a paramagnetic 

material. 
 

Ferrimagnetic 

Atoms possess mixed parallel and antiparallel 

aligned magnetic moments. These materials 

behave similar to ferromagnetic materials but 

show lower saturation magnetisations. 
 

Diamagnetic 

Atoms have no net magnetic moment without 

an externally applied field. In the presence of 

externally applied field a magnetisation 

created in opposite direction of the applied 

field  

 

When a ferromagnetic or ferrimagnetic particle size is reduced to a value which is smaller than a 

critical size, it becomes single domain. Single domain magnetic nanoparticles could exercise a 

new type of magnetism called “Superparamagnetism”. This critical size could be calculated from 

Equation 1-9 (Lu et al., 2007a). Superparamagnetic particles are usually smaller than 100nm, 

without external field the net magnetic moment is zero and when the nanoparticle is placed in an 

external field magnetic it reacts similar to a paramagnetic particle. 
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𝑑 =
18√𝐴𝐾

𝜇0𝑀𝑠
2      Equation 1-9 

Where 𝐴 is the exchange stiffness constant (which is typically 10-6 erg/cm in ferromagnetic 

materials (E.Y.Tsymbal, 2016)), 𝐾 Is the magnetic anisotropy of the nanoparticle, and 𝑀𝑠 is 

saturation magnetization of the particles.  

Hysteresis loop shows the magnetisation (M) of different types of magnetisms under the influence 

of a varying external magnetic field (H). A typical hysteresis loop of a ferromagnetic material is 

shown in Figure 1-2. Remanent magnetization or remanence is the remaining magnetization when 

the field is zero, and coercive field or coercivity is the reverse magnetic field required to further 

decrease the magnetization to zero. The area of the hysteresis loop indicates the energy dissipation 

upon reversal of the magnetic field, large hysteresis loop with high remanence is desirable for 

permanent magnets (Nave, 2016). For superparamagnetic materials the hysteresis loop is very 

small with negligible remanence and coercively.  

  

Figure 1-2. Typical hysteresis loop of a ferromagnetic material 

Over the past decade iron oxide magnetic nanoparticles attracted considerable interest due to their 

superparamagnetic properties. Iron oxide is a mineral compound that shows different crystal 

structure and magnetic properties. The commonly used forms of iron oxides includes hematite (α-

Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) (Babay et al., 2015). γ-Fe2O3 and Fe3O4 are 

easily magnetized and have very similar magnetic properties regarding saturation magnetization 

and superparamagnetism (Campos et al., 2015). Hematite possess much lower magnetic 

susceptibility at room temperature. Considering the relevance in this project the synthesis and 

characterization methods for magnetite nanoparticles are reviewed. Superparamagnetic iron oxide 

nanoparticles are candidates for wide range of applications including data storage (Reiss and 

Hutten, 2005, Natalie and Shouheng, 2010), catalysis (Sharifabad et al., 2014, Lu et al., 2004), 

Saturation

Remenance

Coercivity

M (Emu/g)

magnetic field (H)
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nanomedicine (Pankhurst et al., 2009, Frimpong and Hilt, 2010, Banerjee et al., 2010) and 

environmental remediation (Kong et al., 2013, Ravindra Kumar et al., 2015). 

 Synthesis of Magnetite Nanoparticles 

Nanoparticles characteristics such as crystallinity, morphology and polydispersity are greatly 

influenced by the synthesis method and reaction parameters such as reaction temperature, pH, and 

ionic strength of the media. These characteristics have critical influence on electrical, mechanical, 

optical and magnetic properties of the nanoparticles and determine their behaviour in different 

applications (Gupta and Gupta, 2005). 

Considerable research on synthesis and magnetic properties of iron oxides nanoparticles as 

ferrofluids was published during the last decades (Mahmoudi et al., 2011). A widely used well 

established synthesis method was introduced by Sugimoto and Matijević at 1980 (Sugimoto and 

Matijević, 1980). This method produced homogeneous spherical magnetite particles from iron 

salts by using potassium nitrate and potassium hydroxide following a co-precipitation method 

(Sugimoto and Matijević, 1980). Since then several strategies of synthesising magnetite 

nanoparticles have been developed aiming to control the shape, stability, size and polydispersity 

of iron oxide nanoparticles (Stanicki et al., 2015, Campos et al., 2015, Frimpong and Hilt, 2010). 

Some of the most commonly used strategies to synthesise magnetite nanoparticles are summarised 

in Table 1-2. 
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Table 1-2. List of methods commonly used to synthesise magnetite nanoparticles. 

Synthetic 

method 
Synthetic condition references 

Co-

precipitation 

Co-precipitation is a simple and convenient synthesis 

method using aqueous iron salt solutions with addition of a 

base under inert atmosphere at temperature ranging from 

room temperature up to 90ºC. The resulting particles 

reported to be slightly polydisperse. This procedure 

provides high yield. 

(Sen et al., 2006, 

Wu et al., 2007, 

Petcharoen and 

Sirivat, 2012) 

Sonochemical This method uses high-intensity, high energy 

ultrasonication. High energy ultrasonication generates 

acoustic cavitations which produce localised heat with a 

temperature of about 5000K. At this temperature, the 

formation and growth of nuclei occurs with the implosive 

collapse of bubbles. This method produce monodisperse 

nanoparticles in variety of shapes. This method lacks large 

scale production. 

(Vijayakumar et 

al., 2000, Dang et 

al., 2008, Kim et 

al., 2005a) 

Sol-gel 

combined with 

annealing 

Sol-gel method includes multistep complicated procedure, 

followed by annealing under high temperature of 200 to 

400°C. The particles size is controlled by annealing 

temperature. Particles with narrow size distribution could be 

prepared by this method.  

(Xu et al., 2007, 

Hongzhang et al., 

2010) 

Thermal 

decomposition 

Thermal decomposition method is performed under inert 

atmosphere at high temperature of 240 to 320°C. The 

particles size are monodisperse with a very narrow size 

range. The major disadvantage of this method is the 

synthesised nanoparticles are insoluble in water which 

limits the applications of the nanoparticles in biological 

field or necessitate the surface treatment after synthesis.  

(Sun and Zeng, 

2002, Sun et al., 

2003, Park et al., 

2004, Maityt et 

al., 2011) 

Electrochemical 

deposition 

Following this strategy, the anode is oxidised to metal ions 

in the solution followed by further reduction of metal ions 

to metal by the cathode in the presence of stabilisers. The 

particle size is controlled by regulating the electrochemical-

oxidation current density or potential of the system. This 

method lacks large scale synthesis.  

(Cabrera et al., 

2008, Franger et 

al., 2004, Fajaroh 

et al., 2012) 
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Table 1-2. Continued 

Synthetic 

method 
Synthetic condition references 

Microemulsion Microemulsion method uses water droplets as nano-reactors 

in an oil phase in the presence of surfactant molecules. Iron 

precursors reported to be precipitated as iron oxides in water 

phase inside the micelles core. Size of the synthesised 

nanoparticles is controlled by the size of micelles. The main 

disadvantage of this method is low yield. However using bi-

continuous microemulsion method has reported to provide 

high yield.  

(Liu et al., 2004c, 

Zhang et al., 

2008a, Lee et al., 

2005b, Mathew 

and Juang, 2007, 

Gobe et al., 1983, 

Koutzarova et al., 

2006, Chin and 

Yaacob, 2007) 

Hydrothermal Hydrothermal procedure requires an autogenous pressure 

and relatively high temperature of 220ºC. Hydrothermal 

method is based on a general phase transfer followed by a 

separation mechanism taking place at liquid, solid, and 

solution phase interfaces during the synthesis. In this 

method nanoparticles can be prepared in a very narrow size 

distribution.  

(Wang et al., 

2005, Khollam et 

al., 2002, Giri et 

al., 2005, Wang et 

al., 2009, Liang et 

al., 2010, Zheng et 

al., 2006) 

Microwave 

assisted method 

The microwave assisted method offers the advantages of 

rapid volumetric heating, high reaction rate, reduced 

reaction time, and increased product yield. This method 

reported to produce uniform nanoparticles with a narrow 

size distribution at large scale production. 

(Khollam et al., 

2002, Namboodiri 

and Varma, 2001, 

Wang et al., 2007, 

Komarneni, 2003) 

Biomimetic Biomimetic production of magnetic nanoparticles by 

magnetotactic bacteria has been known for a long time. 

Magnetotactic bacteria contain intracellularly produced 

crystals of magnetite (Fe3O4) and/or greigite (Fe3S4). 

Produced nanoparticles are reported to show species-

specific morphology. The mineralization processes are 

regulated to form uniform magnetic nanoparticles. The 

method lacks large scale synthesis of monodisperse 

nanoparticles. 

(Bharde et al., 

2006, Klem et al., 

2005, Matsunaga 

et al., 2004) 

 

Co-precipitation and thermal decomposition methods were used in this project and will be 

discussed further in details. 
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 Co-Precipitation 

Inexpensive reagents and facile method have made coprecipitation the most common synthetic 

route of magnetite nanoparticles. In this method magnetite is synthesised through the 

coprecipitation of a mixture of iron salts in a basic aqueous medium (such as sodium hydroxide 

(NaOH) or ammonium hydroxide (NH4OH)) under inert atmosphere (Lu et al., 2007a, Thanh, 

2012). The size, shape and magnetic saturation of the magnetite prepared by this method is 

controlled by the reaction parameters including the type of iron salts (e.g. chlorides, sulphates, 

nitrates), the Fe2+/Fe3+ ratio, the reaction temperature and the pH of the reaction (Thanh, 2012, Lu 

et al., 2007a). Once the optimum parameters are finalised, the quality of the magnetite 

nanoparticles is fully reproducible. Particles from 5 to 50 nm in diameter can be prepared by this 

method, however the nanoparticles tend to be rather polydispersed (Lu et al., 2007a, Gupta and 

Gupta, 2005). It is established that a short burst of nucleation followed by a slow controlled 

growth is essential to produce nanoparticles of a controlled size and shape (Lu et al., 2007a). 

The alkaline co-precipitation of ferrous and ferric salts for synthesis of iron oxide nanoparticles 

was originally reported by Massart at 1981 (Massart, 1981), in which the addition of base to an 

aqueous solution of ferrous and ferric ions in a 1:2 molar ratio in an oxygen free environment 

produced a black precipitate of spherical magnetite nanoparticles with uniform sizes. In the 

presence of oxygen magnetite can be oxidised further to produce ferric hydroxide, hence it is 

essential to have an oxygen free environment during the synthesis. Significant progress has been 

made in preparing magnetite nanoparticles via co-precipitation method by using organic additives 

such as polyvinyl alcohol as stabilizers and/or reducing agents (Lee et al., 1996). Bee et al. have 

reported the effect of citrate ions on growth of magnetite nanoparticles. They have synthesised 

'Ultrafine' magnetite nanoparticles (diameter in the order of 2nm) by adding trisodium salt of citric 

acid, in an alkaline medium (Bee et al., 1995). Many researches have studied the effects of organic 

anions such as carboxylate on the formation of iron oxides (Ishikawa et al., 1992, Kandori et al., 

1992, Ishikawa et al., 1993). Recent studies indicated oleic acid can effectively stabilize magnetite 

nanoparticles (Cushing et al., 2004, Willis et al., 2005, El-Boubbou et al., 2015). Effects of 

organic ions on the formation of magnetite nanoparticles can be explained by two competing 

mechanisms: chelation and adsorption. Chelation of metal ions can prevent nucleation which lead 

to the formation of larger particles. Alternatively, adsorption of additives on nuclei and growing 

crystals may inhibit the particle growth facilitating the formation of smaller particles (Varanda et 

al., 2011). 

 Thermal Decomposition 

Monodisperse magnetic nanoparticles with small size can be synthesized via thermal 

decomposition of organometallic compounds. Some of the commonly used organometallic 

precursors include iron acetylacetonates (Sun and Zeng, 2002), iron carbonate (Narasimhan et al., 
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2002), and carboxylate (William, 2004). In this method oleic acid, and hexadecylamine are often 

used as stabilizing surfactants resulting in hydrophobic nanoparticles (Sun and Zeng, 2002, Sun 

et al., 2003). The ratios of the starting reagents including organometallic compounds, surfactant, 

and solvent together with the reaction temperature, reaction time and aging period are crucial for 

the precise control of size and morphology (Sun and Zeng, 2002, Sun et al., 2003). 

Preparation of monodisperse Fe3O4 via decomposition of Fe (acac)3 in the presence of 1,2-

hexadecanediol, oleylamine, and oleic acid in phenol ether was reported for the first time by Sun 

and Zeng in 2002. This synthesis method resulted in monodisperse Fe3O4 nanocrystals, with 

variable sizes from 3 to 20 nm (Sun and Zeng, 2002, Sun et al., 2003). In this process the resulting 

magnetite nanoparticles were covered by long chain hydrocarbons which act as barriers that 

restrict the growth of particles and resulted in a well-controlled monodispersed nanoparticles (Sun 

and Zeng, 2002, Sun et al., 2003). Jana et al. have reported a general decomposition approach for 

the synthesis of size- and shape-controlled magnetic oxide nanocrystals based on pyrolysis of 

metal fatty acid salts in non-aqueous solutions (Jana et al., 2004).  

Park et al. later reported the large scale synthesis (gram quantities) of monodisperse nanocrystals 

using inexpensive and non-toxic metal salts using a similar thermal decomposition approach (Park 

et al., 2004). They used iron (III) chloride and sodium oleate to produce an iron oleate complex 

in situ which was later decomposed at high temperatures between 240 and 320 °C in different 

solvents, such as 1-hexadecene, octyl ether, 1-octadecene, 1-eicosene, or trioctylamine. Particles 

size depend on the decomposition temperature and the aging period and were in the range of 5 to 

22 nm (Lu et al., 2007a, Park et al., 2004). 

A major disadvantage of thermal decomposition method is the production of organic solvent 

soluble nanoparticles which limits the application of the nanoparticles in biological field or 

requires further surface treatment after the synthesis. To overcome this problem, synthesis of 

water-soluble magnetite nanoparticles have been reported by different groups (Li et al., 2005, 

Maityt et al., 2011, Hu et al., 2006). Li et al. reported the synthesis of water soluble magnetite 

nanoparticles using FeCl3·6H2O as iron source and 2-pyrrolidone as coordinating solvent, under 

reflux at 245°C (Li et al., 2005). Hu et al. reported a one-pot synthesis process for water-soluble 

magnetite nanoparticles prepared under similar reaction conditions by the addition of α,ω-

dicarboxyl- terminated poly (ethylene glycol) as a surface capping agent (Hu et al., 2006). Maityt 

et al. have reported one step synthesis of water dispersible magnetite nanoparticles by thermal 

decomposition of Fe (acac)3 (Maityt et al., 2011). Similarly Theppaleak et al. have reported 

synthesis of water dispersible magnetite nanoparticles (Fe3O4) by thermal decomposition of 

Fe (acac)3 in the presence of carboxylic acid-terminated poly (ethylene glycol) (mPEG acid), poly 

(vinyl alcohol) and NH2-containing polyether (Theppaleak et al., 2009). More recently, Zhao et 

al. have reported the synthesis of water-soluble magnetite nanoparticles with an average diameter 
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of 9.5 ± 1.7 nm by thermal decomposition of Fe (acac)3 in methoxy poly (ethylene glycol) as 

solvent, reducing agent and modifying agent (Zhao et al., 2012). 

 General Method of Coatings 

There has been significant progress in synthesis of magnetic nanoparticles with different sizes, 

structures and properties. Maintaining the stability of these particles without agglomeration or 

precipitation and protection against oxidation or erosion by acidic or basic species is similarly 

important. Stabilization and protection of the particles are closely linked with each other and they 

are crucial requirements for almost all applications of magnetic nanoparticles. Therefore, it is 

important to develop efficient strategies to improve the chemical stability of magnetic 

nanoparticles. The most investigated strategy is to coat the nanoparticles with a protection layer. 

The coating layer could stabilise the nanoparticles and provide functional groups for the 

conjugation of small molecules and targeting ligands. In case of drug delivery applications the 

coating layer could be designed to limit non-specific cell interactions, reduce the toxicity of the 

bare magnetite nanoparticles and prolong the circulation time. Furthermore, it could add tailored 

drug loading and release behaviours. 

These applied coating strategies can be categorized into two major groups of: organic shells, 

including surfactant and polymers, (Liu et al., 2004a, Hong et al., 2005) or inorganic shells, 

including silica (Kobayashi et al., 2003, Ito et al., 2005, Ding et al., 2012) and precious metals 

(Sobal et al., 2002) (Lu et al., 2007a). Surface modification of nanoparticles is performed either 

during the synthesis process or in a post-synthesis process. The most common materials used for 

in situ surface modification of magnetite nanoparticles are surfactants such as oleic acid, lauric 

acid, alkane sulphonic acids, and alkane phosphonic acids (Mamani et al., 2013). Citric acid has 

been used commercially for the stabilization of iron oxide nanoparticles, such as in the MRI 

contrast agent VSOP-C184 (Boyer et al., 2010). Surfactant mediated syntheses are mostly 

performed in organic solvents such as hexadecane, toluene and n-hexane, the hydrophobic 

hydrocarbon chain of the surfactant forms a shell around nanoparticles rendering the hydrophobic 

nanoparticles. The post-synthesis modification of magnetite nanoparticles, is mostly achieved 

using polymers, silica, liposomes and chitosan (Mahmoudi et al., 2011). Table 1-3 summarises 

examples of materials which have been used to coat magnetite nanoparticles to increase the 

material stability. 
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Table 1-3. A list of materials used for coating magnetite nanoparticles and their applications  

Materials 

used 
Applications Advantages Ref. 

Polylactic acid 

(PLA) 

Drug delivery, MR 

imaging agent, cell 

labelling and magnetic cell 

separation, tissue repair, 

and hyperthermia  

Biodegradable 

biocompatible, and 

hemocompatible 

(Zhao et al., 2009, 

Wang et al., 

2010b) 

Polyvinyl 

alcohol (PVA) 

Drug delivery and imaging 

contrast agent 

Prevent aggregation and 

stabilised nanoparticles 

(Mahmoudi et al., 

2008, Chastellain 

et al., 2004) 

Polyvinyl 

pyrrolidine 

(PVP) 

Drug delivery and MR 

imaging contrast agent 

Enhances the blood 

circulation time and 

stabilises the colloidal 

solution 

(Liu et al., 2007, 

Lee et al., 2005a) 

Polyacrylic 

acid (PAA) 

Target thrombolysis with 

recombinant tissue 

plasminogen activator, 

Targeting drug resistance 

in mycobacteria 

Increases the stability and 

biocompatibility of the 

particles and also helps in 

bio-adhesion 

(Ma et al., 2009, 

Padwal et al., 

2014) 

Polystyrene 
MR cellular imaging and 

DNA hybridisation 
Stabilize nanoparticles  

(Xu et al., 2009a, 

Lellouche et al., 

2005) 

Polymethyl 

methacrylate 

(PMMA) 

DNA separation and 

amplification 

Increases the stability, can 

be applied in automation 

systems to achieve high 

throughput detection of 

single nucleotide 

polymorphisms 

(He et al., 2006, 

Zhang and 

O'Connor, 2007) 

Dextran 

Drug delivery, 

hyperthermia and MR 

imaging contrast agent 

Biocompatible, increase 

stability, and prolong blood 

circulation time  

(Jarrett et al., 

2007, Lacava et 

al., 2001, 

Rodriguez-

Luccioni et al., 

2011, Estevanato 

et al., 2012) 
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Table 1-3. Continued 

Materials 

used 
Applications Advantages Ref. 

Amorphous 

silica 

Isolation and purification 

of DNA from soil samples, 

isolation of ultrapure 

plasmid DNA from 

bacterial cells, extraction 

of phenolic compounds 

from environmental water 

Eliminates the need for the 

repeated centrifugation, 

vacuum filtration or column 

separation 

(Sebastianelli et 

al., 2008, Zhao et 

al., 2008, Chiang 

et al., 2006) 

Mesoporous 

silica 

Controlled drug delivery, 

removal of mercury from 

industrial effluent, support 

for enzyme 

immobilisation for bio-

catalysis, fluorescence 

imaging, DNA extraction 

High surface area with 

uniform pore size, and high 

pore volume 

(Souza et al., 

2009a, Qu and 

Tie, 2009, Sen and 

Bruce, 2009, 

Yang et al., 2009a, 

Kim et al., 2008) 

Polyethylene 

glycol (PEG) 

MR imaging contrast 

agent 

Improves the 

biocompatibility, blood 

circulation time and 

internalization efficiency of 

the nanoparticles 

(Sun et al., 2008, 

Lee et al., 2007) 

Polyethylene 

glycol - 

Polyethylene 

imine (PEG-

PEI) 

DNA extraction, MR 

imaging contrast agent, 

drug delivery, and 

hyperthermia 

Highly soluble and stable in 

water, biocompatible, 

hardly recognized by the 

macrophage system and  

prolong the circulation time  

(Zhao et al., 

2013c, Xie et al., 

2015, Khalkhali et 

al., 2015) 

poly (ɛ-

caprolactone)-

polyethylene 

glycol (PEL-

PEG) 

Drug and gene delivery, 

hyperthermia, MR 

imaging contrast agent 

Highly soluble and stable in 

water, biocompatible, 

hardly recognized by the 

macrophage system and  

prolong the circulation time 

(Khalkhali et al., 

2015) (Cheng et 

al., 2011, Khoee et 

al., 2015) 

Erythrocytes 
MR imaging contrast 

agent, and drug delivery 

Avoids the rapid clearance 

by the reticuloendothelial 

system (RES) and prolong 

blood circulation 

(Antonelli et al., 

2008, Brähler et 

al., 2006) 
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Table 1-3. Continued 

Materials 

used 
Applications Advantages Ref. 

Polysaccharide 
MR imaging agent, drug 

and gene delivery. 

Biocompatible, the 

elimination by white 

corpuscles from liver would 

be avoided. Provides high 

stability and prevent 

agglomeration. 

(Uthaman et al., 

2015, Covaliu et 

al., 2011) 

(Saboktakin et al., 

2009, Kim et al., 

2003) 

Chitosan 

Water treatment and 

extraction of trace 

pollutants from 

environmental water, 

Tissue engineering, 

hyperthermia, agriculture 

and textiles industry  

Biocompatible, increases 

the stability, hydrophilic  

(Juang et al., 

2010) (Bravo-

Osuna et al., 2007, 

Zhang et al., 

2010c, Kalkan et 

al., 2012, Tran et 

al., 2010) (Yu et 

al., 2007) 

Lauric acid 

(LA) 

Cellular tagging and MR 

imaging agents, enzyme 

immobilization in food 

industry 

Biocompatible when use in 

low concentrations, stabilise 

colloidal suspension 

(Zaloga et al., 

2014, Mamani et 

al., 2013) 

Citric acid 

(CA)  

Cellular tagging, magnetic 

hyperthermia 

Increases the stability, and 

biocompatible 

(Răcuciu et al., 

2006, de Sousa et 

al., 2013, 

Cheraghipour et 

al., 2012) 

Liposome 

MR imaging contrast 

agent, drug delivery, and 

hyperthermia 

Increases blood circulating 

time 

(Meincke et al., 

2007, Pradhan et 

al., 2007, Fortin-

Ripoche et al., 

2006) 

Albumin 

Magnetic tagging and 

magnetically targeted 

therapy 

Biocompatible  

(Chunfu et al., 

2004, Berry and 

Curtis, 2003, 

Berry et al., 2003) 

Gelatin 

Genomic DNA extraction 

from bacterial cells, drug 

delivery 

Biocompatible natural 

polymer. Improves the 

efficiency of drug loading.  

(Gaihre et al., 

2009, Intorasoot 

et al., 2009) 
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Stabilisation strategies such as coating materials, coating thickness, hydrophobicity and surface 

charge can influence the characteristics of the magnetite nanoparticles in different ways (Duan et 

al., 2008, LaConte et al., 2007, Mahmoudi et al., 2011). For instance coating magnetite 

nanoparticles with diamagnetic materials results in decreased saturation magnetization (Lopez et 

al., 2010, Veiseh et al., 2010). Lopez et al. have reported a change in saturation magnetization 

from 0.067 emu/cm3 for as-synthesised water based magnetite nanoparticles to 0.335 emu/cm3 

for the oleic acid kerosene based magnetite nanoparticles (Lopez et al., 2010). Voit et al. have 

reported decreased saturation magnetisation for polymer coated magnetite nanoparticles (Voit et 

al., 2001) and Sen and Bruce have observed similar reduction of saturation magnetisation for 

silica coated magnetite nanoparticles (Sen and Bruce, 2009). LaConte et al. reported that the 

coating thickness of magnetite nanoparticles can significantly influence the R2 and R1 relaxivity 

and consequently R2/R1 ratio of the MRI contrast agent. They have used a polyethylene glycol 

(PEG)-modified phospholipid coating, and observed that with an increases in coating thickness, 

the R2 decreases and the R1 increases (LaConte et al., 2007). In another study on magnetic 

nanoparticles with different coating, Duan et al. have shown polymer coatings with higher 

hydrophilicity (PEI versus octadecene coating) yield higher R2 relaxivities. They have suggested 

that these effects are the result of intrinsic surface spin disorders as well as rapid diffusion of 

water molecules between the bulk phase and the adjacent layer surrounding the particle surface 

(Duan et al., 2008, Veiseh et al., 2010). This demonstrates the importance of careful consideration 

in coating materials and the combinatorial effects of the coating on the final properties of the 

nanoparticle system. In the context of this project, in the following sections silica coatings, lipid 

coatings and polymer coatings are deliberated and explored. 

 Silica Coating on Magnetite Nanoparticles and Its Applications 

Silica is one of the most promising and favourable coating material since it is biocompatible, it 

can protect magnetite core against oxidation and agglomeration at wide pH ranges and improves 

the chemical stability (Lu et al., 2007b). Silica is hydrophilic in nature and silica-coated core–

shell nanoparticles are reported to be well dispersed in aqueous suspensions (Mahmoudi et al., 

2011). Furthermore, the surface of silica is often finished with a silanol group, which can react 

with various chemicals and silane coupling agents to conjugate with a variety of biomolecules 

and specific ligands (Sonmez et al., 2015). 

Currently the Stöber method (Stöber et al., 1968, Helmi Rashid Farimani et al., 2013) and 

microemulsion method (Narita et al., 2009, Ding et al., 2012, Lu et al., 2007c), are the most 

commonly used methods of preparing silica coated magnetite nanoparticles in which the former 

is applied to water soluble magnetite nanoparticles and the latter is an excellent alternative 

strategy for silica coating of non-polar solvent-dispersed magnetite (Mahmoudi et al., 2011). 
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Philipse et al. have reported the silica coating of magnetite nanoparticles for the first time at 1994 

by a sol–gel method (Philipse et al., 1994). 

 Stöber Method 

In Stöber method the silica shells are formed via the hydrolysis and polycondensation of silica 

source such as tetraethyl orthosilicate (TEOS) in ethanol solution in the presence of water with 

ammonia as a catalyst (Van Ewijk et al., 1999, Deng et al., 2005, Stöber et al., 1968). As a result 

of the high hydrolysation rate of TEOS, large aggregates and polydisperse product formation is 

inevitable in this method (Sonmez et al., 2015). Many researchers have investigated modifications 

of Stöber method to improve the coating properties of the nanoparticles (Barnakov et al., 2005). 

Deng et al. have reported a systematic study of the silica-coated core-shell magnetic nanoparticles 

formation via sol–gel method. Their results demonstrated that the reaction parameters such as 

alcohol type, volume ratio of alcohol to water, the amount of catalyst and the amount of precursor 

played an important role in the formation of nanoparticles. Furthermore, they have observed that 

the obtained silica-coated magnetite nanoparticles showed superparamagnetic property (Deng et 

al., 2005). 

Sun et al. have described an improved approach for the coating of magnetite nanoparticles to 

obtain stable core-shell colloid. In their method magnetite nanoparticles prepared by co-

precipitation method were first modified with citric acid. The silica coating was controlled by a 

dilute silicate solution pretreatment and subsequent Stöber process directly in ethanol (Sun et al., 

2005). Gao et al. have reported the systematic investigation of the effects of the volume ratio of 

tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and 

magnetic properties of the composite nanoparticles. They have also shown that silica coating of 

magnetite nanoparticles improved the thermal stability of the magnetite nanoparticles (Gao et al., 

2011). Kulkarni et al. reported silica coating of magnetite nanoparticles prepared by co-

precipitation method via modified stöber method their results showed that the silica coating 

prevents magnetic particles from aggregation and imparts excellent stability (Kulkarni et al., 

2014). Sonmez et al. have suggested that silica shells with the thickness from 5 to 200 nm can be 

formed by adjusting the ratio of tetraethoxysilane (TEOS) to water and ammonia concentration 

(Sonmez et al., 2015). 

 Microemulsion Method 

Microemulsion method could be used to coat the nanoparticles with a uniform layers of silica. 

This method contains three main components: water, oil and amphiphilic surfactant. In this 

method, micelles or reverse micelles formed by surfactant surround the nano-droplet shaping 

nano-reactors which controls the deposition of silica layer on magnetite nanoparticles. The 

advantage of the confined nano-reactor environment within the reverse micelle is the highly 

monodisperse yield. The size of the nano-droplets is controlled by the water to surfactant molar 
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ratio and is directly related to the size of the nanoparticles, and therefore it can be tuned in order 

to control the thickness of the silica layer. The reverse microemulsion method could be used to 

produce uniform silica shells as thin as 1 nm (Gupta and Wells, 2004). The advantage of this 

method is the readily controlled particle size by adjusting the molar ratio of water to surfactant, 

aging time, and reactant concentration. However, it is reported that the reverse microemulsion 

synthesis has low yield (Sonmez et al., 2015, Faraji et al., 2010). Furthermore, the use of 

surfactants and toxic organic solvents requires extensive washing before any biological 

applications, to avoid disruption or lyses of biomembranes by the surfactant molecules, rendering 

the process slow, expensive and less eco-friendly (Sonmez et al., 2015, Faraji et al., 2010). 

Santra et al. applied the water-in-oil microemulsion strategy to prepare silica-coated iron oxide 

nanoparticles. They have used three different non-ionic surfactants of Triton X-100, Igepal CO-

520, and Brij-97, and studied the effects of the different surfactants on the particle crystallinity, 

size, and the magnetic properties. They have obtained a uniform silica-magnetite core-shell 

nanoparticles with shell thickness of 1 nm. They have shown that adsorption of surfactant 

molecules on the nanoparticles’ surface varies according to the chemical structure of the 

surfactant. Furthermore they showed the surfactant  with higher hydrophobicity (Brij 97) yields a 

more ordered particle aggregation, which could be due to a strong hydrophobic-hydrophobic 

interaction between oleyl groups of the neighbouring nanoparticles (Santra et al., 2001). Lu et al. 

have reported the synthesis of uniform bifunctional silica –magnetite core-shell nanoparticles 

with (FITC)-incorporated silica shell with the thickness of 20 nm via microemulsion method that 

was used to efficiently label human mesenchymal stem cells (Lu et al., 2007c). Ding et al. have 

reported procedures for silica coating of magnetite nanoparticles by the reverse microemulsion 

method to obtain core-shell nanoparticles with a single magnetic core, controllable shell 

thicknesses, and without formation of core-free silica nanoparticles. Their results indicated that 

silica coating parameters should be selected considering the magnetite size, accordingly 

parameters suitable for certain size magnetite nanoparticles are not completely applicable to 

particles within different size ranges. They also reported that adjusting the amount of magnetite 

nanoparticles with aqueous domain is essential. They have observed that the small aqueous 

domain is suitable to prepare ultrathin silica shell, whereas larger aqueous domain is necessary 

for developing thicker shells. They suggested that formation of core-free silica nanoparticles 

could be avoided by forming thick silica shell via increasing the TEOS content through the 

consistently fractionated drops (Ding et al., 2012).  

 Templating method 

To increase the surface area of silica coated nanoparticles, a number of different techniques have 

been implemented to coat iron oxide nanoparticles with porous silica structures. Silica coatings 

can be either amorphous or mesoporous. Amorphous silica coatings, which are non-porous and 

non-crystalline, were first reported by Philipse et al. in 1994 (Philipse et al., 1994) via the sol-gel 
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method. Amorphous coatings are produced if no templating systems are present in the coating 

process. In 1990 Yanagisawa et al. have reported the first mesoporous silica nanoparticles with 

uniform pore size of 2 to 4 nm and a long-range ordered pore structure using surfactants as 

structure-directing agents. The surface area of the nanoparticles were measured to be 900 m2/g. 

(Yanagisawa et al., 1990, Tang et al., 2012). 

Currently, rapid progress has been achieved in synthesis and application of mesoporous 

nanoparticles in catalysis, adsorption, separation, sensing, and drug delivery. Many synthesis 

approaches have been successfully developed to fabricate mesoporous coated nanoparticles with 

core-shell structures. Some of these methods include, fast self-assembly, soft and hard templating, 

selective etching and modified aerogel approaches (Sonmez et al., 2015, Wu et al., 2013a). 

Among these synthesis strategies surfactants structure-directing methods and surface protected 

etching are used in this project.  

1.7.3.1 Surfactants Structuring Template 

In synthesis of mesoporous silica shell through surfactant templating method, a surfactant with a 

concentration higher than its critical micelle concentration (CMC) is added in the synthesis 

process. The surfactant would self-aggregate forming micelles and the silica precursor condensate 

around the template to generate a silica matrix. Surfactant templates could be removed by thermal 

calcination or solvent extraction resulting in mesoporous structure. The structure such as pore 

size, and pore direction is determined by the surfactant templates (Wu et al., 2013a, Slowing et 

al., 2007a). Numerous mesoporous structures with different pore arrangement and architecture 

have been developed using various types of surfactants (Tang et al., 2012).  

In 2004 Wu et al. synthesized mesoporous magnetic silica nanocomposite for the first time. They 

used cetyltrimethylammonium chloride (CTAC) as a template to form mesoporous structure on 

micrometre-sized magnetite (Fe3O4) particles (Wu et al., 2004). Zhao et al. have synthesised 

uniform mesoporous magnetic nanocomposites spheres with a high surface area silica shell. The 

mesoporous silica layer was formed on a thin dense silica layer deposited on the surface of the 

magnetic particle by simultaneous sol-gel polymerization of tetraethoxysilane (TEOS) and n-

octadecyltrimethoxysilane (C18TMS) followed by removal of the organic group (Zhao et al., 

2005). Deng et al. have synthesised superparamagnetic high-magnetisation microspheres with a 

sandwich structure of a magnetite core, a nonporous silica layer in the middle, and an ordered 

mesoporous silica layer with cylindrical channels as the outer layer. They have used 

cetyltrimethylammonium bromide (CTAB) as template for formation of mesoporous shell (Deng 

et al., 2008). El-toni et al. have reported an optimization method for formation of mesoporous 

silica shell on magnetic nanoparticles for application in drug delivery. They have coated the Fe3O4 

nanoparticles with a dense silica layer followed by co-structure directed mesoporous silica layer. 

They have proposed that co-structure directing agent assist the electrostatic interaction between 
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negatively charged silica layers and the negatively charged surfactant molecules (El-Toni et al., 

2013b). Xue et al. have reported the synthesis of fluorescent mesoporous silica-coated iron oxide 

nanoparticles for magnetic resonance imaging, computed tomography, and fluorescence trimodal 

imaging by using cetyltrimethylammonium bromide (CTAB) as pore templating agent. They have 

prepared mesoporous silica-coated superparamagnetic iron oxide nanoparticles by growing 

fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles directed by a 

CTAB template. Synthesised nanoparticles had a uniform size with 20 nm mesoporous silica 

shell. The mean pore size was reported to be 2.7 nm and the surface area was measured to be 

692.06 m2/g (Xue et al., 2014). 

1.7.3.2 Surface Protected Etching 

Surface protected etching strategy consist of stabilization of the nanoparticle’s surface using a 

protective layer (polymer ligands), and then selective etching of the interior to form hollow/rattle 

type mesoporous structures (Tang et al., 2012). Hollow / Rattle-Type mesoporous silica 

nanoparticles are a new type of mesoporous silica nanoparticles with special morphology. Hollow 

/ rattle-type mesoporous nanoparticles have low density and high specific area, which are ideal as 

new-generation drug delivery systems with high loading capacity and possibility of co-delivery 

of different kinds of drugs. Recently, hollow and rattle-type nanomaterials have been actively 

explored for enzyme immobilization and confined-space catalysis (Lou et al., 2008, Liu et al., 

2011, Chen et al., 2010c). 

Ren et al. have established that alkaline treatment of cationic poly- (dimethyldiallylammonium 

chloride) (PDDA) pre-coated mesoporous silica spheres can form hollow microcapsule silica 

nanoparticles. It was suggested that the hydroxyl ions penetrate through the protecting PDDA 

layer and attack the interior silica sphere to create dissolved silicate oligomers under ammonia. 

The oligomers with negative charge tend to migrate and deposit onto the positively charged 

PDDA layer, which act as the scaffold for the formation of the final shell. Using this method a 

continuous and compact silica-PDDA complex shell is formed (Ren et al., 2005). Similarly, 

Zhang et al. have reported using poly (vinylpyrrolidone) (PVP) as surface protector and found 

that the solid silica sphere can be transferred to hollow / rattle-type structure under the treatment 

of NaBH4 at relatively mild temperature. The mechanism was deduced to be a spontaneous 

dissolution-regrowth process (Zhang et al., 2008d). Same group later reported the conversion of 

sol−gel obtained silica nanoparticles into porous nanoparticles and multi-shell rattle structures 

using PVP protection layer followed by NaOH etching (Zhang et al., 2008c). Zhang et al. have 

reported using surface protected etching to form of SiO2@SiO2 core shell rattle type structures. 

They have used a PVP protecting layer on the surface of both core and shell in order to increase 

their relative stability against chemical etching. Upon reacting with etchant (NaOH), the silica 

between the two layers are removed, as a result the outer layer becomes a hollow shell since it is 
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protected by PVP. The core also maintains its original size due to the PVP protection layer on its 

surface. They have carried out the process at room temperature without additional templates 

(Zhang et al., 2010a). 

 Mesoporous Silica Coated Magnetite Nanoparticles for Drug Delivery 

Mesoporous silica nanoparticles are promising candidate for drug delivery which can overcome 

the challenges in chemotherapy in a controllable and sustainable manner. They have the following 

advantages: 

 Biocompatibility  

 Large surface area and pore volume which offers pronounced potential for drug 

adsorption within the meso-channels 

 Adjustable pore structure which allow control over drug loading and release kinetics 

 Easily functionalised and modified surface which offers controlled and targeted drug 

delivery which in turn improves the drug therapeutic efficacy and reduces toxicity 

 In combinations with magnetic nanoparticles allow simultaneous drug delivery and 

diagnostic imaging (Wang et al., 2015). 

Table 1-4 highlight some of the recently developed mesoporous silica based drug delivery 

systems. 

The major drawback related to mesoporous silica nanoparticles is related to the high surface 

density of silanol groups interacting with the red blood cell membrane’s phospholipid leading to 

hemolysis. Another disadvantage is related to metabolic changes induced by porous silica 

nanoparticles (Bharti et al., 2015, Wang et al., 2015). These negative aspects of mesoporous silica 

nanoparticles could be avoided by surface modifications of nanoparticles such as lipid or polymer 

coatings.  

In this project, mesoporous silica nanoparticles prepared by both template based strategy using 

CTAB as a template and protected surface etching strategy with PVP as a protecting agent. The 

nanoparticles were tested for drug delivery systems using Mitomycin C and Doxorubicin as model 

drugs. The detailed synthesis method is explained in Section 2.4. 
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 Liposome Coated Magnetite Nanoparticles: Magnetoliposomes 

Incorporating liposomes with magnetic nanoparticles is an attractive approach to create 

multifunctional vesicles for a wide range of medical applications from drug delivery to diagnostic 

imaging agents. Liposomes are spherical vesicles formed by lipid bilayer membrane composed 

of natural or synthetic amphiphilic lipid molecules (Zhang and Granick, 2006, Torchilin, 2005a). 

Liposomes have been studied as pharmaceutical carriers for many years due to their unique 

properties to form different formulations with the required size and surface charge to encapsulated 

both hydrophilic and hydrophobic therapeutic agents. Liposomes can also protect the 

encapsulated “cargo” i.e. drug molecules from external conditions. Furthermore liposomes can 

be functionalised with targeting ligands or be coated with biocompatible polymers such as 

polyethylene glycol (PEG) to prolong their in vivo blood circulation half-life (Torchilin, 2005b, 

Moghimi and Szebeni, 2003). Liposomes were the first nanocarriers which succeeded in 

translating from bench to bedside with Doxil being first liposomal drug formulation approved by 

the Food and Drug Administration, USA (FDA) in 1995 for treatment of AIDS associated with 

Kaposi’s sarcoma (Zhang et al., 2008b, Monnier et al., 2014, Northfelt et al., 1998). 

In 1988 De Cuyper and Joniau introduced the magnetoliposomes by adsorption of different types 

of phosphatidylglycerols onto superparamagnetic magnetite nanoparticles. Magnetoliposomes 

were formed by sonication of phospholipid vesicles in the presence magnetite nanoparticles. The 

inner phospholipids monolayer is adsorbed on the magnetite nanoparticles with their charged 

headgroup orientated towards the iron oxide surface (Cuyper and Joniau). Since the introduction 

of magnetoliposomes, it has attracted significant attention in nanomedicine due to the 

combination of the properties of liposomes and the magnetic nanoparticles therefore a significant 

progress have been made in their development. 

The two common strategies to combine the magnetic nanoparticles with liposomes are either to 

encapsulate the magnetic nanoparticles directly within the liposome lumen (Beaune et al., 2008, 

Cintra et al., 2009a, Bothun and Preiss, 2011) or to embed them in between the lipid bilayer (Chen 

et al., 2010b, Amstad et al., 2011, Bonnaud et al., 2014, Monnier et al., 2014). The factors which 

could influence the formation of magnetoliposomes and affect lipid-nanoparticle interactions 

include the surface coating of the magnetite nanoparticles, the size of the nanoparticles, and the 

type of lipids. For instance the nanoparticles surface chemistry determine location of the 

nanoparticles within the liposome and changing the composition of the lipid bilayer by adding 

cholesterol, is shown to reduce the leakage of drug molecules from the liposomes by “tightening” 

the bilayer (Allen and Cullis, 2013).  

Most of the research on magnetoliposomes are concentrated in their utility as MRI contrast agents 

(Martina et al., 2005, Fortin-Ripoche et al., 2006, Garnier et al., 2012) and in controlling the 

release of an encapsulated drug. One approach to design the controlled drug release is to choose 
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thermosensitive lipid bilayer which could undergo a phase transition from an impermeable gel 

state to a permeable state by reaching a defined temperature. Since the magnetite nanoparticles 

could generate heat upon exposure to an Alternative Current (AC) magnetic field, they could 

produce thermal energy to alter the membrane resulting in releasing the encapsulated drug (Ta 

and Porter, 2013). Recently Clares et al. have developed 5-fluorouracil loaded magnetoliposomes 

using a reproducible thin film hydration technique. The magnetoliposomes consisted of 

superparamagnetic magnetite nanoparticles embedded into a phosphatidylcholine (PC)-based 

multilamellar vesicle and loaded with 5-FU. They have reported a high drug loading values and 

sustained release profile. In the presence of an AC magnetic field the magnetoliposomes showed 

effective heating profiles and a hyperthermia-triggered burst drug release (Clares et al., 2013). 

Table 1-5 lists some of the recent magnetoliposome formulations. 

Soybean phospholipids (SPC) with cholesterol have been used to prepare the liposome 

formulations in this project. It is well established that using SPC instead of the traditionally used 

phospholipids (such as dioleoyl phosphatidylethanolamine (DOPE) or dipalmitoyl 

phosphatidylcholine (DPPC)) results in a much lower cost and a better serum stability (Wu et al., 

2013b). SPC-liposomes have also shown to modulate membrane damage in hepatocellular 

carcinoma, induced by a chemotherapeutic drugs (Yang et al., 2009b). SPC structure is shown in 

Figure 1-3. 

 

 

Figure 1-3. structural formula and (b) space –filling model of Soy PC (Avati polar lipids, 2016) 
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SPC lipids were also used to cap the mesopores of the silica coated magnetite core-shell 

nanoparticles to prevent the premature drug release. Figure 1-4 shows the schematic of the 

magneto liposomes and liposome capped silica nanoparticles. As explained before mesoporous 

silica nanoparticles show great potential for drug delivery systems due to their high surface area 

however, premature drug leakage from uncapped pores is a major disadvantage for these drug 

delivery systems. Therefore, to realise the great potential of mesoporous silica based drug delivery 

systems, the pores were capped with lipid bilayers which also increase the stability and 

biocompatibility of the mesoporous silica nanoparticles. 

 

Figure 1-4.  (a) magnetoliposomes, and (b) Liposome capped Mesoporous silica coated magnetite  

Porous nanoparticle-supported lipid bilayers (protocells) synergistically combine properties of 

liposomes and porous particles and can be loaded with combinations of chemotherapeutic agents. 

High-surface-area of the mesoporous core combined with liposome shell enhance the efficiency 

of the nanoparticles with improving the drug loading capacities compare to same size liposomes 

(Ashley et al., 2011b) and enhance the control over the drug release profile (Klyachko et al., 

2012). 

 Polymer Coated Magnetite Nanoparticles: Magnetomicelles  

The most common ways to coat iron oxide nanoparticles with polymers include, grafting 

polymers to iron oxide nanoparticles via the polymer end group, and micelle formation using an 

amphiphilic polymer. Polymeric micelles consist of amphiphilic block copolymers with certain 

hydrophobic and hydrophilic parts which self-assemble into core-shell structures in aqueous 

solution. Polymeric micelles are continued to be widely explored as drug carriers (Chang et al., 

2009). Utilizing micelle formation approach for coating polymers on magnetite nanoparticles 

(magnetomicelles), multiple hydrophobic iron oxide nanoparticles are stabilised in the micelle 

core due to hydrophobic interactions and the hydrophilic segment of the polymer make the 

nanocomposite soluble and stable in water (Barrow et al., 2015). The control of polymer 

Magnetite nanoparticle 

Phospholipid 

 (a)  (b) 
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architecture is an essential aspect affecting polymer aggregation, micelles formation and micelle 

size. Concerning di- and multi-block polymers, the functional block is usually kept rather short 

(several units) to prevent flocculation and adding several attachment points on a single chain can 

reduce the packing density (Boyer et al., 2010). 

Magnetic polymer micelles have been explored to be used in different areas of nanomedicine such 

as multimodal imaging agents, targeting agents, delivery and triggered release of therapeutic 

agents such as peptides, proteins and DNA / RNA (Boyer et al., 2010, Torchilin, 2000, Lim et al., 

2006, Hong et al., 2008b, Cuong et al., 2012). Some examples of polymer coated iron oxide 

nanoparticles which are already used in medicine includes INFeD (Watson Pharmaceuticals), 

Dexferrum (Luitpold Pharmaceuticals) which are dextran coated iron oxide and Feraheme (a.k.a. 

ferumoxytol, AMAG pharmaceuticals) which is superparamagnetic iron oxide nanoparticles and 

have been used as injectable material to treat iron anemia (Chen, 2010).  

Temperature-sensitive polymers have been widely used in drug delivery systems to release drugs 

in response to a changes in the surrounding temperature (Glover et al., 2012, Silva et al., 2011, 

Brazel, 2009, Brazel, 2008). Similar to thermosensitive magnetoliposomes, temperature-sensitive 

polymers combined with superparamagnetic iron oxide nanoparticles can be designed to release 

the encapsulated cargo in the presence of alternating magnetic field and in response to the heat 

generated by the magnetic nanoparticles (Brazel, 2008). Sundaresan et al. have developed dual-

responsive poly (N-isopropylacrylamide-acrylamide-chitosan) (PAC)-coated magnetic 

nanoparticles for controlled and targeted drug delivery and imaging applications. The PAC-MNPs 

showed dual-responsive drug release characteristics with the maximum release of drugs at 40 °C. 

They have conjugated prostate cancer-specific R11 peptides into the polymer shell which 

increased the uptake of PAC-MNPs by prostate cancer PC3 cells (Sundaresan et al., 2014). In 

another study Wadajkar et al. have developed Thermo-responsive poly (N-isopropylacrylamide-

acrylamide-allylamine)-coated magnetic nanoparticles (PMNPs) conjugated with prostate cancer-

specific R11 peptides for active targeting and imaging of prostate cancer. Their results indicated 

that R11-PMNPs decreased the magnetic resonance T2 signal intensity by 30% in tumours 

(Wadajkar et al., 2013). Ai et al. have developed poly (ɛ-caprolactone)-b-poly (ethylene glycol) 

coated magnetic nanoparticles as magnetic resonance imaging agents with remarkably high T2 

relaxivity (Ai et al., 2005b). Change et al. reported the synthesis of 4 nm magnetite nanoparticles 

coated with amphiphilic block copolymers of poly (ethyl methacrylate)-b-poly (2-hydroxyethyl 

methacrylate) (PEMAb-PHEMA) for potential carriers of hydrophobic targeted drug delivery. 

The results showed that the amount of drug loaded into the core-shell Fe3O4@PEMA-b-PHEMA 

depends on the length of hydrophobic segment of block copolymer (Chang et al., 2009). Some 

examples of application of magnetic micelles for drug delivery and hyperthermia are listed in 

Table 1-6.  
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In this project thermosensitive PEG-PCL diblock copolymer was used for drug delivery systems 

with heat triggered drug release and applications in hyperthermia. PCL is biodegradable 

biocompatible polymer (Salgado et al., 2012) and Poly (ethylene glycol) (PEG) is nontoxic and 

FDA approved for internal use in the human body (Zhou et al., 2003). It is well established in the 

literature that surface modification of nanoparticles with polyethylene glycol (PEG), increases 

blood circulation times by reducing interactions with serum proteins and mitigating uptake by 

phagocytic cells (Ashley et al., 2011b). 

The magnetic micelles were created by self-assembling of PEG-PCL polymer around the 

hydrophobic magnetite nanoparticles. The polymer was synthesised by the ring opening of ɛ-

caprolactone and polymerization from the alcohol terminus of poly (ethylene glycol) 

monomethylether as shown in Scheme 1-1. In aqueous media, the PCL hydrophobic block forms 

the micelle core and the PEG hydrophilic block forms a shell that disperses the micelles. The 

micelle cores were loaded with oleic acid modified hydrophobic magnetite nanoparticles and anti-

cancer drug Doxorubicin.  

Since melting point for PCL is in the range of 40°C - 45°C (hyperthermia treatment range), heat 

generated by the magnetite core under the influence of an AC magnetic field leads to PCL melting. 

Unlike an lower critical solution temperature (LCST) polymer which release the drug following 

a discontinues phase change, in case of PEG-PCL micelles, melting the core of the polymeric 

micelle was used to release the drug by increased diffusivity of the drug (Glover et al., 2013, 

Glover et al., 2012) 

Poly(ethylene glycol) methyl ether -Caprolactone

+

m

n



n m
 

Scheme 1-1. Synthetic scheme of PEG-PCL 

Similar to liposomes, in this project polymers were also used to cap the mesopores of the silica 

coated nanoparticles. Figure 1-5 illustrates the schematic diagram of the polymeric micelles with 

magnetite nanoparticles and silica coated magnetite nanoparticles as core structures. To cap the 

silica nanoparticles with polymers the surface of the silica nanoparticles were modified to become 
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hydrophobic and then polymeric micelles were formed around the silica nanoparticles as core 

material. 

 

Figure 1-5.  (a) PEG-PCL magnetic micelles, (b) PEG-PCL capped mesoporous silica coated magnetite, and (c) PEG-
PCL capped mesoporous silica coated magnetite  

 

 Applications of Superparamagnetic Iron Oxide Nanoparticles 

(SPIONs) in Nanomedicine 

Magnetic nanoparticles have shown great potential in nanomedicine. Current developments in the 

synthesis process of magnetic nanoparticles make it possible to develop nanoparticles with 

controllable size and biocompatible coatings which in turn make it feasible for the magnetic 

nanoparticles to interact with biological entities. Furthermore, the magnetic properties of these 

particles make it possible to manipulate them by means of an external magnetic field. These 

properties with the intrinsic permeability of magnetic fields into human tissue makes these 

nanomaterial ideal for a wide range of biomedical applications involving the transport or 

immobilization of magnetic nanoparticles or magnetically tagged biological units including 

delivery systems for therapeutic agents (Pankhurst et al., 2003a, McBain et al., 2008). Targeting 

allows localized delivery of the therapeutic agents, resulting in reduced required dosage, and 

consequently to less toxic side effects. These therapeutic agents either consist of therapeutic drug 

encapsulated nanoparticles or nanoparticles with therapeutic effects themselves. Typically these 

effects are toxic to healthy tissue as well, which make it essential to optimize the therapeutic 

window with low enough toxicity to result in minimal damage to surrounding tissue, yet toxic 

enough to eradicate the intended target. These parameters should be considered when designing 

a therapeutic iron oxide nanoparticle. 

Magnetite nanoparticle 

PEG-PCL diblock copolymer 

 (a)  (c)  (b) 
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Superparamagnetic iron oxide nanoparticles themselves can act as therapeutic agents considering 

their hyperthermic qualities to kill cells. Magnetic nanoparticles respond to alternating magnetic 

fields resulting in energy generation and heating of the nanoparticles. Since many types of cancer 

cells are more sensitive to high temperatures than normal cells it is possible for magnetic 

nanoparticles to be used as hyperthermia agents for killing malignant cells while having no effect 

on the surrounding healthy tissue (Pankhurst et al., 2003b). Furthermore, iron oxide nanoparticles 

could be used as imaging agents. Iron oxide nanoparticles could effectively lower the T2 contrast 

signal of MR imaging and have been used as MRI contrasting agents (LaConte et al., 2007). 

Additionally, with appropriate coating and incorporating functional ligands, such as fluorophores 

or radioactive ions they can also be used for fluorescent imaging and PET imaging (Chen, 2010). 

Some examples of FDA approved commercialised iron oxide nanocomposites in nanomedicine 

are listed in Table 1-7. 

 Magnetic Drug Targeting (MDT) 

The main disadvantage of most chemotherapeutic drugs is the nonspecificity in drug action which 

means the intravenously administered drug reach systemic distribution which results in harmful 

side effects such as bone marrow depression and reduced immunity, as the drug affects healthy 

cells as well as the targeted malignant cells. The use of magnetic carries to target specific site of 

the body was first proposed by Freeman et al. in 1960s (Freeman et al., 1960). The main objectives 

of the magnetic drug delivery system is to target the specific site and therefore reduce the systemic 

distribution and also reducing the required dosage of the toxic drug thus subsequently reducing 

the unwanted side effects (Pankhurst et al., 2003a, Wahajuddin and Arora, 2012). Over the last 

few decades, much research has been done on developing and optimizing magnetic drug delivery 

systems with improved magnetic properties, increased nanoparticles concentration in targeted 

tissue and reduced early detection and clearance from blood (Mahmoudi et al., 2011, Gupta and 

Gupta, 2005). 

Magnetically targeting drug delivery system consist of a drug attached to biocompatible magnetic 

nanoparticles which could be inhaled or injected intravenously and be guided to concentrate at 

the target site through an external high gradient magnetic field. Schematic representation of 

magnetic targeted drug delivery system is shown in Figure 1-6. 
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Figure 1-6. Schematic representation of magnetic nanoparticle-based drug delivery system(Park et al., 2010). 

The physical concepts of magnetic targeting therapy are based on the magnetic force exercised 

by a magnetic nanoparticle under influence of a magnetic field gradient. The efficient magnetic 

targeting depends upon a number of physical parameters including the field strength, depth of the 

targeted tissue, magnetic moment of the nanoparticles, size and shape of the nanoparticles, blood 

flow rate, and ferrofluid concentration and viscosity (Sensenig et al., 2012, Chertok et al., 2010).  

A number of magnetic targeting studies on small animals have already been reported (Alexiou et 

al., 2003, Nobuto et al., 2004, Chertok et al., 2010, Estelrich et al., 2015, Mody et al., 2014). 

Alexiou et al. have reported the treatment of squamous cell carcinoma in rabbits with 

mitoxantrone (MTX) bound to phosphate groups of magnetic particles coated with starch 

derivatives (FF-MTX). The FF-MTX was injected either via femoral artery or ear vein, while an 

external magnetic field was focused on the tumour. No negative side effects were observed and 

the intra artery FF-MTX administration produced a significant (p < 0.05), complete and 

permanent remission of the squamous cell carcinoma in comparison with both the control group 

and the intravenously administered group. The accumulation of magnetic particles in the tumour 

site were visualized both histologically and by magnetic resonance imaging (Alexiou et al., 2000). 

The same group reported another study in 2006 which further confirmed the efficiency of the 

magnetic targeting to concentrate the drug bounded to magnetic nanoparticles in peritumoral 

region and inside the tumour (Jurgons et al., 2006). Yanai et al. have demonstrated the feasibility 

of magnetic targeting in neurological tissue, by targeting stem cells magnetically to the upper 

hemisphere of the rodent retina. Rat mesenchymal stem cells magnetized by superparamagnetic 

iron oxide nanoparticles were injected via the tail vein of the rat model with a disc magnet placed 

outside the eye. Their results demonstrated that cells were localized to the inner retina in a tightly 

confined area corresponding to the position of the orbital magnet and stem cells retained their 

differentiation capabilities (Yanai et al., 2012).  

Tietze et al. have reported a study comparing the in vivo distribution of free and magnetic 

nanoparticles bounded mitoxantrone (MTX). It was shown that while using magnetic targeting, 

57.2% of the drug was accumulated in tumour region compared to only 0.7% for systemic 
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intravenous administration (Tietze et al., 2013). These studies showed the advantage of 

magnetically targeted chemotherapy over the conventional chemotherapy (Estelrich et al., 2015). 

However, due to the technical challenges such as weakening of magnetic field with the distance 

and depth of the target only few clinical trials have been reported and research is ongoing to 

optimise and overcome the problems. 

The first Phase I clinical trial of magnetic drug targeting was conducted in 1996 with 14 

unsuccessfully pre-treated cancer patients. In this study epirubicin chemically bound to 100 nm 

biocompatible starch coated iron oxide particles were used. This trial indicated that for half of the 

patients the drug was successfully guided to the target site using external magnetic field (Lubbe 

et al., 1996). Similar study was conducted in 2004 with 11 patients and the magnetic targeting 

was monitored with magnetic resonance imaging (MRI) which proved suitable to assess the 

success of the MDT. The study showed that about half of the particles were successfully guided 

and concentrated at the target site (Lemke et al., 2004). Figure 1-7 shows a magnetic targeted 

drug delivery system. 

 

Figure 1-7.  Epidoxorubicin chemically attached to magnetic nanoparticles were administered to cancer patients, a 
permanent magnetic was placed in the way to assure the distance less than 0.5 cm from the tumour 
surface. The magnetic field of (0.5-0.8T) was reached (Shapiro et al., 2015). 

In another study conducted in 2001-2002 Wilson et al. reported the use of metallic iron-activated 

carbon–doxorubicin (MTC-DOX) for treatment of inoperable hepatocellular carcinoma. Selective 

catheterization of hepatic artery was used to further optimize the delivery to the tumour and 

minimize delivery to normal tissue. MTC-DOX magnetic delivery to the hepatic artery was 

monitored by using MR imaging. The treated tumour section reported to be 0.64% to 0.91% of 

the tumour volume (Wilson et al., 2004).  

Despite the fact that magnetic drug targeting procedure appears safe and feasible, improvements 

are essential to make it more effective. Currently the magnetic drug targeting is limited and have 

not yet passed regulatory approval for clinical use (Shapiro et al., 2015).  

 Magnetic Fluid Hyperthermia (MFH) 

The National Cancer Institute of United States of America defines hyperthermia therapy as “A 

type of treatment in which body tissue is exposed to high temperatures to damage and kill cancer 
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cells or to make cancer cells more sensitive to the effects of radiation and certain anticancer drugs” 

(Bañobre-López et al., 2013). Hyperthermia therapy is commonly considered in two different 

temperature ranges, temperature rise between (41-46°C) which alters the intercellular structures 

and leads to cellular degradation and induce apoptosis (Deatsch and Evans, 2014). This type of 

hyperthermia is used in combination with chemotherapy or radiation (Overgaard et al., 2009). 

Hyperthermia with temperature rise above 46°C or thermoablation results in direct cell death by 

tissue necrosis or carbonization (Kumar and Mohammad, 2011, Deatsch and Evans, 2014). 

Different tactics have been exploited to induce hyperthermia in cancerous tissue, such as laser, 

ionizing radiation, ultrasound and microwaves. Although these methods were able to raise the 

tissue temperature to hyperthermia treatment temperature, they were not able target heat 

specifically to cancer site and resulted in generating harmful side effects in the healthy tissues 

(Bañobre-López et al., 2013). This challenges encouraged the use of magnetic nanoparticles to 

induce hyperthermia. 

Magnetically induce hyperthermia is based on the concept that placing a magnetic particle under 

influence of an alternating magnetic field (AMF) with sufficient field strength and frequency 

induce heating in the particles which subsequently raise the surrounding tissue temperature. The 

frequency of the field used in magnetic hyperthermia is between 100 kHz and 1 MHz (Bañobre-

López et al., 2013) and Magnetite (Fe3O4) nanoparticles are the preferable heating source for 

magnetic hyperthermia (Motoyama et al., 2008b). The heat induced in magnetic particles is 

generated due to energy losses, namely Eddy current loss, hysteresis loss, Brownian rotational 

and Neel’s loss. The Eddy current loss is associated with currents generated due to material being 

exposed to an alternating magnetic field and is calculated from Equation 1-10. 

𝑃𝐸𝑑𝑑𝑦 =
 (𝜋𝑑𝑓𝐵)2

6𝑘𝜌𝐷
    Equation 1-10 

Where 𝜌 (Ωm) is resistivity of the material,  𝑓 (Hz) is the field frequency, 𝐵 (T) is the magnetic 

field, 𝑑 is the dimeter of the particle, and 𝐷 (kg/m3) is the density of the material. As observed 

from the equation since the particles size is in the range of nanometre and frequencies are low for 

generation of Eddy current, the Eddy current loss is negligible (Pankhurst et al., 2003c). 

Furthermore, nanoparticles are mostly coated with biocompatible shells (e.g. polymers and lipids) 

which eliminate the setting up of current loops due to isolation or insulation. 

Hysteresis loss is the energy loss associated with shifting domains in multi-domain magnetic 

particles and reversing the magnetization of the material. The hysteresis loss is calculated from 

the area enclosed by the hysteresis loop (Figure 1-2) (Motoyama et al., 2008a, Mornet et al., 

2004). 



43 

𝑃𝐻 = 𝜇0𝑓 ∮ 𝐻. 𝑑𝑀    Equation 1-11 

Where 𝐻 is the applied field, 𝜇0 is the permeability of the free space and 𝑓 is the frequency of the 

applied field. Since both coercivity and remanence are negligible for superparamagnetic 

nanoparticles the hysteresis loss is insignificant and the heating is mostly the result of Neel and 

Brownian relaxations.  

Relaxation losses are caused by the gradual alignment of the magnetic moments during the 

magnetization process in an AC magnetic field. The relaxation process of a ferrofluid may take 

place through two distinct mechanisms. Brownian motion of the magnetic nanoparticles consists 

of rotation of the single domain nanoparticle, itself in a fluid, resulting in friction and 

consequently, heating of the particles. The so-called Néel relaxation corresponds to reorientation 

of magnetization vector within the particle in order to stay aligned with the changing field 

direction. These two power losses are functions of the particle size. Ferrofluid can exhibit both of 

these mechanisms, each having the proper weight (Zhang et al., 2007, Behdadfar et al., 2012, 

Wang and Liu, 2011, Blanco-Mantecón and O’Grady, 2006). 

The power loss corresponding to Néel and Brown relaxation can be calculated from Equation 

1-12.  

𝑃 =
 (𝑚𝐻𝜔𝜏)2

2𝜏𝑘𝑇𝜌𝑉 (1+𝜔2𝜏2)
    Equation 1-12 

Where 𝑚 is the particle’s magnetic moment,  𝜏 is the magnetic relaxation time, 𝜔 is the 

measurement angular frequency, 𝜌 the density of magnetic nanoparticles, 𝐻 is the field intensity 

amplitude, 𝑘 is the Boltzmann's constant, and 𝑉 is the particle volume. It can be seen that 

temperature rise in the nanoparticles depends largely on the particles size, and magnetic saturation 

as well as the magnetic field frequency and amplitude. 

The concept of magnetically induced hyperthermia for cancer treatment was first proposed by 

Gilchrist et al. at 1957. They established that lymph nodes could be heated to kill lymphatic 

metastases using an external magnetic field after the administration of magnetic particles. Fe2O3 

particles were used in these experiments which generated a temperature rise of 14°C using 5 mg 

of Fe2O3 per gram of tissue while exposed to magnetic field 200-240 Oe (16-19.2 kA/m) 

(Gilchrist et al., 1957). In 1979, Gordon et al. reported inducing intracellular hyperthermia, by 

administering submicron magnetite nanoparticles intravenously to Sprague Dawley rats. They 

reported successful magnetic field induced heating and destruction of the tumours occurred in 

their in vivo experiments (Gordon et al., 1979). 

Currently some research studies on magnetic nanoparticles based hyperthermia have entered 

animal experiments and clinical trials (Jordan et al., 2006, Kawai et al., 2006, Luo et al., 2014, 

Motoyama et al., 2008b). Johannsen et al. have reported the first clinical experiment of magnetic 

hyperthermia using magnetic nanoparticles. Hyperthermia sessions of 60 minutes were performed 
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once a week for 6 week on 67 year old patient with recurrent prostate cancer. Nanoparticle 

suspensions were injected transperineally into the prostate under transrectal ultrasound and 

fluoroscopy guidance. Computerized tomography (CT) of the prostate was used to plan the 

treatment, invasive thermometry of the prostate was implemented in the first and last 

hyperthermia treatment and additional CT-scans were carried out after first and last treatment to 

investigate the magnetic nanoparticles distribution in the prostate and monitor the location of the 

temperature control probes. The magnetic field was delivered using first magnetic field applicator 

for use in humans (MFH300F, MagForce® Nanotechnologies GmbH, Berlin). The magnetic field 

frequency was 100 kHz with variable field strength of up to 18 kA/m however it was kept less 

than 5 kA/m during treatment. Figure 1-8 shows the magnetic field applicator. The results of this 

study indicated that hyperthermia treatment using magnetic nanoparticles was feasible and well 

tolerated. A single intratumoural application of nanoparticles was required since particles 

remained in the prostate during the 6 weeks treatment period, allowing repeated hyperthermia 

treatments without the need for further application of magnetic fluid. The maximum and 

minimum intraprostatic temperatures measured were 48.5°C and 40.0°C during the first treatment 

and 42.5°C and 39.4°C during the sixth treatment, respectively (Johannsen et al., 2005b). These 

results encouraged the phase I clinical trial with 10 patients suffering from recurrence prostate 

cancer to investigate the feasibility, toxicity of magnetic induction hyperthermia. Same 

hyperthermia treatment with intraprostetic injection of nanoparticles were used and the maximum 

temperature of up to 55°C was achieved in the prostates. Prostate specific antigen (PSA) 

decreased in eight patients after treatment. No systemic toxicity was observed for 17.5 months of 

the median follow-up and indication. The results indicated that magnetic fluid hyperthermia of 

recurring prostate cancer is feasible and well tolerated and would not cause significant side effects 

(Johannsen et al., 2007). 

 

Figure 1-8. AC magnetic field applicator (MFH300F, MagForce® Nanotechnologies GmbH, Berlin). For cooling 
purposes, a closed loop of tubes with circulating cold water, is placed around the patient’s inner thigh, 
perineum and the groin (Johannsen et al., 2005b). 
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Wust et al. have performed magnetic fluid hyperthermia treatment on 22 patients suffering from 

recurring tumour entities to evaluate the feasibility and efficacy of MFH in combination with 

irradiation and / or chemotherapy. Magnetic nanoparticles were implanted with three different 

methods of infiltration under CT fluoroscopy, transrectal ultrasound guided implantation with X-

ray fluoroscopy and operative infiltration with visual control. The temperature distribution in the 

tumour region is calculated based on direct temperature measurements. Magnetic field with 

strengths of 3.0-6.0 kA/m, >10.0 kA/m and 7.5 kA/m were used in the pelvis, head, and neck 

region, respectively. They have reported that the treatments were well tolerated without 

significant side effects. However they have reflected that improvement in temperature distribution 

is required (Wust et al., 2006). Maier-Hauff et al. used magnetic hyperthermia treatment in 

combination with radiation therapy on 14 patients with recurring glioblastoma multiforme. The 

patient received 3D image guided intratumoral injection of magnetic nanoparticles planned in 

advanced using MRI. The nanoparticles distribution after injection was studied using CT-scans, 

and the data compared to pre-operative MRI data were used to calculate the expected heat 

distribution and the required magnetic field strength. Magnetic field with strength of 2.5–18 kA/m 

and frequency of 100 kHz was used to induce particles heating. The results indicated that median 

maximum temperature of 44.6°C (42.4°C-49.5°C) was reached in the tumour and the treatment 

was well tolerated by patients, and minor or no side effects were observed (Maier-Hauff et al., 

2007). Although there are still some challenges to overcome and optimize the effect of magnetic 

hyperthermia cancer therapy, magnetic nanoparticle based hyperthermia trials have passed the 

preclinical stages and received regulatory approval in 2010 as a new clinical therapy as 

“thermotherapy” (Asín et al., 2012, Zhao et al., 2013d). This approval follows successful 

completion of the conformity evaluation procedure of the NanoTherm® magnetic fluid by 

Medcert GmbH and of its NanoActivator® magnetic field applicator by Berlin Cert GmbH. 

NanoTherm™ is a aminosilane coated iron oxide nanoparticles with an average diameter of 

around 15 nm (MagForce, 2016).  

Magnetic field parameters such as field strength and frequency are selected to be compliant with 

the approved protocols for MFH in Europe. For instance, for treatment of glioblastoma 

multiforme (MagForce, Berlin, Germany) magnetic field frequencies in the order of 100–200 kHz 

at around 20 mT are typically chosen (Monnier et al., 2014). 

 Introduction to Bio-Catalysis 

Enzymes are widespread natural proteins, although few are catalytic RNA molecules, which acts 

as catalysts with high activity, regioselectivity and enantioselectivity. Enzymes (like all catalysts) 

increase the reaction rate by reducing the reaction activation energy.  Enzyme catalysed reactions 

mostly operate at near ambient condition and produce less waste and fewer by products (Rozzell 

and Lalonde, 2010). Enzymes are isolated from bacteria, moulds, yeasts, plants and animals 
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(Sinfelt and Cusumano, 1977). The catalytic function and selectivity of the enzyme is established 

by the unique active site architecture. The active site is made up of an array of amino acid residues 

in the polymeric peptide chain, of which only few are directly included in enzyme-substrate 

complex. Enzymes have been used in different applications such as food, pharmaceutical and 

chemical. 

Considering pharmaceutical section, enzymatic processes are well established for synthesis of 

important drugs including penicillin, morphine, quinine, cyclosporin and paclitaxel (Yiu and 

Keane, 2012). For instance, Taxol (generic name paclitaxel), a widely used anti-cancer agent in 

the treatment of ovarian, breast and lung cancer is a natural product found in the bark of Pacific 

yews. Production process from natural resources is extremely expensive and unaffordable and 

synthetic production of Paclitaxel involves over 50 individual steps. In 1993 Bristol-Myers 

Squibb (BMS) adopted an enzymatic process of cytochrome P450 which can shorten the synthesis 

process to a 20-step procedure (Malik et al., 2011). The most widely used group of enzymes used 

in pharmaceutical industry are lipases, which are discussed in the following section. 

  Lipase 

Lipases (triacylglycerol hydrolase, EC 3.1.1.3) signify one of the most important enzymes used 

in bio-catalysis systems. Lipase acts at oil-water interface and catalyse the hydrolysis of 

triglycerides into diglycerides, monoglycerides, glycerol and fatty acids, and under certain 

conditions the reverse reaction leads to esterification and formation of glycerides from glycerol 

and fatty acids. Therefore, lipases have important role in digest, transport and process fats, oils, 

triglycerides and other lipids. Lipases can have animal source (pancreatic, hepatic and gastric), 

microbial (bacterial, fungal and yeast) or vegetable origin, with variations in their catalytic 

properties (Barros et al., 2010). Depending on the nature of substrate and reaction conditions, 

lipases catalyse wide range of enantioselective and regioselective reactions. Figure 1-9 depicts 

the mechanisms of various lipase catalysed reactions. Acidolysis, Alcoholysis and 

Interesterification are classified as transesterification reactions.  
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Figure 1-9. Reactions catalysed by lipases (Barros et al., 2010) 

Most lipases are characterized by inclusion in their structure of a mobile domain, known as the 

“lid”, which consists of a single helix, two helices, or a loop region. In the absence of a lipid–

water interface, the lid covers the active site, while the presence of an interface results in a 

rearrangement of the conformation of the enzyme that displaces the lid, thus making the catalytic 

site accessible to the substrate and the solvent (Borrelli and Trono, 2015). A simple model consists 

of two successive equilibrium defines the kinetics of lipase catalytic process at an interface. 

During the first equilibrium stage, the lipase is adsorbed reversibly to the interface (E⇌E*), 

sequentially in the second stage the adsorbed enzyme (E*) binds with a substrate molecule (S), 

forming the lipase-substrate complex (E*S) which is equivalent to the Michaelis-Menten 

equilibrium of enzyme-substrate complex. When the lipase-substrate complex is formed the 

consequent catalytic steps occur after which the products are released and enzyme is restored at 

the interface adsorbed (E*) form. In this model, the restored lipase remains adsorbed to the 

interface and is only released after several catalytic cycles (Houde et al., Reis et al., 2009). 

Lipase catalysed reactions are easy to handle, do not need cofactors for lipase activation, and are 

commercially available, which make them attractive as industrial biocatalysts in pharmaceutical, 

food and cosmetics industries. Microbial lipases represent the most widely used class of enzymes 

in biotechnological applications due to their stability, selectivity and broad substrate specificity. 
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Microbial lipases sources includes bacteria, yeast, and fungi (Treichel et al., 2009). Some of the 

lipases and their application are summarised in Table 1-8. 

Two particularly important lipases with respect to this project, are Candida Rugosa Lipase (CRL) 

and Pseudomonas Fluorescens Lipase (PFL).  

Table 1-8. A list of the lipases and their common application  

lipase Application Reference 

Y. lipolytica 

lipase From 

Yarrowia 

lipolytica yeast 

Used for bio-transformation of steroids and 

synthesis of pharmaceutical intermediates and 

fine chemicals, used in detergent industry for 

removal of oil-based stains.  

(Fickers et al., 2011) 

Geotrichum 

candidum 

Used to synthesise lipophilic antioxidants and 

prepare chiral intermediates for pharmaceuticals 

(Xu et al., 1995) 

(Ramos-Sánchez et al., 

2015, Hasan et al., 2006) 

Candida 

rugosa lipase 

Used in reparation of highly pure unsaturated 

fatty acids such as oleic, linoleic, soap production 

and cheese production. Used in flavour 

development of concentrated milk and creams. 

Used for synthesise of lovastatin and Ezetimibe, 

drugs lowing serum cholesterol level. Used in 

biodiesel synthesis and paper industry. Used for 

preparation of The chiral compound intermediate 

for the synthesis of certain Hepatitis C virus 

protease inhibitors.  

(Ramos-Sánchez et al., 

2015, Anobom et al., 

2014, Aravindan et al., 

2007, Montero, 2011, 

Verma et al., 2012, 

Carvalho et al., 2015) 

Lipases from 

Candida 

cylindracea, 

Used in detergent industry for removal of oil-

based stains, used in personal care products, 

bakery products. Used in  pharmaceutical 

industry to resolve the enantiomers of 

flurbiprofen, naproxen, ibuprofen, suprofen and 

baclofen,  and synthesize of lobucavir, hepatitis B 

antiviral and ribavarin antiviral 

(Shay and Fisher, 1991, 

Vakhlu, 2006, Johnson, 

2013, Sharma et al., 

2011) (Ray, 2012) 

Candida 

parapsilosis 

Used in food industry for synthesis of food 

additives  

(Ramos-Sánchez et al., 

2015) 
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Table 1-8.     Continued 

lipase Application Reference 

Candida 

antarctica 

lipase fraction 

B (CAL-B) 

Used in synthesis of flavours and fragrance 

esters, surfactants, biodiesel, waxes, acylated 

flavonoids and modified glycerides. Used for 

esterification of free fatty acids in detergent 

industry for removal of oil-based stains. Used in 

synthesises processes of pharmaceutical 

intermediates such as anti-Alzheimer’s drugs, 

flurbiprofen, naproxen, ibuprofen, suprofen and 

baclofen, lobucavir, hepatitis B antiviral and 

ribavarin antiviral.  

(Larios et al., 2004, 

Hasan et al., 2006, 

Johnson, 2013, Sharma 

et al., 2011, Ray, 2012) 

(Tanino et al., 2009) 

Serratia 

marcescens 

lipase 

Used for synthesise of diltiazem hydrochloride, a 

coronary vasodilator. 

(Matsumae et al., 1993) 

Burkholderia 

cepacia (PS-

30) 

Used in pharmaceutical industry for synthesis of 

Taxane 5 and paclitaxel (an anti-cancer 

compound) 

(Patel et al., 2003, 

Carvalho et al., 2015) 

Lipase from 

Pseudomonas 

sp 

Used in pharmaceutical industry for synthesis of 

paclitaxel and antidepressant agents.  

(Patel et al., 1994, Yin et 

al., 2016, Carvalho et al., 

2015) 

Rhizomucor 

miehei lipase 

Used for resolution of chiral compounds, and 

prepare anti-inflammatory drugs. 

(Ray, 2012, Zullo and 

Ciafardini, 2008) 

(Ansorge-Schumacher 

and Thum, 2013) 

Lipases from 

Pseudomonas 

fluorescens 

(PFL) 

Used in pharmaceutical industry to synthesis the 

key intermediate of Prostaglandins, 

Prostacyclins, Thromboxane and Paclitaxel also 

to prepare Argatroban, an antithrombotic drug.  

(Carvalho et al., 2015, 

Sharifabad et al., 2014) 

 

 Candida Rugosa Lipase (CRL)  

Literature surveys reveal Candida Rugosa Lipase (CRL) as one of the most extensively studied 

enzymes due to its high activity and broad specificity (substrate, positional, fatty acid and 

stereopreference) (Benjamin and Pandey, 1998b, Yong et al., 2008). Candida Rugosa is a 

asporogenic, unicellular, non-pathogenic, mesophilic yeast (Wu et al., 2012, Benjamin and 

Pandey, 1998b) with a molecular weight of 45–60 kD and a molecular volume of 5 × 4.2 × 3.3 nm3 

(Gao et al., 2010). There have been contrasting reports on the number of CRL lipase isoforms; 
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two (Veeraragavan and Gibbs, 1989), three (Shaw et al., 1989, Wu et al., 1990) or five 

(Grochulski et al., 1993, Linko and Yan Wu, 1996, Rúa and Ballesteros, 1994). So far, six distinct 

isoforms in CRL lipases have been characterized (Chang et al., 2006, Lee et al., 2011, Xu et al., 

2009b). Despite a high sequence similarity (over 80% amino acid homology) in these isoenzymes, 

individual CRL isoenzymes display obvious differences in their thermal stability and substrate 

preference (Zhang et al., 2016). For instance, LIP5 (fifth isoform) specificity on hydrolysis of 

amino acid-derivative substrates is shown to be the highest among other lipase isoforms, but it 

shown very weak preference on hydrolysing triacylglycerol substrates. LIP5 activity on 

hydrolysis of p-nitrophenyl (pNP) butyrate was optimal at 55 °C as compared with 37 °C of the 

commercial CRL lipase (Lee et al., 2011). 

CRL has been used in a wide range of catalytic reactions in both aqueous and water-restricted 

environments which include non-specific and stereo-specific hydrolysis, reversal of hydrolysis 

via esterification, trans-esterification and inter-esterification (Benjamin and Pandey, 1998a, 

Jaeger et al., 1994, Macrae and Hammond, 1985). CRL is one of the enzymes most frequently 

used in bio-transformation and has the great advantage of being considered as safe for food 

applications (Ramos-Sánchez et al., 2015). CRL is used by Nippon Oils & Fats (Tokyo, Japan) 

for the preparation of highly pure unsaturated fatty acids (oleic, linoleic, linoleic, etc.), and is used 

by Miyoshi Yushi (Nagoya, Japan), to produce soap through lipase-based hydrolysis of oils and 

fats (Ramos-Sánchez et al., 2015).  

CRL is also used in pharmaceutical industry for example to synthesize lovastatin, a drug lowering 

serum cholesterol level (Ramos-Sánchez et al., 2015). Singh have reported that CRL provides 

efficient enzymatic methods for the synthesis of enantiopure 3-[5- (4-fluorophenyl)-5 (S)-

hydroxypentanoyl]-4 (S)-4-phenyl-1,3-oxazolidin-2-one ( (S)-FOP alcohol) which is key 

intermediate of Ezetimibe drug used for lowering the blood cholesterol (Singh et al., 2013). 

Marszall have reported the kinetic resolution of an anti-inflammatory drug, (R,S)-ibuprofen using 

immobilized CRL (Marszałł and Siódmiak, 2012). 

Additionally, CRL lipase is used in the cheese manufacture (Kindstedt et al., 2004, Aravindan et 

al., 2007). The flavour development in concentrated milk and creams by microbial lipases was 

investigated, where it was reported that each lipase developed a characteristic flavour. CRL 

lipases were found as the most suitable for this purpose. CRL was selected to hydrolyze 

triacylglycerol for clinical lipid analysis and developed as a biosensor (Vakhlu, 2006, Sharma et 

al., 2011). CRL is also able to catalyze biodiesel synthesis (Borrelli and Trono, 2015, Montero, 

2011).  

Considering the occurrence of variable amounts of each isoforms in crude lipase, the preparations 

lead to a lack of reproducibility of bio-catalytic reactions. The expression of isoforms is directed 

by culture or fermentation conditions. Protein engineering of purified CRL isoforms allows the 

tailoring of enzyme function (Akoh et al., 2004, Borrelli and Trono, 2015), however purification 
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of the lipase results in higher costs. Furthermore free lipase is often unstable and possesses low 

activity in organic solvents or harsh environments such as high temperature or extreme pH (Wu 

et al., 2012). 

To compensate the cost associated with CRL, enhance the operation stability and afford the 

recovery and reusability of the lipase, CRL could be used in immobilized form. Immobilization 

of CRL promotes the separation of products and lipases and improves catalytic activity, stability, 

and recyclability of immobilized lipase in continuous operations (Wu et al., 2012). CRL has been 

immobilised on different supports such as chitosan beads (Ting et al., 2006), glass beads (Yilmaz 

et al., 2011), magnetic beads (Marszałł and Siódmiak, 2012), polymers (Yilmaz et al., 2009), 

epoxy supports (Mateo et al., 2003) and silica (Gao et al., 2010). Since lipases are not soluble in 

organic media, covalent linkages may not be necessary between the support and the lipase, and 

thus simple adsorption can be employed (Chang et al., 2007) (Khare and Nakajima, 2000). 

 Pseudomonas Fluorescens Lipase (PFL) 

Pseudomonas Fluorescens Lipase (PFL) is produced from Pseudomonas Fluorescens bacterium 

(PFB). PFB is commonly isolated from soil, water, and the tissues of plants and animals (Son et 

al., 2012). PFL is a thermostable lipase which has high lipolytic activity for short- to medium-

chain triacylglycerols (Kim et al., 2005b). PFL is shown to exist in two different states of 

bimolecular structure with a molecular weight of 66 kD (at moderate enzyme concentration to 

high concentration of lipase) an unimolecular structure with a molecular weight of 33 kD (at very 

low enzyme concentrations or in the presence of detergents). The two enzyme structures display 

different properties, the bimolecular structure is proved to be more stable than the unimolecular 

species, and the bimolecular structure demonstrated lower activity but higher enantioselectivity 

than the unimolecular structure (Fernández-Lorente et al., 2003). Lower activity of the 

bimolecular lipase structure is suggested to be due to the interaction between the hydrophobic 

areas of the lipase surface surrounding the active centre of lipase molecules in their open form, 

suggesting that interfacial activation competes with formation of the bi-molecular structure 

(Fernández-Lorente et al., 2003). Kim et al. have studied the purification and renaturation of 

solubilized PFL and reported that however lipases are generally stable in organic solvents, the 

cosolvents TFE and DMSO both destabilize PFL, and destroy its enzyme activity even at a low 

concentration of 2%. Nevertheless, Ca2+ stabilizes PFL in the presence of these cosolvents and, 

in particular, it extended the stability of PFL such that 50% of its lipase activity was retained in 

16% TFE and 24% DMSO, respectively (Kim et al., 2005b). Cadirci et al. have studied the effect 

of different solvents on PFL. They have reported that PFL is stable in unpolar solvents such as 

benzene, styrene, toluene, hexane, and heptane, however, the enzyme is unstable in polar organic 

solvents such as acetone, methanol (Cadirci and Yasa, 2010). PFL is widely used in 

biotechnological application because of their potential in organic synthesis for highly valuable 

chemicals (Sharma and Kanwar, 2014). 
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Some of the applications listed for PFL in the literature includes, transesterification reaction for 

the production of biodiesel (Iso et al., 2001, Lima et al., 2015), Hydrolysis of racemic methyl-

branched octanoic acids to determine stereoselective mechanism of action (Sonnet and 

Baillargeon, 1991), interesterification of butter fat (Kalo et al., 1989), conversion of microalgal 

lipids produce biodiesel (Guldhe et al., 2015), Regioselective deprotection of 3ʹ,5ʹ-O-acylated 

pyrimidine nucleosides (Uemura et al., 1989), enzymatic synthesis of triacylglycerols of 

docosahexaenoic acid via transesterification of its ethyl esters with glycerol (Moreno-Perez et al., 

2015). PFL is used in the synthesis of argatroban (an antithrombotic drug) with 99% 

enantioselectivity in forming (21S)-isomer, which is twice as potent as 21R (Carvalho et al., 

2015). PFL is also used for enantioselective production of 4- (R)- hydroxycyclopent-2-en-1- (S)-

acetate as a key intermediate in the synthesis of cyclopentenoid molecules with important 

biological activity, such as prostaglandins, prostacyclins and thromboxane (Sharifabad et al., 

2014). 

 Enzyme Immobilization 

Considering multi-step enzyme purification, application of enzyme in the reactions results in 

increased manufacturing costs and consequently increased product price. Enzyme immobilization 

on solid supports allows enzyme separation from the product with use of different means such as 

filtration. Enzyme immobilisation involves surface modification of the supports and enzyme 

incorporation which adds to the steps of the reaction and increase the costs of the process, however 

it is accepted that enzyme immobilization represents some advantages including possibility to 

recycle / reuse the enzyme which recover the costs, add the ability to control the reaction rate and 

possibility to increase the structural stability of the enzyme during the reaction. Additionally it is 

reported that compared to free enzymes, immobilised enzymes exhibit an increased tolerance 

toward organic solvents, temperature and pH (Yiu and Keane, 2012). Since most of natural 

enzymes are denatured and inactivated in the presence of organic solvents and high temperature, 

using free enzyme limits the catalytic reaction conditions to aqueous media and ambient 

temperature (Ogino and Ishikawa, 2001, Yiu and Keane, 2012) where many reactions necessitate 

organic solvents for the solvation of reactants or products. Furthermore, in some cases the 

immobilised enzymes outperformed the free enzymes (Chiou and Wu, 2004).  

Different materials have been used as enzyme support including synthetic polymers (Cordeiro et 

al., 2011), TiO2 membranes (Hou et al., 2014), zeolites (Corma et al., 2002), mesoporous silica 

nanoparticles (Carlsson et al., 2014, Corma, 1997) and magnetic nanoparticles (Sharifabad et al., 

2014, Yiu and Keane, 2012). 

Change et al. have reported the immobilization of Candida rugosa lipase on Celite via adsorption 

which resulted in a significantly improved enzyme performance, they have studied the various 

immobilisation conditions to optimise the lipase activity. The optimum immobilise lipase activity 
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was shown to be 34.1% of the free lipase (Chang et al., 2007). Ting et al. have reported the CRL 

lipase immobilized on chitosan beads and its catalytic efficiency in the hydrolysis of soybean oil. 

The authors have also investigated the pH and thermal stability, reusability and storage stability. 

The results indicated that under optimal conditions, 88% of the oil was hydrolysed after 5 hours 

and thermal stability of the lipase was improved by immobilization. The immobilised enzyme did 

not show reduced activity after 30 days storage at 4 °C. 80% relative activity was observed after 

six repeated cycles (Ting et al., 2006). Wu et al. have immobilised CRL on vesicular silica. The 

vesicular silica had unilamellar and multilamellar mesoporous structure. Interlamellar mesopores 

were15-20 nm with a shell thickness of 5-15 nm. The lipase was immobilized through physical 

adsorption. The catalytic activity, thermal stability, and reusability of immobilized CRL were 

studied. They have established that immobilised enzyme show higher activities that of free lipases 

and it was shown that immobilized CRL demonstrated enhanced adaptability to higher pH range 

and exhibited increased thermal stability compared to free CRL. They have suggested that the 

enhanced enzyme activity may be explained by the porous structure which prevents enzyme 

denaturation and facilitate mass transport and substrate access to the immobilized enzyme (Wu et 

al., 2012). Dyal et al. have reported the stability and enzymatic activity of CRL immobilized on 

magnetic nanoparticles. They have used functionalized γ-Fe2O3 magnetic nanoparticles with the 

size of is 20 ± 10 nm. The enzymatic activity of immobilized CRL reported to be lower than free 

enzyme. However immobilised CRL retained long-term stability with constant activity over one 

month. The enzyme−nanoparticle hybrid showed ∼15% decrease in activity over that period 

probably due to desorption or denaturation (Dyal et al., 2003). In 2010 Gao et al. have investigated 

the effects of pore diameter of a mesoporous silica support and cross-linking method on CRL 

immobilization efficiency. SBA-15 with different pore-sizes of 6.8 nm, 9.1 nm, 13.2 nm, 15.6 nm 

and 22.4 nm were used as the support material. Their results indicated that the material with pore 

diameter of 15.6 nm was more suitable as immobilization support with the highest loading 

amount. They have used chitosan and glutaraldehyde to overcome the enzyme leaching problem. 

Their experimental results showed that the activities of the immobilized CRL were much higher 

than that of free lipase and remained 80.5% of the initial activity after 6 cycles in 48hours (Gao 

et al., 2010). 

The area which is most relevant to this project, is the use of mesoporous silica-coated magnetite 

nanoparticles as solid supports for lipase immobilisation. 

 Enzymes Immobilisation on Mesoporous Silica Coated Magnetic 

Nanoparticles 

Enzyme immobilization on magnetic iron oxide nanoparticles are of great interest since they 

facilitate enzyme recycling and separation and provide effective recovery of enzyme from product 

by using a magnetic field (Johnson et al., 2007). Furthermore recycling of enzymes immobilized 

on magnetic nanoparticles in a single reactor has far ranging advantages in fine chemical 
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production (Yiu and Keane, 2012). Magnetite nanoparticles with superparamagnetic properties 

are the most commonly used magnetic support for lipase immobilization. Having no permanent 

magnetic moment, these nanoparticles are readily suspended during the reaction and when 

separation is required, a magnetic field can be applied to recover the immobilised enzyme (Yiu 

and Keane, 2012). 

The importance of mesoporous silica coated magnetic nanoparticles have raised from their large 

surface area which can be easily modified with various functionalities toward different 

applications (Hoffmann et al., 2006, Rath et al., 2014). This is due to the abundance of reactive 

silanol groups (≡Si-OH) on the surface of mesoporous silica materials owing to its amorphous 

wall structure (Hoffmann et al., 2006). This can be used to effectively immobilize organic 

functional groups onto a silica surface through either covalent bonding or hydrogen bonding. 

Functionalization through covalent bonding is preferred in most applications due to stronger 

bonds as hydrogen bonding usually results in undesired leaching problems due to weak 

interaction. The enzyme immobilization on the mesoporous silica nanoparticles are mostly 

performed by crosslinking of enzymes to supports via the enzyme’s amino groups (Sen and Bruce, 

2012a). For this purpose the surface of the mesoporous silica nanoparticles are selectively 

functionalised.  

In the context of this work, aminosilanes in particular (3-aminopropyl)-triethoxysilane (APTS) 

surface functionalisation of silica-coated magnetic nanoparticles is explained (the detailed method 

is described in Section 2.8). Figure 1-10 present molecular structure of the APTS.  

SiO O

O

H2N

(3-aminopropyl)-triethoxysilane 

Figure 1-10.  (3-aminopropyl)-triethoxysilane (APTS) 

Generally there are two well-established methods to surface functionalize mesoporous silica 

nanoparticles; the co-condensation or direct synthesis method and post-synthetic 

functionalization or grafting method. These two strategies are illustrated in Figure 1-11 
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Figure 1-11. Surface functionalisation of mesoporous silica nanoparticles, (a) Grafting method for organic 
modification of mesoporous silica material with (R’O)3SiR. R= organic functional group, and (b) Co-
condensation method (direct synthesis) for the organic modification of mesoporous pure silica phases. 
R=organic functional group(Hoffmann et al., 2006). 

As shown in Figure 1-11, in the co-condensation method, silica sources such as tetramethyl 

orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS), and organosilanes are added together 

into the reaction mixture containing the structure-directing agent in either an acidic or basic 

environments. The organic functional group and the silica source co-condense to form the silica 

particles. Following this method, the organic functional groups are incorporated into the silica 

framework during the synthesis which is believed to result in a homogeneous distribution 

throughout the material. In addition, pore blocking is not an issue for materials prepared by this 

route, since the organosilanes are direct components of the silica matrix. However, an increase in 

the amount of organosilanes in the reaction may change the characteristic of the reaction and 

result in a change in pore structure and particles morphology. Therefore, in order to retain the 

pore structure, the synthesis conditions such as: chemical nature of the organosilanes, content of 

organic functionalities, and hydrolysis rate of organosilanes need to be thoroughly considered 

(Hoffmann et al., 2006). The main disadvantage of the co-condensation method may be the fact 

that some of organic functional groups may be inaccessible since they are embedded inside the 

silica matrix.  

Post-synthetic functionalization is one of the most popular methods for surface modification of 

mesoporous silica. In post-synthetic functionalization or grafting strategy, the mesoporous silica 

nanoparticles are synthesised separately prior to surface functionalization. The process is 

performed by reaction of the organosilanes with surface silanol groups. The reaction conditions 

under which the organosilanes is added could affect the amount and network structure of the 

surface groups but the mesoporous structure and morphology of the starting silica nanomaterial 

(a)                              (b) 
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is usually remains unchanged, although the pore size might be reduced depending on the size of 

the organic groups and the degree of occupation (Hoffmann et al., 2006). 

High quality research has been done to establish the possible binding method of 3-

aminopropyltriethoxysilane (APTS) on silica gel in dependence of surface water, leading to the 

conclusion that polymerization of APTS takes place on the silica surface after adsorption of the 

silane molecules (Gartmann et al., 2010, Sen and Bruce, 2012a). Gartmann et al. have studied the 

effect of water on the reaction of APTS with mesoporous silica performing the APTS 

functionalisation reaction with in toluene containing various amounts of water. They have found 

that with increasing amount of water, clustering of APTS occurs, leading to a nonuniform 

distribution of the grafted amino groups and a scarcely functionalized pore body (Gartmann et al., 

2010). Sen and Bruce have reported a nanoparticles’ surface functionalisation strategy using a tri-

phasic reverse emulsion (TPRE). The TPRE system were consisted of a solid phase (silica coated 

magnetite nanoparticles (solid phase), water phase (the water adsorbed on nanoparticles surface) 

and an organic phase (toluene), in the presence of Triton X-100 which is a bio-compatible, non-

ionic surfactant. APTS was found to be soluble in toluene, but did not hydrolyse or self-condense. 

It was observed that having limited water on the surface of nanoparticles resulted in controlled 

polymerisation of APTS on the surface leading to an ordered and uniform amine layer on the 

surface. They have reported that functionalised nanoparticles prepared by this method 

demonstrated higher surface amine density (>80%) compared to those prepared using bulk water 

phase surface functionalisation (~20%) (Sen and Bruce, 2012b).  

The enzyme immobilization on the surface functionalised nanoparticles are mainly performed via 

direct interaction of the enzyme with amine-functionalised nanoparticles or coupling agents such 

as glutaraldehyde (Rebelo et al., 2010). Glutaraldehyde molecular structure is presented in Figure 

1-12. 

O O

Glutaraldehyde  

Figure 1-12. Glutaraldehyde molecular structure 

Scheme 1-2 shows two common routes for the enzyme immobilization on the surface 

functionalised nanoparticles. 
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Scheme 1-2. Immobilization of lipase on magnetic nanoparticles (a) Glutaraldehyde method and (b) absorption 
method 

Coupling reagents are used to modify amino-functionalised surfaces to aldehyde functionality 

which allow the covalent cross-linking to other amino-groups. Among coupling agents, 

glutaraldehyde is the most popular and widely used reagent which holds unique characteristics 

that render it one of the most effective protein crosslinking reagents. Glutaraldehyde is a linear 5-

carbon dialdehyde and is soluble in all proportions in water and alcohol, as well as in organic 

solvents. Glutaraldehyde is commercially available with low cost and show high reactivity. It 

reacts rapidly with amine groups at around neutral pH and is more efficient than other aldehydes 

in generating thermally and chemically stable crosslinks (Migneault et al., 2004).  

Rebelo et al. have reported the immobilisation of Lipase from Burkholderia cepacia on 

superparamagnetic nanoparticles using three different methods of direct interaction of the enzyme 

with APTS functionalised nanoparticles, covalent attachment of lipase via modification of the 

APTS-functionalized nanoparticles with carboxybenzaldehyde, and by using glutaraldehyde as 

the coupling agent for making the covalent attachment of the lipase enzyme to the APTS 

functionalised nanoparticles. The transesterification reactions catalysed with B. cepacia lipase 

immobilized by the glutaraldehyde method showed the best results in terms of reusability, 

preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles (Rebelo 

et al., 2010). Hu et al. have immobilised Serratia marcescens lipase on magnetic nanoparticles 

using glutaraldehyde as the coupling agent which was shown to deliver enantiomeric excess of 

more than 90% and retained still 59.6% of its initial activity after 11 cycles (totally 105 hours). 

They have observed a high immobilization rate of 35.2 mg/g. Immobilized lipase has displayed 
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improved thermal stability compared to free lipase, retaining over 60% activity after incubation 

at 40°C for 120 hours, while the free lipase was completely deactivated in same conditions (Hu 

et al., 2009).  

The support structure such as the pore size of the mesoporous silica support could affect the 

enzyme loading capacity and the enzyme activity (Wu et al., 2012). It is established in the 

literature that the ideal pore size of a mesoporous support should be 3 to 5 times of the protein 

size (Gao et al., 2010). In fact, in materials with smaller pores only the external surface of the 

material is available for enzyme loading which result in low enzyme loading. Alternatively, in 

materials with larger pores the enzyme may leach out of the channels during the loading process 

or the reaction which consequently results in reduced enzyme activity (Gao et al., 2010, Serra et 

al., 2008, Salis et al., 2009).  

Main reaction performed using the CRL and PFL immobilised nanoparticles in this project was 

hydrolysis of cis-3,5-diacetoxy-1-cyclopentene to obtain (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-

ol and its (1R,4S) enantiomer as illustrated in Scheme 1-3. 

 

Scheme 1-3. Enzyme-catalysed hydrolysis of meso-cyclopent-2-en-1,4-diacetate). 

The asymmetric hydrolysis of cis-3,5-diacetoxy-1-cyclopentene to the enantiomerically pure 

monoacetates is an important step in the synthesis of optically active cyclopentanoids such as 

prostaglandins, prostacyclins, and thromboxanes. Prostaglandins are hormone-like chemical 

messengers that regulate a broad range of physiological activities, including blood circulation, 

digestion and reproduction. Their biological activities and their complex molecular architectures 

have made prostaglandins popular targets for synthetic organic chemists for over 40 years. 
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Prostaglandin analogues are widely used as pharmaceuticals for instance latanoprost (Xalatan), 

which has been used to treat glaucoma has generated more than $1.6 billion annually for Pfizer 

before it came off patent in 2011 (Coulthard et al., 2012). 

Recent developments of physiologically highly potent prostaglandin prompted a great current 

interest in facile and economic routes to synthesise enantiomerically pure intermediates 

(Coulthard et al., 2012). Several esterases and lipases have been reported in the literature for the 

asymmetric hydrolysis of cis-3,5-diacetoxy-1-cyclopentene. Brüsehaber have reported a study on 

83 enzymes for the asymmetric hydrolysis of cis-3,5-diacetoxycyclopent-1-ene (Brüsehaber et 

al., 2008). 
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 Reagents and materials 

All reagents employed in this study were commercially available, of highest purity grade and used 

as purchased used without further purification, unless otherwise stated.  

Specialist reagents were obtained as follows: 3-aminopropyl tri-ethoxysilane (APTS), Pluronic® 

F-127, Hexadecyltrimethylammonium bromide (CTAB), Benzyl ether, Polyethylene glycol 

monomethyl ether (mPEG), ε-Caprolactone (CL), Gum arabic, Dibutyltin dilaurate, Iron (III) 

chloride hexahydrate (FeCl3. 6H2O), iron (II) chloride tetrahydrate (FeCl2. 4H2O), Iron (II) 

sulphate heptahydrate (FeSO4.7H2O), Iron (III) acetylacetonate (Fe (acac)3), 1,2-Dodecanediol, 

Ammonium hydroxide solution, Oleylamine, Oleic acid (OA), Octyltriethoxy silane (OTS), 

Ammonium nitrate, Triethylamine (TEA), Sodium hydroxide (NaOH), Diethyl ether, Tetraethyl 

orthosilicate (TEOS), tetrahydrofuran (THF), toluene, Acetic acid (glacial), Lipases [Candida 

Rugosa (CRL) and Pseudomonas Fluorescens (PFL)], mitomycin C (MMC), triton X-100, 

Dimethyl sulfoxide (DMSO), Bradford reagent, glutaraldehyde solution (Grade I, 25% in H2O), 

4-nitrobenzaldehyde (4-NBA), p-nitrophenyl palmitate (pNPP), p-nitrophenol (pNP), and chiral 

reagents [cis-3,5-dihydroxycyclopentene, cis-3,5-diacetoxy-1-cyclopentene, (1S,4R)-cis-4-

acetoxy-2-cyclopenten-1-ol and (1R,4S)-cis-4-acetoxy-2-cyclopenten-1-ol] were all purchased 

from Sigma-Aldrich, UK. Methanol (HPLC grade), Ethanol (Absolute, 99.8%, HPLC grade) and 

Cyclohexane were purchased from Fisher Scientific (Loughborough, UK). Doxorubicin 

hydrochloride (DOX) was purchased from Cayman Chemical. U87 and MCF7 Cell lines were 

kindly provided by UCLan tissue culture lab. PrestoBlue Cell Viability reagent was purchased 

from Invitrogen. Eagle's Minimum Essential Medium (EMEM) and Dulbecco’s Modified Eagle 

Medium (DMEM), Fetal bovine serum (FBS), L-glutamine, Non Essential Amino Acids 

(NEAA), and Sodium Pyruvate were purchased from Lonza.  

 Solutions and Buffers 

A list of the stock solutions and buffers used in this project and their preparation is summarised 

in Table 2-1. All the solutions were made up using E-pure deionised water supplied from a 

Thermo Scientific Barnstead Nanopure Water Deionisation System unless otherwise stated. 

Where necessary solutions were sterilised by autoclaving for 25 minutes at 120ºC.  
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Table 2-1. Description, usage and storage information of solutions and buffers used in this project. 

Solution Description Use Storage 

Coupling solution 1 litre of solution was 

prepared containing 0.8% 

w/v acetic acid (glacial) in 

methanol 

UV-Visible 

colorimetric assays 

and storage of NH2 

modified 

nanoparticles 

Capped clear glass 

bottle at 25ºC 

Hydrolysis 

solution 

1:1 mixture of methanol and 

water containing 0.15% 

acetic acid (glacial) 

UV-Visible 

colorimetric assays 

Capped clear glass 

bottle at 25ºC 

4-NBA solution 

(700 µg/ml) 

7 mg of 4-NBA was 

dissolved in 10 ml coupling 

solution 

UV-Visible 

colorimetric assays 

Centrifuge tubes at 

4ºC in the dark 

(used on the day of 

production)  

Glutaraldehyde 

solution (5% w/v) 

10 ml stock solution was 

typically prepared 

containing 1.886 ml 

glutaraldehyde and 8.114 ml 

20×SSC buffer 

Conversion of 

surface amine groups 

to aldehydes 

Centrifuge tubes at 

-18ºC  

20×SSC stock 

buffer  

Stock solution was made by 

dissolving 175.3 g NaCl and 

88.2 g sodium citrate in 1 L 

water. The pH was adjusted 

to 7.4 

Conversion of 

surface amine groups 

to aldehydes. 

 

Capped clear glass 

bottle at 25ºC 

1×SSC and 

13×SSC buffer 

solutions 

20×SSC stock buffer 

solution was diluted 

respectively to produce 1× 

and 13×SSC buffers  

Conversion of 

surface amine groups 

to aldehydes.  

Capped clear glass 

bottle at 25ºC 

Reagent A Gum Arabic (0.0667g), 

sodium deoxycholate 

(0.267g), Tris-HCl (12 mL, 

250 mM) was added to 

48 mL deionised water 

Hydrolysis of PNPP 

reaction solvent in 

1:1 mixture with 

isopropanol 

Capped clear glass 

bottle at 25ºC 

PBS Buffer 1×PBS tablet (136 mM 

NaCl, 3 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4) 

dissolved in 200mL water 

Washing and storage 

of lipase 

immobilised 

materials.  

Capped clear glass 

bottle at 25ºC  
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Table 2-1.     Continued 

Solution Description Use Storage 

Sterile PBS 

Buffer 

1×PBS tablet dissolved in 

200mL water 

Drug loading 

and release 

study 

cellular study 

for washing 

the cells 

Capped in glass bottle 

and sterilised by 

autoclaving. Then kept 

at 2°C 

Acetate buffer ~350mL of 0.1M acetic acid 

was added to ~650 mL of 

0.1M sodium acetate to make 

pH 5.5 

Drug release 

study 

Capped clear glass 

bottle at 25ºC 

Growth medium 

to expand U87 

cells 

EMEM + 10 % (v/v) FBS + 

2mM L-glutamine (5ml) 

1% Non Essential Amino 

Acids (NEAA- 5ml) 

1mM Sodium Pyruvate (5ml) 

1% penstrep (5ml) 

Cell growth 

media 

Stored at 2 °C.  

warmed in water bath at 

37 °C for 15 min to 30 

min before use.  

Growth medium 

to expand MCF7 

cells 

 

EMEM + 10 % (v/v) FBS + 

2mM L-glutamine (5ml) 

1% Non Essential Amino 

Acids (NEAA- 5ml) 

1mM Sodium Pyruvate (5ml) 

1% penstrep (5ml) 

Cell growth 

media 

Stored at 2 °C. 

warmed in water bath at 

37 °C for 15 min to 30 

min before use. 

DOX.HCl 

solution 

1.8 mg DOX dissolved in 

10ml PBS 

Drug loading Stored at 2 °C-in dark 

DOX 

hydrophobic 

solution 

2 mg DOX was deprotonated 

in TEA and 10 ml DMSO (pH 

9.6) 

Drug loading Stored at 2 °C in dark 

 

 Synthesis of Superparamagnetic Iron Oxide Nanoparticles 

(SPION’s) 

Potential applications of magnetic nanoparticles, particularly iron oxide nanoparticles, in 

medicine, biological science and technology, led to the development of a number of different 

techniques to synthesize γ-Fe2O3 and Fe3O4 nanoparticles in a range of sizes and shapes with 
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different properties as previously described in Section 1.5. Among these techniques for 

synthesizing iron oxide nanoparticles, co-precipitation and thermal decomposition methods were 

used in this project. Co-precipitation strategy was used because of its simplicity and capacity to 

produce high quantity of superparamagnetic iron oxide nanoparticles of reasonable sizes. 

Moreover, this technique is compatible with different approaches for functionalizing the 

nanoparticles with organic surfactants. Organic-phase thermal decomposition synthesis was used 

where monodisperse nanoparticles with smaller diameter were needed.  

 Co-precipitation of Iron Chlorides in Alkaline Media 

In this method magnetite nanoparticles were synthesized by co-precipitation of ferrous and ferric 

chloride in alkaline media according to procedures previously reported (Sen et al., 2006). Iron 

(III) chloride hexahydrate (FeCl3. 6H2O, 22.95 g, 0.08 mol) and iron (II) chloride tetrahydrate 

(FeCl2. 4H2O, 8.46 g, 0.04 mol) was dissolved in 500 mL of degassed deionised water under 

nitrogen environment. Nitrogen was used in preparations to prevent oxidation of the iron species 

in aqueous environments. Generally, the reaction is performed under an inert (N2 or Ar) 

atmosphere using degassed solutions to avoid uncontrollable oxidation of Fe2+ into Fe3+ (Mascolo 

et al., 2013). In the presence of dissolved oxygen molecules, the resulting magnetic colloids are 

usually reddish brown indicating contamination of the colloids with other iron oxides (γ-fe2O3) 

as a result of strong oxidation of magnetite (Tresilwised et al., 2005, Liu et al., 2004b). The orange 

solution was heated to 80°C whilst stirring under nitrogen. Aqueous ammonium hydroxide 

(50 mL, 25% w/v NH4OH) was added drop wise to the mixture over a 30 minuets period. The 

reaction was allowed to proceed for further one hour then the reaction mixture was transferred to 

a conical flask, and was allowed to rest on a magnet. The black product was washed to neutral pH 

with distilled, deionised water via magnetic separation. The final product has pH~7. This method 

of preparation produced ultra-small spherical nanoparticles with the size of 10 to 15 nm (TEM 

images are presented in Section 3.2.1). The material was labelled as ME18. 

The overall reaction may be written as follows: 

𝐹𝑒3+ + 3𝑂𝐻− → 𝐹𝑒 (𝑂𝐻)3 

𝐹𝑒(𝑂𝐻)3 → 𝐹𝑒𝑂𝑂𝐻 + 𝐻2𝑂 

𝐹𝑒2+ + 2𝑂𝐻− → 𝐹𝑒 (𝑂𝐻)2 

2𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒 (𝑂𝐻)2 → 𝐹𝑒3𝑂4 + 2𝐻2𝑂 

Scheme 2-1. The co-precipitation of iron (II) and iron (III) chloride (Mascolo et al., 2013) 

Synthesise of hydrophobic magnetite nanoparticles was carried on by adding oleic acid to the 

synthesis process (Xu et al., 2006). Iron (III) chloride hexahydrate (FeCl3, 6H2O, 22.95 g, 

0.08 mol) and iron (II) chloride tetrahydrate (FeCl2, 4H2O,8.46 g, 0.04 mol) was dissolved in 500 
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mL of degassed deionised water under nitrogen environment. The mixture was heated to 80°C 

whilst stirring under nitrogen. Aqueous ammonium hydroxide (50mL, 25% w/v NH4OH) was 

added drop wise to the mixture. The colour of the solution turned to black immediately. After 30 

minutes oleic acid (3.76 g, 0.013 mol) was added to the reaction. The reaction was kept at 80°C 

for 1 hour, then it was transferred to a conical flask and washed to neutral pH with distilled, 

deionised water via magnetic separation. This method produced hydrophobic spherical 

nanoparticles. The material was labelled ME55. 

 Oxidative Hydrolysis of Iron Sulphate in Alkaline Media 

In this method magnetite was prepared by oxidative hydrolysis of iron (II) sulphate heptahydrate 

as the iron source in alkaline media as previously reported (Sugimoto and Matijevic, 1980, Sen 

et al., 2006). Iron (II) sulphate heptahydrate (FeSO4.7H2O, 7.1 g, 0.025 mol) was dissolved in 1L 

of degassed deionised water in a three-necked round-bottomed flask equipped with a magnetic 

stirrer, a nitrogen inlet, a condenser and a thermometer. The solution was heated to 90°C whilst 

stirring under nitrogen. Subsequently potassium nitrate (KNO3, 20.4 g, 0.20 mol) and potassium 

hydroxide (KOH, 3.3 g, 0.058 mol) were added to the solution and the reaction was allowed to 

proceed for further 4 hours while stirring at 90°C under nitrogen. The black mixture was then 

transferred to a conical flask and allowed to cool down to room temperature. Obtained material 

were washed several times with 1L of deionised water using magnetic separation until it reached 

neutral pH. This material was labelled as ME01. Due to the large size of magnetite produced by 

this method (average diameter of 25 nm, see the TEM image in 3.23.2.1) this material was not 

used for further applications. The possible reaction for formation of Fe3O4 by this method is 

represented by Scheme 2-2: 

𝐹𝑒2+ + 2𝑂𝐻− → 𝐹𝑒 (𝑂𝐻)2 

3𝐹𝑒(𝑂𝐻)2 + 0.5𝑂2 → 2𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒 (𝑂𝐻)2 + 𝐻2𝑂 

2𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒 (𝑂𝐻)2 → 𝐹𝑒3𝑂4 + 2𝐻2𝑂 

Scheme 2-2. The oxidative hydrolysis of iron (II) sulphate heptahydrate 

 Organic Phase Thermal Decomposition  

In this method magnetite was prepared by high-temperature solution phase reaction of iron (III) 

acetylacetonate (Fe (acac)3), as iron source in the presence of oleic acid and oleylamine which 

leads to monodisperse magnetite (Fe3O4) nanoparticles. The synthesis was carried out following 

the procedure developed by Sun et al. (Sun and Zeng, 2002, Sun et al., 2003).  

Iron (III) acetylacetonate (Fe (acac)3 , 706 mg, 2 mmol), 1,2-dodecanediol (2.02 g, 10 mmol), 

oleic acid (1.69 g, 6 mmol), oleylamine (1.604 g, 6 mmol) and benzyl ether (20 mL) were mixed 

in a round-bottomed flask equipped with a magnetic stirrer, a nitrogen inlet, a condenser and a 
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thermometer. The solution was heated to 200°C for 2 hours whilst stirring under nitrogen 

environment. Subsequently, the temperature was raised to 300°C and stirred for a further one 

hour, then the reaction was allowed to cool down to room temperature. Ethanol (40 mL) was 

added to the mixture and the obtained material was separated via centrifugation (4000 rpm, 

20 minutes) and dispersed in hexane. The black-brown hexane dispersion was characterised and 

found to range from 7 to 9 nm. Fe3O4 nanoparticles produced following this method was labelled 

as ME59 (TEM images are presented in Figure 3-4). 

 Synthesis of Mesoporous Silica Coated Magnetite Nanoparticles 

Mesoporous silica coating of magnetic nanoparticles was carried out through surfactant-

templating approach via hydrolysis and condensation mechanism. Reaction scheme is shown in 

Scheme 2-3. 

 

Scheme 2-3. Hydrolysis and condensation of silica under alkaline conditions (Gibson, 2014) 

Method A) Tetraethyl orthosilicate (TEOS, 3.78 g, 18.14 mmol) was added to 45 mL of a solution 

containing sodium hydroxide (0.22 M) and cetyltrimethyl ammonium bromide (CTAB, 17.8 g, 

49 mmol) and stirred to mix. Magnetite nanoparticles (ME18, 225 mg) and deionised water were 

added to the mixture to make the total volume of 300 mL. The mixture was stirred for 5 minutes 

followed by adding HCl (2 M) drop-wise to adjust the pH from 12.5 to ~7. The reaction mixture 

was stirred further for 30 minutes at room temperature, after which the mixture was left unstirred 

for further 2 hours. The product was collected and washed twice with 500 mL of 1:1 mixture of 

deionised water and ethanol to remove the surfactant from the mesopores. The material was 

subsequently washed with deionised water. The material produced following this methods was 

labelled as ME16.  

Method B) As synthesised magnetite nanoparticles (480 mg of ME18) were dispersed in 200 mL 

of ethanol: water solution (4:1, V/V) and subsequently ammonium hydroxide (NH4OH, 14 mL) 

was added to the mixture and stirred for 5 minutes. Afterward cetyltrimethyl ammonium bromide 

(CTAB, 10 g, 27.43 mmol) was added to the solution and the suspension was homogenized by 
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ultrasonic vibration for 15 minutes. The mixture was then placed on the stirrer and Tetraethyl 

orthosilicate (TEOS, 6 mL) was added drop wise to the reaction under vigorous stirring. The 

reaction was allowed to proceed for further 24 hours. Final reaction product was isolated from the 

reaction mixture using magnetic separation. The product was rinsed 3 times with acidic ethanol 

using ultrasonic bath and then twice with 500 mL of 1:1 mixture of deionised water: ethanol to 

remove the surfactant from the mesopores. The silica coated nanoparticles were subsequently 

washed with deionised water until reached pH~7. The materials were fully characterised and 

found to be mesoporous silica coated core-shell nanoparticles. The material produce following 

this method was labelled as ME33. ME33 was later for enzyme immobilization and drug delivery. 

Same method was optimized to make mesoporous silica coated magnetite nanoparticles with 

reduced shell thickness and enhanced magnetic heating properties and used for drug delivery 

applications. These materials was labelled as ME60 and ME32. 

Method C) In this method oleic acid modified magnetite ME55 (0.6 mL of 11.2 mg/mL) was 

dispersed in chloroform. CTAB (1.01 g, 2.77 mmol) was added to water (10 mL) and stirred till 

dissolved, and afterward added to the magnetite mixture. A turbid brown solution was obtained 

which is believed to be due to formation of an oil-in-water microemulsion. The mixture was then, 

heated up to 60°C and stirred for 10 minutes to evaporate the chloroform, resulting in a clear 

black solution. After 10 minutes, water (100 mL), NaOH (0.6 mL of 2 M solution), and TEOS 

(1 mL) was added to the mixture and stirred for another 3 hours. The silica coated nanoparticles 

were collected magnetically and washed with water and acidic ethanol to remove the surfactant 

as described in methods A and B. The material produced following this method was labelled as 

ME82. Following characterisation of ME82 it was found that the material possess low surface 

area therefore, mesoporous silica coated magnetite nanoparticles produced via this method were 

not used for further applications in drug delivery or enzyme immobilisation. TEM images of 

ME82 are presented in Chapter 3, Figure 3-9. 

 Synthesis of Non-porous Silica Coated Magnetite Nanoparticles  

Magnetic silica coated core shell nanoparticles with amorphous silica shell were synthesized by 

a water-in-oil reverse micelle method as reported by Lu et al. (Lu et al., 2006) . Monodisperse 

hydrophobic magnetite (ME55) was used as core material. 

Magnetite nanoparticles (ME55, 50 mg) were dispersed in cyclohexane (585 mL). Triton X-100 

(200 mg, 320 µmol), hexanol (160 mL), and H2O (34 mL) were added to the nanoparticles and 

stirred to generate the microemulsion system. Subsequently, tetraethoxy orthosilicate (TEOS, 

4 mL) was added to the mixture and the reaction was allowed to proceed for further three hours. 

After three hours, an aqueous ammonia (28%, 10 mL) solution was introduced to initiate the 

TEOS hydrolysis and the reaction was left to continue for further 20 hours. Ethanol was added 
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after 20 hours in order to destabilize the microemulsion system. Silica coated core-shell 

nanoparticles were isolated and washed in sequence with ethanol and DI water to remove the 

surfactant and unreacted reactants. The nanoparticles produced following this method were 

labelled as ME56. The material were characterised (the TEM images of the ME56 are presented 

in Figure 3-10) and found to have average particle size of 67 nm. The ME56 was further used to 

obtain hydrophobic silica shell (see Section 2.6). 

 Preparation of Hydrophobic Silica Coated Magnetite 

The surface of the silica coated magnetite nanoparticles were modified to enhance their drug 

loading and release performance. This was achieved by initially modifying the surface of the 

nanoparticles with octyl groups and subsequently, the hydrophobic organosilane surface of the 

mesoporous silica nanoparticles were coated with a polymer. Hydrophobic silica coated magnetite 

nanoparticles were prepared following three different strategies. In the first two approaches the 

nonporous silica coated nanoparticles (ME56) were used as starting materials.  

 Direct Etching Method 

This approach aims to gently etch the silica coatings to convert the dense silica shell to a 

mesoporous silica shell and add an additional hydrophobic layer of mesoporous silica on top of 

the nanoparticle so it can later be capped with the polymer. CTAB and pluronic F127 were used 

as the templates. CTAB (1 g, 2.74 mmol) and pluronic F127 (25 mg) were added to DI water 

(480 mL) and stirred till they were completely dissolved. ME56 (50 mL, suspension density of 

1 mg/mL) was added to the solution whilst stirring in an oil bath at 80ºC. TEOS (0.5 mL) was 

added to the solution and left stirring for another 10 minutes. After 10 minutes sodium hydroxide 

(1.5 mL of 0.5 M) and ammonium hydroxide (0.5 mL of 28% NH4OH) were added to the reaction 

and left stirring for another 20 minutes. To prepare the octyl containing shell, octyltriethoxysilane 

(OTS, 1 mL) was dissolved in THF (50 mL) and slowly added to the reaction mixture. The 

mixture was further stirred for 3 hours after which the reaction mixture was allowed to cool down 

to the room temperature and particles were collected by centrifugation at 4000 rpm for 40 

minutes. The nanoparticles were washed twice with ethanol followed by 30 minutes stirring in 

ethanolic ammonium nitrate (20 g/L) at 60°C to remove the surfactant molecules. Nanoparticles 

were further washed with ethanol before storage. The material was labelled as ME80. ME80 was 

characterised as presented in Chapter 3. It was found that ME80 possess comparable size with the 

starting material (ME56) and relatively low surface area which is consistent with the literature 

(Yildirim et al., 2013). The surface protected etching was used to increase the surface area.  
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 Surface Protected Etching  

In this method a polymer coating process is performed prior to the etching step to protect the outer 

layer of the material, the process is illustrated in Scheme 2-4. Polyvinylpyrrolidone (PVP) is used 

as protecting layer over the silica layer (Zhang et al., 2009, Zhang et al., 2008c) to increase the 

stability against chemical etching due to the hydrogen bonding interaction between the carbonyl 

group and the hydroxyls on the silica surface. The PVP protects the outer layer of the 

nanoparticles from the etching while the inner silica is etched to form porous structure. 

Monodisperse silica coated magnetic nanoparticles (ME56, suspension density of 50 mL) were 

mixed with PVP (5 mg) and left stirring for 3 hours refluxing in an oil bath set at 100ºC. After 3 

hours, the reaction was allowed to cool down to room temperature. The nanoparticles were then 

collected using centrifuge at 4000 rpm for 50 minutes and redispersed in water using sonication 

for 5 minutes. The nanoparticles were labelled as ME94-i. Octyl modified nanoparticles were 

prepared following the same protocol as described earlier in Section 2.6.1. The etching time was 

optimized to 15 minutes with 0.08 mL of 2 M sodium hydroxide, and 0.5 mL of OTS in 20 mL 

THF where 50 mg of ME94-i was used.  

 

Scheme 2-4. Surface protected etching of silica coated nanoparticles and subsequent hydrophobic silica coating 

As shown in Scheme 2-4 upon reacting with NaOH, the PVP protected outer silica layer 

undergoes partial etching as the interior is removed to make hollow structure (ME94-i). The 

original particle size remains the same during the etching and an extra hydrophobic layer is 

formed over the surface. The material was labelled as ME94. 

 

 Direct Synthesis of Hydrophobic Mesoporous Silica Coated Magnetite  

In this process hydrophobic mesoporous coating of magnetite nanoparticles was performed by 

adding OTS together with TEOS as silica sources, to magnetite nanoparticles. Magnetite 

nanoparticles (ME53) were used as starting material. Magnetite nanoparticles (ME53, suspension 

density of 22.8 mg/mL, 22 mL) were added to DI water (540 mL) and placed in an oil bath at 

80°C. CTAB (1.02 g) and pluronic F127 (25.5 mg) were added to the nanoparticles and stirred 
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until completely dissolved. Afterward NaOH (3.5 mL of 2 M) was added and the mixture was 

stirred for 5 minutes. After 5 minutes, TEOS (5 mL) was added under vigorous stirring and left 

for further 90 minutes at 80°C. An OTS (1.25 mL) solution in THF (50 mL) was added to the 

reaction mixture and left stirring for further 3 hours. Subsequently nanoparticles were collected 

using centrifugation (40 minutes at 4000 rpm) and washed with ethanolic ammonium nitrate and 

ethanol. The particles were dried over night at 50°C. The material produced following this method 

was labelled as ME93. 

 Synthesis of Poly (ethylene glycol)-b-polycaprolactone diblock 

copolymer  

Diblock copolymer was prepared by the tin catalysed ring-opening polymerization of ε-

caprolactone from the alcohol terminus of poly (ethylene glycol) monomethyl ether following the 

procedure reported by Glover et al. (Glover et al., 2012). The ratio of the number of moles of ε-

caprolactone to poly (ethylene glycol) monomethylether was 1:20 and dibutyltin dilaurate was 

used as catalyst.  

Poly (ethylene glycol) monomethyl ether (17.17 g, 8.6 mmol), ε-caprolactone (19.59 g, 

172 mmol), and dibutyltin dilaurate (0.2 mL) were added to a round-bottom flask equipped with 

a condenser, a magnetic stirrer, and a nitrogen inlet and placed in an oil bath. The mixture was 

heated to 140°C and allowed to stir for 3 hours. After 3 hours the reaction mixture was allowed 

to cool down to room temperature. The synthesised polymer was dissolved in warm acetone to 

give a homogeneous solution and then hexane was added until the polymer began to precipitate. 

The solution was then placed in a freezer (-20°C) till further use. Before use, the polymer was 

rinsed with hexane by suction filtration and allowed to dry. Synthesised polymer was dissolved 

in CDCl3 and 1H NMR was performed to study the polymer formation (NMR spectrum is 

presented in Chapter 3, Figure 3-61). The synthesis pathway of the copolymer is presented in 

Scheme 2-5. 
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Scheme 2-5. Synthesis pathway of the PEG-PCL diblock copolymer 
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 Surface Amine Modification of the Silica Coated Nanoparticles 

The procedures for surface functionalisation of the silica coated nanoparticles is presented in 

Section 1.12.1. 

 

Scheme 2-6 surface functionalisation of the silica coated nanoparticles 

   

 Tri-phasic Reverse Emulsion (TPRE) Method  

In this method surface activation (salinization) of nanoparticles was performed using the novel 

tri-phasic reverse emulsion (TPRE) method recently reported by our group (Sen and Bruce, 

2012a, Sharifabad et al., 2014). In the actual method, as-synthesised mesoporous silica coated 

nanoparticles (ME33, 150 mg) were collected using magnetic separation and redispersed in 

toluene (30 mL). Triton-X100 (5 g) was added to the mixture and shaken to form a tri-phasic 

reverse emulsion. (3-Aminopropyl) triethoxysilane (APTS) was added to the emulsion to a final 

concentration of 2% (w/v) and kept at 50°C on an end over end rotator at 40 rpm for 24 hours. 

After 24 hours reaction, surface functionalised mesoporous magnetic nanoparticles were collected 

by magnetic separation and washed 3 times with 10 mL of coupling solution [0.8 % (v/v) glacial 

acetic acid in methanol] and redispersed in 10 mL of the coupling solution for storage at 4°C till 

further use. It was observed that surface amine density decreased after prolonged storage, 

consequently the amine functionalised nanoparticles were disposed after 1 month and new batch 

was produced for further use. The surface amine density was measured by an established 

colorimetric assay using 4-nitrobenzaldehyde (Moon et al., 1996, Bruce and Sen, 2005).  

 

 Water Method 

Surface functionalization of silica coated magnetite nanoparticles by water method was 

performed following a modified stategy from the previously reported method by Bruce et al. 

(Bruce and Sen, 2005). Silica coated magnetite nanoparticles (ME33, 150 mg) were collected 

using magnetic separation and redispersed in a (3-Aminopropyl) triethoxysilane (APTS) in water 

solution (30 mL, 2% (w/v)). The mixture was kept in an incubator at 50ºC on end over end rotator 

at 40 rpm for 24 hours. Surface functionalised magnetic nanoparticles were collected by magnetic 

separation and washed 3 times with 10 mL of coupling solution [0.8% (v/v) glacial acetic acid in 

methanol] and redispersed in 10 mL of the coupling solution for storage at 4°C till further use. 
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The surface amine density was determined by colorimetric assay using 4-nitrobenzaldehyde 

(Moon et al., 1996, Bruce and Sen, 2005) and compared with the results from TPRE surface 

functionalization method (results are presented in Section 4.2).  

 Colorimetric Assay of Amine Density 

Colorimetric assay was used to determine the density of amine groups on the surface of the amine 

functionalised silica coated magnetite nanoparticles. This method was performed according to the 

protocol described first by Moon et al. (Moon et al., 1996) for flat surface NH2 groups and later 

modified by Bruce and Sen (Bruce and Sen, 2005). In this method 4-Nitrobenzaldehyde was 

reacted with amine functionalized nanoparticles followed by removal of conjugated 4-

Nitrobenzaldehyde by hydrolysis. The amount of 4-Nitrobenzaldehyde in the solution was 

analysed using UV-Visible spectrophotometry by measuring the absorbance value at λ282nm. The 

assay is illustrated by Scheme 2-7 

 

 

Scheme 2-7. Schematic representation of the 4-NBA colorimetric surface assay 

Surface functionalised nanoparticles (5 mg) were placed in a 1.5 mL eppendorf tube and washed 

four times with coupling solution [0.8% (v/v) glacial acetic acid in methanol] by magnetic 

separation. Afterward nanoparticles were redispersed in 1 mL of 4-nitrobenzaldehyde in coupling 

solution (0.7 mg/mL) and placed on end over end rotator in an incubator at 25°C for 3 hours so 

that 4-nitrobenzaldehyde react with the amine group of surface functionalised nanoparticles. After 

3 hours, the supernatant was collected by magnetic separation and absorbance at λ282 was 
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measured by UV-Visible spectroscopy. After removal of the supernatant, nanoparticles were 

washed again with coupling solution (4 × 1 mL) and redispersed in 1 mL of hydrolysis solution 

(75 mL water: 75 mL methanol: 0.2 mL glacial acetic acid). The reaction mixture was then placed 

in an incubator at 25°C on end over end rotator at 40 rpm for further 1 hour. The supernatant was 

collected using magnetic separation and absorbance at λ282 was measured again. The amount of 

4-nitrobenzaldehyde detected in the hydrolysis solution indicates the amount of amine groups 

present on the surface of the nanoparticles. The surface amine density was calculated using a 

calibration curve of standard solutions of 4-nitrobenzaldehyde in coupling and hydrolysis 

solution.  

 Converting Surface Amine Groups to Aldehydes 

Conversion of surface amine groups to aldehydes was performed using glutaraldehyde reaction 

as reported earlier (Nimni et al., 1987). 

Sodium chloride (NaCl, 175.3 g, 3 mol) and sodium citrate (88.2 g, 0.3 mol) were dissolved in 

water (1 L) to make SSC buffer (20×) with the final pH of 7.4 and subsequently it was diluted to 

prepare dilute SSC buffer (1×). Surface amine functionalized nanoparticles (50 mg of surface 

functionalized ME33) in coupling solution were washed 3 times with 10 mL of SSC (1×) buffer 

and the supernatant was removed. Glutaraldehyde solution (4 mL, 5% (w/v) in 20×SSC buffer) 

was added to the nanoparticles and the suspension was placed in an incubator at 18°C for 3 hours 

with end-over-end rotation (40 rpm). After 3 hours, the nanoparticles were collected magnetically 

and washed 3 times with 5 mL of SSC (1×) buffer followed by 3 washes with 5 mL of PBS buffer. 

Nanoparticles where then redispersed in PBS buffer and kept at 4°C till further use. The procedure 

of converting surface amine groups to aldehydes using glutaraldehyde is presented in Scheme 

2-8. 

 

Scheme 2-8 Conversion of surface amine groups to aldehydes using glutaraldehyde 
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 Enzyme Immobilisation on Silica Coated Magnetite 

Nanoparticles 

Enzyme was immobilised into nanoparticles following two strategies of chemical bonding and 

physical adsorption. 

 Covalent Enzyme Immobilisation on Nanoparticles 

Silica-coated glutaraldehyde-modified magnetic nanoparticles (glutaraldehyde-modified ME33, 

50 mg) were magnetically collected from PBS buffer and added to lipase solution (CRL or PFL, 

4 mL, 1 mg/mL, in PBS buffer). The mixture was placed in an incubator at 18°C with constant 

rotation at 40 rpm for 20 hours. After 20 hours of reaction, the enzyme immobilised nanoparticles 

were separated using magnetic separation. The supernatant was used for measuring the amount 

of enzyme loaded into nanoparticles. The enzyme concentration was measured following 

Bradford assay by measuring absorption at λ595nm by UV spectrophotometry (Bradford, 1976). 

The enzyme immobilized nanoparticles were redispersed in PBS buffer and kept at 4°C until 

further use. The procedure for enzyme immobilisation is demonstrated in Scheme 2-9. 

 

Scheme 2-9. Schematic diagram of enzyme immobilisation on surface functionalised core-shell silica-magnetite 
nanoparticles 

 Physical Adsorption of Enzyme on Nanoparticles 

Mesoporous silica coated nanoparticles (not-functionalised ME33, 50 mg) were used for physical 

absorption of the lipase. The nanoparticles were washed with PBS buffer and collected 

magnetically. Lipase solution (CRL or PFL, 4 mL, 1 mg/mL lipase in PBS) were added to the 

nanoparticles and the mixture was place on an end to end rotator at 40 rpm and incubated at 18°C 

for 20 hours. After incubation, the enzyme adsorbed nanoparticles were magnetically separated 

and the amount of enzyme immobilised was calculated by determining the amount of lipase left 

in the supernatant using Bradford assay by measuring absorption at λ595nm using UV 

spectrophotometry. The enzyme immobilized nanoparticles were redispersed in PBS buffer and 

kept in fridge (at 4°C) until further use. 
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 Bradford Assay 

Bradford Coomassie brilliant blue G-250 assay is a spectroscopic analytical procedure used to 

quantify the concentration of protein available in a solution. Bradford assay is the most commonly 

used assay since it enables rapid and simple protein quantification in cell lysates, cellular 

fractions, or recombinant protein samples (Bradford, 1976, Ernst and Zor, 2010).  

The Bradford assay is performed by adding Bradford reagent (1 mL) to the lipase solution (1 mL) 

and mix completely followed by measuring the absorbance at λ595nm. The amount of lipase 

available in the solution is then calculated using a calibration curve prepared using a range of 

lipase concentrations. 

 Model Catalysis Reaction, Hydrolysis of para-nitrophenyl 

palmitate (pNPP)  

 Immobilized Enzyme Activity at 25ºC 

Immobilized enzyme activity was measured by employing the routine para-nitrophenyl palmitate 

assay (Gupta et al., 2002, Sen et al., 2010). The basis of this assay is the colorimetric estimation 

of concentration of 4-nitrophenol released in the reaction mixture as a result of enzymatic 

hydrolysis of pNPP by measuring the absorbance at λ410nm.  

Lipase (0.5 mg of CRL or PFL) either free or immobilised (chemically bonded or physically 

adsorbed into nanoparticles) was added to the pNPP solution (1 mL, 3.74 µmol/mL). The pNPP 

solution was prepared in a 1:1 mixture of isopropanol and reagent A. Reagent A was prepared by 

adding Gum Arabic (0.0667 g) ,Tris-HCl buffer (12 mL, 250 mM, pH 7.8) and sodium 

deoxycholate (0.267 g) and deionised water (48 mL). The hydrolysis reaction was placed on an 

end over end rotator at 40 rpm in incubator at 25ºC for 1 hour. The nanoparticles were then 

magnetically collected and UV-Visible spectrophotometry at λ410nm was used to measure the 

concentration of para nitrophenol. In order to test the immobilisation efficiency and reusability of 

the immobilised enzyme, the enzyme-immobilised nanoparticles were collected after the reaction, 

washed 3 times with PBS buffer and further used in 3 more identical cycles for hydrolysis of 

pNPP. 
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 Immobilized Enzyme Activity in Presence of an Alternating Current 

(AC) Magnetic Field 

Hydrolysis of pNPP was performed for the first time as per our knowledge under influence of an 

alternating magnetic field (AC) to evaluate the effect of an AC field on the enzymatic activity of 

the immobilized enzyme. To perform the hydrolysis reaction under alternating magnetic field, 

lipase (0.5 mg of CRL) either free or immobilised (covalently immobilised or physically adsorbed 

into nanoparticles), was added to the ester solution (1 mL, 3.74 µmol/mL) in a glass vial. The 

ester solution was prepared same as described in 2.13.1. The hydrolysis reaction was exposed to 

an alternating magnetic field applied by a DM2-nb nanoscale biomagnetics AC applicator. The 

reaction was performed under stirring at 40 rpm using an overhead stirrer. Control reaction was 

performed simultaneously in an incubator at 32°C. An aliquot of the reaction mixture was 

withdrawn during the reaction at different time intervals and analysed with UV-Visible 

spectrophotometry at λ410nm in order to determine the concentration of para nitrophenol in 

solusion. The enzyme-immobilised nanoparticles were then washed 3 times with PBS buffer and 

further used for 2 more identical cycles of pNPP hydrolysis for reusability evaluation.  

 Desymmetrization of cis-3,5-Diacetoxy-1-cyclopentene to 

(1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol 

Desymmetrization of meso-cyclopent-2-en-1,4-diacetate by enzymatic hydrolysis was performed 

according to our recently published report (Sharifabad et al., 2014) by adding cyclopent-2-en-1,4-

diacetate (50 µmol) to the mixture of hexane: water (1 mL, 4:1) followed by the addition of lipases 

(0.5 mg of free or equivalent amount of immobilised lipase on nanoparticle support). The reaction 

mixture was place on an end to end rotator (40 rpm) and incubated at 25°C for 48 hours. Since 

the reaction products such as meso-cyclopent-2-en-1,4-diol, (1S,4R)-cis-4-acetoxy-2-

cyclopenten-1-ol and it’s enantiomer (1R,4S)-cis-4-acetoxy-2-cyclopenten-1-ol are soluble in 

water, during the reaction, a 5 µL aliquot of the reaction mixture (water layer) was withdrawn at 

different time intervals (1 hour, 4 hours, 24 hours and 48 hours) and analysed using gas 

chromatography for determination and quantification of each product. The hexane layer was 

analysed for determination of initial concentration of cis-3,5-diacetoxy-1-cyclopentene. The 

amount of the products were calculated using pre-constructed calibration curves of standard 

solutions of meso-cyclopent-2-en-1,4-diol, (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol and its 

enantiomer (1R,4S)-cis-4-acetoxy-2-cyclopenten-1-ol in water and meso-cyclopent-2-en-1,4-

diacetate in hexane. After the 48 hours reaction, the enzyme immobilized nanoparticles were 

washed 3 times with 1 mL PBS buffer and the experiment was repeated under identical conditions 

to test the stability and reusability of the immobilized enzyme. The reaction scheme is presented 

in Scheme 2-10. 
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This reaction was repeated at 37ºC to evaluate the effect of the temperature on the immobilised 

lipase activity in hydrolysis of the meso-cyclopent-2-en-1,4-diacetate. 

 

Scheme 2-10. Hydrolysis of meso-cyclopent-2-en-1,4-diacetate 

 

 Synthesis of Liposome Coated Magnetic Nanoparticles: 

Magnetoliposomes  

Magnetoliposomes were prepared by using the synthesised ultra-small magnetite nanoparticles 

(ME18) as core with multilamellar liposomes (MLVs) shell. Liposomes were resized to reduce 

the size using high energy ultrasonication as published earlier (Sen et al., 2012a). 

Liposomes were prepared by dissolving soyabean phosphatidycholine (SPC, 1321 mg) and 

cholesterol (680 mg) in chloroform (50 mL) within a 500 mL round bottom flask. The flask 

containing the phospholipid solution was placed on a rotary evaporator (Buchi Rotavapor R-114, 

Buchi, Switzerland) and immersed in a 41°C water bath for 2 hour. Upon evaporation of 

chloroform, a thin film of lipid formed on the inner wall of the flask. The film was hydrated with 

200 mL of deionized water and shaken manually for 15 min followed by 2 hours annealing at 

room temperature. After 2 hours, magnetite nanoparticles (ME18, 1 mL, 22 mg/mL in water) 

were added to the liposome solution (40 mL) and the mixture underwent strong ultrasonic 

vibration using a titanium horn (Vibra cell sonicator, Sonics, Sonics & Materials, Inc.) for 12 

minutes (3×4 minutes with 1 min rest in between in order to avoid excessive heat generation). 

The mixture was kept in an ice bath during the sonication in order to avoid excessive heat 

generation. 

Empty magnetoliposomes were used as control samples in order to compare the effect of the drug 

loading on liposomes size. (Dynamic light scattering (DLS) results are presented in Figure 3-47). 

 Drug Loading of Magnetoliposomes 

Mitomycin C (MMC) is a powerful water-soluble antibacterial and antitumor antibiotic agent but 

the dose-limiting toxicity, subacute and cumulative myelosuppression, and nephrotoxicity limit 

its therapeutic efficacy. The clinical use of MMC is significantly hindered due to the rapid 

elimination from the body with a low plasma level around the effect-relevant sites in vivo, which 

increase the importance of new strategies for delivery of MMC (Li et al., 2014b).  



78 

Loading of the MMC drug into the liposome-coated magnetite nanoparticles was carried out by 

two different methods.  

 Drug Loading Using an Incubation Method 

Drug loading using incubation method was performed following the method recently reported by 

our group (Sen et al., 2012a). To load the anticancer drug MMC into the liposome coated magnetic 

nanoparticles, firstly the density of the magnetoliposomes were determined by drying 3×1 mL of 

the mixture at 50°C overnight which measured to be 10.8 mg/mL. MMC solution (1 mL, 

0.08 mg/mL in water) was added to the magnetoliposome solution (1 mL, 10.8 mg/mL) and kept 

in an incubator at 10°C for 48 hours. During this time, an aliquot was taken in different time 

intervals (30 minutes, 1 hour, 3 hours, 24 hours and 48 hours) and the MMC concentration was 

determined by measuring the UV absorption at λ365 nm. Drug loaded nanoparticles were separated 

from the solution and washed with deionized water prior to use in the drug release study. 

 

 Drug Loading Using Ultrasonication 

In this method strong ultrasonic vibration was applied to the MMC containing magnetoliposome 

solution (10 mL of 0.08 mg/mL MMC solution and 10 mL of 10.8 mg/mL of liposome solution) 

using titanium horn for 8 minutes and the drug loading content was calculated by measuring the 

MMC concentration left in the solution using UV absorption at λ365 nm. The concentration values 

were calculated using a pre-established standard curve of MMC in water. MMC-loaded 

nanoparticles were separated from the solution by magnetic separation and washed with deionized 

water and kept at 4°C until their further use in the drug release study. 

 

 Drug Release from Magnetoliposomes 

Drug release study was carried out in PBS at different conditions such as room temperature 

(23°C), body temperature (37°C) and under the influence of an AC magnetic field. 

 

 Drug Release at Body Temperature (37°C) and Room Temperature 

(23°C) 

The MMC release from magnetoliposomes were evaluated in PBS buffer (pH=7.4) at two 

different temperatures; body temperature (37°C) and room temperature (23°C). To determine the 

drug release performance of the magnetoliposomes, the drug loaded magnetoliposome solution 

(1 mL) was kept in an incubator at constant temperature of 37 or 23°C, on an end over end rotator 
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(40 rpm) for 48 hours. During this period aliquots were taken using magnetic separation at 

different time intervals and the drug content was calculated by measuring the absorbance at λ365 nm. 

The drug concentration was calculated by using pre-stablished standard curve of MMC in PBS 

buffer.  

 Drug Release in the Presence of an AC Magnetic Field 

Drug release study was carried out under alternative magnetic field to evaluate the feasibility of 

the MMC loaded magnetoliposomes to be used together with hyperthermia cancer treatment and 

to test the stimuli triggered drug release performance. To study the drug release performance 

under alternative magnetic field the drug loaded magnetoliposomes (2 mL in PBS buffer) were 

placed in an AC field applicator with a frequency of 406 KHz and a 40 rpm overhead rotator for 

30 minutes. The drug release profile was determined by measuring UV absorbance at λ365 nm and 

comparing the results with the pre-established standard curve of MMC in PBS buffer. 

 Drug Loading of the Mesoporous Silica Coated Magnetic 

Nanoparticles 

Drug loading into mesoporous silica core-shell nanoparticles was performed both with MMC and 

Doxorubicin (DOX). 

 Mitomycin C (MMC) Loading of the Mesoporous Silica Coated Magnetic 

Nanoparticles 

MMC loading of the magnetic nanocomposites were performed in water. Mesoporous silica 

coated magnetite nanoparticles (ME16, ME32 and ME33, 4 mg) were placed in 1.5 mL Eppendorf 

tubes and incubated with aqueous MMC solution (1 mL, 118 µg/mL) at 10°C with end over end 

rotation for 48 hours. The amount of MMC loaded into the nanomaterials were determined at 

different time intervals by measuring the UV absorption at λ365nm. The concentration of MMC 

encapsulated into the nanoparticles were calculated by comparing the absorption values with a 

pre-established standard curve of MMC in water. 

The experiment was repeated at 18°C to evaluate the effect of temperature on drug loading profile 

of the materials. MMC-loaded nanoparticles were separated from the solution by magnetic 

separation and washed with deionised water before the release study. 

 Doxorubicin (DOX) Loading of the Mesoporous Silica Coated Magnetic 

Nanoparticles  

Doxorubicin (DOX) loading of the magnetic nanocomposites was performed in PBS buffer. DOX 

solution (10 mL, 0.18 mg/mL) was added to the mesoporous silica coated magnetite nanoparticles 
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(ME60, 10 mg) and underwent ultrasounication to obtain a homogeneous solution. The mixture 

was then stirred for further 48 hours and the loading profile was accessed at different time 

intervals by measuring the UV absorption at λ485nm. The samples were magnetically collected, 

washed with PBS and freeze dried to be used drug release and in cellular study. 

 

  Drug Release from Mesoporous Silica Coated Magnetic 

Nanoparticles 

 Drug Release at Body Temperature (37°C)  

Release of MMC from silica coated magnetite nanoparticles was studied in PBS buffer (pH 7.4). 

The drug loaded nanoparticles were washed 3 times after drug loading to remove the unloaded 

drug from the surface of the nanoparticles. Washed nanoparticles were redispersed in 1 mL of 

PBS buffer and placed in incubator at 37°C on an end over end rotator for 48 hours. An aliquot 

was taken at different time intervals and used for measuring the concentration of MMC released 

into the solution. The concentrations of MMC in the solution were determined by comparing the 

absorption values with a pre-established standard curve of MMC in PBS buffer. 

Same process was performed to study the DOX release from the mesoporous silica coated 

magnetic nanoparticles at body temperature. DOX release from silica coated nanoparticles were 

also studied at pH=5.5 (acetate buffer) to evaluate the effect of pH change on drug release profile 

of the nanoparticles. 

 Drug Release in presence of an Alternating Magnetic Field 

The DOX release was further studied in the presence of an AC magnetic field. DOX loaded 

magnetic nanoparticles (0.1 mg drug equivalent/1 mL in PBS buffer) were placed in an AC field 

with the frequency of 406 kHz and 40 rpm overhead rotator. The drug release profile was 

quantified by measuring UV absorbance at λ485nm and comparing the results with the standard 

curve of DOX in PBS buffer. As a control experiment, samples were placed in an incubator at 

43°C and the drug release was assessed to determine the effects of the increased temperature and 

AC field exposure on drug release profile. 

 Drug Loading of the Liposome Capped Mesoporous Silica 

Coated Magnetic Nanoparticles 

The mesochannels of the mesoporous silica coated nanoparticles were capped with liposomes to 

reduce the drug leakage into the solution and improve the control over the release profile. DOX 
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loading and liposome capping of the mesoporous magnetic nanocomposites are illustrated in 

Scheme 2-11. 

Mesoporous silica coated magnetic nanoparticles (ME60, 10 mg) were washed with PBS buffer 

before drug loading and redispersed in DOX solution (10 mL, 0.18 mg/mL). After 4 hours the 

liposome solution (2.5 mL, 4 mg/mL, prepared as explained before in 2.15) was added to the drug 

mixture and underwent ultrasounication (using titanium horn sonicator while the sample was 

placed in ice bath to protect it from overheating) to obtain a homogeneous solution. The mixture 

was then placed in an incubator at 18°C, on end over end rotator for further 48 hours. The drug 

loading profile was evaluated at different time intervals by measuring UV absorption at λ485nm. 

The drug loaded nanoparticles were collected and freeze dried to be used further in drug release 

and cellular study. 

 

 

Scheme 2-11. The process of DOX loading of the liposome capped silica magnetite core-shell nanoparticles 

 

 Drug Release from the Liposome Capped Mesoporous Silica 

Coated Magnetic Nanoparticles 

In vitro release profile of DOX from the liposome capped nanoparticles was investigated in PBS 

buffer (pH 7.4) at two different temperatures of 37°C and 42°C to evaluate and confirm the 

hyperthermia triggered drug release. DOX release from liposome capped mesoporous silica 
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coated magnetic nanoparticles were also studied at pH 5.5 (acetate buffer) at 37°C to evaluate the 

effect of pH change on drug release profile of the nanoparticles. 

DOX-loaded freeze-dried nanocomposites were dissolved in PBS buffer (0.1 M, 3 mL, pH 7.4), 

covered with aluminium foil and placed in an incubator at 37°C on an end over end rotator 

(40 rpm) for 48 hours. At different time intervals, 0.1 mL of the solution was withdrawn (using 

magnetic separation) for UV-Visable analysis. The DOX concentration was calculated based on 

comparing the absorbance at λ485nm to a pre-established standard curve of DOX prepared in the 

same solution. Same process was repeated in an incubator at 42°C.  

To study the release profile under alternative magnetic field, DOX loaded nanoparticles in PBS 

buffer solution were placed in an AC magnetic field with magnetic field strength of up to 200 G 

and the frequency of 406 kHz and an overhead rotator (40 rpm). The concentration of the DOX 

released into the solution was calculated by measuring UV absorbance at λ485nm and comparing 

the results with the standard curve of DOX in PBS buffer.  

 Preparation of Polymeric (PEG-PCL) Micelles  

Biodegradable PEG-PCL polymeric micelles (self-assembled from PEG-PCL copolymer) were 

prepared to achieve hyperthermia stimuli triggered delivery of doxorubicin (DOX). Magnetite 

nanoparticles were encapsulated inside the micelle core following the method reported by Hong 

et al. (Hong et al., 2008b).  

The micellar solution was prepared by adding PEG-PCL copolymer (10 mg) to THF (2.0 mL). 

The mixture was stirred till the polymer completely dissolved, after which deionized water 

(10 mL) was added dropwise under stirring. The resulting solution was kept at room temperature 

overnight to allow the evaporation of THF. The micellar solution was characterized by dynamic 

light scattering (DLS) to determine the micelle size (the results are presented in Figure 3-49) and 

1H NMR to study the micelles formation (the results are presented in Figure 3-61). 

 Preparation of PEG-PCL Magnetic Micelles 

PEG-PCL copolymer (120 mg) and magnetite nanoparticles (ME55, 30 mg) were added to THF 

(30 mL) and stirred for 30 minutes, afterward PBS (130 mL) was added to the mixture under 

sonication. The resulting solution was stirred at room temperature for further 3 hours. Magnetic 

micelles were magnetically collected and washed with PBS and subsequently filtered through a 

0.22 μm membrane to remove the aggregates. The micellar solution was characterized and freeze 

dried for further use in cytotoxicity studies. 
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 Conversion of DOXHCl to Hydrophobic DOX 

Doxorubicin hydrochloride (DOX.HCl, 25 mg) was deprotonated by dissolving it in a mixture of 

triethylamine (TEA, 0.05 mL, 0.358 mmol) and Dimethyl sulfoxide (DMSO, 7.5 mL). The 

mixture was sonicated in a water bath sonicator for 5 minutes and then placed in an incubator at 

18°C over night. The container was covered with aluminium foil to protect DOX from light. 

 Preparation of Drug Loaded Magnetic Micelles  

PEG-PCL copolymer (120 mg) and hydrophobic magnetic nanoparticles (ME55, 30 mg) were 

added to THF (30 mL). Next the drug containing solution (10 mg of drug) was added to the 

polymer solution and stirred till completely mixed. To form the micelles, PBS buffer (130 mL) 

was added to the mixture under ultrasonic agitation. The mixture was stirred for 3 hours in dark 

to allow the formation of DOX loaded micelles. The drug loaded micelles were collected through 

magnetic separation and the supernatant was used to determine the remaining drug in the solution 

in order to calculate the drug loading content. The drug loaded magnetic nanoparticles were 

washed with PBS solution in order to remove the organic solvent and loosely bounded surface 

DOX. The drug loaded magnetic nanoparticles were filtered through a 0.22 μm membrane to 

remove large aggregates. The drug loaded micelles were freeze dried to be used later in drug 

release and cellular studies. To further confirm the drug loading content 1 mg of the drug loaded 

nanoparticles were dissolved in DMSO under ultrasonication and the drug content was confirmed 

using UV-visible at λ485nm. 

 Preparation of Drug Loaded PEG-PCL Capped Silica Coated 

Magnetite nanoparticles 

To prepare the PEG-PCL capped silica coated magnetite nanoparticles, PEG-PCL copolymer 

(120 mg) was dissolved in THF (30 mL). Hydrophobic silica coated magnetite nanoparticles 

(ME93 or ME94, 30 mg) were added to the polymer mixture and sonicated for 5 minutes followed 

by 15 minutes of stirring. PBS (130 mL) was then added to the mixture and stirred for further 3 

hours to form the micelles around the hydrophobic silica core. The materials were labelled as 

ME93-PEG-PCL and ME94-PEG-PCL. The process of drug loading and capping of the silica 

coated nanoparticles are presented in Scheme 2-12. 
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Scheme 2-12. The process of drug loading and capping of the silica magnetite core-shell nanoparticles 

To prepare the drug loaded PEG-PCL capped silica coated magnetite nanoparticles, PEG-PCL 

copolymer (120 mg) was dissolved in THF (30 mL). Subsequently, hydrophobic silica coated 

magnetite nanoparticles (ME93 or ME94, 30 mg) were added to the polymer mixture and 

sonicated for 5 minutes. After that the drug containing solution (10 mg of drug, prepared as 

explained in Section 2.23) was added to the mixture. The mixture was stirred for 15 minutes 

before adding PBS buffer (130 mL) to form the micelles around the hydrophobic silica core. The 

mixture was stirred for further 3 hours in dark. The drug loaded magnetic nanocomposites were 

separated magnetically (the supernatant was collected and UV absorbance was measured to 

determine the drug loading content) and washed with PBS buffer to remove the organic solvents 

and unencapsulated DOX from the nanoparticles. The nanoparticles solution was filtered through 

a 0.45 μm membrane to remove large aggregates. The drug loaded micelles were freeze dried for 

drug release and cytotoxicity studies.  

 Calculations of the Drug Loading Content and Efficiency 

Drug loading efficiency (DLE) is defined as the weight percentage of the drug encapsulated into 

the nanoparticles compared to the initial feeding amount. The drug loading content (DLC) is 

calculated from the mass of incorporated drug divided by the weight of nanoparticles. 

𝐷𝐿𝐸 = 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔−𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔
× 100%   Equation 2-1 

𝐷𝐿𝐶 =  
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔−𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
× 100%  Equation 2-2 

After drug loading and before washing the drug-loaded nanoparticles, the solution was placed on 

magnetic stand and supernatant was removed. The UV absorbance of the supernatant was 

measured to determine the amount of unencapsulated drug remained in the solution. The values 

were used to calculate the DLC and DLE. 

To further confirm the DLE and DLC of the magnetic micelles, the lyophilized micelles were 

weighed and dissolved in a mixture of chloroform and DMSO (1mL, 1:1, v/v) by ultra-sonication. 

After which the solution was kept on a magnet to eliminate the magnetite nanoparticles. An 
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aliquot of the solution was taken and used for the UV–Vis measurement. DOX concentrations 

were quantified using a pre-established calibration curve of DOX in same solution.  

 In vitro Drug Release From PEG-PCL Nanocomposites  

In vitro DOX release profiles of PEG-PCL magnetic micelles and PEG-PCL capped nanoparticles 

were investigated in PBS buffer (pH 7.4) at both body temperature (37°C) and hyperthermia 

treatment temperature (42°C). The drug release was also investigated in acetate buffer (pH 5.5) 

to ensure the intracellular drug release due to a pH decrease around cancerous tissue and inside 

the endosomes/lysosomes of the cells.  

To determine the drug release performance of the PEG-PCL capped nanoparticles, DOX-loaded 

freeze-dried nanoparticles, equivalent of 0.3 mg of free DOX (calculated from drug loading 

measurements) were dispersed in PBS buffer (0.1 M, 3 mL, pH 7.4) or acetate buffer solution 

(3 mL, 0.10 M, pH 5.5) and covered with aluminium foil. The reaction mixture was placed in an 

incubator at 37°C on an end over end rotator stirring at 40 rpm for 48 hours. Using magnetic 

separation, 0.1 mL of the buffer solution was withdrawn at different time intervals for UV-Vis 

analysis. DOX concentration was calculated based on comparing the absorbance at λ485nm to a pre-

established standard curve of DOX in the same solution.  

Drug release profile of the PEG-PCL capped nanoparticles was also evaluated under the influence 

of an AC magnetic field to study the feasibility of the DOX loaded magnetic nanoparticles to be 

used together with hyperthermia cancer treatment and to test the stimuli triggered drug release 

performance. To study the drug release performance under alternative magnetic field the drug 

loaded nanoparticles (0.1 mg drug equivalent of drug loaded nanoparticles/1 mL in PBS buffer) 

were placed in an AC magnetic field with maximum magnetic field strength of 200 G and 

frequency of 406 kHz and stirred at 40 rpm using an overhead stirrer. The concentration of the 

drug released into the solution was determined by measuring UV absorbance at λ485nm and 

comparing the results with standard curve of DOX in PBS buffer. Control tests were performed 

in an incubator at 43°C to study the differences in drug release profiles in incubator and under 

AC magnetic field. 

 In vitro Cellular Study  

Cell culture is a useful tool in drug development research as it can provide excellent model 

systems for studying the effect of drugs on physiology and biochemistry of cells. The major 

advantage of using cell culture for research applications is the consistency and reproducibility of 

results that can be obtained from using a batch of clonal cells. Two cell lines of MCF7 and U87 

were used in this study. 
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 MCF7 Cell Line 

MCF7, human breast adenocarcinoma cell line, was used for the cell culture experiments. To 

grow the MCF7 cells the ATCC (American type culture collection) complete growth medium 

(Eagle's Minimum Essential Medium (EMEM)+10% (v/v) Fetal Bovine Serum (FBS)) was used 

with the addition of, Non-Essential Amino Acids Solution (NEAA, 1%), Sodium Pyruvate (1%), 

Penicillin Streptomycin (Pen Strep, 1%) and L-Glutamine (1%). The seeding density of MCF7 

was about 5×104 cells/cm2 in T-75 flask containing 10 mL of the growth medium as 

recommended by the ATCC (ATCC, 2015). 

 U87 Cell Line 

U87 is a glioblastoma, astrocytoma cell line derived from human malignant gliomas classified as 

grade IV as of 2007. To grow the U87 cells the ATCC complete growth medium (Eagle's 

Minimum Essential Medium (EMEM)+10% (v/v) FBS) were used with the addition of, Non-

Essential Amino Acids Solution (NEAA, 1%), Sodium Pyruvate (1%), Penicillin Streptomycin 

(Pen Strep, 1%) and L-Glutamine (1%). The seeding density of U87 cells was about 

4×104 cells/cm2 in T-75 flask containing 10 mL of the growth medium as recommended by ATCC 

(ATCC, 2016). 

 Thawing of Frozen Cells 

Thawing of frozen cells were performed according to ATCC protocols. To prepare the cells from 

frozen state first the appropriate complete growth medium for each cell line was prepared and 

placed in the 37°C water bath. The cryovials containing the frozen cells were retrieved from liquid 

nitrogen and placed in a water bath at 37°C with gentle swirling to speed the thawing process. It 

is important that this step performed rapidly, within 2 minutes. Complete growth medium (9 mL 

of the pre-warmed medium) was added to a centrifuge tube and the cells were transferred to this 

medium and resuspended. The cell solution was centrifuged at 1000 rpm for 5 minutes and 

subsequently, the medium was discarded and the cell pallet was resuspended in 10 mL of growth 

media. An aliquot was taken for cell count. After cell count the cells were placed in T-25 flasks 

with appropriated cell density (5×104 cell/cm2 for MCF7 and 4×104 cell/cm2 for U-87). Flasks 

containing the cells were kept in an incubator at 37°C ± 1°C in 5% CO2. Cells were monitored 

and passaged when needed (at 70% to 80% confluent). 

 Passaging the Cells 

Cells were passaged at 70-80% confluence. Trypsin was used as dissociation reagent. To passage 

the cells, the media was aspirated from the culture flask (Serum was removed from the cells as it 

inactivates trypsin), and cells were washed with pre-warmed PBS buffer (5 mL for 75 cm2 T-

flask). After the PBS was removed from the flask, pre-warmed trypsin solution was added to the 



87 

flask (2 mL for 75cm2 T-flask) and kept in an incubator at 37°C ± 1°C in 5% CO2 for 3 to 5 

minutes till the cells are detached. After that the growth medium was added to the flask (2 mL for 

75cm2 T-flask) and cells were dispersed by pipetting the medium over the cell layer several time. 

The cell suspension was then transferred to a 15 mL centrifuge tube and centrifuged for 5 minutes 

at 1000 rpm. Afterward supernatant was extracted, leaving a small amount of medium above the 

cell pellet. The cell pellet was redispersed in 3 mL of pre-warmed growth medium and an aliquot 

was taken for cell count using hemocytometer. The cells were then transferred to new flasks 

containing growth media (10 mL for 75cm2 T-flask) and placed in an incubator at 37oC with 5% 

CO2.  

 Cell Count 

Cell counts were performed using a Hemocytometer. To determine number of the cells in the cell 

suspension for calculating the seeding density a coverslip was placed on hemocytometer and 

10 µL of the cell solution was added to the hemocytometer and visualised using a microscope. 

The average number of cells per large square used to calculate the number of cells per mL of cell 

solution. 

 Cell Viability Assessment Using Trypan Blue 

Trypan Blue Solution, 0.4%, is frequently used as a cell stain to assess cell viability using the dye 

exclusion test. Trypan Blue cell viability test is usually performed with the hemocytometer cells 

counting routine. The dye exclusion test is based upon the concept that viable cells do not take up 

Trypan Blue, but dead cells are permeable and take up the dye. Cell viability is calculated as: 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 

 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
   Equation 2-3 

 

Viability assessment using Trypan Blue was performed by mixing the cell suspension (100 µL) 

and Trypan blue (100 µL) in an Eppendorf tube. 10 µL of this suspension was added to one of the 

hemocytometer chambers and cell count was performed. The dead cells adsorbed the dye and 

appeared blue. 

 Growth Curve Preparation 

The growth curves of U87 and MCF7 cell lines were established to evaluate the growth 

characteristics for each cell line. The cell growth curves are commonly used to determinate the 

best time range for evaluating the effects of the biological compounds on the cells.  

After reseeding the cells into the fresh medium, cells require some time to recover from the 

trypsinization, adjust to the new environment, and to secrete an extracellular matrix that facilitates 

the linkage between the cells and their proliferation. This is called “Lag phase”, in this period 
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cellular metabolism is accelerated, but cells are not able to replicate so there is no increase in the 

cell number. Subsequently, the cells enter into an exponential growth phase, known as “log-

phase”. During this phase, the growth medium is consumed at a maximal rate, the culture reaches 

the maximum growth rate and the number of cells increase exponentially. The time needed for 

cells to double in number is known as the generation time or population doubling time (PDT). 

The effects of drugs and biologicals agents that stimulate or inhibit cellular growth is mostly 

studied in this phase (Rubio-Pino, 2013). Finally as the cell population grows, the nutrients in the 

growth medium are metabolised and as a result waste materials, toxic metabolites and inhibitory 

compounds accumulate, which create an unfavourable environment for the cell growth. This leads 

to a stationary phase. In this phase reproduction rate slows down, until it completely stops and the 

cell population is constant. Finally exhaustion of the nutrients and the subsequent build-up of 

metabolic waste products and other toxic materials in the cell media cause cell death. In death 

phase, cells loses their ability to reproduce and begin to die.  

On day 0, standard 96-well plates were seeded with MCF7 cells at a concentration of 2×103 cells 

per well (the surrounding outer wells were filled with growth medium to minimise the variation 

in cell growth between wells at the edge compared with those in the middle). The plates were 

placed in an incubator at 37oC under 5% CO2. After 3 hours the medium was removed from the 

first plate and replaced with 100 µL of medium and 10 µL of the PrestoBlue reagent. The plate 

was covered with aluminium foil and incubated for 30 minutes at 37°C under 5% CO2 in a 

humidified incubator. Fluorescence was measured from the bottom of the plate with excitation at 

535 nm and emission at 612 nm using the Tecan Genius Pro Plate Reader. The process was 

repeated every 24 hours for 8 days to generate the growth curve. 

To obtain the growth curve for U87 cells, the same process was performed with the cell seeding 

concentration of 4×103 cells per well. 

 Cytotoxicity Assay using Presto Blue 

PrestoBlue (PB) is a ready to use cell permeable resazurin-based solution that functions as a cell 

viability indicator by using the reducing power of living cells to quantitatively measure the 

proliferation of cells. When added to cells, the PrestoBlue® reagent is modified by the reducing 

environment of the viable cells and turns red in colour, becoming highly fluorescent. This colour 

change can be detected using fluorescence or absorbance measurements (life-technologies, 2014, 

Boncler et al., 2014, Lall et al., 2013). 

Cytotoxicity assessments using PrestoBlue reagent were performed according to the 

manufacturer's protocol. Typically for cells seeded in 96 well plates, PrestoBlue reagent (10 µL) 

was added to each well containing 100 µL of growth media. The plates were covered with foil 

and incubated for 30 minutes. The fluorescence was measured using excitation at 535 nm and 

emission at 612 nm using the Tecan Genius Pro Plate Reader. 
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 In vitro cytotoxicity Study of the Prepared Materials  

PrestoBlue (PB) assay was used to determine the influence of synthesised materials on the 

proliferation of cells, and to indicate the applicable dosage of each material which induce minimal 

cytotoxicity. To achieve this cells were harvested at the logarithmic growth phase and seeded in 

96 well plates with a seeding density of 3×103 cells per well (except for surrounding wells which 

were filled with media). Cells were maintained in complete growth medium (100 µL of the growth 

media per well) and incubated for 24 hours at 37 °C in a humidified atmosphere with 5% CO2. 

After 24 hours the medium was removed and replaced with 100 µL of media containing different 

concentrations of a synthesised material. Subsequently, the cell viability was measured at 

different periods of up to 72 hours using PrestoBlue assay as explained before.  

The materials used against cells in cytotoxicity studies are listed in Table 2-2. The concentration 

range of different materials (without drug) were chosen based on the related literature and the test 

concentrations of the drug loaded materials were chosen based on the DLC calculations. Free 

DOX with the same concentrations were used as control samples. 

Table 2-2. List of materials used against cells for cytotoxicity study 

Material ID Material composition 

ME53 Uncoated magnetite 

ME60 Mesoporous silica coated magnetite 

ME111 PEG-PCL micelles 

ME55-PEG-PCL PEG-PCL coated magnetite 

ME93-PEG-PCL PEG-PCL capped Mesoporous silica coated magnetite  

ME94-PEG-PCL PEG-PCL capped Mesoporous silica coated magnetite  

ME60-L Liposome capped Mesoporous silica coated magnetite 

 

 IC50 Determination  

Half maximal inhibitory concentration (IC50) is a measure of the effectiveness of a substance in 

inhibiting a specific biological or biochemical function by half. Commonly, it is used to evaluate 

the efficiency and in vitro potency and performance of a drug or substance. IC50 is determined 

by exposure of the cells to a series of different concentration of a drug (Sebaugh, 2011).  

IC50 of DOX-loaded materials were calculated from the viability tests performed using different 

concentration of DOX-loaded nanoparticles and it was compared with the IC50 obtained for free 

DOX. The initial dosages used in this study were selected based on the reported IC50 of DOX 

(approximately 0.1 µM (Fornari et al., 1994)) in the literature. 
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 Effect of Magnetic Hyperthermia on Cell Viability  

Cells were collected at 70% confluence and seeded into T-25 flasks and incubated with 5 mL of 

growth media at 37°C ± 1°C in 5% CO2 for 2 days. After 2 days the medium was removed and 

replaced with different magnetic nanoparticles with various concentrations. The concentration of 

magnetic nanoparticles were calculated based on the drug loading content and the cell viability 

tests in presence of the drug loaded nanoparticles. Cells were incubated with the nanoparticles for 

further 24 hours. After 24 hours, the media containing nanoparticles was removed and replaced 

with fresh media. Cells were then exposed to an AC magnetic field for 45 minutes whilst 

measuring the medium temperature (the field strength was adjusted to maintain the temperature 

43°C with). After that, cells were placed back in the incubator at 37°C ± 1°C in 5% CO2. The cell 

viability was measured 2 hours and 24 hours post magnetic hyperthermia treatment using 

PrestoBlue assay. 

Same process was repeated for the drug loaded nanoparticles in the presence of the AC magnetic 

field to examine the efficiency of the magnetic hyperthermia to increase the cell death. 

As the third part of the experiment, cells were treated with nanoparticles for 24 hours (with and 

without drug) were placed in water bath for 45 minutes at 43°C and then placed back in the 

incubator at 37°C ± 1°C in 5% CO2. The cell viability was measured after 2 and 24 hours in order 

to compare the cell viability after treatment with water bath hyperthermia and AC magnetic field 

induce hyperthermia. 

 Statistical Analysis 

All the results are reported as mean (average) of at least three independent experiments with error 

bar presenting the standard deviation (SD).  

In case of tissue culture experiments, each experiment was repeated at least 3 times and was 

measured using no less than six wells per experiment. 

Statistical analysis were performed by t test where P values less than 0.05 were considered to be 

statistically significant. 

 Characterization Equipment and Techniques 

Nanoparticles’ characteristics such as size, morphology, surface area, saturation magnetisation, 

and dispersion stability have significant influence on their performance in different applications. 

Following techniques were used in this project for characterisation of nanomaterials. 
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 X-Ray diffraction (XRD) 

X-ray diffraction is a common technique to study the crystal structures and atomic spacing of the 

materials. It is based on interference of monochromatic X-rays and a crystalline sample. The X-

ray is generated by bombarding a metal target (usually Cu or Mo) with a beam of electrons emitted 

from a hot filament (usually tungsten).The interaction of the incident rays with the sample 

produces a diffracted ray which satisfies the Bragg's Law (𝑛λ = 2𝑑 sin θ , where n is an integer, λ 

is the wavelength of the X-ray radiation, and θ is the angle at which the scattered beam was 

observed). This law relates the wavelength of electromagnetic radiation to the diffraction angle 

and the lattice spacing in a crystalline sample. 

X-ray diffraction (XRD) was used to confirm the identity of magnetite and silica-coated magnetite 

nanoparticles. The X-ray diffraction patterns were obtained with a Inel Equinox 2000 powder 

diffractometer equipment using CuKα radiations (1.5418 Å). The samples were dried overnight 

in an oven set at 80ºC. The dry samples were ground into a fine powder and packed into X-ray 

sample holder ensuring smooth surface with no visible cracks.  

 

 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) is a common technique to study the morphology and 

size of nanoparticles. Electron beams are used in TEM to illuminate the specimen and 

consequently creates an image. TEM consists of on electron gun (usually a tungsten filament) 

which produces electron beam which are then accelerated by a voltage in the anode, a condenser 

system (magnetic coils) that focus the beam onto the specimen, objective lenses which focus the 

electrons passing through the sample to form a magnified image and a fluorescent screen and a 

digital camera for viewing the image. A higher anode voltage will give the electrons a higher 

speed.  

TEM images of the samples were recorded using a JEOL JEM2000EX (JEOL, Japan) instrument 

operating at an accelerating voltage of 200 kV. The micrographs were recorded using digital 

camera and Gatan Digital Micrograph software. 400 mesh carbon coated copper grids (Agar 

Scientific, UK) were used. TEM samples were prepared by placing approximately 5 µL of diluted 

nanoparticles suspension on the carbon coated copper grid. The grids were left to dry in air at 

room temperature. 

The TEM images were processed using ImageJ software 1.50b and Gatan Digital micrograph 

3.01.598 to obtain average particle sizes. Examples of the processed images are shown in 

Appendix A. 
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 Nitrogen Gas Adsorption-Desorption  

Gas adsorption-desorption analysis is commonly used to evaluate the surface area and porosity of 

the materials. The Brunauer, Emmet and Teller (BET) technique is the most common method for 

determining the surface area of the powders and porous materials. Nitrogen gas is commonly used 

as the probe molecule. The material is exposed to the nitrogen at liquid nitrogen conditions (i.e. 

77 K). The surface area of the solid is calculated considering the amount of gas used to form the 

monolayer on the solid surface as well as the dimensions and the number of the molecules (Naderi, 

2015). Adsorption isotherm is obtained measuring the amount of gas adsorbed onto the solid 

sample across a range of relative pressure. The type of the isotherms indicate the pore types in the 

materials. 

To perform the surface area evaluation of the nanoparticles, nanoparticles were dried overnight 

in an oven at 50°C. Prior to analysis, the nanoparticles were degassed at 100°C for 24 hours. 

Analysis was performed using a Micromeritics ASAP 2010 Autopore, USA (Accelerated Surface 

Area and Porosimetry System). The Micromeritics ASAP 2010 software was used to perform 

automatic BET analysis. 

 Dynamics Light Scattering (DLS) 

Dynamic light scattering (DLS) is typically used for sizing of nanoparticles dispersed or dissolved 

in a liquid. DLS principle is based on the fact that small particles in a suspension experience 

random thermal motion known as Brownian motion. The sample is illuminated by a laser beam, 

the Brownian motion of particles in a suspension causes laser light to be scattered at different 

intensities.  The fluctuations of the scattered light are detected at a known scattering angle θ by a 

fast photon detector. This random motion is used for particle sizing using the Stokes-Einstein 

equation. 

DLS was performed to estimate the particles size (mostly for polymeric micelles and liposomal 

formulations) using a Zetasizer Nano, Malvern Instruments, UK at 23°C. Nanoparticles were 

suspended in water at a dilute concentration, consequently, 1 mL of the nanoparticle suspension 

were placed in a 12 mm (OD) square polystyrene cuvettes for measurements.  

 Vibration Sample Magnetometry (VSM) 

Vibrating Sample Magnetometer (VSM) is commonly used to measure the magnetic properties 

of a material as a function of magnetic field. VSM operates based on Faraday's Law of Induction, 

which states that a changing magnetic field will produce an electric field. In the measurement 

setup, the sample is fixed to the sample rod which is connected to an oscillator. The oscillator 

provides a sinusoidal signal that is translated by the transducer assembly into a vertical vibration. 

The sample rode is placed at the centre of two pole pieces of an electromagnet that generates a 
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magnetic field and, stationary pickup coils are mounted on the poles of the electromagnet. When 

a magnetic sample is placed under the magnetic field, the magnetic domains will be aligned with 

the field which creates a magnetic field around the sample. Since the sample moves vertically in 

the field, the magnetic field generated by the sample changes as a function of time and can be 

sensed by the pickup coils. This alternating magnetic field causes an electric field in the pick-up 

coils which is proportional to the magnetization of the sample.  

VSM measurements were performed at room temperature using a 7 kOe vibrating sample 

magnetometer and data were collected using a home built computer software. The samples were 

prepared by drying and grinding of nanocomposites into a fine powder. The powder was then 

packed into plastic tubes with length of 10 mm and internal diameter of approximately 2 mm. 

 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a thermoanalytical technique which monitors the heat 

effects related with phase transitions of a sample as a function of temperature. The main 

application of DSC is in studying melting point, crystallisation and glass transitions. A DSC 

measuring cell consists of a furnace and an integrated sensor with designated positions for the 

sample and reference pans and the sensors are connected to thermocouples. The basic principle 

underlying this technique is that, when the sample undergoes a physical transformation such as 

phase transitions, the heat flow to the sample is affected and is higher or lower than the reference 

sample depending on whether the process is exothermic or endothermic. 

The melting temperature of the polymer was measured using DSC Nano, TA instruments under 

a flow of nitrogen at a scanning rate of 5°C/min. The thermograms covered from –20 to 60°C. 

Samples were prepared by placing the solid sample in a hermetic aluminium DSC pan and sealing 

the lids using an encapsulating press, an empty pan was sealed and used as reference sample. 

 Scanning Column Magnetometry (SCM) 

Scanning column magnetometer (SCM) is used to measure concentration profiles of columns of 

magnetic dispersions and stability of the magnetic suspensions. The SCM plots the changes in the 

frequency (∆𝑓) as a function of distance from the bottom of the column. The principle underlying 

this technique is that changes in the inductance of a coil in an LC oscillatory circuit result in 

corresponding changes in the frequency. On that basis a column containing magnetic dispersion 

is driven through the core of the detection coil, which is a part of a Colpitts oscillatory circuit. 

The inductance of the coil is directly related to the concentration of the magnetic suspension, as 

a result variation in the suspension concentration is translated to a change in induction and 

consequently a change in the oscillator frequency.  

SCM measurements were performed using a built in-house SCM with a sample-free frequency of 

1MHz. The LabVIEW software is used for operating the system. The samples for the SCM were 



94 

prepared by sonication of the magnetic suspension using titanium horn sonicator for 4 minutes 

followed by placing up to 10 mL of the suspension into the SCM column. 

 Contact Angle Measurements 

Contact angle measurement is performed to determine the hydrophilicity of a sample. Contact 

angle is conventionally measured through the liquid, where a liquid–vapor interface encounters a 

solid surface. The wettability of a solid surface is quantified by the Young equation (Yuan and 

Lee, 2013). 

Contact angle measurements were performed by using a FTA contact angle/surface tension at 

room temperature. Samples were packed to small tablets with smooth surface with no visible 

cracks. A drop of Milli-Q water was placed on the sample surface and the evolution of the droplet 

shape was recorded with a video camera. An image analysis software (drop Shape Analysis v2) 

was used to determine the contact angle. 

 Gas Chromatography (GC) 

Gas chromatography (GC) is an analytical technique that measures the content of various 

components in a sample. A GC consist of a mobile phase (Helium or nitrogen is commonly used 

as the carrier gas.) and a stationary phase. When a sample is injected into the GC, it 

instantaneously vaporized at the column inlet. Mobile phase then carry the vaporized sample 

through the column. Passing through the column, each component in the sample is adsorbed or 

partitioned to the stationary phase according to its characteristic. Identification of the compounds 

is based on the strengths of this interactions between the compounds and the stationary phase. 

Stronger interaction translate to longer time required for the compound to migrate through the 

column which in turn result in longer retention time. A detector at the end of the column measures 

the quantity of the components as they exit the column. 

Gas chromatography (GC) was used to identify and quantify the products of the catalytic 

hydrolysis of cis-3,5-diacetoxy-1-cyclopentene. Analysis was performed by injecting a 1 µL 

aliquot of the reaction mixture into a Varian Inc CP-3380 Gas Chromatograph with nitrogen as 

the carrier gas. Chromatograms were interpreted using Varian Star Integrator software version 

4.51. Temperature program was set to start at 50ºC and increase to 200ºC at a 10ºC per minute 

rate. A Supelco β-DEX 110 fused silica capillary column specifically designed to separate chiral 

compounds with the length of 30 m, internal diameter of 0.25 mm and film thickness of 0.25 µm 

was used (Sigma-Aldrich, 2016). 

  Fourier Transform Infrared Spectroscopy (FT-IR) 

Fourier transform infrared spectroscopy (FT-IR) is commonly used to identify the presence of 

certain functional groups in a molecule by monitoring the bond vibration. FT-IR operates based 
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on the principle that when an IR radiation is passed through a sample, some of the infrared 

radiation is absorbed by the sample. The probability of a particular IR frequency being absorbed 

depends on the actual interaction between this frequency and the molecule. In general, a frequency 

will be strongly absorbed if its photon energy coincides with the vibrational energy levels of the 

molecule. This absorption corresponds specifically to the bonds present in the molecule. The 

frequency range are measured as wave numbers typically over the range 4000 to 350 cm-1. The 

resulting spectrum represents the molecular absorption and transmission, creating a molecular 

fingerprint of the sample.  

Infrared spectra of the samples were recorded over the frequency range of 350 to 4000 cm-1 using 

a JASCO FT/IR 410 Fourier transform infrared spectrophotometer, where the dry samples were 

directly cast over the FT-IR diamond crystal for analysis. To analyse the liquid samples, 10 µL 

of sample was cast over a low-e slides and left to dry overnight in room temperature after which 

it was placed directly against the FT-IR diamond crystal and analysed.  

  Small Angle X-Ray Scattering (SAXS) 

Small Angle X-ray Scattering (SAXS) measurements were performed using S3-Micro, HECUS 

X-RAY SYSTEMS, GMBH GRAZ instrument with Geni Xenocs software in order to investigate 

structure of the particles. The powered samples were packed in a 1.5 mm dimeter quartz 

capillaries. Scattering curves were monitored in a q-range from 0.01 to 0.5 Å−1. 

 

  Magnetic Heating Experimental Method and Procedure 

Magnetic heating, specific power absorption (SPA) and Intrinsic loss power (ILP) of the 

nanoparticles were evaluated using a commercial AC field applicator, DM2, with a system 

controller DM100 by nB nanoscale Biomagnetics, Spain. All the experiments were performed at 

frequency of 406 kHz and the temperature was monitored using a fibre optic temperature sensor 

and controlled by adjusting the magnetic field strength. The maximum filed strength was 

15.8 kA/m. System embedded software, MaNIaC, was used to control the experiments and collect 

the data. Experiments were performed by placing 1 ml of a magnetic suspension in a glass vial in 

the centre of the DM2 applicator coil. Experiments using cells were performed by placing the T-

25 flask directly in the DM2 field applicator. 

  Nuclear Magnetic Resonance (NMR) Spectroscopy  

Nuclear Magnetic Resonance (NMR) spectroscopy is based on the nuclear magnetic resonance 

phenomenon. The NMR is a characteristic of the nucleus of an atom, related to the nuclear spin 

(I), the intramolecular magnetic field around an atom in a molecule changes the resonance 

frequency, consequently providing information about the molecular structure. The NMR 
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spectroscopy can determine an entire structure of an organic compound using one set of analytical 

tests (RSC, 2016).  

H-NMR spectra were obtained using a Bruker fourier 300 (300MHz) spectrometer with CDCl3 

and D2O as solvents at 25°C. The 5 mm outer diameter NMR tubes were used with and 

polyethylene cap.  

  Energy Dispersive X-Ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy (EDS or EDX) is an analytical technique used to study the 

elemental composition of a sample. EDS is commonly combined with imaging tools such as 

scanning electron microscopy (SEM) or TEM. The EDS is based on interactions of the X-ray and 

a sample, where the impact of the electron beam on the sample produces x-rays. When the electron 

beam reaches the sample, electrons are ejected from the atoms leaving vacancies, these vacancies 

are subsequently filled by electrons from a higher state, resulting in an x-ray emission to balance 

the energy difference between the two electrons' states.  Each element emits a unique set of peaks 

on its X-ray emission spectrum during bombardment by an electron beam. EDS can be used to 

determine the elemental composition of individual points or to map the distribution of elements 

in a sample (EAG, 2016). 

The EDS analysis was performed to investigate the existence and distribution of elements in 

nanocomposites. Measurements were carried out by moving the electron beam to different 

positions and examine different particles. An Oxford Instruments INCA X-Sight EDS combined 

with TEM, operating on Microanalysis Suite, INCA version 4.15 were used for elemental analysis 

of the samples. The samples were prepared using 400 mesh carbon coated copper grids. 
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 Introduction 

Different characterization techniques such as TEM, VSM, BET and SCM were used in order to 

evaluate the synthesised nanomaterials. Characterization techniques employed for each material 

were chosen according to the methods suggested in literature. 

Sample preparation for each measurement and the equipment specifications are explained in 

Section 2.32. A list of the characterization methods used for the synthesised materials are 

summarized in Table 3-1. 

Materials were chosen for further use in drug delivery or catalysis applications based on the 

characterization results described in this chapter. 

 Transmission Electron Microscopy (TEM)  

Transmission electron microscopy (TEM) was used to study the size and morphology of the 

nanoparticles. The sample and TEM grid preparations were performed according to methods 

explained in Section 2.32.2. The statistical analysis of the images were performed using the 

GATAN DigitalMicroghraph software version 3.01.598.0 and ImageJ software 1.50b as 

described in 2.32.2. 

 Magnetite Nanoparticles 

Magnetite nanoparticles were prepared by the methods explained in Section 2.3 and evaluated 

using TEM as the initial step to assess the shape and size of the nanoparticles.  

Figure 3-1 shows the TEM images of magnetite nanoparticles prepared by oxidative hydrolysis 

of iron sulphate (ME01). From the TEM images it is observed that the nanoparticles exhibited 

rhombic and spherical morphologies. The statistical analysis of the nanoparticles indicated that 

nanoparticles were in the size range from 8 to 45 nm with an average size of 25 nm. The particles 

were similar to those reported by Sen et al. (Sen et al., 2006). Since these nanoparticles were 

observed to be within a large size distribution range and of different shapes they were not used in 

further applications. However, their magnetic curves were evaluated for comparison to other 

particles.  
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Figure 3-1. TEM image of ME01, magnetite nanoparticles prepared by oxidative hydrolysis of Iron Sulphate in 
alkaline media 

The magnetite nanoparticles prepared by coprecipitation of ferrous and ferric chloride solutions 

in alkaline media (ME18) are shown in Figure 3-2. 

     

Figure 3-2. TEM image of ME18, magnetite nanoparticles prepared by coprecipitation of iron salts 

The nanoparticles (ME18) were found to be spherical in the size range of 8 to 15 nm and average 

diameter of 13 nm. The size and shape are in close agreement with the reported literature (Sen et 

al., 2006, Massart, 1981). These nanoparticles were further characterized by VSM and XRD and 

used in drug delivery and catalysis applications with silica or liposome coatings.  

Figure 3-3 shows the magnetite nanoparticles prepared by the coprecipitation method and 

functionalised with oleic acid (ME55) as explained in Section 2.3.1 
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Figure 3-3. TEM of ME55, prepared by oleic acid functionalising the magnetite nanoparticles prepared by 
coprecipitation of iron salts 

It was observed that the nanoparticles were monodispersed with similar size and shape as the as-

prepared magnetite nanoparticles (ME18, before surface functionalising the particles). However, 

the nanoparticles were highly hydrophobic. These nanoparticles were further tested in an AC 

magnetic field to measure the AC field induced heating. These nanoparticles were coated with 

polymer and silica and used in drug delivery applications, the performance of these drug delivery 

systems are evaluated in Chapter 5. 

Figure 3-4 shows the magnetite nanoparticles prepared through high temperature Fe (acac)3 

reaction followed by the method first reported by Sun and Zeng (Sun and Zeng, 2002) and 

explained in Section 2.3.3. 

  

 

     

Figure 3-4. TEM image of ME59, oleic acid coated magnetite nanoparticles prepared by thermal decomposition of 
Fe (acac)3  
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The nanoparticles were spherical and monodisperse with size range of 7 to 9 nm. This is in good 

agreement with the literature (Sun and Zeng, 2002, Sun et al., 2003, Sun et al., 2007). 

 Silica Coated Nanoparticles 

Figure 3-5 shows TEM image of mesoporous silica coated magnetite nanoparticles (ME16) 

prepared as described in Section 2.4. The particles were prepared by coating the hydrophilic ultra-

small magnetite nanoparticles (ME18). The silica coating was performed following the method 

described in Section 2.4 Method A, which produced mesoporous silica coatings. As observed 

from the TEM images, materials exhibited core-shell structure with a single magnetite core 

particle and they were uniformly coated with a thin mesoporous shell. The composite 

nanoparticles have an average size of 30 nm with ~5 nm of silica coating. These nanoparticles 

were further tested with VSM and BET to evaluate the magnetic response and surface area 

properties. 

     

Figure 3-5. TEM image of ME16, Core shell nanoparticles 

The mesoporous silica nanoparticles prepared following the second method described in Section 

2.4 (Method B) are shown in Figure 3-6, Figure 3-7 and Figure 3-8. All the nanoparticles prepared 

by this method (ME32, ME33 and ME60) showed multi core nanoparticles with mesoporous 

structure which could be observed in the TEM images. The nanoparticles showed aggregation.  

As seen in Figure 3-6, ME32 particles possess mesoporous structure with an average size of 

40 nm, however the nanoparticles were not homogenous i.e. it was a mixture of core shell 

structure and pure silica nanoparticles. 
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Figure 3-6. TEM image of ME32, Core shell nanoparticles 

Figure 3-7 and Figure 3-8 show the mesoporous silica structure prepared by the second method 

(Method B) described in Section 2.4. As shown in the figures multi core mesoporous silica coated 

nanoparticles of different sizes could be prepared by this method. ME33 contained nanoparticles 

with average diameter of about 150 nm. These nanoparticles were used in catalysis. The 

nanoparticles prepared by the optimized method to obtain smaller size nanoparticles (ME60) are 

shown in Figure 3-8. These nanoparticles have an average size of 80 nm.  

     

Figure 3-7. TEM image of ME33, mesoporous Core shell nanoparticles 
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Figure 3-8. TEM image of ME60, mesoporous core-shell nanoparticles 

The core shell nanoparticles (ME82) made by Method C in Section 2.4 is shown in Figure 3-9. 

The materials made by this method observed to be in the size range of 20 to 30 nm with mostly 

single magnetite core structure. The core magnetite nanoparticles used for the synthesis of these 

nanoparticles were oleic acid functionalised hydrophobic particles (ME55).  

     

Figure 3-9. Tem image of ME82, mesoporous core-shell nanoparticles 

Figure 3-10 shows the silica coated magnetite nanoparticles prepared by a water in oil reverse 

micelle method (ME56), following the protocol reported by Lu et al. (Lu et al., 2006) as described 

in Section 2.5. The hydrophobic nanoparticles ME55 and ME59 were used to prepare these 

nanoparticles. The materials made using ME55 demonstrated higher magnetic heating and 

therefore were used to prepare ME94 with further application as drug delivery systems. As 

observed from the images the nanoparticles exhibited monodisperse core-shell structure with an 

average size of 67 nm. 
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Figure 3-10. TEM image of ME56, Core shell particles  

Hydrophobic silica core shell nanoparticles were prepared by three different methods as described 

in Section 2.6. Figure 3-11 shows the hydrophobic silica coated magnetite nanoparticles (ME93) 

prepared by direct coating of magnetite nanoparticles (see Section 2.6.3). Hydrophilic magnetite 

nanoparticles (ME18) were used as the core magnetite nanoparticles. As seen in the images, the 

nanoparticles exhibited spherical morphology with core-shell structure. The material possess 

mesoporous structure containing multiple magnetite nanoparticle cores. The nanoparticles were 

measured to be in the size range of 80 to 120 nm. 

     

Figure 3-11. TEM image of ME93, silica coated magnetite nanoparticles prepared by direct coating of magnetite 
nanoparticles 

Figure 3-12 shows the hydrophobic silica-magnetite core-shell nanoparticles developed by direct 

etching of the silica layer of ME56 followed by the OTS silica coating of the nanoparticles 

(ME80). Core-shell silica coated magnetite nanoparticles ME56 were used as starting materials. 

As seen in the images, the nanoparticles exhibited porous structure however; the pore structure is 

random in size and shape. The nanoparticles were in the size range of 70 to 80 nm.   
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Figure 3-12. TEM image of ME80, hydrophobic silica coated nanoparticles  

Figure 3-13 shows the hydrophobic silica coated magnetic nanoparticles (ME94). These 

nanoparticles were prepared by PVP protected etching of the silica coated nanoparticles (ME56) 

followed by an additional silica coating of the surface with OTS silica source to obtain 

hydrophobic nanoparticles. Figure 3-14 shows the nanoparticles after protected etching and 

before the final silica coating. As seen in the images the protected etching resulted in hollowed 

shaped nanoparticles with the magnetite core inside. The final nanoparticles are monodisperse 

with average size of 100 nm. The etching time was optimized to be 15 minutes since it was 

observed that the longer etching time breaks the silica layer and shorter etching times result in 

incomplete etching and dense silica layer. The silica nanoparticles underwent protected etching 

for 20 and 10 minutes are illustrated Figure 3-15, (a) and (b).  

     

Figure 3-13. TEM image of ME94, Hydrophobic Silica coated core shell particles prepared by protected etching 
method. 
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Figure 3-14. TEM image of ME94-I, PVP protected etched silica nanoparticles 

    

Figure 3-15 TEM images of PVP protected etched silica nanoparticles, (a) after 20 minutes etching, and (b) after 10 
minutes etching 

 Polymer Coated Nanoparticles 

Figure 3-16 presents the PEG-PCL coated magnetic nanoparticles (ME55-PEG-PCL). The 

magnetic micelles are seen as separate groups of magnetite which clearly differs from uncoated 

magnetite particles shown in Figure 3-3. The overall size of the magnetic micelles measured from 

the TEM images were in the range of 100 to 130 nm which is in agreement with DLS size 

measurements. The micelles shown similar morphology to those reported by Nasongkla et al., 

they have suggested that the since the polymer does not significantly attenuate the electron beams 

of TEM the magnetic micelles can be seen as isolated magnetite clusters (Nasongkla et al., 2006). 
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Figure 3-16. TEM image of ME55-PEG-PCL, polymer coated magnetite nanoparticles 

 Nitrogen Gas Adsorption-Desorption Isotherm and Brunauer–

Emmett–Teller (BET) Surface Area Analysis  

Surface area of the different synthesised materials were determined using nitrogen adsorption –

desorption test. BET analysis of adsorption isotherm determines the specific surface area of the 

powder sample by physical adsorption of nitrogen on the sample surface. Measurements were 

performed according to methods described in Section 2.32.3.The data was considered acceptable 

if the correlation coefficient was greater than 0.9975 (Naderi, 2015). Surface area of the different 

materials are summarised in Table 3-2. 

Table 3-2. Summary of the surface area of the material 

Material ID Surface area (m²/g) 

ME32 133.9683   ±    0.5248  

ME33 1187.7596   ±    6.7348  

ME56 38.2521   ±    0.6845  

ME60 358.0238   ±    0.5267  

ME93 752.8064   ±    7.6538  

ME94 574.5482   ±    3.5390  

 

Figure 3-17 presents the Nitrogen gas adsorption-desorption isotherm of mesoporous silica coated 

magnetic nanoparticles (ME32). The BET plot is classified as type IV isotherm which is 

associated with mesoporous structures. The isotherm displayed a H1 hysteresis loop within the 

relative pressure range of 0.6 to 1 indicating the presence of agglomerates in the sample (Haul, 

1982). The BET specific surface area was measured to be 133.96 m2/g. The presence of porous 

structures and agglomerates were consistent with the TEM images (see Figure 3-6). 
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Figure 3-17. Nitrogen gas adsorption-desorption isotherm of ME32, BET Surface Area:         133.9683   ±    0.5248 
m²/g 

Figure 3-18 shows the Nitrogen gas adsorption-desorption isotherm of the mesoporous silica 

coated magnetite (ME33). This material exhibited a type IV isotherm indicating the mesoporous 

structure. The hysteresis loop observed between relative pressures of 0.4 to 0.8 could be 

categorize to be type H2 indicating non-uniform shapes and sizes of mesopores (Haul, 1982). The 

BET surface area of the material was measured to be 1187.8 m2/g which is exceptionally high. 

This presents the potential of this material to be used in drug loading or enzyme immobilisation. 

The average pore diameter was measured to be around 4 nm which is expected from the porous 

structures generated using CTAB as pore templates (Liberman et al., 2014). 

The surface area measurement was repeated after the enzyme immobilisation on ME33 to study 

the effects of the enzyme on the surface area of the material. The BET results after enzyme 

immobilisation shows a surface area of 146.93 m2/g for chemically immobilised PFL and 

51.27 m2/g after chemically immobilisation of CRL. The drastic decrease observed in the surface 

area of the material confirms the presence of the enzyme molecules inside the pores. The BET 

isotherm for PFL immobilised nanoparticles are shown in Figure 3-19.  
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Figure 3-18. Nitrogen gas adsorption-desorption isotherm of ME33, BET Surface Area:        1187.7596   ±    6.7348 
m²/g 

 

Figure 3-19. Nitrogen gas adsorption-desorption isotherm of ME33 after chemical PFL immobilization. BET Surface 
Area:  146.9339   ±    2.5072 m²/g 

The nitrogen gas adsorption-desorption isotherm of mesoporous silica coated magnetic 

nanoparticles (ME60), is presented in Figure 3-20. The BET plot shows Type IV isotherm and 

H2 hysteresis loop which is similar to the results obtained for ME33. The similar results was 

expected since ME60 was synthesised following the same method as ME33 with slight 

modification in synthesis method to reduce the size of the nanoparticles in order to make them 

suitable for drug delivery applications. The BET specific surface area of ME60 was measured to 

be 358 m2/g which is much lower in value compared to ME33. This could be the result of 

relatively thin silica shell of ME60. 
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Figure 3-20. Nitrogen gas adsorption-desorption isotherm of the ME60-BET Surface Area:         358.0238   ±    0.5267 
m²/g 

Figure 3-21 presents the nitrogen gas adsorption-desorption isotherm of ME93. A type IV 

isotherm was obtained from nitrogen gas adsorption-desorption isotherm plot for ME93 

indicating mesoporous structure. The nitrogen adsorption–desorption isotherm exhibits a linear 

increase in the volume of adsorbed nitrogen at low relative pressure (P/P0 < 0.2), which can be 

assigned as the mono-layer adsorption of nitrogen on the sample surface. The sharp inflection in 

the volume of adsorbed nitrogen between relative pressures 0.2 and 0.4 could be the result of 

nitrogen capillary condensation inside the mesopores. The hysteresis loop observed for ME93 

between relative pressure 0.3 and 1 could be classified as type H4 indicating the presence of 

narrow slit-shaped pores (Haul, 1982, Ursachi et al., 2011a). The BET surface area of the material 

was measured to be 752.80 m2/g. The high surface area indicates that ME93 is suitable to be used 

in drug delivery applications. The average pore diameter was measured to be 3 nm which is lower 

than pore size generated by either CTAB or Pluronic F127 templates. The lower pore diameter 

could be the result of OTS surface functionalization which is consistent with the results reported 

by Yildirim et al. (Yildirim et al., 2013). 

The nitrogen gas adsorption-desorption isotherm of ME94 is shown in Figure 3-22. ME94 

established a type IV isotherm indicating mesoporous structure. The vertical hysteresis loop 

observed between relative pressures 0.4 and 1 could be categorised to be a type H1 which could 

be obtained from either agglomerates (in case of ME32) or spherical nanoparticles with fairly 

uniform size (Haul, 1982) which is consistent with the TEM images of ME94 (Figure 3-13). The 

surface area of the material was measured to be 574.5 m2/g. The high surface area of the material 

suggests the potential of this material to be used for drug delivery applications. The average pore 

diameter was measured to be 6.3 nm which is consistent with pores generated using CTAB and 

triblock polymers together as network structuring templates (Liberman et al., 2014).  
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Figure 3-21. Nitrogen gas adsorption-desorption isotherm of ME93, BET Surface Area:         752.8064   ±    7.6538 
m²/g 

 

Figure 3-22. BET isotherm of ME94 BET Surface Area:         574.5482   ±    3.5390 m²/g 

The surface area measurement was performed for the starting material for development of ME94 

(ME56) before etching process which demonstrated a low surface area of 38.25 m2/g.  

 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) was used to confirm the crystalline structure of the magnetite 

nanoparticles. Samples for X-ray diffraction analysis were prepared according to methods 

described in Section 2.32.1. 
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Figure 3-23 shows the XRD pattern of ME18 (bare magnetite nanoparticles). The powder X-ray 

diffraction of magnetite nanoparticles exhibited multiple peaks with miller indices of 220, 311, 

400, 422, 511, and 440 similar to the fingerprint of pure magnetite (Fe3O4) ( JCPDS No. 19-0629) 

in the 2θ range of 20 to 70 (Sen et al., 2006, Sun et al., 2004).  

While the patterns of Fe3O4 ( JCPDS No. 19-0629) and 𝛾-Fe2O3 phases (JCPDS No. 39-1346) are 

rather similar (Todaka et al., 2003) some peaks corresponding to 𝛾-Fe2O3 phase, such as (210) 

and (211) peaks, were not present in the XRD pattern of ME18 indicating that the synthesized 

nanoparticles were in Fe3O4 phase. The black colour of the powder further verifies that it contains 

mainly magnetite nanoparticles. 

 

Figure 3-23. XRD pattern of bare magnetite (ME18) 

The low intensity of the peaks could be an indication of ultra-small size of magnetite 

nanoparticles. The average particle diameters were calculated from the XRD pattern according to 

the linewidth of the (3 1 1) plane refraction peak using Scherrer equation as presented in Equation 

3-1 (Sun et al., 2004, Schwertmann and Cornell, 2007) 

𝐷 =
𝑘λ

𝑏𝑐𝑜𝑠 θ
      Equation 3-1 

The equation uses the reference peak width at angle θ, where λ is the X-ray wavelength 

(1.5418 Å), b is the width of the XRD peak at half height and K is a shape factor (about 0.9 for 

magnetite). The calculated diameter of ME18 was about 10.4 nm which is consistent with the 

TEM images (see Figure 3-2).  
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Figure 3-24. XRD pattern of silica coated magnetite (ME33) 

Figure 3-24 shows the XRD pattern of mesoporous silica coated magnetite nanoparticles in the 

wide angle region. As seen in the image the XRD pattern of silica coated nanoparticles has similar 

diffraction peaks to uncoated magnetite nanoparticles, which suggests the magnetite nanoparticles 

were conserved during mesoporous silica coating. The broad peak observed in mesoporous silica 

coated nanoparticles at around 2θ = 22° corresponds to the presence of amorphous silica (JCPDS 

No. 29-0085) (Souza et al., 2008, Souza et al., 2009b, Ursachi et al., 2011a) 

 Small angle X-ray scattering (SAXS) 

SAXS measurements were performed in order to further investigate the structure and the 

morphology of the nanoparticles. Scattering curves were monitored in a 2θ range from 0.08 to 8°. 

The pore size were calculated according to the Bragg’s equation:  

𝑛λ = 2𝑑 sin θ      Equation 3-2 

Where n is an integer, λ is the wavelength of the X-ray radiation (1.5418 Å), and θ is the angle at 

which the scattered beam was observed.  

Figure 3-25 presents the SAXS pattern of ME32. SAXS pattern exhibit apparent diffraction peak 

at about 2θ of 1.3° corresponding to the (1 0 0) diffraction peak which is characteristic for 

hexagonal mesopores (Corma, 1997). However, the broad (1 0 0) peak could indicate limited pore 

ordering (El-Toni et al., 2013a). The pore size were calculated to be around 5.7 nm.  
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Figure 3-25. SAXS pattern of ME32 (silica coated magnetite) 

Figure 3-26 presents the SAXS pattern of ME33 indicating the appearance of a single peak which 

could be assigned to the miller plane (1 0 0). The observed diffraction peak could be indexed to 

a 2D hexagonal structure that suggest reasonably ordered mesoporous shell similar to MCM-41 

material (El-Toni et al., 2013a, Ursachi et al., 2011b). However, the absence of other hexagonal 

peaks, (1 1 0) or (2 0 0), could be attributed to a certain extent to the distortion from a perfect 2D 

hexagonal mesostructure, due to the packing of the radially oriented mesopores in the spherical 

shell (El-Toni et al., 2013a). The pore size were calculated according to Bragg’s equation to be 

around 3.7 nm which is consistent with the BET analysis.  

 

Figure 3-26. SAXS pattern of ME33 (silica coated magnetite) 
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 Energy Dispersive X-ray Spectroscopy (EDS) 

The energy dispersive X-ray Spectroscopy (EDS) was performed to investigate the existence and 

distribution of elements in the magnetic nanocomposites. Samples were prepared as explained in 

Section 2.32.14. Measurements were carried out parallel to TEM by moving the sample to 

examine different parts of the grid. The high amount of copper observed in the sample is from the 

TEM grids (copper grids were used). 

Figure 3-27 illustrates the EDS spectrum of core-shell nanocomposites (ME33) with the atomic 

fractions (weight %) of Si and Fe in the nanoparticle. The EDS spectra shows multiple peaks 

corresponding to presence of Si, Fe and O in the sample which indicated that there was no 

impurity in the sample and as expected, the surfactant molecules were completely removed from 

the sample. 

The measurements were performed on four different sections of the sample on TEM grids which 

confirmed the homogenous distribution of the core-shell structure of the nanocomposites. 

 

Figure 3-27. EDS spectrum data of ME33 (silica coated magnetite nanoparticles) 

 Vibrating Sample Magnetometry (VSM) 

Vibrating sample magnetometry (VSM) was used to evaluate magnetic properties of different 

materials such as susceptibility and saturation magnetization (Ms). The VSM operates on 

Faraday's Law of Induction; a changing magnetic field will induce an electric field in a conductor. 

Samples were placed in an oscillating sample holder. As the magnetic sample vibrates along the 

Z axis perpendicular to the magnetic field it induces an AC voltage of the amplitude that is 

proportional to the magnetic moment of the test sample. The samples for VSM were prepared as 

explained in Section 2.32.5.  

The magnetic measurements (M-H hysteresis measurements) were performed for bare and silica 

coated magnetite as shown in the following graphs. All measurements were performed at room 
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temperature and samples exhibited typical hysteresis curves of superparamagnetic materials with 

negligible coercivity. It is of utmost importance that the final nanocomposites exhibit sufficient 

magnetic characteristics to be used in the targeted applications. 

Figure 3-28 presents the VSM hysteresis curves for bare magnetite nanoparticles prepared by 

oxidative hydrolysis of iron sulphate in alkaline media (ME01). The VSM analysis indicated that 

the nanoparticles were superparamagnetic with small hysteresis. The saturation magnetization 

(Ms) was measured to be 50.98 emu/g which is lower than the literature reported value of 

92 emu/g for pure magnetite (Qu and Tie, 2009). The lower value of saturation magnetization 

could be due to the reduced size of the nanoparticles (Sato et al., 1987, Qu and Tie, 2009, Santra 

et al., 2001). The magnetization of ferromagnetic materials is highly dependent on the size and 

structure of the sample and the magnetization decreases with a decrease in particle size especially 

when the particles size is reduced to single domain and the material reach a superparamagnetic 

state the exchange interaction between the particles is decreased resulting in reduced 

magnetization (Santra et al., 2001).  

 

Figure 3-28. Magnetic measurements of bare magnetite nanoparticles prepared by oxidative hydrolysis of iron 
sulphate in alkaline media (ME01)  

Figure 3-29 shows the hysteresis curves of bare magnetite nanoparticles prepared by co-

precipitation of ferrous and ferric chloride in alkaline media (ME18). The VSM analysis indicated 

that the nanoparticles were superparamagnetic with small hysteresis. The saturation 

magnetization (Ms) was measured to be 66.94 emu/g which is higher than the values observed for 

magnetite synthesised by hydrolysis of iron sulphate, this could be due to presence of more 

uniform nanoparticles in the ME18. However similar to ME01 the saturation magnetization value 

is lower than reported saturation magnetization for bulk material. As observed from the hysteresis 
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curves for bare magnetite nanoparticles, both materials reached saturation at the low applied field 

of around 2 kOe.  

 

Figure 3-29. Magnetic measurements of bare magnetite nanoparticles prepared by coprecipitation of iron salts 
(ME18) 

The magnetization can be fitted using Langevin equation (Rovers, 2010): 

𝑀 = 𝑀𝑠 (coth (
𝑚𝐻

𝑘𝑏𝑇
) −

𝑘𝑏𝑇

𝑚𝐻
)    Equation 3-3 

Where 𝑚 is the magnetic moment and can be calculated from Equation 3-4.   

𝑚 =
𝜋𝜇0𝑀𝑏𝑑3

6
      Equation 3-4 

Where 𝑀𝑠 and 𝑀𝑏 are saturation magnetization of the nanoparticles and the saturation 

magnetization for bulk magnetite, respectively, 𝜇0is the permeability of free space, 𝑘𝑏 is the 

Boltzmann constant, and 𝑑 is the particle diameter. 

Which in strong field limit by replacing magnetic moment in equation it reduce to (Rovers, 2010) 

𝑀 = 𝑀𝑠 − 𝛼
1

𝐻
      Equation 3-5 

Where 

𝛼 =
6𝑀𝑠𝐾𝑏𝑇

𝜋𝜇0𝑀𝑏𝑑3      Equation 3-6 

For weak magnetic field the initial susceptibility of the nanoparticles can be calculated from 

Langevin equation (Rovers, 2010). 
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𝜒 =
𝜋𝜇0𝑀𝑏𝑀𝑠𝑑3

18𝑘𝑏𝑇
      Equation 3-7 

By fitting the magnetization curve using the Langevin equation the coefficient α and consequently 

magnetic size of the nanoparticles could be calculated: 

𝑑 = √
6𝑀𝑠𝐾𝑏𝑇

𝜋𝜇0𝑀𝑏𝛼

3
      Equation 3-8 

The magnetic moment and susceptibility for ME01, was calculated from the magnetization curve 

to be to be 4.26× 10−25 (Am2) and 8.73 respectively. The magnetic moment, the coefficient α 

and susceptibility for ME18 was calculated to be 6.24× 10−25 (Am2), 2.32× 109 and 16.82. 

The calculated magnetic particle sizes for ME01 and ME18 were 11.20 nm and12.73 nm, 

respectively which are smaller than the average sizes measured using TEM images. The constant 

values which were used in the calculations are listed in Table 3-3. 

Table 3-3. Constants used for calculations in Langevin equation 

Saturation magnetization for bulk 

magnetite 
𝑀𝑏 4.6× 105𝐴/𝑚 

Permeability of free space 𝜇0 4𝜋 × 10−7𝐻/𝑚 

Boltzmann constant 𝑘𝑏 1.3807× 10−23 m2 kg/s2 K 

Temperature T 300°K 

Magnetite density 𝜌 5000 kg/m3 

 

The coercivity values of 𝐻𝑐=0.1015 kOe and 𝐻𝑐=0.1199 kOe were observed for ME01 and ME18 

which are very low compared to the bulk material and are acceptable for superparamagnetic 

nanoparticles (Ammar et al., 2007). According to Néel, dissymmetry of atomic layers of magnetic 

nanoparticles could lead to an increase in demagnetizing field which results in increased 

coercivity (Néel, 1953). The coercive field due to shape anisotropy effect of the aspherical 

nanoparticles could be calculated based on (Ammar et al., 2007) 

𝐻𝑐 =
2 (𝛾−1)𝑀𝑠

5𝜇0
     Equation 3-9 

Where 𝛾 is the asphericity of the nanoparticles. For ME01 and ME18 the coercivity was very low 

which indicated monodisperse spherical nanoparticles which is in agreement with TEM images. 

The remanent magnetization (Mr) values for ME01 and ME18 were calculated to be 10.15 emu/g 

and 15.41 emu/g. The squareness value (S = Mr/Ms) for bare magnetite nanoparticles were 

calculated to be 0.19 for ME01 and 0.26 for ME18 which indicate the presence of pseudosingle-

domain (PSD) particles. The squareness values can range from 0.1 to 0.5 for pseudosingle-domain 

(PSD) particles (Dunlop, 1990, Ursachi et al., 2011b, Ursachi et al., 2011a). PSD particle may 
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consist of only one or two domains, indicating that the material might possess same magnetic 

properties as of SD and MD structures simultaneously (Ursachi et al., 2011b). 

Figure 3-30 to Figure 3-35 present the magnetisation M-H plot for silica coated nanoparticles. 

ME16, ME32, ME33, ME60 and ME93 are core-shell nanoparticles synthesised using ME18 as 

magnetic core and coated with different thickness of mesoporous silica layer whereas ME94 was 

prepared by using ME55 as magnetic core. The saturation magnetization and coercive field for 

these nanoparticles are listed in Table 3-4. 

Table 3-4. The saturation magnetization for silica coated nanoparticles 

Material 
Saturation magnetization (Ms) 

emu/g 
Coercivity (Hc) kOe Squareness (Mr/Ms) 

ME16 30.43 0.142 0.20 

ME32 10.78 0.0136 0.028 

ME33 14.23 0.095 0.22 

ME60 16.48 0.045 0.13 

ME93 14.83 0.045 0.12 

ME94 4.60 0.025 0.07 
 

All silica coated nanoparticles displayed superparamagnetic characteristics with very low or 

negligible remanence and coercivity as observed from the plots. As expected the saturation 

magnetization value of the silica coated nanoparticles was found to be lower than uncoated 

magnetite nanoparticles (Qu and Tie, 2009). It is suggested in the literature that at any given field 

the saturation magnetization of uncoated magnetite is always higher than that of the silica coated 

materials (Qu and Tie, 2009, Santra et al., 2001). 
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Figure 3-30. Magnetic measurements of silica coated magnetite nanoparticles (ME16) 

Figure 3-30 presents the VSM obtained M-H plot for ME16. The saturation magnetization and 

the coercive field were measured to be 30.43 emu/g and 142 Oe. The remanent magnetization of 

the silica coated nanoparticles was calculated to be 6.15 emu/g. 

 

Figure 3-31. Magnetic measurements of silica coated magnetite nanoparticles (ME32) 

Figure 3-31 presents the VSM obtained M-H plot for ME32. The saturation magnetization and 

the coercive field values were measured to be 10.78 emu/g and 13.6 Oe. The remanent 

magnetization of the silica coated nanoparticles was calculated to be 0.309 emu/g. 
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Figure 3-32. Magnetic measurements of silica coated magnetite nanoparticles (ME33) 

Figure 3-32 presents the VSM obtained M-H plot for ME33. The saturation magnetization and 

the coercive field were measured to be 14.23 emu/g and 95 Oe. The remanent magnetization of 

the silica coated nanoparticles was calculated to be 3.18 emu/g. 

  

Figure 3-33. Magnetic measurements of silica coated magnetite nanoparticles (ME60) 

Figure 3-33 presents the VSM obtained M-H plot for ME60. The saturation magnetization and 

the coercive field were measured to be 16.48 emu/g and 45.8 Oe. The remanent magnetization of 

the silica coated nanoparticles was calculated to be 2.15 emu/g. 
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Figure 3-34. Magnetic measurements of silica coated magnetite nanoparticles (ME93) 

Figure 3-34 presents the VSM obtained M-H plot for ME93. The saturation magnetization and 

the coercive field were measured to be 14.84 emu/g and 45.1 Oe. The remanent magnetization of 

the silica coated nanoparticles was calculated to be 1.88 emu/g. 

 

Figure 3-35. Magnetic measurements of silica coated magnetite nanoparticles (ME94) (the observed noise on the 
signal is due to low saturation magnetization values for ME94) 

Figure 3-35 presents the VSM obtained M-H plot for ME94. The saturation magnetization and 

the coercive field were measured to be 4.6 emu/g and 79.2 Oe. The remanent magnetization of 

the silica coated nanoparticles was calculated to be 0.365 emu/g. 
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As seen in the plots the magnetic field required for coated material to reach saturation 

magnetisation is higher than uncoated magnetite. This could be explained by the restrained 

interparticle interactions due to magnetic isolation of nanoparticles caused by silica coatings. 

Therefore, depending on the silica layer thickness the saturation becomes more difficult (Ammar 

et al., 2007). Furthermore, the diamagnetic characteristic of the silica layer affect the saturation 

magnetization of the nanocomposites lowering the saturation magnetization of the nanoparticles. 

It was observed from the VSM results that the saturation magnetization decreases with the 

increase in silica shell thickness. This could be clearly observed from saturation magnetization 

for ME33 and ME60 which are 14.43 and 16.28 emu/g. These two material were prepared 

following same method with different silica shell thickness. 

The magnetic characteristics of the nanoparticles were identified from the M-H hysteresis loop of 

the nanoparticles. According to literature the squareness value larger than 0.5 indicates single 

domain (SD) nanoparticles, the values between 0.1 to 0.5 indicates pseudosingle domain (PSD) 

nanoparticles and values less than 0.1 specifies multi domain (MD) nanoparticles (Ursachi et al., 

2011b, Dunlop, 1990). As summarized in Table 3-4 the   nanoparticles in sample ME16, ME33, 

ME60 and ME93 demonstrate PSD type characteristic (0.1<S < 0.5) which is in agreement with 

hysteresis observed for the core material used (ME18). However, ME32 and ME94 show a multi 

domain behaviour (S < 0.1).  

 Scanning Column Magnetometry (SCM) 

Scanning Column Magnetometry (SCM) was used to study the stability of the nanoparticles in 

suspension. In this method a column of magnetic dispersion is driven through the core of a coil 

that forms part of an oscillatory circuit. The sedimentation of the material during the experiment 

would change the material concentration over the column length, which would result in a change 

in output frequency over time this change in frequency over time is used to produce a magnetic 

particle concentration profile over column height (Mercer et al., 1999, Sollis et al., 1998, Mercer 

and Bissell, 2013). The particles sedimentation is usually described by Stokes’ law which 

calculates the speed of the particles moving in a viscous fluid, however in the magnetic 

suspension, sedimentation could be hindered as a result of particle interactions. 

Figure 3-36 presents the SCM profile of the bare magnetite (ME18) over the period of 2 hours. 

The change in the profile after 1 hour indicates the sedimentation of the sample in the column. 

Since the output frequency is directly related to the concentration of the magnetic particles in the 

column, the large increase in frequency over time in the lower part of the column, indicate high 

concentration of the magnetic material settled in the bottom of the column (Mercer et al., 2002). 

The sharp peak in the profile indicates the build-up of magnetic particles at the bottom of the 

column by the end of 1 hour. This change in the frequency demonstrate the nanoparticles are not 
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stable in aqueous medium and emphasises the need for coatings over bare magnetite nanoparticles 

to increase the particles stability.  

    

Figure 3-36. SCM profile of the bare magnetite (ME18) 

Figure 3-37 shows the oleic acid functionalised magnetite in cyclohexane after 24 hours. As seen 

in the plot the nanoparticles are very stable and no obvious changes in the frequency was observed 

after 24 hours.  

  

Figure 3-37. SCM profile of the oleic acid functionalised magnetite (ME55)  

Figure 3-38 presents the SCM profile for ME33 over the period of 1 hour. The SCM plot shows 

the change in material concentration in the column over time. Compare to uncoated magnetite 

nanoparticles the silica coated particles show more stable profile however there is visible 

sedimentation in the column after 40 minutes as shown in Figure 3-39.  
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Figure 3-38. SCM profile for silica coated magnetite (ME33) 

 

Figure 3-39. Image of the SCM column containing ME33 after 40 minutes  

Figure 3-40 shows the SCM profile for ME60 over 90 minutes. The SCM plot shows clear change 

in material concentration over the column length with time. At 40 minutes, a peak was observed 

corresponding to the material build up at the bottom of the column which is associated with the 

increased magnetic susceptibility in the end of the column. It was observed that the initial peak 

intensity increased with time indicating an increase in the density of the magnetic material settled 

in the end of the column. The step observed in the profile near the top of the suspension column 

could be due to the different speed of the particles descend (Mercer and Bissell, 2013). The silica 

coating clearly increase the stability of the magnetite nanoparticles however it was not enough to 

make the material stable over long period of time. 
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Figure 3-40. SCM profile for silica coated magnetite (ME60) 

Figure 3-41 shows the SCM profile for ME55-PEG-PCL over the period of 4 hours. The SCM 

plot shows no obvious change in the profile over time which indicates that the material was stable 

over the measurement period, and there was no sedimentation in the column. The results shows 

that polymer coating of the magnetite nanoparticles could be more effective than silica coating in 

increasing the stability of the nanoparticles. 

   

Figure 3-41. SCM profile of PEG-PCL coated magnetite nanoparticles (ME55-PEG-PCL) 

Figure 3-42 presents the SCM profile for ME93-PEG-PCL over the period of 4 hours. The plot 

shows no obvious change in the profile over time which indicates the material was stable over the 

measurement period and there was no sedimentation in the column. The results show that polymer 

coating of the silica coated magnetite nanoparticles could increase the stability of the 

nanoparticles.  Figure 3-43 presents the image of the ME93 before and after polymer coating. As 
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observed from the image ME93 is highly hydrophobic and insoluble in water, however after 

polymer coating it became hydrophilic and stable in water.   

   

Figure 3-42. SCM profile of PEG-PCL capped silica coated nanoparticles (ME93-PEG-PCL) 

         

Figure 3-43. Images of ME93, (a) before polymer coating, and (b) after polymer coating (ME93-PEG-PCL) 

Figure 3-44 presents the SCM profile for liposome coated magnetite (magnetoliposomes) over 

the period of 30 hours. The SCM profile demonstrates that the liposome coated magnetite 

nanocomposites suspension generated only a slight frequency change over a long period of time 

(over 30 hours). This confirms the stability of the sample compared to bare magnetite (see Figure 

3-36).  

(a)

(a) 

(b) 

(a) 
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Figure 3-44. SCM plot for liposome coated magnetite (magnetoliposomes-ME09) 

Figure 3-45 presents the SCM profile for ME60-L (protocells) over the period of 4 hours. The 

plot shows no obvious changes in the profile over time which indicates that the material was stable 

over the measurement period and that there was no sedimentation in the column. The step 

observed in the SCM plot for other materials was not observed here which could be associated 

with homogenous monodisperse nanoparticle suspension with no separation of the aqueous media 

on top of the column. The results shows that liposome coating of the silica coated magnetic 

nanoparticles could effectively increase the stability of the silica coated nanoparticles. 

 

Figure 3-45. SCM profile of the liposome capped silica nanoparticles (protocells-ME60-L) 
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 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) was used to measure the hydrodynamic size of the nanoparticles. 

The measurements performed using a Zetasizer as described in Section 2.32.4. Since this 

measurement technique requires a completely stable sample during measurements and diffusion 

be the only cause of motion in the sample (Kätzel, 2007), the samples which were less stable (i.e. 

bare magnetite nanoparticles) and show sedimentation could not be characterized using this 

method. Auto-Correlation Function (ACF) and the polydispersity index were checked to confirm 

the accuracy of data. Data with y-intercept higher than 0.8 and PDI values lower than 0.7 (based 

on ISO13321) was considered acceptable (Malvern, 2011, Kätzel, 2007). Samples with lower 

intercepts were diluted to reduce the multiple scattering, and the particles size were measured 

again. Additionally Malvern Zetasizer’s software includes a built in function which evaluates a 

number of different parameters to determine the confidence in the reliability of the data 

(nanoComposix, 2012). As advised by ISO 13321, the Z-Average size (harmonic intensity 

averaged particle diameter) was reported as average size of the nanoparticles (Malvern, 2011).  

Figure 3-46 shows the DLS determined hydrodynamic number average size distributions of oleic 

acid functionalized magnetite nanoparticles. The average hydrodynamic diameter of the particles 

was determined to be 15 nm with a polydispersity (PDI) index of 0.27. The particles size measured 

using DLS were slightly higher than the size measured from TEM images. 

 

Figure 3-46. DLS size distribution profile of oleic acid functionalised magnetite nanoparticles (ME55) 

Figure 3-47 shows the hydrodynamic number average size distributions of the magnetoliposomes 

after 12 minutes of sonication and before drug loading. The average hydrodynamic diameter of 

the particles was determined to be 104 nm with a polydispersity (PDI) index of 0.27. The peaks 

observed were at 68.4 and 198 nm with volume weighted percentage of 89.3 and 10.7%. The 

initial size of the magnetoliposomes before sonication was measured to be around 1685 nm with 

PDI of 0.47. The results indicates the effect of sonication time on the size distribution of the 
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magnetoliposomes. It was observed increasing the sonication periods more than 12 minutes did 

not affect the particles size. Similarly Cintra et al. have reported magnetoliposomes with initial 

size of 1000 nm and polydispersity of 0.891, changed to particles with sizes ranging from of 30 

to 300 nm with PDI reduced to 0.266 after 10 minutes of sonication (Cintra et al., 2009b). 

 

Figure 3-47. DLS size distribution profile of magnetoliposomes (ME09) 

Figure 3-48 shows the size distribution of the magnetoliposomes after drug loading (MMC loaded 

magnetoliposomes). It was observed that the average particle size was slightly increased after 

drug loading to be 134 nm and the peaks were observed to move to higher values of 77.97 and 

251 nm. The polydispersity index was 0.267. The standard deviation in the sample could be 

calculated from the PDI and average size diameter based on  

𝜎 = √𝑃𝐷𝐼 × 𝑑2     Equation 3-10 

Where d is the Z-average diameter of the nanoparticles. The standard deviation was calculated to 

be 69.2 for drug-loaded magnetoliposomes. 

 

Figure 3-48. DLS size distribution profile of MMC loaded magnetoliposomes 
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Figure 3-49 presents the hydrodynamic number average size distributions of the PEG-PCL 

micelles after sonication. The average hydrodynamic diameter of the particles was determined to 

be 60.34 nm and the PDI index was 0.36.  

 

Figure 3-49. DLS size distribution profile of PEG-PCL micelles 

Figure 3-50 presents the hydrodynamic number average size distributions of the PEG-PCL coated 

magnetite after sonication and before drug loading. The average hydrodynamic diameter of the 

particles was determined to be 76.34 nm and the PDI index was 0.6. The peaks observed were at 

76.34 and 1124 nm with number percentage of 99.4 and 0.6%. Since the polydispersity index is 

larger than 0.3, and more than 90% of the %Number data are observed to be in same peak, the 

mean number distribution data were used instead of the Z-Average cumulants fit (nanoComposix, 

2012). 

 

Figure 3-50. DLS size distribution profile of PEG-PCL coated magnetite nanoparticles (ME55-PEG-PCL) 

Figure 3-51 presents the hydrodynamic number average size distributions of the PEG-PCL coated 

magnetite after drug loading (drug loaded ME55-PEG-PCL). As presented in Figure 3-51, similar 

to magnetoliposomes the average particle size of the polymer coated magnetite nanoparticles were 
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increased after drug loading. The average particles size was measured to be 106 nm with PDI 

index of 0.27. The increase in micelle size after drug loading is in agreement with the reported 

literature (Cuong et al., 2012, Mohan and Rapoport, 2010). The increase in the micelle size after 

drug loading could be associated to the interactions of hydrophobic DOX molecules, hydrophobic 

magnetite core, and hydrophobic PCL segment of the micelles (Cuong et al., 2012).  

 

Figure 3-51. DLS size distribution profile of DOX loaded PEG-PCL coated magnetite nanoparticles (ME55-PEG-PCL) 

Figure 3-52 shows the hydrodynamic number average size distributions of the PEG-PCL capped 

silica coated nanoparticles (ME93-PEG-PCL) before drug loading. The average hydrodynamic 

diameter of the particles was determined to be 165 nm with a polydispersity (PDI) index of 0.28. 

The hydrophobic silica nanoparticles before polymer coatings were water insoluble therefore it is 

not possible to measure their hydrodynamic size however their size was measured using TEM to 

be 100 nm. From the DLS measurements and the TEM images the thickness of the PEG-PCL 

layer is determined to be around 32.5 nm. similarly an increase in the size of the nanoparticles 

(45 nm thickness) was reported by Liu et al. for PEGylated silica nanoparticles (Liu et al., 2014a). 

 

Figure 3-52. DLS size distribution profile of PEG-PCL capped silica coated magnetite nanoparticles (ME93-PEG-PCL) 
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Figure 3-53 presents the size distribution of the ME93-PEG-PCL after drug loading (DOX loaded 

PEG-PCL capped silica coated nanoparticles). It was observed that the average particle size was 

slightly increased after drug loading to be 170 nm. A very small increase in PEG-PCL micelles 

size after DOX loading is in agreement with reported literature (Shuai et al., 2004, Sanson et al., 

2010). 

 

Figure 3-53. DLS size distribution profile of DOX loaded PEG-PCL capped silica coated magnetite nanoparticles (DOX 
loaded 93-PEG-PCL)  

Figure 3-54 presents the hydrodynamic number average size distributions of the protocells 

(ME60-L) before drug loading. The average hydrodynamic diameter of the particles was 

determined to be 147 nm with a polydispersity (PDI) index of 0.32. The average particle size were 

slightly increased after drug loading to be 150 nm. The TEM images of the ME60 shows that the 

size of the core particles were around 80 nm. 

 

Figure 3-54. DLS size distribution profile of liposome capped silica coated magnetite nanoparticles (protocells-ME60-
L) 
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 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) was used to characterize the thermal properties of the 

block polymers. The sample were prepared and measurements performed according to methods 

explained in Section 2.32.6. 

Figure 3-55 and Figure 3-56 present the DSC thermograms of the PEG-PCL diblock copolymer. 

The sample were initially heated to 60°C to erase the previous thermal history and cooled to -

20°C and reheated to 60°C. 

The melting temperature (Tm) and the crystallisation temperature (Tc) of the copolymer was 

observed from the DSC curves. The PEG-PCL polymer exhibited a crystallisation exotherm at 

around 32.1°C and a two melting endotherm at 35.7°C and 44.8°C. Occurrence of more than one 

melting peak for PEG-PCL dilocks is in agreement with the literature (Glover et al., 2012, Sosnik 

and Cohn, 2003). Both the melting temperature and crystallization temperature of the copolymer 

is lower than the melting temperature and crystallization temperature for PCL which could be 

associated with the PEG in the diblock molecule and indicates that the PEG-PCL diblock 

copolymer is formed (Glover et al., 2012, Sosnik and Cohn, 2003). The crystallisation 

temperature is higher than reported Tc for PEG segment which suggests that the PEG chain in the 

copolymer was unable to crystallise (Sosnik and Cohn, 2003). The melting temperature of the 

material proved its potential to be used in hyperthermia applications.  

 

Figure 3-55. DSC thermograms of cooling stage of PEG-PCL micelles. 
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Figure 3-56. DSC thermograms of heating stage of PEG-PCL micelles  

 Contact Angle Measurements 

Contact angle measurements were performed to measure the hydrophobicity of the nanoparticles. 

The samples were prepared and measurements were performed according to methods described 

in Section 2.32.8. Contact angle measurement was performed by measuring the angle of a water 

drop on the sample surface.  

Figure 3-57 shows an image of the water droplet on the silica coated nanoparticles (ME60). The 

low contact angle indicates that the sample is hydrophilic and water is spread over the top of the 

sample. 

 

Figure 3-57. Measurement of static contact angle of a water droplet on silica coated nanoparticles (ME60) 

Figure 3-58 and Figure 3-59 present the image of the hydrophobic magnetic nanocomposites 

(ME93 and ME94). From the images it was observed that the contact angle of the water droplet 

with the nanocomposites (θ) is greater than 90° which indicates that both samples were 

hydrophobic in nature suggesting the successful surface functionalization of the silica coted 
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nanoparticles. However, ME93 showed larger contact angle indicating higher hydrophobicity of 

the sample. 

  

 

Figure 3-58. Measurement of static contact angle of a water droplet on hydrophobic silica coated nanoparticles 
(ME94) 

 

Figure 3-59. Measurement of static contact angle of a water droplet on hydrophobic silica coated nanoparticles 
(ME93) 

 Nuclear Magnetic Resonance Spectroscopy (NMR)  

Formation of the PEG-PCL diblock copolymer and the degree of polymerization was evaluated 

using 1H-NMR. The samples for NMR were prepared according to methods described in Section 

2.32.13. 

Figure 3-60 presents the 1H-NMR spectra of the PEG-PCL diblock copolymer in deuterated water 

(D2O). Since the micelles would not be dissolved D2O, it was selected as solvent to determine 

formation of the micelle. A single peak was observed at 𝛿 = 3.6 𝑝𝑝𝑚 in 1H-NMR spectra of the 

PEG-PCL in D2O which could be assigned to the segments of PEG (s, 4H, −OCH2CH2−). The 

absence of the peaks from the PCL segment of the copolymer confirms the formation of micelles 

as hydrophobic PCL positioned at the core of the micelles which is insolubale in D2O (Cuong et 

al., 2012, Cuong et al., 2010a). 
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Figure 3-60. 1H-NMR spectra of PEG-PCL micelle dissolved in two D2O.  

Figure 3-61 presents the 1H-NMR spectra of the PEG-PCL diblock copolymer in CDCl3. The 

characteristic signals of both PEG and PCL were observed in 1H-NMR spectra of the PEG-PCL 

in CDCl3. The peaks observed at 𝛿 1.35 (m, 2H, −OCH2CH2CH2CH2CH2O−), 1.60 (m, 4H, 

−OCH2CH2CH2CH2CH2O−), 2.27 (t, 2H, − OCH2CH2CH2CH2CH2O) and 4.02 (t, 2H, 

−OCH2CH2CH2CH2CH2O−) are assigned to the PCL unit.  

The peaks present at 𝛿 4.19 (t, 2H, −OCH2CH2−) and 3.64 (s, 4H, −OCH2CH2−) in 1H-NMR 

spectra are assigned to be the methylene protons from the PEG segment of the diblock copolymer 

which confirms the formation of the copolymer (Glover et al., 2012, Gao et al., 2013, Gou et al., 

2008, Khoee et al., 2015). The peak observed at 𝛿 3.38 (m, 3H, −OCH3−) is assigned to PEG 

end terminal of the copolymer (Hong et al., 2012, Cuong et al., 2012). 

The ratio of the PEG/PCL is calculated based on integration of the PEG peak at 𝛿 4.19 ppm and 

the PCL peak at 𝛿  4.02 ppm. The ratio of the PCL to PEG segment in the diblock copolymer was 

calculated to be 92% PCL to 8%PEG. 
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Figure 3-61. 1H-NMR spectra of PEG-PCL dissolved in in CDCl3. 

 Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy was used to study the chemical structures, bonds 

and functional groups of synthesised nanoparticles. The samples were prepared as explained in 

Section 2.32.10. 

Figure 3-62 and Figure 3-63 present the FTIR spectra of the bare and oleic acid coated magnetite 

nanoparticles. The peaks observed at 576 cm−1 and 439 cm−1 were assigned to the Fe–O bond of 

Fe3O4 nanoparticles and the peaks observed at 3409 cm−1 were assigned to O-H, bending vibration 

and stretching vibration, respectively (Ma et al., 2003, Chen et al., 2009b). 

Similarly the peaks observed in Figure 3-63 at 578 cm−1 and 444 cm−1 were assigned to be due to 

presence of Fe–O bond of Fe3O4 nanoparticles and peaks at 3409 cm−1 were assigned to be due to 

stretching vibration of OH groups. The additional strong absorption peaks observed at 2852 and 

2923 cm−1 were assigned to symmetric and asymmetric stretching of C–H bonds in the oleyl 

chains (Lu et al., 2012, Ma et al., 2003). 
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Figure 3-62. FTIR spectrum of magnetite nanoparticles (ME18) 

 

Figure 3-63. FTIR spectrum of Oleic acid coated magnetite nanoparticles (ME55) 

Figure 3-64 presents the FTIR spectra of the silica coated magnetite nanoparticles (ME60). The 

peaks observed at 443 cm−1, 798 cm−1, 1052 cm−1 were assigned to Si–O bending, Si–O–Si 

bending and Si–O–Si stretching, respectively (Zou et al., 2014). The broad high intensity peak at 

1052 cm−1 could be due to asymmetric stretching of Si–O–Si, while the peak at 798 cm−1 is 

associated with Si–O–Si symmetric stretch. The peak at 958 cm−1  was assigned to the Si–O 

symmetric stretch (Chen et al., 2009b). 

The peak observed at 570 cm−1 was assigned to vibration of Fe-O bond of core particles (Zou et 

al., 2014) which compared to bare magnetite nanoparticles the intensity of the peak is lowered. 

The FTIR spectrum indicates the successful silica coating of the magnetite nanoparticles. 
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Figure 3-64. FTIR spectrum of silica coated magnetite nanoparticles (ME60) 

Figure 3-65 presents the FTIR spectra of the PEG-PCL diblock copolymer. Presence of the 

characteristics peaks of both PEG and PCL in the FTIR spectrum indicates that the PEG-PCL 

copolymer was formed. The absorption band appeared at 1722 cm-1 was attributed to the C=O 

stretching bond of the PCL ester carbonyl group, and the absorption band at 1240 cm-1 was 

attributed to the -COO- streching bond. The peak appeared at 1103 cm−1 was attributed to C–O 

etheric bond. The peaks observed at 2985 cm−1 and 2862 cm−1 were assigned to C–H stretching 

bonds. The wide absorption band in the 3485 cm−1 was assigned to terminal OH groups (Khoee 

et al., 2015, Danafar et al., 2014, Zhou et al., 2003). 

 

Figure 3-65. FTIR spectrum of PEG-PCL diblock copolymer 
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Figure 3-66 presents the FTIR spectra of PEG-PCL magnetic micelles. All the peaks from the 

PEG-PCL copolymer were observed in the FTIR spectra. The additional peak at 580 cm-1 is 

attributed to the Fe-O indicating the presence of the magnetite nanoparticles. 

 

Figure 3-66. FTIR spectrum of PEG-PCL coated magnetite nanoparticles (ME55-PEG-PCL) 

Figure 3-67 presents the FTIR spectra of PEG-PCL capped silica coated magnetic nanoparticles 

(ME93-PEG-PCL). The absorption band observed at 1722 cm-1 was attributed to C=O stretching 

bond of the PCL segment of the copolymer. The broad peak obsrved between 1050 cm-1 and 

1200 cm-1 was attributed to the overlay of the C-O from the polymer and the Si-O-Si sterching of 

the silica shell of the nanoparticles. The peak apeared at 1238 cm-1was attributed to the -COO- 

streching bond. The peaks observed at 453 cm−1 and 809 cm−1 were assigned to Si–O bending, 

Si–O–Si bending, respectively (Zou et al., 2014). The peaks observed at 2900 cm−1 and 2987 cm−1 

were assigned to C–H stretching bonds. The peak observed at 578 was assigned to the Fe-O bond 

of core nanoparticles. The presence of the characteristic peaks of both silica coated magnetite 

core-shell nanoparticles and the copolymer, indicates the successful coating of the polymer over 

the nanoparticles. 
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Figure 3-67. FTIR spectrum of PEG-PCL capped silica coated magnetite nanoparticles (ME93-PEG-PCL) 

 Magnetic Heating Properties of the Nanoparticles 

Magnetic nanoparticles with various diameters and structure were prepared and characterised as 

explained in Chapter 2. The magnetic heating of the nanoparticles will be discussed in this 

Section. For application of the nanoparticles in magnetic inductive hyperthermia (MIH) the 

heating efficiency of the nanoparticles should be optimized. 

For nanoparticles to be suitable for hyperthermia applications a relatively small amount of 

nanoparticles under specific magnetic field could be able to rise the temperature. Hyperthermia 

is a well-known clinical procedure in which temperature of the tumor tissue is raised from the 

physiological temperature (37 °C) to temperatures up to 46 °C or higher to kill the tumor cells. 

As described before in case of superparamagnetic nanoparticles relaxation mechanisms are the 

main sources of power loss. 

 Neel and Brownian relaxation  

The power loss corresponding to Néel and Brown relaxation can be calculated from Equation 

3-11.  

𝑃 =
 (𝑚𝐻𝜔𝜏)2

2𝜏𝑘𝑇𝜌𝑉 (1+𝜔2𝜏2)
   Equation 3-11 

Where 𝑚 is the particle magnetic moment, 𝜏 is the magnetic relaxation time, 𝜔 is the 

measurement angular frequency, 𝜌 the density of magnetic nanoparticles and 𝐻 is the field 

intensity amplitude. The effective relaxation time is given by 
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1

𝜏
=

1

𝜏𝐵
+

1

𝜏𝑁
      Equation 3-12 

Where 𝜏𝐵is The Brownian relaxation time and 𝜏𝑁  is the Neel relextation time calculated from 

Equation 3-13  and Equation 3-14, respectively. 

𝜏𝐵 =
4𝜋𝜂𝑟3

𝑘𝑇
       Equation 3-13 

𝜏𝑁 = 𝜏0𝑒𝑥𝑝
𝐾𝑉

𝑘𝑇
      Equation 3-14 

Where 𝜂 is the viscosity coefficient of the fluid, 𝑟 is the hydrodynamic radius of the particle, 𝑘 is 

the Boltzmann's constant, 𝜏0is the time constant, 𝑉 is the particle volume, and 𝐾 is the 

magnetocrystalline anisotropy energy density. The variables used in the above equations are 

summarized in Table 3-5. 

Table 3-5. Variables used in power loss calculations 

Parameters Values 

𝑓 406 kHz 

ω 255 × 104 /s 

ρ 5170 kg/m3 

k 1.3806488 × 10-23 m2 kg/ s2 K 

H 15.89 kA/m 

K 1.35×104 J/m3  

T 293 K 

𝜏0 10× 10-9 s 

𝜂 10-3 

 

In Equation 3-11 the measurement frequency defines the so called critical particle volume for 

which 𝜔𝜏 = 1 and P will reach maximum value. Measuring frequency of 406 kHz, 𝜔 = 255 ×

104 in room temperature (20°C) were used in this study which leads to calculated particle size 

of 15.0 nm for 𝜔𝜏𝑁 = 1 and maximum power loss corresponding to Néel relaxation. 

For magnetite nanoparticles (ME18) with the average particle size of 13 nm from the TEM 

images, the 𝜏𝑁  and 𝜔𝜏𝑁 where calculated to be  4.64 × 10−8s and 0.11, respectively. In 

comparison for ME59 with the particle size of 8 nm the 𝜏𝑁  and 𝜔𝜏𝑁 where calculated to be 

 2.44 × 10−9s and 0.006 ≪ 1. These results indicate that the Neel loss for ME59 is 

comparatively lower than that of ME18 in the same applied frequency. 

From the Equation 3-13 the particle size, which makes 𝜔𝜏𝐵 = 1 and therefore 𝑃𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 reach a 

maximum was calculated to be around 10 nm. The 𝜔𝜏𝐵 for ME59 was calculated to be 0.5 which 
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is much higher than 𝜔𝜏𝑁 of the same nanoparticles, indicating that the heat produced by ME59 is 

mostly due to Brownian motion. 

As observed from the magnetization curves and the power loss calculation the homogenous 

narrow size distributed magnetite nanoparticles synthesised by thermal decomposition method 

did not exhibit high power loss in the measurement frequencies and therefore they were not used 

further in hyperthermia applications.  

 Specific Power Absorption (SPA) 

The nanoparticles efficiency to generate heat from the magnetic coupling between the magnetic 

moment of nanoparticles and the applied alternate magnetic field could be assessed from specific 

power absorption (SPA) calculations (also known as specific power losses SPL), which is the 

power absorbed per unit mass of magnetic nanoparticles. 

The correlation between the magnetic parameters of the nanoparticles and their efficiency for 

power absorption magnetization could be evaluated from magnetic hysteresis curves. Magnetic 

hysteresis measurements were performed using a vibrating sample magnetometer (VSM) as 

described in Section 3.7. Hysteresis losses of the particles, coercivity (Hc) and saturation 

magnetization (Ms) values were determined from magnetisation curves at room temperature.  

As illustrated in the magnetization curves the nanoparticles were superparamagnetic at room 

temperature. The calculated saturation magnetizations of sample shown in Table 3-4. The 

saturation magnetization (Ms) of the synthesised nanoparticles are in agreement with the literature 

reported values for magnetite particles of similar size and coatings (Gonzalez-Fernandez et al., 

2009). 

In order to develop direct measure of magnetic heat generated by the nanoparticles, time 

dependent calorimetric measurements were performed. The measurements were achieved by 

determining the ratio of temperature increase in the ferrofluid placed in the centre of a coil. The 

coil generates a maximum AC-magnetic field of 15.8 kA/m at a frequency of 406 kHz. Magnetic 

induction heating experiments were performed using DM100 and DM2 as described in previous 

chapters. Temperature data was collected using a fibre optic temperature probe. 

Figure 3-68 shows the time and field dependent temperature curve of ME18 under the AC 

magnetic field irradiation. The magnetic field was varied to keep the maximum temperature at 

55°C. The maximum field was 200 G and the frequency was set as constant 406 kHz. 
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Figure 3-68. Time and field dependent temperature curve of ME18 under the AC magnetic field irradiation 

Figure 3-69 shows the time and field dependent temperature curve of ME55 under the AC 

magnetic field irradiation.  

 

 

Figure 3-69. Time and field dependent temperature curve of ME55 under the AC magnetic field irradiation. 

Figure 3-70 shows the time and field dependent temperature curve of ME33 under the AC 

magnetic field irradiation. Compare to ME18 and ME55 the temperature increase with lower rate 

which could be explain by existence of the silica shell on the nanoparticles. However, to compare 

the heating rate of different samples, the weight of the sample and the heating capacity of the 

sample should be accounted.  
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Figure 3-70. Time and field dependent temperature curve of ME33 under the AC magnetic field irradiation. 

The SPA (W/g) can be calculated by Equation 3-15 (Motoyama et al., 2008a):  

𝑆𝑃𝐴 =
𝑚𝑛𝑝𝐶𝑛𝑝+𝑚𝑠𝐶𝑠

𝑚𝑛𝑝
×

∆𝑇

∆𝑡
   Equation 3-15 

Where 𝑚𝑛𝑝 is the mass of the nanoparticles (g), 𝑚𝑠 is the mass of the liquid (g), 𝐶𝑛𝑝 is the specific 

heat of the nanoparticles (j/gK), 𝐶𝑠 is the specific heat of the liquid (j/gK), and the 
∆𝑇

∆𝑡
 is the initial 

slope of the time-dependent magnetic heating curve (K/s). As demonstrated in the figures above 

under a constant magnetic field, there is a linear relation in the first rising of the temperature. It 

is important to notice that all temperature vs. time heating curves display the maximum slope of 

∆𝑇

∆𝑡
  in the first few seconds after the magnetic field is turned on. 

The heat capacity for magnetite 𝐶𝑛𝑝 is negligible due to its low contents in the samples and 

therefore the Equation 3-15 is replace with the Equation 3-16 (Motoyama et al., 2008).  

𝑆𝑃𝐴 =
𝐶

𝑚𝑛𝑝
×

∆𝑇

∆𝑡
    Equation 3-16 

Where 𝐶 is the sample-specific heat capacity which is calculated as a mass weighed mean value 

of sample. The solvent specific heat (𝐶𝑠) of the different solvents used in this study is summarized 

in Table 3-6. 

The SPA values for synthesized magnetic nanoparticles were calculated based on the equations 

above and was in the range of 5.2 to 175 W/g which is comparable to previously reported SPA 

values. The SPA values of the samples compared to the values reported in the literature are 

summarized in Table 3-7.  
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Table 3-6. List of the solvents specific heat (Cs) 

Material Specific heat (j/gK) 

Cyclohexane 1.8 

Hexane 2.26 

Water 4.19 

Magnetite 0.841 

 

Table 3-7. Comparison of the samples SAR and ILP values with the literature. Blue cells indicate the materials 
synthesised in this project. 

Material 
Average core 

size (nm) 

H 

(kA/m) 
f (kHz) 

SPA 

(W/g) 

ILP 

(nHm2/kg) 
Reference 

Magnetite 7.5 32.5 80 15.6 0.184 (Ma et al., 

2004) 

Magnetite 13 32.5 80 39.4 0.466 (Ma et al., 

2004) 

Magnetite 8.4 6 330 10.86 0.9 (Behdadfar et 

al., 2012) 

Magnetite 9.5 6 330 111.76 9.4 (Behdadfar et 

al., 2012) 

Dextran-

coated 

magnetite 

18 15.91 55 57 4.09 (Zhang et al., 

2007) 

Magnetite 50 15.91 55 4.5 0.32 (Zhang et al., 

2007) 

Dextran 

coated 

magnetite 

3.3 13.2 520 120 1.32 (Jordan et al., 

1996) 

Aminosilan 

coated 

magnetite 

13.1 13.2 520 146 1.61 (Jordan et al., 

1996) 

Magnetic 

iron oxide 

13.2 11 410 87 1.75 (Müller et al., 

2005) 

  



150 

Table 3-7. Continued 

Material 
Average core 

size (nm) 
H (kA/m) f (kHz) 

SPA 

(W/g) 

ILP 

(nHm2/kg) 
Reference 

Magnetic 

iron oxide 

9.2 11 410 1.7 0.034 (Müller et al., 

2005) 

Maghemite 25 12 300 2.8 0.064 (Baker et al., 

2006) 

Silica-coated 

magnetite 

45 (shell 

thickness of 

4.5nm) 

12 260 45 1.2 (Gonzalez-

Fernandez et 

al., 2009) 

Silica-coated 

magnetite 

110 (shell 

thickness of 15 

nm) 

12 260 1.74 0.046 (Gonzalez-

Fernandez et 

al., 2009) 

Liposome 

coated 

magnetite 

120 32.5 200 4.18 0.019 (Motoyama 

et al., 2008a) 

PEG-PCL 

coated 

magnetite 

6 (total size of 

78nm) 

82.7 266 0.82 45e-5 (BENNETT, 

2012) 

Liposome 

coated 

magnetite 

35 30 118 96 0.90 (Le et al., 

2001) 

ME18 13 15.8 406 176.546 17.2 Present study 

ME33 13 15.8 406 10.684 1.04 Present study 

ME55 13 15.8 406 128.001 12.5 Present study 

ME59 8 15.8 406 37.590 3.67 Present study 

ME60 29 (shell 

thickness of 29 

nm) 

15.8 406 10.800 1.05 Present study 

ME60-L 29 15.8 406 1.319 0.129 Present study 

ME55-PEG-

PCL 

13 15.8 406 8.796 0.858 Present study 

ME93-PEG-

PCL 

40 15.8 406 3.352 0.327 Present study 

ME94-PEG-

PCL 

30 15.8 406 2.011 0.196 Present study 
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 Intrinsic loss power (ILP) 

The direct comparison of the calculated SPA data with the reported literature is difficult due to 

different AC field frequencies and the field intensities used in each measurements. Intrinsic loss 

power (ILP), allows more direct evaluations to be made between experiments performed in 

different laboratories under different AC field strength and frequency conditions (Behdadfar et 

al., 2012, Kallumadil et al., 2009). 

Intrinsic loss power (ILP) is calculated using Equation 3-17. 

𝐼𝐿𝑃 =
𝑆𝐴𝑅

𝐻2𝑓
    Equation 3-17 

This equation is valid under frequencies of up to several MHz which covers the range for 

hyperthermia applications. SPA and the ILP were calculated for synthesised materials under 

magnetic field with 406 kHz frequency and 200 G magnetic field strength. 

For the magnetic heating measurements magnetite nanoparticles prepared by thermal 

decomposition method (ME59) with monodisperse size of 8 nm were dispersed in cyclohexane 

to achieve a final concentration of 39 mg/mL solution. The SPA and ILP was calculated to be 

37.59 W/g and 3.67 nHm2/kg, respectively. 

Magnetite nanoparticles prepared by coprecipitation method (ME18 and ME55) were dispersed 

in water and hexane to the final concentration of 21 mg/mL and 12 mg/mL, respectively. ME55 

was prepared by coprecipitation method and it was oleic functionalised post synthesised. The size 

range for ME18 and ME55 was in the range of 8-15 nm. The calculated SPA and ILP from the 

AC field measurements showed that the SPA and ILP of the material prepared by coprecipitation 

method was much higher than the monodisperse material prepared by thermal decomposition 

method. 

Silica coated and polymer coated magnetic nanoparticles were also investigated for their magnetic 

heating abilities. The comparative results of SPA measurements between bare and coated 

nanoparticles demonstrated a decrease of SPA with the increase in nanoparticles size. Coated 

nanoparticles displayed smaller SPA values than the corresponding uncoated ones. The SiO2 shell 

thickness was found to play an important role in the heating efficiency. This variance could be 

related to the insulating nature of the silica coating, which could be shielding the heat from the 

magnetic nanoparticle and consequently decreasing the heating efficiency (Gonzalez-Fernandez 

et al., 2009). The calculated ILP was reduced from 17.2 nHm2/kg for uncoated magnetite to 

1.05 nHm2/kg for silica coated magnetite. This indicates that the silica coating of the nanoparticles 

should be designed to be the minimum necessary for the related application. 

Similarly for polymer coated magnetite the coating reduced the calculated heat efficiency from 

12.5nHm2/kg for bare magnetite to 0.858 nHm2/kg for magnetic micelles. It is concluded that a 
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compromise between good heating efficiency, surface functionality and surface area for 

biomedical purposes can be attained by making the biocompatible coating as thin as possible.  

Liposome coated and polymer capped silica coated nanoparticles were also developed for 

magnetic hyperthermia applications. The heating performance of this material is significantly 

affected by the silica thickness and hydrodynamic size of the particles. The polymer capped silica 

nanoparticle (ME93-PEG-PCL) showed ILP value of 0.327 nHm2/kg and the liposome capped 

silica coated nanoparticles (ME60-L) exhibited and ILP value of 0.129 nHm2/kg. 

Table 3-7 shows comparison between heating efficiencies of the synthesised nanocomposites and 

some of the material reported in the literature. The highest ILPs between commercial ferrofluids 

belong to Micromode and Bayer-Schering (Bayer-Schering's Resovist is medically approved 

ferrofluid) ferrofluids which are 3.12 and 3.1 nHm2/kg with particle sizes of 11.8 and 10.5 nm, 

respectively. Comparing our results with the results in that report shows that the calculated 

intrinsic loss power (ILP) of most of the synthesised nanocomposites are in similar range or higher 

than the literature and the commercially available ferrofluids (Kallumadil et al., 2009). These 

results indicates that the synthesised material have great potential to be used in magnetic 

hyperthermia applications. 
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 Introduction 

The focus of this chapter is the evaluation of the synthesised magnetic nanocomposites as enzyme 

supports. This was achieved by quantifying the amount of lipase (Candida Rugosa lipase (CRL) 

and Pseudomonas Fluorescens Lipase (PFL) immobilised on the nanocomposite support followed 

by assessing the catalytic activity of the immobilised lipase compared to the free lipase. 

The first part of this chapter presents the data and discusses the results on the lipase 

immobilisation by assessing the surface amine density, followed by Bradford assay to quantify 

the immobilized enzyme (both physically adsorbed and chemically bonded lipase).  

The second part of this chapter aims to examine the catalytic activity of the immobilized lipase 

using two lipase catalysed reactions. The first reaction used was the widely known model reaction 

of hydrolysis of p-nitrophenyl palmitate (pNPP) to palmitic acid and p-nitrophenol (pNP). This 

reaction was repeated in presence of an AC field to evaluate the activity of the immobilized 

enzyme in the presence of an AC field. The hydrolysis of pNPP has been commonly used as a 

model reaction since it can be readily monitored using UV-Visible spectrophotometry by 

measuring the absorbance at λ410nm (Teng and Xu, 2007, Gupta et al., 2002, Leis et al., 2015). The 

second catalytic application was the hydrolysis of cis-3,5-diacetoxy-1-cyclopentene to produce 

the chiral optical isomers (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol and its enantiomer. 

Mesoporous silica coated magnetic core-shell nanoparticles (ME33) were used for enzyme 

immobilisation through covalent bonding and physical adsorption. The nanoparticles were 

prepared following the method described in Section 2.4. The nanomaterials were characterized 

using various techniques such as transmission electron microscopy (TEM), X-ray diffraction 

(XRD), small angle X-ray scattering, infrared spectroscopy (FT-IR), vibrating sample 

magnetometer (VSM), scanning column magnetometry (SCM) and Energy-dispersive X-ray 

analysis (EDAX) as described in Chapter 3.  

 Colorimetric Assay of Amine Density  

The lipase was immobilized on the magnetic nanoparticles covalently, as well as via physical 

adsorption. To immobilise the lipase on nanoparticles surface via chemical bonding, the magnetic 

nanoparticles were modified by amine surface functionalization which was then activated by 

glutaraldehyde as explained in Section 2.8 and 2.10.  

Physical and chemical properties of amine functionalised nanoparticles can be determined by the 

density of the amine groups. The surface amine density was measured following the process 

explained in Section 2.9. Generally, the aminosilane layer was allowed to react with 4-

nitrobenzaldehyde, a UV-sensitive molecule, followed by UV-Visible spectroscopy at λ282nm to 

confirm the formation of the corresponding imines. Subsequently the imines were hydrolysed to 
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regenerate the amine groups on the surface of the nanoparticles. The density of the amine groups 

were quantified by measuring the amount of 4-nitrobenzaldehyde available in the solution and 

comparing it to the initial concentration. The amount of the 4-nitrobenzaldehyde present in 

solution was calculated based on the pre-established standard curve.  

Standard curves of 4-nitrobenzaldehyde in coupling and hydrolysis solution was prepared by 

measuring the absorbance of series of dilutions of 4-nitrobenzaldehyde in hydrolysis and coupling 

solution. Figure 4-1 and Figure 4-2 present typical standard curve for dilutions of 4-

nitrobenzaldehyde in hydrolysis and coupling solution.  

     

Figure 4-1. Standard curve of 4-nitrobenzaldehyde dilutions in coupling solution (λ282nm). 

  

Figure 4-2. Standard curve of 4-nitrobenzaldehyde dilutions in hydrolysis solution (λ282nm). 

As shown in Figure 4-1 and Figure 4-2, a linear trend was observed at the concentration range of 

0 to 240  nmol/mL. The initial concentration of 4-nitrobenzaldehyde was 0.7 mg/mL which was 

not in the range of acceptable UV-visible readings, consequently, all the absorbance including the 

initial readings were recorded on 20 times diluted samples. Standard curves were reproduced 
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every six months using fresh samples to maintain the measurements reliability and 

reproducibility.  

Results of both the water method and TPRE method of amine functionalisation are shown in 

Figure 4-3 and Figure 4-4. The measurements were performed in coupling solution by measuring 

the amount of unbounded 4-nitrobenzaldehyde left in the solution and comparing that with initial 

values and it was then confirmed by measuring the amount of 4-nitrobenzaldehyde present in the 

solution after hydrolysis. 

   

Figure 4-3. Surface amine density of mesoporous silica coated magnetite prepared following water method. 
Measuring in coupling solution (a) and measuring in hydrolysis solution (b). Each column represents an 
independent experiment and error bars present standard deviation between different samples in each 
experiment 

 

   

Figure 4-4. Surface amine density of mesoporous silica coated magnetite prepared following TPRE method. 
Measuring in coupling solution (a) and measuring in hydrolysis solution (b). Each column represents an 
independent experiment and error bars present standard deviation between different samples in each 
experiment 

Surface amine density (molecules/nm2) was calculated by integrating the amine values obtained 

from the colorimetric assay and the surface area of the mesoporous silica coated nanoparticles 

obtained from nitrogen adsorption-desorption (BET) test. Surface amine density was calculated 

to be around 0.152 molecule/nm2 (0.300 mmol/g) for water method and 0.414 molecule/nm2 

(0.817 mmol/g) for TPRE method. It is clear from the figures that TPRE method leads to higher 

surface amine density which is consistence with the literature (Gartmann et al., 2010, Sen and 

Bruce, 2012a). Higher surface amine density attained by TPRE method could be due to limited 

water in the system which controls the surface condensation of the aminosilane and leads to 

uniform amine distribution on the surface. It is well established that water promotes the interaction 
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of the amino groups with the surface, by proton transfer from the surface silanols to the amino 

moieties and subsequent electrostatic interaction. The resulting orientation of the amino groups 

toward the silica surface provides accessible triethoxysilyl moieties for cross-linking, ultimately 

leading to the formation of clusters. The presence of such clusters can also make pores partially 

inaccessible for additional APTES molecules and result in a lower amine groups density 

(Gartmann et al., 2010). 

 Bradford Assay for Evaluating Lipase Immobilisation 

Lipase immobilisation was performed following the method explained in Section 2.11. After the 

lipase was immobilised on nanoparticles the quantification of the immobilised lipase was 

performed using Bradford assay (Bradford, 1976, Ernst and Zor, 2010, Sen et al., 2010). In this 

method magnetic nanoparticles were separated from the solution using a permanent magnet and 

the amount of free enzyme remained in the supernatant was measured by adding equal amount of 

Bradford reagent and measuring the UV absorbance at λ595nm. The lipase concentration was then 

calculated using the prepared standard curves. Standard curves of PFL and CRL were prepared in 

PBS solution by measuring the absorbance of series of dilutions of lipase. Figure 4-5 and Figure 

4-6 show the standard curves for PFL and CRL in PBS solution. 

 

  
Figure 4-5. Calibration curve for PFL 

In case of PFL the standard curve showed non-linear behaviour over the higher lipase 

concentration range therefore the standard curve was conducted in low lipase concentration and 

during the measurements where required the samples were diluted to fit in the calibration range. 
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Figure 4-6. Calibration curves for CRL 

Since the materials functionalised using TPRE method showed higher amine density they have 

been used further in enzyme immobilisation. Figure 4-7 shows the average enzyme 

immobilisation profile calculated using Bradford assay.  

 

  

Figure 4-7.  The average enzyme immobilisation profiles. Values are mean ± standard deviation. All experiments 
are repeated at least 4 times.  

From Figure 4-7, it is seen that CRL showed a higher immobilisation rate. It is also observed that 

both in case of CRL and PFL, physically adsorbed lipase showed higher loading capacity, which 

could be explained by the possibility of the pores of the surface functionalise nanoparticles being 

blocked by the functional groups. However, it was observed and will be discussed in the following 

sections that the physically immobilised enzymes tend to leak into the solution and result in 

enzyme loss and consequently decreased catalytic activity after reuse in few cycles. 
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 Bio-Catalytic Application: Hydrolysis of pNPP 

The activity of lipases are commonly assessed using the para-nitrophenyl palmitate (pNPP) assay. 

This assay is based on the colorimetric assessment of yellow chromogen para-nitrophenol (pNP) 

introduced in to the solution as the consequence of enzymatic hydrolysis of pNPP (Gupta et al., 

2002). In this project the model catalysis reaction of pNPP hydrolysis to produce palmitic acid 

and pNP was used to evaluate the activity of lipase immobilised onto the nanoparticles. pNP has 

a strong absorption at λ410nm which allows for an easy and reliable means to measure reaction rates 

by UV–visible spectroscopy. 

Standard curve of pNP were prepared using a sequence of pNP dilutions in a 1:1 mixture of 

reagent A (Gum Arabic, sodium deoxycholate and Tris-HCl as explained in Section 2.13) and 

isopropanol. Figure 4-8 presents the calibration curve of pNP. As seen in Figure 4-8 good linearity 

between UV-Absorption and pNP concentration was observed in the range of 0 to 27 µmol/mL.  

 

  

Figure 4-8. Calibration curve for p-nitrophenol (pNP) in a 1:1 mixture of reagent A: Isopropanol 

The hydrolysis of para-nitrophenyl palmitate was carried out according to the method described 

in Section 2.13. To perform this reaction an equivalent amount of 500 µg lipase either in 

immobilised form or in free form was used. The actual mass of particles used in each case is 

calculated based on the results from the Bradford assay and is given in Table 4-1. 

Table 4-1. Equivalent amount of nanoparticles to obtain 500 µg of immobilised lipase 

Immobilisation technique 
PFL immobilised 

nanoparticles (mg) 

CRL immobilised 

nanoparticles (mg) 

Physical adsorption 9.25 5.52 

Chemical bonding 22.36 5.96 
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The catalytic activity of free, physically adsorbed and chemically conjugated lipases to hydrolyse 

pNPP is demonstrated in Figure 4-9. 

 

Figure 4-9. The catalytic activity of free, physically adsorbed and immobilised lipases to produce pNP. (*and ** 
statistically significant (P<0.05) difference between free CRL activity and immobilised CRL activity)  

The results indicate that the PFL lipase either in free form or immobilised form display higher 

activity in hydrolysis of pNPP compare to CRL lipase. In this reaction free PFL showed 5 times 

higher activity than free CRL. Immobilised and free PFL did not show significant difference in 

catalytic activity, however the chemically conjugated lipase showed the lowest activity compare 

to free and physically adsorbed lipases. Chemically immobilised PFL maintained 88% and 

physically immobilised PFL maintained 98% of it activity. 

In case of CRL lipase, free CRL showed higher activity and there was a significant difference 

between catalytic activity of free and immobilised lipase, however there was no significant 

difference in hydrolytic activity of physically and chemically immobilised lipases. Chemically 

immobilised CRL maintained 69% and physically immobilised CRL maintained 61% of it 

activity. 

After the hydrolysis reaction, the immobilised enzymes were collected using a permanent magnet 

and washed with PBS buffer and used again in the same reaction to assess the reusability of the 

immobilised lipase. The immobilised enzymes were used in 4 consecutive cycles. Similarly for 

reactions performed with free enzyme, the enzyme was recycled using centrifugation and washed 

and reused in another cycle. The results for reusability evaluation of the immobilised lipases are 

shown in Figure 4-10. 

As shown in Figure 4-10 due to difficulties during isolation and recycling of the free lipase from 

the reaction mixture, which resulted in losing the lipase, it was not possible to use the free lipase 

in more than two successive cycles. 
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Figure 4-10. The reusability of the lipases over 4 successive cycles. 

The results indicated that compared to chemically immobilised lipases, physically adsorbed 

lipases initially showed higher catalytic activity, however for both lipases there was a decrease in 

lipase activity after each cycle which could be due to lipase leaching into the solution and 

consequently less available lipase in the subsequent cycle (Sen et al., 2010). An exception was 

observed for physically adsorbed PFL which showed an initial increase in activity in the first 

recuse cycle (second cycle). After four consecutive cycles the PFL physical maintained 60% of 

its initial activity and CRL physical maintained 52% of its initial activity. In case of chemically 

immobilised lipases there were no significant decrease in lipases activity where chemically 

immobilised CRL maintained 98% of its activity after four cycles, and interestingly the 

chemically immobilised PFL showed even higher activity after 4 cycles (110%). The increased 

activity for PFL after the first cycle is suggested to be a results of lipase activation and aggregation 

of PFL. In moderate to high concentrations PFL tends to auto assemble into bimolecular structure 

which shows lower activity (Fernández-Lorente et al., 2003). High loading of PFL in 

mesochannels leads to formation of bimolecular form of PFL. In bimolecular form of PFL the 

active sites of both lipase molecules are intimately associated leading to a reduction in activity of 

the lipase with competition between neighbouring PFL active sites (Fernández-Lorente et al., 

2003). During the first catalysis cycle some of the adsorbed PFL leach into the solution increasing 

the accessibility of the remained lipase, which consequently lead to an increase in lipase activity. 

However, after second cycle the amount of lipase lost in the reaction is dramatically increased 

resulting in lower activity. Similarly for chemically immobilised enzyme the increased activity 

after initial cycle could be explained by enzyme activation and better accessibility of the lipase 

active sites.  
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 Effects of AC Magnetic Field on Catalytic Activity of the Lipase 

Magnetic fields are known to influence the enzyme activity however, previous studies into the 

influence of magnetic fields on the activity of immobilised enzymes, particularly enzymes 

immobilised on magnetic supports, are somewhat controversial as some reports claim enzyme 

activation while others reports deactivation (Klyachko et al., 2012, Willner and Katz, 2003, 

Golovin et al., 2014a, Møller and Olsen, 1999). Nonetheless previous studies have focused on the 

low frequency range of <100 Hz (Suzuki et al., 2015) while the results reported in this thesis are 

significantly different due to measurements being in high frequency of 406 kHz. 

The effect of magnetic field on the course of the reaction is evaluated by exposing the reaction to 

a magnetic field for different time frames. The hydrolysis of para-nitrophenyl palmitate was 

performed under influence of a magnetic field using an equivalent amount of 500 µg CRL lipase 

in immobilised form. The actual amount of nanoparticles used in each case is calculated based on 

the results from Bradford assay and is given in Table 4-1. 

A magnetic field with the field strength of up to 200 G and frequency of 406 kHz was used for 

these experiments. The field strength was set variable in the way to keep the temperature constant 

at 32°C. The heating profile of CRL lipase immobilised nanoparticles in presence of the magnetic 

field is shown in Figure 4-11. 

 

Figure 4-11. Magnetic heating profile of the enzyme immobilised magnetic nanoparticles (ME33) corresponding to 
Field frequency of 406 kHz. 

To account for the magnetic heating of the magnetic nanoparticles and effects of the heat on the 

lipase activity, the control reaction was performed simultaneously in an incubator at 32°C. The 

activity of the CRL lipase in presence of a magnetic field is presented in Figure 4-12 and Figure 

4-13. 
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Figure 4-12. Hydrolysis of pNPP using chemically immobilised CRL under influence of a magnetic field compared 
with in incubator at 32°C. 

 

Figure 4-13. Hydrolysis of pNPP using physically immobilised CRL under influence of a magnetic field compared with 
in incubator at 32°C. 

As seen in Figure 4-12 and Figure 4-13 exposure of the lipase to the magnetic field increased the 

reaction rate of both physically adsorbed and chemically bonded lipase. The increased lipase 

activity is suggested to be a result of conformational changes in the lipase structure in a way which 

lead to variations in the interatomic distances in the active sites and increased lipase activation 

(Golovin et al., 2014b). On the other hand the increased lipase activity could be attributed to the 

local heat generated by the magnetic support as suggested by Suzuki et al. (Suzuki et al., 2015). 

Suzuki et al. have studied the effect of an AC magnetic field with frequency of 340 kHz, and 

amplitude of 30 kA/m on activities of α-amylase immobilized on ferromagnetic particles and 

reported an increased activity which was suggested to be the result of activation of the enzyme 
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by magnetic heating of the nanoparticles (Suzuki et al., 2015). Mizuki et al. have reported an 

increase in activity of α-amylase and lipase immobilized on superparamagnetic particles under 

influence of magnetic field. However they have used rotational magnetic field with a very low 

frequency in the range of 0 to 30 Hz (Mizuki et al., 2010, Mizuki et al., 2013). Klyachko et al. 

have studied the effect of magnetic field on the enzyme immobilized on copolymer-magnetic 

nanoparticle and reported a decrease in enzyme activity which was attributed to conformational 

changes in the enzymes induced by realignment of magnetic nanoparticles rather than the heat 

generation of the particles (Klyachko et al., 2012).  

To be certain that the increased enzyme activity was not due to enzyme leaching into the solution 

and acting as free lipase, the immobilised lipases were exposed to the magnetic field for an hour. 

After which nanoparticles were separated from the solution via magnetic separation and Bradford 

assay was performed on the supernatant. The assay for chemically bonded lipase indicated that 

there was no lipase in the solution. However, as it was expected, it was observed that the 

physically adsorbed lipase was leaked out into the solution. The reaction was repeated for 3 

consecutive cycles which at the end of the third cycle the chemically immobilised lipase retained 

83% of its activity.  

 Enantioselective Desymmetrization of cis-3,5-Diacetoxy-1-

cyclopentene to (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol 

Significance of (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol is in the synthesis of biologically active 

cyclopentenoid natural products such as prostaglandins, prostacyclins and thromboxanes, and 

some anti-HIV drugs. The importance of these products and the great market demand for high 

cost chiral intermediates have led to development of various synthesis methods. Most commonly 

used methods are; enzymatic desymmetrization of meso-cyclopenten-1,4-diol by 

transesterification, and enzymatic hydrolysis of the diacetate (Ghorpade et al., 1999, Kalkote et 

al., 2000, Sharifabad et al., 2014). With regard to desymmetrization of cis-3,5-diacetoxy-1-

cyclopentene via enzymatic hydrolysis, most of the efficient enzymes reported, (except Pig liver 

esterase (PLE)) have shown pro-S preference which necessitates additional chemical steps to 

convert the (4S)-hydroxy enantiomer to get the (4R)-hydroxy configuration (Ghorpade et al., 

1999, Kalkote et al., 2000).  

The hydrolysis of cis-3,5-diacetoxy-1-cyclopentene was performed according to the method 

described in Section 2.14. To conduct this reaction an equivalent amount of 500 µg lipase (both 

PFL and CRL) either in immobilised form or in free form was used. The actual amount of particles 

used in each case is calculated based on the results from Bradford assay and is given in Table 4-1. 

Gas Chromatography (GC) has been used to verify and quantify the reaction products. To achieve 

this, gas chromatography were performed for commercially available pure materials ( (1S,4R)-
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cis-4-acetoxy-2-cyclopenten-1-ol (Sigma-Aldrich cat. No. 446041), (1R,4S)-cis-4-acetoxy-2-

cyclopenten-1-ol (Sigma-Aldrich cat. No. 00848), cis-3,5-Diacetoxy-1-cyclopentene (Sigma-

Aldrich cat. No. 31481) and cis-4-cyclopentene-1,3-diol (Sigma-Aldrich cat. No. 29823)) to 

recognize the retention time (RT) of each material. Based on the chromatograms, the peak at 

10.53 minutes corresponded to cis-4-cyclopentene-1,3-diol, the peak at 11.04 minutes 

corresponded to (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol, the peak at 11.18 minutes 

corresponded to (1R,4S)-cis-4-acetoxy-2-cyclopenten-1-ol, and the peak at 12.26 minutes 

corresponded to cis-3,5-diacetoxy-1-cyclopentene  

AS an example of GC chromatograms, Figure 4-14 and Figure 4-15 present scanned GC 

chromatograms of the reaction products using PFL and CRL lipases after 48 hours.  

The peak observed at 3.46 could be attributed to the formation of acetic acid as a by-product of 

the reaction resulting from further hydrolysis of the hydrolysed acetoxy groups. The increasing 

concentration of acetic acid in the reaction mixture could result in further acid-catalysed 

hydrolysis of the mono-acetoxy to the dihydroxy product. 

 

Figure 4-14. Scanned GC chromatograms of the reaction using PFL. 
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Figure 4-15. Scanned GC chromatograms of the reaction using CRL 

The quantity of products were calculated based on the pre-established standard curves which were 

prepared from integration of the peak area of GC graphs of a range of diluted pure materials. 

Considering the reaction conditions the standard curves of the products were prepared either in 

hexane or water. Since (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol and cis-3,5-

dihydroxycyclopentene are insoluble in hexane their standard curves were prepared in water. 

Calibration curve for cis-3,5-diacetoxy-1-cyclopentene was prepared in hexane to calculate the 

exact amount of starting material and monitor the conversion. The calibration curves are shown 

in Figure 4-16, Figure 4-17 and Figure 4-18. Since equal amount of (1S,4R)-cis-4-acetoxy-2-

cyclopenten-1-ol and its enantiomer showed equal peak area, the standard curve of (1S,4R)-cis-

4-acetoxy-2-cyclopenten-1-ol was used for (1R,4S)-cis-4-acetoxy-2-cyclopenten-1-ol. As seen in 

the figures linearity with high confidence regression values were observed in all standard plots.  
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Figure 4-16. Calibration curves for (1s, 4R)-cis-4-acetoxy-2-cyclopenten-1-ol in water. 

  

Figure 4-17. Calibration curves for cis-4-cyclopentene-1,3-diol in water. 

  

Figure 4-18. Calibration curve for cis-3,5-diacetoxy-1-cyclopentene in hexane 
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As described in Section 2.14. The reaction was performed in a biphasic condition with a solvent 

mixture of hexane: water with ratio of 4:1. The biphasic solvent was used in order to ease the 

product separation since the (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol and (1R,4S)-cis-4-

acetoxy-2-cyclopenten-1-ol are water soluble and insoluble in hexane, while the reactant is mostly 

soluble in hexane. Furthermore as established by Hodgson (Hodgson, 2014) biphasic system of 

hexane and water enhance the activity of free CRL and PFL lipases in transesterification reactions. 

The reaction was placed in an incubator at 25°C on end-over-end rotation (40 rpm). 

The reaction was monitored by quantifying the products present in the water layer via injecting 

1 µL of the water layer into the GC at different time intervals. Analysing the reaction rate was 

attained using only water layer since using the hexane layer proved difficult as a result of slight 

evaporation of hexane during the reaction. 

The activity of free and immobilized PFL in the hydrolysis of cis-3,5-diacetoxy-1-cyclopentene 

and formation of the products are calculated based on the standard curves and presented in Figure 

4-19, Figure 4-20, and Figure 4-21. 

  

Figure 4-19. Percentage (%) of unreacted cis-3,5-diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene using chemically immobilised PFL on the 
surface of the nanoparticles at different time intervals of 1, 4, 24 and 48 hours  
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Figure 4-20. Percentage (%) of unreacted cis-3,5-Diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene using physically immobilised PFL on the 
surface of the nanoparticles at different time intervals of 1, 4, 24 and 48 hours 

  

Figure 4-21. Percentage (%) of unreacted cis-3,5-Diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene using free PFL at different time intervals of 1, 
4, 24 and 48 hours 

As observed from the figures when either free PFL or immobilized PFL were used as the catalyst 

in the reaction it produced (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 without the formation of its 

enantiomer, (1R, 4S)-cis-4-acetoxy-2-cyclopenten-1. At the end of 24 hours the free PFL have 

completed the conversion (1 µmol of reactant per 10 µg of enzyme) while the immobilized 

enzyme (physically or chemically) accomplished relatively lower conversion values. After 48 

hours the physically adsorbed PFL materials achieved about 75% conversion of reactant 
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(0.75 µmol of reactant per 10 µg of enzyme) and the chemically bonded PFL materials attained 

about 60% conversion of reactant (0.60 µmol of reactant per 10 µg of enzyme).  

In both cases of free and immobilised lipase, the conversion of the reactants to different products 

were increased with increasing the reaction time from 1 hour to 48 hours. However increasing the 

reaction time resulted in further hydrolysis of the acetate group of (1S, 4R)-cis-4-acetoxy-2-

cyclopenten-1 to increase the concentration of unwanted cis-4-cyclopentene-1,3-diol product. 

Particularly in case of free lipase the amount of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 decreased 

from 68% after 4 hours to 19% by the end of 48 hours reaction. The high quantity of the dihydroxy 

by-product produced in the reactions can be attributed to the relatively high water content in the 

reaction and the increasing concentration of acetic acid in the reaction mixture which could result 

in acid-catalysed hydrolysis of the newly formed mono-acetoxy products to the dihydroxy. 

Figure 4-22 and Figure 4-23 present the comparison between free and immobilised lipase in 

forming (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 and cis-4-cyclopentene-1,3-diol, respectively. 

  

Figure 4-22. Comparison between free and immobilised PFL lipases in forming (1S, 4R)-cis-4-acetoxy-2-cyclopenten-
1 during the 48 hours reaction period.and cis-4-cyclopentene-1,3-diol, respectively average acetoxy 
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Figure 4-23. Comparison between free and immobilised PFL lipases in forming cis-4-cyclopentene-1,3-diol during the 
48 hours reaction period.  

It was observed that the initial conversion to desired products using free PFL is much higher than 

immobilised PFL, with the optimum conversion of 68% after 4 hours. However as shown in the 

figures physically adsorbed PFL affords higher conversion of reactant to desired product with 

73% conversion over 24 hours. Nevertheless when physically adsorbed lipase was reused as the 

catalyst in the second cycle the conversion reduced to less than 36% which suggest that physically 

adsorbed PFL was not stable and leached into the reaction. With regard to chemically immobilized 

PFL, the lipase exhibited an increased catalytic activity in the second cycle which could be the 

result of enzyme activation as discussed in Section 4.4. 

In order to evaluate the reusability of the immobilised lipase, after the experiment enzyme was 

recycled and reused in successive reactions. Figure 4-24 presents the percentage of (1S, 4R)-cis-

4-acetoxy-2-cyclopenten-1 produced during the reusability test (3 cycles). Free enzyme could not 

be recovered from the reaction mixture hence presented only in the first cycle. 
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Figure 4-24 Reusability of PFL in production of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 over 3 cycles of 24 hours 
reaction at 25°C. Since free enzyme could not be recovered from the reaction mixture, it is presented 
only in one cycle 

The activity of free and immobilized CRL in the hydrolysis of cis-3,5-diacetoxy-1-cyclopentene 

and formation of the products were evaluated over 48 hours reaction. The quantity of the products 

were calculated based on the standard curves presented in Figure 4-25, Figure 4-26 and Figure 

4-27. 

  

Figure 4-25. Percentage (%) of unreacted cis-3,5-Diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene using chemically immobilised CRL on the 
surface of the nanoparticles at different time intervals of 1, 4, 24 and 48 hours 
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Figure 4-26. Percentage (%) of unreacted cis-3,5-Diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene using physically immobilised CRL on the 
surface of the nanoparticles at different time intervals of 1, 4, 24 and 48 hours 

  

Figure 4-27. Percentage (%) of unreacted cis-3,5-Diacetoxy-1-cyclopentene and the corresponding products of 
enzymatic hydrolysis of cis-3,5-Diacetoxy-1-cyclopentene free CRL at different time intervals of 1, 4, 24 
and 48 hours 

As observed from the figures when either free CRL or immobilized CRL were used as the catalyst 

in the reaction, they produced both optical isomers, (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 and 

its enantiomer, (1R, 4S)-cis-4-acetoxy-2-cyclopenten-1, plus a negligible amount of unwanted 

cis-4-cyclopentene-1,3-diol. By the end of 24 hours the free CRL have completed the conversion 

(1 µmol of reactant per 10 µg of enzyme) while the immobilized enzyme (physically or 

chemically) accomplished relatively lower conversion values with physically adsorbed lipase 

affording the lowest conversion. After 48 hours the physically adsorbed CRL materials achieved 
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about 29% conversion of reactant (0.29 µmol of reactant per 10 µg of enzyme) and the chemically 

bonded CRL materials attained about 53.6% conversion of reactant (0.53 µmol of reactant per 

10 µg of enzyme).  

The ratio of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 to (1R, 4S)-cis-4-acetoxy-2-cyclopenten-1 

in the product mixture and the enantiomeric ratio (E) of the reaction was calculated based on 

Equation 4-1 (Fernández-Lorente et al., 2003, Chen et al., 1982). The enantiomeric ratio using 

CRL as the catalyst was calculated to be around 1.64 for free CRL, 3.58 for chemically 

immobilised CRL and 6.28 for physically adsorbed lipase.  

𝐸 =
ln[1−𝑐 (1+𝑒𝑒)]

ln[ 1−𝑐 (1−𝑒𝑒)]
   Equation 4-1 

Where c is the conversion and ee is the enantiomeric excess which can be calculated as Equation 

4-2: 

𝑒𝑒 =
𝐴−𝐵

𝐴+𝐵
     Equation 4-2 

Calculation of enantiomeric ratio (E) provides an indication of the interrelationship between 

enantiomeric excess (ee) and the conversion rate which helps to determine when to terminate the 

reaction to obtain specific enantiomeric excess of the desired product. The enantiomeric excess 

of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 calculated at different intervals during the reaction are 

summarised in Table 4-2. 

Table 4-2. Enantiomeric excess of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 using immobilized CRL at different 
intervals. 

Time (hours) 
Physically adsorbed Chemically immobilized Free lipase 

Yield (%) ee (%) Yield (%) ee (%) Yield (%) ee (%) 

1  0.30 0.29 1.87 0.44 16.71 0.43 

4  1.32 0.43 4.64 0.45 31.84 0.38 

24  8.34 0.50 22.12 0.45 64.06 0.29 

48  22.17 0.51 37.97 0.43 63.80 0.25 

 

From Table 4-2 it was observed that in the course of the reaction the free lipase showed decreased 

ee value which corresponds to reduced specificity toward formation of (1S, 4R)-cis-4-acetoxy-2-

cyclopenten-1 where in case of chemically immobilised lipase the ee value is almost constant 

indication enhanced control over the reaction. In the case of physically immobilised lipase the 

increase in ee could be explained by the sustained leaching of the free lipase into the solution. 
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As seen from the graphs in both cases of free and immobilised lipase, with increasing the reaction 

time from 1 hour to 48 hours the conversion of the reactants to different products were increased. 

However in case of free lipase increasing the reaction over 24 hours resulted in further hydrolysis 

of the acetate group of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 and its enantiomer to increase the 

concentration of unwanted cis-4-cyclopentene-1,3-diol product. Figure 4-28 and Figure 4-29 

present the comparison between the free and immobilised lipase in forming (1S, 4R)-cis-4-

acetoxy-2-cyclopenten-1 and cis-4-cyclopentene-1,3-diol, respectively. 

 

Figure 4-28. Comparison between free and immobilised CRL lipases in forming (1S, 4R)-cis-4-acetoxy-2-cyclopenten-
1 during the 48 hours reaction period. 

  

Figure 4-29. Comparison between free and immobilised PFL lipases in forming cis-4-cyclopentene-1,3-diol during the 
48 hours reaction period.  
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It was observed that the free CRL showed higher conversion of cis-3,5-diacetoxy-1-cyclopentene 

to desired product compared to immobilised lipase with the optimum of 64% after 24 hours. 

Physically adsorbed CRL affords the lowest conversion of reactant to desired product with 22% 

conversion over 48 hours. 

In order to evaluate the reusability of the immobilised lipase, after the experiment enzyme was 

recycled and reused in successive reactions. Figure 4-30 presents the percentage of (1S, 4R)-cis-

4-acetoxy-2-cyclopenten-1 produced during the reusability test (3 cycles). Free enzyme could not 

be recovered from the reaction mixture hence presented only in the first cycle. As seen in the 

figure the catalytic activity of the lipase remained unchanged during the reusability study 

indicating no loss of enzymes after the 1st cycle even for the physically adsorbed lipase. 

Chemically immobilised CRL affords 22% of (1S,4R)- cis-4-acetoxy-2-cyclopenten-1-ol in the 

first cycle, 23% in second cycle and 27% in third cycle.  

 

Figure 4-30. Reusability of CRL in production of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 over 3 cycles of 24 hours 
reaction at 25°C. Since free enzyme could not be recovered from the reaction mixture, it is presented 
only in one cycle 

 Effect of Temperature on Lipase Activity 

Lipases have received much attention due to their broad applications particularly CRL is well 

established as a result of its applications in pharmaceutical industry and biodiesel production from 

vegetable oils. An increase in the optimum temperature of immobilized lipase is important for 

industrial applications, since it allows reduced microbial contamination and reduced viscosity of 

oil and greases, which consequently increases the process yield (Miranda et al., 2011). 

Enzymes are often immobilized onto solid supports to enable their recoverability and increase 

their thermal stability. The effects of temperature on activity of both free and immobilized PFL 
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and CRL lipases were studied by repeating the reaction at 37°C. This temperature was chosen 

based on the literature which suggest maximum activity of the free lipase for PFL is achieved 

between 30 and 50°C (Fox and Stepaniak, 1983, Boscolo et al., 2010, Chakraborty and Paulraj, 

2009, Aysun Adan GÖKbulut, 2013) and maximum activity of the CRL occurs between 37 to 

40°C (Santos et al., 2007, Miranda et al., 2011). 

Figure 4-31 presents the activity of PFL in forming (1S,4R)- cis-4-acetoxy-2-cyclopenten-1-ol at 

two different temperatures of 25°C and 37°C. 

 

Figure 4-31. Effects of reaction temperature on hydrolytic activities PFL in forming (1S,4R)- cis-4-acetoxy-2-
cyclopenten-1-ol at two different temperatures of 25°C and 37°C, over 48 hour period 

Increasing the reaction temperature resulted in a raise in reaction rate. Free PFL produced 

maximum (1S,4R)- cis-4-acetoxy-2-cyclopenten-1-ol during the first hour of the reaction with the 

production rate of 92%. Similarly the reaction rate was increase for immobilised lipase. At 37°C, 

using the physically adsorbed PFL the maximum quantity of the desired product was produced in 

4 hours where at 25°C it took 24 hours to maximise the desired product. The chemically 

immobilised lipase reached maximum production in 24 hours at both temperatures, however the 

product quantity was higher at 37°C. 

Similar to the reaction performed at 25ºC, free PFL exhibits high initial conversion to the desired 

product, however with increasing the reaction time an increasing amount of undesired dihydroxy 

was formed, which eventually became the dominant product in the reaction mixture. Increasing 

the reaction temperature resulted in even faster hydrolysis of the acetate group of (1S,4R)- cis-4-

acetoxy-2-cyclopenten-1-ol to increase the concentration of unwanted cyclopent-2-en-1,4-diol 

product to 70% over 48 hours. The final concentration of (1S,4R)- cis-4-acetoxy-2-cyclopenten-
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1-ol after 48 hours using free PFL was decreased to 29%. The increased PFL lipase activity in 

37°C is in agreement with the literature (Aysun Adan GÖKbulut, 2013). 

In order to compare the reusability of the immobilised lipase at 37°C and 25°C, after the 

experiment enzyme was recycled and reused in three successive reactions. Figure 4-32 presents 

the percentage of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 produced during the reusability test. 

Free enzyme could not be recovered from the reaction mixture hence presented only in the first 

cycle. As seen in the figure the catalytic activity of the chemically immobilised lipase remained 

unchanged during the reusability study, however the physically immobilised lipase showed 

significant decrease in activity in each cycle.  

 

Figure 4-32. Reusability of PFL in production of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 over 3 cycles of 24 hours 
reaction at 37°C. Since free enzyme could not be recovered from the reaction mixture, it is presented 
only in one cycle. 

Figure 4-33 presents the CRL activity in forming (1S,4R)- cis-4-acetoxy-2-cyclopenten-1-ol at 

two different temperatures of 25°C and 37°C.  
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Figure 4-33. Effects of reaction temperature on hydrolytic activities CRL in forming (1S,4R)- cis-4-acetoxy-2-
cyclopenten-1-ol at two different temperatures of 25°C and 37°, over 48 hour period 

Similar to what observed for the reaction at 25ºC, CRL lipase produced both optical isomers, 4- 

(R)-hydroxycyclopent-2-en-1- (S)-acetate and its enantiomer, 4- (S)-hydroxycyclopent-2-en-1- 

(R)-acetate and a negligible amount of unwanted cyclopent-2-en-1,4-diol. Compared to the 

reaction at 25ºC the conversion rate was increased at 37°C. However, the activity ratio of the CRL 

lipase during the reaction was similar at both temperatures with free CRL exhibiting 25% of its 

activity in the first hour which indicates an increased lipase activity at higher temperature. 

During the entire reaction free CRL affords higher conversion compared to immobilised lipase. 

Maximum production of 4- (R)-hydroxycyclopent-2-en-1- (S)-acetate was achieved in 48 hours 

reaction, where free lipase afforded 81%, chemically bonded lipases afforded 59% and physically 

adsorbed lipase afforded 35% yield. With regard to forming dihydroxy by-product, much higher 

values were obtained at 37ºC (19% for free CRL) compared to 25ºC (10.9% for free CRL) which 

could be due to higher lipase activity and reaction speed. 

The increased CRL activity with the temperature is in agreement with the literature which 

suggests that for free CRL the maximum lipase activity is around 37 to 40°C (Santos et al., 2007, 

Miranda et al., 2011), for physically absorbed CRL is around 45°C (Milašinović et al., 2014) and 

for chemically bonded is around 45 to 55°C (Miranda et al., 2011, Pereira et al., 2003). The 

increase in the optimum temperature of the immobilized lipase could be attributed to the change 

in the conformational integrity of the lipase structure upon attachment to the support (Miranda et 

al., 2011). The lower activity of the immobilised lipase may be due to the higher optimum 

temperature of the immobilised lipase. 
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The enantiomeric excess of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 at 37°C is calculated at 

different intervals during the reaction and summarised in Table 4-3 and Table 4-2. As seen from 

Table 4-2 and Table 4-3 the temperature of the reaction did not affect the ee values. 

Table 4-3. Enantiomeric excess of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 using immobilized CRL at different 
intervals. 

Time (hours) 
Physically adsorbed Chemically immobilized Free lipase 

Yield (%) ee (%) Yield (%) ee (%) Yield (%) ee (%) 

1  1.04 0.30 2.30 0.43 21.13 0.42 

4  2.34 0.32 7.69 0.47 31.39 0.38 

24  11.86 0.50 37.05 0.44 79.49 0.30 

48  35.63 0.54 59.05 0.44 81.88 0.28 

 

In order to evaluate the reusability of the immobilised lipase at 37°C, after the experiment enzyme 

was recycled and reused in three successive reactions. Figure 4-34 presents the percentage of (1S, 

4R)-cis-4-acetoxy-2-cyclopenten-1 produced during the reusability test over three consecutive 

cycles. Free enzyme could not be recovered from the reaction mixture therefore it was presented 

only in the first cycle. As seen in the figure the catalytic activity of the chemically immobilised 

lipase decreased slightly in each cycle, where the physically immobilised lipase showed 

significant decrease in lipase activity indicationg the lipase loss during the reaction and the 

recycling process. 
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Figure 4-34.  Reusability of CRL in production of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1 over 3 cycles of 24 hours 
reaction at 37°C. Since free enzyme could not be recovered from the reaction mixture, it is presented 
only in one cycle. 

Comparing the enzymatic activity of CRL and PFL in hydrolysis of meso-cyclopent-2-en-1,4-

diacetate, in both cases free lipases offer complete conversion in the first 24 hours of the reaction 

at 25°C and 37°C. Since 37°C is in the optimum activity range of the free lipase and close to 

optimal range for immobilised lipases, both lipases exhibited an increased activity with the raise 

in temperature (both free and immobilised lipase). PFL (both free and immobilised) offered an 

enantiomeric excess of 100% for the desired product while producing high amounts of the 

undesired dihydroxy by-product, whereas CRL (both free and immobilised) produced both 

enantiomers with lower quantity of the dihydroxy by-product. The highest conversion to the 

desired products for CRL is achieved using free CRL for 48 hours at 37°C with 81% conversion 

and for PFL the highest conversion occurs after 1 hour in 37°C using free lipase. 

 Conclusions 

The catalytic activity of the enzymes immobilized on high surface area silica coated magnetite 

nanoparticles were investigated and compared with free enzyme in two different reactions. The 

results indicated that immobilised lipases (both CRL and PFL) retained their activity after 

immobilisation. In case of hydrolysis of pNPP the free lipases provided slightly higher conversion 

than immobilised lipases in the first cycle. The chemically immobilised lipase exhibited good 

reusability without loss of its activity in four sequential cycles, however the physically adsorbed 

lipase showed reduced activity which could be explained by loss of enzyme during recycling 

between successive reactions. 
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The CRL lipase (free or immobilised) activity in the presence of an AC field were accessed by 

hydrolysis of pNPP and the results were compared with the lipase activity in similar temperature 

using an incubator. The results indicated that the lipase retained its activity under influenced of a 

magnetic field and even produced higher yield compared to the control reaction at same 

temperature in the incubator. 

With regard to hydrolysis of cis-3,5-diacetoxy-1-cyclopentene, the free lipase showed higher total 

conversion rate compared to immobilised lipases, however the immobilised lipases afford higher 

ratios of the desired product of (1S,4R)-cis-4-acetoxy-2-cyclopenten-1-ol which conclude that the 

immobilised lipases provide enhanced control over the formation of the desired products. 

Particularly in case of PFL, the free lipase reached its maximum conversion to desired product 

during the initial 4 hours of the reaction at 25°C or initial hour at 37°C, after which the dihydroxy 

by-product is formed in an excess amount as the dominant product. 

The immobilised lipases were used in three successive cycles to evaluate the reusability of the 

immobilised lipase. Both chemically immobilised lipases retained their activity during recycling 

while physically adsorbed lipase displayed a decreased activity in each consecutive cycle 

indicating lipase loss during the reaction and recycling process.  

The lipase activity were examined in an increased temperature of 37°C for both free and 

immobilised lipases. As expected, from the literature, it was observed that both lipases exhibited 

higher activity at this temperature which could be due to fact that for PFL and CRL the optimum 

temperature is close to 37°C. At 37°C similar to 25°C the free lipases showed higher conversion 

compared to immobilised lipase. 
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 Introduction 

Since most of the commonly used anticancer agents induce serious side effects to healthy cells 

and tissues before reaching the target cancer cells, the main challenge in cancer treatment is to 

deliver the therapeutic agents directly to cancerous tissue and modifying the release kinetics of 

the therapeutic agents from their carrier system. Additionally, many of the therapeutic agents 

suffer from short half-life and low solubility, especially for hydrophobic drugs, which require 

them to be injected in doses higher than required (Daglar et al., 2014, Nicolas et al., 2013). 

Furthermore, in many cases tumour cells develop multidrug resistance (MDR) which lead to 

therapeutic failure and death in patients suffering from cancer (Kievit et al., 2011, Tsubaki et al., 

2014, Wang et al., 2014, Cuong et al., 2010b). 

Nanoparticle-based drug delivery systems offer numerous advantages including low toxicity, 

controlled cargo release, and the targeting ability (Knezevic and Lin, 2013, Wang et al., 2014). 

Nanoparticulate drug carriers afford higher accumulation of drug in tumour cells via enhanced 

permeability and retention (EPR) (Cuong et al., 2010b). Furthermore encapsulation of the drugs 

in nanoparticles could bypass the efflux action of P-glycoprotein which has been proven to be a 

promising approach to overcome the drug resistance (Wang et al., 2014, Meng et al., 2013, Zeng 

et al., 2014). P-glycoprotein (Pgp) is an energy-dependent drug efflux pump which actively 

pumps the drug out of cells causing reduced intracellular drug concentrations and decreased 

therapeutic efficacy (Huang et al., 2011, Gottesman et al., 2002) Among different nanoparticle-

based drug delivery systems, biocompatible mesoporous silica nanoparticles with large surface 

area offer many advantages as efficient drug delivery systems. Wang et al. among others have 

confirmed the ability of mesoporous silica nanoparticles as nanocarriers to sidestep drug 

resistance mechanisms (Wang et al., 2014). Mesochannels of the mesoporous silica nanoparticles 

enable encapsulation of large dosage of drugs and protects the drugs from hydrolysis and 

enzymatic degradation. Recently mesoporous silica based nanoparticles have been used in various 

nanomedicine applications such as fluorescent markers (Lu et al., 2010b, Rosenholm et al., 

2010b), drug and gene delivery (Chen et al., 2009a, Yiu et al., 2011, Meng et al., 2013), and MRI 

contrast agents (Nakamura et al., 2015, Sahoo et al., 2014, Lee et al., 2010, Julian-Lopez et al., 

2007). 

Utilisation of mesoporous silica-based drug delivery systems are facing some challenges, for 

instance there is limited control over drug release kinetics from uncapped mesoporous 

nanoparticles which could result in premature drug release. Additionally mesoporous silica 

nanoparticles have low dispersibility and could aggregate under physiological conditions (Wang 

et al., 2010a). Different strategies have been reported in the literature to overcome these 

challenges including surface functionalization (Knezevic and Lin, 2013, Sardan et al., 2014) and 

surface coatings (Mal et al., 2003, Nguyen et al., 2005). Capping the mesopores with stimuli-
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responsive materials may facilitate a new generation of smart delivery systems. Stimuli-

responsive materials could deliver therapeutic agents at the targeted tissue, minimizing the 

systemic delivery of drug and protecting the healthy cells from the toxic side effects of the drugs. 

Physicochemical properties or structural conformations of stimuli-responsive materials could be 

altered using external or internal stimuli to trigger the cargo release (Daglar et al., 2014, Dong et 

al., 2013). In This project the change in pH and the temperature were studied as internal and 

external release triggers. 

Since tumors exhibit a lower extracellular pH than healthy tissues, pH triggered drug release is 

extensively studied. The pH of blood and normal tissues is 7.4, but the extracellular pH in tumour 

tissues is about 6.8 and, endosome’s pH ranges from 4.5 to 6.5. These pH differences could be 

used to trigger drug release in cancer site (Daglar et al., 2014). Additionally pH-sensitive drug 

release could overcome the Pgp-mediated multidrug resistance by releasing the drug in 

endosomes (Wang et al., 2014). 

Another method to induce drug release is temperature triggered release. Application of an external 

AC magnetic field to magnetic nanoparticles causes localized temperature rise, hyperthermia, 

which could be used to kill the cancer cells. This temperature rise could also be used to modify 

the characteristic of the drug delivery system and trigger the drug release. Using this thermal 

energy as stimuli to release drugs, make it possible to gain the synergistic effect of hyperthermia 

and chemotherapy agents to kill cancer cells (Glover et al., 2013). 

In this project different magnetic nanocomposites were developed as nano carriers for drug 

delivery systems based on magnetite core-shell structure. Two different model drugs were used 

to explore the ability of the synthesised nanoparticles for loading and release of the 

chemotherapeutic agents. The drug delivery systems were first evaluated by using hydrophilic 

chemotherapy drug mitomycin C (MMC). Then the drug delivery systems were optimized by 

capping the mesopores of the silica nanoparticles with heat sensitive polymer or liposomes. The 

optimized system were tested using Doxorubicin (DOX) as model drug. Coating the silica 

nanoparticles with polymeric micelles or liposomes have various advantages in drug delivery 

applications including preventing the entrapped drug in the silica mesopores from dissociation 

upon dilution in the blood stream after intravenous injection and facilitating their extravasations 

at tumour sites by avoiding renal clearance and non-specific reticuloendothelial uptake (Shuai et 

al., 2004). The drug release was assessed under both pH and temperature stimuli conditions. 

The cytotoxic effects of the developed drug delivery systems were studied in vitro against breast 

cancer cell lines (MCF7) and glioblastoma cancer cell lines (U87). It is the upmost importance 

that the drug delivery system without the drug have no cytotoxic effects and are biocompatible. 

Therefore the nanoparticles were tested in vitro against the cell lines with and without the drug. 

Generally, nanoparticles with and without drug were added into the cell culture and proliferation 



186 

and viability of the cells were monitored and compared with control cells without drug and free 

drug control cells. The results are presented in Chapter 6. 

 Mitomycin C (MMC) 

Mutamycin or Mitomycin C (MMC) is a water-soluble antibiotic and anticancer drug widely used 

in first-line treatment for a wide range of cancers (Verweij and Pinedo, 1990, Cummings et al., 

1998, Tomasz, 1995). Mitomycin C (MMC) is commonly used in chemotherapy regimens for 

treatments in various tumour types such as gastric cancer, pancreatic cancer, breast cancer, non-

small cell lung cancer, cervical cancer, prostate cancer, liver cancer and bladder cancer (Slowing 

et al., 2007b). MMC cytotoxicity mechanism is related to DNA cross-linking, and free radical–

induced DNA strand breakage (Cummings et al., 1998). MMC is a very poor substrate for Pgp 

and maintains its activity against many types of Pgp-mediated MDR tumour phenotype (Gabizon 

et al., 2006, Li et al., 2014a, Gontero et al., 2002) (Yi et al., 2014, Matsumoto et al., 1986). 

Therapeutic effect of MMC is limited due to the dose-limiting toxicity and serious side effects 

such as subacute and severe myelosuppression, gastrointestinal complications and nephrotoxicity, 

and rapid elimination from the body (Li et al., 2014a, Yi et al., 2014). Different strategies have 

been developed in the literature to overcome these drawbacks including encapsulation of the 

MMC in liposomes (Sen et al., 2012b) or polymeric carriers (Yi et al., 2014). Figure 5-1 shows 

the MMC structure. 

 

Figure 5-1. Structure of Mitomycin C 

 Doxorubicin (DOX) 

Doxorubicin (DOX) was chosen as a model hydrophobic anticancer drug to load in synthesised 

nanoparticles. DOX is a highly potent anthracycline used in the treatment of numerous 

malignancies including bladder cancer, breast cancer, stomach cancer, lung cancer, ovarian 

cancer, thyroid cancer, neuroblastoma, and multiple myeloma and other cancer types (Mohan and 
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Rapoport, 2010). However, the therapeutic efficacy of DOX is limited by its poor solubility, low 

bioavailability, short-plasma half-life, and its life-threatening side effects including cardiotoxicity 

and bone marrow suppression (Cuong et al., 2010a, Greene et al., 1983). In addition, DOX is a 

substrate for ABC-mediated drug efflux. Overexpression of various members of the superfamily 

of adenosine triphosphate binding cassette (ABC)-transporters has been shown to promote the 

efflux of a broad class of hydrophobic drugs including DOX from cancer cells and cause the 

multidrug resistance (MDR) phenotype (Wang et al., 2014, Kievit et al., 2011, Szakacs et al., 

2006). 

The high therapeutic index, but poor efficacy of doxorubicin makes it essential to explore new 

approaches to improve the therapeutic efficacy of DOX and overcome the drug resistance. A 

novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers 

to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents 

(Kievit et al., 2011, Tsubaki et al., 2014, Wang et al., 2014, Cuong et al., 2010b). Figure 5-2 

presents the DOX structure. 

 

Figure 5-2. DOX structure 

 Drug Loading  

The Drug loading content (DLC) and drug loading efficiency (DLE) were calculated based on 

Equation 2-1 and Equation 2-2 in Section 2.26. 

DLC was quantified indirectly by determining the absorbance of the supernatant (at λ485nm for 

DOX and λ365nm for MMC) after magnetically separation of the nanoparticles and comparing the 

drug concentration with the initial drug in the solution or directly by dissolving the lyophilized 

micelles in a mixture of DMSO and chloroform. 

The drug loading efficiency was calculated by comparing the weight percentage of drug loaded 

into the nanoparticles with the initial amount of drug available in the solution.  
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DOX concentrations were quantified using a pre-established calibration curve of DOX in PBS 

and acetate solutions. The DOX standard curves are presented in Figure 5-3 and Figure 5-4. The 

calibration curve was obtained by preparing DOX solutions of various concentrations and 

measuring the UV-absorptions of the solution. 

  

Figure 5-3. Standard curve of DOX in PBS 

 

Figure 5-4. Standard curve of DOX in acetate buffer 

The DOX loading content and DOX loading efficiency for different nanocomposites were ranged 

from 3.75 to 10.30% and 57 to 85%, respectively.  

Similarly the MMC encapsulations were quantified using a pre-established calibration curve of 

MMC in water or buffer. The standard curves for MMC are shown in Figure 5-5 and Figure 5-6. 

Since the MMC loading was performed in water and the MMC release study was performed in 

PBS, the MMC standard curves were prepared both in water and PBS. 
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Figure 5-5. Standard curve for MMC in water 

  
Figure 5-6. Standard curve for MMC in PBS 

The DLC and DLE of the different materials were calculated and summarised in Table 5-1.  
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Table 5-1. A summary of drug loading content and drug loading efficiency of the developed materials 

 

 MMC Loaded Mesoporous Silica Coated Nanoparticles (ME32-

ME33-ME16) 

Silica nanoparticles have shown great potential as drug delivery systems. The biodegradable and 

biocompatible mesoporous silica nanoparticles with high surface area and pore volume have great 

drug loading capacities. Furthermore the easily achieved surface functionalization would enhance 

the cellular uptake and make them suitable for targeted drug delivery applications (Kapse-Mistry 

et al., 2014, Rosenholm et al., 2010a). The drawbacks of MMC could be overcome by using the 

silica nanoparticles as drug carriers to localise the cytotoxicity of the drug to cancerous tissue and 

minimize the necessary drug dosage. 

The silica nanoparticles were prepared as described in Section 2.4. The shell thickness of the core-

shell silica coated nanoparticles were controlled through the reaction time and the amount of the 

TEOS silica source. The pores in the mesoporous silica nanoparticles were prepared by using 

CTAB as template. The template was removed using acidic ethanol. The prepared mesoporous 

silica nanoparticles were characterized using TEM and VSM for morphological study and 

magnetic evaluation as shown in Chapter 3. The surface area of the nanoparticles were measured 

using nitrogen adsorption-desorption test where a clear relation between the mesoporous shell 

thickness and the surface area of the nanoparticles was observed. 

Three different mesoporous silica coated nanoparticles were tested for MMC drug delivery 

applications; ME16, ME32 and ME33.  

Material Drug used DLC (mg drug/mg 

material)% 

DLE% 

ME55-PEG-PCL DOX 6.91 74.86 

ME93-PEG-PCL DOX 7.92 85.85 

ME94-PEG-PCL DOX 6.20 67.21 

ME60 DOX 10.3 57.60 

ME60-L DOX 5.9 65.8 

ME16 MMC 0.48 16.16 

ME32 MMC 0.66 22.35 

ME33 MMC 0.90 30.42 

Magnetoliposomes MMC 0.46 68.80 



191 

 Drug Loading 

Drug loading efficiency and drug loading content was determined by measuring the UV 

absorbance of the supernatant at λ365nm and quantifying it using the pre-established standard curve 

of MMC in water (the standard curve of MMC in water is shown in Figure 5-5). The drug loading 

content was measured at two different temperatures of 18°C and 10°C and at different intervals 

of up to 48 hours. The drug loading performance of different samples are shown in Table 5-1. 

Figure 5-7 shows the drug loading profile of ME16. The MMC loading content and efficiency 

were calculated to be 0.46% and 15.52% at 18°C and 0.47% and 16.16% at 10°C. The maximum 

drug loading was observed in the first 12 hours of the drug loading process at 18°C after which 

the drug loading content was only slightly increased with increased time. However at 10°C the 

maximum drug loading was achieved in the first 3 hours and after that drug loading efficiency 

was only increased by 2%. The drug loading content after 3 hours loading at 10°C was close to 

drug loading content measured at 18°C after 48 hours. 

 

Figure 5-7. MMC loading profile of ME16 at different temperatures 

Figure 5-8 shows the drug loading profile of ME32. The MMC loading content and efficiency 

were calculated to be 0.60% and 20.42% at 18°C and 0.66% and 22.35% at 10°C. The drug 

loading profile of ME32 shows maximum loading of MMC in the initial 3 hours of the incubation 

process for both temperatures. The drug loading content shows a decrease after reaching the 

maximum at initial 3 hours. This decrease in drug content could be due to leakage of the drug 

from the mesopores back into the solution. The drug loading profiles indicate an increase in drug 

loading content with the decrease in incubation temperature during the drug loading process. 
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Figure 5-8. MMC loading profile of ME32 at different temperatures 

Figure 5-9 presents the drug loading profile of ME33. The MMC loading content and efficiency 

were calculated to be 0.71% and 24.03% at 18°C and 0.90% and 30.42% at 10°C. The drug 

loading profile of ME33 shows maximum loading of MMC in the initial 3 hours of incubation at 

18°C and maximum loading of MMC after 6 hours of incubation at 10°C. The drug loading 

content was decreased with increased incubation time which could be explained by leaking the 

drug form the uncapped mesopores back to into the solution. The drug loading profiles indicate 

an increase in drug loading content with the decrease in the incubation temperature during the 

drug loading process. 

 

Figure 5-9. MMC loading profile of ME33 at different temperatures 
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All the samples demonstrated increased drug loading efficiency with the decreased incubation 

temperature. The maximum drug loading was observed for ME33 with around 40 μg drug loaded 

which was about 30.5% of the available drug in solution. The higher drug loading performance 

of the ME33 compared to ME16 and ME32 could be due to higher shell thickness and higher 

surface area of ME33. Figure 5-10 presents the relation between shell thickness and drug loading 

content based on ME16,ME32 and ME33. 

 

Figure 5-10  Relation between shell thickness and drug loading content. 

 

 MMC Drug Release 

The MMC release from silica coated magnetic nanoparticles were studied in PBS buffer at body 

temperature. MMC-loaded nanoparticles were magnetically collected at different time intervals 

and the drug content of the solution was measured using UV absorbance at λ365nm. The 

concentration of MMC in the solution were determined by comparing the absorption values with 

a pre-established standard curve of known MMC concentrations in PBS buffer (see Figure 5-6). 

Figure 5-11 presents the MMC release profile of ME16 in PBS buffer at body temperature (37°C). 

The release profile indicates a burst release of the drug in the first initial hour of incubation. The 

drug released reached a plateau in about 15 hours and did not change significantly over next 30 

hours of experiment. The final drug released from the nanoparticles were around 5.2% of the 

loaded drug. The initial burst release could be due to diffusion of the MMC absorbed on or near 

the external surface of the nanoparticles. 



194 

 

Figure 5-11. MMC release from ME16 in PBS buffer at body temperature (37°C) 

Figure 5-12 presents the MMC release profile of ME32 at body temperature. The release study 

indicates a burst release at the initial 4 hours followed by reaching a plateau with no significant 

increase in drug release. After 48 hours the cumulated drug release was reached the maximum of 

6.7%. 

   
Figure 5-12. MMC release from ME32 in PBS buffer at body temperature (37°C) 

Figure 5-13 presents the MMC release profile of ME33. The MMC release profile indicates an 

initial burst release of the drug in the first 3 hours of incubation followed by a sustained release 

for the next 48 hours. The total drug release from the nanoparticles reaches 9.7% after 48 hours 

of incubation. The slow continues drug release from the silica nanoparticles is in agreement with 

reported literature (Yi et al., 2014).  



195 

 

Figure 5-13. MMC release from ME33 in PBS buffer at body temperature (37°C) 

Evaluation of MMC loading and release of from silica coated nanoparticles show that the 

nanoparticles are capable of loading large amount of drug molecules however the drug release 

from the nanoparticles was observed to be very low and almost 90% of the encapsulated drug was 

not recovered. Since the drug loading was performed by physical diffusion of the drug molecules 

into the mesochannels of the nanoparticles, low drug release could be explained by the water 

soluble nature of the MMC drug and uncapped mesopores of the nanoparticles. Furthermore UV 

measurements were performed during the washing of the drug loaded nanoparticles prior to 

release studies, which indicated drug loss during washing and storage of the nanoparticles. 

Nevertheless the released drug was around 0.88 µg/mg material after 48 hours for ME33.  

 MMC loaded Magnetoliposomes 

Contributions of several researchers over past 50 years have led to significant advances and initial 

success with different liposome based drug delivery systems. Liposomes are now considered 

clinically established drug delivery systems for cytotoxic anticancer drugs (Nappini et al., 2010, 

Torchilin, 2005a, Li et al., 2015b). Recently there were some liposomal formulations approved 

for clinical applications such as DaunoXome, Myocet and Doxil which proved to be successful 

in improvement of survival rates (O'Shaughnessy, 2003, Torchilin, 2005a). Liposomes are 

attractive drug delivery systems since they are biocompatible and they are able to encapsulate 

both hydrophilic and hydrophobic drugs, in the aqueous core and within the lipid bilayer, 

respectively. The encapsulated drug would be protected from deactivating effect of external 

conditions. Additionally liposomes could deliver the anti-cancer agents inside cells, or individual 

cell compartments (Torchilin, 2005a). However, the drug release from liposomes are usually slow 

and not controlled (Podaru et al., 2014). 
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Combination of liposomes with magnetic nanoparticles known as magnetoliposomes could create 

multifunctional drug carriers for controlled drug delivery, hyperthermia and MR imaging 

(Monnier Christophe et al., 2014, Podaru et al., 2014). Magnetic nanoparticles placed in a 

magnetic field could produce enough heat to alter the liposome membrane diffusion properties 

and render it permeable for the encapsulated drug. This could combine the effect of magnetic 

hyperthermia and targeted drug delivery (Monnier Christophe et al., 2014, Nappini et al., 2010, 

Hsu and Su, 2008). Encapsulating the MMC inside magnetoliposomes could address the rapid 

elimination of MMC from the body (Li et al., 2014a).  

Magnetoliposomes were prepared using lipid film hydration method, followed by ultra-sonication 

and filtration as explained Section 2.15. Liposomes were prepared by evaporation of chloroform 

from the lipid solution followed by the hydration of the dry lipid film and addition of magnetic 

nanoparticles. The liposomes were prepared using soybean phosphatidylcholine (SPC) and 

cholesterol. The hydrophilic magnetite nanoparticles prepared by coprecipitation were used as 

magnetic cores of the liposomes. The DLS experiments were used to indicate the size of the 

magneto liposome as presented in Figure 3-47. The stability of the magneto liposomes were 

evaluated using SCM as shown in Figure 3-44. 

 Drug Loading 

Drug loading of the magnetoliposomes were performed by ultra-sonication and incubation of the 

liposomes with the MMC for up to 48 hours. Drug loading efficiency and the drug loading content 

for both methods were established by magnetic separation of the magnetoliposomes and 

measuring the UV absorbance of the supernatant at λ365nm. Drug loading content were quantified 

using the pre-established standard curve of MMC in water (the standard curve of MMC in water 

is shown in Figure 5-5). The drug loading content was measured at 10°C at different intervals of 

up to 48 hours.  

Figure 5-14 presents the drug loading profile of the magnetoliposomes for over 48 hours period. 

The MMC loading content and efficiency were calculated to be 0.46% and 68.80%, respectively. 

The drug loading content and efficiency for the samples loaded using ultra-sonication method 

were calculated to be 0.16% and 19.82% which is much lower than the drug loading using 

incubator. The drug loaded nanoparticles prepared via incubation was further used in the release 

experiments. The maximum drug loading was obtained after 24 hours of incubation and did not 

increase after that. Similar results in the range of 0.1 to 10 µg of MMC per milligrams of 

nanoparticles have been reported in the literature (Sen et al., 2012a, Yi et al., 2014, Li et al., 

2014a). However Yi et al. have reported an increased drug loading efficiency of up to 94.5% for 

MMC encapsulated by polymer-lipid nanoparticles prepared by a reverse micelle−solvent 

evaporation technique (Yi et al., 2014). 
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Figure 5-14. Drug loading profile of magnetoliposomes over 48 hours. 

 Drug Release 

Mitomycin C release from magnetoliposomes were studied in PBS buffer at room temperature 

(23°C), body temperature (37°C) and hyperthermia conditions. MMC-loaded magnetoliposomes 

were magnetically collected at different time intervals and the drug content of the solution was 

measured using UV absorbance at λ365nm. The concentrations of MMC in the solution were 

determined by comparing the absorption values with a pre-established standard curve of known 

MMC concentrations in PBS buffer (Figure 5-6). 

Figure 5-15 presents the MMC release profile of magnetoliposomes in PBS buffer at two different 

temperatures. The release profiles indicate a burst release of the drug in the first initial hours for 

both temperatures, followed by a slow release over 48 hours. The final drug released from the 

nanoparticles were around 45% of the loaded drug at body temperature and 29% of the loaded 

drug at room temperature. Similarly, Yi et al. have reported between 30 to 50% MMC drug release 

from liposomes in the initial 12 hours of the measurements followed by slow release over 

following 80 hours (Yi et al., 2014). Li et al. have reported 50% drug release after around 48 

hours which only increased to 60% over 170 hours of measurements (Li et al., 2014a). 



198 

 

Figure 5-15. MMC release profile of magnetoliposomes. 

 Hyperthermia triggered drug release 

The Magnetic heating of the magnetoliposomes were verified using the magnetic hyperthermia 

unit as described in Section 3.14. Magnetic heating of the magnetoliposomes was used to generate 

time and field dependent temperature data which were used to define the specific power 

absorption (SPA) as shown in Section 3.14.2.  

Magnetoliposomes were dispersed in phosphate buffer solution and placed in an AC field with 

the magnetic field strength of 200 G and frequency of 406 kHz for 30 minutes. The heating profile 

of the magnetoliposomes during hyperthermia triggered drug release is shown in Figure 5-16. The 

starting temperature for the release experiments was set as 37 °C similar to normal physiological 

conditions. As demonstrated from the heating profile of the magntoliposmes, they were heated 

effectively in the AC field and were able to increase the temperature of the solution to reach 

hyperthermia condition. 
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Figure 5-16. Heating profile of the magnetoliposomes during hyperthermia triggered drug release using AC 
magnetic field with field strength of 200 G and frequency of 406 kHz. 

Figure 5-17 illustrates the in vitro magnetic field heating activated drug release profile of 

magnetoliposomes over 30 minutes. The drug release at 37°C in incubator is shown in the figure 

to compare the drug release rate.  

 

Figure 5-17. In vitro drug release at 37°C in incubator and under magnetic hyperthermia condition.  

MMC release rate was increased under AC magnetic field induced hyperthermia condition. The 

increased drug release indicates the MMC loaded magnetoliposomes could be thermally triggered 

to release the drug under influence of the magnetic field. The drug release from magnetoliposomes 

under AC field was around 7.8% after 30 minutes. The increased drug release from 

magnetoliposomes could be due to heating of magnetite core of the magnetoliposomes under the 

magnetic field which could change the diffusion properties of the lipid bilayer and lead to an 
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increased drug release (Kulshrestha et al., 2012). Podaru et al. have reported increased drug 

release from magnetoliposomes under pulsed magnetic field without temperature rise, which was 

suggested to be a result of the liposomes rupture due to ultrasound generated from the pulsed 

magnetic field (Podaru et al., 2014). 

The observed heating properties of the magnetoliposomes together with the increased drug release 

in presence of the AC field, indicate that synergistic effect of hyperthermia and cytotoxic 

chemotherapeutic drugs may be realized by incorporating magnetite nanoparticles into the 

liposomes. In addition to therapeutic applications, superparamagnetic nanoparticles are well 

recognised as excellent MRI probes. Magnetite nanoparticles encapsulated in liposomes, with 

high stability have proved to be effective as MRI T2 contrasts (Faria et al., 2013).  

 ME60 

Mesoporous silica based nanoparticles possess excellent biocompatibility (Lu et al., 2010a, He et 

al., 2010) with unique structural features including a large surface area, great number of 

mesochannels and tuneable pore size in the range of 2 to 15 nm (Rosenholm et al., 2010b, 

Rosenholm et al., 2011, Liu et al., 2012). These structures make it possible to reach high drug-

loading capacity and could also protect the encapsulated drugs in the mesopores from undesired 

enzymatic degradation due to the inaccessibility of the inner surface to the enzymes in blood or 

tissue plasma (Gao et al., 2009). Additionally in vivo and in vitro studies have proved DOX 

encapsulated within mesoporous silica nanoparticles could overcome drug resistance in the 

human cancer cells by bypassing the efflux action of P-glycoprotein and avoiding the activation 

of efflux pumps in these cells (Wang et al., 2014, Zeng et al., 2014, Meng et al., 2013, Huang et 

al., 2011).  

Silica coated magnetic nanoparticles (ME60) were synthesised by using magnetite nanoparticles 

prepared by coprecipitation method as core material, TEOS as silica source and CTAB as pore 

templates as explained in Section 2.4. The mesoporous silica –magnetite core shell nanoparticles 

were characterised using transmission electron microscopy (TEM), and N2 adsorption-desorption 

test as shown in Figure 3-8 and Figure 3-20, respectively. The porous structure observed in TEM 

images are supported by N2 adsorption-desorption isotherms. The Brunauer-Emmett-Teller 

(BET) measurements indicated mesochannels with high surface area of 358 m2/g which is 

advantageous for adsorption of drug molecules. In addition, the size distribution of nanoparticles 

exhibit average value of 80 nm, which make it possible for the nanoparticles to escape from 

vasculature into tumour via enhanced permeability and retention effect (EPR) (Liu et al., 2012, 

Iyer et al., 2006). 
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 Drug Loading 

DOX loading was performed by adding nanoparticles to DOX solution in PBS. The mixture was 

placed on an end to end rotator at 25°C for 48 hours in dark. During this 48 hours the supernatant 

was taken at different intervals using magnetic separation to evaluate the drug loading 

performance. The drug concentration in supernatant compared to the initial drug concentration 

was used to determine the amount of DOX loaded into nanoparticles. Subsequently after 48 hours 

the drug-loaded nanoparticles were collected and washed with DI water to remove the 

unencapsulated DOX from the external surfaces. The nanoparticles were then freeze dried to be 

used in drug release and cytotoxicity studies. 

The drug loading study was performed at neutral pH (7.4) which was chosen based on results 

reported by Wang and colleagues. They have reported a pH dependant drug loading profile for 

rod-like mesoporous nanoparticles, the drug entrapment efficiency of their samples were 

increased from 25.2% at pH 5.4 to 94% at pH 7.4 (Wang et al., 2014). However the maximum 

drug loading efficiency obtained in this study was 54%. 

  

Figure 5-18. DOX loading profile for mesoporous silica coated magnetic nanoparticles 

Figure 5-18 presents the drug loading profile of ME60 nanoparticles during 48 hours drug loading 

process. The graph implies a typical loading behaviour, with initial increase for the first 8 hours 

followed by reaching a plateau after 24 hours. Strong increase of absorbed drug in the first few 

hours indicates diffusion and transport of the drug molecules into mesopores. 

Maximum drug loading achieved after 48 hours was 0.96 mg with the DLC and DLE of 10.3 and 

57.6%, respectively. Similar results were observed by Sahoo et al., they have reported DOX 

loading content and encapsulation efficiency of 11.3% and 60.4% for mesoporous silica-coated 

superparamagnetic nanoparticles with manganese ferrite (MnFe2O4) as magnetic core (Sahoo et 
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al., 2014). It is suggested that DOX loading into mesoporous nanoparticles occurred through 

physical diffusion (Sahoo et al., 2014). 

 pH Triggered Drug Release 

The DOX release profile was investigated in vitro in physiological condition (in PBS, at pH 7.4) 

and acidic conditions (pH 5.5). The results are presented in Figure 5-19. The drug release 

measurements were performed at body temperature (37°C). 

   
Figure 5-19. DOX release profile investigated at pH=7.4 and pH=5.5. Measurements were performed at 37°C .The 

release rate is higher at lower pH.  

The drug release profile, at both pH values, showed an initial burst release for the first 4 hours 

followed by slow gradual release in following 44 hours. The initial fast release could be explained 

by the rapid diffusion of the drug molecules adsorbed near the mesochannels openings, while the 

drug stored in the inner surface diffuse into the solution with slower rate (Gai et al., 2011). 

Additionally, interactions of the drug molecules and the hydrogen bonds of silica surface could 

lead to slow release of DOX (Gai et al., 2011, Liu et al., 2012). 

As evident from Figure 5-19, DOX release ratio was higher in the acidic pH condition compared 

to the physiological pH condition. At physiological pH (pH 7.4), nanoparticles demonstrated slow 

DOX release rate, while at pH 5.5 DOX release was higher. The total drug release reached 40.23% 

at pH 5.5 and 23.2% at pH 7.4. It is clear that DOX was released more readily at lysosomal pH 

condition rather than physiological blood plasma pH condition. Similar trends of drug release 

from mesoporous silica have been observed by other groups (Wang et al., 2014, Sahoo et al., 

2014, Nakamura et al., 2015, Yildirim et al., 2013, Xie et al., 2014). For instance, Wang et al. 

have observed nearly 25% drug release at physiological pH which was increased to 46.1% at pH 

5.6 (Wang et al., 2014). Similarly, Tang et al. have reported DOX release of 8% at physiological 

pH which was doubled to 16% at acidic pH of 5.5 over 24 hours (Tang et al., 2011). The 
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accelerated drug release at pH 5.5 suggest that the surrounding pH affects the electrostatic 

interactions between the nanoparticles and the drug. Furthermore, at lower pH (pH 5.5), DOX 

molecules could become protonated and get released into the solution (Sahoo et al., 2014). 

These results suggested that the mesoporous based drug delivery systems were promising for 

DOX release at acidic conditions similar to tumour microenvironment or endosomal/lysosomal 

compartment of cells (pH 4-6). DOX release in endosomal/lysosomal compartment of cells could 

also protect DOX from drug efflux (Wang et al., 2014, Sahoo et al., 2014, Nakamura et al., 2015). 

Furthermore, sustained DOX release could be beneficial in treatment plans which includes killing 

tumour cells by an initial burst release to insure the required drug dosage and followed by a 

continued slow DOX release (Gai et al., 2011). 

 Temperature Triggered Drug Release 

Magnetic properties of the mesoporous magnetic nanocomposites were characterised based on 

magnetic hysteresis loops using (VSM) and magnetic heating induced by an AC field as explained 

before in Section 3.14. The saturation magnetization was lower than pure magnetite which could 

be explained by the silica coating of the magnetite nanoparticles. However the nanocomposites 

showed superparamagnetic characteristics with acceptable saturation magnetization.  

To study the magnetically induced heating of the nanocomposites, 10 mg of the nanoparticles 

were dispersed in 1 mL of DI water and placed under influence of the AC field for 45 minutes. 

The magnetic field was variable to attain constant temperature and the field frequency was 

406 kHz. The temperature was set to 43°C which is suitable for hyperthermia (Kobayashi, 2011). 

The profile of the magnetic heat generated by nanoparticles is demonstrated in Figure 5-20. The 

SPA calculation are demonstrated in Section 3.14.2. 



204 

  

Figure 5-20. Magnetic heating profile of ME60 with the concentration of 10 mg/mL in a variable magnetic field with 
maximum strength of 200 G and frequency of 406 kHz. The field was adjusted in the way to keep the 
temperature at 43°C 

As shown in Figure 5-20, the mesoporous magnetic nanoparticles were heated efficiently in the 

presence of a high frequency magnetic field. The time dependent temperature profile of the ME60 

demonstrated that the nanoparticles were effective heating source and were suitable for 

hyperthermia cancer treatment applications. The solution temperature reached hyperthermia 

condition in about 4 minutes. Temperature of the nanoparticle suspension was kept in the range 

of 41.5 to 44.6 which is in the suggested range for hyperthermia cancer treatments (Bae et al., 

2009, Reddy et al., 2012, Kobayashi, 2011). Similar heating profiles for magnetic mesoporous 

nanocomposites have been reported by other groups (Azevedo et al., 2014, Julian-Lopez et al., 

2007, Souza et al., 2009b). For instance, Azevedo et al. have reported 37 degree increase in 

temperature of aqueous solution of 20 mg/mL mesoporous coated magnetite nanoparticles by 

applying an alternating magnetic field of 13.37 kA/m at frequency of 222 kHz for 30 minutes 

(Azevedo et al., 2014). Similarly Souza et al. have reported 21 degree temperature raise for 

20 mg/mL of SBA-15/magnetite nanocomposites under magnetic field of 13.37 kA/m at 

frequency of 198 kHz (Souza et al., 2009b). 

DOX release was studied under hyperthermia condition to investigate the feasibility of the 

synthesised nanoparticles to be used in simultaneous hyperthermia and drug delivery applications 

for cancer treatment. Temperature triggered DOX release were evaluated both in incubator and 

under AC magnetic field induced heating. 

The starting temperature for the release studies were set at 37 °C similar to body temperature. 

Heat activated drug release profiles are shown in Figure 5-21. Drug release was assessed at an 

elevated temperature of 43°C, for up to 45 minutes. 
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Figure 5-21. ME60 in vitro drug release at 37°C in incubator and under magnetic hyperthermia condition 

As seen in Figure 5-21, only slight increase (about 3%) in drug release was detected under 

elevated temperature both in incubator and under AC field. Similarly less than 5% increase in 

drug release from mesoporous nanoparticles was reported by Liu et al. when the temperature 

raised from 37 to 40°C (Liu et al., 2014a). Since the drug release from mesoporous silica is mostly 

based on physical diffusion, it is suggested that the slight increase in drug release with increased 

temperature could be due to temperature dependence of the diffusion coefficient (Liu et al., 

2014a). 

The results indicate that the synthesised mesoporous magnetic nanoparticles are suitable for 

hyperthermia application and drug encapsulation however, appropriate capping is required to 

improve the control over drug release.  

 ME60-L  

As explained before encapsulating the drugs within nanoparticles can overcome the difficulties 

presented by the ‘free’ drug via improving the solubility and stability, and increased selectivity 

towards targeted tissues, which results in decreased toxicity toward healthy cells and reduced 

necessary drug dosage to eliminate malignant cells (Ferrari, 2005). Mesoporous Silica 

nanoparticles (MSN) are very attractive as potential drug delivery systems due to their 

biocompatibility, high surface area, and tuneable particle size and pore diameters which attribute 

to high drug loading capacity and low cytotoxicity (Lu et al., 2007d, Vogt et al., 2010, Slowing 

et al., 2007b, Wu et al., 2013b, Vallet-Regi et al., 2001, Liu et al., 2009a, Yang et al., 2010). 

Recently, the feasibility of the mesoporous silica based nanoparticles to deliver extensive range 

of drugs and therapeutic agents have been widely explored (Lingjie et al., 2015, Sahoo et al., 
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2014, Meng et al., 2013, Rosenholm et al., 2010b). Mostly the cargo is loaded in mesoporous 

silica nanoparticles through simple electrostatic interactions or physical absorption (Nakamura et 

al., 2015, Rosenholm et al., 2011, Lu et al., 2010b). 

It is of significant importance that the loaded drugs remain in the particles and be protected from 

metabolites/ions in the body fluid before reaching the targeted tissues to minimize the toxicity 

towards healthy cells. The release profiles of mesoporous nanoparticles could be partly adjusted 

by altering the pore size and pore surface chemistry (Liu et al., 2009b). However, drugs loaded 

into the accessible pores through electrostatic interactions or physical adsorption, could easily 

leach out into the blood stream resulting in premature drug release. Additionally mesoporous 

nanoparticles low dispersibility and aggregation under physiological condition, and their 

nonspecific binding in protein containing solutions limit their applications in biomedicine (Wang 

et al., 2010a). 

To address these challenges different strategies have been reported in the literature including 

molecular-gating and surface functionalization (Mal et al., 2003, Nguyen et al., 2005). Two 

different approaches were examined in this project firstly the nanoparticles were coated with 

phospholipids and secondly polymer coating of mesoporous nanoparticles, as will be explained 

in Section 5.7.  

Liposomes have been extensively investigated as drug carriers due to their high biocompatibility 

(Li et al., 2012a, Li et al., 2015b). Most recently, a new type of nanoparticles based on integration 

of porous nanoparticle as support for lipid bilayers (protocells) have been reported (Pan et al., 

2011, Liu et al., 2009a, Liu et al., 2009b, Wu et al., 2013b, Mornet et al., 2005). Fusing liposomes 

on mesoporous silica surface could obtain combined properties of lipid bilayers and mesoporous 

particles. High surface area of the mesoporous nanoparticles results in higher capacity for loading 

of the therapeutic agents compare to the same size liposomes (Ashley et al., 2011a). On the other 

hand liposome coating of mesoporous silica nanoparticles enhance the stability of the 

nanoparticles in body fluid and minimize the premature drug release (Wu et al., 2013b, Ashley et 

al., 2011a). Furthermore liposome coatings on hydrophilic mesoporous silica nanoparticles could 

suppresses the bilayer fluctuations reducing the bilayer defects which leads to better stability than 

similar unsupported lipid bilayers (Liu et al., 2009a) (Ashley et al., 2011a, Komura et al., 2006). 

Additionally it is demonstrated in the literature that introducing of a lipid layer coating on 

mesoporous silica nanoparticles could increase the biocompatibility and the cellular uptake of the 

nanoparticles (Yang et al., 2010). Ashley et al. have reported 106 times improvement in killing a 

drug-resistant human hepatocellular carcinoma cell by using protocells over similarly sized 

liposomes (Ashley et al., 2011a). 

Protocells were synthesized by coating liposomes over magnetic mesoporous nanoparticles. The 

mesoporous magnetic core shell nanoparticles (ME60) were used as core material to provide high 

drug loading capacity. Synthesis and characterization of magnetic mesoporous nanoparticles have 
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been described in previous chapters. Natural phospholipid (soy phosphatidylcholine, SPC) was 

used to prepare the lipid bilayer. The use of SPC instead of the commonly used synthetic 

phospholipids such as dioleoyl phosphatidylethanolamine (DOPE) and dipalmitoyl 

phosphatidylcholine (DPPC) leads to much lower cost and better serum stability (Wu et al., 

2013b). Cholesterol was added to phospholipids to increase the lipid packing density and decrease 

the drug diffusion across the bilayer (Drummond et al., 1999). Liposomes were prepared by 

hydration of lipid films as explained in Section 2.15. The mesoporous nanoparticles were 

preloaded with drug by immersion in DOX solution and then the liposome solution were added 

to the drug loaded mesoporous nanoparticles. The mixture underwent probe sonication to prepare 

a homogenous solution and placed in the incubator to complete the liposome coatings and drug 

loading of the nanoparticles. 

The stability of the mesoporous silica nanoparticles after lipid coatings were measured using 

SCM. Improved stability of the nanoparticles after liposome coating prove the presence of lipid 

bilayers on the nanoparticles surface. The size of the nanocomposites was estimated from DLS 

measurements to be around 165 nm (Figure 3-52). 

 Drug Loading 

The drug loading content and efficiency were assessed after incubation of the drug loaded 

mesoporous core-shell nanoparticles with liposome mixture. The nanoparticles were separated by 

centrifuge and the UV absorbance of the supernatant at λ485nm was measured and compared with 

the previously established standard curve of DOX in PBS (as shown in Figure 5-3) to quantify 

the amount of the drug loaded into the nanoparticles. 

The DOX loading content and DOX loading efficiency are calculated to be 5.9 and 65.8%, 

respectively (see Table 5-1). The results indicate that the liposome capped mesoporous 

nanoparticles are capable of encapsulating large amount of drug effectively which could be 

explained by large surface area of the core mesoporous particles. Similarly Wu et al. have reported 

47.8% DOX loading efficiency and 2.9% DOX loading content for Protocells containing porous 

silica core and copolymer–liposome coating (Wu et al., 2013b). It is suggested in the literature 

that, due to high surface area of the porous silica core of the protocells they could load up to 1,000 

times more DOX than similar size liposomes (Fritze et al., 2006, Ashley et al., 2011a). 

 pH Triggered DOX Release 

DOX release from liposome capped nanoparticles (ME60-L) was studied in vitro in physiological 

condition (in PBS, at pH 7.4) and acidic conditions (pH 5.5). The results are shown in Figure 

5-22. The pH dependant drug release experiments were performed at body temperature (37°C). 

The drug release profile, at pH 7.4, showed no initial burst release of DOX confirming that 

sustained release could be obtained by liposome coating of nanoparticles. Indeed, after liposome 
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coating of the mesoporous nanoparticles the DOX release at physiological pH was reduced by 

53% compare to uncoated particles. Similarly Liu et al. have observed 55% reduction of calcein 

release from DOPS bilayer coated mesoporous particles (Liu et al., 2009a). 

DOX release profile at acidic condition shows a fast release in the initial 8 hours which could be 

due to disruption of the lipid bilayer caused by the acidic pH.  

   
Figure 5-22. DOX release profile of ME60-L investigated at pH=7.4 and pH=5.5. Measurements were performed at 

37°C .The release rate is higher at lower pH. 

As shown in Figure 5-22, DOX release rate was higher in the acidic condition than in 

physiological pH condition. At physiological pH (pH 7.4), nanoparticles demonstrated a slow 

release of DOX, while at pH 5.5, DOX release was higher. The overall drug release after 48 hours 

reached 21.9% at pH 5.5 and 12.89% at pH 7.4. It is clear that DOX was released more readily at 

Endosome/lysosomal pH condition rather than physiological blood plasma pH condition. It is 

suggested that the acidification destabilizes the lipid bilayer enabling DOX to diffuse out of the 

nanocomposites (Ashley et al., 2011a). However the DOX release was not drastically increased 

by changes in pH which suggest that the interaction of drug molecules with hydrogen bonds of 

the silica surface and slow diffusion of DOX from inner mesochannels could have slowed the 

DOX release from the porous core of the protocells (Gai et al., 2011, Liu et al., 2012) (Yang et 

al., 2010). Capping the mesopores of the silica nanoparticles reduce the drug release (at 37°C 

after 48 hours) by 52.7% compared to uncapped nanoparticles. 

It is established in the literature that liposomes made from SPC experience pH-sensitivity and 

upon acidification, a fraction of liposome population gets disrupted resulting in making the 

liposome unstable which consequently increase the permeability of the membrane leading to 

faster release of the encapsulated cargo (Li et al., 2015b, Baptista et al., 2003). Similar trends 

have been observed by Ashley et al. for DOPC protocells when exposed to simulated body fluid 
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(pH7.4) the protocells release 20% of the cargo in 20 days which was increased to 99% cargo 

release in 12 hours at pH 5 buffer (Ashley et al., 2011a). Similarly Liu et al. have reported 7 times 

increase in calcein release from DOTAP protocells when the pH was changed from 8 to 5 (Liu et 

al., 2009b). 

These results demonstrated that the protocells based on mesoporous silica and SPC phospholipids 

exhibit enhanced drug loading capacity and long-term stability compared to uncapped 

mesoporous silica nanoparticles. Furthermore developed protocells showed promising potential 

for a DOX delivery system with increased release rate at acidic condition similar to tumour 

microenvironment or endosomal/lysosomal compartment of cells (pH 4-6) (Liu et al., 2009b). 

 Temperature Triggered DOX Release 

Magnetic heating properties of the protocells were characterised using an AC field induced 

heating as explained in Section 3.14. The heat generated by the liposome capped nanoparticles 

under the influence of the AC field was observed to be lower than the heat generated by the 

polymer coated mesoporous silica nanoparticles. 

Figure 5-23 shows the magnetic heating profile of the liposome capped mesoporous silica 

nanoparticles (ME60-L). The magnetic induced heating of the nanocomposites were evaluated by 

dispersing 10 mg of the nanoparticles in 1 mL of DI water which was then placed in the AC field 

for 45 minutes. The temperature was set at 43°C which is suitable for hyperthermia treatment 

(Kobayashi, 2011). The field frequency was 406 kHz and the magnetic field strength was variable 

between 0 to 200 G to attain constant temperature. The SPA of the nanoparticles were calculated 

as demonstrated in Section 3.14.2. 

Temperature triggered DOX release were evaluated both in an incubator and under an AC 

magnetic field. Starting temperature for the release studies were set at 37 °C similar to body 

temperature. Drug release profiles were studied at an elevated temperature of 43°C, for up to 45 

minutes. 
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Figure 5-23. Magnetic heating profile of ME60-L with the concentration of 10 mg/mL in a variable magnetic field 
with maximum strength of 200 G and frequency of 406 kHz. The field was adjusted in the way to keep 
the temperature at 43°C 

As presented in Figure 5-23, the protocells were able to produce sufficient heat for hyperthermia 

treatment, however the heating process took 30 minutes to reach hyperthermia temperature of 

43°C in presence of 406 kHz magnetic field. The maximum temperature reached 44.6°C. 

DOX release was studied under hyperthermia condition to investigate the extent of heat triggered 

DOX release from the synthesised nanoparticles and evaluate their feasibility for use in 

simultaneous hyperthermia and drug delivery applications for cancer treatment. The results are 

illustrated in Figure 5-24. 

  

Figure 5-24. ME60-L in vitro drug release at 37°C in incubator and under magnetic hyperthermia condition 
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As shown in Figure 5-24, only slight change in drug release was observed under elevated 

temperature both in incubator and under AC field. The low increase in drug release with increase 

in temperature could be due to the fact that the slight change in the temperature was not enough 

to affect the structure of the capping liposomes (Li et al., 2015b).  

The results indicate that the synthesised protocells are suitable for hyperthermia application and 

drug encapsulation independently however appropriate changes in capping material is required to 

improve the control over drug release. Wu et al. have suggested the use of copolymer–liposome 

structure as coating material for mesoporous silica nanoparticles to increase the pH and thermo-

sensitivity of the protocells (Wu et al., 2013b). 

 ME55-PEG-PCL 

Nanoparticles composed of poly (ε-caprolactone) (PCL) and poly (ethylene glycol) (PEG) have 

shown great potential for drug delivery systems (Glover et al., 2012). PCL is a biodegradable, 

biocompatible and nontoxic thermoplastic polyester (Sinha et al., 2004, Cuong et al., 2010b). 

PEG is known to reduce the adhesion of plasma proteins, and stabilize and improve solubility of 

particles and it is frequently used for the hydrophilic outer shell of nanocomposites (Cuong and 

Hsieh, 2009, Shuai et al., 2003, Cuong et al., 2012, Cuong et al., 2010a). Additionally, polymeric 

nanoparticles with hydrophilic PEG outer shell can potentially prevent recognition by 

reticuloendothelial system (RES) after intravenous injection and increase the circulation time 

(Nasongkla et al., 2006, Zahr et al., 2006, Otsuka et al., 2003). Furthermore, since PCL melting 

temperature is in the range of 40 °C to 45 °C (which is the range for hyperthermia cancer therapy) 

it could offer temperature triggered drug release under elevated hyperthermia temperature where 

the encapsulated drug diffuse out the melted PCL core (Glover et al., 2013). 

Hydrophobic monodisperse magnetite nanoparticles and biodegradable thermally responsive 

polymer based on PCL hydrophobic and PEG hydrophilic segments were synthesised as 

explained in Section 2.7. Polymerization was performed via ring opening of ε-caprolactone (CL) 

and initiated by the alcohol terminus of polyethylene glycol (mPEG) with dibutyltin dilaurate as 

a catalyst. The molecular characteristics of diblock copolymers were studied by 1H NMR as 

shown in Figure 3-61. Differential scanning calorimetry (DSC) was used to evaluate the thermal 

properties of the synthesised polymer as shown in Figure 3-56 and Figure 3-55.  

Magnetite nanoparticles and DOX were loaded into the polymeric micelles at 25% and 8.3% w/w 

initial feed rate ratio, respectively. To increase the DOX loading content, DOX was first 

neutralized before micelle preparation by using an excess mount of TEA in DMSO. The 

encapsulation of magnetite nanoparticles and DOX inside the micelle cores were performed 

following the method described in Section 2.22. Similar methods have been reported in the 
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literature (Shuai et al., 2004, Nasongkla et al., 2006, Hong et al., 2008a). The amphiphilic 

copolymers self-assembled in PBS solution to encapsulate the magnetic particles and DOX.  

 Drug Loading 

Micellar solution was stirred for 3 hours in dark after which DOX loaded micelles were collected 

using magnetic separation and drug loading content and efficiency were measured. The drug 

loaded micelles were freeze dried to be used in drug release studies. Drug loading efficiency and 

the drug loading content was determined by measuring the UV absorbance of the supernatant at 

λ485nm and quantifying it using the standard curve of DOX in PBS (as shown in Figure 5-3). The 

drug loading content was confirmed by measuring the UV absorbance after dissolving the freeze 

dried nanoparticles in Chloroform and DMSO under sonication. 

The DOX loading content and DOX loading efficiency were calculated to be 6.91 and 74.86%, 

respectively (see Table 5-1). The results indicated that the copolymer micelles with hydrophobic 

PCL segment could efficiently encapsulate hydrophobic drugs in the micelle core. DOX 

encapsulation in the micelle core could be affected by several factors such as hydrophobic 

interaction of drug with the PCL segment of the micelle and the interaction of hydrogen binding, 

the volume of the hydrophobic core, PCL crystallinity and the water solubility of the drug (Cuong 

et al., 2012, Shuai et al., 2004). Zhang et al. and Shuai et al. suggested while the long PCL blocks 

with increased hydrophobicity favour DOX encapsulation in the micelles, long PCL segments 

results in a higher crystallinity, and result in a decrease in drug loading content of the micelles 

(Zhang et al., 2010b, Shuai et al., 2004). 

Hydrodynamic size of the prepared micelles (magnetic micelles and drug loaded magnetic 

micelles) were measured using DLS. The average size of magnetic micelles and DOX loaded 

micelles were measured to be around 76 nm and 106 nm, respectively, as shown in Figure 3-50 

and Figure 3-51. The average particle size of the DOX and magnetite encapsulated micelles 

increased slightly comparing to that of the magnetic micelles. The increase in micelle size after 

drug loading could be due to interaction of hydrophobic PCL core of the micelle, hydrophobic 

magnetite and DOX (Zhang and Zhuo, 2005). Similar results have been reported by other groups 

(Cuong et al., 2010a, Zhang and Zhuo, 2005, Shuai et al., 2004, Hong et al., 2008a). Hong et al. 

observed that the PEG-PCL micelles’ size increased around 10 nm upon loading of SPIONs into 

the micelles core (Hong et al., 2012). Hsieh group have also reported around 10 nm increase in 

PEG-PCL micelles size after drug loading, the initial micelles size were reported to be 148 nm 

with DLE of 5.8% (Cuong et al., 2012). Similarly Cuong et al. have reported a 6 nm increase in 

PEG-PEG-PCL micelles’ size with the drug loading content 8.5% (Cuong et al., 2010b).  

The results indicated that the diblock copolymer self-assembled into nanoscale micelles with 

insoluble PCL blocks as the core and soluble PEG blocks as the shell. Hydrophobic DOX and 
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magnetite nanoparticles were physically encapsulated into polymeric micelles core due to the 

hydrophobic interaction with PCL segment.  

Furthermore the low water solubility of DOX was improved by encapsulation in the polymeric 

micelles. The stability of the nanoparticles were tested using SCM which was found to be soluble 

and stable in aqueous solution as shown in Figure 3-41. 

 pH Triggered Drug Release 

Figure 5-25 demonstrate the in vitro release profile of DOX from magnetic micelles in PBS 

(pH=7.4) and acetate buffer solutions (pH=5.5) at 37°C. The results displayed an initial burst 

release of DOX followed by a sustained release during 48 hours for both pH values. The initial 

burst release of DOX from micelles in the first few hours could be attributed to the diffusion of 

DOX adsorbed near the surface of particles or trapped inside the hydrophilic shell (Cuong et al., 

2010a, Cuong et al., 2012). After 48 hours the overall DOX release reached 32.7% and 56% of 

the total encapsulated DOX at pH 7.4 and 5.5, respectively. 

   

Figure 5-25. DOX release profile for ME55-PEG-PCL, investigated at pH 7.4 and pH 5.5. Measurements were 
performed at 37°C .The release rate is higher at lower pH. 

The results showed higher DOX release rate at acidic condition with pH value of 5.5. The 

relatively slow DOX release rate of nanoparticles at pH 7.4 could be due to strong interaction of 

drug molecules and hydrophobic core of the micelles and the short incubation period (Cuong et 

al., 2010a). It is suggested that the slow DOX release at pH 7.4 could be due to DOX being in 

non-ionized state and hydrophobic form which consequently result in strong hydrophobic 

interactions between DOX and the core of the micelle. The relatively fast DOX release rate at pH 

5.5 could be attributed to the re-protonation (ionization) of the amino group of DOX which causes 

weaker interaction of DOX molecules and hydrophobic core of the micelle. In addition the 
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degradation of the micelle core is increased at lower pH values (Cuong et al., 2012, Zhang et al., 

2010b, Shuai et al., 2004, Liu et al., 2012). 

Similar patterns have been observed by others (Hsieh et al., 2008). Cuong et al. reported the 

release rate of 25% and 37% for pH 7.4 and 5.4 after 48 hours, for PEG-PCL-PEG triblock 

copolymer micelles (Cuong et al., 2010a). Nasongkla et al. reported up to 80% release of DOX 

from PEG-PLA micelles at pH 5.0 after 10 days comparing to 30% release at pH 7.4 in the same 

period (Nasongkla et al., 2006). Cuong group reported total release rates of 78% and 42% at pH 

values of 5.4 and 7.4 after 156 hours from PEG-PCL micelles (Cuong et al., 2012). Similarly Gao 

et al. reported 60% and 40% DOX release at pH 5.5 and 7.4 from star shaped PEG-PCL micelles 

over 48 hours period which was increased to 80% and 60% over 96 hours (Gao et al., 2013).  

From the pH dependent release profile it is expected that most of the hydrophobic drug remain in 

the micelle core after intravenous injection in plasma at normal physiological conditions which 

potentially increase DOX retention time in the blood circulation. Additionally, faster release may 

occur at acidic pH surrounding the tumour site or inside the endosome/ lysosome of tumour cells 

after internalization inside the cells by endocytosis (Zhang et al., 2010b). The pH dependant 

release profile and high DOX loading content suggest great potential for nanoparticles in cancer 

chemotherapy applications. The DOX release rate may be improved by modifying the 

composition of the copolymer, incubation time, and pH of media (Cuong et al., 2012).  

 Hyperthermia Triggered Drug Release 

Magnetic heating of the magnetic micelles were verified by magnetic hyperthermia unit as 

explained in Section 3.14 with magnetic field strength and frequency of 200 G and 406 kHz. 

Specific power absorption (SPA) was calculated based on the magnetic heating of the micelles 

and time and field dependent temperature data.  

Magnetic micelles were dispersed in phosphate buffer solution and place in the AC field for 45 

minutes. The heating profile of the micelles during hyperthermia triggered drug release is shown 

in Figure 5-26. The starting temperature for the release experiments were set at 37 °C similar to 

normal physiological conditions. The micellar solution concentration of 15 mg/ml was used for 

in vitro release tests which is lower than reported literature (Johannsen et al., 2005a, Purushotham 

et al., 2009)  

Figure 5-27 illustrates the in vitro, magnetic field heating activated drug release profile. Drug 

release was conducted at an elevated temperature up to 43°C, for 45 minutes. These conditions 

were selected according to hyperthermia treatment conditions (Reddy et al., 2012). The same 

experiments were performed in incubator at 43°C to investigate the effect of AC field induced 

magnetic heating.  
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Figure 5-26. Magnetic heating profile of magnetic micelles with the concentration of 15.1mg/mL in a variable 
magnetic field with maximum strength of 200 G and frequency of 406 kHz. The field was adjusted in 
the way to keep the temperature at 43°C. 

   

Figure 5-27. ME55-PEG-PCL in vitro drug release at 37°C in incubator and under magnetic hyperthermia condition  

The magnetic nanoparticles were heated successfully in high frequency magnetic field and were 

able to increase the temperature of the micellar solution to reach hyperthermia conditions in about 

5 minutes. Glover et al. have reported a time lag of around 2 minutes, observed by infrared 

camera, in the temperature raise of magnetic micelles during the magnetic heating experiments. 

They have suggested it might be due to the thermal energy needed to melt PCL micelle cores prior 

to gain functional energy to increase the solution temperature (Glover et al., 2013). However no 

lag time was observed in this experiment which could be due to different method of temperature 

measurements.  
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Doxorubicin release rate was faster at higher temperature over the measurement period (45 

minutes). Which indicates the PEG-PCL magnetic micelle system can be thermally triggered to 

release the drug. Furthermore, drug release from magnetic micelles were enhanced in the presence 

of the magnetic field. The total drug release reached 13% and 6.48% for AC field heating and 

incubation, respectively. 

These results suggested that the heat generated in the magnetic core upon application of the AC 

field is conducted from the magnetic core to the surrounding PCL micelle core and raised the 

temperature of the drug-loaded micelle. Upon heating, (the melting point for PCL is in the range 

of 40 °C–45 °C), when the temperature of the polymer solution reaches above the melting point 

of the micelle core, the core become molten and due to greater diffusivity of the molten core, 

DOX release is accelerated. The increased release rate is suggested to be proportional to the void 

space within the micelle core and the concentration gradient with surrounding fluid (Glover et al., 

2012, Glover et al., 2013). 

Glover et al. have performed series of temperature dependent critical micelle concentration 

(CMC) and temperature dependent dynamic light scattering measurements and observed that the 

micelles remained intact at temperatures above the melting point of the PCL core (Glover et al., 

2012). Purushtham et al. have observed similar DOX release trend from thermoresponsive 

polymer poly-n-isopropylacrylamide at elevated temperature, in presence of magnetic field with 

14.7% drug release after 47 minute at hyperthermia temperature (Purushotham et al., 2009).  

The observed heating properties of the magnetic micelles together with rapid release of 

doxorubicin from magnetic micelles under hyperthermia condition indicate that a synergistic 

effect of hyperthermia and cytotoxic chemotherapeutic drugs may be realized by incorporating 

magnetite nanoparticles into the PEG-PCL diblock copolymer micelles. Application of high 

frequency AC magnetic field will heat the particles by magnetic induction, allowing hyperthermia 

and simultaneous drug release (Brazel, 2009). Additionally, magnetic nanoparticles can overcome 

the drawbacks of conventional hyperthermia through magnetic targeting and localized heating 

(Purushotham et al., 2009, Shah et al., 2015). 

In addition to therapeutic applications, superparamagnetic nanoparticles are well recognised as 

excellent MRI probes. SPIONs encapsulated in polymeric micelles, with high monodispersity and 

stability in aqueous solution, could be used as ultrasensitive MRI T2 contrast agent with longer 

blood half-life and improved biocompatibility (Ai et al., 2005a, Hong et al., 2012, Hong et al., 

2008a). Hong et al. have observed that compared to the water soluble SPIONs, SPIONs 

encapsulated PEG-PCL micelles could simultaneously increases transverse (r2) and decreases 

longitudinal (r1) magnetic resonance relaxivities of water proton in micelle solution, leading to 

remarkably high r2/r1 ratio of up to 78, which makes a highly sensitive MRI T2 contrast agent 

(Hong et al., 2012). Similarly, Ai et al. reported clusters of hydrophobic SPIONs encapsulated 
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into the core of PEG-PCL micelle could result in an ultrasensitive MRI T2 contrast agent (Ai et 

al., 2005a). 

 DOX Loading of ME93-PEG-PCL and ME94-PEG-PCL 

It is suggested in the literature that drug encapsulated mesoporous silica nanoparticles could 

overcome drug resistance mechanisms (Wang et al., 2014). Although mesoporous silica 

nanoparticles are unable to deliver drugs in a targeted and controlled manner, without appropriate 

surface modification to cap the pores, inevitable premature drug release occurs during blood 

circulation (Tang et al., 2011, Aznar et al., 2009, Liu et al., 2014a, Chang et al., 2011, Slowing et 

al., 2007b). 

Polymer capped mesoporous silica magnetite core-shell nanoparticles (MSMNs) were 

synthesised as DOX nanocarriers for cancer therapy. These nanocomposites were developed 

based on mesoporous silica coated magnetite combined with thermally responsive PEG-PCL 

copolymer. The magnetite core of the nanocomposites could be used to induce localized heating 

under alternating current (AC) field for heat triggered drug release and parallel hyperthermia 

treatment (Azevedo et al., 2014). 

The mesochannels of the mesoporous silica nanoparticles were capped using the synthesised 

amphiphilic diblock copolymer to improve the control over release profiles and decrease the drug 

leakage. Furthermore the PEG-PCL coating could enhance the aqueous stability and cellular 

uptake of the nanoparticles. Additionally, PEG segments on the hydrophilic outer shell are known 

to prolong the circulation time.(Kwon, 2003, Otsuka et al., 2003, Shuai et al., 2004, Nasongkla et 

al., 2006, Cuong et al., 2012) (Ferlay et al., 2015).  

For this purpose, the surface of the mesoporous silica coated nanoparticles were octyl modified 

to give covalent anchorage on the silica surface. Subsequently the hydrophobic, octyl-modified 

mesoporous silica coated nanoparticles were coated with amphiphilic diblock copolymer. Octyl 

modified water insoluble mesoporous silica magnetite core-shell nanoparticles (OMSMNs) were 

synthesized following two different methods as explained in Section 2.6. 

ME93 was developed by using a one-pot respective condensation method. Tetraethyl orthosilicate 

(TEOS) molecules were condensed under basic conditions to make initial mesoporous coating 

shell on the magnetite nanoparticles then, octyl triethoxysilane (OTS) molecules were added to 

the reaction mixture to coat the nanoparticles with a hydrophobic octyl layer. 

ME94 was produced by using the silica coated nanoparticles developed following the method 

explained in Section 2.6.2 as starting material. Surface protected etching technique was then used 

to produce mesoporous silica structure followed by adding octyl triethoxysilane (OTS) to modify 

the nanoparticles with a hydrophobic octyl shell. 
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As-prepared OMSMNs are insoluble in water (Figure 3-43, a) due to the hydrophobic octyl groups 

on the surface. After the addition of PEG-PCL diblock copolymer, the polymer self-assemble on 

the OMSMNs due to hydrophobic interactions between alkyl chains of OMSMNs and PCL 

segment. Functionalization with amphiphilic polymer renders the water dispersible magnetic 

nanocomposites by providing hydrophilic PEG on the outer shell of the nanocomposites. (Figure 

3-43, b). 

TEM images of ME94 and ME93 are shown in Figure 3-11 and Figure 3-13. Successful octyl 

coating of nanoparticles were evaluated by using contact angle measurements as shown in Figure 

3-58 and Figure 3-59. Hydrophobic surface were clearly observed for both samples, however 

ME93 demonstrated higher contact angle and higher hydrophobicity. The improved stability of 

the polymer capped mesoporous magnetic nanocomposites were evaluated using SCM. The 

results (as presented in Figure 3-42) indicated that the polymer coated particles are water soluble 

and stable for long duration. 

 Drug Loading 

OMSMNs were loaded with hydrophobic DOX molecules and coated with amphiphilic polymer 

by ultrasonication and stirring at room temperature in dark condition for 3 hours. DOX loaded 

micelles were collected using a magnet and lyophilised to be used later in drug release and 

cytotoxicity studies. 

Drug loading efficiency and the drug loading content were determined by measuring the UV 

absorbance of the supernatant after 3 hours loading process at λ485nm and calculated to be 7.92 and 

85.85% for ME93-PEG-PCL and 6.2 and 67.21% for ME94-PEG-PCL (see Table 5-1). 

Higher drug loading content of ME93 compared to ME94 could be due to higher surface area 

(BET graphs presented in Figure 3-21 and Figure 3-22) of the ME93 as well as higher 

hydrophobicity of the ME93 surface which could affect the electrostatic interaction of the drug 

and silica surface (He et al., 2013). The higher hydrophobicity of the core in case of ME93 could 

influence the drug loading content as it is suggested in the literature that physical entrapment of 

the hydrophobic drugs is driven by interactions between hydrophobic segments of the 

nanoparticles and the drug (Shuai et al., 2004, Cuong et al., 2012). He et al. have observed that 

compared to PEG capped mesoporous silica nanoparticles, PEG-PCL capped particles have 

shown an increased drug loading efficiency. They have suggested that it could be due to 

hydrophobic PCL chains (He et al., 2013). 

The drug loading content of mesoporous silica nanoparticles (ME60) were slightly higher than 

octyl modified nanoparticles which could be attributed to higher surface area of the unmodified 

mesoporous silica nanoparticles. Yildirim et al. have reported similar tendency for mesoporous 
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silica nanoparticles and surface modified nanoparticles with drug loading values of 15.3 μg/mg 

and 11.5 μg/mg, respectively (Yildirim et al., 2013).. 

A decrease in DOX loading content and efficiency was observed when DOX loading was 

performed under acidic conditions with hydrophilic DOX. DLC and DLE were decreased to 2.0% 

and 11%, respectively. Since DOX encapsulation into mesoporous silica matrix is mainly based 

on the physical adsorption mechanism it is suggested that at higher pH, the electrostatic repulsion 

between the adsorbed DOX molecules would decrease and consequently DOX molecules could 

be absorbed close to each other in the mesochannels with higher encapsulation efficiency (Chang 

et al., 2011, Tang et al., 2011). Tang et al. have reported high pH dependency of DOX loading 

into chitosan/poly (methacrylic acid) coated mesoporous silica nanoparticles with drug loading 

content of 22.3% at pH 8 (Tang et al., 2011). Similarly, Chang et al. have observed the pH 

dependent drug loading behaviour for poly (N-isopropylacrylamide-co-methacrylic acid) coated 

magnetic mesoporous silica nanoparticles with an increase in drug loading content from 0.9 wt% 

to 21% with pH change from 5.1 to 10.0 (Chang et al., 2011).  

The size distribution of nanoparticles measured by dynamic light scattering indicated that polymer 

coated ME93 nanoparticles (ME93-PEG-PCL) showed slightly smaller size than drug loaded 

polymer capped nanoparticles. It is suggested that the particles size might be dependent upon 

hydrophobicity of the core material (Sardan et al., 2014). An increased electrostatic interaction 

on the surface of the material could result in dense packing of the polymeric shell which 

consequently result in smaller particles. 

 pH Triggered Drug Release 

The in vitro drug release profiles were studied at 37°C under neutral physiological condition (pH 

7.4) and acidic condition (pH 5.5) to simulate the normal physiological environment and tumour 

cell environment. The results are presented in Figure 5-28 and Figure 5-29 for ME93 and ME94, 

respectively. 

javascript:popupOBO('GO:0015267','C1JM10631G')
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Figure 5-28. pH dependant drug release profile for ME93-PEG-PCL 

  

Figure 5-29. pH dependant drug release profile for ME94-PEG-PCL 

The DOX release profile of polymer capped nanoparticles compare to un-capped nanoparticles 

showed that the initial burst release which was detected for mesoporous silica nanoparticles 

(ME60) was suppressed by polymer capping of the mesopores. Capping the mesopores of the 

silica nanoparticles reduced the drug release (at 37°C after 48 hours) by 41.5%. This results 

indicated that the PEG-PCL polymer layer has covered the pore openings and could effectively 

preserved the encapsulated drug and reduce the drug release from mesoporous silica structure at 

pH 7.4. Similar results were observed by Yildirim et al. where they have used F127 polymer to 

coat the mesoporous silica nanoparticles. They have reported 30% decrease in drug release from 

nanoparticles by capping the mesoporous silica nanoparticles with the F127 polymer (Yildirim et 

al., 2013).  
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As it is shown in Figure 5-28 and Figure 5-29 both samples exhibited a pH dependant drug release 

profile with the total drug release of 29.6% and 15.9% at pH 5.5 and 7.4 for ME93 and 38.04% 

and 17.93% for ME94 after 48 hours. Similar pH dependant drug release profiles have been 

reported in the literature. Tang et al. have reported a similar pH dependant release profile for 

chitosan/poly (methacrylic acid) coated mesoporous silica nanoparticles with an increase from 

18% release at pH 7.4 to 70% release at pH 5.5 during a 24 hours period (Tang et al., 2011). 

Similarly, Chang et al. have reported a pH responsive poly (N-isopropylacrylamide-co-

methacrylic acid) coated magnetic mesoporous silica nanoparticles. They have observed 80.2% 

drug release at pH 5 while the drug release was reduced to 7.2% at pH 7.4 over the same time 

period (Chang et al., 2011). He et al. have reported 20% and 30% DOX release at pH 7.4 and 5.0 

within 36 hours for PEG-PCL capped nanoparticles via disulfide bonds (He et al., 2013). 

It is suggested that the drug release is significantly affected by the electrostatic attraction between 

DOX and the nanoparticles. The pH decrease would make DOX became more water soluble due 

to the protonated daunosamine group (Liu et al., 2014b) and consequently, the reduced 

electrostatic interaction between the drug molecules and the silica shell would facilitate the DOX 

release (He et al., 2013) (Chang et al., 2011) (Tang et al., 2011). 

It is proposed that the slight difference in DOX release profile between ME93 and ME94 could 

be due to the differences in the pore structure, as it is observed by several groups that modulating 

the pore size and structure could affect both the drug loading and release profiles (Zhang et al., 

2009).  

The drug release profiles clearly indicated the role of polymer coatings on the mesoporous silica 

nanoparticles in controlling the diffusion behaviour of DOX from the nanoparticles and 

minimising the drug leakage during blood circulation. Additionally the pH responsive drug 

release with increased drug release in acidic condition means accelerated drug release rate inside 

the endosome/lysosome after cellular uptake which is an advantageous for cancer therapy (Chang 

et al., 2011, Medeiros et al., 2011, He et al., 2013).  

 Temperature Stimuli Drug Release 

Magnetic properties of the nanocomposites were evaluated based on magnetic hysteresis loops 

obtained by vibrating sample magnetometry (VSM) and magnetic heating using nanoscale 

biomagnetics hyperthermia unit as explained before in Section 3.14. It was observed that 

compared to bare magnetite nanoparticles and silica coated core-shell nanoparticles, the saturation 

magnetization was reduced due to the additional polymer coating of the silica coated 

nanoparticles. However the nanocomposites have shown superparamagnetic characteristics with 

acceptable saturation magnetization according to the literature (Lien and Wu, 2008, Zhu et al., 

2007). 

http://www.chemspider.com/Chemical-Structure.22683.html
javascript:popupOBO('CHEBI:50803','C1JM10631G','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=50803')
javascript:popupOBO('GO:0005768','C1JM10631G')
javascript:popupOBO('GO:0005764','C1JM10631G')


222 

To study the magnetic field induced hyperthermia characteristics of the materials, the magnetic 

nanocomposites were dispersed in phosphate buffer solution and place in the AC field for 45 

minutes. The heating profiles for ME93-PEG-PCL and ME94-PEG-PCL are shown in Figure 

5-30. The field strength was variable between 0 to 15.8 kA/m (200 G) in the way to reach 

hyperthermia temperature (43°C) and then keep the temperature constant. The AC field frequency 

was constant at 406 kHz. Specific power absorption (SPA) of the nanoparticles were calculated 

based on the magnetic heating profile as shown in Section 3.14.2. 

As shown in Figure 5-30, magnetic nanoparticles were heated successfully in high frequency 

magnetic fields. The temperature of the solution reached hyperthermia conditions in about 8 

minutes and 15 minute for ME93-PEG-PCL and ME94-PEG-PCL, respectively. It is worth noting 

that hyperthermia recommended temperature rise should be between 4 to 8°C to avoid damages 

to healthy cells (Reddy et al., 2012, Kobayashi, 2011). The nanoparticle suspension offered a ΔT 

of 5°C in around 10 minutes for ME93-PEG-PCL and 16 minutes for ME94-PEG-PCL which are 

in the recommended range for hyperthermia treatments (Bae et al., 2009, Reddy et al., 2012). 

However higher magnetic heating of ΔT=32 degree was observed by Azevedo et al. for SBA-

16/Fe3O4/P (N-iPAAm) at a concentration of 20 mg/mL while applying an alternating magnetic 

field of 13.37 kA/m at frequency of 222 kHz for 30 minutes in aqueous medium (Azevedo et al., 

2014). The lower temperature raise observed here could be due to lower magnetite nanoparticle 

concentration in the solution. The lower heating properties of ME94-PEG-PCL compare to 

ME93-PEG-PCL is consistent with its lower magnetite content in a single nanoparticle and its 

lower saturation magnetization (Ms) as observed using VSM data (see Figure 3-35). 

  

Figure 5-30. Magnetic heating profile of ME93-PEG-PCL and ME94-PEG-PCL with the concentration of 4 mg/mL in a 
variable magnetic field with maximum strength of 200 G and frequency of 406 kHz. The field was 
adjusted in the way to keep the temperature at 43°C 
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Temperature triggered DOX release were studied both in an incubator and under magnetic field 

induced heating. The starting temperature for the release studies were set at 37 °C similar to body 

temperature. Heat activated drug release profiles are shown in Figure 5-31 and Figure 5-32. Drug 

release was assessed at an elevated temperature of 43°C, for up to 45 minutes. 

  

Figure 5-31. ME93 In vitro drug release at 37°C in incubator and under magnetic hyperthermia condition 

  

Figure 5-32. ME94 In vitro drug release at 37°C in incubator and under magnetic hyperthermia condition 

Doxorubicin release rate were increased with the temperature rise. The enhanced release profile 

suggested that the PEG-PCL polymer capped nanoparticles could be thermally stimulated to 

release the drug. Additionally, as illustrated in the graphs the drug release was higher when 

activated by AC field rather than high temperature in the incubator. The accumulated drug release 

for ME93-PEG-PCL after 45 minutes of heating reached 8.4% and 5.4% in presence of AC field 
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and in incubator, respectively which is much higher compare to 2.3% drug release at 37°C. 

Similarly for ME94-PEG-PCL the drug release reached 9.8% and 5.0% under hyperthermia 

condition induced by the AC field and in the incubator. Liu et al. have studied the hyperthermia 

drug release using 1-tetradecanol (TD) as gatekeeper. They have achieved low drug release of 

less than 4% at 37°C after 96 hours while at 40°C TD molecules were melted to release the drug, 

however TD molecules stayed within the pores and hindered the DOX molecules diffusion into 

the solution (Liu et al., 2014a). 

It is observed that once the silica coated magnetic nanoparticles combined with thermally 

responsive PEG-PCL polymer, is placed in an AC magnetic field, magnetic cores can be used to 

produce localized heating. Since the melting temperature of the PCL segment is in the range of 

40 to 45°C the induced heating could cause the PCL segments of the polymer to melt and allow 

enhanced diffusion and subsequently increase the drug release (Glover et al., 2012). Additionally, 

Wu et al. have suggested that the heat could dissociate the strong interactions between the DOX 

and mesoporous silica which could result in an increased drug release with an increase in 

temperature (Liu et al., 2014b, Lingjie et al., 2015). 

Furthermore, the increase in drug release under hyperthermia condition in presence of the AC 

field could be explained by increase in the Brownian motion of the nanoparticles, which could in 

turn lead to an increased drug release from the mesopores of the nanoparticles (Lingjie et al., 

2015, Chon et al., 2005).  

PEG-PCL copolymer demonstrated promising characteristics to be used in hyperthermia triggered 

drug release compare to other polymers reported in the literature. Zhu et al. described synthesis 

of a thermally responsive drug delivery system based on ordered mesoporous silica SBA-15 with 

magnetic particles and poly (N-isopropyl acrylamide) (PNIPA). They have observed thermally 

activated release. However, the system showed very low saturation magnetization and in addition 

drug release reached its maximum at temperatures between 15 to 20°C, which is much lower than 

body temperature making the material unsuitable for thermally controlled drug release (Zhu et 

al., 2007). Lien and Wu reported synthesis of nanoparticles containing thermosensitive polymer 

poly (N-isopropylacrylamide) grafted onto the surfaces of silica coated magnetite nanoparticles. 

However, these multifunctional nanoparticles demonstrated a phase transition at temperatures 

around 34° to 36 °C which is again lower than body temperature (Lien and Wu, 2008). 

The AC field induced heating of the PEG-PCL magnetic nanocomposites together with increased 

doxorubicin release rate under hyperthermia condition would effectively release the drug in 

cancer cells and establish a synergistic effect for killing cancer cells with significant enhancement 

in cancer therapy.  
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The results demonstrated that the PEG-PCL capped magnetic silica nanocomposites have 

successfully encapsulated DOX as model drug with efficient drug loading content and achieved 

a controllable drug release, triggered by pH and magnetic induced heating. 

 Summary 

Different drug delivery systems based on magnetic nanoparticles were developed to address the 

challenges in cancer therapy. The drug delivery systems were evaluated in vitro to test the drug 

loading and release performance of the developed systems and assess the feasibility of the 

synthesised material to be used as drug delivery systems. 

The developed materials included mesoporous silica coated magnetic nanoparticles, 

magnetoliposomes, liposome capped mesoporous silica coated magnetic nanoparticles, magnetic 

micelles, and polymer capped mesoporous silica coated magnetic nanoparticles.  

The developed materials were drug loaded using two different anticancer drugs MMC and DOX 

which both are commonly used for cancer therapy however, they both induce strong toxic side 

effects. 

MMC loading into silica nanoparticles and magnetoliposomes showed that mesoporous 

nanoparticles are able to encapsulate more drug than magnetoliposomes however uncapped 

mesoporous silica coated nanoparticles lose most of the drug during washing process before drug 

release experiments. Maximum drug release from silica nanoparticles after 48 hours at body 

temperature reached 12% but for magnetoliposomes drug release reached up to 45%. 

DOX loading into developed nanoparticles showed that mesoporous nanoparticles were able to 

encapsulate large amount of DOX and the polymer and liposome capping of the mesochannels 

were able to decrease the drug leakage from the nanoparticles. 

DOX release from nanoparticles was studied under pH and temperature triggered conditions. The 

results indicated that all the developed materials are suitable to be used in hyperthermia treatments 

however polymer coated materials showed a higher increase in drug release with the temperature 

rise compared to liposome coated material. All the developed materials showed pH responsive 

release profiles with increased drug release at lower pH. 

The DLC of the materials were decreased with polymer capping and liposome capping of the 

material which could be explained by the increase weight of the nanoparticles due to the capping 

material which would decrease the drug to nanoparticles ratio (w/w). 

The results confirmed that the nanoparticles are able to produce sufficient heat for hyperthermia 

treatments and either increased temperature or change in pH could trigger the drug release from 
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the nanoparticles, which indicates the developed nanoparticles have great potential for 

applications in drug delivery and cancer therapy. 
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 Introduction to cytotoxicity study 

A drug delivery system is required to be non-cytotoxic and biocompatible (Cuong and Hsieh, 

2009, Gao et al., 2013). Cytotoxicity is among the main concerns regarding the application of 

nanoparticles in nanomedicine. Cytotoxicity is defined as the toxic effect of materials on viable 

cells (Daglar et al., 2014). Commercial cell lines are usually used as the first tool to evaluate the 

biocompatibility of a drug delivery system. Generally, nanoparticles are added into the cell-

culture and viability , proliferation and differentiation of the cells are compared to control cells. 

Flow cytometry, confocal microscopy, optical microscopy, transmission electron microscopy, 

and cell viability assays could be used to monitor the cells. 

This chapter presents the results of in vitro biocompatibility and efficiency testes of the drug 

loaded nanoparticles evaluated against two commercial cell lines; MCF7 and U87. 

Since Doxorubicin (DOX) is commonly used in breast cancer chemotherapy the efficacy of the 

developed drug loaded nanoparticles were assessed against breast cancer cells lines (MCF7). In 

addition to MCF7 the cytotoxicity of the nanoparticles were measured against glioblastoma cell 

lines (U87) as DOX is used to treat glioblastoma due to its preserved efficacy in extreme 

metabolic conditions (Rittierodt and Harada, 2003). Cytotoxicity of the developed nanoparticles 

were evaluated through PrestoBlue assay according to the procedure explained in Section 2.28.8. 

The cells viability were monitored for up to 72 hours in presence of nanoparticles to evaluate the 

effect of nanoparticles on cell viability .  

 Breast Cancer Cells Lines (MCF7) 

Breast cancer is currently the second most widespread cancer, with around 1.7 million new cases 

diagnosed every year (Ferlay et al., 2015), around one in every 10 Western women will develop 

breast cancer at some time in their life (Ferlay et al., 2010). Despite all available treatments 

including radical mastectomy approximately one third of affected women die. Breast cancer is 

ranked as fifth cause of cancer death (Ferlay et al., 2015). Currently, chemotherapy including 

adjuvant and neoadjuvant treatments is the main action for breast cancer. Although chemotherapy 

improves survival rates in the adjuvant setting, around 50% of all treated patients will relapse. 

The major reason for therapeutic failure and progression of the tumour is associated with 

overexpression of inhibitors of apoptosis proteins (IAPs) such as multidrug resistant P-

glycoprotein (Pgp) (Wang et al., 2014, Liu et al., 2010). Nanoparticle based drug delivery shown 

to be able to sidestep the MDR1 in MCF7 breast cancer cells by endosomal delivery of the 

chemotherapeutic agents (Wang et al., 2014). 
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 Glioma Cell Line (U87) 

U87 is a frequently studied grade IV glioma cell line also called glioblastoma multiforme (GBM). 

Glioblastoma is the most common primary malignant brain tumor which accounted for 256,000 

new cases and 189,000 deaths in 2012 (1.8% of new cancers) with the highest incidence and 

mortality rates in more developed regions (Ferlay et al., 2015). While the number of cases is 

relatively small, GBMs have a one-year survival rate of only 29.6%, which makes it one of the 

most deadly types of cancer (Clark et al., 2010). The standard of treatment of newly diagnosed 

glioblastoma patients is surgical resection to the extent feasible, followed by adjuvant treatment 

of Carmustine implants or temozolomide chemotherapy with radiotherapy (Stupp et al., 2005, 

UK, 2013).  

Nanoparticle based drug delivery could improve the treatment efficacy in glioblastoma. Similar 

to breast cancer cells, the lack of chemotherapeutic success in glioblastoma is associated with 

MDR1. Due to diverse metabolic and protective tasks of the blood-brain barrier, there is a 

relatively high P-gp expression under physiological conditions (Rittierodt and Harada, 2003). 

 Growth Curves 

The growth characteristics are different for each cell line. Growth curve are established in order 

to evaluate the growth characteristics of a cell line. From growth curve, the lag time, exponential 

growth phase (log phase), population doubling time (PDT), and saturation density can be obtained 

(Jennie P. Mather, 2007). The effects of drugs and biological agents that stimulate or inhibit the 

cellular growth is mostly studied in log phase (Rubio-Pino, 2013, Assanga and Lujan, 2013), 

which is determined by the growth curve . 

Growth curves were obtained using PrestoBlue viability assay following the method explained in 

Section 2.28.7. The growth curves for U87 and MCF7are shown in Figure 6-1 and Figure 6-2, 

respectively. The cells were seeded in 96 well plates with the seeding density of 2×103 for MCF7 

and 4×103 for U87 cell lines. 

http://www.cancerresearchuk.org/about-cancer/type/brain-tumour/treatment/types/ssLINK/carmustine
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Figure 6-1. Growth curve of U87, the day 0 measurements were performed 3 hours after seeding the cells 

  

Figure 6-2. Growth curve of MCF7, the day 0 measurements were performed 3 hours after seeding the cells. 

The first measurements were performed 3 hours after seeding the cells. The lag phase was 

observed to be around 20 hours for U87 and 48 hours for MCF7. Subsequently, the cells entered 

into exponential growth phase. For biocompatibility tests the nanoparticles with or without drug 

were added to culture media during this phase.  

Population doubling time (PDT) was calculated based on  

𝑃𝐷𝑇 = 𝑡 ×
ln 2

ln
𝐶𝑒
𝐶𝑏

     Equation 6-1 
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Where t is the incubation time, 𝐶𝑒 is the cell population at the end of incubation time and 𝐶𝑏 is 

the cell population at the beginning of the incubation time. The PDT was calculated to be 44 hours 

for MCF7 and 40 hours for U87. The stationary saturation phase was observed after 6 days for 

U87 and 8 days for MCF7. American Type Culture Collection (ATCC) suggest the PDT of 38 

hours for MCF7 and 34 hours for U87 (ATCC, 2012).  

 

 Biocompatibility Evaluation of the Synthesised Materials 

Biocompatibility of therapeutic nanoparticles with biological tissue is necessary to avoid possible 

side effects. The in vitro methods are extremely valuable for biocompatibility assessments of 

nanoparticles as they can produce specific and measureable toxicity evaluations inexpensively 

and without use of animals. Nanoparticles effect on cells’ metabolic activity, membrane integrity, 

apoptosis, and proliferation could be studied in vitro cell culture (Lei et al., 2013).  

MCF7 and U87 cell lines were cultured for biocompatibility experiments. Both cell lines were 

grown in Eagle's Minimum Essential Medium (EMEM) with 10% fetal bovine serum (FBS) , 1% 

Non-Essential Amino Acids Solution (NEAA), 1% Sodium Pyruvate, 1% L-Glutamine and 1% 

Penicillin/Streptomycin and maintained at 37°C in a humidified 5% CO2 atmosphere. The cells 

were subcultured every 2 to 3 days when they have reached 70 to 80% confluence. Cells were 

maintained in 96 well plates for cytotoxicity studies. MCF7 and U87 cell lines were treated with 

a range of concentrations of control empty nanoparticles to assess the biocompatibility of the 

synthesised materials. It is suggested that materials which could maintain cell viability of more 

than 80% to be considered biocompatible (Mahmoudi et al., 2009). 

Since it is suggested in the literature that incubation periods longer than 72 hours will not make 

significant difference in cell viability against different tested materials the cytotoxicity tests were 

performed for up to 72 hours incubation (Cuong et al., 2010b).  

 Data Analysis 

Each experiment was measured using six wells per concentration and at least three independent 

identical experiments were performed. Data is presented as mean with error bars showing the 

standard deviation. Viability of each group was demonstrated as percentage of untreated control 

group which was considered to be 100%. T-test (two tailed distribution, two sample with unequal 

variances) was used for statistical analysis where P values less than 0.05 were considered to be 

statistically significant. 
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 ME53 (bare magnetite nanoparticles) 

Magnetic nanoparticles are one of the significant pioneering nanomaterials that can be used across 

a range of biomedical applications (Balasubramanian et al., 2014). Magnetite nanoparticles 

compare to other iron oxide exhibit better biocompatibility (Baba et al., 2012). Currently, great 

attention has been paid to biocompatibility of SPIONs in the human body. Many studies have 

evaluated the cytotoxic effects of different types of SPIONs with different coatings which 

demonstrated that, SPIONs at doses of up to 100 µg/mL are biocompatible or may induce low 

cytotoxicity (Lei et al., 2013). The SPIONs biocompatibility was observed to be dependent on 

several factors such as surface coatings and oxidation state of iron in SPIONs (Singh et al., 2010). 

Magnetite nanoparticles were synthesised following coprecipitation method as explained in 

Section 2.3.1. Synthesised bare magnetite nanoparticles were washed with sterile PBS buffer and 

redispersed in the EMEM medium with the final concentration of 1 mg/mL. This solution was 

then diluted to different concentration of nanoparticles (0.1 mg/mL, 0.25 mg/mL, 0.5 mg/mL, 

0.75 mg/mL and 1 mg/mL) for treatment in 96-well plates cell culture. The viability of the cells 

after adding the SPIONs were studied using PrestoBlue assay at different time intervals of 3, 24, 

48 and 72 hours. The cultures without nanoparticles were used as control experiments. The results 

are illustrated in Figure 6-3 and Figure 6-5 for U87 and MCF7 cell lines, respectively. 

As seen in the figures the viability assay showed a concentration dependent cell toxicity. The 

cytotoxicity of the nanoparticles increased with increasing nanoparticles concentration. 

 

Figure 6-3. Cytotoxicity of uncoated magnetite nanoparticles (ME53) against U87 Each bar represents the mean of 
three measurements (6 well each) with error bars indicating standard deviation. Bars marked with * 
showed no significant difference compared to control sample (P>0.05) 
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There was no significant difference in U87 cell viability for 0.1 mg/mL SPIONs in the first 24 

hours (P=0.82) however magnetite nanoparticles (ME53) induced cell toxicity in 48 hours 

(P<0.05 for over 48 hours). The concentrations of up to 0.5 mg/mL did not show significant 

toxicity for the first 3 hours of treatment. The cytotoxicity data can also be presented in a time 

dependant cytotoxicity plot. Cytotoxicity of ME53 at concentrations of 0.25, 0.50 and 1 mg/mL 

against U87 cells is presented in Figure 6-4 as an example. 

 

Figure 6-4. Cytotoxicity of uncoated magnetite nanoparticles (ME53) against U87 cells.  

   

Figure 6-5. Cytotoxicity of uncoated magnetite nanoparticles (ME53) against MCF7 cells. Each bar represents the 
mean of three measurements (6 well each) with error bars indicating standard deviation. Bars marked 
with * showed no significant difference compared to control sample (P>0.05). 
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There was no significant difference in viability of MCF7 cells treated with magnetite 

nanoparticles (ME53) with concentration of 0.1 mg/ml for 48 hours (P=0.17). However magnetite 

nanoparticles induced cell toxicity in 72 hours (P<0.05 for over 72 hours). Cell viability for MCF7 

was reduced to 87% after 24 hours of incubation with 0.25mg/ml of SPIONs. The lowest 

concentration tested were 0.1 mg/mL which did not induce significant toxicity after 48 hours of 

incubation. 

It was observed that magnetite nanoparticles (ME53) with concentration less than 0.1 mg/mL 

were biocompatible while treating the cells with ME53 at the highest concentration of 1 mg/mL, 

for 24 hours resulted in reduced viability of 59% for U87 and 50% for MCF7. Similarly, 

Balasubramanian et al. have reported 80% viability for 0.1 mg/mL bare magnetite and reduced 

viability  of 53% for 1 mg/mL bare magnetite after 24 hours (Balasubramanian et al., 2014). 

It is suggested that the cytotoxicity induced by the magnetite nanoparticles is due to their 

physicochemical properties. Magnetite nanoparticles present a large surface area for the 

generation of free radicals. Consequently, the reactive oxygen species (ROS), including 

superoxide anions, hydroxyl radicals and nonradical hydrogen peroxide, are moved inside the 

cells where they can produce oxidative stress by activating transcription factors for pro-

inflammatory mediators. Additionally, ROS reacts with macromolecules and damage the cells by 

peroxidizing lipids, changing proteins, disrupting DNA, and interfering with signalling functions, 

and subsequently cause cell death (Mahmoudi et al., 2011).  

  

 PEG-PCL 

Self-assembled polymeric micelles are one of the most promising drug delivery systems since 

they could improve bioavailability, solubility, and retention time of drugs and also could 

overcome MDR effect (Cuong et al., 2012, Kedar et al., 2010). Particularly nanoparticles 

composed of biodegradable, biocompatible poly (ε-caprolactone) (PCL) and poly (ethylene 

glycol) (PEG) have demonstrated great potential for drug delivery systems (Cuong et al., 2010b, 

Sosnik and Cohn, 2003). Therapeutic activity and stability of PCL is reasonably higher than other 

polymers such as PLGA in nanomedicine. PCL (poly-ɛ-caprolactone) is biodegradable by 

hydrolysis of its ester linkages in physiological conditions (Kumari et al., 2010). Additionally 

hydrophilic PEG shell is known to enhance the solubility in water and reduce the adhesion of 

plasma proteins which could potentially increase the circulation time of drugs and can prevent 

recognition by reticuloendothelial system (RES) after intravenous injection (Cuong et al., 2010b).  

PEG-PCL polymer was synthesised as explained in Section 2.7. Biocompatibility and safety of 

the copolymer was evaluated in vitro before loading of drug molecules. The in vitro cytotoxicity 

studies were performed by PrestoBlue assay as explained before in Section 2.28.8. 

javascript:popupOBO('CHEBI:23888','C1JM13588K','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=23888')
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MCF7 cells and U87 cells were seeded in 96-well plate and incubated at 37 °C under a humidified 

atmosphere containing 5% CO2 for 24 hours. After which the media was replaced with fresh 

media containing different concentration of the copolymer (0.25 mg/mL, 0.5 mg/mL, 

0.75 mg/mL and 1 mg/mL). The cells were further incubated for up to 72 hours. The cell 

viability (%) were determined as the ratio of the living cells compare to untreated control cells at 

3, 24, 48 and 72 hours.  

Figure 6-6 and Figure 6-7 show the viability  when cells were treated with PEG-PCL copolymer 

where the highest concentration of the copolymer was 1 mg/mL.  

 

Figure 6-6. Biocompatibility of the PEG-PCL micelles against U87cells. 

 

Figure 6-7. Biocompatibility of the PEG-PCL micelles against MCF7 cells. 
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The cellular viability tests shows that the viability of the either cell lines were not significantly 

affected by PEG - PCL copolymer. However the viability was concentration dependant. The 

lowest cell viability after 72 hours of incubation with highest polymer concentration was 94% for 

MCF7 and 92% for U87. Which indicates that the PEG-PCL copolymer is biocompatible and 

generated very low toxicity toward MCF7 and U87 cell lines even at high concentration of 

1 mg/mL. 

Similar results were observed by other groups. Nguyen group have reported a polymer 

concentration dependant viability for MCF7 cells with cell viability  of approximately 92% for 

1.0 mg/mL concentration of star-shaped FOL–PEG–PCL micelle after 48 hours treatment (Cuong 

et al., 2012). Cuong et al. have reported 89% viability for MCF7 cell lines after 24 hours of 

treatment with 1 mg/mL of PEG-PCL-PEG triblock copolymer (Cuong et al., 2010b). Similarly 

Gao et al. have reported around 90% viability  of HEK293 cell line (human embryonic kidney) 

after 48 hours treatment with star shaped PEG-PCL micelles (Gao et al., 2013). Zhao et al. have 

reported around 95% viable Eahy.926 (umbilical vein cell line) cells after 24 hours treatment with 

0.83 mg/mL of PEG-PCL micelles (Zhao et al., 2013a). 

The observed cells viability results confirmed the biocompatibility and low cytotoxicity of the 

synthesised PEG-PCL diblock copolymer and its potential to be used in nanomedicine and drug 

delivery systems. 

 ME55-PEG-PCL 

Uncoated magnetite nanoparticles have very low dispersibility that can lead to precipitation and 

a high rate of agglomeration under physiological conditions which could limit the efficiency of 

these nanoparticles (Lei et al., 2013). Surface modification of nanoparticles and appropriate 

coatings can improve magnetite stability, prevent the aggregation, reduce toxicity, and reduce 

nonspecific protein adsorption as well as prolonging the nanoparticles in vivo circulation time 

(Häfeli et al., 2009). Among all, polymer coatings containing PEG polymer has been extensively 

used in drug delivery applications, since it is biocompatible and improves hydrophilicity of the 

nanoparticles and minimizes their aggregation (Häfeli et al., 2009, Hong et al., 2012, Li et al., 

2012b).  

The PEG-PCL magnetic micelles were prepared by polymer coating of oleic acid functionalized 

magnetite nanoparticles as explained in Section 2.22.1. The polymer coating clearly enhanced the 

stability of the nanoparticles as shown in Section 3.8. The Biocompatibility and safety of the 

copolymer was evaluated in vitro using PrestoBlue assay. 

Cells were treated with PEG-PCL coated magnetite nanoparticles (ME55-PEG-PCL) with the 

different concentrations of 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL and 1 mg/mL and the viability 

was measures after 3, 24, 48 and 72 hours. The results are presented in Figure 6-8 and Figure 6-9 
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as cell viability percentage compare to control untreated cells. As observed from the results the 

polymer coating of the nanoparticles significantly improved biocompatibility of the magnetite. 

  

Figure 6-8. Biocompatibility of the PEG-PCL coated magnetite (ME55-PEG-PCL) against U87 cells. Bars marked with 
* showed statistically significant difference compared to control sample (P<0.05). 

It was observed that the biocompatibility of magnetite nanoparticles against U87 cell line were 

considerably improved with polymer coating of nanoparticles. As shown in Figure 6-8 after 72 

hours of incubation with maximum dose of PEG-PCL coated magnetite (1 mg/mL), the survival 

rate was around 80% viable cells which was clearly improved from 49% viable cells observed for 

incubation of the cells with uncoated magnetite nanoparticles with the same concentration. The 

magnetic micelles did not show significant toxicity for up to 0.5 mg/mL after 48 hours of 

incubation. The toxicity was observed to be time and dose dependant and longer incubation time 

of 72 hours resulted in increased toxicity.  
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Figure 6-9. Biocompatibility of the PEG-PCL coated magnetite (ME55-PEG-PCL) against MCF7 cells. Bars marked 
with * showed statistically significant difference compared to control sample (P<0.05). 

Similar to U87 cells the MCF7 cells experienced time and dose dependant toxicity. Viability of 

MCF7 cells incubated with PEG-PCL coated magnetite nanoparticles for 72 hours were 

significantly higher than cells incubated with uncoated magnetite nanoparticles. MCF7 cells 

incubated with maximum dose (1 mg/mL) of PEG-PCL coated magnetite showed 76% viable 

cells compare to 45% viable cells for uncoated magnetite. The magnetic micelles did not show 

significant cytotoxicity for concentrations up to 0.25 mg/mL even after 72 hours of incubation. 

The cytotoxicity study confirmed the biocompatibility of the PEG-PCL coated magnetite 

nanoparticles for their application as drug delivery system.  

 ME60 

Mesoporous silica coating of magnetite could improve the biocompatibility of the magnetite 

nanoparticles and the large surface area of mesoporous silica make it attractive for drug delivery 

applications (Nakamura et al., 2015). To evaluate the possibility of the mesoporous silica 

nanoparticles to be used in drug delivery systems the cytotoxicity of the nanoparticles were tested 

against MCF7 and U87 cell lines. 

The mesoporous nanoparticles were synthesised as explained in Section 2.4 and characterized 

with different methods such as BET and TEM. The drug loading capacity of the nanoparticles 

were evaluated and presented in Section 5.4. Mesoporous nanoparticles exhibited the high drug 

loading capacities which is advantageous for drug delivery applications. The biocompatibility of 

the synthesised nanoparticles (ME60) were tested using PrestoBlue assay.  

Cells were treated with mesoporous silica coated magnetite nanoparticles (ME60) with different 

concentration of 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL and 1 mg/mL and the viability was 
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measures after 3, 24, 48 and 72 hours. The results are presented in Figure 6-10 and Figure 6-11 

for U87 and MCF7 cell lines. The results are shown as cell viability percentage compare to 

untreated control cells.  

  

Figure 6-10. Biocompatibility of the mesoporous coated magnetite (ME60) against U87 cells. Bars marked with * 
showed statistically significant difference compared to control sample (P<0.05). 

  

Figure 6-11. Biocompatibility of the mesoporous coated magnetite (ME60) against MCF7 cells. Bars marked with * 
showed statistically significant difference compared to control sample (P<0.05). 

As presented in the figures mesoporous coated magnetic nanoparticles are biocompatible and 

exhibited very limited toxicity against both cell lines. However the toxicity was observed to be 

cell dependant which is in agreement with literature (Yu et al., 2011). The mesoporous 

nanoparticles show higher toxicity toward U87 cell lines than MCF7 cells. 
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The cellular viability of both cell lines after 72 hours of incubation with maximum dose 

(1 mg/mL) of mesoporous silica coated magnetite were significantly improved compared to 

uncoated nanoparticles. The MCF7 cells showed no significant toxicity to 1 mg/mL of 

mesoporous silica coated nanoparticles even after 48 hours of incubation however, it showed 

slight toxicity when incubation for 72 hours. Mesoporous coated nanoparticles with 

concentrations up to 0.5 mg/mL did not show significant change in cell viability even after 72 

hours of incubation. In comparison for U87 cell lines the safe dose that did not induce cytotoxicity 

after 72 hours of incubation was 0.25 mg/mL of mesoporous coated magnetite nanoparticles 

(ME60). Higher dose of 0.5 and 0.75 mg/mL of mesoporous silica coated nanoparticles (ME60) 

induced toxicity after 72 hours incubation and 1 mg/mL of nanoparticles induced toxicity in 48 

hours. Similar results were reported by Wang et al. for MCF7 cell lines incubated with 

mesoporous silica nanoparticle for 48 hours, they have observed 71.4% cell viability at 

1.6 mg/mL and negligible cytotoxicity at concentration of 0.8 mg/mL (Wang et al., 2014). 

These data establish the excellent biocompatibility of the mesoporous silica coated magnetic 

nanoparticles. The data clearly demonstrate the enhanced biocompatibility of the magnetite 

nanoparticles by silica coating of the nanoparticles. 

 ME93-PEG-PCL and ME94-PEG-PCL 

Mesoporous silica coated nanoparticles have received considerable attention as drug delivery 

systems however due to the open pore structure there is limited control over drug release from the 

mesochannels and premature drug release occurs during the delivery (Liu et al., 2014a). 

The drug leaking issue was observed during the drug loading and release experiments for 

magnetic mesoporous silica nanoparticles (ME16, ME32, ME33 and ME60). To overcome this 

problem the mesoporous silica nanoparticles were octyl-modified and coated with PEG-PCL 

diblock copolymer (which was shown to be biocompatible (see Section 6.5.3)) as explained in 

Section 2.25. Surface coating of the mesoporous silica nanoparticles with polymer proved to 

improve the control over drug release and add temperature and pH triggered drug released 

properties to the nanoparticles. Furthermore coating the nanoparticles with PEG contained shell 

could enhance their cellular uptake (Sardan et al., 2014). 

Drug loading properties of the polymer capped mesoporous silica nanoparticles were presented 

in Section 5.7. Cytotoxicity of polymer coated nanoparticles (ME93-PEG-PCL and ME94-PEG-

PCL) were tested to evaluate the biocompatibility of the nanoparticles and to determine the 

possibility to improve the biocompatibility of the nanoparticles by polymer coating of 

mesoporous silica nanoparticles. 

Cells were treated with polymer capped mesoporous silica coated magnetite nanoparticles 

(ME93-PEG-PCL and ME94-PEG-PCL) with different concentrations for up to 72 hours and the 
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viability was measures after 3, 24, 48 and 72 hours. The results are presented in Figure 6-12 and 

Figure 6-13 for U87 cell line and Figure 6-14 and Figure 6-15 for MCF7 cell line. The results are 

shown as cell viability percentage compare to untreated control cells.  

 

Figure 6-12. Biocompatibility of the polymer capped mesoporous coated magnetite nanoparticles (ME93-PEG-PCL) 
against U87 cells. 

  

Figure 6-13. Biocompatibility of the polymer capped mesoporous coated magnetite nanoparticles (ME94-PEG-PCL) 
against U87 cells. 
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Figure 6-14. Biocompatibility of the polymer capped mesoporous coated magnetite nanoparticles (ME93-PEG-PCL) 
against MCF7 cells. 

  

Figure 6-15. Biocompatibility of the polymer capped mesoporous coated magnetite nanoparticles (ME94-PEG-PCL) 
against MCF7 cells. 

As seen from the figures, coating mesoporous silica nanoparticles with polymer have improved 

the biocompatibility of the nanoparticles. As expected, the viability assays indicated that no 

evidence of cytotoxicity was observed after cells have been treated with different concentrations 

of polymer capped particle (0.25 mg/mL to 1 mg/mL) for 72 hours.  

Similarly He et al. have reported around 90% cell viability for L929 cells after 48 hours of 

incubation with 1 mg/mL of PEG-PCL polymer coated mesoporous silica particles (polymer 
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grafting via disulphide bonds) (He et al., 2013). Liu et al. have reported very limited cytotoxicity 

of less than 10% for PEGylated magnetic mesoporous nanoparticles at concentration of 1 mg/mL 

against melanoma MEL-5 and L929 cell lines after 96 hours of incubation (Liu et al., 2014a). 

The results suggested that the polymer coated mesoporous nanoparticles are biocompatible and 

suitable to be used as drug delivery systems. 

 ME60-L 

Liposomes have been widely investigated as drug delivery systems due to their high 

biocompatibility with the biomimetic membrane. Most recently, a kind of drug carrier based on 

the combination of mesoporous silica structures and liposome has been reported (Wu et al., 

2013b). By coating liposome on the surfaces of mesoporous nanoparticles, the advantages of both 

mesoporous nanoparticles and liposome can be achieved.  

Liposome capped mesoporous silica coated magnetite nanoparticles (ME60-L) were synthesised 

as explained in Section 2.20. The drug loading and release efficiency of ME60-L were evaluated 

and presented in Chapter 5. The results showed promising potential for protocells to be used in 

drug delivery applications. Cells were treated with liposome coated mesoporous silica 

nanoparticles (ME60-L) with different concentration of 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL 

and 1 mg/mL, the cell viability were measured after 3, 24, 48 and 72 hours. The biocompatibility 

of the nanoparticles were tested against MCF7 and U87 cell lines and the results are shown in 

Figure 6-16 and Figure 6-17. 

   
Figure 6-16. Biocompatibility of the SPC liposome capped mesoporous coated magnetite nanoparticles (ME60-L) 

against U87 cells. Bars marked with * showed statistically significant difference compared to control 
sample (P<0.05) 
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Figure 6-17. Biocompatibility of the SPC liposome capped mesoporous coated magnetite nanoparticles (ME60-L) 
against MCF7 cells. 

As seen in the figures protocells were biocompatible and exhibited very limited toxicity against 

both cell lines. However low cytotoxicity was observed for U87 cell lines when incubated for 72 

hours with maximum concentration of 1 mg/mL of protocells. The biocompatibility of the 

mesoporous nanoparticles were clearly improved by liposome coating of the nanoparticles. 

 Summary 

The biocompatibility of the synthesised nanoparticles were evaluated against two cell lines of 

MCF7 and U87. The data demonstrated that only bare magnetite nanoparticles induced toxicity 

in low dosage of 0.25 mg/mL. It was shown that the biocompatibility of the magnetite 

nanoparticles were significantly improved by surface coatings. The comparison data is 

demonstrated in Figure 6-18 and Figure 6-19. 
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Figure 6-18. Biocompatibility of bare magnetite (ME53), silica coated magnetite (ME60) and polymer coated 
magnetite (ME55-PEG-PCL) against U87 cells after 24 hours of incubation. 

  

Figure 6-19. Biocompatibility of bare magnetite (ME53), silica coated magnetite (ME60) and polymer coated 
magnetite (ME55-PEG-PCL) against U87 cells after 24 hours of incubation. 

These data demonstrated that coatings of nanoparticles improved the biocompatibility of the bare 

magnetite. 

Mesoporous coated silica nanoparticles showed good biocompatibility against both cell lines, 

however they exhibited cytotoxicity at high dose or after long incubation period. To further 

improve the stability and biocompatibility of the silica nanoparticles, and also improve the control 

over the drug release, the silica coated nanoparticles were surface modified with the 
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biocompatible polymer or liposomes. The cytotoxicity of the surface modified mesoporous silica 

nanoparticles compare to bare silica nanoparticles are shown in Figure 6-20 and Figure 6-21.  

  

Figure 6-20. Biocompatibility of silica coated magnetite (ME60), liposome capped silica nanoparticles (ME60-L) and 
polymer capped silica nanoparticles (ME93-PEG-PCL) against U87 cells after 72 hours of incubation. 

  

Figure 6-21. Biocompatibility of silica coated magnetite (ME60), liposome capped silica nanoparticles (ME60-L) and 
polymer capped silica nanoparticles (ME93-PEG-PCL) against MCF7 cells after 72 hours of incubation 

The results established that the capped silica nanoparticles exhibit greater biocompatibility than 

uncoated silica nanoparticles against both cell lines.  
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 In vitro Cytotoxicity Study of Drug Loaded Nanoparticles 

After study the biocompatibility of the nanoparticles the efficiency of the nanoparticles as drug 

delivery systems were evaluated. 

Doxorubicin (DOX) an anthracycline antibiotic was used as the model drug in cytotoxicity 

studies. Cells were incubated with different concentrations of free DOX (2.5, 5, 7.5 and 10 µg/mL 

equivalent to 4.31, 8.62, 12.93, 17.24µM) for up to 72 hours to identify the optimal dose and 

treatment time for maximum DOX induced cytotoxicity the. The cytotoxicity was measured using 

PrestoBlue assay. The dose response cytotoxicity charts are shown in Figure 6-22 and Figure 

6-23. The cytotoxicity is expressed as percentage of surviving cells compare to untreated control 

cells. 

  

Figure 6-22. DOX induced cytotoxicity against U87 cells for various incubation time 
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Figure 6-23. DOX induced cytotoxicity against MCF7 cells for various incubation time. 

The DOX mediated cytotoxicity exhibited dose-time dependant effects on both cell lines with 

high initial survival rate after 3 hours of incubation with maximum DOX dose of 10 µg/mL. The 

cell viability  declined significantly with longer incubation times. However, concentrations higher 

than 5 µM resulted in comparable cytotoxicity for similar incubation times. 

DOX IC50 indicates the concentration of DOX required to inhibit the growth of 50% of cells in 

the given period (Osman et al., 2012). The IC50 was calculated from the dose dependent 

cytotoxicity curves in the given period based on the equation 𝑦 = 𝑓(𝑥) where y=50%. 𝑓(𝑥) was 

calculated from the fitted polynomial trendlines for each curve. DOX cytotoxicity against MCF7 

cells after 24 hours of incubation with different concentration of DOX is shown in Figure 6-24 as 

an example. In this example, 

y= 𝑓(𝑥) = -0.0357x3 + 1.2569x2 - 14.205x + 99.858    Equation 6-2 

 Where x is the DOX concentration. 
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Figure 6-24. DOX induced cytotoxicity against MCF7 cells after 24 hours of incubation with 3rd degree polynomial 

trendline. 

The IC50 of free DOX at different incubation times for both cell lines are shown in Table 6-1. 

Table 6-1. IC50 for free DOX at different incubation times 

Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

3 >17.24 >17.24 

24 6.88 11.39 

48 2.56 2.946 

72 1.873 2.024 

 

As summarised in the Table 6-1 the IC50 was decreased with increase in incubation time. 

However there was not much different between 48 hours and 72 hours of incubation. IC50 could 

not be calculated for less than 24 hours since there was limited cytotoxicity. The results 

demonstrated that DOX cytotoxicity at lower dose and limited incubation time was cell dependant 

similar to the reported literature (Lüpertz et al., 2010). Al-Ghamdi has studied the effect of DOX 

on prostate carcinoma cell line (DU-145), and reported IC50 of 2.2, 0.4, 0.28, and 0.22 µM for 

DOX incubation periods of 48, 72, 96, and 120 hours respectively. They have observed no effect 

for incubation times less than 24 hours (Al-Ghamdi, 2008). Kundu et al. have observed around 

65% U87 viable cells after 24 hours incubation with 25 µM of DOX (Kundu et al., 2015). Osman 

et al. have reported IC50 of 0.7 µM for 48 hours incubation of DOX with MCF7 cells (Osman et 

al., 2012) and Cuong et al. have reported an IC50 of 0.58 µM, and 11.08 µM for free DOX 

incubated against wild type MCF7 cells and drug resistant MCF7 cells, over 48 hours (Cuong et 

al., 2012).  
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The obtained results were in good range with the reported cytotoxicity in the literature, however 

the small differences could be due to cell culture conditions including differences in the cell 

medium and the passage number and the toxicity assay which were used. 

 DOX Loaded ME55-PEG-PCL 

DOX was encapsulated in PEG-PCL magnetic micelles following the method explained in 

Section 2.24. The drug content of the micelles were calculated as explained in Section 5.6 (Table 

5-1) to be 69.1 µg/mg. Therapeutic potential of the DOX loaded magnetic micelles were evaluated 

against cancer cells using PrestoBlue cytotoxicity assay. Cells were incubated with free DOX or 

DOX loaded nanoparticle solution with an equivalent amount of DOX (4.31, 8.62, 12.93 and 

17.34 µM) for up to 72 hours. The amount of nanoparticles added to the cells were calculated 

based on the drug content of the nanoparticles. For instance 0.14 mg of ME55-PEG-PCL were 

added to 1 mL of medium to obtain 10 µg/mL of DOX. 

The cytotoxicity of the DOX loaded PEG-PCL magnetic micelles against U87 and MCF7 cells 

are shown in Figure 6-25 and Figure 6-26. 

  

Figure 6-25. Cytotoxicity of DOX-loaded micelles (ME55-PEG-PCL) against U87 cells. The cells were incubated with 
DOX-loaded micelle with DOX concentration up to 17.24 μM, for 3, 24, 48 and 72h at 37 °C 

The IC50 of DOX loaded PEG-PCL magnetite micelles against U87 cells were calculated as 

shown in Table 6-2. 
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Figure 6-26. Cytotoxicity of DOX-loaded micelles (ME55-PEG-PCL) against MCF7 cells. The cells were incubated with 
DOX-loaded micelle with DOX concentration up to 17.24 μM, for 3, 24, 48 and 72h at 37 °C 

The IC50 values for 48 hours and 72 hours incubation with DOX loaded magnetic micelles were 

2.55 and 1.86 for MCF7 cells. Since the highest does of 17.24 µM did not kill 50% of the cells 

after 24 hours of incubation the IC50 for MCF7 in 24 hours could not be calculated. The IC50 of 

DOX loaded magnetic micelles in different periods are listed in Table 6-2 

Table 6-2. The IC50 values for DOX loaded magnetic micelles against MCF7and U87 

Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

3  >17.24 >17.24 

24 >17.24 16.4 

48  2.55 2.9 

72  1.86 1.8 

 

Similar to free DOX the cell viability was time dependant and decreased with increase in 

incubation time. The DOX loaded micelles did not induce high cytotoxicity against either cell 

lines for the first 3 hours of incubation even at high dose of DOX, however significant increase 

in cytotoxicity was observed after 48 hours of incubation (cell viability decreased to 30% for 

MCF7 cells and 29% for U87 cells). 

It is suggested that the delayed cytotoxicity of the DOX during the initial hours of treatment could 

be due to DOX lag phase (Cuong et al., 2010b, Upadhyay et al., 2010). Similarly, Cuong et al. 

have reported limited cytotoxicity for the initial 2 hours incubation of MCF7 cells with DOX 

loaded polymeric micelles followed by significant decrease in cell viability after 48 hours (Cuong 
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et al., 2010b). Shuai et al. have reported limited cytotoxicity in MCF7 cells incubated with either 

free or DOX loaded PEG-PCL micelles for DOX concentration of up to 10 µM at the first 24 

hours. They have observed for both free DOX and encapsulated DOX, at incubation times longer 

than 96 hours and DOX concentration higher than 1 µM almost all the cells were killed, however 

for low DOX concentration of 0.001 to 0.1 µM, free DOX showed higher cytotoxicity (Shuai et 

al., 2004). 

The calculated IC50 for DOX loaded magnetic micelles was higher than free DOX for the first 

24 hours indicating higher survival rate, but after 48 hours the values were slightly lower 

suggesting efficient drug release and cytotoxicity against both cell lines. Similar IC50 trends have 

been reported by Cuong et al. for DOX loaded micelles against MCF7 cells after 48 hours of 

incubation (Cuong et al., 2012). Cuong et al. have reported an IC50 of 0.051 µM for free DOX 

and 0.375 µM for DOX loaded triblock PEG-PCL-PEG polymer micelles against MCF7 cells for 

96 hours incubation, however they have observed similar cytotoxicity for free DOX and DOX 

loaded micelles in DOX concentrations more than 1 µg/mL (Cuong et al., 2010a). Gao et al. have 

reported an IC50 of 0.102 µM for DOX loaded star shaped PCL-PEG micelles against CT-26 

cells (mouse colon carcinoma) which was higher than the value they reported for free DOX 

(0.028 µM) after 48 hours incubation (Gao et al., 2013). 

The higher toxicity of drug loaded nanoparticles rather than free DOX over the 48 hours could be 

explained by the continues sustained release of DOX from the magnetic micelles. As is it 

suggested in the literature, continues exposure to lower dosage of DOX would cause higher 

toxicity than incubating the cells with a single high dose (Upadhyay et al., 2010). In addition, 

Maysinger group demonstrated that micelles changed the pattern of cellular distribution of DOX 

and increased the amount of the drug delivered to the cells. They have concluded that the 

encapsulated DOX were taken up by cells mainly via an endocytic pathway and localized in acidic 

endocytic compartments (Upadhyay et al., 2010).  

Cell morphology were visualized after treatment with DOX loaded magnetic micelles by light 

microscopy where dead cells are clearly observed. The images are presented in Figure 6-27 and 

Figure 6-28. 
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Figure 6-27 The optical microscopy of U87 cell line (left) as control cells and DOX loaded magnetic micelle (ME55-
PEG-PCL) treated cells (right). 

   

Figure 6-28 MCF7 the optical microscopy of MCF7 cell line (left) as control cells and DOX loaded magnetic micelle 
(ME55-PEG-PCL) treated cells (right). 

The results indicate that the DOX encapsulation in micelles would not significantly improve the 

cytotoxicity against the MCF7 cells, however many groups have reported enhanced cytotoxicity 

against drug resistant MCF7cells (Cuong et al., 2010a). Xu et al. have reported similar IC50 

values for free DOX and polymersome loaded DOX against MCF7 cells, however they have 

reported DOX loaded polymersomes improved DOX cytotoxicity against drug resistant MCF7 

cells by 12 times (Xu et al., 2014). Furthermore it is suggested in the literature that drug 

encapsulation could improve the side effects against healthy cells (Yu et al., 2014). 

The results confirmed that the cell viability for both cell lines declined with the increase in DOX 

loaded magnetic micelles concentration which considering the biocompatibility studies of the 

synthesised PEG-PCL polymer, it could be directly related to DOX concentration encapsulated 

in the micelles. However the cytotoxicity of the DOX-loaded micelles in the initial 24 hours is 

much lower than the free DOX.  

 DOX loaded ME93-PEG-PCL and ME94-PEG-PCL 

DOX was encapsulated in PEG-PCL capped silica coated magnetic nanoparticles as explained 

before in Section 2.25. The drug content of the nanoparticles were calculated as explained in 
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Section 5.7 (Table 5-1) to be 79.2 µg/mg and 62.0 µg/mg for ME93-PEG-PCL and ME94-PEG-

PCL. Therapeutic potential of the DOX loaded nanoparticles were evaluated against cancer cells 

using PrestoBlue cytotoxicity assay. Cells were incubated with free DOX or DOX loaded 

nanoparticle solution with an equivalent amount of DOX (4.31, 8.62, 12.93 and 17.34 µM) for up 

to 72 hours. The amount of nanoparticles added to the cells were calculated based on the drug 

content of the nanoparticles.  

The cytotoxicity of the DOX loaded PEG-PCL capped mesoporous silica coated nanoparticles 

(ME93-PEG-PCL) against U87 and MCF7 are shown in Figure 6-30 and Figure 6-29. 

  

Figure 6-29. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME93-PEG-PCL) against U87 cells. The cells 
were incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 
and 72h at 37°C 
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Figure 6-30. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME93-PEG-PCL) against MCF7 cells. The 
cells were incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 
48 and 72h at 37°C 

The cytotoxicity of the DOX loaded PEG-PCL capped mesoporous silica coated nanoparticles 

(ME94-PEG-PCL) against U87 and MCF7 are shown in. Figure 6-32 and Figure 6-31. 

  

Figure 6-31. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME94-PEG-PCL) against U87 cells. The cells 
were incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 
and 72h at 37 °C 
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Figure 6-32. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME94-PEG-PCL) against MCF7 cells. The 

cells were incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 
48 and 72h at 37°C 

The results indicated that the cell viability was time dependant and decreased with an increase in 

incubation time. The DOX loaded polymer capped nanoparticles (both materials) induced high 

cytotoxicity against both cell lines even after 3 hours of incubation which is higher toxicity than 

free DOX. Interestingly the highest DOX concentration of encapsulated DOX was able to reduce 

the cell viability by more than 50% in only 3 hours of incubation. Higher toxicity of drug loaded 

nanoparticles compare to free DOX was also observed by Tang et al. for DOX loaded 

chitosan/poly (methacrylic acid) coated mesoporous silica nanoparticles incubated with HeLa 

cells (Tang et al., 2011). 

The IC50 of DOX loaded PEG-PCL capped mesoporous silica coated magnetite nanoparticles 

(ME93-PEG-PCL) against both cell lines are calculated from experimental data and listed in 

Table 6-3. Similarly the calculated IC50 for DOX loaded ME94-PEG-PCL is presented in Table 

6-4. 

Table 6-3. The IC50 values for DOX loaded ME93-PEG-PCL against MCF7and U87 

 Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

ME93-PEG-PCL 

3  14.303 13.325 

24  5.555 6.056 

48  3.085 2.738 

72  2.094 2.003 
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Table 6-4. The IC50 values for DOX loaded ME94-PEG-PCL against MCF7and U87 

 Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

ME94-PEG-PCL 

3  13.71 15.04 

24  6.132 6.254 

48  2.97 2.716 

72  2.112 1.561 

 

Significant increase in cytotoxicity was observed by encapsulating the DOX in polymer capped 

mesoporous silica nanoparticles. The calculated IC50 for DOX loaded ME93-PEG-PCL and 

ME94-PEG-PCL were lower than free DOX for the first 24 hours indicating lower survival rate, 

however after 48 hours the values were comparable. 

The increased toxicity in the first 24 hours compare to free drug indicate an increased cellular 

uptake for the nanoparticle and efficient drug release. He et al. have reported an IC50 of 2.31 µM 

for DOX loaded mesoporous nanoparticles with polymer grafted capes incubated with Hela cells 

for 24 hours, however it was higher than the value they have reported for free DOX (He et al., 

2013). 

 DOX loaded ME60 

DOX was loaded into mesochannels of mesoporous silica coated magnetic nanoparticles as 

explained before in Section 2.18.2. The drug content of the nanoparticles were calculated as 

explained in Section 5.4.1 (Table 5-1) to be 103 µg/mg. Therapeutic potential of the DOX loaded 

nanoparticles were evaluated against cancer cells using PrestoBlue cytotoxicity assay. Cells were 

incubated with free DOX or DOX loaded nanoparticle solution with an equivalent amount of 

DOX (4.31, 8.62, 12.93 and 17.34 µM) for up to 72 hours. The amount of nanoparticles added to 

the cells were calculated based on the drug content of the nanoparticles. 0.097 mg of ME60 were 

added to 1 mL of medium to obtain 10 µg/mL of DOX. 

The cytotoxicity of the DOX loaded mesoporous silica coated nanoparticles (ME60) against U87 

and MCF7 are shown in Figure 6-33 and Figure 6-34. 
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Figure 6-33. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME60) against U87 cells. The cells were 
incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 and 
72h at 37°C 

 

Figure 6-34. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME60) against MCF7 cells. The cells were 
incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 and 
72h at 37°C 

As expected the cell viability was time and dose dependant and was decreased with increase in 

incubation time or DOX concentration. The DOX loaded mesoporous silica coated nanoparticles 

(ME60) did not induce high cytotoxicity in the first 3 hours of incubation even with the highest 

dose of 17.24 µM. Significant decrease in cell viability was observed after 48 hours of incubation 

with DOX loaded ME60, however the cytotoxicity was lower than free DOX. Similar results have 

been reported in the literature for wild type cells (Xie et al., 2014). Gai et al. have reported higher 
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cytotoxicity for free DOX compare to mesoporous silica coated magnetite at DOX concentrations 

lower than 10.7 µM (Gai et al., 2011).  

The IC50 of DOX loaded mesoporous silica coated magnetite nanoparticles (ME60) against both 

cell lines are calculated from experimental data and presented in Table 6-5. 

Table 6-5. The IC50 values for DOX loaded ME60 against MCF7and U87 

Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

3  >17.24 >17.24 

24  >17.24 >17.24 

48  4.582 4.944 

72  2.533 2.658 

 

The calculated IC50 for DOX loaded mesoporous silica-magnetite core shell nanoparticles 

(ME60) were higher than free DOX during the 48 hours of experiment, indicating higher survival 

rate. However it was close to IC50 of the free DOX after 72 hours of incubation. These results 

indicate slow drug release from the mesochannels of the nanoparticles which is in agreement with 

drug release profiles described earlier in Section 5.4.2. Additionally the delayed drug response 

could be due to different drug transport path into the cells as free DOX molecules are transported 

into the cells via passive diffusion mechanism while DOX loaded nanoparticles would enter the 

cells by endocytosis mechanism and the DOX molecules would release gradually inside the cell 

(Gai et al., 2011, Kim et al., 2008). 

The results indicate that the DOX encapsulation in uncapped mesoporous nanoparticles would 

not improve the cytotoxicity against the MCF7 cells, however it is reported in the literature that 

drug loaded mesoporous nanoparticles have higher cytotoxicity than free DOX against drug 

resistant cells (Huang et al., 2011, Wang et al., 2014, Shen et al., 2011).  

 DOX loaded ME60-L 

DOX was loaded into mesochannels of mesoporous silica coated magnetic nanoparticles and the 

pores were capped with liposomes (ME60-L) as explained before in Section 2.20. The drug 

content of the nanoparticles were calculated as explained in Section 5.5 (Table 5-1) to be 

37.5 µg/mg. Therapeutic potential of the DOX loaded nanoparticles were evaluated against cancer 

cells using PrestoBlue cytotoxicity assay. Cells were incubated with free DOX or DOX loaded 

nanoparticle solution with an equivalent amount of DOX (4.31, 8.62, 12.93 and 17.34 µM) for up 

to 72 hours. The amount of nanoparticles added to the cells were calculated based on the drug 

content of the nanoparticles. 0.27 mg of ME60-L were added to 1ml of medium to obtain 

10 µg/mL of DOX. 
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The cytotoxicity of the DOX loaded mesoporous silica coated nanoparticles (ME60-L) against 

U87 and MCF7 are shown in Figure 6-35 and Figure 6-36. 

  

Figure 6-35. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME60-L) against U87 cells. The cells were 
incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 and 
72h at 37 °C 

  

Figure 6-36. Cytotoxicity of DOX-loaded polymer capped nanoparticles (ME60-L) against MCF7 cells. The cells were 
incubated with DOX-loaded nanoparticles with DOX concentration up to 17.24 μM, for 3, 24, 48 and 
72h at 37°C 

The results indicated that the cell viability was time and dose dependant and was decreased with 

increase in incubation time or DOX concentration. The DOX loaded liposome capped 

mesoporous silica coated nanoparticles (ME60-L) did not induce high cytotoxicity in the first 3 

hours of incubation even with the highest dose of 17.24 µM. Cell viability was reduced to 53% 
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after incubation with highest DOX dose for 24 hours, for both cell lines. Significant decrease in 

cell viability was observed after 48 hours of incubation with DOX loaded ME60-L. The 

cytotoxicity was cell dependant and observed to be higher in U87 cells. 

The IC50 of DOX loaded mesoporous silica coated magnetite nanoparticles (ME60-L) against 

both cell lines are calculated from experimental data and presented in Table 6-6. 

Table 6-6. The IC50 values for DOX loaded ME60-L against MCF7and U87 

Time (hours) 
DOX IC50 (µM) 

MCF7 U87 

3  >17.24 >17.24 

24  >17.24 >17.24 

48  4.775 3.488 

72  2.443 2.694 

 

The calculated IC50 for DOX loaded ME60-L indicate that liposome coated mesoporous silica 

nanoparticles showed higher cytotoxicity compare to uncapped silica coated nanoparticles which 

could be due to reduced premature drug release (during the sample preparation) and improved 

endocytosis (Liu et al., 2009a), however the cytotoxicity was lower than the free DOX. 

 Summary 

Cytotoxicity of the DOX loaded synthesised nanoparticles were evaluated against two cell lines 

of MCF7 and U87. The data indicate that DOX loaded nanoparticles could induce cytotoxicity 

toward the cells, however the degree of cell viability was material dependant. Figure 6-37 and 

Figure 6-38 compare the cytotoxicity induced by the different DOX loaded materials toward 

MCF7 and U87 cells after 24 hours incubation. 
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Figure 6-37. Cytotoxicity of different DOX loaded materials toward U87 cells after 24 hours incubation. 

   

 

Figure 6-38. Cytotoxicity of different DOX loaded materials toward MCF7 cells after 24 hours incubation. 

As shown in the figures ME55-PEG-PCL, ME60 and ME60-L induced cytotoxicity lower than 

free DOX in the first 24 hours of incubation however after 48 hours they caused comparable 

cytotoxicity. However ME93-PEG-PCL and ME94-PEG-PCL generated higher cytotoxicity in 

24 hours compare to free DOX. The calculated IC50 for different DOX encapsulated materials 

are summarised in Table 6-7and Table 6-8.  
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Table 6-7. Calculated IC50 for different DOX encapsulated materials againstU87 cells 

Exposure 

Time (hours) 

Materials 

Free dox ME55-p ME60 ME94-p ME93-p ME60-l 

3 >17.24 >17.24 >17.24 15.04 13.325 >17.24 

24  7.17 16.4 >17.24 6.254 6.056 >17.24 

48  2.56 2.9 4.944 2.716 2.738 3.488 

72  1.87 1.8 2.658 1.561 2.003 2.694 

 

Table 6-8. Calculated IC50 for different DOX encapsulated materials against MCF7 

Exposure 

Time 

(hours) 

Materials 

Free dox 
ME55-

PEG-PCL 
ME60 

ME94-

PEG-PCL 

ME93-

PEG-

PCL 

ME60-L 

3 >17.24 >17.24 >17.24 13.71 14.303 >17.24 

24  7.17 >17.24 >17.24 6.132 5.555 >17.24 

48  2.56 2.55 4.582 2.97 3.085 4.775 

72  1.87 1.86 2.533 2.112 2.094 2.443 

 

These data demonstrated that the drug loaded nanoparticles especially polymer capped silica 

nanoparticles could effectively improve the chemotherapeutic effects of DOX. 

 Effect of Magnetic Hyperthermia on Cell Viability  

Tumour tissues are more vulnerable to heat than healthy cells (Ota et al., 2014). Hyperthermia 

treatment employs elevated temperature in the range of 41-46°C to kill tumour cells (Sadhukha 

et al., 2013). Hyperthermia treatments in combination with radiotherapy, surgery or 

chemotherapy have proven to enhance treatment response and survival rates (Johannsen et al., 

2005b, Maier-Hauff et al., 2011, Sadhukha et al., 2013, Asín et al., 2012). Magnetic hyperthermia 

is based on the localized heat generated by placing superparamagnetic iron oxide nanoparticles in 

an alternating magnetic field to kill tumour cells. 

The cell response to hyperthermia were evaluated by placing samples in the AC field for 45 

minutes. The temperature was maintained in hyperthermia treatment range by changing the 

magnetic field strength (experiment details are explained in Chapter 2). The cells viability after 

hyperthermia treatments were measured 2 hours and 24 hours post treatment using PrestoBlue 

viability assay. A group of control cells were placed in a water bath at 43°C for 45 mins and the 
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cell viability was assessed to compare the effect of traditional hyperthermia and magnetic 

hyperthermia treatments.  

Control cells without magnetic nanoparticles were exposed to magnetic field for 45 minutes and 

did not show any changes in cell viability which indicates that magnetic field exposure will not 

cause any damage to the cells.  

 ME53 

Cells were incubated with bare magnetite nanoparticles (ME53) with the concentration of 

0.1 mg/mL which was shown to be non-toxic against both cell lines. After 24 hours the media 

was changed to remove the nanoparticles not internalised by the cells. The cells were then exposed 

to the magnetic field for 45 minutes. The cell viability of the magnetic field exposed cells were 

compared to water bath hyperthermia treated cells and the control cells treated with the magnetic 

nanoparticles at 37°C. The results are presented as percentage of viable cells compare to untreated 

control cells in Figure 6-39 and Figure 6-40.  

 

 

Figure 6-39. Effects of hyperthermia on U87 cells viablity, The viability  of cells incubated with ME53 and exposed to 
the magnetic field were compared to water bath hyperthermia treated cells (45 minutes treatment).  
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Figure 6-40. Effects of hyperthermia on MCF7 cells viablity, The viability  of cells incubated with ME53 and exposed 
to the magnetic field were compared to water bath hyperthermia treated cells (45 minutes treatment). 

Three different control samples were used to compare the results; cells without nanoparticles as 

negative control (100% viable cells), cells with nanoparticles without magnetic field or water bath 

heating, and cells without nanoparticles exposed to magnetic field. 

The results implied that hyperthermia affects both cell lines in a similar pattern, however the cell 

viability percentage was cell dependant and was slightly different between cell lines, where MCF7 

cells showed to be more vulnerable against hyperthermia treatment. Cell type dependant 

hyperthermia efficacy have been reported in the literature (Jordan et al., 1999).  

It was observed that neither magnetic nanoparticles without the magnetic field nor magnetic field 

alone affected the viability of the cells. As seen from the graphs the results indicated that magnetic 

hyperthermia caused more cell death than water bath hyperthermia for both cell lines. Hot water 

hyperthermia resulted in slight decrease in cell viability compared to control sample where 

magnetic hyperthermia resulted in significant decrease in cell viability. Similar results have been 

reported by Rodriguez-Luccioni et al., they have reported 85% viable cells for both Caco-2 cells 

(human epithelial colorectal adenocarcinoma cells) and MCF7 cells after 2 hours water bath 

hyperthermia and 75% viable Caco-2 cells and 80% MCF7 viable cells after 2 hours of magnetic 

field hyperthermia (Rodriguez-Luccioni et al., 2011). Sadhukha et al. have reported 12% and 10% 

viable A549 (Human lung adenocarcinoma) and MDA-MB-231 (human mammary 

adenocarcinoma) cells after 30 minutes of magnetic hyperthermia at 46°C and 90% viable cells 

in 46°C water bath hyperthermia (Sadhukha et al., 2013).  

The higher cell death in magnetic hyperthermia treated cells could be explained by the excess 

ROS generation during magnetic hyperthermia. As it is reported in the literature that ROS 
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generation is increased during magnetic hyperthermia while conventional water bath 

hyperthermia did not increase the ROS generation (Sadhukha et al., 2013). 

A change in cell viability was observed when it was measured 2 hours after magnetic 

hyperthermia treatment and 24 hours after treatment. The cells which were treated with the hot 

water hyperthermia did not show further reduction in cell viability over 24 hours incubation 

period, however the cells treated with magnetic hyperthermia showed continues decline in cell 

viability which is suggested to be a result of cytoskeletal damage of the cells and initiation of 

apoptosis during the magnetic hyperthermia treatment. Balasubramanian et al. have reported 

morphology change of the cancer cells exposed to alternating magnetic field with disintegrated 

actin filaments and shrunken morphology. This morphology change is considered as a sign of 

initiation of cell apoptosis (Balasubramanian et al., 2014).  

 ME55-PEG-PCL 

Cells were incubated with magnetic micelles (ME55-PEG-PCL) with or without DOX. The 

concentration of 0.14 mg/mL of magnetic micelles were used which was shown to be non-toxic 

against both cell lines without the drug. The 0.14 mg/mL of drug loaded magnetic micelles 

contained 17.24 µM DOX which induced 48.20% and 60.57% cell death against U87 and MCF7 

cell lines after 24 hours. Cells were incubated with magnetic micelles for 24 hours after which 

the media was removed and the cells were exposed to the magnetic field for 45 minutes. The cell 

viability of the magnetic field exposed cells were compared to water bath hyperthermia cells to 

quantify the differences between conventional hyperthermia and magnetic hyperthermia. The 

control cells were treated with magnetic nanoparticles at 37°C. The results are presented in Figure 

6-41 and Figure 6-42. The cell viability of the hyperthermia treated samples were compared to 

cells incubated with free drug as additional control sample. 
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Figure 6-41. Effects of hyperthermia on U87 cells viability , The viability  of cells incubated with ME55-PEG-PCL (with 
and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 
treated cells (45 minutes treatment). 

 

Figure 6-42. Effects of hyperthermia on MCF7 cells viability , The viability  of cells incubated with ME55-PEG-PCL 
(with and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 
treated cells (45 minutes treatment). 

Similar to uncoated magnetite nanoparticles, the results indicated that neither magnetic 

nanoparticles without the magnetic field nor magnetic field alone affected the viability of the 

cells.  

The viability results of cells treated with magnetic hyperthermia compared with water bath 

hyperthermia treated cells demonstrated that both methods resulted in similar (around 80%) cell 
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viability 2 hours post hyperthermia treatments. Viability assay performed after 24 hours indicated 

that magnetic hyperthermia induced continues decay in cell viability after the treatment, with cell 

viability reduced from 79.5% to 49.4% for MCF7 cells and 82.9% to 60.9% for U87 cells. 

Continuous cell death after the treatment could be the result of cytoskeletal changes and apoptosis 

initiated during the magnetic hyperthermia treatments (Sadhukha et al., 2013, Balasubramanian 

et al., 2014). 

Cytotoxic effects of free DOX in water bath hyperthermia were studied to investigate the effect 

of heating on DOX efficiency. The results indicated 6.5% and 5% decrease in cell viability after 

exposer to DOX in heated condition after 2 hours and 24 hours for MCf7 cells and 4% and 7% 

decrease for U87 cells. An increase in DOX efficiency in elevated temperature has been 

previously reported by Dorr et al. for HEC-1A cells (uterus human adenocarcinoma cells) (Dorr 

et al., 1985). 

Cells viability were studied in the presence of DOX loaded magnetic micelles under hyperthermia 

condition. Both in water bath and magnetic field induce hyperthermia the results showed an 

increase in cell death compared to hyperthermia or free DOX, separately. The MCF7 cell viability 

after 24 hours post magnetic hyperthermia treatment with DOX loaded magnetic micelles was 

decreased to 11.89% which is much lower than free DOX in the same period. Similarly for U87 

cell the viability after 24 hours post magnetic hyperthermia treatment was decreased to 12.74% 

which is lower than free DOX and water bath hyperthermia treated cells.  

As discussed before in Section 5.6.3 the drug release from DOX loaded magnetic micelles were 

increased with an increase in temperature, and the drug release was faster under magnetically 

induced hyperthermia compare to the incubator heated samples. Higher DOX release could lead 

to higher cytotoxicity compare to 37°C condition. Furthermore the effect of hyperthermia itself 

results in an increased cell death. 

These results indicate that DOX loaded magnetic micelles can efficiently provide synergistic 

effect of hyperthermia and chemotherapy and have great potential to be used as drug delivery 

systems. 

 ME93-PEG-PCL and ME94-PEG-PCL 

Cells were incubated with polymer capped mesoporous silica coated magnetite nanoparticles 

(ME93-PEG-PCL and ME94-PEG-PCL) with or without DOX. Nanoparticles concentration were 

chosen based on the drug loading content of nanocomposites in the way to maintain a drug 

concentration of 17.24 µM. Concentration of magnetic nanoparticles were 0.126 mg/mL and 

0.161 mg/mL for ME93-PEG-PCL and ME94-PEG-PCL which was shown to be non-toxic 

against both cell lines without the drug. 
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Cells were incubated with magnetic nanoparticles for 24 hours before the hyperthermia treatment. 

After which the media was removed and cells were exposed to the magnetic field for 45 minutes. 

The cell viability were compared to water bath hyperthermia treated cells, free DOX treated cells 

and control cells which was exposed to magnetic field without presence of the nanoparticles. 

Another group of control cells were incubated with drug loaded nanoparticles at 37°C. The results 

are presented in Figure 6-44 and Figure 6-43for cells incubated with ME93-PEG-PCL and Figure 

6-46 and Figure 6-45 for cells treated with ME94-PEG-PCL. 

  

 

 

Figure 6-43. Effects of hyperthermia on U87 cells viability , The viability  of cells incubated with ME93-PEG-PCL (with 
and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 

treated cells (45 minutes treatment). 
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Figure 6-44. Effects of hyperthermia on MCF7 cells viability , The viability  of cells incubated with ME93-PEG-PCL 
(with and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 
treated cells (45 minutes treatment). 

  

 

 

Figure 6-45. Effects of hyperthermia on U87 cells viability , The viability  of cells incubated with ME94-PEG-PCL (with 
and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 
treated cells (45 minutes treatment). 
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Figure 6-46. Effects of hyperthermia on MCF7 cells viability , The viability  of cells incubated with ME94-PEG-PCL 
(with and without drug) and exposed to the magnetic field were compared to water bath hyperthermia 

treated cells (45 minutes treatment). 

Similar to uncoated magnetite nanoparticles, the results indicated that neither magnetic 

nanoparticles without the magnetic field nor magnetic field alone affected the viability of the 

cells.  

The viability results of cells treated with magnetic hyperthermia compared to cells treated with 

water bath hyperthermia demonstrated that both methods resulted in similar cell viability of 

around 85% viable cells 2 hours post hyperthermia treatments (both nanocomposites). The 

viability of the cells treated with water bath hyperthermia were slightly lower than AC filed 

hyperthermia which could be the results of the reduced hyperthermia treatment time due to the 

nanoparticles lag time, as shown in Section 5.7.3, the polymer capped silica coated nanoparticles 

need more time to reach the hyperthermia treatment temperature. 

Viability assay performed 24 hours post hyperthermia treatment, indicated that magnetic 

hyperthermia resulted in continues cell death even after the treatment, where cell viability was 

reduced from 84.9% to 57.2% for MCF7 cells and 86.7% to 70.1% for U87 cells incubated with 

ME93-PEG-PCL without the drug. In the same way for cells incubated with ME94-PEG-PCL 

without drug the cell viability was lowered from 87.3% to 63.5% and 87.5% to 72.0% for MCF7 

and U87 cells, respectively. Continuous cell death after the treatment could be a result of 

cytoskeletal damages and apoptosis initiated during the magnetic hyperthermia treatments 

(Sadhukha et al., 2013, Balasubramanian et al., 2014). 

Cells viability were studied in presence of DOX loaded nanoparticles under hyperthermia 

condition. Treating cells with DOX loaded nanoparticles under hyperthermia condition (Both 

magnetic field induce hyperthermia and hot water bath hyperthermia) resulted in an increased cell 
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death compared to either free DOX or hyperthermia, separately. These results indicated 

significant decrease in cell viability when cells were treated with DOX loaded nanoparticles under 

magnetic hyperthermia condition. The results showed only 5.3% and 3.3% of the MCF7 cells 

survived when treated with DOX loaded ME93-PEG-PCL and ME94-PEG-PCL under magnetic 

hyperthermia condition which is much lower than 57.2% viable cells after hyperthermia treatment 

alone and 30.5% viable cells after incubating the cells with free DOX. Similar results of 5.7% and 

4.4% viable cells were observed for U87 cell line treated with DOX loaded ME93-PEG-PCL and 

ME94-PEG-PCL and exposed to magnetic hyperthermia, which is much lower compared to 

29.1% and 72.0% viable cells after incubating cells with free DOX and hyperthermia treatment 

alone. 

As discussed before in Section 5.7.3, the drug release from DOX loaded nanoparticles were 

increased with an increase in temperature, and the drug release was faster under magnetically 

induced hyperthermia compare to incubator which explains the increased cytotoxicity compared 

to 37°C condition. Furthermore the effect of hyperthermia itself results in increased cell death. 

These results demonstrated the potential of the DOX loaded thermosensitive polymer capped 

mesoporous silica coated magnetite nanoparticles to be used in hyperthermia treatment and heat 

triggered drug release chemotherapy for cancer therapy.  

 ME60 

Cells were incubated with mesoporous silica coated magnetite nanoparticles (ME60) with and 

without DOX. Nanoparticles concentration were chosen based on the drug loading content of 

nanocomposites in the way maintain a drug concentration of 17.24 µM. Concentration of 

magnetic nanoparticles (ME60) were 0.097 mg/mL which was shown to be non-toxic against both 

cell lines without the drug. 

Cells were incubated with magnetic nanoparticles for 24 hours before the hyperthermia treatment. 

After which the media was removed and cells were exposed to the magnetic field for 45 minutes. 

The cell viability were compared to water bath hyperthermia treated cells, free DOX treated cells 

and control cells which was exposed to magnetic field without presence of the nanoparticles. 

Another group of control cells were incubated with drug loaded nanoparticles at 37°C. The results 

are presented in Figure 6-48 and Figure 6-47. 
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Figure 6-47. Effects of hyperthermia on U87 cells viability , The viability  of cells incubated with ME60 (with and 

without drug) and exposed to the magnetic field were compared to water bath hyperthermia treated 
cells (45 minutes treatment). 

 

Figure 6-48. Effects of hyperthermia on MCF7 cells viability , The viability  of cells incubated with ME60 (with and 
without drug) and exposed to the magnetic field were compared to water bath hyperthermia treated 
cells (45 minutes treatment). 

Similar to uncoated magnetite nanoparticles, the results indicated that neither magnetic 

nanoparticles without the magnetic field nor magnetic field alone affected the viability of the 

cells.  
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The viability assays performed 2 hours after hyperthermia treatment for magnetic hyperthermia 

and water bath hyperthermia demonstrated that both methods resulted in a decreased cell viability 

with the similar survival rate of around 75% to 80% for both cell lines. 

Viability assay performed 24 hours later indicated that magnetic hyperthermia induced continues 

cell viability decay after the treatment and cell viability was reduced from 77.8% to 59.4% for 

MCF7 cells and 74.9% to 62.5% for U87 cells. However for hot water bath hyperthermia the 

viability was reduced only from 80.9% to 76.2% for MCF7 cells and was increased slightly from 

76.7% to 82.3% for U87 cells.  

Cells viability were studied in presence of DOX loaded magnetic nanoparticles under 

hyperthermia condition. In comparison to either hyperthermia alone or free DOX treatments, a 

decrease in cell viability was observed under magnetically induced hyperthermia conditions. The 

MCF7 cell viability 24 hours post magnetic hyperthermia treatment was decreased to 26.5% 

which is lower than 30.5% for free DOX and 38.25 for DOX loaded nanoparticles without 

hyperthermia treatment in the same period. Similarly viability of U87 cells 24 hours post magnetic 

hyperthermia treatment was decreased to 26.5% which is lower than 29.1% viable cells for free 

DOX treated cells and 34.7% for DOX loaded ME60 treated cells without hyperthermia.  

These results indicate that DOX loaded mesoporous silica nanoparticles could provide the 

synergic effect of hyperthermia and chemotherapy and have great potential to be used in drug 

delivery applications. 

 ME60-L 

Cells were incubated with liposome capped mesoporous silica coated magnetite nanoparticles 

(ME60-L) with or without DOX. Nanoparticles concentration were chosen based on the drug 

loading content of nanocomposites in the way maintain a drug concentration of 17.24 µM. 

Concentration of magnetic nanoparticles were 0.27 mg/mL which was shown to be non-toxic 

against both cell lines without the drug. 

Cells were incubated with liposome capped nanoparticles with and without the drug for 24 hours 

before the hyperthermia treatment. After 24 hours the media was removed and cells were exposed 

to the magnetic field for 45 minutes. The cell viability were compared to water bath hyperthermia 

treated cells, free DOX treated cells and control cells which were exposed to magnetic field 

without presence of the nanoparticles. Another group of control cells were incubated with drug 

loaded nanoparticles at 37°C. The results are presented in Figure 6-50 and Figure 6-49. 
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Figure 6-49. Effects of hyperthermia on U87 cells viability , The viability  of cells incubated with ME60-L (with and 
without drug) and exposed to the magnetic field were compared to water bath hyperthermia treated 
cells (45 minutes treatment). 

 
Figure 6-50. Effects of hyperthermia on MCF7 cells viability , The viability  of cells incubated with ME60-L (with and 

without drug) and exposed to the magnetic field were compared to water bath hyperthermia treated 
cells (45 minutes treatment). 

The results indicated that neither magnetic nanoparticles without the magnetic field nor magnetic 

field alone affected the viability of the cells.  

The viability assay for magnetic hyperthermia compared with water bath hyperthermia performed 

2 hours after the treatment established that both methods resulted in decreased cell viability, 

however the cells survival rate after magnetic hyperthermia treatments were higher than survival 
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rate for cells treated in the same way with uncapped mesoporous silica nanoparticles (ME60). 

This could be explained by the higher SPA of the uncapped nanoparticles, which result in faster 

temperature rise (see Section 3.14.2 for SPA calculations).  

Viability assay performed 24 hours post hyperthermia treatment indicated that similar to other 

synthesised magnetic nanoparticles, cells incubated with ME60-L and exposed to magnetic 

hyperthermia continued to decay even after the treatment. Cell viability were further reduced from 

83.2% in 2 hours to 62.5% after 24 hours, for MCF7 cells and similarly from 91.1% to 66.2% for 

U87 cells.  

Viability assays performed for cells incubated with DOX loaded nanoparticles showed an increase 

in cell death under hyperthermia condition (both hot water bath hyperthermia and magnetic 

hyperthermia) compare to cells incubated at body temperature. However, the cell viability 

measured 2 hours after hyperthermia treatments with DOX loaded nanoparticles showed higher 

survival rates than cells treated with free DOX. 

The cell viability measured 24 hours after magnetic hyperthermia treatment with DOX loaded 

nanoparticles showed further decrease in viable cells. The viability of MCF7 cells was reduced 

from 59.2% to 24.4% which is lower than free DOX in the same period. The cell viability for U87 

measured 24 hours after magnetic hyperthermia treatment was decreased from 46.8% to 22.7% 

which is also lower than free DOX and water bath hyperthermia treated cells. The increased cell 

death after hyperthermia treatment could be due to higher drug release due to increased 

temperature as disused in Section 5.5.3 and the hyperthermia induced damage to the cell structure 

and apoptosis. 

These results indicate that DOX loaded liposome capped mesoporous silica coated magnetite 

nanoparticles could to be used in drug delivery applications to provide synergistic effect of 

hyperthermia and chemotherapy. 

 Summary 

Feasibility of magnetically induced hyperthermia and hyperthermia cell death using synthesised 

magnetic nanoparticles were investigated. Cells were treated with different magnetic 

nanoparticles and placed in an AC magnetic field and the viability assays were performed 2 hours 

and 24 hours post treatments. Figure 6-51 and Figure 6-52 present a summary of the magnetic 

hyperthermia induced cell death caused by different nanoparticles. 
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Figure 6-51. Effects of 45 minutes magnetically induced hyperthermia treatment on MCF7 cells viability. 

  

 

Figure 6-52. Effects of 45 minutes magnetically induced hyperthermia treatment on U87 cells viability  

As illustrated in the graphs hyperthermia generated by ME53 (bare magnetite) resulted in the 

highest cell death followed by ME55-PEG-PCL (polymer coated magnetite nanoparticles) and 

ME60 (mesoporous silica coated nanoparticles). These results could be due higher SPA and rapid 

heating of these nanoparticles compared to other polymer capped or liposome capped mesoporous 

silica coated nanoparticles with lower SPA and saturation magnetization. 

The viability testes performed 24 hours after the hyperthermia treatment showed continues cell 

death after the hyperthermia treatments for all materials. The results for MCF7 cells and U87cells 
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were slightly different nonetheless both cell lines followed the same pattern for different materials 

with MCF7 cells being more sensitive to hyperthermia treatment. A minimum of 37% decrease 

in cell viability for MCF7 cells and 28% for U87cells was observed 24 hours after magnetic 

hyperthermia treatment. The lowest cell death was induced by ME94-PEG-PCL. 

Synergic effects of hyperthermia and DOX was studied by incubating the cells with DOX loaded 

nanoparticles for 24 hours followed by 45 minutes of hyperthermia treatment. The viability assays 

were performed 2 hours and 24 hours after treatments. Figure 6-53 and Figure 6-54 present a 

summary of cells viabilities for cells underwent hyperthermia with different DOX loaded 

nanoparticles compare to cells treated with DOX loaded nanoparticles without the hyperthermia 

treatment. 

 

 
Figure 6-53. Cells viabilities for MCF7 cells treated with DOX loaded nanoparticles with and without additional 

hyperthermia treatment 

 



279 

 

 

Figure 6-54. Cells viabilities for U87 cells treated with DOX loaded nanoparticles with and without additional 
hyperthermia treatment 

The results established that hyperthermia treatment increased the cell death compared to cells 

treated with free drug or DOX loaded nanoparticles without hyperthermia. The effect was more 

obvious for the polymer coated magnetite nanoparticles (ME55-PEG-PCL) as they show 

significant decrease in cell viability after the hyperthermia treatment. ME60-L showed the least 

changes in the cell viability which could be due to small changes in drug release with the 

temperature rise and long lag time for nanoparticles to reach the effective hyperthermia treatment 

temperature. 

The DOX loaded polymer capped mesoporous silica coated magnetite nanoparticles (both ME93-

PEG-PCL and ME94-PEG-PCL) showed great potential in decreasing the cell viability. 

Additionally, when the nanoparticle treated cells underwent hyperthermia treatment the survival 

rate reduce even lower and only 5% of the cells survived 24 hours after the treatment. In 

comparison around 30% of the cells treated with the free DOX survived (up to 89% increased 

cytotoxicity).  

These results confirmed the substantial potential of the synthesised DOX loaded nanoparticles to 

be used for drug delivery application with simultaneously magnetically induced hyperthermia 

treatment to kill cancer cells and improve the cancer therapy. 
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 Conclusions 

The aims of this thesis were to synthesis iron oxide-based magnetic nanoparticles, characterise 

the synthesis materials and evaluated the developed nanoparticles as platforms for drug delivery, 

hyperthermia and catalysis. This project employs several formulations of magnetic nanoparticles, 

including mesoporous silica- magnetite core-shell nanoparticles, magnetoliposomes and magnetic 

micelles, for drug delivery and catalysis applications. 

The main synthesis routes used to prepare magnetite nanoparticles were chemical co-precipitation 

of ferrous and ferric chlorides and thermal decomposition of iron (III) acetylacetonate. The 

magnetite nanoparticle prepared by these methods were used later as core materials to prepare 

core-shell structures. The nanoparticles prepared by the thermal decomposition methods were 

surface functionalised and hydrophobic, whereas the magnetite prepared by co-precipitation 

method were hydrophilic and were required, underwent post synthesise oleic acid modification to 

become hydrophobic. The synthesised magnetite nanoparticles were characterised using different 

physio-chemical techniques including TEM, VSM and XRD. From the TEM images it was 

observed that the nanoparticles prepared by co-precipitation method had a boarder size 

distribution and larger particles compare to the particles prepared via thermal decomposition 

method. The magnetic heating of the nanoparticles were assessed using commercial magnetic 

field applicator (DM2 nanoScale Biomagnetics) with a field strength of up to 200 G and frequency 

of 406 kHz. It was observed that the magnetic nanoparticles prepared by the co-precipitation 

method possess higher SPA and require less time to increase the temperature of the solution.  

Mesoporous silica coating of magnetite nanoparticles were performed by different methods of 

direct coating of mesoporous silica layer with CTAB as template or coating of the nanoparticles 

with an amorphous silica layer followed by protected etching of the deposited silica layer. The 

thickness of the silica shell of the nanoparticles were optimised according to the desired 

application. The mesoporous silica-magnetite nanoparticles were characterised using different 

methods including TEM, BET and VSM. The BET isotherms of the silica coated nanoparticles 

indicated high surface area with mesoporous structure for all developed nanoparticles. The silica 

coated magnetic nanoparticles were used as enzyme supports and in drug delivery applications. 

PEG-PCL di block copolymer were synthesised by ring-opening polymerization of ε-

caprolactone from the alcohol terminus of poly (ethylene glycol) monomethyl ether using 

dibutyltin dilaurate as catalyst. The synthesised polymer were characterised using 1H NMR where 

the formation of the copolymer was confirmed. The synthesised polymer was used to develop 

magnetic micelles for drug delivery applications. The magnetic micelles were prepared by self-

assembly of the polymer encapsulating the hydrophobic magnetite nanoparticles as core structure. 

The DSC thermal isotherm of the micelles indicate that the melting temperature of the micelles 

are in the range of hyperthermia treatment which makes the thermosensitive polymer suitable to 
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be used in hyperthermia triggered drug release applications. The thermosensitive polymer were 

also used to cap the mesochannels of the silica nanoparticles to reduce the premature drug release 

and enhance the control over drug release.  

Magnetoliposomes were prepared using SPC and cholesterol following lipid film hydration 

method, with addition of magnetite nanoparticles followed by ultra-sonication and filtration to 

obtain a nanoparticles within the size range of 100 nm. The size of the magnetoliposomes were 

assessed using DLS. The magnetoliposomes were used as drug delivery systems for hydrophilic 

MMC drug. Furthermore similar to PEG-PCL polymer, liposomes were used to cap the 

mesochannels of the mesoporous silica nanoparticles to reduce the premature drug release and 

enhance the control over drug release. 

Silica-magnetite core-shell nanoparticles were used as enzymes supports for bio-catalysis 

reactions. The enzymes (PFL and CRL lipases) were immobilised on silica coated nanoparticles 

both through physical adsorption and chemical bonding. To immobilise the lipase via chemical 

conjugation the nanoparticles were surface amine functionalised using APTS following two 

different methods where TPRE method showed higher amine density. Following the surface 

amine functionalisation, glutaraldehyde was used to convert surface amine groups to aldehyde in 

order to covalently bond with the NH2 groups of lipase via imine bonding. 

The immobilised lipases were used in catalytic reactions of hydrolysis of pNPP and hydrolysis of 

cis-3,5-diacetoxy-1-cyclopentene to investigate the catalytic activity of the immobilized enzymes 

compared with the free enzymes. The results indicated that both physically and chemically 

immobilised lipases retained their activity after immobilisation. 

In case of hydrolysis of pNPP the free lipases provided slightly higher conversion than 

immobilised lipases in the first cycle however the immobilised lipases were easily recycles and 

reused in sequential cycles which provides higher total yield per mg of lipase. The chemically 

immobilised lipase exhibited good reusability without loss of its activity for four sequential 

cycles, however the physically adsorbed lipase showed reduced activity which could be explained 

by loss of enzyme during recycling between successive reactions. The CRL lipase (free or 

immobilised) activity in the presence of an AC field were accessed by hydrolysis of pNPP and 

the results showed that the lipase retained its activity under influenced of an AC magnetic field 

and interestingly exposure to the AC magnetic field  resulted in increased reaction yield. 

The hydrolysis of cis-3,5-diacetoxy-1-cyclopentene were performed at two temperatures of 25°C 

and 37°C where it was observed that both lipases exhibited higher activity at higher temperature 

which could be due to fact that for PFL and CRL the optimum temperature is close to 37°C. The 

free lipase showed higher conversion rate compared to immobilised lipases, however the 

immobilised lipases afford higher ratios of the desired product of (1S,4R)-cis-4-acetoxy-2-

cyclopenten-1-ol which conclude that the immobilised lipases provide enhanced control over the 
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formation of the desired products. Particularly in case of PFL, the free lipase reached its maximum 

conversion to desired product during the initial 4 hours of the reaction at 25°C or initial hour at 

37°C, after which the dihydroxy by-product is formed in an excess amount as the dominant 

product. The immobilised lipases were used in three successive cycles where it was observed that 

the chemically immobilised lipases retained their activity during recycling while physically 

adsorbed lipase displayed a decreased activity in each consecutive cycle indicating lipase loss 

during the reaction and recycling process. 

In this project, different magnetic nanocomposites were developed as for drug delivery systems 

based on magnetite core-shell structure. Two different model drugs of MMC and DOX were used 

to study the ability of the synthesised nanoparticles for loading and release of the 

chemotherapeutic agents. The initial material used as drug delivery systems were silica-magnetite 

core-shell nanoparticle, which exhibited high drug loss and low control over drug release profile, 

and magnetoliposomes which showed lower drug loading content compare to silica based 

nanoparticles. The drug delivery systems were then optimized by combining the liposomes and 

silica-magnetite core-shell nanoparticle to obtain high drug loading capacity with enhanced 

control over the drug release profile. Capping the mesopores of the silica nanoparticles with 

liposomes reduced the drug release (at 37°C after 48 hours) by 52.7%. However, the liposome 

capped nanoparticles did not exhibit hyperthermia triggered release properties. To improve the 

drug delivery system and obtain the triggered release characteristics, the mesopores of silica-

magnetite core-shell nanoparticle were also capped with heat sensitive PEG-PCL polymer. 

Coating the silica nanoparticles with polymeric micelles or liposomes prevents the entrapped drug 

from dissociation upon dilution in the blood stream after intravenous injection and facilitates their 

extravasations at tumour sites by avoiding renal clearance and non-specific reticuloendothelial 

uptake (Shuai et al., 2004). Capping the mesopores of the silica nanoparticles with PEG-PCL 

diblock copolymer reduced the drug release (at 37°C after 48 hours) by 41.5%. 

The drug release from nanoparticles were assessed under both pH and temperature stimuli 

conditions. For pH triggered conditions normal physiological pH (7.4) and acidic pH (5.5) were 

used and for temperature triggered release body temperature (37°C) and the hyperthermia 

treatment condition (43°C) were used. The hyperthermia condition were studied using an AC 

magnetic field and an incubator. The results indicated that all the developed materials were 

suitable to be used in hyperthermia treatments however polymer capped materials showed higher 

increase in drug release with the temperature rise compare to liposome capped material. All the 

developed material showed pH responsive release profiles with increased drug release in lower 

pH. 

The biocompatibility of the synthesised nanoparticles were evaluated against two cell lines of 

MCF7 and U87 and the data demonstrated that only bare magnetite nanoparticles induced toxicity 

in low dosage of 0.25 mg/mL. It was shown that the biocompatibility of the magnetite 
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nanoparticles were significantly improved by surface coatings. Mesoporous coated silica 

nanoparticles showed good biocompatibility against both cell lines, however they exhibited 

cytotoxicity at high dose or after long incubation period. Silica coated nanoparticles capped with 

PEG-PCL polymer or liposomes exhibited greater biocompatibility than uncoated silica 

nanoparticles against both cell lines. 

DOX loaded nanoparticles induced cytotoxicity toward both cell lines, however the degree of 

cytotoxicity was different between different materials. ME55-PEG-PCL, ME60 and ME60-L 

induced lower cytotoxicity than free DOX in the first 24 hours of incubation however after 48 

hours they caused comparable cytotoxicity. The ME93-PEG-PCL and ME94-PEG-PCL 

generated higher cytotoxicity compared to free DOX even in the first 24 hours. 

In the final part of the project the feasibility of magnetically induced hyperthermia triggered drug 

release and hyperthermia cell death using synthesised magnetic nanoparticles were investigated. 

Cells were treated with different magnetic nanoparticles and placed in an AC magnetic field and 

the viability assays were performed 2 hours and 24 hours post treatments. Hyperthermia generated 

by bare magnetite resulted in the highest cell death followed by polymer coated magnetite 

nanoparticles and ME60, respectively. The viability testes performed 24 hours after the 

hyperthermia treatment showed continues cell death after the hyperthermia treatments for all 

materials. The results for MCF7 cells and U87cells were slightly different however both cell lines 

followed the same pattern, with MCF7 cells being more sensitive to hyperthermia treatment. A 

minimum of 37% decrease in cell viability for MCF7 cells and 28% for U87cells was observed 

24 hours after magnetic hyperthermia treatment. 

Synergic effects of hyperthermia and DOX was studied by incubating the cells with DOX loaded 

nanoparticles for 24 hours followed by 45 minutes of hyperthermia treatment. The viability assays 

were performed 2 hours and 24 hours after treatments. The results established that hyperthermia 

treatment increased the cell death compare to cells treated with free drug or DOX loaded 

nanoparticles without hyperthermia. The effect was more obvious for the magnetic micelles. 

Liposome capped nanoparticles induced the lowest changes in the cell viability. The DOX loaded 

polymer capped mesoporous silica coated magnetite nanoparticles showed great potential in 

decreasing the cell viability. Furthermore, when the nanoparticle treated cells underwent 

hyperthermia treatment the survival rate reduce even lower and only 5% of the cells survived 24 

hours after the treatment. In comparison around 30% of the cells treated with the free DOX 

survived.  

These data demonstrated that the drug loaded nanoparticles especially polymer capped silica 

nanoparticles could effectively improve the chemotherapeutic effects of DOX. The synthesised 

DOX loaded nanoparticles showed great potential to be used as drug delivery systems with 

simultaneous magnetically induced hyperthermia to kill cancer cells and improve the cancer 

therapy. 
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 Future work 

The magnetic nanocomposites were used in this project to utilise the magnetic hyperthermia 

triggered drug release. On the other hand employing magnetic nanoparticles would offer the 

advantage of magnetic targeting. Evaluation of the feasibility of magnetic targeting in silico using 

computer modelling and in vivo using magnetic probes could benefit from additional advantage 

of magnetic nanoparticles.  

The drug delivery systems developed in this project are based on passive targeting using EPR 

effect. However, the materials used in this project could easily be functionalised with additional 

targeting legends such as RDG peptides to selectively target the cancerous cells which increases 

the cellular uptake and consequently increase the efficiency of the developed drug delivery 

systems. 

Magnetic nanoparticles are established as MRI contrasting agents. Evaluation of the developed 

nanoparticles as MRI contrast agent would offer the possibility of in vivo monitoring of the 

nanoparticles which adds additional control over the drug delivery system. 

This project presented the use of liposomes and polymers in drug delivery systems, where the 

liposomes offer higher drug encapsulation efficiency and the polymers offer higher 

thermosensitivity and more efficient hyperthermia release profiles. Development of drug delivery 

systems with combination of these two could improve the efficiency of the drug delivery system.  

The mesoporous silica nanoparticles prepared by protected etching theoretically offer the 

possibility of encapsulation of two different anticancer agents. It is suggested to explore the 

feasibility of simultaneous loading and controlled release profile of two anticancer drug.  

In case of bio-catalysis, the catalysis reaction was performed under the influence of an AC 

magnetic field to study the effect of magnetic field on lipase activity and reaction rate. As the next 

step it is suggested to use the magnetic field during the enantioselective reaction to study the 

effect of magnetic field on specificity and enantioselectivity of the lipase. 
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Appendix A 

 

Image analysis in order to obtain particles size distribution from TEM images were performed 

using Imagej image processing software. Two examples are presented here.  

ME59 size distribution: 

    

 

    

 

 

 

 

 

 



323 

 
 

 

Area 

(nm2) 
d (nm)  Id 

Area 

(nm2) 
 

d (nm) 

1 57.09 8.525799  36 20.35 5.090228 

2 66.09 9.173244  37 53.08 8.220922 

3 57.67 8.568998  38 54.71 8.346193 

4 49.97 7.976452  39 42.67 7.37083 

5 45.76 7.633049  40 48.11 7.826593 

6 54.12 8.301068  41 37.48 6.90804 

7 132.85 13.00576  42 28.22 5.994232 

8 47.7 7.793172  43 73.28 9.659347 

9 62.43 8.915624  44 88.01 10.58574 

10 53.6 8.261092  45 55.54 8.409264 

11 53.19 8.229436  46 72.14 9.583919 

12 56.86 8.508607  47 63.77 9.010798 

13 47.65 7.789086  48 55.08 8.374368 

14 43.76 7.46438  49 34.26 6.604634 

15 36.64 6.83019  50 58.7 8.645181 

16 32.78 6.460402  51 56.46 8.478626 

17 38.96 7.043111  52 44.17 7.499266 

18 64.65 9.072758  53 83.16 10.28993 

19 70.24 9.456868  54 36.49 6.816195 

20 43.05 7.403578  55 29.16 6.093248 

21 46.99 7.734955  56 46.18 7.667999 

22 51.75 8.117275  57 69.7 9.420446 

23 33.44 6.525115  58 36.54 6.820863 

24 88.04 10.58754  59 43.16 7.41303 

25 62 8.884866  60 56.98 8.517581 

26 38.5 7.001409  61 33.53 6.53389 

27 41.72 7.288316  62 56.86 8.508607 

28 35.54 6.726881  63 50.61 8.027369 

29 35.04 6.679395  64 74.13 9.715207 

30 60.88 8.80425  65 32.83 6.465327 

31 47.4 7.768626  66 54.21 8.307967 

32 79.71 10.07422  67 39.55 7.09624 

33 59.9 8.733101     

34 49.94 7.974057  average 8.08 

35 54.88 8.35915  STD 1.28 
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ME56 size distribution 
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Id 
Area 

(nm2) 
d (nm) 

 

Id 

Area 

(nm2) 

 

d (nm) 

1 3997 71.3382 22 4538 76.0129 

2 4884.25 78.8595 23 4061.5 71.91149 

3 2604.5 57.58604 24 4242.25 73.49422 

4 2938.75 61.1697 25 2751.75 59.19153 

5 3806.25 69.61514 26 3783.75 69.40908 

6 4107.25 72.31537 27 2104.25 51.76113 

7 3970 71.09684 28 3370.75 65.51162 

8 4385 74.72052 29 4673 77.13526 

9 4481.5 75.53822 30 2033.25 50.88039 

10 4095.25 72.20965 31 3203 63.86068 

11 2090.75 51.59482 32 2842.5 60.15965 

12 3957 70.98034 33 3309.5 64.91368 

13 5103.5 80.61004 34 3954 70.95343 

14 3665.25 68.31355 35 3233.5 64.16401 

15 3718 68.80338 36 3727.25 68.88891 

16 2956.5 61.35416 37 3018.75 61.99671 

17 3991.5 71.2891 38 3381.75 65.61843 

18 4404.25 74.88435 39 2309.75 54.22974 

19 4407.5 74.91197 Average 67.58 

20 3958.25 70.99155 
STD 7.51 

21 3569.75 67.4177 
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