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ABSTRACT

Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar
atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar
plasma. In this study, we synthesize the Fe IXλ171.073Å emission of a coronal loop supporting a standing kink
MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a
curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which
dominate the plasma inside and outside of the flux tube, respectively. At the loop edges, the line of sight integrates
relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated
with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity
suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory
variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the
front view.
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1. INTRODUCTION

In the past decade, significant progress has been achieved in
probing the heating and seismological roles of magnetohy-
drodynamic (MHD) waves in the solar atmosphere (see reviews
by Nakariakov & Verwichte 2005; Liu & Ofman 2014; Arregui
2015; Jess et al. 2015). Among the MHD wave modes, the
slow magnetoacoustic mode propagates anisotropically in a
low β uniform plasma; the wave energy flows predominantly
along the magnetic field line, e.g., De Moortel et al.
(2002a, 2002b), Wang et al. (2009a, 2009b), Yuan &
Nakariakov (2012), Kumar et al. (2013, 2015), and Fang
et al. (2015). Meanwhile, a fast magnetoacoustic mode could
propagate to any direction relative to the magnetic field, i.e.,
either parallel, perpendicular, or oblique, therefore they are
commonly waveguided in a variety of magnetic structures
through reflections and refractions. They may couple with
Alfvén waves and exhibit mixed wave properties in forms of
standing transverse oscillations of coronal loops (Aschwanden
& Schrijver 2011; Nisticò et al. 2013; Verwichte et al. 2013a);
large-scale coronal propagating fronts across the whole solar
disk (Ofman & Thompson 2002; Liu et al. 2010; Guo et al.
2015); quasi-periodic fast wave trains along magnetic funnels
(Liu et al. 2012; Pascoe et al. 2013; Yuan et al. 2013; Nisticò
et al. 2014b); fast wave pulses across randomly structured
plasma (Yuan et al. 2015a); ubiquitous propagating kink waves
in the entire corona (Tomczyk et al. 2007) and coronal holes
(Thurgood et al. 2014; Morton et al. 2015).

Kink waves (the m= 1 mode, Edwin & Roberts 1982, 1983;
Ruderman 2003; Erdélyi & Morton 2009; Goossens et al.
2014) were initially observed in active region loops in the
Extreme Ultraviolet (EUV) channels of the Transition Region
and Coronal Explorer (TRACE, Aschwanden et al. 1999;
Nakariakov et al. 1999). The coronal loops were observed to
oscillate transversely with amplitudes at a megameter scale in
response to flares, i.e., the associated mass ejections (Schrijver

et al. 2002; Zimovets & Nakariakov 2015), filament destabi-
lizations (Schrijver et al. 2002), magnetic reconnection (He
et al. 2009), or vortex shedding (Nakariakov et al. 2009).
Recently, Nisticò et al. (2013) and Anfinogentov et al. (2013)
detected low-amplitude (sub-megameter scale) kink oscilla-
tions of coronal loops. Kink waves in this category last for
dozens of wave cycles without significant damping, and are
apparently not associated with any explosive events (Anfino-
gentov et al. 2013). Transverse oscillatory motions were also
observed in chromospheric spicules (Okamoto & De Pontieu
2011; Morton 2014), chromospheric mottles (Kuridze et al.
2012), filament threads (Lin et al. 2007, 2009), large
prominences (Tripathi et al. 2009; Hershaw et al. 2011;
Arregui et al. 2012), polar plumes (Thurgood et al. 2014),
coronal rain (Antolin & Verwichte 2011), helmet streamers
(Chen et al. 2010, 2011), and even coronal mass ejections (Lee
et al. 2015).
Fundamental (global) standing kink modes are frequently

observed in closed coronal loops (Ruderman & Erdélyi 2009;
Van Doorsselaere et al. 2009). The period of coronal transverse
waves ranges from 2 to 33 minutes; and the damping time has a
similar timescale (Aschwanden et al. 2002; White & Verwichte
2012). The curved coronal loops are normally assumed to be
approximately co-planar; the loop plane intrinsically defines
horizontally and vertically polarized kink waves about the loop
axis (Ruderman 2009). Horizontal kink waves are more
frequently observed, e.g., Nakariakov et al. (1999), Schrijver
et al. (2002), Aschwanden et al. (2002), and Zimovets &
Nakariakov (2015), while vertical kink waves were only
reported in a limited number of cases, e.g., Wang & Solanki
(2004), Verwichte et al. (2006), Selwa et al. (2007, 2010,
2011), White et al. (2012), and Kim et al. (2014).
The main interest in standing kink modes of coronal loops

mainly arises from their role in diagnosing the coronal plasma
via MHD seismology (Nakariakov & Verwichte 2005; De
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Moortel & Nakariakov 2012). The standing kink mode could
be used as a tool to infer magnetic field strength along a coronal
loop (Nakariakov & Ofman 2001; Verwichte et al. 2009, 2010,
2013a). Verwichte et al. (2013b) measured the range of the
density contrast and inhomogeneity layer thickness of coronal
loops based on the period-damping timescaling law. De
Moortel & Pascoe (2009) are the first to validate MHD
seismology with three-dimensional (3D) numerical simula-
tions, and showed that the inverted magnetic field strength
agrees with the input magnetic field within a factor of about
two. Aschwanden & Schrijver (2011) and Verwichte et al.
(2013a) compared the seismological field and the Alfvén-
transit-time-averaged value in the potential field model, and
found consistency within an order of magnitude. Chen & Peter
(2015) performed MHD simulations using a realistic coronal
model and found that the excited coronal loop oscillations
would be effectively used to infer the average magnetic field.

Kink MHD waves are highly incompressible in the long
wavelength limit and exhibit only quasi-rigid motions (Goos-
sens et al. 2012). Indeed, in a coronal loop the density (or
temperature) perturbation by a kink mode is at the order of
10−3 or less than the equilibrium value. The observed intensity
variations of coronal loops (e.g., O’Shea et al. 2007; Verwichte
et al. 2009, 2010) are ascribed to the column depth modulation
introduced by the kink motion. Cooper et al. (2003a, 2003b)
performed line of sight (LOS) integration through the coronal
loop plasma perturbed by MHD waves and demonstrated that
intensity modulation could become significant in case of a kink
mode, even though the plasma fluid compression is negligible.

Recently, Goossens et al. (2014) showed that the kink mode
solution could be decomposed into a quasi-rigid transverse
motion and a rotational motion, which is detectable as Doppler
velocity oscillations in optically thick lines. That paper
confronts interpreting rotational motion as a signature of
Alfvén wave (De Pontieu et al. 2012). Therefore, forward
modeling would significantly advance the knowledge of kink
modes and resolve the dispute on whether a wave with
observed rotational motion is a kink or Alfvén wave (e.g., Van
Doorsselaere et al. 2008). Moreover, MHD seismology and
wave energy estimation strongly rely on correct identification
of the wave mode and accurate measurements of wave
properties (Goossens et al. 2012; Van Doorsselaere et al. 2014).

Forward modeling is a novel approach that synthesizes the
plasma emission observables (Antolin & Van Doorsse-
laere 2013; Yuan et al. 2015b). It basically converts analytical
or numerical models into observables. Therefore, the inversion
process (e.g., MHD seismology, MHD spectroscopy, helio-
seismology, X-ray tomography), which is originally ill-posed
due to the lack of sufficient constraints (or observables), could
be better understood in the sense that knowledge of plasma
properties is given a priori. Gruszecki et al. (2012) studied the
geometric integration of the plasma density of a fast sausage
mode of a plasma cylinder. De Moortel & Bradshaw (2008)
demonstrated that the damping rate measured in EUV emission
intensity oscillations may not reflect the real damping of MHD
waves. Antolin & Van Doorsselaere (2013) and Antolin et al.
(2014) considered the inhomogeneous plasma emission
introduced by fast sausage modes and found that the LOS
effect and spatial resolution would significantly modify the
associated EUV emissions of coronal loops. Yuan et al.
(2015b) found that the contribution function of atomic emission
(Dere et al. 1997) could cause emission asymmetry for positive

and negative temperature perturbations, and could even lead to
the detection of half-periodicity.
In this study, we present a forward modeling study of the

standing kink modes of coronal loops. Section 2 gives the
analytical solution of a kink mode in a coronal loop and the
numerical discretization for the forward modeling code.4

Section 3 and Section 4 present our results and conclusions,
respectively.

2. MODEL

2.1. Standing Kink Mode

In this paper, we study the standing kink wave in a plasma
cylinder embedded in a uniform plasma. The magnetic field is
parallel to the axis of the plasma cylinder (i.e., z-axis),

ˆ=B zB0 0 . The equilibrium magnetic field B0, plasma density
r0, and temperature T0 are piecewise functions of the r-
coordinate:

( )


r
r
r

=
>

⎧⎨⎩B T
B T r a

B T r a
, ,

, , , for

, , , for ,
10 0 0

i i i

e e e

where a is the radius of the loop. Hereafter, we use the
subscripts “i” and “e” to differentiate the internal and external
equilibrium values of the loop system.
The linearized ideal MHD equations give the perturbed

quantities that deviate from the magnetostatic equilibrium (see,
e.g., Ruderman & Erdélyi 2009):

· ( ) ( )xr r= - , 21 0

[( · ) ( · ) ] ( )x
r

m
¶
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P
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( ) ( )x=  ´ ´b B , 41 0

· ( ) ( )xr r- =  - p C C p , 51 s
2

1 s
2

0 0

where x is the Lagrangian displacement vector, r0, p0, and B0

are the plasma density, pressure, and magnetic field in
equilibrium, r1, p1 and b1 are the perturbed plasma density,
pressure and magnetic field, · m= + b BP pT1 1 1 0 0 is the
perturbed total pressure, and m0 is the magnetic permeability in
free space. A few typical speeds are defined to describe the
loop system: g r=C ps 0 0 , m r=C BA 0 0 0 , and

= +C C C C CT A s A
2

s
2 are the acoustic, Alfvén, and tube

speed, respectively (Edwin & Roberts 1983); and w = C ks s ,
w = C kA A , and w = C kT T are the corresponding acoustic,
Alfvén, and tube frequencies, where p=k n L0 is the long-
itudinal wavenumber, n is the longitudinal mode number (n= 1
corresponds to the fundamental mode), L0 is the length of the
loop, and g = 5 3 is the adiabatic index.
The boundary value problem (Equation (2)–(5)) is solved in

cylindrical coordinates ( fr z, , ) with the Neumann boundary
conditions at r=a,

[ ] ( )==P 0, 6r aT

[ ] ( )x == 0, 7r r a

and the Dirichlet boundary conditions at = ¥r 0,

∣ ( )< ¥=P , 8rT 0

4 The FoMo code is available at https://github.com/TomVeeDee/FoMo
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∣ ( )x < ¥= , 9r
2

0

∣ ( )=¥P 0, 10rT

∣ ( )x =¥ 0, 11r
2

where PT and xr are the total pressure and the radial
displacement, respectively. In the case of the standing kink
mode (m= 1), we Fourier-analyze the perturbed quantities by
assuming ( ) ( ) ( ) ( ) w f=P A r t kzcos sin cosT1 , where A is the
amplitude of the perturbed total pressure. The longitudinal
profile ( )kzsin ensures that the transverse displacement follows
a kzsin -distribution, and therefore has a maximum at the loop
apex for the fundamental mode (n= 1).

The perturbed total pressure PT1 (and ) must satisfy
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T
2 2 is the square of the radial

wavenumber and has the dimensionality of wavenumber k2.
Equation (12) holds for both internal and external plasma,

where all quantities are piecewise functions of r, and gives
(∣ ∣ ) k= J rr1 i or ( )kK rr1 e for <r a and >r a, respectively,

where J1 and K1 are the first order Bessel function of the first
kind and the first order modified Bessel function of the second

kind, respectively. We redefine ∣ ∣k k= -r ri i
2 , so the disper-

sion relation for the fast body mode is obtained as
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The perturbed Lagrangian quantities used in the forward
modeling code are:

ˆ ( ) ( ) ( ) ( )w f=v v r t kzsin sin cos , 14r r

ˆ ( ) ( ) ( ) ( )w f=f fv v r t kzsin sin sin , 15

ˆ ( ) ( ) ( ) ( )w f=v v r t kzsin cos cos , 16z z

ˆ ( ) ( ) ( ) ( )r r w f= r t kzcos sin cos , 171 1

ˆ ( ) ( ) ( ) ( )w f=T T r t kzcos sin cos , 181 1

Figure 1. Flow fields at the cross-section of =z L 20 . (a) illustrates the full solution [ ˜ ˜ ]v v,x y
T, whereas (b) and (c) show the polarized quasi-rigid motion [ ˜ ˜ ][ ] [ ]v v,x y

1 1 T

and the quadrupole term [ ˜ ˜ ][ ] [ ]v v,x y
2 2 T.

3

The Astrophysical Journal Supplement Series, 223:23 (15pp), 2016 April Yuan & Van Doorsselaere



where

ˆ ˆ ( ) ( )


= -v

rd

dr
v r , 19r 0

ˆ ˆ ( )
( )

( )w
r w w

= =
-

fv v r
A

r
, 200

0
2

A
2

ˆ ( )
( )

ˆ ( )w w
w w

= -
-
-

v
C kr

C
v , 21z

T
2

A
2

2
A
2

2
T
2 0

ˆ ( )
( )

ˆ
( )

( )r
w w
w w

r w
=

-
- +

r v

C C
, 221

2
A
2

2
T
2

0 0

s
2

A
2

ˆ ( )
( )

( ) ˆ
( )

( )w w
w w

g w
=

-
-

-
+

T
T r v

C C

1
. 231

2
A
2

2
T
2

0 0

s
2

A
2

The horizontally polarized kink mode has

˜ ( ) ( ) ( ) ( )f w=v v r t kz, sin sin , 24x x

˜ ( ) ( ) ( ) ( )f w=v v r t kz, sin sin , 25y y

where
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2 2
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( )

= - w k
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00 2
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i
2

Ai
2 is the Lagrangian velocity at r=0.

We could see that the plasma motion is predominantly
polarized along the x-direction described by the J0 term (also
see the Appendix and Goossens et al. 2014). The quadrupole
terms ( )fJ cos 22 and ( )fJ sin 22 may contribute to the fine
structuring of coronal loops associated with kink modes. The
vertically polarized transverse mode could be easily obtained
by replacing f with f p+ 2, while keeping the coordinate
system intact.
We rewrite Equations (27) and (29) as
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In the thin flux tube limit ( ka 1), (( ) )= +J ka10
2 for

<r a, and K K 10 2 for >r a, so the polarized quasi-rigid
motion is almost confined within the tube <r a (Figure 1(b)).
The quadrupole term is of secondary effect, as (( ) )=J ka2

2

for <r a, whereas at >r a, K K 12 0 , so it dominates the
surrounding plasma (Figure 1(c)). But we shall note that the
quadrupole term is only a second order term inside the tube,
whereas at the ambient plasma, its magnitude is of the first
order.

Figure 2. Schematic drawing illustrating how the cylinder is mapped into a
semi-torus and the LOS angle definition. The pink plane (y z1 1 plane) is defined
by the loop spine. The green plane forms an angle of τ with the pink plane and
their line of intersection is parallel with the z1-axis. The LOS is free to vary
within the green plane and is quantified by an angle h p+ 2 relative to the z1-
axis or the line of intersection. An LOS angle is denoted as [ ]t h, .

Figure 3. Fe IXλ171.073 Å synthetic emission at (a) the top view, (b) the
generic view, (c) the front view, and (d) the side view. The origins and ranges
of the plots are chosen to best match the relative geometries at various views,
and will not affect the results at all.

(An animation of this figure is available.)
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2.1.1. Correction for Advected Plasma Motion

Equations (14)–(18) are solutions in Lagrangian coordinates,
while we need to synthesize observables at a fixed LOS
(Eulerian coordinates), therefore the Lagrangian variables are
remapped into Eulerian coordinates. The transverse displace-
ment of a kink mode is of the order of the loop radius a
(Aschwanden et al. 2002), and therefore, the advected motion
cannot be neglected. The displacement x for the plasma fluid at
the initial position [ ]fr z, , could be obtained by integrating the
velocity with respect to time t.

ˆ ( ) ( ) ( )x w w f= -v t kzcos sin cos , 33r r

ˆ ( ) ( ) ( )x w w f= -f fv t kzcos sin sin , 34

ˆ ( ) ( ) ( )x w w f= -v t kzcos cos cos . 35z z

In Cartesian coordinates, the displacement is given as

˜ ( ) ( ) ( )x x w= t kzcos sin , 36x x

˜ ( ) ( ) ( )x x w= t kzcos sin , 37y y

where [˜ ˜ ] [ ˜ ˜ ]x x w= - v v, ,x y x y
T T . Then the new position

[ ˜ ˜ ˜]x y z, , T of the plasma fluid originally at [ ] =x y z, , T

[ ]f fr r zcos , sin , T is

˜( ) ( ) ( )x= +x t x t , 38x

˜( ) ( ) ( )x= +y t y t , 39y

˜( ) ( ) ( )x= +z t z t . 40z

Thus, the plasma properties (e.g., r r+0 1) at location [ ]x y z, , T

will be moved to the position [ ˜ ˜ ˜]x y z, , T.

Figure 4. Fe IXλ171.073 Å spectra of sit-and-stare modes along slices s across the loop apex at the front view (left), the side view (middle), and the top view (right).
The dashed lines contour the 0.02-level of the peak emission, and highlight the pendular motion at the front view.

(An animation of this figure is available.)
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2.1.2. Mapping into a Semi-torus Structure

The loop curvature was found to have a secondary effect on
the transverse motion of coronal loops (Van Doorsselaere et al.
2009), and therefore we only consider the LOS effect and
plasma inhomogeneities by mapping the kink mode solution of
a plasma cylinder into a semi-torus structure (see Figure 2). The
kink mode displaces the axis of the loop, therefore it has a
polarization relative to the plane defined by the static curved
loop axis, i.e., the y z1 1 plane. It is defined as a horizontal kink

mode if the loop oscillates out of the y z1 1 plane (e.g.,
Aschwanden et al. 1999; Nakariakov et al. 1999). Or otherwise,
if the transverse motion of the loop axis is within the y z1 1 plane,
it is termed as a vertical kink mode (e.g., Wang & Solanki
2004; Verwichte et al. 2006).
After correcting the advected motion, we map the plasma

coordinates and the associated plasma parameters into a semi-
torus structure (Figure 2). The plasma cylinder is bent into a
torus within the y z1 1 plane using the following transform (also

Figure 5. Snapshots of the relative emission I Im (left), Doppler shift velocity vD (middle), and line width w (right).

(An animation of this figure is available.)
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see Kuznetsov et al. 2015):

( )=x x, 411

( ) ( )z= +y R y sin , 421

( ) ( )z= - +z R y cos , 431

where z = z R, and p=R L .
The velocity is transformed by

( ) ( )
( ) ( )

( )z z
z z

=
-

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

v
v
v

z z
z z

v
v
v

1 0 0
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. 44
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y
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x

y

z

1

1

1

This is basically a rotation of the velocity vector by an angle of
z p- 2 about the x-axis; and z p- 2 varies within
[ ]p p- 2, 2 for [ ]Îz L0, .

2.2. Coronal Loop Model

Coronal loops are highly complex and dynamic structures,
observed within a broad range of plasma conditions; see a
review by Reale (2014). The loop width varies from a few
hundreds (Brooks et al. 2013; Morton & McLaughlin 2013) to
thousands of kilometers (Aschwanden et al. 2002; Aschwanden
& Nightingale 2005; Aschwanden & Schrijver 2011). A coronal
loop may have multi-thermal (Nisticò et al. 2014a), multi-
stranded structures (Peter et al. 2013; Scullion et al. 2014), and
may be associated with heating and flows (Winebarger et al.
2002; Klimchuk 2006; Hood et al. 2009). In our study, these fine
structures are not considered; and the gravitational stratification
is also neglected. Numerical simulations are required to model
these features of coronal loop oscillations.

A coronal loop is set up in an equilibrium state. The loop
measures =L 100 Mm0 in length and =a 4 Mm in radius. The
loop density and temperature are ·r = - -2.5 10 kg mi

12 3

( ·= -n 1.5 10 cmei
9 3) and =T 0.8 MKi , respectively. The

internal plasma is permeated by a uniform magnetic field
=B 15 Gi . We choose a density and temperature ratio of

r r = 5i e and =T T 1.5i e , respectively, then the magnetic field
strength ratio is obtained by balancing the total pressure at the
loop boundary. The plasma beta gives b = 0.037i and
b = 0.0048e for the internal and external plasma, respectively.
The corresponding acoustic speeds are = -C 150 km ssi

1 and
= -C 120 km sse

1, while the Alfvén speeds are

= -C 840 km sAi
1 and = -C 1900 km sAe

1. These parameters
are commonly observed in coronal loops (e.g., Aschwanden &
Boerner 2011; Reale 2014).
For the fundamental mode (n= 1), the wavelength is much

longer than the loop radius (ka= 0.13). The dispersion
relationship (Equation (13)) finds a kink mode solution with a
period at =P 3.0 minute0 (w = 0.034). We choose

=A 0.15 Pai , so that the velocity perturbation amplitude is
about -55 km s 1, and the amplitude of displacement about
1.6 Mm ( a0.4 ). The kink mode could be considered as highly
incompressible (Van Doorsselaere et al. 2008; Goossens et al.
2012); the density (temperature) perturbation is about 0.4%
(0.3%) of the equilibrium value. These parameters are
commonly observed by the TRACE and SDO/AIA instruments
(Aschwanden et al. 2002; Aschwanden & Schrijver 2011).

2.3. Forward Model

The loop system was discretized as given by Equations (14)–
(18) in Cartesian coordinates. We calculate the plasma
properties in a domain of ( ) [ ]Î -x y a a2 , 2 and [ ]Îz L0, 0
with ´ ´160 160 400 grid cells. Forward modeling was
performed with a fixed output mesh grid

´ = ´N N 170 340x y2 2

5 (see details in Yuan et al. 2015b).
In contrast to compressive MHD modes (Antolin & Van
Doorsselaere 2013; Reznikova et al. 2014, 2015; Kuznetsov
et al. 2015; Yuan et al. 2015b), the kink mode only perturbs the
density and temperature to the order of –- -10 103 4 of the
equilibrium values; therefore the effect of the contribution
function is of secondary order. The spatial distributions of the
plasma properties play a key role in determining the
observational features. So we only present the synthetic
emission of the Fe IXλ171.073Å line; however, the results
should be applicable to other optically thin lines. The Fe XII

l193.509 Å line and the AIA 171 and 193Å channel were also
synthesized, but they only produce redundant results.
The LOS is defined with two independent angles [ ]t h, (see

illustration in Figure 2), where τ is the angle between the loop
axis plane (pink plane or y z1 1-plane) and another plane (green
plane), which share a line of intersection parallel to the z1-axis.
The LOS forms an angle of h p+ 2 relative to the z1-axis (or
the line of intersection). Hereafter, we refer to [ ] 0 , 0 as top
view, [ ] 0 , 90 as side view, [ ] 90 , 0 as front view, and
[ ] 45 , 0 as oblique view for reference. Figure 3 illustrates the
synthetic views in the Fe IXλ171.073Å line at selected
viewing angles, while Figure 4 presents the spectra of the
Fe IXλ171.073Å line along a slice s perpendicular to the axis
of the loop apex at each viewing angle, which is comparable
with Figure 9 in Goossens et al. (2014). We note that the loop
cross-sectional profile could by approximated by integrating
the emissivity along a uniform media -a r2 2 2 , thus giving a
non-Gaussian profile. However, a Gaussian profile is normally
assumed and practically observed, e.g., Verwichte et al. (2005),
Aschwanden & Boerner (2011). It implies that coronal loops
could be multi-thermal (e.g., Nisticò et al. 2014a), multi-
stranded (Peter et al. 2013), or inhomogeneous (Van Door-
sselaere et al. 2004). However, the point-spread function may
also play a role, especially in low-resolution instruments.
Inhomogeneity in a coronal loop is favored by the resonant
absorption theory (Ruderman & Roberts 2002; Van Door-
sselaere et al. 2004; Antolin et al. 2015; Okamoto et al. 2015),

Figure 6. Sit-and-stare mode across the loop apex at the top view in the
Fe IXλ171.073 Å line and the measurements of loop position, width, and
intensity. The red continuous lines plot the corresponding case in the EIS
resolution.

5 We refer to the projected output plane as the x y2 2 plane.
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which was developed to explain the strong damping of kink
waves (Nakariakov et al. 1999). In this study, we do not
consider the resonant absorption layer.

3. RESULTS

3.1. Top View

Figure 5 presents snapshots of the relative emission intensity
I Im, Doppler shift velocity vD, and line width w at the top

view, where Im is the maximum intensity of the synthetic image
series in each viewing angle. At the top view, the loop
oscillates within the plane-of-sky; it is clearly seen in the
relative intensity, Doppler shift velocity, and line width
snapshots. The loop motion is not effectively observed in the
Doppler shift, as the plasma motion inside and outside the loop
is perpendicular to the LOS.
Figure 6 shows the sit-and-stare mode of a spectrograph,

e.g., Hinode/EIS, in the Fe IXλ171.073Å line. The time-

Figure 7. The same as Figure 5 but at the front view. Two crosses mark the positions at r=0 and =r a0.8 and the associated dynamic spectra are illustrated in
Figure 13.

(An animation of this figure is available.)
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distance plot (see, e.g., Yuan & Nakariakov 2012) is taken at a
cut perpendicular to the loop axis; see Figure 5. It clearly shows
the transverse loop motion with an amplitude of about 1.5 Mm
( a0.4 ); the associated intensity modulation is about 0.04.
Intriguingly, we also detect loop width (Full-Width at Half-
Maximum) variation between 7.0 Mm ( a1.7 ) to 7.4 Mm ( a1.8 );
the amplitude is about 0.2 Mm, one order of magnitude smaller
than the loop displacement. The periodicity of the loop width
and intensity variation is P 20 . The Doppler shift velocity vD is
close to zero both inside and outside the loop. Moreover, one
could also observe line broadening on the loop periphery. The
line width variation has a period of P 20 , and oscillates in
phase with the loop intensity variation. Figure 4 (right column)
illustrates this effect: the spectrum moves as a whole in space
due to the transverse motion; however, the centroid of the
spectrum remains unchanged, i.e., v 0 km sD . At the loop
periphery, one could observe significant periodic broadening.
The background emission, about 2% of the loop emission, is
associated with the quadrupole terms in Equations (27) and
(29) (see the Appendix for derivations).

3.2. Front View

At the front view, the transverse motion is along the LOS, so
the measured loop displacement is almost zero (Figure 7). The
Doppler shift velocity and line width broadening at the loop
edges are detectable. The time-distance plot (Figure 8) shows
that the loop width oscillates with an amplitude of a0.1 and a
period of P 20 . The amplitude (about a0.1 ) observed at the
front view is about twice that (about a0.05 ) measured at the top
view. Again, we detect line width broadening at the periphery
of the loop. This effect may contribute to the non-thermal
broadening that has been observed at the edge of active region
loops (Doschek et al. 2007). The associated Doppler shift
(about -5 km s 1) of the ambient plasma still exists (Figure 8);
however, in contrast to the apparent rotational motion at the top
view, the oscillation resembles a pendular motion relative to the
loop oscillation. Figure 4 (left column) illustrates this effect:
the Doppler shift on the periphery of the loop oscillates in anti-
phase with the kink motion inside the loop, but with an
amplitude of about 10% of the loop oscillation. This is
consistent with Figure 9 in Goossens et al. (2014).

3.3. Oblique View

The oblique view (Figure 9) is the most frequently
encountered observation on the solar disk. Figure 10 shows
the time-distance plot observed in the Fe IXλ171.073Å line.
Loop oscillation features at the oblique view contain a mixture
of the properties observed at the top and front views: loop
displacement, intensity modulation, and loop width vary at
moderate levels.

3.4. Side View

The side view and its variations are the most probable
viewing angles for off-limb coronal loops; see, e.g., Verwichte
et al. (2004). Figure 11 displays a complete cycle of the
standing kink wave at the side view. Loop displacement is
optimal for observation in the intensity, while the Doppler shift
is very small. The line width does not exhibit significant spatial
variation over the projected loop. However, line broadening is
significantly measurable. The maximum line width broadening
is not located at the loop apex; this is because at the apex the
plasma motion is almost perpendicular, rather than along the
LOS, and the projected fluid motion is only significant at some
distance away from the apex.
Figure 12 presents the time-distance plot at the loop apex

and the time series of the loop position, width, and intensity
variations. The times series of the transverse motion is close to
a sinusoidal profile, while in other viewing angles the loop
displacement deviates significantly from a harmonic function.
We note that at the side view, the loop width measures at
8 Mm (about a2 ), whereas other viewing angles normally do
not reveal the full width of the loop. The associated loop width
and intensity variations are very small.

4. DISCUSSION AND CONCLUSION

In this study, we discretized the fundamental standing kink
wave solution of a plasma cylinder, corrected for the fluid
advection, and mapped the solution into a semi-torus structure
to simulate the kink MHD mode of a curved coronal loop. Then
we synthesized the EUV emission in the Fe IXλ171.073Å line
and performed Gaussian fits to the spectra to obtain the
observables, i.e., the emission intensity, Doppler shift velocity,
and line width.
We find that the cross-sectional intensity distribution of a

coronal loop filled with uniform plasma does not follow a
Gaussian profile. This means that the complex coronal loop
structure has to be considered to fully synthesize loop
oscillations. More physics is associated with loop inhomo-
geneities, i.e., resonant absorption (Ruderman & Roberts 2002;
Van Doorsselaere et al. 2004), phase mixing (Heyvaerts &
Priest 1983), and mode conversion (Pascoe et al. 2010,
2011, 2012).
Loop displacement could be observed in any viewing angle

as long as the polarized motion is not along the LOS. This is
the intrinsic feature of a kink MHD wave.
Since the density and temperature perturbations are of the

order of –- -10 103 4 of the equilibrium values, the contribution
function has a negligible effect on the loop intensity
modulation. The kink mode solution could be decomposed
into a quasi-rigid transverse motion and a quadrupole term. The
quadrupole term appears in both the vx and vy components of
the transverse velocity (Equations (27) and (29)). The fluid
elements at [ ]fr, and [ ]f-r, (or equally [ ]fr, and [ ]p f-r, )

Figure 8. The same as Figure 6 but at the front view.
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outside the tube would periodically deform the r-shell in the
Lagrangian coordinate at the order of (∣ ∣ )

( )
wk

k
¢
¢ v K2 J a

K a 00 2
r

r

1 i

1 e
(see

Equations (31) and 32), which is a few percent of the loop
radius a, if the amplitude of the displacement is close to a.
Moreover, the fluid elements at f of the r-shell move to the
opposite direction (Figure 14), and thus cause spectral line
broadening. The broadening is also accompanied by intensity
suppression, as illustrated in Figure 13. At the front view, the
emission suppression at =r a0.8 is stronger than that at the

loop axis. The quadrupole term effect only becomes significant
at the loop edges, where the LOS integrates through more
ambient plasma, and has a smaller impact on the spectrum at
the loop axis, as the major contributions are from the plasma
inside the tube.
Line width broadening is usually measured in the periphery

of the loop, where ambient plasma emission is significant. It is
associated with the ( )qcos 2 and ( )qsin 2 terms in Equations (27)
and (29). The line broadening is observed at all views.

Figure 9. The same as Figure 5, but at the oblique view.

(An animation of this figure is available.)
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Figure 14 illustrates the reason: at the front view vx could vary
from positive to negative along a LOS at loop edge, whereas at
the top view vy is anti-symmetric about the xz-plane. This is
consistent with the case of a vertical transverse wave (Van
Doorsselaere & Nakariakov 2008). Doschek et al. (2007)
reported non-thermal broadening at the edge of active region
loops, and it may be connected with kink mode perturbations in
the loops. However, since there is no report of the associated
transverse motion, it may imply that coronal loops have
unresolved low-amplitude motions similar to those found by
Nisticò et al. (2013) and Anfinogentov et al. (2013).

The intensity modulation at the loop axis is usually
detectable. This differs from the findings of Cooper et al.
(2003a, 2003b), who only considered static plasma emission. In
our study, the spectrum modifications by the MHD wave
motions are considered and measured as if they are occurring in
realistic observations. This factor could contribute to the
integrated LOS intensity variation at the loop axis.

At the front view and its variations, a pendular motion is
observed. At the front view, the transverse motion of the loop
could be fully observed along the LOS, while the background
emission oscillates at an amplitude of a few percent of the loop
oscillation amplitude.

It is intriguing that the coronal loop is observed to have an
apparent periodic expansion and contraction when undergoing
a kink MHD mode wave. The optimal viewing angle to observe
this effect is the front view. The amplitude of the loop width
variation is about 20%–30% of the transverse loop motion. At
the top view, the loop width variation is about half of the
amplitude measured at the front view. At the side view, this
effect could not be observed. The loop deformation introduced
by the quadrupole terms alone is not fully responsible for the
loop width variation at such an amplitude. The line width
broadening would result in emission intensity suppression at
the loop edges, and therefore the effective width of the loop
measured in the emission intensity profile is smaller. In such a
scenario, we detect effective loop width modulation associated
with the periodic redistribution of the intensity across the loop.
Aschwanden & Schrijver (2011) reported loop cross-sectional
variations in a vertically polarized standing kink mode and
interpreted it as a signature of coupled kink and sausage modes.
In our simulation, we predict that the loop width oscillates at a
similar amplitude, but with half the period of the kink mode.
According to our modeling, Aschwanden & Schrijver (2011)
may have observed an overlap of a steady loop and an

oscillating loop of similar density and temperature distribution.
Therefore, the loop width variation could be accurately
measured. The second paper (Yuan & Van Doorsselaere
2016) in this series will present the modeling details of this
event.
In our loop system, the plasma emission of the coronal loop

is about two orders of magnitude larger than the background. If
the background emission becomes comparable to that of the
loop, the spectroscopic measurement is still valid to some
extent (Yuan et al. 2015b). However, one may opt to use
another spectral line that is much more sensitive to the plasma
emission of interest.
The resolutions of the forward models in each view are better

than those offered by current instruments, i.e., Hinode/EIS.
Therefore, to predict the possible observations with EIS, we
degrade the resolution to an EIS level ( 1 ) by averaging with
the neighboring pixel. The red time series in Figures 6, 8, 10,
and 12 represent the possible sit-and-stare observations with
EIS. The loop width is generally measured to be smaller with
low-resolution instruments, while the other parameters appear
to be a smoothed version of those measured with high-
resolution instruments, e.g., the SPICE instrument on board the
Solar Orbiter.
In this study, we only consider the specific case of a standing

kink wave in a coronal loop and synthesize the
Fe IXλ171.073Å emissions. However, it should be generally
applicable to other optically thin emission lines because in the
kink MHD mode, the perturbations to the density and
temperature are very tiny. Therefore the spatial distribution of
the velocity field plays a determining role in the observational
signatures.

The research was supported by an Odysseus grant of the
FWO Vlaanderen, the IAP P7/08 CHARM (Belspo), the
Topping-Up grant CorSeis, the GOA-2015-014 (KU Leuven),
and the Open Research Program KLSA201504 of the Key
Laboratory of Solar Activity of National Astronomical
Observatories of China (D.Y.). CHIANTI is a collaborative
project involving George Mason University, the University of
Michigan (USA), and the University of Cambridge (UK).

APPENDIX
DERIVATION OF THE QUADRUPOLE TERMS

Here we demonstrate the derivation of Equations (27) and
(29).

˜ ˆ ˆ ( )f f= - fv v vcos sin , 45x r
2 2

( )
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r w w k
f

k
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+
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We define l k= rr and ( ) l l¢ = d d . For the plasma
motion inside the loop <r a:
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Figure 10. The same as Figure 6 but at the oblique view.
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J J J

2 2
cos 2 501 2 2

( )f
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-J J cos 2
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where we used ( )l l¢ = -J J J1 1 2 and l= -J J J22 1 0 (Olver
et al. 2010) in the derivation. We followed the same procedure
and used l¢ = -K K K1 1 2 and l= +K K K22 1 0 (Olver
et al. 2010). Then we obtained the plasma motion outside the

loop >r a:
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Figure 11. The same as Figure 5 but at the side view.

(An animation of this figure is available.)
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Here, we obtain the horizontal motion,
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Figure 12. The same as Figure 6 but at the side view.

Figure 13. Dynamic spectra extracted at positions r=0 (a) and =r a0.8 (b) at
the front view, as labeled in Figure 7.

Figure 14. (a) and (b) Cross-sectional distribution of the quadrupole terms ˜[ ]vx
2 and ˜[ ]vy

2 . (c) Profiles of ˜[ ]vx
2 along the horizontal dashed line marked in (a). (d) Profiles of

˜[ ]vy
2 along the vertical dashed line labeled in (b).
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where we recalled the total pressure balance at r=a and the
dispersion relationship (Equation (13)):
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If we use the relationships ( )¢ = -J J J0.51 0 2 and
( )¢ = - +K K K0.51 0 2 (Olver et al. 2010) then we can verify

that ˜ ∣ ˜ ∣== =- +v vx r a x r a at f = 0 and π.
If we follow the same procedure and use the relationships

( h¢ = -J J J1 1 2 and h¢ = -K K K1 1 2, Olver et al. 2010), then
we can easily obtain the vertical component:
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