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Novel hybrid object-based non-parametric clustering approach for grouping
similar objects in specific visual domains

Kaya Kurua,∗, Wasiq Khanb

aSchool of Engineering, University of Central Lancashire, Preston, PR1 2HE, UK
bSchool of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, M15 6BH, UK

Abstract

Current widely employed clustering approaches may not yield satisfactory results with regard to the characteristics and
distribution of datasets and number of clusters to be sought, especially for visual domains in multidimensional space.
This study establishes a novel clustering methodology using a pairwise similarity matrix, Clustering Visual Objects
in Pairwise Similarity Matrix (CVOIPSM), for grouping similar objects in specific visual domains. A dimensionality
reduction and feature extraction technique, along with a distance measuring method and a newly established algorithm,
Clustering in Pairwise Similarity Matrix (CIPSM), are combined to develop the CVOIPSM methodology. CIPSM
utilizes both Rk-means and an agglomerative, contractible, expandable (ACE) technique to calculate a membership
degree based on maximizing inter-class similarity and minimizing intra-class similarity. CVOIPSM has been tested
on several datasets, with average success rates on downsized subsamples between 87.5% and 97.75% and between
81% and 87% on the larger datasets. The difference in the success rates for small and large datasets is not statistically
significant (p>0.01). Moreover, this method automatically determines the likely number of clusters without any user
dictation. The empirical results and the statistical significance test on these results ensure that CVOIPSM performs
effectively and efficiently on specific visual domains, disclosing the interrelated patterns of similarities among objects.

Keywords: Cluster analysis, visual object detection, feature extraction, image processing, pairwise similarity
comparison, non-parametric clustering

1. Introduction

Cluster analysis divides a set of nearby objects into categories in which objects are more homogeneous than in
other categories, based on their features and intrinsic similarities (i.e., without referring to pre-trained datasets). Clus-
tering is of increasing importance owing to the quickly growing number of large databases in every discipline, most of
which are in multidimensional space and beyond human comprehension. Clustering algorithms are applied in a wide
variety of domains and in a remarkable number of different disciplines – such as astronomy, medicine and genetics,
biology and zoology, marketing, and geography – that require similarities to be distinguished from dissimilarities.
Furthermore, we live in a digital world in which the number of visual datasets is increasing logarithmically and thus,
the demand for better clustering techniques specific to visual datasets has risen considerably. Researchers are often
more interested in grouping visual datasets based on the specific objects they contain, instead of on whole images.
Therefore, new methodologies should be established to handle the particularities of working with rapidly growing
datasets, i.e., first, clustering a set of objects into the desired number of groups without supervised dictation and
second, correctly accommodating objects in these groups. Our methodology is presented in phases and its merits are
demonstrated for sample visual objects belonging to different databases whose characteristics differ in several respects
in order to quantify the results.
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Broadly, our method combines conceptual understanding of a novel hybrid methodology using a dimensional-
ity reduction technique for feature extraction and selection and a distance measuring technique for calculating the
similarities among objects are merged with a new method, Clustering in Pairwise Similarity Matrix (CIPSM), for
unsupervised partitioning of objects. The notation used throughout the paper for the proposed hybrid methodology
is Clustering Visual Objects in Pairwise Similarity Matrix (CVOIPSM). The methodology is presented, along with a
general framework and a roadmap for clustering objects in visual domains, and its implementation is separated into
two components: the first acquires features and the distances/similarities between these features and the second clus-
ters objects using these similarities. A variety of techniques is required for good object detection, feature selection,
and distance measurement among objects in different visual datasets. Thus, these steps are separated from the clus-
tering component to allow users to cluster datasets whose features and distances are acquired using different methods.
Therefore, the user can choose other techniques for the first part based on the characteristics of the visual domain
being studied. Moreover, the clustering component, CIPSM, is general and can be performed alone for unsupervised
clustering of not only visual datasets, but also any dataset. This methodology is tested on four datasets from three
databases. Clustering success is evaluated using an external quality measure technique that compares the clusters
produced by our methodology to known classes already in the related dataset domains.

The structure of this paper is as follows: Section 2 discusses related studies, Section 3 unveils the conceptual
framework of the proposed methodology, Section 4 presents the datasets and the study design for evaluating the
proposed methodology, the results are explained in Section 5, and finally, Sections 6 and 7 discuss and conclude the
findings in this study.

2. Related literature

In this section, we briefly analyze related subjects to provide an overview of the general concepts and techniques
that have so far been deployed in image and object analysis. Our evaluation of related studies formed the basis for our
study.

2.1. Object detection in images
The specific objects or regions of interest (ROI) in an image have to be roughly distinguished from other objects

and acquired in order to perform object-based clustering. Several techniques have been used to segment specific
objects in images. JSEG uses color quantization and spatial segmentation to divide images into regions; a combination
of color and texture features is widely used for image segmentation and discerning different regions in an image [1].
This technique is successfully employed for general texture-based image clustering. However, it is less successful in
detecting specific visual objects in images, and consequently, for cluster analysis based on specific objects in images.

To this end, object-based image retrieval is employed for acquiring specific regions from images; examples of
this technique can be found in many studies, such as [2], [3], and [4]. Some of the widely used automatic ob-
ject detection techniques are template matching, scale-invariant feature transform (SIFT), speeded-up robust features
(SURF), features from accelerated segment test (FAST), binary robust independent elementary features (BRIEF), ori-
ented FAST and rotated BRIEF (ORB), maximally stable extremal regions (MSER), binary robust invariant scalable
keypoints (BRISK). Deep convolutional networks are being used for object detection as well [5]. Most of these tech-
niques give a similarity value regarding the specified number of most important keypoints and this value is utilized to
decide if there is a similarity between two objects given a threshold value. In addition, a pairwise similarity table can
be established using the similarity values acquired from these techniques for visual domains as well. Haar Cascade
files are most commonly employed for detecting an object in an image. A Haar Cascade file can be trained on a few
hundred samples of a particular object (e.g., a leaf or a face) – which is a time consuming process – or pre-trained
Haar Cascade files in the public domain can be deployed. In particular, using Haar Cascade files makes it easier to
detect more than one similar object in an image easily and quickly. In most of these object detection techniques,
a reference object is compared to the objects in images to find similar objects using a resemblance threshold value.
Likewise, we implement region-based object detection in our study, as explained in Section 3, to discern the objects
in images. More specifically, we employ Haar Cascade files where possible, a Harris algorithm and local similar
neighborhood points to detect the objects in our visual domains, as explained in Section 3.1.1. Cropping objects in
images for further analysis after designating their ROIs using automatic object detection can be implemented, with or
without background removal, as explained in Section 3.1.1.
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2.2. Feature extraction and selection, and distance measurement
Some of the feature extraction and selection techniques for visual objects are kernel PCA, independent component

analysis, probability density estimation, local feature analysis, elastic graph matching (EGM), multi-linear analysis,
kernel discriminant analysis, Gabor wavelet (GW), Fisher’s linear discriminant analysis (FLDA), and support vector
machines. In particular, EGM, FLDA, GW, and PCA have been widely employed to extract features from an object in
an image region [6]. The high accuracy of these methods for extracting features and subsequently revealing patterns
has been demonstrated in many studies. For instance, these methods can perform feature extraction and selection
with accuracy rates of up to 96% [6]. With PCA, good success rates can be obtained by detecting patterns from
images captured in ideal environments particularly with good illumination – or by employing several image processing
techniques to enhance images before feature extraction. In addition, it is computationally efficient compared with other
similar methods [7] because dimensionality reduction can be performed easily to accelerate the calculations. Thus,
we employ PCA to extract the most important features from visual objects, because of its extensive and successful
application to many datasets. In other words, we use PCA for dimensionality reduction by removing less important
information (e.g., noise and redundant datasets) before applying our clustering approach, CIPSM. Interested readers
are referred to our previous study for more information about how to implement PCA [6].

Some of the well-known approaches for measuring the distance between two points in a features dataset are
Bayesian decision theory, multiple similarity, city block, subspace, angular separation, Pearson correlation, and Ma-
halanobis, Minkowski, Canberra, Chebychev, and Euclidean distances [8]. The Mahalanobis- and Euclidean-based
distance measurement techniques are the most widely used of these approaches [8]. We tested these two methods on
the features in our visual datasets to determine the better one to use, and found that the Euclidean-based technique
outperformed the Mahalanobis one. Thus, this matching technique was selected for our study. Interested readers can
find more information about measuring the distance between the features of two visual objects in Calva’s study [9].

2.3. Cluster analysis
Cluster analysis is a very broad and wide-ranging field that cannot be covered completely in this section. There-

fore, we provide a brief summary of the general concepts of current clustering schemes (especially their shortcomings
with regard to cluster analysis of visual objects). Several well-known clustering algorithms are examined in-depth by
Bishop [10], Witten [11] and Everitt [12] in their books, as well as in other journal publications. In general terms,
centroid-based (e.g., k-means, XMeans, FarthestFirst, FilteredClusterer and c-means), hierarchical (e.g., cobweb,
CLINK, SLINK, CURE, and BIRCH), incremental, density-based (e.g., DBSCAN and OPTICS), and probability-
based (e.g., EM and Bayesian clustering) schemes predominate clustering methods.

The performance of centroid-based clustering schemes depends on the number of clusters specified [13], initial
centroid selection, and the number of iterations. A shortcoming of this scheme is that the number of clusters (i.e., k
= n [14], n singleton clusters [15]) must be dictated beforehand, and the algorithms execute clustering calculations
based on this pre-specified number; while the cluster centroids change, the members of these clusters relocate based
on the changing centroids. However, the desired number of clusters can be significantly different from the number of
clusters dictated by the user, especially for large datasets. In this case, some objects can be allocated to the wrong
clusters if the number of clusters specified is less than the desired number. The other drawback of this scheme is
that empty clusters can occur if no objects are allocated to a cluster during the membership assignment phase. These
methods suffer more when there are outliers that dramatically affect the cluster centroids over many iterations. It
should be emphasized that centroid-based clustering is not a particularly sophisticated approach for cluster analysis
of visual objects [10, 16].

Hierarchical clustering schemes consist of a series of partitions, which may run from a single cluster containing
all individuals to n clusters each containing a single individual. Hierarchical clustering techniques may be subdivided
into agglomerative methods, which proceed by a series of successive fusions (bottom-up) of the n individuals into
groups, and divisive methods (top-down), which separate the n individuals successively into finer groupings [12].
One of the drawbacks from which hierarchical schemes suffer is that divisions or fusions, once made, are irrevocable;
when an agglomerative algorithm joins two individuals they cannot subsequently be separated, and when a divisive
algorithm decomposes individuals, they cannot later be joined [12]. Every division or fusion affects the structure of
all previous clusters significantly regarding other clusters and distances between them. This merge or split decision,
if poorly chosen at any step, may lead to low-quality clusters [17, 18]. Hierarchical clustering is generally employed
in document clustering [19].
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Incremental clustering works by processing data objects one at a time, incrementally assigning data objects to their
respective clusters using a threshold value [19]. It typically uses much less space than methods that store a complete
dataset [20]. Density-based schemes partition datasets based on areas of higher density to detect cluster borders with-
out requiring the number of clusters in advance: the greater the density differences, the better the clustering. Although
they may be successful for certain types of datasets, these methods do not work effectively on many computationally
complex real-life datasets, which tend to contain small density differences among the visual objects to be clustered.
Probability-based clustering schemes employ a statistical model of the data using iterative methods. This scheme does
not work well for high dimensional datasets owing to the large number of required iterations.

Hierarchical and incremental clustering schemes generate an explicit knowledge structure that describes the clus-
tering in a way that can be visualized and reasoned about [11]. Users are more eager to see more explicit similar
clustering methods to employ on their datasets for meeting their needs, because this facilitates further investigation
and comparison with previous and emerging methods [21]. In most clustering approaches, an iterative process is
performed in which either the iteration continues until a predefined iteration count is reached or there are no changes
in the clusters [22], which is often inefficient and can fail to achieve desired results depending on the iterative count
and dataset characteristics. To summarize, the clustering schemes mentioned above are not infallible or robust, and
their advantages and disadvantages depend on the characteristics and distribution of datasets on which they are run.
Therefore, they are not suitable for all types of datasets, and consequently, mixtures of clustering techniques have
been proposed in many studies [10, 23]. There are many other clustering techniques available and each of them may
result in a different grouping of datasets and may not be effective for each type of dataset. Moreover, these clustering
techniques may not scale to large datasets because of their computational time [24] and low accuracy. Therefore,
many cluster analysis techniques are being developed for specific practical problems [25, 26], such as finding classes
of genes that have similar functions, grouping information on the Internet for different specific queries, and clustering
biomedical data [27, 28]. Likewise, new clustering approaches specific to visual domains in high dimensional space
are required in order to produce better results.

To this end, many studies are specific to cluster analysis on image datasets [29], [30], focusing on the object
shapes, joints, and localization [31]; colors [1, 32]; and texture or image segmentation [1, 33] through which image
regions are discriminated. Likewise, Karthikeyan [24] studies image clustering using content-based image retrieval
(CBIR) on whole images. He utilizes hue saturation value (HSV) color space and color histograms to acquire and
cluster color similarities. The images are then clustered according to their content and dominant colors, not the objects
they contain. Hence, the background of these images, rather than the objects in them, dominates the groupings.
Therefore, CBIR is not successful for clustering specific objects in visual domains. Chen [34] deploys a hierarchy of
clusters based on image semantics using detected objects in images and the semantic relationship between them. He
uses a bag-of-semantics model (i.e., a set of meaningful descriptors) derived from the image’s object relation network.
Images are then clustered based on several objects they contain and their relationships.

We have not encountered a comprehensive object-based cluster analysis study in specific visual domains in the
literature. It is clear from the studies in cluster analysis that none of the clustering methods can be judged to be
best in all circumstances; particular methods yield better accuracy rates for particular types of datasets [12]. It is
proven that hybrid clustering algorithms produce more efficient results than other algorithms [35]. Thus, the method-
ology presented in this study incorporates a new technique into several well-known techniques to help cluster objects,
particularly visual objects, better than the current off-the-shelf methods emphasized by some studies [36, 37].

3. Methodology

The components of our methodology, CVOIPSM, which embraces several new methods along with well-known
object clustering techniques, are explained in detail in the following section. Fig. 1 briefly articulates the overall design
of the approach. There are two main parts of the methodology: object detection and PSM (pairwise similarity matrix)
establishment ( Fig. 1, section A.1) and CIPSM (Fig. 1, A.2). CIPSM itself is composed of two parts: Rk-means
(Fig. 1, section A.2.1) and ACE (Fig. 1, section A.2.2).

The implementation of CVOIPSM is separated into two main parts. Feature extraction of objects and determining
similarities between them based on these features are performed using PCA and Euclidean distance respectively in
the first part. These methods are explained briefly in the following subsections. We present a framework for applying
several common approaches toward visual datasets to cluster analysis for specific objects in these visual domains.
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Figure 1: Abstract presentation of CVOIPSM with two parts: 1) object detection and PSM establishment and 2) CIPSM. CIPSM has two sub parts
as well: Rk-means and ACE. The functions incorporated in these main and sub parts are presented in detailed boxes of these parts. The part, A.2.1
is illustrated in Fig. 6. The part, A.2.2 (particularly the boxes 10, 12 and 14) is delineated in Fig. 7 in detail.

Interested readers can consult our previous study [6] for several basic image processing techniques (e.g., cropping,
interpolation or extrapolation, median filtering, and histogram equalization) for the preparation of image datasets.

Figure 2: Cropping a face object using
a face template. The red sections at
the corners indicate the background.

We discuss how PCA and Euclidean distance measurements work on objects ac-
quired from images to obtain pairwise comparisons in a pairwise similarity ma-
trix (PSM) in our previous study as well [6]. In the first part, in brief, the dataset
is prepared automatically for further analysis, which requires only the memory
space needed to store the PSM, O(n2). In the second part, space is required to
store both the reduced PSM, which is explained in subsection 3.2, and the group
relationships of emerging clusters, which is less than O(n2). Therefore, the total
space complexity of CVOIPSM is O(n2).

3.1. Object detection & PSM establishment
Fig. 1, section A.1, depicts the first part of the methodology. Its implementa-

tion is explained in subsections 3.1.1, 3.1.2, and 3.1.3.

3.1.1. Object detection, normalization, and background subtraction
The object detection, normalization, and background subtraction phases are

depicted in Fig. 1, A.1, numbers 1 and 2. Acquiring specific objects in images
requires specific techniques based on the objects’ characteristics. In other words,
there is no “best technique” that can be employed for every type of image and all objects in those images. Therefore,
we employ two different techniques to acquire objects from images based on the characteristics of our datasets, one
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(a) Original image (b) 1st reference object (c) 2nd reference object

(d) Object detection using 1st reference (e) Object detection using 2nd reference

Figure 3: Designation a leaf object in an image using a similar reference leaf object.

(a) Designation of the object (b) Object cropped (c) Background removed

Figure 4: Conceptual basis of leaf object cropping and background removing in an image.

of which contains faces and the other of which contains leaves. The detection of face and leaf objects in images is
illustrated in Figures 2, 3, and 4. Images with faces are cropped to include just faces – with the forehead, eyes,
cheeks and mouth – using a template, as delineated in Fig. 2. We obtain the leaf objects in images using a different
technique, employing color-based region segmentation using a reference leaf (e.g., Figures 3b and 3c). First, the
most similar areas of the leaf objects are determined by corresponding interest points between the images and the
reference leaf object with the Harris algorithm and local similar neighborhood points, as depicted by the yellow lines
in Figure 3d. This approach can be used to easily designate ROIs even with a less similar reference object (e.g.,
Fig. 3c), as depicted in 3e. Specific objects are cropped to remove unrelated sections after specifying ROIs (Fig. 4a)
using color-based region segmentation, as displayed in Fig. 4b. Better features can be acquired after removing the
background, as shown in Fig. 4c, which is analyzed in Section 4 with results presented in Section 5.

The sizes of the objects cropped or the background removed depends on the resolution, image size, and cropped
objects occupying these images. As a result, feature comparison for further processing is not possible between ob-
jects of different sizes. Therefore, the cropping stage is followed by normalizing the objects using interpolation and
extrapolation methods. All objects are initially cropped and an average mapping size is calculated. Then, all cropped
objects are scaled to this new specified size; the objects whose height and width are less than the average size are
extrapolated and the others are interpolated. Thus, each cropped object is mapped to a specified width and height.

The cropped objects are standardized by employing several image enhancement methods, such as median filtering
and histogram equalization, to ensure a standard brightness and contrast and to remove illumination variations; these
methods are explained in more detail in one of our previous studies [6]. Hence, dark or low contrast cropped objects
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are enhanced so that better features representing them can be acquired.

3.1.2. Feature extraction and selection & dimensionality reduction
The feature extraction and selection and dimensionality reduction phases are depicted in Fig. 1, A.1-3. The time

and space complexity of image datasets is high; thus, it is imperative to reduce their dimensionality and acquire the
most important common features for clustering these visual datasets better and faster. PCA is performed to extract the
most important features from cropped, interpolated, and extrapolated objects. With this technique, a set of visual ob-
jects is transformed from a high dimensional space into a lower dimensional space using several principal component
(PC) features (e.g., eigenvectors and eigenvalues). The first PC delineates the direction along which the dataset has
maximum variance, and thus is considered the most significant feature in the dataset. Each following PC in turn has
the next greatest variance and the next most significant feature. Rows of acquired 8-bit grayscale images are entered
into a column vector (I) in order to implement PCA, which runs on vectors instead of images. The vector representing
an average object, namely, the mean object (ψ), is acquired using the formula in Eq: ψ = (I1 + I2 + ... + Im)/m) where
I indicates the objects in the column vector and m represents the number of visual objects in the dataset. Then, the
unique features different from the average object vector are acquired by subtracting the mean vector from each object
vector (θi = Ii − ψ). A covariance matrix is further calculated using these unique features to generate a subspace of
reduced dimensionality. Eigenvectors are generated using the covariance matrix (C) as C = AAT for real space and,
C = AT A for subspace where A = [θ1, θ2, θ3, ...θm]. Single value decomposition is performed to acquire the most
significant eigenvectors with the equation A = UDVT , where D corresponds to the diagonal (σi singular values of A),
U corresponds to the eigenvectors of AAT for real space, and V corresponds to the eigenvectors of AT A in subspace.
The most significant k eigenvectors with the largest eigenvalues are selected to run on subspace to reduce noise in the
data, as well as to significantly reduce the calculation burden. In other words, the eigenvectors correspond to the di-
rections of the new coordinate axes and the eigenvalues correspond to the variance in each corresponding eigenvector.

PS M =



O1 O2 O3 O4 ... On
O1 1.00 S (O1 ,O2) S (O1 ,O3) S (O1 ,O4) ... (S O1 ,On)
O2 S (O2 ,O1) 1.00 S (O2 ,O3) S (O2 ,O4) ... S (O2 ,On)
O3 S (O3 ,O1) S (O3 ,O2) 1.00 S (O3 ,O4) ... S (O3 ,On)
O4 S (O4 ,O1) S (O4 ,O2) S (O4 ,O3) 1.00 ... S (O4 ,On)
... ... ... ... ... ...

On S (On ,O1) S (On ,O2) S (On ,O3) S (On ,O4) ... 1.00



Figure 5: PSM: the columns and rows indicate the objects and the cells
indicate the similarity between intersecting objects. For instance, S (O1 ,O2)
shows the similarity between objects 1 and 2. Orthogonal cells have a
value of 1.00, since the similarity between two identical objects is 100%.

The eigenvectors with the largest eigenvalues are the
most dominant PCs of the dataset; the eigenvectors
with the lowest eigenvalues have little information
about the characteristics of the datasets, and thus, re-
moving these eigenvectors does not greatly affect our
feature data, but considerably simplifies it without
much information loss. In this manner, the objects
in the dataset are symbolized by a reduced k num-
ber of eigenvectors. Weight vectors are described as
[w1,w2,w3...wk], where w1 corresponds to the con-
tribution of the first eigenvector to regenerate the ob-
jects. Each object can be reproduced from the sum
of the weighted sum of these k eigenvectors and the mean object by means of vector space. Distance calculations
are carried out between the weight vectors of the input object and those of the other objects in the dataset, and are
described in the following subsection.

3.1.3. Distance calculations between objects & PSM construction
The distance calculation and PSM construction phases are depicted in Fig. 1, A.1-4 and A.1-5. Euclidean distance

measurement is employed to acquire pairwise distances between all objects by considering the acquired features
mentioned in subsection 3.1.2. The similarity values of each object to the other objects in the dataset are calculated
and a pairwise similarity matrix (PSM) is established that comprises all the pairwise similarity values between the
objects in the dataset. Euclidean distance measurement results in the determination of how different an object is
from the other objects by means of a total sum of the differences between the weight vectors of the input image

D(m−1)
1

{
D1,D2...D(m−1)

}
=

(m−1)
1


∑k

n=1

∥∥∥Itwn − Itmn

∥∥∥2

k




(1)

and those for other objects. All PCs of the input object are repre-
sented as a weight vector, [w1,w2,w3...wk], and these are compared to
the weight vectors of the other objects in the dataset. Eventually, the
value acquired in each comparison corresponds to how different two ob-
jects are. The calculation formula for acquiring the distances between
the input object and other objects is depicted in Eq. 1 [6] where D is
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the column array that holds distances between the input object and the other objects, m is the number of ob-
jects, Itwn

represents the constant weight values in the weight vectors of the input object with respect to all other
objects, whereas Itmn

represents the weight values of other objects in the dataset, and k is the number of the
values in a weight vector. The equation above is run for each D vector from 1 to m. In D vectors, the ac-
quired distance values (m - 1, except the input object itself, whose distance equals zero), each of which repre-
sents the distance between the input object and the other objects in the dataset, are mapped between 0 and 1.
Then, these values are subtracted from the value of 1 to determine how similar two objects are, rather than how
different they are. All these values are placed in a PSM whose junction points of columns and rows are the similarity
value of two objects. A PSM that has two identical sections separated diagonally from the leftmost upper cell to the
rightmost lower cell is illustrated in Fig. 5 (Table A.5). The properties of PSM are explained with more examples in
the following sections.

3.2. Cluster analysis (CIPSM)

Figure 6: Rk-means method: Rk-means runs on the first column of Table A.5 by
excluding the cell with a value of 1. Four clusters, numbered 1-4, are established.
The method compares the values of the first objects in each cluster to find the
cluster that has the largest similarity value: object, 1b, with a value of 0.5375,
has the largest value when compared to the values of objects 2a, 5b, and 2b in
other clusters. Thus, the objects in cluster 4 are retained in their cells, while
the other objects in clusters 1-3 are removed from their cells. Finally, the object
with a value of 1, 1a, is added to the remaining cluster, cluster 4. The reason for
excluding the object with a value of 1 is that this value dramatically effects the
centers of the clusters in such a way that it can be set alone in a cluster with all
other cells removed from the column, which is not a desired result.

The second component of CVOIPSM em-
ploys a new method, CIPSM, in which ob-
jects that most highly resemble each other are
brought together while dissimilar objects in
emerging clusters are singled out and each ob-
ject is assigned to a specific nearest group in
expanding and contracting groups by follow-
ing a novel pattern. CIPSM combines Rk-
means and ACE methods, as depicted in Fig. 1,
A.2.1 and A.2.2. The CIPSM method pseudo
code is presented in Algorithm 1. First, Rk-
means, where k = 4, is run on a PSM and
the least similar objects are removed from the
PSM columns to reduce computation cost and
to reveal a similarity pattern among objects. In
other words, Rk-means is carried out to help
reveal the interrelated patterns among objects,
as well as to alleviate the cost of further cal-
culations. Rk-means works similarly to the k-
means method (or Lloyd’s algorithm), but in a
new understanding which is explained in sub-
section 3.2.1. The second part of the CIPSM
approach, ACE, executes the final object clus-
tering, discussed in subsection 3.2.2 with fig-
ures, tables, and pseudo codes. The executable
files used in this subsection are included in the
supplementary materials for users who would
like to test the CIPSM method for their datasets
as well as ours, which can also be found in the
supplementary materials.

3.2.1. Reducing PSM using Rk-means
The PSM reduction phase using Rk-means

is depicted in Fig. 1, A.2.1, numbers 6, 7, and
8. Rk-means regards each column in the PSM
separately for clustering and in four indepen-
dent groups with respect to similarity values
using k-means. Then, the objects in the three
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groups with the lowest similarity values are removed from the columns and only the objects in the group that has the
highest similarity values remain in their cells. Our tests on several datasets substantiate that the four is the ideal num-
ber of groups for clustering objects to obtain one group of the most similar objects. An example employing Rk-means
on the first column of Table A.5 is delineated in Fig. 6. In this example, the similarity values are clustered in four
groups and only cluster 4, which has the most similar objects (1b, 1c, 1d, 4a, 4b, 4c and 1a) remains in the column;
cells pointing out objects in other clusters (1, 2 and 3) are set to null. The 80% reduction in search space increases the
efficiency of the ACE method, which is run following Rk-means. An example of a reduced PSM (rPSM) on which
Rk-means is run is presented in Table A.5, with the remaining objects in columns and rows corresponding to white
cells. The execution of Rk-means is explained in the CIPSM user manual in the supplementary materials.

3.2.2. Agglomerative, contractible, expandable (ACE) cluster analysis
The agglomerative, contractible, expandable (ACE) phases of cluster analysis are depicted in Fig. 1, A.2.2, num-

bers 9-15. The ACE method (the second component of Algorithm 1) is performed on the remaining cells in the rPSM
to achieve the final clustering using the implicit interrelated similarity patterns among the objects. In a broader sense,
ACE unveils these patterns of objects using the cell values of the rPSM, independently of object position. ACE re-
veals a degree of membership based on maximizing inter-class similarity minimizing the intra-class similarity. In
other words, the similarity within a group is strengthened and the dissimilarity between the groups is made stronger
after initial cluster assignment. ACE is a three-phase clustering technique. Each attribute of ACE – agglomerative,
contractible, and expandable – inspects the others to find and remedy any weak memberships within established clus-
ters; then, it converges to a well-separated solution. In most clustering algorithms, overfitting occurs as a result of the
uncertainty in datasets. In this case, the most appropriate way to avoid overfitting and assign these objects to clusters
is to find the minimum distance (maximum similarity) from the overfitted objects to the candidate clusters rather than
using a threshold value, as in most clustering approaches, such as incremental clustering. In this way, the overfitted
objects are incorporated into the closest clusters while they are removed from other clusters. To avoid overfitting,
clustering is performed so that similar images are brought together and each object is assigned to a specific group.
With this method, clusters are singled out beginning from the leftmost and then from the rightmost columns of the
srPSM consecutively, and cells in the srPSM are set to null as new clusters are established; subsequent clusters are
searched through the cells of the srPSM until all the cells are set to null. The conceptual framework of the algorithm
is outlined in Fig. 7 and the phases are explained in the following paragraphs in detail with figures and tables.

First, ACE establishes an srPSM (i.e., the outcome of Rk-means) by placing values in cells whose diagonally
symmetric counterparts have values. Our method works on two similar sections of the symmetric srPSM. Interested
readers should refer to the second part of Algorithm 1 (− > Establish a diagonally symmetric rPSM) to visualize the
symmetrical assignment. If n objects to be clustered are defined by a set O: O = O1,O2,O3, ...,ON where N is the
number of objects to be clustered and Oi is the representation of object i. The srPSM elements can be defined as S i j =

Similarity[OOi , OO j ] where S i j = S ji. Thus, the srPSM is N x N in size. The matrix has a unit value of 1 in diagonal
entries, Sij = 1, where i = j because these entries compare an object to itself. The cells denoted as (OOi ,OO j ) and
their symmetric cells, (OO j ,OOi ), which have the same similarity value based on the symmetrical positioning of cells.
The aim of establishing the srPSM is to gain back valuable similarities that are already set to null in the rPSM during
the execution of Rk-means. With full symmetry, the ACE method results in the same outcome when referencing the
columns or rows of the srPSM. Following srPSM formation, two sets of clusters are formed independently, one of
which is acquired by detecting the patterns from the leftmost column and the other from the rightmost column of the
srPSM, as shown in Algorithm 2. With the ACE method, the properties of the srPSM are exploited and objects are
assigned to clusters in which their similarity values are greatest rather than changing centroids, as is implemented in
several well-known cluster analysis methods. The conceptual basis of the agglomerative aspects of cluster formation
is presented in Table 1 for the first cluster of the Tarrlab female face dataset. In this table, especially in step 13, the
interdependencies in the srPSM represent a kind of selection criterion desirable for clustering. The ACE method finds
the most likely set of clusters using the steps explained in Table 1. The distance from one object to the others plays
a major role for assembling objects to form two sets of clusters. The method chooses as many candidate clusters as
possible in terms of the agglomerative attribute. Within this phase, ACE treats each object as a singleton cluster and
merges the closest singleton clusters to establish new clusters. The executable file, smLeftRight cont.exe, can be run
to visualize this property, as explained in the CIPSM user manual in the supplementary materials.

The outcome files of clusters obtained from the left and right sides of the srPSM for the Tarrlab female face dataset
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Figure 7: Conceptual framework of the CIPSM method: Employing Rk-means on the PSM to simplify it and obtain a reduced similarity matrix
is the first step of the CIPSM method, which is not shown in this figure. Clustering begins from the left of the rPSM. A fully symmetric rPSM
(srPSM) is constructed, which is shown at the beginning of Algorithm 1. An example of a fully symmetric table is Table A.6. Then, clusters
are created starting from the leftmost and rightmost columns of the srPSM depicted in Algorithm 2 (steps 1-18). A conceptual understanding for
creating the first cluster from the leftmost column of the srPSM is presented in Table 1 and an example of the clusters created from the left and right
of the srPSM is presented in Tables A.7 and A.8. Some of the clusters are merged together from single-member clusters if they are close to each
other, which is depicted in Algorithm 3 (steps 20-26). An example of merging clusters obtained from the left and right of the srPSM is presented
in Tables A.9 and A.10. The customization of these two tables is presented in Table A.11. The two sets of final clusters acquired from the leftmost
and rightmost of the srPSM are forged together until the two sets are equal to each other, which is shown in Algorithm 4 (step 27). An example of
the forged cluster sets obtained from the left and right of the srPSM is presented in Tables A.12 and A.13. The customization of these two tables is
presented in Table A.14.
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Table 1: Cluster establishment using the agglomerative attribute of the ACE method (the initial steps in the procedure,
find clusters in matrix(ascending), in Algorithm 2). The first cluster starting from the left of the PSM for Tarrlab female face objects in Table A.5
is established step-by-step in a conceptual framework.

Stages Instructions Specification and calculations Outcomes of calcula-
tions

1 Clustering begins from the leftmost column of the srPSM.
2 The leftmost column that has cells with a non-null value is spec-

ified.
1a

3 All the rows whose cells have a non-null value in the specified
column are singled out.

1a, 1b, 1c, 1d, 4a, 4b, 4c, 4d

4 The row with the largest value of the non-null cells in the left-
most column from the previous step is determined.

1a1.00 > 1c0.63 > 1d0.59 > 1b0.54 > 4b0.53 > 4a0.49 > 4d0.48 > 4c0.44 1a1.00

5 Non-null cells in the row specified in the previous step are re-
vealed.

1a, 1b, 1c, 1d, 4a, 4b, 4c, 4d

6 The values of the cells designated in the previous step are com-
pared to the values of non-null cells throughout their columns.
The values in these cell are retained if they are the largest in
value, otherwise they are deleted from the sequence, as well as
from the srPSM.

1)for the column 1a1.00 : 1a1.00 > 1c0.63 > 1d0.59 > 1b0.54 > 4b0.53 > 4a0.49 >
4d0.48 > 4c0.44; 2)for the column 1b0.54 : 1a0.54 < 1b1.00; 3)for the column
1c0.63 : 1a0.63 < 1c1.00; 4)for the column 1d0.59 : 1a0.59 < 1d1.00;5)for the
column 4a0.49 : 1a0.49 < 4a1.00; 7)for the column 4b0.53 : 1a0.53 < 4b1.00; 7)for
the column 4c0.44 : 1a0.44 < 4c1.00; 8)for the column 4d0.48 : 1a0.48 < 4d1.00

1)1a:retained;
2)1b:removed;
3)1c:removed;
4)1d:removed;
5)4a:removed;
6)4b:removed;
7)4c:removed;
8)4d:removed

7 The current sequence is formed with the remaining cells and the
other cells are set to null in the PSM and removed from the se-
quence.

Sequence: 1a

8 Other rows containing the sequence acquired in the previous step
are searched for in the srPSM.

1b, 1c, 1d, 4a, 4b, 4c and 4d have values in the columns of the sequence (1a) 1b, 1c, 1d, 4a, 4b, 4c,
4d

9 Of the current sequence, the row having the largest value at the
intersecting non-null cells is singled out.

1c0.63 > 1d0.59 > 1b0.54 > 4b0.53 > 4a0.49 > 4d0.48 > 4c0.44 1c0.63

10 The non-null cells in the row designated in the previous step are
compared to those of the other cells in their columns. The object
in a cell is added to the current sequence if it has the largest
comparative, otherwise it is set to null in the srPSM.

The non-null cells in the row, 1c, following the sequence, 1a, are 1b, 1c, and
1d. The cell at the intersection column of 1c has the biggest value (1.00). Thus,
1c is added to the sequence, while the other cells in the row (1b, 1d) are set to
null.

Add 1c to the previ-
ous sequence (1a)

11 The remaining values in the previous step are added to the se-
quence.

Sequence: 1a, 1c

12 Other rows containing the same sequence acquired in the previ-
ous step are searched for in the PSM (repeating step 8 above).

Rows 1b and 1d have values in the columns of the sequence (1a, 1c) 1b, 1d

13 The row having the biggest value in the non-null intersecting
cells of the current sequence is singled out (repeating step 9
above).

-For 1b: 1a0.54 + 1c0.55 = 1.09; -For 1d: 1a0.59 + 1c0.65 = 1.24; 1d has the
biggest value in total.

1d1.24

14 The biggest value at the row selected in the previous step follow-
ing the current sequence is specified.

The cell that has the largest value following the sequence (1a, 1c) in row 1d is
1.00 at the intersection with column 1d. The other cells in row 1d (1b, 4a, 4b,
4d) are set to null, except for the sequence (1a, 1c, 1d).

Add 1d to the previ-
ous sequence (1a, 1c)

15 The remaining objects in the previous step are added to the se-
quence.

Sequence: 1a, 1c, 1d

16 Other rows containing the same sequence acquired in the previ-
ous step are searched for in the PSM (repeating step 8 above).

Row 1b has values in the columns of the sequence (1a, 1c, 1d) 1b

17 The row with the largest value in the intersecting non-null cells
of the current sequence is singled out (repeating step 9 above).

For 1b: 1a0.54 + 1c0.55 + 1d0.44 = 1.53; 1b has the largest value, as it is the only
object in the calculation.

1b1.53

18 The largest value in the row selected in the previous step follow-
ing the current sequence is specified.

The biggest value following the sequence 1a, 1c, 1d in row 1b is 1.00 at the
intersecting cell of column 1b. The other cells in row 1b (none) are set to null
except for the sequence (1a, 1c, 1d, 1b).

Add 1b to the previ-
ous sequence (1a, 1c,
1d)

19 The remaining objects in the previous step are added to the se-
quence.

Sequence: 1a, 1c, 1d, 1b

20 Other rows containing the same sequence acquired in the previ-
ous step are searched.

No row has the same objects in the columns of the sequence (1a, 1c, 1d, 1d). Assign the sequence
as a cluster.

21 There is no other row embodying the previous sequence that
turns out to be a cluster. Set all the cells in the rows and columns
of the members in the currently established cluster in the srPSM
to null.

-All the cells in the rows and columns with the object names 1a, 1b, 1c, and 1d
are set to null; Establish the cluster: the cluster with its column object names
1a, 1b, 1c, 1d are set to 1 in a randomly selected empty row of a table that is as
big as the PSM since the cluster count can be, at most, the count of objects to
be clustered.

Cluster:
1a, 1b, 1c, 1d

11



are presented in Tables A.7 and A.8, respectively. The number of clusters before applying the contractive attribute is
11 for the left side and 10 for the right. The contractive attribute proceeds inversely, such that the members in clusters
are evaluated and some clusters are merged, starting from single-member clusters depending on their similarity to
ensure the coherency of members in candidate clusters, as shown in Algorithm 3. First, objects in single-member
clusters are assigned to the nearest cluster based on the principle in cluster analysis that an object should be grouped
with at least another object [11]. The nearest cluster for an object in a single-member cluster is determined using the
cell that has the largest value in the same row/column in which this object is located. Thus, these objects in single-
member clusters are assigned to clusters whose members have the largest value in the same rows/columns as these
objects. By this phase, all single-member clusters are merged with other clusters. Second, for clusters with more than
one member, the similarity/proximity values of objects within the cluster play a major role in merging some of these
clusters. Thus, some of the objects in emerging clusters are added to the nearest clusters with similar objects without
taking account of cluster centroids. Each member of any cluster with two or more members is assigned to some other
target cluster if and only if each and every member of this cluster points to the same target cluster, as it is defined
for single-member clusters; otherwise, it is accepted as a cluster in its current state. In other words, some emerging
clusters are merged if each and every object in the cluster shows similarity to another cluster at the same time. The
implementation to run for constructing two sets of clusters, including the merging phase mentioned above, with an
executable file, smLeftRight cont.exe, is explained in the CIPSM user manual in the supplementary materials.

An example of the outcome of the executable file, smLeftRight1, for the left and right files is presented in Ta-
bles A.9 and A.10. The number of clusters for the left file is 9, two less compared to Table A.7 and 10 for the right
file, the same as in Table A.8, meaning that there is no merging of clusters obtained from the right of the srPSM.
As a result of the contractive attribute of the method, the members of two previous clusters are merged into clusters
obtained from the left of srPSM using the distance between the two closest data points in the clusters: the one-member
cluster, 24, that contains the object 6d is assigned to cluster 23, and the two-member cluster, 38, that contains objects
10a and 10b, is merged with cluster 33. For the one-member cluster, 24, the algorithm searches through the column
of 6d to find the largest similarity value in the original TableA.5. It finds that object 6b has the largest similarity value,
0.60. 6b is in cluster 23, as can be seen in Table A.7; thus, 6d is transported to row 23 to form a cluster with the
objects, 5c, 6a, 6b, 6c, and 6d, as can be seen in Table A.9. For the two-member cluster, 38, the algorithm searches
through the columns of 10a and 10b to find the largest similarity values in the original TableA.5; note that the algo-
rithm does not take the value into consideration in the intersection of 10b for the search of 10a and vice versa 10a for
the search of 10b, because they are already in the same cluster. During this search, the algorithm finds that object 10d
has the largest similarity value, 0.63, to 10a; 10d is in cluster 33. The largest similarity value to object 10b is 0.55,
for object 10d; 10d is in cluster 33, as can be seen in Table A.7. Both objects in cluster 38, 10a and 10b, designate
cluster 33 as a target at the same time. Therefore, 10a and 10b are transported into row 33 to form a cluster with the
objects in this row, as can be seen in Table A.9. Thereby, the number of clusters, 11, becomes 9 after the contractive
attribute of the ACE method. For the clusters obtained from the right of the srPSM, there is no one-member cluster
in Table A.8, but there is a two-member cluster in row 25, with objects 7a and 7b. For the two-member cluster 25,
the algorithm searches through the columns of 7a and 7b to find the biggest similarity values in the original TableA.5;
note that the algorithm does not take the value of 7b into consideration during the search of 7a and vice versa, because
they are already in the same cluster. During this search, the algorithm finds that object 7a is most similar to 7c, with
a similarity value of 0.49; 7c is in cluster 27. The largest similarity value for object 7b is 0.62, for 7d; 7d is in cluster
28, as can be seen in Table A.8. Objects 7a and 7b, in cluster 25, designate different clusters, namely 27 and 28, as
targets. Therefore, objects 7a and 7b keep their position as cluster 25. Likewise, other clusters with more members are
examined for merging, however, the possibility of merging decreases as the number of members in clusters increases.

In the expansive attribute of the algorithm, which finalizes the number of clusters and the elements in each, the
clusters in the two sets are paired and the members of these two cluster sets are forged together to yield one set of
clusters based on similar clusters in the two sets and the degree of coherence of the elements in these clusters, as
shown in Algorithm 4. Bad decisions from previous phases are processed and correction schemes are employed in
this phase. That is to say, an object remains in a cluster where the other members in the same cluster are closer to it

1The executable file smLeftRight embraces both the agglomerative and contractible features of the ACE technique; thus, there is no need to
perform the executable file smLeftRight cont.exe, which includes the agglomerative portion of the ACE method. This executable file was created
to visualize the agglomerative attribute of the method, how it works, and what the result is after the agglomerative phase.
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Figure 8: Frontal faces belonging to 10 Caucasian females (left) and males (right) from the Tarrlab
database, 4 for each person. Each image is numbered such that a1-a4 refer to the images in the first
row, whereas j1-j4 are used to refer to images in the last row for both females and males.

than they are to the other ob-
jects in other clusters if this
object appears in a cluster in
the first set different from its
counterpart cluster in the sec-
ond set; otherwise, this ob-
ject is transported into the
other cluster, one of whose
members is more close to it.
Thus, members assigned to
clusters may be relocated to
group them with the correct
objects nearby. First, the
patterns of clusters are com-
pared across the two cluster
sets to determine the differ-
ences; objects are assigned to
the nearest clusters in these
two sets of clusters and some
new clusters are created to
equalize the number of clus-
ters in the two sets. A clus-
ter in one set is split into two
clusters if two clusters in the
other set point to this cluster
at the same time as a counter-
part cluster; in other words,
the most similar cluster con-
taining the most similar ob-
jects. These processes last
until the two sets equal each
other in cluster number and
the objects in these clusters.
Forging two sets of clusters
into one is performed with
an executable file, smFinal-
Result.exe, as explained in the CIPSM user manual in the supplementary materials.

Output files after the ACE method is finalized are cluster left result.csv, obtained from the left side of the srPSM
and cluster right result.csv, obtained from the right side of the srPSM. Clusters presented in these files are same but
in different rows, since the method runs until the two sets are equal to each other in terms of columns. An example
of forging two cluster sets, one obtained from the left and the other obtained from the right of the srPSM, is depicted
in Table A.11 for the Tarrlab female face dataset in Fig. 8. There are two cluster sets in this table. These two sets are
customized by removing the empty rows in Tables A.9 and A.10. The clusters in different rows and the objects in these
clusters obtained from the left and right of the srPSM are not same in terms of the columns and groupings. The differ-
ences in these two sets refer to the counterpart clusters in the other. A counterpart cluster may harbor more objects than
its counterpart cluster. For instance, the counterpart cluster of 1 in the first set is cluster 2 in the second set. Cluster 2 in
the second set has three objects from cluster 1 in the first set. The first object, 1a, in cluster 1 in the first set is assigned
as a different object. Likewise, for the second set, cluster 1 points out cluster 4 in the first set as its counterpart cluster;
1a in cluster 1 in the second set is assigned as a different object. All the differences are mapped in dark grey cells.
These marked objects are assigned to their nearest clusters. The nearest cluster for an object is determined using the
cell that has the biggest value in the same row/column where this object is positioned in the original PSM TableA.5.
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Figure 9: Frontal faces belonging to 10 females (left) and males (right) from the FEI database.

For instance, object 1a points
to object, 1c, with the largest
value of 0.63. Object 1a is al-
ready in cluster 1, in which
1c is located, so this object
remains in the same clus-
ter. Otherwise, it would be
transported to the cluster in
which 1c is located. Simi-
larly, the other dark grey ob-
jects signed as different are
searched in TableA.5 in the
two sets. As a result, for the
first set, 3c points out object
3b, with a value of 0.48, and
retains its cluster; 5b points
to 5a, with a value of 0.53,
and retains its current cluster;
5c points to 5b, with a value
of 0.48, and is transported to
cluster 8, in which 5b is lo-
cated. By the same token,
5d, 7c, 7d, 9d remain in their
clusters and 8c is transported
to cluster 8. The objects
transported to new clusters
are marked with a check sign
for both sets in Table A.11.
This phase is repeated un-
til there is no transportation.
Our experiments on several
different visual datasets show
that the objects of the clusters
in the two sets can converge
to their stationary transported points, as depicted in Table A.11 in several steps, usually at the first step without iter-
ation, because the same original PSM is referenced to decide on object transportation. The expansive attribute of the
ACE method is finalized after this moment, where there is no transportation, but differences remain between the two
sets. As can be seen in this example, the number of clusters is different in the two sets (i.e., the number of clusters is
9 for the first set and 10 for the second): the differences are all transported to some other empty row to form a new
cluster, as seen in row 40 in Table A.12. Consequentially, the two sets turn into the exact same sets. To equalize the
number of clusters for these two sets after previous transportations, the objects signed as different would be 5b, 5c,
and 5d in cluster 8 in the first set and these objects are transported to any other empty row to form a new cluster, by
which these two sets become the same in terms of the number of clusters and objects in these clusters, as shown in
Table A.14.

The idea behind the mixture of agglomerative, contractible and expandable attributes is to correct previous wrong
decisions, so that high-quality clustering can be achieved. Clustering terminates and the final clustering result is
reached at number 15 in Fig. 1, after the ACE phases are completed. ACE converges to a well-partitioned solution
from a weaker grouping to a stronger clustering following these phases employed in the ACE technique.
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4. Datasets & experimental study design

In order to test the efficacy of our proposed method, we have carried out a set of experiments on visual datasets:
three face datasets [38] – the Tarrlab, FEI, and Caltech sets – and one leaf object dataset from Caltech [39]. Each of
these four datasets is differentiated from the others by various distinctive characteristics to quantify comparative re-
sults. The Tarrlab face dataset contains multiple images for 200 individuals of different races with consistent lighting,
multiple views, and real emotions. The choice of this database is primarily motivated by both the high number of
image samples and quality of images it contains with 250 x 250 pixels and no background noise. However, many indi-
viduals in this database are disguised with wigs and sunglasses. These images were excluded from our study, because,
analyzing of individuals together with disguised samples is out of the scope of this study. In addition, many faces are
turned left or right with profile rotation of up to about 180◦. Frontal faces are captured based on the template in Fig. 2
automatically by the application depicted in Fig. 10. Profile faces can also be explored separately as explained in the
user manual that is in the supplementary materials of the manuscript. In the literature, these two subjects have been
studied in different context based on the different characteristics of their features (i.e., feature extraction algorithms
give exactly different features that cannot be compared to find a similarity between a profile sample and a frontal sam-
ple), and profile and frontal faces are not examined together at the same time because it would be neither reasonable nor
fair to compare exactly different features by targeting the same group. The total number of the remaining frontal faces
in this database is 508 for 88 individuals. The FEI face database contains a set of face images, 14 each of 200 individu-
als, with a total of 2800 images. All images have a white homogeneous background with profile rotation of up to about
180◦, 640 x 480 pixels. The images were captured under different light variation. After excluding face images of side
profiles, the number of the remaining images of the front-view of faces that we can use in this database is 800, 4 images
each for 200 individuals. The face images are in these three datasets are under different lighting, facial expression,
and background conditions. We chose the Caltech leaves dataset because this dataset consists of 186 images with 896
x 592 pixels against distinctive different backgrounds. The features of the objects in this dataset are completely differ-
ent from those of the face objects in other three datasets, which helps to better quantify the CVOIPSM methodology

Figure 10: The first component of CVOIPSM: First, the ”Train All
Databases” function implements the steps mentioned in subsection3.1. A
PSM is generated by employing the ”Establish Similarity Matrix” func-
tion, which is a learning phase on the pair matching task in which all
objects acquired from the images in one directory are put into the appli-
cation in a changing comparing set using leave-one-out cross-validation.

presented in this study in terms of its application to
different kinds of object sets.

CVOIPSM has been tested using both small and
the largest possible datasets in the databases men-
tioned above. The downsized datasets are used to ex-
plain the methodology explicitly and to better com-
pare the results, whereas the large datasets are de-
ployed to explore CVOIPSM’s performance for big
datasets. First, regarding the denominator of the
three face datasets, we use almost all the individu-
als in the smallest dataset, the Caltech face dataset,
and we use the same number images from the other
two face datasets to better compare the results and
to aid readers in understanding and implementing
CVOIPSM. In this sense, we incorporated 80 im-
ages representing 20 individuals, 4 for each individ-
ual, into our study from each of these face datasets,
totaling 240 images. The data that we wish to clus-
ter consist of two sets of images from each of these
datasets: a set of female and a set of male face im-
ages depicted in Figures 8, 9, and 11. In addition,
our methodology is run on the Caltech leaves dataset,
using 100 images in 10 groups to represent the down-
sized datasets, as displayed in Fig. 12. We have also
applied CVOIPSM to the largest possible sets from
these databases, whose results are presented in Sec-
tion 5. In this way, we aim to evaluate the efficiency
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and viability of our methodology based on accuracy results acquired from both small and large datasets.
A user-friendly interface was implemented in the C++ programming language to carry out the methods de-

scribed in subsection 3.1. A screenshot of the interface for PSM acquisition is depicted in Fig. 10. The appli-
cation (i.e., smApplication) is in the supplementary materials of the manuscript with a user manual. With these
implementations, objects in images in large datasets can be acquired in several minutes; a PSM can also be es-
tablished in several minutes based on the similarities among object features. The sample images are cropped and

Figure 11: Frontal faces belonging to 10 females (left) and males (right) from the Caltech database.

converted to grayscale, and
histogram equalization and
median filtering are performed.
Following image normaliza-
tion to a fixed size using
interpolation and extrapola-
tion methods, PCA is con-
ducted to extract the essen-
tial features from acquired
objects. The eigenfaces and
the mean image belonging
to the Tarrlab female dataset
obtained from the interface
in Fig. 10 are displayed in
Fig. 13 as an example. Eu-
clidean distance is employed
to acquire the similarities be-
tween the objects by compar-
ing their features. The ac-
quired PSM for the Tarrlab
female face dataset is dis-
played in Table A.5. Other
PSMs for downsized datasets
used in these experiments are
mentioned in the supplemen-
tary materials 2. PSMs are
generated using the interface
(Fig. 10); the implementa-
tion of the first component
of CVOIPSM is presented in
the supplementary materials
for users who would like to
test their own datasets. A
PSM is created for the Cal-
tech leaves dataset by apply-
ing PCA on the leaf objects acquired using the approach mentioned in Section 3 (Figures 3 and 4) following image
processing steps similar to those above. PSMs are constructed using cropped objects both with and without back-
ground removal (Figures 4c and 4b, respectively). The background removal technique is specified in Fig. 1, A.1-2.
In this way, we aim to highlight both the statistical significance of background removal before feature acquisition for
cluster analysis, and consequently the imperative action of obtaining better features to result in better visual object
clustering with CIPSM. The better the features, the better the CIPSM clustering results.

The second component is performed to cluster the visual objects using PSMs. In this part, Rk-means, where
k=4, is employed in the PSM columns to remove the least similar objects in three clusters while the objects in one

2as smTarFemale, smTarMale, smFEIFemale, smFEIMale, smCalFemale, and smCalMale, in .csv format

16



Figure 12: Leaves dataset from the Caltech database. Each image is numbered such that a1-a10 refer to the images in the first row, whereas j1-j10
refer to the images in the last row.

(a) Eigenfaces (b) Mean face

Figure 13: (a) Eigenfaces of 10 females that comprise 40 frontal faces from the Tarrlab dataset (Figures 8), (b) mean face(ψ).
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cluster are retained. The grey cells in Table A.5 are removed from the PSM; the remaining cells are displayed in
white. However, uncertainty in cluster assignment for most objects is evident; practically, a query point may belong
to different clusters with different membership values ranging from 0 to 1, as can easily be seen in Table A.5. The
files for the downsized datasets used in this study after Rk-means is performed are in the supplementary materials 3.
About 20% of the cells remain in the rPSM after Rk-means is run. Hence, the calculation costs are alleviated and
finally, the remaining rPSMs can be analyzed by the ACE method after establishing symmetry in rPSMs (srPSM),
as mentioned in Section 3.2. In-depth analysis is carried out with the srPSM and the exact clustering employs the
ACE method, by which the most similar images are brought together and each image is assigned to a specific group.
Eventually, clusters are established using the srPSM pattern using the values in the cells without dictating a fixed
number of clusters beforehand. The output files specified as full matrix, cluster left, and cluster right that are the
outputs of smLeftRight.exe are included in the supplementary materials 4. The output files, cluster left result.csv and
cluster right result.csv, after smFinalResult.exe is run are in the supplementary materials as well 5.

Furthermore, we tested our method on the largest possible datasets in the databases: 88 individuals with 508 frontal
faces, ranging from 4 to 9 per individual, for the Tarrlab database; 200 individuals, with 4 images per individual, for
a total of 800 frontal face images for the FEI database; and 13 types of leaf objects ranging from 10 to 18 examples
each, for a total of 186 images from the Caltech leaves database. We had already used all the individuals in the Caltech
face database as a denominator of other datasets on the downsized dataset previously. Therefore, we could not test
our method on larger datasets for this face dataset because of the limited number of images. The results obtained from
the tests were evaluated and validated using the datasets that are already classified in the databases. In other words,
we compared the obtained results to externally known information about the correct number of clusters and correct
object clustering.

5. Results

We measured the accuracy of the clustering results based on the known labels (i.e., desired results) of classes in the
databases. The final cluster outcomes of CIPSM for the downsized Tarrlab, FEI, and Caltech datasets are displayed in
Table 2 without background removal and in Table 3 with background removal.

The clustering success rates achieved without background removal (Fig. 4b) were 97.5%, 98.75%, and 80% for
the Tarrlab, FEI, and Caltech face datasets respectively and 81% for the Caltech leaves dataset, for an average of
89.31%. In addition, the number of clusters (cl) generated were 18, 20, 17, and 10 for the Tarrlab, FEI, and Caltech
faces and Caltech leaves datasets, respectively, where the desired number of clusters (cld) for face datasets is cld =

20 and cld = 10 for the leaf dataset. Conversely, clustering success rates with background removal (Fig. 4b) were
97.5%, 98.75%, and 87.5% for the Tarrlab, FEI, and Caltech face datasets respectively and 92% for the Caltech
leaves dataset, averaging 93.94% have been achieved and the number of generated clusters (cl) are 18, 20, 20, and 10,
respectively. There is no difference in accuracy with and without background removal for the Tarrlab and FEI datasets,
whose backgrounds do not change significantly, whereas there is a considerable difference in accuracy for the Caltech
datasets, whose backgrounds change considerably, between the two cases. The results of downsized datasets are
presented in Fig. 14.

The success rates on the largest possible datasets with background removal were 81% for the Tarrlab (n = 508),
83% for the FEI (n = 800), and 87.5% for the Caltech leaves dataset (n = 186). The number of clusters for the Tarrlab
face, FEI face, and Caltech leaves datasets were cl = 73, cl = 183 and cl = 11, respectively, where cld = 88, cld = 200,
and cld = 13. Accuracy on both downsized and full datasets with background removal are summarized in Fig. 15.

3as TarFem Rk Means, TarMale Rk Means, FEIFem Rk Means, FEIMale Rk Means, CalFem Rk Means, and CalMale Rk Means, in .csv
format.

4as TarFem full matrix, TarFem cluster left, TarFem cluster right, TarMale full matrix, TarMale cluster left, TarMale cluster right,
FEIFem full matrix, FEIFem cluster left, FEIFem cluster right, FEIMale full matrix, FEIMale cluster left, FEIMale cluster right,
CalFem full matrix, CalFem cluster left, CalFem cluster right, CalMale full matrix, CalMale cluster left, and CalMale cluster right in
.csv format.

5as TarFem cluster left result, TarFem cluster right result, TarMale cluster left result, TarMale cluster right result,
FEIFem cluster left result, FEIFem cluster right result, FEIMale cluster left result, FEIMale cluster right result, CalFem cluster left result,
CalFem cluster right result, CalMale cluster left result, and CalMale cluster right result, in .csv format.
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Table 2: Final clustering of downsized datasets acquired using CVOIPSM: No background subtraction is applied to the acquired objects. Objects
represented by bold letters are not clustered correctly. Clusters for females (left), males (right), and leaves (far right). Two images (e1 and i1) are
grouped in the wrong clusters for the Tarrlab female images, which corresponds to a 95% success rate. All images are grouped correctly for the
Tarrlab males, 100%, if you exclude clusters 2 and 8, in both of which two people are grouped together. The mean success rate for females and
males in the Tarrlab dataset was 97.5%. The desired number of clusters, 10, was correctly generated for females; but the number of clusters for
males was 8, lacking 2 clusters in total. Likewise, the success rate for FEI females was 97.5% with 10 desired clusters, whereas it was 100% with
10 desired clusters for FEI males, averaging 98.75%; accuracy was 72.5% with 8 clusters for Caltech females, whereas it was 87.5% with 9 clusters
for Caltech males, averaging 80%. The clustering of Caltech leaves resulted in 81% accuracy with 10 clusters.

Cluster # Tarrlab females Tarrlab males FEI females FEI males Caltech females Caltech males Caltech leaves
1 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4,f1,f2,f3,f4 a1,a2,a3,a4,j1,j2,j3,j4,h3,i2,c4 a1,a2,a4,a5,a6,a7,a9,a10,d4,d8
2 b1,b2,b3,b3 b1,b2,b3,b4,i1,i2,i3,i4 b1,b2,b3,b3 b1,b2,b3,b3 b1,b4 b1,b2,b3,b4 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10
3 c1,c2,c3,c4 c1,c2,c3,c4 c1,c2,c3,c4 c1,c2,c3,c4 c1,c2,c3 c1,c2,c3,c4,c5,c6,c7,c8,c9,c10
4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3 d2,d3,d4,h1 d1,d2,d3,d5,d6,d7,d9,d10,a3,a8
5 e2,e3,e4 e1,e2,e3,e4 e1,e2,e3,e4,f1 e1,e2,e3,e4 e1,e3 e1,e2,e3,e4 e1,e2,e3,e4,e5,e7,e9,f6
6 f1,f2,f3,f4 f1,f2,f3,f4 f2,f3,f4 f1,f2,f3,f4 f1,f2,f3,f4 f1,f2,f3,f5,f7,f8,f9,f10,e6,e10,g4,g10
7 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g4,c1,e2,e4 g1,g2,g3,g4 g1,g2,g3,g5,g6,g7,g8,g9,f4,e8
8 h1,h2,h3,h4 h1,h2,h3,h4,j1,j2,j3,j4 h1,h2,h3,h4 h1,h2,h3,h4 h2,h3,h4,b3,c2,d4 h2,h4,d1 h1,h2,h3,h7,h8,h9,i3,i9,j6,j8
9 i2,i3,i4 i1,i2,i3,i4 i1,i2,i3,i4 i1,i2,i3,i4,c3,c4,g3,h1 i1,i3,i4 i1,i2,i4,i5,i6,i7,i8,i10,h5,h6

10 j1,j2,j3,j4,e1,i1 j1,j2,j3,j4 j1,j2,j3,j4 j1,j2,j3,j4,b2 j1,j2,j3,j4,j5,j7,j9,j10,h4,h10

Table 3: Final clustering of downsized datasets acquired using CVOIPSM. Objects represented by bold letters are not clustered correctly. Back-
ground subtraction is applied to the acquired objects. Clusters are of females (left), males (right), and leaves (far right) datasets. The mean success
rate for females and males from the Tarrlab dataset was 97.5%. The desired number of clusters, 10, was generated correctly for females; but for
males, CVOIPSM produced two fewer clusters, for a total of 8. Likewise, the success rate for the FEI female dataset was 97.5% with 10 desired
clusters, whereas it was 100% with 10 desired clusters for the FEI male dataset, averaging 98.75%; it was 85% with 10 clusters for Caltech females,
and 90% with 10 clusters for Caltech males, averaging 87.5%. Clustering of the Caltech leaves database resulted in 92% accuracy with 10 clusters.

Cluster # Tarrlab females Tarrlab males FEI females FEI males Caltech females Caltech males Caltech leaves
1 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4 a1,a2,a3,a4,h3,i2 a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,d4,d8
2 b1,b2,b3,b3 b1,b2,b3,b4,i1,i2,i3,i4 b1,b2,b3,b3 b1,b2,b3,b3 b1,b3,b4 b1,b2,b3,b4 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10
3 c1,c2,c3,c4 c1,c2,c3,c4 c1,c2,c3,c4 c1,c2,c3,c4 c3,c4 c1,c2,c3,c4 c1,c2,c3,c4,c5,c6,c7,c8,c9,c10
4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3,d4 d1,d2,d3 d2,d3,d4,h1 d1,d2,d3,d5,d6,d7,d9,d10
5 e2,e3,e4 e1,e2,e3,e4 e1,e2,e3,e4,f1 e1,e2,e3,e4 e1,e2,e3,e4 e1,e2,e3,e4 e1,e2,e3,e4,e5,e7,e9,e10
6 f1,f2,f3,f4 f1,f2,f3,f4 f2,f3,f4 f1,f2,f3,f4 f1,f2,f3,f4 f1,f2,f3,f4 f1,f2,f3,f5,f6,f7,f8,f9,f10,e6
7 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g3,g4 g1,g2,g4,c1 g1,g2,g3,g4 g1,g2,g3,g4,g5,g6,g7,g8,g9,f4,e8
8 h1,h2,h3,h4 h1,h2,h3,h4,j1,j2,j3,j4 h1,h2,h3,h4 h1,h2,h3,h4 h2,h3,h4,c2,d4 h2,h4,d1 h1,h2,h3,h5,h7,h8,h9,h10,i3,j8
9 i2,i3,i4 i1,i2,i3,i4 i1,i2,i3,i4 i1,i2,i3,i4,g3,h1 i1,i3,i4 i1,i2,i4,i5,i6,i7,i8,i9,i10,h6

10 j1,j2,j3,j4,e1,i1 j1,j2,j3,j4 j1,j2,j3,j4 j1,j2,j3,j4,b2 j1,j2,j3,j4 j1,j2,j3,j4,j5,j6,j7,j9,j10,h4

Figure 14: Clustering accuracy of Caltech objects and number of clusters with and without background removal. This figure mainly shows the
importance of background subtraction from specific objects (ROIs) in increasing accuracy in cluster analysis of visual domains.
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Figure 15: Clustering accuracy and # of clusters of small and largest datasets after applying a background removal technique.

6. Discussion

In this study, the unsupervised grouping of objects in visual datasets into similar partitions is examined using a
hybrid non-parametric clustering methodology that does not require the desired number of clusters to be known in
advance, especially for large datasets. The presented methodology combines several well-known and new methods
into one coherent hybrid procedure for the unsupervised grouping of similar objects. The major contribution of our
study is the establishment of a clustering method to partition similar objects for both small and large datasets that
provides a framework for clustering specific objects in visual domains. Our framework may be viewed as a three-
level unsupervised approach: first, we acquire features with PCA and employ Euclidean distance to obtain similarities
among the objects acquired from images; second, we use an Rk-means method on these similarity values both to
remove the objects with the lowest similarities and to obtain the most similar objects; third, the remaining similarity
values are compared in order to assign objects to their nearest clusters.

In this study, we aim to counter the deficiencies of the current widely used clustering schemes mentioned in
Section 2. Both agglomerative and divisive hierarchical algorithms are static. They never undo what has been done
previously, which means that objects that are committed to a cluster in early stages cannot move to another cluster. In
other words, once a cluster is split or two clusters are merged, the split objects will never come together in one cluster
or the merged objects will be never in the same cluster, no matter whether the split or the merge was the correct action.
In practice, however, some splits or merges may not be correct, and there may be a need to rearrange the partitions.
This problem causes inaccurate clustering, especially for poorly separated datasets [35]. However, in CVOIPSM,
the ACE method corrects previous wrong decisions so that high-quality clustering can be achieved. In addition, one
of the most difficult decisions is how many clusters there should be. For most current clustering methods, such as
centroid-based (e.g., k-means) clustering, the number of clusters is dictated by the user beforehand and data points are
assigned to one of those fixed k clusters using changing centroids throughout an iterative process. Everitt [12] suggests
that the largest number of clusters should be dictated (unless external information from the subject matter suggests a
suitable choice) where different stopping rules suggest different numbers of clusters. However, one of the advantages

20



of our clustering approach is that there is no need to know the number of clusters in advance, which significantly
helps to overcome the misclassification problem, especially for large datasets. In our approach, the desired number of
clusters is calculated by the methodology that analyzes features in a manner that uses the intra-/interrelated patterns of
similarities among distinct features belonging to objects. The main problem of inter-class overlapping and overfitting,
which is an important issue in cluster analysis, is managed effectively with CVOIPSM.

The success of CVOIPSM depends on the quality of the features initially acquired, as presented in Section 3.1.
Better feature extraction and selection algorithms would increase the clustering accuracy rate of CIPSM, as explained
in Section 3.2. CVOIPSM is tested on datasets with and without background removal for the objects detected in
images. Background removal was shown to increase cluster analysis accuracy, particularly where there is a large
variation in object backgrounds. For example, object clustering accuracy is increased from 80% to 87.5% for Caltech
face objects and from 81% to 92% for Caltech leaf objects. Similarly, cluster number accuracy is increased from 85%
to 100% for Caltech face objects, as shown in Fig. 14. However, the success rate is same for the FEI datasets, in which
there is large variation in image lighting, before and after background removal. It should be noted that first, there is no
large background difference for these objects and second, histogram equalization is performed on cropped objects to
enhance illumination variation; thus, better features are acquired despite significant variation in illumination. Our data
are normally distributed; a statistical Z-test analysis was carried out to compare the difference in success rates with
and without background removal. The null hypothesis, that there is no significant difference in CVOIPSM success
rates with and without background removal (µ = µ0), can be rejected, with p<0.01. As a result, we can conclude that
a background noise removal technique should be applied to objects that have intensive background noise to acquire
better features representing the objects in ROIs. The more distinctive the features for any dataset, the better the results
acquired are, especially when specifying cluster number.

The success rates of CVOIPSM decreases moderately when datasets are much larger, as presented in Fig. 15.
However, we have analyzed the significance of these differences, namely, 14%, 15%, and 4.5% for the Tarrlab, FEI,
and Caltech leaves databases, respectively. Our data are normally distributed; therefore, a statistical Z-test analysis
has been performed to compare the differences between the success rates on the downsized and full datasets. The null
hypothesis, that there is no significant difference in the success rates between two datasets (µ = µ0), is supported by
the results of the Z-test, with p>0.01. Thus, we can conclude that CVOIPSM can perform well even for large datasets.

We do not employ any outlier removal parameter before clustering for our datasets in which objects are similar to
each other and there is no outlier. However, the outliers in datasets can be excluded using optional “-O thresholdValue”
parameter as explained in the user manual in the supplementary materials. If the similarity values of an object with
respect to every object in the dataset are less than the entered threshold similarity value, it is accepted as an outlier,
meaning that there is no object to be grouped together.

There are many studies [40, 41, 42] that explore the viability of off-the-shelf clustering techniques on a variety
of domains. For instance, Etienne [42] analyses the capability of off-the-shelf techniques on determining the desired
number of clusters in 21 selected benchmark datasets that contain different numbers of objects and clusters using
17 clustering techniques; these datasets cannot be clearly divided into desired non-overlapping groups by traditional
clustering algorithms. The average success rates of these techniques in terms of all datasets range from around 10%
to 60% with a mean absolute difference ±σ ranging from 4.52 ± 5.05 to 2.19 ± 2.50, which is far below the results
obtained in our study; species in these datasets are often assigned to wrong groups through the clustering process of
17 clustering techniques. It can be concluded from the findings of these studies that off-the-shelf clustering techniques
suffer from the need to specify the desired number of clusters in addition to assigning samples to correct groups.

Furthermore, our datasets were tested with the most widely-used clustering techniques using the popular Waikato
Environment for Knowledge Analysis (WEKA) application suite 6. These techniques are cobweb, DBSCAN, EM
(with cluster number), EM (without cluster number), FarthestFirst, FilteredCluster, HierarchicalCluster, Density-
BasedCluster, sIB, kMeans and XMeans. The number of clusters is required to be defined by the user before pro-
cessing these techniques, except cobweb, DBSCAN and our technique CVOIPSM. EM works either with or without
a pre-defined cluster number. The detailed results obtained from the Weka tool are in the supplementary materials
of the manuscript. The summary of these results is presented in Table 4 and accuracy rates of instances and cluster
numbers are depicted in Fig. 16 based on the results presented in Table 4. Our technique, CVOIPSM outperforms the

6WEKA developed at the University of Waikato is freely available from http://www.cs.waikato.ac.nz/ml/weka/.
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other techniques in four datasets regarding the instance accuracy and it outperforms these techniques for two datasets
(i.e., Caltech face, Caltech leaves) regarding the cluster number, but not for Tarlab dataset in which FilteredCluster,
HierarchicalCluster and kMeans (i.e., 95%) are better than CVOIPSM (i.e., 90%) and it is same with the EM (with
cluster number) (i.e., 100%). However, we would like to emphasize that a cluster number (Cn=20) is required to
be defined for these techniques whereas it is not required for CVOIPSM, and moreover, accuracy rates of placing
instances for these techniques are smaller than CVOIPSM (i.e., 66.25% for FilteredCluster, HierarchicalCluster and
kMeans < 87.50% and 93.75% for EM (with cluster number) < 98.75%). The techniques without pre-defined cluster
numbers, namely Cobweb, DBSCAN performs poorly regarding the accuracy rates of cluster numbers obtained (i.e.,
<25%), which reduces the accuracy rates of placing instances into correct groups as well. EM (without cluster num-
ber) outperforms these two techniques (i.e., Cobweb and DBSCAN) with the accuracy rates (i.e., 85%, 95%, 50%
and 60% respectively for our datasets) regarding finding the desired number of clusters. In conclusion, the proposed
method, CVOIPSM performs similarly for all dataset in high accuracy rates regarding both the number of clusters and
placing the instances in the desired groups as it can be noticed in Fig. 16.

Table 4: The results of the widely-used clustering techniques applied on our datasets: the accuracy rates of several techniques that outperform
better than the other techniques are highligted in gray background and the best technique is highlighted in red color. The number of clusters is
required to be defined by the user before processing these techniques, except cobweb, DBSCAN and our technique CVOIPSM. EM works either
with or without a pre-defined cluster number. Instances may be grouped in a number of clusters different from the pre-defined cluster number.

Prior values Tarlab face FEI face Caltech face Prior values Caltech leaves
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Cobweb 80 20 N/A 8 10 2 10 8 10 2 10 8 10 2 10 100 10 N/A 20 20 2 20
DBSCAN 80 20 N/A 32 42.50 5 25 4 5 1 5 12 14 3 15 100 10 N/A 25 25 2 20
EM (with cluster number) 80 20 20 67 83.75 18 90 75 93.75 20 100 56 70 18 90 100 10 10 75 75 7 70
EM (with no cluster number) 80 20 N/A 67 83.75 17 85 73 91.25 21 95 34 42.50 10 50 100 10 N/A 50 50 6 60
FarthestFirst 80 20 20 59 73.75 16 80 69 86.25 18 90 42 52.5 15 75 100 10 10 52 52 7 70
FilteredCluster 80 20 20 68 85 19 95 67 83.75 18 90 53 66.25 19 95 100 10 10 75 75 7 70
HierarchicalCluster 80 20 20 51 63.75 15 75 55 81.25 17 85 25 31.25 12 60 100 10 10 55 55 7 70
DensityBasedCluster 80 20 20 68 85 19 95 67 83.75 18 90 53 66.25 19 95 100 10 10 70 70 8 80
sIB 80 20 20 8 10 19 10 8 10 2 10 44 55 17 85 100 10 10 60 60 7 70
kMeans 80 20 20 68 85 19 95 67 83.75 18 90 53 66.25 19 95 100 10 10 65 65 6 60
Xmeans 80 20 10/30 40 50 10 50 40 50 10 50 36 45 10 50 100 10 5/15 55 55 5 50
CVOIPSM 80 20 N/A 78 97.50 18 90 79 98.75 20 100 70 87.50 20 100 100 10 N/A 92 92 10 100

(a) Accuracy rates of instances in clusters. (b) Accuracy rates of cluster numbers.

Figure 16: Clustering accuracy of several widely-used techniques along with our technique CVOIPSM based on Table 4.
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7. Conclusions and future work

This study is one of the only comprehensive studies in the literature on clustering objects in visual domains and
may provide new insights into cluster analysis. We explore the idea of clustering similar sets of objects in visual
domains. In particular, we present a state-of-the-art framework that successfully clusters objects. The methodology
that we present runs effectively by revealing interrelated patterns of similarities between objects. The merits of our
approach, CVOIPSM, are substantiated by applying it to small and large datasets in several visual domains. We have
performed a variety of experiments showing that our approach results in unsupervised grouping of similar objects
with high accuracy for both small and large datasets, placing objects into correct groups and correctly determining
the number of clusters without prior knowledge. The technique outperforms the well-known off-the-shelf techniques
with respect to same datasets. The second part of the CVOIPSM methodology, CIPSM, is of crucial importance for
the final and successful clustering of objects, and can be employed for unsupervised clustering on any kind of dataset
whose similarity features can be acquired using other methods. Interested readers can find our executable files in
the supplementary materials and can employ our technique on their datasets using their pairwise similarity matrices
obtained from any dataset.

To summarize, our approach allows visual datasets to speak for themselves without using prior references or
knowledge. The methodology proposed in this study leads to improvements in cluster analysis and is expected to
influence the direction of unsupervised group discovery. The three-level unsupervised data analysis approach pre-
sented in this study is general and has the potential for broad application and, more specifically, may be applicable
to essentially any type of data on which PCA or other feature extraction methods are run, including market research,
medical, molecular, and genetic data. Our future work will explore our clustering technique on many other datasets.
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Table
A

.11:
C

ustom
ized

clusters
obtained

from
the

leftand
rightof

PSM
for

Tarrlab
fem

ale
im

ages
in

Fig.8
after

the
agglom

erative
and

contractible
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A

C
E

m
ethod
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ed:
these

tw
o

sets
are

custom
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by
rem

oving
the

em
pty

row
s

in
Tables

A
.9

and
A

.10.T
he

clusters
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differentrow
s

and
the

objects
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clusters
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from

the
left(firstsetbelow

)and
right

(second
setbelow

)ofPSM
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notsam
e

in
term

s
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colum
ns

and
grouping

togethernearby.T
he

differences
are

disclosed
in

these
tw

o
sets

referring
to

the
counterpartclusters

in
one

another.
A

counterpartclusterharbours
m

ore
sam

e
objects

than
the

otherclusters.
Forinstance,the

counterpartclusterof1
in

the
firstsetis

the
cluster2

in
second

set.
T

he
cluster2

in
second

sethas
the

three
sam

e
objects

of
the

cluster
1

in
the

firstset.
T

hat’s
w

hy,firstobject,1a,in
the

cluster
1

in
the

firstsetis
signed
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a

differentobject.
L
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1
points
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1
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setis
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as
a

differentobject.
A
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differences
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m

apped
in

dark
grey

cells.
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are
assigned

to
theirnearestclusters.
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using
the
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the

biggestvalue
in

the
sam

e
row

/colum
n

w
here
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originalTableA

.5.
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0,63

and
1a
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in
the
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1

w
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1c
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located;so,this
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sam
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O
therw

ise,it
w

ould
be

transported
to

the
cluster

w
here

1c
is

located.
L

ikew
ise,the

other
dark

grey
objects

are
searched

in
TableA

.5.
A

s
a

result,3c
points
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the

object3b
w

ith
a

value
of

0.48
and

3c
retains

in
its

cluster;5b
points

to
5a

w
ith

a
value

of0.53
and
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in
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currentcluster;5c

points
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5b
w

ith
a

value
of0.48

and
itis

transported
to
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here
5b

is
located.Sim

ilarly,5d,7c
and

7d
retain,8c

is
transported

into
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and

9d
retains

forthe
firstset.T

he
transported

objectto
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clusters
are

m
arked

w
ith

check
sign

forboth
sets

below
.T

he
expansive

attribute
ofA

C
E

m
ethod

is
realized

afterthere
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no
transportation,butstillthere

are
differences

betw
een

tw
o

sets
w
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m

eans
thatthe

num
berofclusters

are
differentin

tw
o

sets
as

itcan
be

seen
in
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exam

ple
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num
ber

of
clusters

is
9

for
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10

for
the

other
one):
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alltransported
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som

e
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em
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row
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row
40

in
Table

A
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show
n
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A
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Appendix B. CIPSM Pseudo codes

Data: Pairwise similarity matrix (PSM) acquired following PCA and Eucledean techniques are employed. PSM in csv format
Result: PSM, S i j, is simplified after Rk-means method is run; many cells, about 80%, are set to null
>> Rk-means.exe -df Similarity Matrix.csv -k 4 -r 40 -c 40
− >where -df is the PSM in csv format on which Rk-means is executed, -k is desired number of clusters, -r is the number of rows in PSM and -c is the number
of columns in PSM;
Data: Reduces pairwise similarity matrix (rPSM) acquired following Rk-means algorithm. PSM processed by Rk means in csv format (main matrix)
Result: An agglomerative, contractible, expandable (ACE) algorithm. Clusters are constructed while the cells of the symmetric rPSM (srPSM), S i j, are being

set to null regarding the objects in emerging clusters
− >Variables;
int *embodyingRows= new int[rows]; int * r one =new int[rows]; int *emptyRow=new int[rows]; int * r two =new int[rows]; double val=0; int sR=0; int
sC=0;double biggestVal=0;int colNumber=0; int totalCount=0; double *cmax=new double[cols];int *sequence=new int[cols]; flag
isThereEmbodying=false; int *numberofclusters=new int[rows];int *cindex=new int[cols];int reference row=0; int** cluster matrix = new int*[rows];
− >Create an empty PSM as big as PSM to sign clusters;
foreach I j do

cluster matrix[I j] = new int[cols];
end
− >initialize cluster matrix;
foreach Ii do

foreach I j do
cluster matrix[Ii][I j]=0;

end
end
− >Establish a full symmetric rPSM (srPSM) with respect to diagonal cells;
foreach Ii do

foreach I j do
if main matrix[Ii][I j]is null then

main matrix[Ii][I j] = main matrix[I j][Ii];
end
if main matrix[I j][Ii] is null then

main matrix[I j][Ii] = main matrix[Ii][I j];
end

end
end
− >Set diagonal entries to 1, S i j = 1, where i = j which means similarity between two identical objects is 100%;
foreach Ii do

j=i; main matrix[Ii][I j] =1;
end
− >Run the procedures;
− >Clusters are generated starting from the leftmost column of srPSM;
call find clusters in matrix(ascending);
− >Clusters are generated starting from the rightmost column of srPSM;
call find clusters in matrix(descending);
− >Generation of left clusters is completed;
call merge clusters (cluster matrix left);
− >Generation of right clusters is completed;
call merge clusters (cluster matrix right);
− >Final clusters are obtained;
call forge two sets clusters into one set (merged cluster matrix left, merged cluster matrix right);

Algorithm 1: Pseudo code of the CIPSM (clustering in pairwise similarity matrix) method for final clustering
including Rk-means and ACE methods: i corresponds to the columns and j corresponds to the rows of srPSM.
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PROCEDURE find clusters in matrix(start position):
while not similarity matrix, S i j, empty do

− >Sequences starting from the leftmost/rightmost column are found. The leftmost/rightmost column where one of whose cells is not null is picked up.
(In) in S i j;
foreach Ii start position do

foreach I j do
if main matrix[Ii][I j]is null then

− >Clustering starts from the leftmost of srPSM; sC: the object from which first and following clusters are formed;
sC = Ii; break;

end
end

end
− >The object that has the biggest value in sC column is found to specify the row for the next step;
foreach I j do

if main matrix[sC][Ii] not null and main matrix[sC][Ii] >val then
sR = Ii; val = main matrix[sC][Ii];

end
end
− >The maximum values are found for each column for further steps;
foreach Ii do

cmax[Ii]=-1000; /*initilize the maximum value*/;
foreach I j do

if main matrix[Ii][I j] not null and cmax[Ii] < main matrix[Ii][I j] then
cmax[Ii]= main matrix[Ii][I j];

end
end

end
− > The not-null values in the cells of the row are compared to the cells in their columns to be singled out if they are the biggest; sign the cell as a
member of the current cluster, otherwise set the cell to null value;
foreach Ii do

if main matrix[Ii][sR] not null and main matrix[Ii][sR] < cmax[Ii] then
main matrix[Ii][sR]=null; sequence[Ii]= 0;

end
else

sequence[Ii]= 1; /* The members of the sequence are signed with a value of 1 in terms of columns as a candidate cluster*/;
end

end
if func rows embodying sequence is true then

call find biggest in total in embodying rows; double biggestVal = -1000; /* Initilializa tion to single out the biggest value in the selected row, bR,
different from the values of the cells in current sequence (i.e.,sequence[Ii])*/;
foreach Ii do

if sequence[Ii]<>1and biggestVal<main matrix[Ii][bR] then
biggestVal= main matrix[Ii][bR]; bC = Ii; /*column name is signed to be a member of the current sequence*/;

end
end
foreach Ii and Ii= bC do

sequence[Ii]= 1; /*A new sequence expanding with nem members*/;
end
foreach I j do

embodyingRows[I j]=0; /* reset the array of embodying rows to establish a another sequence*/;
end
isThereEmbodying = false; /* reset the control parameter*/;

end
else

call clear cluster members in sm;
call establish cluster(start position);

end
end
END

Algorithm 2: Pseudo code of the procedure in CIPSM method for establishing initial clusters starting from either
the leftmost or rightmost columns of srPSM.
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PROCEDURE merge clusters(cluster matrix):
− >Firstly, members in one membered clusters are assigned to their nearest clusters;
foreach I j do

numberofclusters[I j]=0; /*Initialize the values of the number of members in clusters*/;
end
foreach I j do

foreach Ii do
if cluster matrix[Ii][ I j]=1 then

numberofclusters[I j]++; /*The count of the members in clusters is specified*/;
end

end
end
foreach I j do

cmax[Ii]=-1000;/*Initialize the cells values*/;
end
foreach I j do

if numberofclusters[I j]=1 then
biggestVal = -1000; colNumber=0; /*Initialize the other parameters*/;
foreach Ii do

if main matrix[Ii][I j]> biggestVal then
− >the biggest value from one-membered clusters is found and column number is specified for this value
if cluster matrix[Ii][I j]<>1 then

biggestVal= main matrix[Ii][I j]; colNumber=Ii;
end

end
end

end
cmax[I j]= biggestVal; cindex[Ii]= colNumber;

end
foreach I j do

rowNumber = 0; if numberofclusters[I j]=1 then
foreach I j do

if cluster matrix[I j][cindex[I j]]=1 then
rowNumber = I j;

end
end
foreach Ii do

if cluster matrix[Ii][ I j]=1 then
cluster matrix[Ii][rowNumber]= cluster matrix[Ii][ I j]; cluster matrix[Ii][ I j]=0;

end
end

end
end
− >Secondly, members starting from two membered clusters to other more-membered clusters are assigned to their nearest clusters if and only if each member
in these cluster points to the same cluster similar to the assignment of one membered clusters mentioned above
END

Algorithm 3: Pseudo code employed in CIPSM method and in forge two sets clusters into one set
(merged cluster matrix left,merged cluster matrix right) for merging pre-established clusters that point to each
other as similar starting from one-membered to more-membered clusters.
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PROCEDURE forge two sets clusters into one set(merged cluster matrix left,merged cluster matrix right):
− >The two sets of final clusters acquired from the leftmost and rightmost of the srPSM are forged together until the two sets are equal to each other. Firstly, left matrix is examined referring to the right matrix;
while merged cluster matrix left = merged cluster matrix right do

foreach Ix do
/*# of embodying rows are disclosed for each row where x = j*/;
foreach I j do

foreach Ii do
if merged cluster matrix right [I j][Ix ]=1 then

if merged cluster matrix right[I j][ Ix]= merged cluster matrix right [I j][I j] then
embodyingRows[I j ]=++; /*The cells matching in the same rows are counted with regard to the columns*/;

end
end

end
end
foreach I j do

/*The biggest values of embodyingRows[I j ] cells in the rows are revealed*/;

if embodyingRows[Ij] > reference row then
reference row = I j ;

end
end
− >The cells matched with a value of 20 along with not matching cells with a value of 1 are singled out and counted;
foreach I j do

r one[I j ] = 0; r two[I j] = 0; /*Former counted values are set to 0 */;

end
foreach I j do

foreach Ii do
if merged cluster matrix left [Ii][I j]=1 then

if merged cluster matrix right [Ii][Ix]=1 then
r one[Ii ]=++;

end
end
if merged cluster matrix left [Ii][I j]=20 then

r two[Ii ]=++;
end

end
end
− >The values marked with a value of 20 are turned into the value of 30 If a reference row is picked out more than once for not losing the former marked values (a row in left cluster matrix might hold the
biggest value of matching, embodyingRows[I j ], with regard to more than one row in right cluster matrix);

if r two [reference row] > 0 then
if r one [reference row]>= r two [reference row] then

foreach Ii do
if merged cluster matrix left [Ii][ reference row] =20] then

merged cluster matrix left [Ii ][ reference row] =30;
end

end
end

end
− >The cells matched in the reference row are picked out and the value of 1s in the cells is turned into another value such as 20 to mark them;
foreach Ii do

if merged cluster matrix right [Ii][ Ix] =1 then
if merged cluster matrix left [Ii][ reference row] =1 then

merged cluster matrix left [Ii ][ reference row] =20;
end

end
end
− >The remaining cells with a value of 1 and not in the embodying cells are transported to a new row to mark a new cluster if their number is >= to the number of embodying cells having a value of 20;
if r two [reference row] >0 then

if r one [reference row]>= r two [reference row] then
foreach I j do

/*Find first row to carry out them */;
totalCount = 0;
foreach Ii do

if merged cluster matrix left [Ii][I j]! =0 then
totalCount ++;

end
end
if totalCount>0 then

emptyRow = I j ;

end
end

end
end
− >Transport the cells with a value of 1 to the specified reference row;
foreach I j do

if merged cluster matrix left [Ii][reference row] =1 then
merged cluster matrix left [Ii ][emptyRow] =1; merged cluster matrix left [Ii ][reference row] =0;

end
if merged cluster matrix left [Ii][reference row] =30 then

merged cluster matrix left [Ii ][emptyRow] =30; merged cluster matrix left [Ii ][reference row] =0;
end

end
− >The cells in one-membered clusters are transported to their nearest clusters;
call merge clusters (cluster matrix);
− >All the values in the cells different from 0 are replaced with a value of 1 to process the left matrix;
foreach I j do

foreach Ii do
if merged cluster matrix left [Ii][I j]! =0 then

merged cluster matrix left [Ii ][I j ]=1;

end
end

end
− >All the steps above are executed for the merged cluster matrix right using the modified merged cluster matrix left and these steps are executed until left and right matrices equal to each other. Finally, the
rows that are not set to null indicate the clusters regarding the columns.

end
end
END

Algorithm 4: Pseudo code in CIPSM method for forging two sets of clusters (one acquired from the leftmost and
the other one acquired from the rightmost of srPSM) into one.
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FUNCTION func rows embodying sequence:
− >Find other rows that embody the current sequence;
/*different from the row having the current sequence*/;
foreach Ii and I j <> sR do

embodyingRows[I j ]=1; /* first accept the row as it embodies beforehand */;

foreach Ii do
if sequence[Ii]= 1 and O( I j ) is null then

embodyingRows[Ii ]=0; /* it doesn’t embody; so, remove the row */;
break;

end
end
if embodyingRows[I j]=1 then

isThereEmbodying = true;
end

end
if isThereEmbodying is true then

return 1;
end
else

return 0
end
END

Algorithm 5: Pseudo-code of the function in the procedure, find clusters in matrix(start position), for deciding to
go further to either assign new members to the current sequence or construct a new cluster with the objects in the
current sequence.

PROCEDURE find biggest in total in embodying rows:
totalVal = 0; preVal = 0; bR=0;
foreach I j do

foreach Ii do
if embodyingRows[I j]=1 and sequence[Ii]= 1 then

totalVal = + main matrix[Ii ][I j ];

end
end

end
if totalValue > preVal then

bR = I j ; /* The row having the biggest value in total is picked out*/;

end
preVal = totalVal;
END

Algorithm 6: Pseudo-code of the procedure in the procedure, find clusters in matrix(start position), for finding the
most valuable embodying sequence.

PROCEDURE clear cluster members in sm:
− >clear the columns and rows of srPSM as final clusters are formed;
foreach Ii do

if sequence[Ii]= 1 then
foreach I j do

main matrix[Ii ][I j ] = null;

end
end

end
foreach I j do

/*set the cells to null value regarding the rows*/;
if sequence[I j]= 1 then

foreach I j do
main matrix[Ii ][I j ] = null;

end
end

end
END

Algorithm 7: Pseudo-code of the procedure in the procedure, find clusters in matrix(start position), for deleting
the members of the current established cluster from srPSM.

PROCEDURE establish cluster(start position):
if start position = ascending then

start position=left;
end
else

start position=right;
end
foreach I j do

foreach I j do
if cluster matrix[Ii][I j]=0 then

cmR = I j ;

end
else

cmR= null; break;
end

end
if cmR <> null then

break;
end

end
foreach Ii do

/*establish a new cluster with the members in the current final sequence*/;
if sequence[Ii]= 1 then

cluster matrix[Ii ][cmR]=1 /*the members of the established cluster are put in the first emty row*/;
cluster matrix+” ”+(start position)[Ii ][cmR]=1; /*either cluster matrix right or cluster matrix left is created*/;
sequence[Ii ] = 0; /*The cells equal to 1 are assigned to 0 to form new cluster members*/;

end
end
END

Algorithm 8: Pseudo-code of the procedure in the procedure, find clusters in matrix(start position), for establishing
the current cluster: i corresponds to the columns and j corresponds to the rows of srPSM.39
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