
EDGEREDUCE: Eliminating Mobile Network Traffic
Using Application-Specific Edge Proxies

Andreas Pamboris and Peter Pietzuch
Department of Computing, Imperial College London

Email: {ap5309, prp}@doc.ic.ac.uk

Abstract—Mobile carriers are struggling to cope with the surge
in smartphone traffic, which reflects badly on end users who
often experience poor connectivity in densely populated urban
environments. Data transfers between mobile client applications
and their Internet backend services contribute significantly to the
contention in radio access networks (RANs). Client applications,
however, typically transfer unnecessary data because (i) backend
service APIs do not support a fine-grained specification of the
data actually required by clients and (ii) clients aggressively
prefetch data that is never used.

We describe EDGEREDUCE, an automated approach for reduc-
ing the data transmitted from backend services to a mobile device.
Based on source-level program analysis, EDGEREDUCE generates
application-specific proxies for mobile client applications that
execute part of the application logic at the network edge to filter
data returned by backend API calls and only send used data to
the client. EDGEREDUCE also permits the tuning of aggressive
prefetching strategies: proxies replace large prefetched objects
such as images by futures, whose access by the client triggers the
retrieval of the object on-demand. We show that EDGEREDUCE
reduces the RAN traffic for real-world iOS client applications by
up to 8×, with only a modest increase in response time.

I. INTRODUCTION

Mobile network operators are projected to carry the bulk
of “last mile” Internet traffic in the future. According to
Cisco, global mobile data traffic will grow 10-fold from 2014–
2019 [1]. Yet, in current mobile networks, operators struggle
to keep up with the volume of data traffic. In particular, radio
access networks (RANs) become a bottleneck due to the limits
on the density of mobile base stations in urban environments
and on the frequency spectrum that they can utilise [2]. Even
the next generation of 4G/LTE networks is unlikely to meet the
exponentially growing demand for mobile data capacity [3].

While about half of mobile data traffic constitutes video
streaming, the other half is non-multimedia traffic, with a
substantial fraction caused by the large number of client/server
applications on today’s smartphones [1]. Mobile client app-
lications interact with Internet backend services, which host
the application’s content, through service APIs. For example,
mobile clients for social networks, such as Facebook and
Twitter, retrieve updates on user activity; photo sharing clients,
such as Picasa and Flickr, host users’ photo collections
remotely; and e-commerce clients, such as eBay, Groupon and
Amazon, provide the means for online purchasing of different
goods. Clients typically access content through restful HTTP
APIs, such as the Twitter REST API [4] and the Amazon
Marketplace Web Service API [5].

We make the observation, supported by evidence in Sec-
tion II, that mobile client applications retrieve more data from
backend service APIs than is strictly necessary, thus increasing
the utilisation of RANs. This has two main causes:

(1) Service APIs are designed with generality in mind, and
not tailored to the needs of specific client applications. As
a result, not all data returned by an API call is used by the
client, with some discarded after transmission. For example,
the Twitter API response to a request for the list of recent
messages includes detailed user account information, which is
typically ignored by clients.

(2) Client applications often aggressively prefetch binary
content such as images from backend services. While this
improves application response time when the user accesses
prefetched content, it increases the amount of data transmitted
over the RAN. Client applications often employ simple strate-
gies such as prefetching all objects [6], which are wasteful.
For example, Twitter clients typically prefetch all user profile
images associated with a list of messages, even if only a few
images will be viewed by the user.

Various techniques for reducing mobile data traffic were
proposed in the past. Compression (e.g. gzip for HTTP traffic)
is widely used to reduce the overhead of verbose application
layer protocols such as XML used by backend services; new
application layer protocols such as SPDY [7] and QUIC [8]
are designed to decrease data transmission times by elimi-
nating unnecessary communication. Client- or network-side
caches [9] and redundancy elimination (RE) proxies [10]
avoid the repeated transmission of the same data. All of
these approaches, however, cannot prevent the transmission
of unused application data across the RAN.

In contrast, our idea is to generate application-specific
proxies (ASPs) located at the network edge, i.e. as part of the
mobile network, with the goal of reducing data traffic from
backend services to client applications. ASPs host the client
application logic that parses response data from the backend
service and stores the results as application data objects, which
are in turn transmitted to the client application. Since data
parsing is performed by the ASP, any data that is retrieved but
not further used by the client application after parsing will not
be transmitted to the mobile device.

We describe EDGEREDUCE, an approach for reducing RAN
traffic for mobile client applications written in Objective-C on
the iOS platform. EDGEREDUCE generates a stateless ASP
automatically from the source code of a client application

through program analysis. We assume that client applications
are designed according to a model-view-controller (MVC) de-
sign pattern [11], which separates data presentation from data
representation in an object-oriented design. EDGEREDUCE
identifies classes from the application model that parse data
from a backend service, which are placed at the ASP. Their
access to data objects is transformed to remote calls over the
RAN. Data returned by a backend service but never used as
part of the model will therefore not be sent to the client.

To further reduce communication between the ASP and the
client application, EDGEREDUCE employs two optimisations:

Creation of transient data objects. If data objects are updated
by the ASP as part of the parsing process multiple times, it
becomes more efficient to materialise them at the ASP and
only transmit the final versions to the client. EDGEREDUCE
identifies opportunities to create such transient data objects at
the ASP when it reduces the number of remote calls.

Replacement of prefetched objects with futures. Client
applications prefetch objects such as images from backend
services to improve performance. Since prefetched objects are
used by UI objects, they are transferred unnecessarily to the
client before being displayed. The ASP therefore replaces
references to large binary objects with futures, which are
sent to the client instead. Upon accessing a future, the client
retrieves the corresponding binary object from the ASP.

We evaluate EDGEREDUCE using three real-world mobile
client applications for Twitter, Groupon and Yahoo! Finance
on the iOS platform. We show that EDGEREDUCE can reduce
RAN traffic by a factor of up to 8×, while only increasing
application response time by at most 11%. We also show that
EDGEREDUCE has the potential to speed up execution when
large amounts of data are sent to client applications.

The remainder of this paper is organised as follows: Sec-
tion II discusses existing approaches for mitigating mobile
network contention and the potential to reduce network traffic
by eliminating unused data sent to mobile client applications.
Section III introduces the design of EDGEREDUCE, and Sec-
tion IV explains how ASPs are generated from the source code
of client applications written in Objective-C. In Section V,
we evaluate the effectiveness and overhead of EDGEREDUCE,
and conclude the paper with related work (Section VI) and
conclusions (Section VII).

II. BACKGROUND

Next we discuss background on mobile networks and previ-
ous approaches for reducing network traffic. We also analyse
the behaviour of client applications, particularly with regards
to data transfers between clients and backend service APIs.

A. Mobile Networks

Mobile networks typically follow a hierarchical structure,
which conceptually comprises three abstract layers: the edge,
backhaul and core networks [9], [12]. The edge network is
the radio access network (RAN) and consists of a set of base
stations and mobile devices, which communicate directly over

wireless communication channels, e.g. according to the 3G/4G
standards. The core network interconnects devices on edge
networks with the public Internet via gateway routers to IP
networks, while the backhaul network is primarily responsible
for controlling connected base stations and relaying data to
edge or core networks.

Typically network capacity can be limited in edge and back-
haul networks [13]. While in backhaul networks, mobile net-
work operators have invested in fibre or high-frequency point-
to-point wireless links to handle increasing data demands,
in edge networks, increasing capacity is bounded by radio
resource constraints of 3G/4G networks such as their limited
frequency spectrum [2]. In addition, adding more base stations
in a geographical region entails a high operational cost and
is often constrained by frequency interference and placement
problems. Deployments of smaller range base stations such as
femtocells and picocells [14] can add more capacity to RANs,
but require significant investment by mobile operators.

B. Reducing Mobile Network Contention

To address contention in mobile networks, operators have
deployed or investigated a variety of solutions.

1) Caching: Many solutions for caching popular content to
reduce network traffic were proposed in the past [9]. Forward
caches use dedicated middleboxes for intercepting HTTP
requests in backhaul networks [15], [16]. A request is relayed
to the backend service only if it cannot be satisfied from the
cache or if the requested content is not cacheable. Caching thus
suppresses redundant data transfers from backend services.

Client-side caches [17] maintain copies of previously re-
trieved content on mobile devices in case it is requested again
or required during offline operation. Maintaining large client-
side caches, however, is infeasible due to the limited memory
and storage resources of mobile devices.

Caches inherently require repeated requests for the same
content to reduce traffic. They cannot reduce traffic from back-
end services that is unique and application-specific. Depending
on the deployment locations, they mainly aim at reducing con-
tention in backhaul networks, ignoring bottlenecks in RANs.

2) Compression: Compression is another widely-used ap-
proach for reducing network traffic. HTTP provides inherent
support for the gzip and deflate compression methods. A client
application announces its supported methods when issuing
HTTP requests, and a backend service responds with com-
pressed data in a supported format. For image transmission,
transparent lossy compression is sometimes used [18]. This
can substantially reduce the size of large images, albeit with
a loss in image quality.

Compression cannot eliminate unused, application-specific
data traffic sent by backend services. It is, however, an
orthogonal approach in that it removes redundancy from any
application data transmitted across the network.

3) Redundancy Elimination (RE): RE schemes are proto-
col-independent techniques for eliminating redundant network
traffic [10], [19], [20]. For example, they may identify identical
web content named by different URLs or delivered using

different protocols by processing the payload of packets. Using
synchronised caches at both ends of a bandwidth-constrained
channel, they then exchange small fingerprints of cached data.

While RE can reduce redundant data traffic considerably,
it suffers from the same problems as caching: it requires
substantial resources at the client side, and it cannot reduce
data traffic without any repetition.

4) Efficient Protocols: Another approach to reduce network
contention is to deploy more efficient protocols. The SPDY
protocol [7] is added between the application and transport
layers to allow concurrent interleaved streams over a single
TCP connection. To overcome bandwidth constraints, it imple-
ments request priorities, thus reducing contention caused by
non-critical data. Though designed specifically for minimising
transmission times, SPDY also compresses and in some cases
eliminates request and response HTTP headers. However,
given that headers range in size from 200 bytes to 2 KB, its
ability to reduce overall data traffic is limited [7].

QUIC [8] is an experimental transport-level protocol that
uses the connectionless nature of UDP to provide a mul-
tiplexed, congestion-aware transport with low latency. It is
designed to avoid head-of-line blocking at the receiver end.
However, it requires client- and server-side support and lacks
the maturity of established transport-layer protocols.

New network protocols are typically application-agnostic,
which means that they cannot exploit opportunities for reduc-
tion of backend data traffic that are application-specific.

5) Mobile Network Traffic Offloading: Switching from
typical mobile base stations to special-purpose, short-range
femtocells installed in residential environments also helps
reduce traffic in mobile networks [14]. Similarly, with WiFi
ubiquitously available in commercial hotspots or deployed for
residential use, seamless WiFi offloading allows users to move
from 3G/4G network connectivity to WiFi transparently [21].
Various studies [22]–[24] have shown merit in opportunisti-
cally migrating network traffic from mobile networks to WiFi
access points in a delay-tolerant manner.

Mobile network traffic offloading presents itself as an ideal
remedy to the problem of mobile data explosion. Nevertheless,
it presupposes specialised access points available on demand,
especially for non-delay-tolerant applications.

Overall, the approaches discussed above exploit opportu-
nities for network traffic reduction that are independent of
the business logic of applications. They regard applications
as black boxes and therefore ignore inefficiencies of specific
applications and backend service APIs, making them orthog-
onal to the techniques employed by EDGEREDUCE.

C. Mobile Client Communication

Modern mobile client applications communicate with back-
end services through web APIs. These APIs are implemented
using the HTTP protocol and follow the representational state
transfer (REST) architectural style [25], providing access to
resources referenced by global URL identifiers.

Backend APIs expose a programmatic interface using well-
defined request-response interaction. Typically backend APIs

support (i) the retrieval of lists of data items, such as products
in eBay, messages and friend lists in Twitter, photos in
Flickr and financial data in Yahoo! Finance; (ii) the search
for specific data items given user-defined criteria, such as
products by category, friends by name or images based on
metadata; and (iii) the updating of content such as adding new
products or social status updates. API calls provide general
operations on the data maintained by the backend service
without taking specifics into account of how a given client
application presents the data to the users.

Applications that interact with backend APIs need to un-
derstand the format of the data returned. A common practice
is to use human-readable text-based encoding formats, which
facilitates interoperability and cross-platform support. The
most commonly used formats are the extensible markup lan-
guage (XML) and the JavaScript object notation (JSON). Their
benefits in terms of simplicity and interoperability, however,
come at the cost of substantially higher encoding overheads:
e.g. XML includes metadata about the data schema as part of
each data message. This leads to an increase in the transmitted
data compared to application-specific binary encoding formats.

In Figure 1, we show part of the data returned by the
Twitter REST API in response to a user request for the most
recent Tweet messages. On the left-hand side, we show the
representation of a single Tweet message in XML, as returned
by the backend service. The right-hand side shows the corre-
sponding fields of three data objects, NTLNMessage, NTLNUser
and NTLNIconContainer, that a Twitter client application uses
to model this information. Arrows indicate the pieces of data
used to initialise object fields and items that are crossed out
correspond to the encoding overhead of XML.

The NTLNMessage object stores information about a Twitter
message such as its timestamp, its content and the posting
user. It also contains pointer references to the NTLNUser object,
which stores information about the user responsible for the
message, and the NTLNIconContainer object with a user’s
profile picture.

As shown in the example, less than half of the data
returned by the backend service is actually used by the client
application: the original XML message has 2429 bytes, while
the created data objects only occupy 842 bytes in memory. In
general, there are three main sources of inefficiencies, I1–I3,
when a client application interacts with a backend service:

I1. Inefficient data representation. Data items returned by
the backend service API are expressed using an inefficient
encoding format. In the example in Figure 1, a large part of the
overhead is due to the repetitive nature of start and end tags,
which capture the XML data schema. In addition, numerical
values and binary data are encoded as text values, which also
contributes to the increased size of messages sent, compared
to the size of the (binary) data objects in memory.

This inherent redundancy in the response data yields high
compression ratios. Therefore, many backend service APIs
that use HTTP with XML or JSON also use transparent gzip
compression, as supported by web servers and clients.

@interface NTLNMessage : NSObject {
 NSDate *timestamp;
 NSString *statusId;
 NSString *text;
 NSString *source;
 NTLNUser *user;
 BOOL favorited;
 NSString *in_reply_to_status_id;
 enum NTLNReplyType replyType;
 NSString *in_reply_to_screen_name;
 enum NTLNMessageStatus status;
 NSString *name;
 NSString *screenName;
 NTLNIconContainer *iconContainer;
}

@interface NTLNUser : NSObject {
@private
NSString *user_id;
NSString *name;
NSString *screen_name;
NSString *location;
NSString *description;
NSString *url;
BOOL protected_;
int followers_count;
int friends_count;
int favourites_count;
BOOL following;
int statuses_count;
NTLNIconContainer *iconContainer;

}

@interface NTLNIconContainer : NSObject {
UIImage *iconImage;
NSString *url;
BOOL downloading;

}

<status>
 <created_at>Tue Apr 23 12:21:34 +0000 2013</created_at>
 <id>326672193612312576</id>
 <text>Sarah Stevenson calls it a day as a taekwondo athlete. Follow http://t.co/3hRHE4y0XE via @guardian</text>
 <source>TweetDeck</source>
 <truncated>false</truncated>
 <favorited>false</favorited>
 <in_reply_to_status_id></in_reply_to_status_id>
 <in_reply_to_user_id></in_reply_to_user_id>
 <in_reply_to_screen_name></in_reply_to_screen_name>
 <retweet_count>0</retweet_count>
 <retweeted>false</retweeted>
 <user>
 <id>46403451</id>
 <name>Guardian sport</name>
 <screen_name>guardian_sport</screen_name>
 <location>London</location>
 <description>Sport news, comment and much more from the Guardian. Follow @GdnUSsports</description>
 <profile_image_url>http://a0.twimg.com/profile_images/2819095494_normal.png</profile_image_url>
 <profile_image_url_https>https://si0.twimg.com/profile_images/2819095494_normal.png</profile_image_url_https>
 <url>http://www.guardian.co.uk/sport</url>
 <protected>false</protected>
 <followers_count>290239</followers_count>
 <profile_background_color>B2AFA9</profile_background_color>
 <profile_text_color>333333</profile_text_color>
 <profile_link_color>005689</profile_link_color>
 <profile_sidebar_fill_color>DDFFCC</profile_sidebar_fill_color>
 <profile_sidebar_border_color>FFFFFF</profile_sidebar_border_color>
 <friends_count>987</friends_count>
 <created_at>Thu Jun 11 14:55:04 +0000 2009</created_at>
 <favourites_count>28</favourites_count>
 <utc_offset>0</utc_offset>
 <time_zone>London</time_zone>
 <profile_background_image_url>.../4b7.png</profile_background_image_url>
 <profile_background_image_url_https>.../5b7.png</profile_background_image_url_https>
 <profile_background_tile>false</profile_background_tile>
 <profile_use_background_image>true</profile_use_background_image>
 <notifications>false</notifications>
 <geo_enabled>false</geo_enabled>
 <verified>true</verified>
 <following>true</following>
 <statuses_count>38968</statuses_count>
 <lang>en</lang>
 <contributors_enabled>false</contributors_enabled>
 <follow_request_sent>false</follow_request_sent>
 <listed_count>5217</listed_count>
 <default_profile>false</default_profile>
 <default_profile_image>false</default_profile_image>
 <is_translator>false</is_translator>
 </user>
 <geo/><coordinates/><place/><possibly_sensitive>false</possibly_sensitive><contributors/>
</status>!

Fig. 1: Data returned by the Twitter backend service API and its subsequent use in a Twitter client application

I2. Unnecessarily returned data. A backend service API may
return more data items or fields than necessary when compared
to what is used by the client application. In the Twitter example
above, the coarse granularity of the Twitter REST API does
not support a fine specification of the data of interest: the
Twitter client cannot express that it does not require statistics
about the past user behaviour, the user’s display settings or
other account information, such as its creation date, timezone
or language preferences. All of this metadata is included in
the response data regardless.

To address this problem, it is usually necessary to change
the backend service API. For example, Facebook offers a new
API, the Facebook Query Language (FQL) [26], which allows
client applications to query for user data using an SQL-style
interface. This permits clients to retrieve precisely the required
data by specifying filters on data items. However, such more
expressive backend service APIs require the re-engineering of
existing client applications and add more complexity to the
development of clients.

In practice, there is typically little incentive for service
providers to change an already established backend service
API due to the re-engineering effort required for existing
client applications. In contrast, EDGEREDUCE reduces RAN
utilisation independently of the efficiency of backend APIs.
While it relies on the availability of application source code,
it does not burden developers by transforming mobile client
applications automatically.
I3. Unnecessarily prefetched data. A client application may
prefetch many data items, which will not be all used by
the application. For example, the Twitter client application
prefetches all images associated with retrieved Tweet mes-
sages. In Figure 1, when a user requests the most recent Tweet

messages, the data items received by the client application
contain the URLs of images associated with a given message.
When processing this data, the client retrieves all images
by default, which are stored in the iconImage field of the
NTLNIconContainer objects. However, each image is stored
locally and only displayed when a user views the message
associated with the image. Depending on user behaviour, only
a fraction of the images returned by the backend service are
ultimately displayed on the mobile device.

Tuning the prefetching behaviour of a client application
requires changes to its business logic. In general, prefetching
requires the choice of a policy that strikes a balance between
the amount of prefetched data and the probability that a
requested object was prefetched. A wide range of prior work
exists on effective prefetching strategies, e.g. in the context
of web applications exploiting spatial locality, pattern mining
and contextual information [6], [27]. For simplicity, however,
mobile client applications typically do not use sophisticated
prefetching policies but prefetch all objects instead.

D. Mobile Client Application Architecture

Mobile applications on the iOS platform are typically struc-
tured around a variation of the model-view-controller (MVC)
design pattern [11]. An MVC design separates the represen-
tation of information from the user’s interaction with it in
an object-oriented application. As a result, applications are
more easily extensible since objects become reusable and their
interfaces are clearly defined.

As shown in Figure 2, the MVC design pattern has three
types of objects, Model, View and Controller objects, which
are separated by interfaces over which they communicate with
each other: View objects represent the user interface (UI)

Data Parser

ControllerView

Interacts

Update
Get data

1

12

Communicator

Backend
service

Get data

Pointer(s) to
Data Object(s)2

9

HTTP
request

API data

4
3

6

Allocate
Initialise

Pointer(s) to
Data Object(s)

7

Data Object

Get object
state

10
Object state

11

Model
5

Parse
API data

Pointer(s) to
Data Object(s)

8

Fig. 2: MVC design pattern used in mobile client applications

of applications; Model objects encapsulate application data
and corresponding operations on that data (i.e. the business
logic of the application); and Controller objects mediate input
between the two by converting user actions into commands,
thus keeping them separate.

The MVC pattern is promoted heavily by Apple for iOS
development. The Cocoa Touch frameworks are designed
around MVC, while XCode, Apple’s integrated development
environment, creates class stubs for View and Controller
objects automatically upon creation of a new iOS project.

1) Classification of Model Objects: Based on an exam-
ination of mobile client applications on the iOS platform
(see Section V), we classify Model objects according to their
role, as shown in Figure 2. Communicator objects interface
with a backend service API; Data Parser objects process
the network data returned by backend API calls and convert
them to separate data fields with semantic meaning to the
application; and these are stored as part of Data Objects,
which encapsulate the data used by the application and their
associated operations.

This classification is further evidenced by the fact that the
iOS Developer Library encourages developers to follow the
MVCNetworking sample [28], which displays a photo gallery
obtained from a web server. MVCNetworking conforms to the
architecture from Figure 2: Data Objects (PhotoGallery and
Photo) represent a gallery of photos on the network; Commu-
nicator objects (NetworkManager and QHTTPOperation) man-
age the core network interactions and execute HTTP requests;
and Data Parser Objects (GalleryParserOperation) parse
the XML photo gallery data.

2) Application Workflow: Based on the above classification,
Figure 2 shows the sequence of steps leading to the display
of information retrieved from a backend service by a user.

When users decide to view, for example, a list of their latest
Tweet messages, they interact directly with the appropriate
View object. The user request is handed over to the corre-
sponding Controller object (step 1), which in turn relays the
request to a Communicator object (step 2). The latter issues
an HTTP request to the Twitter backend service (step 3),
which responds with the data that encapsulates the requested

Data
Object

Controller

View

Model

Backend
service

Data
Parser

Communicator

data_app

data_API

1

2

3

4

data_API

Application-Specific
Proxy (ASP)

Fig. 3: Filtering of backend API data

information (step 4). This is passed to a Data Parser object
for deserialisation (step 5), after which the corresponding
Data Objects, which model the information according to the
application semantics, are initialised accordingly (step 6).
Pointers to the Data Objects are then returned to the Controller
object (steps 7–9) and are used to update the corresponding
View objects (steps 10–12) on the mobile device.

3) Opportunities and Challenges: We observe that Com-
municator and Data Parser objects only create Data Objects
for content that is used subsequently by Controller objects.
Any unused data that is sent from the backend service will
not be output by Data Parser objects. Therefore, less data
should be output by the Data Parser object compared to
what was retrieved by the Communicator object, addressing
inefficiencies I1 and I2 from Section II-C.

The above observation, however, does not address the
inefficiency I3 due to unnecessarily prefetched data. For
prefetched data such as images, Data Objects are created by
the Data Parser and subsequently accessed by the Controller.
The distinguishing feature to identify unused prefetched Data
Objects is that they are never used by View objects.

III. EDGEREDUCE DESIGN

To address the inefficiencies I1–I3 from Section II-C,
EDGEREDUCE extracts application-specific proxies (ASPs)
from client applications to filter the data returned by backend
services. ASPs can be deployed at the network edge—either
directly on mobile base stations [29] or within the mobile
backhaul network, e.g. at radio network controllers or gateway
equipment (see Section II-A).

The operation of EDGEREDUCE involves two steps: (i) a
static analyser identifies the application logic that needs to be
included in the ASP given the source code of the client; and
(ii) a source-level compiler generates the ASP implementation
and transforms the client application so that all communication
with the backend service occurs via the ASP.

A. Filtering of Backend API Data

In Figure 3, we give an overview of a client application
after it was transformed by the EDGEREDUCE approach. The

Data
Object

Controller

View

Model

Backend
service

Data
Parser

Communicator

Application-Specific
Proxy (ASP)

future

1

2
4

binary_object

binary_object
{future, binary_object}

mapping

5

6

3

future

binary_object

7

Fig. 4: Replacing large binary Data Objects with futures

generated ASP contains the Communicator and Data Parser
classes of the original client application, which are responsible
for retrieving (steps 1 and 2) and processing (step 3) the data
returned from the backend service API calls, data API . All
other application classes remain on the client side and are only
exposed to data app, which is the portion of data API that
is used by the client application to construct its application
data models (step 4). Any additional unused data included
in data API is thus not delivered to the client application,
relieving the RAN from unnecessary data transfers.

B. Replacing Data Objects with Futures
Client applications often prefetch large binary Data Objects

such as images, which are not necessarily used by the client’s
View objects (see Section II-C). EDGEREDUCE addresses this
problem as follows: the ASP can replace large binary Data
Objects with futures, which are significantly smaller in size.
It therefore avoids the transmission of these objects over the
RAN until they are actually used by the client application. In
this case, the client application retrieves them from the ASP,
using the corresponding futures as a reference.

The optimisation for replacing Data Objects with futures is
shown in Figure 4. When an API call returns a binary Data
Object binary object (step 1), the response data is passed
to the Data Parser object (step 2). Before the Data Parser
object instantiates the corresponding Data Object, it creates
a new association between the binary object and a fresh
future (step 3). The binary object is stored at the ASP and
its future is given to the Data Object (step 4). When the client
attempts to access the binary object (step 5), it triggers a
request to the ASP using the future (step 6). The ASP then
returns the original object to the client (step 7). As a result, a
prefetched binary object that is never accessed by the client
will remain at the ASP and not transferred over the RAN.

IV. PROXY GENERATION

Next we describe the process of generating the ASP from
the source code of a client application. This includes: (i) iden-
tifying the Communicator and Data Parser classes through

source-level program analysis (Section IV-A); and (ii) trans-
forming the client’s source code to place the Communicator
and Data Parser objects as part of the ASP, which involves
converting the corresponding local method calls between Con-
troller and Communicator objects, as well as Data Parser and
Data Objects, to remote calls (Section IV-B).

A. Source-Level Program Analysis

EDGEREDUCE statically analyses the source code of client
applications to distinguish between the different types of
application classes according to the classification discussed in
Section II-D. The goal is to identify Communicator and Data
Parser classes to be placed at the ASP.

Communicator classes are selected based on the fact that
they include methods that interact with objects of the NSURL-
Connection class. This class is defined in the iOS Foundation
framework, which is a base layer for all primitive Objective-C
classes. NSURLConnection objects retrieve data from a URL
in a synchronous or an asynchronous fashion. Objects of this
type are used to interface with the API of backend services.

Data Parser classes are defined as the classes that perform se-
rialisation and deserialisation of data transmitted over the net-
work. Usually this kind of functionality is realised by built-in
iOS classes such as the NSJSONSerialization class or third-
party libraries such as the SBJSON library. For EDGEREDUCE,
we manually compiled a list of such classes from libraries for
the two most commonly used serialisation formats, namely the
XML and JSON. This list is given as input to EDGEREDUCE’s
static analyser. For example, for XML, Data Parser classes
include the NSXMLParser class and the libxml2 C library; for
JSON, they include the NSJSONSerialization class and the
JSONKit, TouchJSON and SBJSON libraries. EDGEREDUCE can
be extended to support new encoding formats, provided that
classes handling data according to the format can be identified.

B. Source Code Transformation

EDGEREDUCE’s source-level compiler generates ASPs for
client applications written in Objective-C. We describe how the
Communicator and Data Parser classes are placed at the ASP
using source-level compilation techniques, which transform
local into remote method calls.

We also explain two techniques for reducing the communi-
cation overhead between the ASP and the client application:
(i) the use of transient Data Objects at the ASP, which are
sent to the client in a single remote call, thus avoiding multiple
calls that initialise individual object fields (Section IV-B2); and
(ii) the replacement of large binary Data Objects by futures,
which are retrieved from the ASP on demand.

1) Implementation: Communicator and Data Parser classes
need to become part of the ASP. EDGEREDUCE replaces these
classes in the source code with representative delegate classes,
which relay method invocations from the client to the ASP
using remote calls. Similarly, for the ASP, delegate classes
are used to represent all other application classes, which are
implemented by the client but are also accessed by the ASP.

Data Parser Communicator

Controller

Data Object

View

Mobile Client Application
(a) without transient

Data Object
(b) using transient

Data Object

Data Parser Communicator

Controller

Transient
Data Object

View

Permanent
Data Object

Application-Specific Proxy (ASP)

Fig. 5: Use of transient Data Object to reduce remote calls

Delegate classes are generated automatically using the In-
ternet Communications Engine (ICE) [30], an object-oriented
RPC framework with support for Objective-C. They have the
same method signatures as the underlying classes and handle
the serialisation and deserialisation of method parameters
and return values. The RPC framework also automatically
compresses data exchanged as part of remote calls.

To manage pointers to objects that are passed as arguments
or returned by remote calls, EDGEREDUCE assigns a unique
object identifier to each object upon its creation. This is
used to replace pointers to objects in remote calls. Using the
object identifier, the client application and the ASP can convert
pointer arguments and return values to the appropriate objects
in their address spaces, i.e. either to an application object
instance or its delegate object. A global identifier dictionary
maps identifiers to application object instances or delegate
objects. When handling incoming remote calls, the referred
objects are retrieved based on their identifiers.

2) Transient Data Objects: As illustrated in Figure 5a,
Data Parser objects may interact frequently with Data Objects,
which results in a high number of remote calls between the
ASP and the client. These method calls typically correspond
to calls to the Data Objects’ setter methods, which initialise
each of their fields separately rather than using a single call.

Figure 5b shows how EDGEREDUCE overcomes this prob-
lem by enabling the ASP to execute frequent calls to Data
Object methods locally. When allocating and initialising these
objects, the ASP uses transient Data Objects, which are Data
Objects that are created at the ASP—instead of the client.
Transient Data Objects remain valid until the ASP returns
them to the client application via a remote call made by
the Controller object. This requires serialising transient Data
Objects and returning their actual data to the client, instead
of using an object identifier. The client then initialises its
permanent Data Objects accordingly.

3) Data Objects With Futures: With aggressive prefetching
strategies, large binary objects may be transferred unnecessar-
ily to the client application. To address this limitation, the
ASP uses smaller futures to replace binary objects, which are
retrieved on demand only when about to be used by the client.

Our prototype implementation focuses on images as a repre-
sentative example of large binary Data Objects, since images

constitute the largest payload of an average web page. Es-
pecially with high-resolution images becoming common [31],
the amount of image data sent to a client application often
contributes significantly to the RAN traffic.

EDGEREDUCE’s static analyser automatically identifies
Data Object fields that represent images, i.e. pointers to the
UIImage class. It also identifies locations in the source code
that initialise these fields using the image data received from a
backend service. At the ASP, each image is assigned a unique
image identifier to serve as a future for the image. Before an
image is sent to the client application, the identifier is added to
an images dictionary, indexed by its corresponding identifier.

At the ASP, before an image is used to initialise a Data
Object field, it is replaced by the corresponding future. The
client intercepts methods that are used to display an image
on the screen, e.g. the drawRect method of the UIImageView
class—a view-based Objective-C container for displaying and
animating images—to first retrieve the image from the ASP
using the future as a reference.

An implementation challenge is how to modify methods
of classes for which there is no source code, such as the
built-in Objective-C methods for the UIImageView class. As a
solution, we use method swizzling [32]: when the Objective-C
runtime loads a binary, all objects have their fields and method
implementations defined in memory. These object templates
also include a map associating method names with imple-
mentations. The Objective-C runtime allows for modifying
these mappings at runtime by either replacing the original
implementation with a user-defined function, thus modifying
the default method behaviour, or changing the method name
for a built-in Objective-C method.

EDGEREDUCE’s source-level compiler is thus able to patch
existing methods with the replacement methods: the original
implementation of, e.g., drawRect is changed to original-
DrawRect; and the drawRect method is mapped to a new user-
defined method that first retrieves the image given its future
from the ASP and then calls the originalDrawRect method.

For an EDGEREDUCE implementation on the Android
platform, the above approach is infeasible due to a lack of
support for method swizzling. An alternative approach would
be to wrap an unmodifiable class with a custom wrapper
class that has the same interface, which would thus allow the
interception of methods that display images on the device.
This would require, however, substituting all occurrences of
the original class in the source code with the wrapper class.

C. Discussion

For our prototype implementation of EDGEREDUCE, we
assume that the Controller and Data Parser objects contain
no device-specific functionality such as accesses to hardware
sensors or the file system. Our experience with mobile client
applications suggests that these objects are independent and
have no side-effects other than that of retrieving and parsing
data sent from backend services. If dependencies exist, static
analysis can be used to identify them.

 0

 10

 20

 30

 40

 50

Twitter Groupon Yahoo! Finance

D
at

a
re

ce
iv

ed
 (K

B)

Images Images ImagesAPI data API data API data

Original client

EdgeReduced client

14.6x 16.6x

2.1x

4.5x

2.2x

Fig. 6: Effect of EDGEREDUCE on RAN traffic

In addition, we assume that Data Parser objects make use
of a small set of well-known libraries for parsing XML- and
JSON- encoded data. Since most mobile client applications
use a handful of network protocols and formats, this is the
case for the majority of applications. For this, EDGEREDUCE’s
static analyser is based on observations drawn from an existing
set of open-source client applications for iOS. This may not
exhaustively identify all occurrences of Communicator and
Data Parser objects, but it can be easily extended to include
a wider set of attributes for identifying the role of different
application classes.

The use of ASPs raises security challenges because client
data becomes exposed at edge nodes. However, we assume
that edge nodes are under the control of the mobile network
operator and therefore, similar to network links, must be
considered trusted. Multiple ASPs can be hosted efficiently
by virtualised base stations in an isolated fashion [29].

V. EVALUATION

In this section, we evaluate experimentally the ability of
EDGEREDUCE to reduce RAN usage for a realistic set of
mobile client applications. We also quantify the impact of
EDGEREDUCE on the response time of client applications.

A. Experimental Set-up

For our experiments, we use an Apple iPhone 4s to host the
client application and a 2.26 Ghz Intel Core 2 Duo machine
with 8 GB of RAM to host the ASP. We conduct experiments
with two types of network connectivity between the nodes:
(i) a 802.11g WiFi network with an average round trip
time (RTT) of 23 ms and an average bandwidth of 8 Mbps;
and (ii) a 3G mobile network with an average RTT of 425 ms
and bandwidth of 0.4 Mbps.

We apply EDGEREDUCE to three iOS client applications
for Twitter, Groupon and Yahoo! Finance:

The Twitter client [33] (Twitter) displays and supports the
sharing and posting of Tweet messages. It interacts with the
Twitter platform via the Twitter REST API [4], which provides
interfaces for accessing and manipulating Twitter data such as
timelines, followers and messages. We consider a workload in
which the user retrieves the most recent Tweet messages.

The Groupon client [34] (Groupon) displays popular
Groupon deals. It interacts with the Groupon platform via the
Groupon API [35], which provides interfaces for categorised
access to deals, such as location-aware deals and travel deals.
Our workload constitutes of retrieving the latest deals in a
given geographic location.
The Yahoo! Finance client [36] (Yahoo) produces plots of
stock quotes using financial data from the Yahoo! Finance
platform via their API [37]. The workload for this application
involves retrieving and plotting the stock quote data for a set
of stock symbols.

All HTTP traffic in the experiments is compressed using
gzip. The results reported correspond to averaged values over
10 experimental runs, with a low variance between runs.

B. Network Bandwidth Usage

First, we compare the network usage of the original and
EDGEREDUCE versions of all three applications. We show
the relevant reduction in RAN data traffic with respect to the
workloads described above. Figure 6 plots the breakdown of
network usage, split according to image and non-image API
data, for the Twitter, Groupon and Yahoo clients, before and
after transformation with EDGEREDUCE.

With respect to non-image API data, EDGEREDUCE man-
ages to reduce traffic by 2.1×, 4.5× and 2.2× for Twitter,
Groupon and Yahoo, respectively. The reductions are due to
the elimination of encoding overheads and returning only the
portion of the data that is used by the client applications. In
addition, EDGEREDUCE reduces the amount of image data
received by the Twitter and Groupon clients by a factor of
14.6× and 16.6×, respectively. (The Yahoo client does not
perform image transfers.) This is accomplished by transmitting
only approximately 7% of the total images returned by the
Twitter and Groupon backend services when a user requests
the most recent Twitter messages or popular Groupon deals.
For the remaining images, futures in the form of image
identifiers are returned, which are significantly smaller in size
(4 bytes per future versus, on average, 2.2 KBytes per image).
Of course, depending on user activity, savings in image data
may diminish in accordance to the number of images that the
user decides to browse in the client application.

Overall, a significant reduction in RAN traffic is obtained
for all three client applications using EDGEREDUCE. Both
Twitter and Groupon exhibit similar reductions in image
data transfers by avoiding the transmission of approximately
the same number of images, which are returned by the
corresponding backend API calls. However, the response to
the Groupon API call for the most popular deals contains
approximately twice as much unused data compared to the
response to the Twitter API call for recent Tweet messages.
This can be observed in the relevant savings for non-image
data that EDGEREDUCE achieves in both cases.

C. Application Performance

Next we explore the impact of EDGEREDUCE on applica-
tion response times. We focus on the increase in response time

 0

 2

 4

 6

 8

 10

 12

 14

3G WiFi

R
es

po
ns

e
tim

e
in

cr
ea

se
 (%

)
Twitter

Groupon
Yahoo! Finance

Fig. 7: EDGEREDUCE performance overhead

TABLE I: Transient Data Object optimisation savings

Client Number of RPCs Reduction in response
application before after time over 3G (in secs)

Twitter 268 36 101
Groupon 106 18 39

Yahoo 11 11 0

due to the communication overhead of the additional remote
calls introduced by EDGEREDUCE, as well as the overhead
of the on-demand retrieval of binary objects. To account for
the interoperability of EDGEREDUCE with seamless WiFi
offloading approaches (see Section II-B), we also include
results that show the impact of EDGEREDUCE on application
performance over WiFi networks.

1) Application Response Time: In Figure 7, we compare the
response times of the original and EDGEREDUCE versions for
the three applications. We measure response time as the time
between when a user action is initiated and when it results in a
UI update. Using EDGEREDUCE, all three client applications
are marginally outperformed by their original versions.

We observe an increase in response time that ranges from
5% to 11%, which is due to the additional remote calls
between the client application and the ASP. The majority
of remote calls are used to copy transient Data Objects to
permanent Data Objects on the client side, as well as to return
the futures of binary Data Objects to the client application.

In all cases, EDGEREDUCE performs slightly better when
the mobile device and the ASP are connected over a 3G
network. This is due to the relative difference between the
data transmission rates over WiFi and 3G networks. Gains in
response time are obtained by avoiding the transmission of un-
necessary data across the substantially slower 3G network. For
WiFi networks, however, the absolute saving is negligible—
the contribution of the transmission time of unused data over
WiFi to the overall response time is low.

Due to the optimisation of transient Data Objects (see
Section IV) the overhead of the additional remote calls remains
low. Table I shows the impact of the optimisation on the per-
formance of the three applications. For Twitter and Groupon,
it achieves significant reductions in the number of RPCs—
by a factor of 7.4× and 5.9×, respectively. This reduces the
response time by 101 s and 39 s, respectively. For Yahoo,
however, the optimisation does not yield any benefit. Data
Parser objects already output an intermediate representation

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
(s

)

Backend data (MB)

Original client
EdgeReduced client

Fig. 8: RAN transmission
times for varying data sizes

 0
 2
 4
 6
 8

 10
 12

 0 5 10 15 20
 0
 0.5
 1
 1.5
 2
 2.5
 3

CPU
Memory

On-demand

Processing API

C
PU

 (%
)

M
em

or
y

(M
B)

Time (s)

response data

image retrieval

Fig. 9: CPU and memory require-
ments of ASPs

of the required API data, e.g. an array of used values, which
is sent to the mobile client from the ASP in a single call.

2) On-Demand Object Retrieval: To evaluate the impact
of EDGEREDUCE’s future mechanism on application per-
formance, we also observe the user-perceived latency when
retrieving an image based on its future. We measure the time
between a user request for displaying an image until the image
was rendered on the screen. This includes the processing time
at the ASP, i.e. the lookup time for the image object using its
future, and the delay for transmitting the image to the client.

For the WiFi network, requesting and transmitting a single
image from the ASP to the mobile device takes 102 ms, out
of which only 33 ms are due to the processing delay. Over
the 3G network, the delay increases to 509 ms due to the
higher network latency—the processing delay remains the
same. As expected, there is a trade-off between reducing
RAN usage and providing the lowest application response
times. Retrieving binary Data Objects on demand significantly
reduces network usage, however, at the cost of degraded
application performance.

3) Backend Data Size: We also explore the effect of
larger amounts of data sent from the backend service on the
application response time over a 3G network. We conduct
an experiment that uses the Groupon client’s behaviour as
reference to transfer variable amounts of backend data, ranging
from 50 KB–1.5 MB—we maintain the same number of remote
calls but vary their data sizes. We further assume the same ratio
of used to unused backend data as reported in Section V-B.

Figure 8 plots the responsiveness of the original and the
EDGEREDUCE versions of Groupon for different amounts of
backend data returned, assuming minimum data reduction by
disabling EDGEREDUCE’s mechanism for tuning the prefetch-
ing of images. When the amount of backend data increases,
the application response time for the original version increases
more sharply than the EDGEREDUCE version. The overhead
of additional remote calls between the ASP and the client is
gradually masked by the savings in data transmission time
over the slow network. Eventually, these savings are enough
to achieve a speedup in execution.

We conclude that, for client applications that retrieve large
amounts of backend data over a 3G network and exhibit a
similar ratio of used to unused backend data, EDGEREDUCE
can speed up execution. This is only the case when the gains
of avoiding the transmission of data over the limited RAN
outweigh the cost of the additional remote calls between the
mobile device and the ASP.

D. Resource Overhead

To explore the resource requirements of an ASP, we monitor
the CPU and memory utilisation of the ASP created for the
Groupon client. Figure 9 shows the percentage of CPU usage
when a user requests the list of most popular Groupon deals
and views the top two results. While processing this request,
CPU usage at the ASP increases to 11%: the ASP issues the
HTTP request, parses the response data and returns the results
to the client. The two spikes in CPU utilisation after 13 s and
19 s correspond to two subsequent requests for images.

The figure also shows the memory consumption at the ASP.
Approximately 1 MB of memory is consumed initially by the
baseline objects and data structures created at the ASP. During
the processing of the initial request, an additional 1 MB of
memory is allocated while processing the API response data.
Overall, the CPU and memory utilisation at the ASP remain
low, suggesting that multiple ASPs can be hosted as part of a
virtualised base station.

VI. RELATED WORK

This section compares EDGEREDUCE with prior work in
the areas of automatic application partitioning, code offloading
and distributed programming support.

A. Automatic Application Partitioning

Automatic application partitioning techniques aim to facil-
itate the development of distributed applications with good
application performance. J-Orchestra [38] automatically par-
titions Java applications at the byte-code level. Similar to
EDGEREDUCE, it distributes objects across machines using
compiler techniques that substitute local with remote calls and
data objects with indirect references. J-Orchestra offers a parti-
tioning mechanism but no policy, relying on the user to specify
the location of application classes. In contrast, EDGEREDUCE
generates application-specific proxies specifically to reduce the
network usage of mobile applications.

Coign [39] is a system for automatic distribution of app-
lications built from COM software components. It constructs
a graph of inter-component communication by profiling ap-
plication execution and partitions applications across nodes in
order to minimise communication. To realise a partitioning,
Coign exploits the fact that COM components are location-
transparent. In contrast, EDGEREDUCE only decides which
application classes to place at a network proxy and cannot
rely on a component model to realise a partitioning.

Wishbone [40] facilitates the deployment of sensor network
applications by partitioning a graph of stream operators. It pro-
files the execution of operators against sample data and decides
on a partitioning that minimises network bandwidth or CPU
consumption. While Wishbone assumes arbitrary dataflow
programs, EDGEREDUCE explicitly targets the dataflow in
mobile client applications due to the MVC design pattern.

B. Code Offloading Systems

Code offloading systems partition mobile applications to
offload resource-intensive functionality, primarily to reduce

application response times. Cloudlets [41] and Virtual Smart-
phone over IP [42] treat smartphones as thin clients that are
served by virtual device images on powerful remote servers.
They mediate user input and screen updates from the device
to the virtual device image and back, effectively offloading
the entire application logic to a remote server. In doing so,
however, they rely on a high-bandwidth network connectivity.

Systems such as MAUI [43], Thinkair [44], COMET [45]
and CloneCloud [46] apply a more fine-grained partitioning
with richer optimisation goals such as improving response
time or reducing energy consumption. Mobile applications are
partitioned at the function-level by converting local method
calls into remote calls, or by migrating entire VM images from
the device to a remote server.

In contrast with EDGEREDUCE, such approaches do not
focus on reducing the network usage of mobile client app-
lications. They rather assume that offloaded applications are
side-effect free and do not interact with backend services.

C. Distributed Programming Support

The use of futures in distributed programming is an old
concept that was first proposed for achieving concurrency in
distributed applications [47], [48]. A future, or promise, is a
reference to the result of a remote procedure call, which is
still unevaluated. By deferring the acquisition of the result of a
remote call to sometime in the future, a thread does not have to
block execution until it attempts to evaluate the corresponding
future, in which case it explicitly asks for the result.

EDGEREDUCE uses the idea of futures in a similar fashion
but for a different reason. It allows for large binary Data
Objects to remain at the ASP unless used by the client
application. This helps reduce RAN traffic due to aggressive
prefetching strategies that tend to retrieve large amounts of
unused objects such as images.

VII. CONCLUSIONS

Mobile networks need to consider innovative techniques for
handling the avalanche of data traffic. This paper makes the
observation that mobile client applications receive unneces-
sary data from Internet backend services due to a semantic
mismatch of the granularity of API calls and the unnecessary
prefetching of data.

We propose EDGEREDUCE, an approach for generating
application-specific proxies (ASPs) for mobile client app-
lications that blurs the boundary between mobile end-systems
and networks. ASPs host the application logic that receives
response data from an Internet backend service and converts
it into application objects, which are then sent to the mobile
device. As a result, discarded data from the backend service
is never transmitted over the RAN. To reduce network usage,
we describe optimisations that allow ASPs to minimise the
number of remote calls to the client and to retrieve large
binary objects on-demand. Our evaluation shows the potential
of EDGEREDUCE as a practical approach to reduce data traffic
in mobile networks for today’s mobile applications.

REFERENCES

[1] Cisco, Global Mobile Data Traffic Forecast Update, 2014,
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white paper c11-520862.html.

[2] R. Agency, Cellular and 3G Telephony, http://ofcom.org.uk/static/
archive/ra/topics/pmc/document/licencetypes/cellularinfo.htm.

[3] Communications Network Research Institute (CNRI), Mobile Data
Offload, 2010, http://cnri.dit.ie/research.data offload.html.

[4] Twitter, Twitter REST API, 2013, https://dev.twitter.com/overview/
documentation.

[5] Amazon, Amazon MWS, 2013, https://developer.amazonservices.com.
[6] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,

“Informed Mobile Prefetching,” in MobiSys, 2012.
[7] T. C. Projects, SPDY: An Experimental Protocol for a Faster Web, 2013,

http://www.chromium.org/spdy/spdy-whitepaper.
[8] J. Roskind, QUIC: Design Document and Specification Rational, 2013,

https://docs.google.com/document/d/1RNHkx VvKWyWg6Lr8SZ-
saqsQx7rFV-ev2jRFUoVD34/edit?pli=1.

[9] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck,
“To Cache or Not to Cache: The 3G Case,” in IEEE Internet Computing,
2011.

[10] N. T. Spring and D. Wetherall, “A Protocol-Independent Technique for
Eliminating Redundant Network Traffic,” in SIGCOMM, 2000.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture: A System of Patterns, 1996.

[12] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park, “Comparison of
Caching Strategies in Modern Cellular Backhaul Networks,” in MobiSys,
2013.

[13] G. Fleishman, The State of 4G: It’s all about Congestion, not
Speed, 2010, http://arstechnica.com/tech-policy/2010/03/faster-mobile-
broadband-driven-by-congestion-not-speed/.

[14] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell Net-
works: A Survey,” in IEEE Communications Magazine, 2008.

[15] M. R. Ebling, L. B. Mummert, and D. C. Steere, “Overcoming the
Network Bottleneck in Mobile Computing,” in Workshop on Mobile
Computing Systems and Applications (WMCSA), 1994.

[16] J. Erman, A. Gerber, M. T. Hajiaghayi, D. Pei, and O. Spatscheck,
“Network-aware Forward Caching,” in World Wide Web (WWW), 2009.

[17] F. Sailhan and V. Issarny, “Energy-Aware Web Caching for Mobile
Terminals,” in ICDCS, 2002.

[18] T. R. Fischer and Q. Chen, “Subband Image Coding for Packet Erasure
Channels.” in ICIP, 1996.

[19] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
Caches on Routers: The Implications of Universal Redundant Traffic
Elimination,” in SIGCOMM, 2008.

[20] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in Network Traffic: Findings and Implications,” in SIGMETRICS, 2009.

[21] C. Hetting, “Seamless Wi-Fi Oflload: From Vision to Reality,” Aptilo
Networks, Tech. Rep., 2013.

[22] S. Dimatteo, P. Hui, B. Han, and V. O. K. Li, “Cellular Traffic Offloading
through WiFi Networks,” in Mobile Adhoc and Sensor Systems (MASS),
2011.

[23] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
Mobile 3G Using WiFi,” in MobiSys, 2010.

[24] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile Data Offloading:
How Much Can WiFi Deliver?” in Co-NEXT, 2010.

[25] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, 2000, Doctoral dissertation.

[26] Facebook, Facebook Query Language (FQL) Reference, 2013, https:
//developers.facebook.com/docs/reference/fql/.

[27] H. Shen, M. Kumar, S. K. Das, and Z. Wang, “Energy-Efficient Data
Caching and Prefetching for Mobile Devices Based on Utility,” in Mobile
Network Applications, 2005.

[28] Apple, MVCNetworking, 2010, https://developer.apple.com/library/ios/
samplecode/MVCNetworking/Introduction/Intro.html.

[29] IBM, IBM ASPN, 2013, http://www-03.ibm.com/press/us/en/
pressrelease/40490.wss.

[30] ZeroC, Internet Communications Engine (ICE), 2005, http://zeroc.com.
[31] A. Bradley, Automating Image Compression And Optimization, 2013,

http://www.resrc.it.
[32] CocoaDev, MethodSwizzling, 2013, http://cocoadev.com/

MethodSwizzling.
[33] T. Mori, NatsuLion Twitter client, 2009, https://github.com/takuma104/

ntlniph.
[34] V. Aranha, Groupon client, 2011, https://github.com/vivianaranha/

Groupon-API---iOS.
[35] Groupon, Groupon API, 2013, http://www.groupon.com/pages/api.
[36] W. Lyon, Yahoo! Finance client, 2013, https://github.com/johnymontana/

WillzPlotz iOS.
[37] Y. Finance, Yahoo! Finance API, 2013, https://code.google.com/p/

yahoo-finance-managed/wiki/YahooFinanceAPIs.
[38] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic Java Applica-

tion Partitioning,” in ECOOP, 2002.
[39] G. C. Hunt and M. L. Scott, “The Coign Automatic Distributed Parti-

tioning System,” in OSDI, 1999.
[40] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,

“Wishbone: Profile-based Partitioning for Sensornet Applications,” in
NSDI, 2009.

[41] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” in IEEE Pervasive
Computing, 2009.

[42] E. Y. Chen and M. Itoh, “Virtual Smartphone Over IP,” in WoWMoM,
2010.

[43] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in MobiSys, 2010.

[44] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading,” in INFOCOM, 2012.

[45] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code Offload by Migrating Execution Transparently,” in
OSDI, 2012.

[46] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic Execution between Mobile device and Cloud,” in EuroSys, 2011.

[47] A. Chatterjee, “Futures: A Mechanism for Concurrency Among Ob-
jects,” in Supercomputing, 1989.

[48] B. Liskov and L. Shrira, “Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems,” in SIGPLAN,

1988.

