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Abstract—This paper1 assumes a set of n mobile sensors that
move in the Euclidean plane as a swarm. Our objectives are to
explore a given geographic region by detecting spatio-temporal
events of interest and to store these events in the network until
the user requests them. Such a setting finds applications in mobile
environments where the user (i.e., the sink) is infrequently within
communication range from the field deployment. Our framework,
coined SenseSwarm, dynamically partitions the sensing devices
into perimeter and core nodes. Data acquisition is scheduled at
the perimeter, in order to minimize energy consumption, while
storage and replication takes place at the core nodes which are
physically and logically shielded to threats and obstacles. To
efficiently identify the nodes laying on the perimeter of the swarm
we devise the Perimeter Algorithm (PA), an efficient distributed
algorithm with a low communication complexity. For storage and
fault-tolerance we devise the Data Replication Algorithm (DRA),
a voting-based replication scheme that enables the exact retrieval
of events from the network in cases of failures. Our trace-driven
experimentation shows that our framework can offer significant
energy reductions while maintaining high data availability rates.
In particular, we found that when failures are less than 60%
failure then we can recover over 80% of generated events exactly.

I. INTRODUCTION

Stationary sensor networks have been predominantly used in

applications ranging from environmental monitoring [25], [23]

to seismic and structural monitoring [5] as well as industry

manufacturing [19]. Recent advances in distributed robotics

and low power embedded systems have enabled a new class

of Mobile Sensor Networks (MSNs) [6], [29] that can be

used in land [2], [7], [16], ocean [17] and air [9] exploration

and monitoring, automobile applications [11], [8], habitant

monitoring [23] and a wide range of other scenarios. MSNs

have a similar architecture to their stationary counterparts, thus

are governed by the same energy and processing limitations,

but are supplemented with implicit or explicit mechanisms

that enable these devices to move in space (e.g., motor

or sea/air current). Additionally, MSN devices might derive

their coordinates through absolute (e.g., dedicated Geographic

1This work appears in the Proceedings of the 10th International Conference
on Mobile Data Management Systems, Services and Middleware (MDM
2009).

Positioning System hardware) or relative means (e.g., local-

ization techniques, which enable sensing devices to derive

their coordinates using the signal strength, time difference of

arrival or angle of arrival). The absence of a stationary network

structure in MSNs makes continuous data acquisition to some

sink point a non-intuitive task as data acquisition needs to

be succeeded by in-network storage [30], [24], [1], such that

these events can later be retrieved by the user. Additionally,

the operation of MSNs is severely hampered by the fact that

failures are omnipresent, thus fault-tolerance schemes become

of prime importance in such environments.

In this paper we propose SenseSwarm2, a novel framework

for the acquisition and storage of spatio-temporal events in

MSNs. In SenseSwarm, nodes have the dual role of perimeter

and core nodes (see Figure 1). Data acquisition is scheduled

at the perimeter, in order to minimize energy consumption,

while storage and replication takes place at the core nodes.

Such a setting is suited well for applications in which new

events are more prevalent at the periphery of the swarm (e.g.,

water and contamination detection) rather than for online

monitoring applications (e.g., fire detection) or applications

where new events might occur anywhere in the network. In our

setting, storage of detected events takes place at the core nodes

since these nodes are expected to feature a longer lifetime

(due to their reduced sensing activity) but are also physically

shielded to threats and obstacles that might immobilize the

sensors. In order to increase the overall fault-tolerance of our

system, we propose a data replication scheme that increases

the availability of data and thus also the accuracy of executed

queries.

For ease of exposition, let us now consider a Mars Explo-

ration scenario: Spirit was one of the two rovers deployed

by NASA in 2004 in order to perform geological analysis

of the red planet. Instead of one rover, consider a design

that consists of many cheaper rovers deployed as a swarm.

Such a design avoids the peculiarities of individual rovers,

2The term Swarm (or Flock) in this paper refers to a group of objects that
exhibit a polarized, non-colliding and aggregate motion.
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Fig. 1. SenseSwarm: Data Acquisition takes place at the virtual perimeter
while core nodes act as storage nodes for the acquired events.

is less prone to failures and is potentially much cheaper. The

swarm moves together and attempts to detect events of interest

(e.g., the presence of water). Let the polarized behavior of the

swarm be provided by an explicit algorithm [22] or an implicit

mechanism (e.g., air current). The operator (on earth) then

infrequently posts the question: “Has the swarm identified any

water and where exactly?” Since the sink is located far away

from the field deployment, the swarm collects spatio-temporal

events of interest and stores them in the network until the

operator requests them. In order to increase the availability

of detected answers, in the presence of unpredictable failures,

nodes perform data replication to neighboring nodes.

Similarly to the above visionary description, we could draw

another more realistic example in the context of an ocean mon-

itoring environment: assuming n independent surface drifters

floating on the sea surface and equipped with either acoustic

or radio communication capabilities, the operator infrequently

seeks to answer the query: “Has the swarm identified an

area of contamination and where exactly?” Finally, one

could utilize a swarm of car robots, such as CotsBots [2],

Robomotes [7] or Millibots [16], to construct spatio-temporal

acquisition and storage scenarios for land applications.

This paper builts upon our previous work in [28], in which

we presented the initial design of the SenseSwarm framework.

In this paper we introduce several new improvements including

a voting-based fault-tolerance scheme that increases the avail-

ability of data and thus improves fault tolerance. In particular,

our work makes the following contributions:

• We present the Perimeter Algorithm (PA), which effi-

ciently constructs a perimeter of a MSN using a two-

phase protocol. Our algorithm has a O(n) message com-

plexity, where n is the total number of sensors instead of

O(n2), featured by the centralized algorithm.

• We devise a voting-based replication scheme to preserve

the datums (i.e., acquired events) in cases of system

failures. In particular, we devise the DRA algorithm that

replicates datums using distributed read/write quorums.

• We experimentally validate the efficiency of our proposi-

tions using a trace-driven experimental study that utilizes

real sensor readings.

The remainder of the paper is organized as follows: Sec-

tion II overviews the related research work and provides

background on our perimeter construction and fault-tolerance

scheme we present. Section III formalizes our system model

and assumptions, Section IV the PA algorithm and Section V

the DRA algorithm. Section VI presents our experimental

study and Section VII concludes the paper.

II. RELATED WORK AND BACKGROUND

This section provides an overview of predominant data

acquisition frameworks in order to highlight the unique char-

acteristics of the SenseSwarm framework. It also provides

background on the two main problems our framework ad-

dresses (i.e., the perimeter construction and the data replication

processes).

Traditional data acquisition frameworks for sensor net-

works, such as TinyDB [18] and Cougar [26], perform a

combination of in-network aggregation and filtering in order

to reduce the energy consumption while conveying data to the

sink. The MINT View framework [27] performs in-network

top-k pruning in order to further reduce the consumption of

energy. In data centric routing, such as directed diffusion [12],

low-latency paths are established between the sink and the

sensors. Contrary to our approach, all the above frameworks

have been proposed for stationary sensor networks while this

work considers the challenges of a mobile sensor network

setting. In data centric storage schemes [24], [1], data with the

same attribute (e.g., humidity readings) is stored at the same

node in the network offering therefore efficient location and

retrieval. Such an approach is supplementary to the perimeter-

based data acquisition framework we propose in this paper.

Supplementary to our framework are also the MicroHash [30]

and TINX [20] local index structures, which provide O(1)
access to data stored on the local flash media of a sensor

device. Such structures can be deployed to speed up the

retrieval of data whenever required.

The first problem our framework investigates is that of

partitioning the network into perimeter and core nodes. The

perimeter construction problem we consider has similarities

to the convex hull problem in computational geometry, which

finds applications in pattern recognition, image processing and

GIS [4]. The convex hull problem is defined as follows: given

a set of points, identify the boundary of the smallest convex

region that encloses all the points either on the boundary

or on its interior. Such a boundary is both non-intersecting

(i.e., no edge crosses any other edge) and convex (i.e., all

internal angles are less than π). There are numerous central-

ized algorithms for computing the convex hull with varying

complexities.

Two of the most popular convex hull algorithms are the

Jarvis March [4] (or Gift Wrapping) algorithm and the Gra-

ham’s scan algorithm [4]. The main difference between the

convex hull and the perimeter problem we consider in this

work, is that the latter defines non-convex cases (i.e., internal

angles are up to 2π). Non-convex cases are typical for a sensor

network context as convex angles might not be feasible due to

communication radius constraints. Additionally, convex hull

algorithms are centralized while we develop techniques to

compute the boundaries in a distributed fashion minimizing

communication and energy consumption without sacrificing
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Fig. 2. In SenseSwarm, data acquisition is scheduled at the perimeter while
storage and replication takes place at the core nodes.

correctness. Related work in the context of sensor networks

appears in [3], where the authors present localized techniques

that enable the sensors to determine whether they belong

to the boundary of some phenomenon. Yet, the underlying

assumption in the given work is that the edge sensors are not

within communication range while we consider the perimeter

to be a continuous chain of nodes. In [21], the authors devise

an algorithm that combines current and historic measurements

to trace a contour of a given value in the field (e.g., an oil

spill). The presented ideas (e.g., that of quickly arriving at the

contour) are supplementary to ideas presented in this paper.

The second problem our framework investigates is that of

data replication to improve fault-tolerance. At a high level,

our proposed scheme consists of maintaining a set of identical

copies of each datum at several nodes in the network. For ease

of exposition, let us consider the example network of Figure 2,

which will be utilized throughout this paper. On the given

figure we illustrate a segment of a MSN at a specific time

τ . Assume that a copy of the datum d1 (i.e., data published

by node s1), has been replicated to nodes s4, s5, s6, s12.

Now let nodes s1 permanently fail along with its one hop

neighbors (i.e., s4 and s5) at time instance τ +1. Since d1 has

been replicated beyond these nodes then it will be feasible to

recover d1 if necessary.

Our proposed solution is based on a voting-based data

replication scheme. Voting algorithms [14], [15] have been

among the most popular techniques to offer fault-tolerant

properties in distributed systems. A vote denotes the preference

of some node to replicate a specific piece of information

(i.e., a datum) to another node. Voting schemes consist of

first selecting a set of nodes where a specific datum will

be replicated (i.e., the write quorum) and another set of

nodes where a query will be conducted at, to search for

that specific datum (i.e., the read quorum). One of the major

challenges is to effectively choose the correct quorums so

that the replication process will produce consistent results in

an efficient manner. SenseSwarm’s data replication algorithm

utilizes the basic ideas of voting in conjunction with the unique

characteristics of MSN systems.

TABLE I
Definition of Symbols

Symbol Definition

n Number of Sensors S = {s1, s2, ..., sn}
m Number of attributes at each si {a1, a2, ..., am}

(sx
i , sy

i ) x and y coordinates of each si

r The communication radius of each si

NH(si) 1-hop (in commun. range) neighbors of si

V (si, sj) A Vector defined as (sx
j − sx

i , sy
j − sy

i )

LeftN(si) The predecessor of si on the perimeter
RightN(si) The successor of si on the perimeter

Sp, Sc The set of Perimeter nodes, Core nodes
Q An m-dimensional Query
e Epoch Duration (i.e., data acquisition interval)

σ, σ′ Perimeter Reconstruction, Replication interval
di The datum of node si

vj
i , vi The vote (preference) of si to replicate di

to node sj , All votes from si

III. SYSTEM MODEL AND ASSUMPTIONS

In this section we will formalize our basic terminology

and assumptions. The main symbols and their respective

definitions are summarized in Table I.

Let ℜ × ℜ denote a two-dimensional grid of points in the

Euclidean plane that discretizes a given geographic area. Also

assume a Cartesian coordinate system to describe the position

of each point in the grid with coordinates (x, y). W.l.o.g, let

us initialize the n sensing devices S = {s1, s2, ..., sn} at the

lower-left n
1

2 × n
1

2 sub-grid of ℜ2. For ease of exposition

let n be a perfect square such that each cell contains exactly

one sensor. Each si (i ≤ n) can derive its coordinates (sx
i , sy

i )

through some absolute or relative mechanism. Additionally,

each si can be aware of its neighboring nodes, denoted as

NH(si), using a local 1-hop broadcast. The sensing devices

are coarsely synchronized through some operating system

mechanism (e.g., similarly to TinyOS [10]) or through the

GPS and can communicate with other sensors in a uniform

radius r, i.e., 1 ≤ r ≪ n
1

2 .

The user can specify one or more m-dimensional Boolean

queries of the type Q={q1 ⊙ q2 ⊙ ...⊙ qm}, where qi (i ≤ m)

corresponds to some predicate such as q1=“Temperature >
100′′ and ⊙ denotes some binary Boolean operator. These

queries correspond to the user-defined local events of interest

and are registered at each si either prior the deployment or

during execution. The discussion of more complex query types

is outside the scope of this paper.

A SenseSwarm network is initiated by conceptually dividing

S into perimeter nodes Sp and core nodes Sc using the

algorithms we present in Section IV. This operation is periodic

and will be repeated after σ time instances (see Figure 3).

Each perimeter sensor si (i ≤ n) then acquires m physical

parameters A={a1, a2, ..., am} from its environment during

every epoch e, which defines the interval after which data

acquisition re-occurs. The value for e is either dynamically

adjusted according to the dynamics of the swarm or prespeci-

fied. In a sea oil-spill detection scenario, e can be configured

to several hours as surface drifters usually float very slowly
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Fig. 3. Outline of the SenseSwarm framework operation.

on the sea surface. The above procedure generates spatio-

temporal tuples of the form {t, x, y, a1, a2, ..., am} locally at

each sensor. The generated tuples of interest (with respect

to Q) are stored in some local vector structure that will be

referred to as di (i.e., the datum of node si).

In order to increase the availability of di structures, we adopt

a data replication scheme based on votes that will be presented

in Section V. A vote vj

i denotes the preference of sensor si

(i.e., the publisher of some datum di), to replicate di to node

sj (i 6= j) at a given time instance. Additionally, we define vi

as the set of all votes by node si on the given time instance.

In our approach, we assume that every σ′ time instances

every sensor si ∈ Sp proceeds with the replication of its local

datum di to the votes of si.

IV. PERIMETER CONSTRUCTION PHASE

This section describes algorithms for the construction of a

perimeter in a MSN. We first describe a centralized solution

and then our Perimeter Algorithm.

A. Centralized Perimeter Algorithm (CPA)

First note that the construction and dissemination of a

perimeter can be performed in a centralized manner, i.e., a

sink collects the coordinates of all nodes in S, using an ad-

hoc spanning tree, and then identifies the perimeter nodes (Sp)

using some straightforward geometric calculations. Finally,

the sink disseminates the ordered set Sp to all nodes in S
using a spanning tree. Clearly, the first and last phase of

the CPA algorithm require the transfer of many (x, y)-pairs

between nodes. Specifically, although both phases require O(n)

messages the first phase requires the transfer of O(n2) (x, y)-

pairs (i.e., assume that the nodes are connected in a bus

topology which yields
∑n

1 (i)=n(n+1)
2 (x, y) pairs), while the

last phase requires the transfer of O(p ∗ n) (x, y)-pairs (i.e.,

each edge transfers the complete perimeter of size p).

B. Perimeter Algorithm (PA)

We shall next describe our distributed algorithm which

minimizes the transfer of (x, y)-pairs, thus minimizing energy

consumption. To simplify the description and w.l.o.g., assume

that we have no coincidents (i.e., two points with the same

(x, y) coordinates) and that no three points are collinear (i.e.,

lie on the same line). Although these assumptions make the

discussion easier our implementation supports them.

Algorithm 1 presents the steps of the distributed PA process

that is executed by each sensor every σ time instances. In

Algorithm 1 : Perimeter Algorithm (PA)

Input: Sensor si (1 ≤ i ≤ n), the set of sensors S
Output: An update of the set Sp

1: procedure PERIMETER ALGORITHM(si, S)
2: minAngle=360◦; // Variable initialization
3: // Identify smin (node with the minimum y-coordinate in S).
4: smin = Find Min Coordinates(S);
5: Disseminate(smin, S); // ∀si ∈ S
6: if (si = smin) then
7: LeftN(si)=smin;
8: else
9: LeftN(si)=wait(); // Get token from LeftN(si).

10: end if
11: // Find neighbor with min. polar angle from si

12: for j=1 to |NH(si)| do
13: if (∡(LeftN(si), si, sj)≤minAngle) then
14: minAngle=∡(LeftN(si), si, sj));
15: RightN(si)=sj

16: end if
17: end for
18: Sp = Sp

S

RightN(si); // Add RightN(si) to perimeter.
19: Send(si, RightN(si)); // Send token to RightN(si)
20: end procedure

line 4, procedure Find Min Coordinares(S) identifies the

sensor with the minimum y-coordinate and returns its id to the

variable smin. If more than one sensors have the y-coordinate

equal to sy

min, then the above procedure returns the one with

the minimum value in its x-coordinate. The above procedure

is achieved by constructing an aggregation tree rooted at the

given sink using TAG [19]. In particular, each si identifies

among its children and itself the minimum sy

min value and

then recursively forwards the triple (smin, sx
min, sy

min) to si’s

parent. This step, has similarly to CPA, a message complexity

of O(n) but the overall number of (x, y)-pairs transmitted to

the sink is only O(n) rather than O(n2) (i.e., exactly one

pair per edge). This improvement is due to the in-network

aggregation that takes place in our approach.

Concurrently with the above operation in line 4, each si

updates its neighbor list NH(si) as such an updated list will

be necessary in the subsequent steps. Note that this update

does not introduce any extra cost, as si simply adds to NH(si)
the neighbors that have participated in the calculation of smin.

In line 5, we disseminate smin to all the nodes in the

network S from the sink. This has a message complexity

of O(n) and the overall number of (x, y)-pairs transmitted is

O(n), compared to O(p ∗ n) required by CPA. The next task

is to identify the nodes on the perimeter. Before proceeding,

let us provide the following definitions:

Definition 1 [Left Neighbor of si (LeftN(si))]: The pre-

decessor of si on the perimeter. The termination condition of

this recursive definition is as follows: LeftN(smin) = smin,

where sy

min ≤ sy

j (∀sj ∈ S, 1 ≤ j ≤ n).

Definition 2 [Right Neighbor of si (RightN(si))]: The

successor of si on the perimeter such that LeftN(si) 6=
RightN(si), if |NH(si)| > 1.

Continuing with the description of our algorithm in lines
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Fig. 4. Execution of PA: The construction starts at smin and proceeds
counterclockwise starting from π.

8-10 each si, other than smin, identifies its left neighbor.

This is achieved by waiting for a token (i.e., the identifier

of LeftN(si)) from LeftN(si). When the token arrives, the

node will execute the remaining steps of the algorithm (lines

12-19). In particular, in lines 12-17, si identifies the neighbors

with the minimum polar angle from its x-axis. The x-axis

of node si is defined in our context to be collinear with

the vector V (LeftN(si), si). This ensures the correctness of

the algorithm although we omit a formal proof due to space

limitations. In line 15 we utilize the notation ∡(a, b, c) to

denote the angle between three arbitrary points a, b, c in the

plane. Our objective in the given block (line 13-18), is to

identify the neighbor with the minimum polar angle (which

is then coined RightN(si)), counterclockwise starting from

π. Finally in line 19, si transmits a token to RightN(si)
notifying it that it is the next node on the perimeter. The

procedure between lines 12-20 continues sequentially along

the network perimeter until any si receives the token for a

second time from its left neighbor or a timeout period expires.

At the end, every node receiving the token knows that it

belongs to Sp while the rest nodes continue to belong to Sc.

The identification of smin takes O(n) messages and the

token dissemination takes O(p) messages, where p the number

of the nodes on the perimeter. Thus the overall message

complexity is O(n), as p ≤ n. In the future we plan to devise

techniques to incrementally compute the perimeter.

Example: Figure 4, illustrates the perimeter construction for

eight nodes {s1 · · · s8}. Assume that we have executed steps

2-5 of Algorithm 1 and that we continue with the execution

of the perimeter construction at node smin (i.e., s1). smin

measures the polar angle of all the nodes in NH(smin) to

its x-axis and subsequently derives RightN(smin)=2 (s3 is

not within communication range from s1). Next, smin sends

a token to s2 informing it that it is the next node on the

perimeter. Upon reception of the token, s2 sets its x-axis

collinear with V (s1, s2). The same idea applies to all nodes

on the perimeter until s8 transmits the token to s1.

V. ACQUISITION AND DATA REPLICATION PHASE

In this section we describe the second phase of the Sens-

eSwarm Framework during which the perimeter nodes Sp

start acquiring information from their environment and then

replicate this information to their neighboring nodes.

Recall that the acquisition step proceeds every e time in-

stances during which each si generates spatio-temporal tuples

of the form {t, x, y, a1, a2, ..., am}. The generated tuples of

interest (i.e., the tuples that satisfy the predicates of Q) are

recorded in the local di (datum) structure of each si. Next, di

structures are replicated to neighboring nodes according to the

algorithm we propose in this section. In particular, we propose

a data replication scheme based on votes.

The presented DRA algorithm replicates the di structures

to w neighboring nodes (for any w ≥ 1). If it is necessary

to recover di then it is required to read di structures from at

least r = v − w + 1 votes of si, where v is the total number

of votes of si. For instance when w = 2 and v = 4 then

r = 4− 2 + 1 = 3 (i.e., 3 reads) are adequate to recover di in

its exact form. When w = 1 and v = 4 then r = 4−1+1 = 4
reads are necessary to recover any replicated di. The details

of the DRA algorithm follow next.

A. Data Replication Algorithm (DRA)

The objective of the DRA algorithm is to construct a data

replication configuration which will present to each si an

energy efficient plan on how to replicate its local di struc-

tures. A data replication configuration is an energy efficient

(read,write)-combination that dictates how many read and

writes operations are necessary per di, such that a di structure

can be preserved in cases of failures. It is important to notice

that if energy conservation was not important then we could

have opted for a scheme that replicates each di to the entire

network.

Algorithm 2 presents the details of the DRA algorithm.

For ease of exposition, we will again utilize Figure 2 to

demonstrate the operation of DRA. Let us focus on the

perimeter sensor s1 (although a similar discussion applies

to the other perimeter nodes as well.) The DRA algorithm

starts in the first step by discovering an adequate number

of votes (candidate neighbors) for each perimeter sensor si

(lines 2-6). This is done by probing the 1-hop core node

neighbors of s1, (NH(s1)), which are s4 and s5 (line 3). If

the number of neighboring nodes, |NH(s1)| is lower than a

user-defined threshold vmin (for our discussion let vmin=4)

then s1 expands its neighbors by incorporating more multi-hop

nodes (line 5). That results in the increase of the NH(s1) set

(i.e., s6 and s12 are added to NH(s1)). Besides the identifier

of each neighbor, s1 also stores the hop count for each of

them (i.e., (s4,1), (s5,1), (s6,2), (s12,2)) so that it can later

decide which set of neighbors will produce the most energy-

efficient replication strategy. Since the number of candidates in

NH(s1) is 4, thus the vmin requirement has been satisfied,

s1 utilizes all of these 4 nodes including itself (i.e., vi=5).

Next, s1 proceeds with the selection of a subset of vi for data



Algorithm 2 : Data Replication Algorithm (DRA)

Input: A sensor si ∈ Sp, a threshold parameter vmin, representing
the minimum number of votes a sensor must register.
Output: The data replication configuration (r,w) of si.

1: procedure DRA(si ∈ Sp)
2: ⊲ Step 1: Find neighbors of si ∈ Sc

3: NH(si)← Find hop-1 neighbors of si that belong to Sc

4: if (|NH(si)| < vmin) then
5: NH(si)← recursively expand neighbors
6: end if
7: ⊲ Step 2: Define possible read write (r,w)-combinations
8: RW={(r, w): v≥w > v/2, v≥ r≥ 1, r+w > v}, where

v = |NH(si)|
9: ⊲ Step 3: Eliminate redundant (r,w)-combinations

10: RW ′={(r,w): (r,w)∈RW, r+w=v+1}
11: ⊲ Step 4: Rank the (r,w) in RW ′ according to f
12: (rx,wx)← maxi≤|RW ′|f(ri, wi)
13: ⊲ Step 5: Replicate the information to neighbors
14: vi = select(NH(si), wx) // select a set of wx neighbors
15: notifys∈vi

(s, di) // replicate di to these wx neighbors
16: end procedure

replication. This is done by utilizing a voting process that

operates as follows (we denote |vi| as v for brevity):

In Step 2 we define two integers, r (number of read

operations) and w (number of write/replicate operations) with

the following properties:

r+w>v, v≥r≥1, v≥w>v/2

We then create the RW -set of eligible (r,w)-combinations

(line 8). In our example, since w needs to be in the range 5 ≥
w > 2.5 then w ∈ {3, 4, 5}. Furthermore, since r+w > v then

r > v−w and consequently the following (r,w)-combinations

are valid: RW={(1,5), (2,5), (3,5), (4,5), (5,5), (2,4), (3,4),

(4,4), (5,4), (3,3), (4,3), (5,3)}.

In Step 3 of the voting process, we aim to eliminate

redundant (r,w)-combinations in the RW set. To under-

stand the intuition behind this elimination consider the (1,5)-

combination. Since w=5 (i.e., all sensors hold a replica of

datum d1) then it is redundant to read more replicas than one

(i.e., (2, 5), (3, 5), · · · , (5, 5) are redundant). Although all of

these combinations can recover di in cases of failures, they

do not have the same energy requirements and should thus be

excluded from the RW set. For instance the (2,5)-combination

requires 1 read more than the (1,5)-combination and should

thus be eliminated. The elimination of redundant combinations

yields RW ′={(1,5), (2,4), (3,3)}.

The objective of Step 4 is to further prune the RW ′ set

in order to derive the (r,w)-combination that requires the

least possible energy, but this operation is not straightforward.

On the one hand, having more w operations involved in the

replication process increases the overall fault-tolerance. On

the other hand, more w operations would also incur additional

messaging and consequently would require more energy. The

negative effect of more w operations is particularly more

apparent in cases where nodes have a hop distance from si

that is larger than 1 (i.e., are not 1-hop neighbors).

In the fourth step of the DRA algorithm, we rank the

remaining RW ′={(1,5), (2,4), (3,3)} combinations using a

ranking function f(r,w) and choose the one with the highest

score. In particular, the local ranking proceeds as follows:

• Calculate the number of broadcast messages (nbm(r,w))

that would be required for the replication process of the

remaining (r,w)-combinations ∈ RW ′ using the hop-

count information gathered during lines 2-6 of DRA. Nor-

malize nbm(r,w) to [0..1] using the following function:

nbm′

(r,w) = min(nbm∀(r,w))/nbm(r,w).

• Calculate the replication spreading factor (rsf(r,w)) by

normalizing the w of each combination to [0..1] using

formula w/max(∀w ∈ RW ′).
• Calculate the rank of each (r,w)-combination by sum-

ming the number of broadcast messages and replica-

tion spreading factor parameters: f(r,w) = nbm′

(r,w) +

rsf(r,w).
3

The results of the ranking on our example are summarized

in Table II. The presented results indicate that the (1,5)-

combination has the highest rank in the f function and

consequently that plan is utilized for the replication of di.

TABLE II
Ranking the (r,w)-combinations of RW ′ during the fourth step of DRA

(r,w) nbm(r,w) nbm′
(r,w) rsf(r,w) f(r,w)

(1,5) 4 1.0 1.0 2.0
(2,4) 5 0.8 0.8 1.6
(3,3) 4 1.0 0.6 1.6

In the final fifth step of DRA, si proceeds with the repli-

cation of di to the identified neighboring nodes. In particular,

in line 14 si selects wx neighbors from its NH(si) list and

stores these results in the vi set. Each si then proceeds with

the replication of di to the identified wx nodes in line 15. This

completes the operation of the DRA algorithm.

Theorem 1: The DRA algorithm guarantees that a datum di

can be recovered if the number of reads (rx) from the votes

of si is at least v − wx + 1 (v ≥ wx), where v denotes the

number of all votes and wx the number of writes during the

replication of di.

Proof: Let us select first two sets, R and W , such that |R| =
rx and |W | = wx (R,W ⊂ vi) as dictated by DRA. Since

wx > v/2 then di has been replicated to more than half of

the nodes assigned a vote by node i. Now, considering that

rx + wx > v, we must have R ∩ W 6= ∅. Hence any read

operation is guaranteed to read the value of at least one copy

which has been updated by the latest write �

VI. EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation of

the SenseSwarm framework.

3nbm′
(r,w)

and rsf(r,w) are the two most prominent parameters for select-

ing the best (r,w)-combination. However, one could also consider parameters
like capacity required to store the datums and recovery performance.



A. Experimental Methodology

We adopt a trace-driven experimental methodology in which

a real dataset from n sensors is fed into our trace-driven

simulator. Our methodology is as follows:

Sensing Device: We use the energy model of Crossbow’s

research sensor device TelosB [5] to validate our ideas. TelosB

is a ultra-low power wireless sensor equipped with a 8 MHz

MSP430 core, 1MB of external flash storage, and a 250Kbps

Chipcon (now Texas Instruments) CC2420 RF Transceiver that

consumes 23mA in receive mode (Rx), 19.5mA in transmit

mode (Tx), 7.8mA in active mode (MCU active) with the

radio off and 5.1µA in sleep mode. Our performance measure

is Energy, in Joules, that is required at each discrete time

instance to resolve the query. The energy formula is as

following: Energy(Joules) = V olts×Amperes×Seconds.

For instance the energy to transmit 30 bytes at 1.8V is:

1.8V × 23 ∗ 10−3A × 30 ∗ 8bits/250kbps = 39µJ .

Dataset: We utilize a real dataset from Intel Berkeley Re-

search [13]. This dataset contains data that is collected from

58 sensors deployed at the premises of the Intel Research in

Berkeley between February 28th and April 5th, 2004. The

motes utilized in the deployment were equipped with weather

boards and collected time-stamped topology information along

with humidity, temperature, light and voltage values once

every 31 seconds. The dataset includes 2.3 million readings

collected from these sensors. We use 10,000 readings from

the 54 sensors that had the largest amount of local readings

since some of them had many missing values.

Swarm Simulation: In order to introduce motion to our sensor

network we have derived synthetic spatial coordinates for the

n sensors using the Craig Reynolds algorithm [22], which is

widely used in the computer graphics community. Using this

algorithm we generated 100 individual scenes and during each

scene a sensor obtains 100 readings (i.e., σ=σ′=100). In order

to simulate failures we make the assumption that there is a

X% independent probability that a node fails at any given

timestamp.

B. Perimeter Cost Evaluation

In the first experimental series we investigate the efficiency

of our distributed PA algorithm compared to the centralized

CPA algorithm. Figure 5, presents the aggregate cost (i.e.,

for the whole network and for all 10,000 timestamps) of

the two algorithms for 4 different network sizes 54, 150,

300 and 500. These networks were derived from the initial

dataset of 54 nodes using replication of the sensor readings to

different initial coordinates. We observe that the PA algorithm

consumes in all cases between 85%-89% less energy than the

CPA algorithm. This is attributed to the fact that during the

computation of smin, the PA algorithm intelligently percolates

only one (x, y)-pair to the sink rather than all of them.

Additionally, we observe that the performance gap between

the two algorithms grows substantially with the size of the

network. Specifically, for n=54 the total energy difference
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Fig. 5. Evaluating the energy consumption of the Perimeter Algorithm.

between the two algorithms was 163 Joules while for n=500

the total energy difference was 2,208 Joules.

C. Replication Phase Evaluation

In the final experimental series, we evaluate the fault-

tolerance accuracy of our two replication algorithms.

In the first experiment we measure the absolute fault-

tolerance accuracy of the Data Replication Algorithm (DRA).

To accomplish this, we compare DRA against a version

that does not employ any replication strategy, coined No-

Replication Algorithm (NRA). We execute both algorithms

on each of the individual scenes generated by our swarm

simulator. During each one of the 100 individual scenes, we

randomly select a sensor node to be the sink. As soon as

the sink is selected, it registers 10 random queries each of

which requesting events detected by different sets of perimeter

sensors. In order to measure the accuracy of each of the

algorithms, we measure the average ratio of detected events

over the total number of events requested by the 10 queries.

Figure 6, illustrates the fault-tolerance accuracy of the two

algorithms over an increasing failure rate. We observe that

in all cases DRA maintains a competitive advantage of ≈19-

48% over NRA. This is due to the voting-based replication

strategy utilized by DRA. Note that we have configured DRA

with vmin=3 (i.e., 3 votes). Since, in DRA, detected events

are replicated to 3 neighboring nodes, even if a node fails, its

detected events are easily obtained by its votes thus ensuring

a higher level of accuracy. We also observe that with a 60%

failure rate the accuracy of both algorithms starts to decrease

rapidly. This is expected at such high failure rates as large

segments of the query routing tree become inaccessible by the

sink.

We have finally measured the number of extra communica-

tion messages that DRA requires during replication. We dis-

covered that on average, DRA requires approximately 90±32

extra messages (i.e., has a message complexity of O(n)).
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VII. CONCLUSIONS AND FUTURE WORK

This paper introduces and formalizes a novel perimeter-

based data acquisition framework for mobile sensor networks,

coined SenseSwarm. SenseSwarm dynamically partitions

the sensing devices into perimeter and core nodes. Data

acquisition is scheduled at the perimeter, with the invocation

of the PA algorithm, while storage and replication takes place

at the core nodes, with the invocation of the DRA algorithm.

Our trace-driven experimentation with realistic data shows

that our framework offers tremendous energy reductions

while maintaining high data availability rates. In particular,

we found that even with 60% system failures we can recover

over 80% of generated events exactly. In the future we plan

to study other geometric shapes besides MBRs, different

sink selection strategies for in-network replication and also

techniques to incrementally maintain the perimeter rather

than reconstructing it in every iteration.
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