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Building Software Environments for Research Computing Clusters

Mark Howison

Brown University

Aaron Shen

Brown University

Andrew Loomis

Brown University

Abstract
Over the past two years, we have built a diverse software
environment of over 200 scientific applications for our
research computing platform at Brown University. In this
report, we share the policies and best practices we have
developed to simplify the configuration and installation
of this software environment and to improve its usability
and performance. In addition, we present a reference im-
plementation of an environment modules system, called
PyModules, that incorporates many of these ideas.

Tags
HPC, software installation, configuration management

1 Introduction

Universities are increasingly centralizing their research
compute resources from individual science departments
to a single, comprehensive service provider. At Brown
University, that provider is the Center for Computation
and Visualization (CCV), and it is responsible for sup-
porting the computational needs of users from over 50
academic departments and research centers including the
life, physical, and social sciences. The move to central-
ized research computing has created an increasing de-
mand for applications from diverse scientific domains,
which have diverse requirements, software installation
procedures and dependencies. While individual depart-
ments may need to provide only a handful of key appli-
cations for their researchers, a service provider like CCV
may need to support hundreds of applications.

At last year’s LISA conference, Keen et al. [6] de-
scribed how the High-Performance Computing Center
at Michigan State University deployed a centralized re-
search computing platform. Their case study covers
many of the important facets of building such a sys-
tem, including workload characterization, cluster man-

agement and scheduling, network and storage configura-
tion, physical installation, and security. In this report, we
look in depth at a particular issue that they touched on
only briefly: how to provide a usable software environ-
ment to a diverse user base of researchers. We describe
the best practices we have used to deploy the software
environment on our own cluster, as well as a new sys-
tem, PyModules, we developed to make this deployment
easier. Finally, we speculate on the changes to software
management that will occur as more research computing
moves from local, university-operated clusters to high-
performance computing (HPC) resources that are provi-
sioned in the cloud.

2 Best Practices

As Keen et al. noted, it is common practice to organize
the available software on a research compute cluster into
modules, with each module representing a specific ver-
sion of a software package. In fact, this practice dates
back nearly 20 years to the Environment Modules tool
created by Furlani and Osel [3], which allows adminis-
trators to write “modulefiles” that define how a user’s en-
vironment is modified to access a specific application.

The Environment Modules software makes it possible
to install several different versions of the same software
package on the same system, allowing users to reliably
access a specific version. This is important for stability
and for avoiding problems with backward compatability,
especially for software with major changes between ver-
sions, such as differences in APIs or the addition or re-
moval of features or default parameters. If only a single
version of a software package can be installed at a given
time (as is the case for most software package managers
for Linux), updating that package to a different version
may break users’ existing workflows without warning.

While the flexibility introduced by modules is ben-
eficial to both administrators and users, it also creates
complexities when modules are used with open-source
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Figure 1: Dependency graph for the deal.II software
package.

software.1 Complexities arise with software configura-
tion and optimization, dependency tracking, and interac-
tions with operating system packages. We address each
of these in the subsections below.

2.1 Managing the Configuration and Build
Process

Most open-source software installed on CCV’s compute
cluster uses one of two configuration and build sys-
tems: GNU autoconf2 or Kitware’s CMake3 system.
Both follow a similar convention that software depen-
dencies are installed in the canonical locations /usr or
/usr/local.

In a research computing software environment with
a modules system, this is rarely the case. Instead, de-
pendencies are installed in separate directories in non-
canonical locations. Both autoconf and CMake provide
mechanisms for specifying the install path of dependen-
cies, but these can lead to very complicated configura-
tions for software with multiple dependencies and sub-
dependencies. For example, deal.II [1], a software pack-
age installed at CCV and used for analyzing differential
equations, has direct or indirect dependencies on roughly
ten other software packages (see Figure 1). The depen-
dencies are all installed at different locations in the sys-
tem. Below is an actual command we used at one point
to configure deal.II:

1Running closed-source software in a modules system is straight-
forward. Modifying the user’s environment so it contains the path to
the executable, and the paths to any license files (if a central licensing
server is being used), is usually enough.

2http://www.gnu.org/software/autoconf/
3http://www.cmake.org/

./configure --disable-threads
--with-petsc=/gpfs/runtime/opt/petsc/3.0.0-p12
--with-petsc-arch=linux-gnu-cxx-opt --with-umfpack
--with-trilinos=/gpfs/runtime/opt/trilinos/10.2.2
--with-metis=/gpfs/runtime/opt/metis/4.0.1
--with-blas=goto2 --with-lapack=goto2
--with-p4est=/gpfs/runtime/opt/dealii/7.0.0/p4est
--with-mumps=/gpfs/runtime/opt/mumps/4.9.2
--with-scalapack=/gpfs/runtime/opt/gotoblas2/1.13/lib
--with-blacs=/gpfs/runtime/opt/gotoblas2/1.13/src/BLACS
--enable-mpi CC=mpicc CXX=mpiCC
LDFLAGS=-L/gpfs/runtime/opt/gotoblas2/1.13/lib

The GNU compilers provide a useful workaround,
however, in the form of two environment variables:
CPATH and LIBRARY PATH. These provide additional di-
rectories to search for headers and libraries after the
canonical ones, and are also supported by the current ver-
sions of other popular compilers, including those from
the Intel (2011.11.339) and PGI (12.9) compiler suites.
As a result, we specify these variables in any module that
contains a library that may serve as a dependency for an-
other library or application. With this setup, complex
configuration commands are no longer needed. It is only
necessary to have the appropriate dependency modules
loaded at compile time.

Setting these environment variables not only makes it
easier for administrators to install software packages, but
also for users to compile their own custom code. In ef-
fect, the variables create an environment that is much
closer to the canonical case where all software is in-
stalled in /usr/local and configuration and building
“just works.” However, it retains the added flexibility for
upgrading and maintaining multiple versions of software
provided by modules.

2.2 Handling Dependencies at Runtime

Software packages that rely on other modules at run-
time (for example, dynamically linked libraries) present
the same complexity problem at runtime as they do at
build time: additional modules must be loaded to sat-
isfy each dependency. This problem can be exacerbated
if the software only works with a particular version of
a dependency but multiple versions are installed. One
possible solution is to include all paths to dependen-
cies in each package’s LD LIBRARY PATH. However, this
leads to modulefiles that quickly grow out of control and
present the same readability problems as the deal.II con-
figuration above.

Our preferred solution is to set the LD RUN PATH vari-
able in the modulefile for any package that provides a
library. Then, compiling a dependent package against
the library only requires loading the library module at
build time. The dependent package will use the library
module’s LD RUN PATH to hard code the absolute path to
the library as the default location to search at runtime.

2
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CPU Highest SSE # Nodes

Intel Xeon E5540 (Nehalem) SSE4.2 240

Intel Xeon X5650 (Nehalem) SSE4.2 34

Intel Xeon X7560 (Nehalem) SSE4.2 2

Intel Xeon E5-2670 (Sandy Bridge) AVX 116

AMD Opteron 8382 (Shanghai) SSE4a 7

AMD Opteron 6282SE (Interlagos) AVX 2

Table 1: CPU architectures found in CCV’s Oscar com-
pute cluster.

One caveat with using LD RUN PATH is that moving the
library to a different location will break the dependent
package. But in a software environment managed by a
modules system, the location is typically determined by
the package name and version and is rarely moved.

To date, we have successfully used the LD RUN PATH

strategy for all of our library dependencies, even those as
complicated as an MPI library (MVAPICH2). The only
edge case we have discovered is when a build system
passes the -rpath flag to the linker. In this case, the
LD RUN PATH value is ignored.

There are two possible solutions. If the hard-
coded -rpath contains few libraries compared to
LD RUN PATH, the -rpath flag can be removed manually
and the libraries in it moved to LD RUN PATH. If -rpath
contains significantly more libraries, it could be more ex-
pedient to add the relevant paths from LD RUN PATH with
additional -rpath flags. This is usually as easy as edit-
ing a single configuration file, provided the software is
using a standard build system. If the software is mak-
ing use of -rpath in a non-standard build system and
it is impractical or too difficult to change, then use of
LD LIBRARY PATH should be considered.

2.3 Performance Optimization

On homogeneous clusters, where every node shares
the same CPU architecture, software can be com-
piled using a host-specific optimization flag, such as
-march=native for the GNU compilers or -fast for
the Intel compilers. Additionally, many important math
libraries have optimized, vendor-provided implementa-
tions, such as the AMD Core Math Library4 or the Intel
Math Kernel Library5.

In other cases, however, optimization is not as straight
forward. Because hardware procurement can happen in
small cycles – especially under a model in which investi-
gators write equipment funding into grants to contribute

4http://developer.amd.com/tools/cpu-development/

amd-core-math-library-acml/
5http://software.intel.com/en-us/intel-mkl

to a community cluster – a university research cluster
can evolve into a hetereogeneous mixture of hardware.
At Brown, our research computing platform, Oscar, in-
cludes nodes with five similar but distinct CPU archi-
tectures, summarized in Table 1. This is in contrast to
large, homogeneous systems installed at larger centers
like those run by the DOE and NSF.

Conceivably, fully optimizing the software environ-
ment to take advantage of the different architectures in
a cluster requires localized installations that are specific
to each architecture. We have experimented with this at
the following three levels of granularity:

• At the coarsest level, using the processor vendor: ei-
ther Intel or AMD. This allows software to be com-
piled against the Core Math Library for AMD pro-
cessors, and the Math Kernel Library for Intel pro-
cessors.

• At a finer level, using the highest vector instruction
set supported by the node. This allows software to
take advantage of such instructions if they are avail-
able on a node, or otherwise to fall back to a version
that works on all nodes.

• At the finest level, using the precise model of pro-
cessor on the node. This can be used when installing
software packages that use autotuning to optimize
themselves at build time for a specific processor
model.

In practice, though, we have found all of these lacking.
Because the Intel Math Kernel Library performs well on
all of our AMD and Intel nodes, and automatically se-
lects processor optimizations at runtime, we have aban-
doned using processor-specific or autotuned alternatives
like GotoBLAS [4] and ATLAS [2]. Therefore, neither
the first or third levels of localization are necessary.

The second level of localization for the vector instruc-
tion set, has not been useful because the most widely
used instructions are already available in the older set
(SSE3) that is common to all the processors in our clus-
ter.6 In one example, we expected several bioinformat-
ics packages that mainly perform string comparisons to
benefit from compiling with support for the packed string
comparison instructions added in a newer instruction set.
What we found instead was that these programs implic-
itly used the newer instructions through calls to standard
C string functions, which are implemented in glibc with
a mechanism to auto-detect the available instruction set
at runtime. Therefore, compiling separate versions for
different instruction sets is not necessary.

All of the approaches to performance optimization
listed above create a more complicated software environ-

6For a more detailed comparison of benchmarks across dif-
ferent instruction sets, see https://bitbucket.org/mhowison/

pymodules/src/master/npb-test.

3
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ment, by requiring multiple versions of a module to sup-
port different hardware profiles. Because we have not
seen significant gains from them in most cases, we use
these optimizations sparingly.

Overall, our optimization strategy has devolved to
simply using generic flags like -O3 and -msse3 during
compilation for most modules.

2.4 Operating System Packages
Much of the software we build depends on libraries pro-
vided by operating system packages (from CentOS, in
our case). Because the compute nodes in our cluster are
diskless, their operating system is installed to a ramdisk.
To reduce the footprint of this ramdisk, we install only
a minimal set of packages on the compute nodes. We
install a fuller set of packages, including development
versions of packages, on the login nodes where we com-
pile software. To satisfy runtime dependencies, though,
we have to copy many of the libraries provided by the
OS packages into a special module, centos-libs, that
is loaded by default by all users. For most packages, we
can use a simple script that parses all of the shared li-
brary names from the package’s file list and copies them
into centos-libs. Inevitably, some packages have fur-
ther complications, for instance because they require ad-
ditional data in a share directory, and we handle these
on a case-by-case basis by manually copying additional
files into centos-libs.

We have only performed one major OS upgrade (from
CentOS 5.4 to 6.3), and in this case we chose to rebuild
our entire software environment against the newer OS
version. While this required substantial effort, it also
provided us with two opportunities: (1) to verify how
well documented our build processes were, and correct
modules that were poorly documented; and (2) to weed
out older modules that were no longer in use by our users.

3 PyModules

PyModules is an alternative implementation of the Envi-
ronment Modules system [3]. We have given PyModules
essentially the same syntax and user interface as Environ-
ment Modules; however, the backend is written in Python
and contains the following improvements:

Simple, INI-style configuration files.

Having created many modulefiles in the Tcl language
for the original Environment Modules system, we found
they were unnecessarily redundant, since a new file is
created per version of an existing package. We designed
PyModules to instead use a single INI-style configura-
tion file per package. Multiple versions are defined in

that same file and they can inherit default values, which
has simplified our management of these files.

Below is an excerpt from our configuration file for
Python, which defines three versions:

[DEFAULT]

brief = The Python Programming Language

url = http://www.python.org/

category = languages

prepend PATH = %(rootdir)s/bin

prepend LIBRARY_PATH = %(rootdir)s/lib

prepend LD_LIBRARY_PATH = %(rootdir)s/lib

[2.7.3]

default=true

[3.2.3]

[3.3.0]

Our approach gives up some flexibility, since the
INI modulefiles cannot execute arbitrary Tcl commands.
However, it has the added benefit that we can validate
each modulefile before it is available to users. In Envi-
ronment Modules, it is possible to create modulefiles that
generate a Tcl parsing error when loaded.

Improved inventory commands.

Users often need to perform software inventory com-
mands, such as looking up what versions of a specific
software package are installed. In PyModules, we cache
the parsed modulefiles in an SQLite database, which
speeds up both the module avail command and the au-
tocomplete feature of the module command. We also
create a fulltext index to support wildcard searches on
package names and versions. For example, the com-
mand module avail mpi will show all available mod-
ules that start with the token mpi in the package name,
and the command module avail mpi/1 will addition-
ally filter only the versions with a 1 in them.

The database is manually updated whenever a new INI
configuration file is created or modified, using a new
command called moduledb. This allows an administra-
tor to review and validate a modulefile before commiting
it to the live system.

Module categories.

PyModules provides a special field category in the INI
configuration that can be used to categorize the available
modules into bioinformatics packages, physics packages,
chemistry packages, etc. The command module avail

lists all packages broken down by category, and the
new command module avail :category lists only
the packages in the specified category. Modules can
belong to multiple categories.

4
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4 Software in the Cloud

Looking forward, cloud-based HPC resources are
promising alternatives to university-operated clusters, es-
pecially at the scale of small or departmental clusters [5].
Such clusters will require support for applications run-
ning on virtualized hardware. This could alleviate many
of the problems we have described here, because virtual-
ization provides a new layer of flexibility in customizing
the operating system. Instead of providing a single soft-
ware environment that must span researchers from many
disciplines, software environments can be customized by
department or research field, and deployed through OS
images. Even traditional HPC clusters may in the future
provide more support for users to run their own custom
OS images.

Shifting the unit of software organization from a soft-
ware module to an OS image has many implications:

• Administrators will manage a catalog of images for
the most common applications. The same mecha-
nisms for versioning and inventory will be needed,
but at the OS-image level instead of the module
level.

• Versioning of individual software packages may no
longer be necessary: instead, an entire OS image
can be versioned. This also reduces the complex-
ity of dependencies, since they can be packaged to-
gether in the image.

• Since it is no longer necessary to version the soft-
ware, it could be installed by more canonical means,
such as directly to /usr/local or using the native
OS package manager.

• Tools for automating configuration and builds will
become essential, as common packages are re-
installed in many OS images.

An important question for building software environ-
ments in the cloud is: will the overhead from virtual-
ization degrade application performance? Our experi-
ence with the fine-grained optimizations we described
in Section 2.3 seems to suggest not: modern software
is increasingly using and benefitting from the ability to
leverage hardware optimizations, such as vectorization,
at runtime. This is corroborated by a study of HPC
benchmarks showing that aggressive tuning of the hy-
pervisor can reduce its overhead to only 1% to 5% [7].

Finally, a shift to OS images has important benefits
for software distribution. Especially in bioinformatics,
there are large-scale challenges to scientific reproducibil-
ity caused by incomplete software tools that are difficult
to install or use by novice end users. We frequently re-
ceive support requests at CCV to install new bioinformat-
ics tools that have complicated dependencies or incom-
plete build systems. Moving to a paradigm where exper-

imental tools are available via OS images is perhaps the
best solution to this problem [8].

5 Conclusion

This report documents the best practices we have arrived
at for installing a large collection of scientific applica-
tions on our research computing cluster at Brown Uni-
versity. In this context, we have also introduced a new
implementation, PyModules, of the Environment Mod-
ules system that has helped improve the usability of our
software environment. Finally, we have identified possi-
ble changes to software management practices resulting
from the OS-level virtualization available in the cloud.
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Fixing Oncall, or How to Sleep Through the Night

ABSTRACT

Monitoring systems are some of the most critical pieces of infrastructure for a systems administration team. They can
also be a major cause of sleepless nights and lost weekends for the oncall sysadmin. This paper looks at a mature
Nagios system that has been in continuous use for seven years with the same team of sysadmins. By 2012 it had
grown into something that was causing significant disruption for the team and there was a major push to reform it
into something more reasonable. We look at how a reduction in after hour alerts was achieved, together with an
increase in overall reliability, and what lessons were learned from this effort.

BACKGROUND

Weta Digital is Sir Peter Jackson’s visual effects facility in Wellington, New Zealand. Because of the workflow at
Weta, users are at work during the day but our 49,000 core renderwall is busiest overnight when none of the
sysadmins are around. So often the highest load at the facility is overnight which is when problems are most likely to
occur.

The monitoring system at Weta Digital uses the open source Nagios program and was introduced into the
environment in January 2006 following the release of “King Kong”. Nagios was replaced with the forked project
Icinga in September 2010 but the core of the system has remained the same.

The Systems team at Weta is on a weekly oncall rotation, with 68 admins in the schedule. However some admins
had configured specific systems to page them directly, and some alerts were configured in Nagios to always go to a
specific person, possibly in addition to the oncall pager. So some sysadmins were essentially permanently oncall.

By 2010 the system had become unsustainable. The weekly oncall rotation was dreaded by the sysadmins. Being
woken up every night while oncall was not unusual, in fact getting a good night’s sleep was remarkable. Being
woken up several times during the night was so common that we had to institute a new policy allowing the oncall
sysadmin to sleep in and come to work late when that happened. However many (if not most) of the alerts overnight
were noncritical and in many cases the admin would get the alert and then go back to sleep and wait for it to recover
on its own, or wait to fix it in the morning.

Some of the admins were starting to compensate for bad oncall weeks by leaving as early as lunchtime on the
following Monday once they were off call. So the average number of hours across the two weeks of oncall and the
next week still averaged out to two normal weeks, but it was impacting on their project work by essentially missing a
day of work and often left the team shorthanded when they were out recovering from oncall.

Sysadmins at Weta are independent contractors on an hourly rate. Each after hours alert therefore creates a billable
hour. It could be construed that there is a financial incentive for creating new alerts, whether people think about it
that way or not. The team itself is responsible for maintaining the Nagios system and adding alerts, so asking them to
try and reduce the number of alerts, thereby reducing their income, was always going to be an unpopular move.
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NAGIOS

One of the differences with the Weta system is that it uses a set of configuration files that are processed by a Perl
script to generate a Nagios configuration. This is used to manage the most common configuration changes via a
single file, hosts.txt, which manages both host and service checks. The hosts.txt file is similar in format to the original
Netsaint configuration. (Netsaint was the original name of the Nagios software in 1999 but was changed in 2005 for
trademark reasons.) The original Netsaint configuration files consisted of lines with semicolon delimited fields:

Format:
host[<host_name>]=<host_alias>;<address>;<parent_hosts>;<host_check_command>;<
max_attempts>;<notification_interval>;<notification_period>;<notify_recovery>;
<notify_down>;<notify_unreachable>;<event_handler>
Example:
host[esgra]=ESGRA Server;192.168.0.1;;checkhostalive;3;120;24x7;1;1;1;

The Weta configuration files look similar, but with colons separating the fields:

Format:
<host_name>:<host_type>:<check_name>:<check_command>:<parent_host>
Examples:
imap::check_long_running_procs,nosms:check_long_running_procs:vrrpe120
adsklicense2:Linux:check_autodesk_is_running:passive:vrrpe120
ldapauth0:Linux:ldap:check_ldap!ou=People,dc=wetafx,dc=co,dc=nz:vrrpe120

Because the config is reduced to one line per command it is trivial to add large new sections of checks with simple for
loops. This contributed in part to the proliferation of checks in the configuration. In some cases there are specific
scripts that are used to generate hundreds of checks.

Most of the specifics for each host and service check are filled in via the Perl script using template files. The config is
stored in RCS which has allowed us to review and analyse the history of the configuration since 2006.

THE PROBLEM

Over the years the amount of hosts being monitored by Nagios has grown from an initial 297 to 843 today, with a
peak of 915 in 2011. The number of service checks has grown at a much higher rate, from 365 initially to 3235 today
(April 2013), with a peak of 3426 in December 2012.

How did the number of checks grow so much over time? For the most part it was just the natural accumulation of new
checks being added, and then retroactively being added to other hosts. So adding a new check to a Linux host that
then gets applied to all of the others can easily add hundreds of checks. There were a few incidents like this where
there were step changes and many checks were added, but there was also just the slow growth of adding servers.
Moving much of our server infrastructure to VMware has certainly increased the number of individual hosts in use.
Of course over time there are also an increasing number of legacy systems to maintain.

Starting in October 2010, in response to a growing number of complaints from the team about oncall, I began a
project to reduce the number of checks that would alert the Systems team, by increasing the number of alerts that
were configured not to send pages. However nothing was done to reduce the number of checks themselves. The
number of email problem notifications was still averaging over 50 per day. In fact there were so many alerts that were
being ignored that some started to be labelled with the suffix ‘_fix_asap’ to distinguish them from all of the noise.
That was a critical sign that the system was broken. People were configuring Nagios to alert for ‘their’ systems to
make sure that they were being looked after. But this meant that some systems were being aggressively alerted, more
than necessary.



USENIX Association  27th Large Installation System Administration Conference 9

Ignored alerts are false alarms and are Nagios itself notifying us that it was really the system that was broken. And
based on that, our most unreliable system was Nagios itself. So it needed a major overhaul. The amount of alerts
going to the oncall sysadmin and the number of emailed alerts going to the whole team were still overwhelming, so in
January 2012 I started another project for the team to clean up the Nagios configuration.

CLEANING UP

One of the features of the original Perl template system is called ‘nosms’. This allows the admin to specify that
(originally) a particular host or (later) a service check should not send an SMS alert to the oncall sysadmin. This was
designed to keep nonmissioncritical systems from alerting anyone out of hours.

However adoption of the nosms option was very low  it started with 2 hosts in January 2006 and was only up to 30
by January 2011. Under pressure to improve the oncall situation it had increased to 202 a year later in 2012, but with
a concerted effort it is now at 807 checks. Along with other changes to the system to stop overnight alerts, the
number of checks that can wake someone up is down to 1280 from a high of 1763. That number is still too high and
work is ongoing to reduce it further.

Individual members of the team had also configured Nagios to page them specifically when ‘their’ systems were
having issues, even when they weren’t oncall. These have all been removed, so now when you are not oncall you
won’t be bothered. Even though people were doing this to be helpful and look after the systems for which they are
responsible, it just creates burnout for those individuals. The basic rule now is, when you’re not oncall, you don’t
get paged.

I also instituted a new policy, that the oncall sysadmin has to call the vendor before waking up someone else on the
team. Due to the small size of the team and the large number of different systems that we have to support there is
some inevitable siloing within the team where certain people look after certain systems. The tendency is to call those
people first when ‘their’ system is in trouble, but that just penalises an admin who has to look after the more
unreliable systems, even if there is nothing that they can do to improve the situation. Some hardware is just less
reliable than others, and unfortunately you don’t often discover that before you buy it. This was creating an
environment where people were afraid to express interest in and thereby become responsible for some new equipment
in case it turned out to be unreliable. Weta pays a significant amount of money each year for support contracts so
that we can call tech support 24/7. So the new rule places more of a burden on the vendors and less on other team
members.

One change that we made as a team was to move to a consensus based approach to adding new alerts. So new alerts
have to be discussed and if even one person doesn’t think that it’s important enough to wake up for then it isn’t
added to the configuration. Whoever wants to add the alert has to convince everyone else on the team that it is
worth waking up for. This stops people from adding extra alerts for specific systems without consulting with the rest
of the team. It’s important to do this in an open, nonconfrontational way, preferably in person and not over email
where discussions can get heated. It has to be a positive environment where senior members of the team can’t
intimidate more junior members to go along with their ideas. Management also has to provide input and get feedback
from the stakeholders of a particular system to make sure that business requirements are still being met.

Nagios shouldn’t be used as a means of avoiding work in the future. Priority needs to be placed on not bothering the
oncall sysadmin with problems that can be deferred until the next working day. In some cases systems could be
configured to run overnight but it would create a mess that someone would have to clean up in the morning. There is
a natural tendency for the person who will most likely have to clean things up to make an alert and wake someone up
to deal with the problem before it gets severe and creates a situation where there would be more effort involved to
clean it up after the fact. In that case there is only a 1/8 chance that that person responsible for that system would be
the one oncall, but they would always have to clean things up in the morning. So the natural reaction was to create
an alert. Instead we should be placing a higher importance on respecting people’s time (and sleep) when they are
oncall so doing more work during office hours is preferable to alerting someone out of hours.



10 27th Large Installation System Administration Conference USENIX Association

In our Nagios configuration some systems were identified by multiple DNS CNAMEs. This would happen because
we often separate the system’s hardware name from a more functional name, but then both would be monitored. This
would result in duplicate alerts, although it usually wasn’t until you logged in and checked that you would realise
that they were for the same system. It also created confusion during more critical events like a network outage where
Nagios wasn’t correctly reporting the actual number of hosts that were affected. So we went through a cleanup and
rationalised all of the hostnames down to a unique set.

THE LIST

By January 2012 tensions around oncall reached a breaking point. I decided that my earlier efforts to gradually clean
up the system were happening too slowly  for every alert that was being nosms’d or deleted, two more new alerts
were created. I began by consulting with the CIO, who was shocked at the amount of monitoring email alerts in her
mailbox, and coming up with a list of systems that were deemed critical to the facility and should be monitored 24/7.
This list was quite small in comparison  less than 50 hosts as compared to the over 1600 in Nagios at the time.

This led to a time period that I call the ‘Constitutional Phase’ because of how the list was pored over for
inconsistencies by the team as if it was a legal document. Faced with an extremely shortened list of hosts, the team
started to question each decision as to why certain hosts were on or off the list. For example, “If host A is on the list,
host B is just as important so it should be on there as well.” Or “If host C isn’t on the list then D and E shouldn’t be
on there either.”

Rather than trying to articulate and justify each decision individually I took a new approach which was to try and
come up with a flow chart or decision tree that would have a consistent set of questions to determine whether each
host in the Nagios config would continue to alert or not, eventually resulting in the much shortened list. One example
of such a list of questions was:

Is it a critical production system?
    No dev/test/stage
    No backup/offline/nearline
Is it the renderwall?
    Will it affect more than 50% of the renderwall?
Is it a critical piece of the Production pipeline?
    Dailies/Filemaker/email
Will it affect clients?
    Aspera/SFTP/external website/external email
Will it affect all users of a piece of core render software?
    license servers

However in an attempt to try and limit the list to things that would be considered major outages, I was falling into the
trap of setting thresholds (will it affect more than 50% of the render servers). So I was never very happy with this
approach and it was never implemented.

The next attempt was to focus on who was affected:

Will it affect:
    Dailies?
        Core render software for the renderwall
    Users?
        Core software for users/email/Filemaker
    Clients?
        Aspera/SFTP/email/website
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But this would lead to keeping almost everything on the list because almost every system affects renders, users or
clients. So again it was never implemented.

The final approach that I took was to simplify the list of questions to the most basic ones:

Is it:
    A production system (no dev/test/stage) and
    A primary system (no backup/offline/nearline)
    or a single point of failure for another critical system

This does pretty much lead to an unchanged list with the exception of removing things like dev systems (yes, before
this dev and test systems would normally alert). However there was a fourth question that I added which changed
the whole focus of the project:

Is it configured to automatically reboot/restart/repair itself?

I realised that focusing on Nagios itself wasn’t the goal. Only a certain amount of noncritical systems could be either
removed or set not to alert after hours, but we weren’t really fixing anything but Nagios itself. The number of alerts
coming in wasn’t really changing, it was just that fewer of them were going to the oncall person’s phone. The team’s
workflow consisted of finding a problem and then adding a Nagios alert for it, and never actually going back and
resolving the underlying issue. Once it was in Nagios it was considered ‘fixed’ even though it kept alerting and was
being resolved by hand. We needed to change our focus from just monitoring systems to actually fixing them.

Once I had a new list, which was actually now just a set of questions, I ran it past the CIO to make sure that I had her
support before continuing. It was important to get her approval to make sure that it would meet the business’ needs,
and she agreed with the direction that the project was taking, even allowing some decisions which the team was
convinced would lead to reduced service levels. However, she highlighted the need for striking the right balance
through trial and error.

FIXING

Nagios was being used as a job scheduler to get sysadmins to perform some task. Alerting had become the culture of
the team and was viewed as the solution to every problem. Where possible all of those tasks should be automated
instead.

As an example, we had Nagios alerts set up to tell us when there were security updates available for servers in our
DMZ network. Since they were all running the same version of Debian you would get a flood of identical alerts at the
same time as a new update became available. This was configured as a nosms alert, but someone on the team would
see the emails and manually install the updates. This has now been replaced with apticron which downloads and
installs the updates automatically. The Nagios check remains to alert us when this process fails and human
intervention is still required.

Before 2009 there was nothing configured to automatically restart failed programs. Starting in 2009, after a string of
alerts from an unreliable daemon, we began using DJB’s daemontools to automatically restart critical services if they
crashed. It’s now a rule that we don’t monitor anything unless it’s configured to automatically restart, where
possible. This may seem counterintuitive  we only monitor services that have already been configured to restart. But
this places the emphasis on fixing the problem and not just putting in a Nagios check and letting someone deal with it
at a later date.

To resolve unresponsive (hung) Linux servers, we first started configuring the kernel to reboot after a panic. By
default the system will wait with the panic message, but we’re just interested in getting it back up and running. Later
in 2012 the kernel watchdog was also enabled. This will automatically reboot a server if the kernel stops responding.
In the case where a server is hung there is typically nothing for the oncall person to do but use the outofband
management to hard reboot the system. Now this happens automatically before a Nagios alert is sent out. For our



12 27th Large Installation System Administration Conference USENIX Association

servers in VMware there is a monitoring setting available that will automatically restart servers if they are
unresponsive and not doing IO.

Weta has many Netapp filers for NFS file serving and sometimes they panic due to software bugs. They come in
redundant pairs, but the oncall admin would be notified that one node was down and would log in and reboot it and
fail back the cluster. There is a configuration option for automatic cluster giveback which we have enabled on all of
our filers now, so unless it’s a hardware fault the cluster can automatically recover itself and not alert.

We were also managing disk space manually on the filers before this project. So an alert would be sent notifying us
that some filesystem was getting close to capacity, and the oncall sysadmin would log in and extend the filesystem
(if possible) or delete some files. We have enabled the filesystem autosize feature where the Netapp will automatically
add space to filesystems as they get close to filling up, up to a specified limit. Now the oncall person only gets
paged when it hits that limit after expanding several times automatically. This has eliminated most of the overnight
disk space management.

Logfiles filling disks was another thing that would wake people up. Now that we’re focusing on fixing the alerts,
automatic log rotation is set up to stop disks from filling up overnight instead of manually deleting old log files in the
middle of the night. Any alert coming in from a log that hasn’t been set to rotate should be resolved by adding it to
the logrotate configuration.

If you buy a redundant system you should be able to trust it. So we’ve stopped alerting on failed disks in our filers,
and even failed heads since they’re part of a redundant clustered pair. We always configure the filers with plenty of
hot spare disks. The same rule goes for systems with redundant power supplies or anything else that is designed to
keep functioning when one component fails. You are taking the risk that possibly a second component will fail
overnight but in practise that is extremely unlikely. One of the reasons for buying redundant hardware is to keep your
admin team from being bothered by every failure if the system can keep running.

In the case of load balanced services, instead of alerting on each server behind the load balancer, the Nagios checks
have to be rewritten to do an endtoend check of the service. It doesn’t matter if one server fails since the load
balancer will hide that from clients. As long as one server is up and running, no alerts need to be sent. If the load is
too great for the remaining servers then the service check should timeout or fail and alert the oncall sysadmin as
usual.

One phenomenon that I was seeing I call ‘Twikiscript’ after the wiki that we use for team documentation. There is a
page ‘NagiosAlertsAndErrorsAndWhatToDo’ which contains sections for about 150 different Nagios alerts. Many
of them contain instructions that are in the form of “log in, look for this and do this to resolve it”. Some of the
sections include branches and conditionals, and in essence are scripts written for humans to execute. Most of them
could be rewritten as scripts for computers to run with a little work.

For example, one alert that used to reliably wake people up several times a week was sent when our MySQL
replication slaves would start to lag behind the master. This could be for a variety of reasons, typically high load or
bad queries. The fix, following the instructions in the wiki, was to log in and update the parameter in MySQL that
would change the InnoDB engine from the standard behaviour of flushing data to disk after each transaction to only
doing it once per second. We call this ‘turbonating’ the server. This creates the risk that you can lose up to a
second’s worth of data but also increases performance and typically allows the slaves to catch up. Because they
were slave copies, the DBA team was ok with us taking this risk. Often you would get woken up, change this setting,
go back to sleep, wait for the recovery alert and then change it back. Now we’ve created a cron job that watches the
lag every 5 minutes and if it’s beyond a threshold in seconds it changes the MySQL parameter to the faster setting. If
the lag is below the threshold it changes it back to the safer setting. It also emails out so that the DBA team will know
that it has happened and investigate possible causes. This is called ‘autoturbonation’ and since it has gone in has
completely eliminated the overnight alerts.

We’ve also started to use the swatch program to help fix problems automatically. It’s a Perl program that tails a log
file and searches each line for regular expressions and then can execute a script when it finds a match. It can be used
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for notification, so we configure it to email the team when certain errors appear. We also use it to fix things
automatically, so when a recurring error shows up that has a known fix, we can script that fix, hook it into the swatch
configuration and stop getting alerts.

Alerts should be actionable, and in a reasonable timeframe. We monitor SSL certificate expiry in Nagios, with a 30 day
warning to give us time to order a new cert. But typically what happens is that the alert goes off daily for about 28
days and then someone will get around to it.

Another example of nonactionable alerts are the checks for batteries on RAID controllers, which expire after a certain
amount of time. This is usually known in advance (they have a service life of a year in most cases) but we use Nagios
to alert us when the controller shows an error condition due to the battery expiring. But then an order has to be
placed with the manufacturer so it can take weeks to replace a battery. This isn’t a good use of an alerting system.
Ideally they would be replaced on a fixed schedule which would be maintained in a separate calendaring system,
along with reminders for renewing SSL certificates with a fallback alert that goes off shortly before they expire.

One way that we keep everyone focused on fixing Nagios errors is to meet weekly on Mondays to go over all of the
Nagios emails from the previous week. That week’s oncall sysadmin leads the meeting and goes through each alert
and what the response from the team was. In many cases there was no response and the system recovered on its
own, so we discuss whether we can change the thresholds in Nagios to avoid being notified in the future. Or if it’s a
recurring issue that we see happening week after week someone can be assigned the task of fixing the underlying
issue. With the Nagios configuration in RCS we can also review any commits made during the past week and make
sure that the entire team is ok with those changes. If there are any objections the change can be reverted. This
meeting also serves as a critical safety check to ensure that we aren’t changing the system too much and drifting
over the line where we’re not picking up events that are critical to the facility by providing an opportunity for anyone
to raise problems with the monitoring system.

THE RESULT

As a result of all of these changes, the number of out of hours alerts for the oncall sysadmin dropped significantly.
During the production of “Avatar” and “Tintin”, people were sometimes working over 70 hour weeks and doing over
60 hours was common when oncall. During the production of “The Hobbit” last year, noone on the team worked
over 60 hours due to being oncall. Now sleeping through the night when oncall is the norm, and getting woken up
an unusual situation. And as time goes on it is less and less tolerated by the team so there is an acceleration to the
process of eliminating recurring alerts. This has dramatically improved the work/life balance of the sysadmin team by
reducing out of hours alerts.

The level of the service provided to the facility didn’t decrease, in fact the system is the most stable it has ever been.
I attribute at least part of this to the work that was done in trying to reduce alerts by fixing long standing problems
and configuring them to fix themselves whenever possible instead of waiting for systems to break and reacting to
alerts. Computers can respond much quicker than humans and can often correct problems faster than users notice the
problem in the first place.

As the CIO has acknowledged, “Ultimately, major cultural and workingpractice changes were involved; a shift of
emphasis to proactive and preventative maintenance and monitoring, rather than reactive problem solving; greater
teamwork and shared ownership of systems rather than solo responsibility for them; and the adoption of a devops
approach to system administration with a greater emphasis on automation,  standardisation and continuous
improvement. Although it is taking some time and tenacity to get there, the results have been overwhelmingly
positive and beneficial.”
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THE FUTURE

One of the improvements that could be made to simplify the Nagios configuration would be to split it into two
systems  one for sending pages to the oncall sysadmin and another for the noncritical alerts. This has been
accomplished with the nosms feature of our current infrastructure but it adds unnecessary complexity.

We are looking at integrating Nagios into our ticketing system, RT. This would involve opening a ticket for each
Nagios alert and closing the issue when Nagios sends the OK. Any work done to resolve the issue can be recorded
against the ticket. This would let us track which issues are being worked on by the team and which are resolving
themselves (false alarms) so that we can work on eliminating them.

We’re starting to use pynag, a Python module for parsing Nagios configurations, to monitor Nagios itself. For
example, we can use it to resolve the hostnames in the configuration and alert us when there are duplicate CNAMEs.
Or it can verify that no hostnames ending in ‘dev’ are set to alert. By setting up rules in code it stops the
configuration drifting from the policies that have been set by the team.

The final frontier is integrating the Nagios configuration into our Puppet rules when we configure servers. Then we
can generate a configuration end to end. So for example we could specify a service in Puppet and configure it to run
under daemontools and then automatically add that service to Nagios. If it isn’t configured in Puppet then it won’t be
added to monitoring. This way we can enforce that it is configured to automatically restart.

Monitoring systems are good at maintaining a list of things to check. In the early days implementing one can be a big
improvement over being surprised by finding that critical systems are down or in trouble. But in a complex system
you end up enumerating every possible component in the monitoring system which is an almost endless list as you
chase the long tail of increasingly unlikely conditions to monitor. It’s a reactive process where checks are only added
as things break. In the long run the only way out is to approach monitoring from a more systemic point of view,
looking at the infrastructure as a whole as opposed to a group of component parts.

For example, in Weta’s case, we still have never monitored renders, which are the core function of our compute
infrastructure. So every render could encounter some condition that causes it to fail overnight and noone would have
any idea until the next morning, if it’s something that we haven’t accounted for in our Nagios checks. A better check
would be to have an automated program reading the logs coming off the renderwall and alerting when something out
of the ordinary was going on. At that point Nagios could be used by the sysadmin team to triage and try to narrow
down where the error was coming from. But in the long run it should be less and less a part of everyday life for a
system administrator.

LESSONS LEARNED

Anytime you go beyond the capabilities of your monitoring system I think you have to take a good look at what
you’re doing and question whether it is truly necessary. We wrote a front end to the Nagios configuration which
made it easier to add new checks, and then proceeded to add so many that we were overwhelmed. And we built the
nosms feature instead of realising that Nagios is for alerting and that moving non critical checks into another system
altogether would be better. In fact we had to make policies for people to be able to sleep in instead of questioning
why they weren’t getting any sleep in the first place and whether that sacrifice was worth it. Building a custom
monitoring system is probably not the best use of a team’s time when working on fixing problems can lead to better
results.

Unfortunately if there is money involved then no matter how much individuals might complain about being oncall
there is always a financial incentive to work more out of hours. Different people on the team have different tolerances
for this based on their personal and family situations which can create tension within the team. Trying to fix the
problem of oncall can be perceived as an attack on their paycheck and there is no financial incentive for the team to
clean up the broken system so it takes some strong leadership from management initially to make it happen. My
experience is that once the changes have been made people start to appreciate that it makes a positive improvement
in their personal lives and the focus on money fades.
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Monitoring systems can grow over time to cover every possible part of the infrastructure, out of a drive from the
team to keep everything running all the time, or as reactions to individual system failures that weren’t caught by an
alert and were reported by users. However this can lead to a ‘tree falling in the forest with noone around’ situation
where sysadmins get alerted over the weekend about some system that wouldn’t be noticed until Monday morning.
If it’s not mission critical it is possible to step down from that level of service and wait for a user to complain instead
of proactively fixing every problem. This takes good backing from management so that team members don’t feel
individually responsible for these decisions. But in our experience it has worked out well for both users and
sysadmins.

Because monitoring is a way of assigning tasks to the team, it is a backdoor way for members of the team to work
around whatever management systems you may have in place for assigning daily jobs. Moving to an open,
consensusbased approach for maintaining the monitoring configuration makes sure that everything is done the way
management wants to set the team’s priorities.

Some people would rather fix things before they turn into bigger problems and don’t want to defer the work until
later. If you want to preserve their sanity and work/life balance there has to be a focus on getting things done during
work hours and building systems that can run overnight or for a weekend without any human intervention. Each call
that someone gets should be a unique problem brought about by some unexpected circumstance or failure. Any
routine alert should be fixed with urgency so that it doesn’t further bother people outside of work hours.

SUMMARY

● Get management/stakeholder buy in
● No personal alerts (when you’re not oncall you don’t get paged)
● Don’t optimise alert configuration (no custom scripts to make alerting easier, a little friction is good)
● Keep the config(s) in version control for easy tracking and review
● No priority labels  every alert should be critical (no _fix_asap...)
● Split monitoring system into critical and noncritical (at least by email address)
● Call vendors before bothering teammates
● Consensus based process for adding new alerts (can be done retrospectively in the weekly meeting)
● Prioritise in hours work over after hours (even if it will take longer)
● No CNAMEs/duplicate hosts
● Change process checks to process monitors with automatic restarting (daemontools, monit, runit...)
● Automate server updates (apticron, up2date...)
● Reboot after panics (echo "30" > /proc/sys/kernel/panic)
● Kernel watchdog (man 8 watchdog, VMware monitoring)
● Netapp filer cluster automatic giveback (options cf.giveback.auto.enable on)
● Netapp automatic volume expansion (vol autosize /vol/myvolume/ m 30g i 5g on)
● Automatic log rotation and compression (logrotate)
● No individual alerts for load balanced servers/services (end to end service checks instead)
● Turn Twikiscript into automated processes
● MySQL autoturbonating (set global innodb_flush_log_at_trx_commit = 2)
● swatch for finding problems and scripting fixes
● Ticket system integration
● pynag to monitor the Nagios configuration for policy violations
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Figure 1. Nagios service checks, hosts being monitored, checks that are configured ‘nosms’ to not send text alerts,
and the total number of alerts going to the team. Note that the total of alerts plus nosms does not total the number of
checks since some checks go to other teams.
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Abstract 

 
Clouds establish a new division of responsibilities between platform operators and users than have traditionally ex-
isted in computing infrastructure. In private clouds, where all participants belong to the same organization, this cre-
ates new barriers to effective communication and resource usage. In this paper, we present poncho, a tool that im-
plements APIs that enable communication between cloud operators and their users, for the purposes of minimizing 
impact of administrative operations and load shedding on highly-utilized private clouds. 

 
1. Introduction 

With the rise of Amazon EC2 and other public Infra-
structure-as-a-Service (IaaS) clouds, organizations are 
starting to consider private clouds: using a self-service 
cloud model for managing their computing resources 
and exposing those resources to internal users.  
 
Open source projects such as OpenStack[19], Cloud-
Stack[20], Eucalyptus[21], Ganeti[22], and OpenNebu-
la[23] allow system administrators to build local cloud 
systems, offering capabilities similar to their public 
cloud counterparts: the ability to provision computa-
tional, storage and networking resources on demand via 
service APIs. The availability of these APIs provide 
many advantages over the previous manual approaches:  
applications can scale elastically as demand rises and 
falls, users can rapidly prototype on development re-
sources and seamlessly transition to production de-
ployments. On private cloud systems, these activities 
can occur within a more controlled environment than 
the public cloud: within the company’s private network 
and without paying a third party (and presumably a 
profit margin) for resource usage. These systems are 
quickly becoming a major force in computing infra-
structure.  
 
Private clouds face different operational difficulties 
compared to other large scale systems such as public 
clouds, traditional server farms, and HPC systems. Pri-
vate cloud resource management features lag those of 
public clouds, HPC systems and enterprise infrastruc-
ture. Most importantly, resource management capabili-
ties lag other systems, forcing resource underutilization 
in many cases, and lacking the ability to enforce re-
source allocation priorities. But the most difficult issue 

faced by private cloud operators is the user model. On 
clouds, users become responsible for some administra-
tive functions, while basic platform management is left 
to the cloud operators. There is no structured interface 
between cloud users and cloud operators, resulting in 
poor coordination between the two. These coordination 
problems become dire when systems are highly utilized, 
due to the absence of slack. This is primarily a technical 
issue, as similar systems are effectively used in large 
scale compute clusters at similar load. We propose the 
creation of such an interface, in order to improve effec-
tiveness of private cloud platforms, as well as to ease 
the operations of these platforms. This effort is the pri-
mary contribution of this work. 
 
At Argonne we operate the Magellan system [11], an 
OpenStack-based private cloud platform dedicated to 
computational science workloads. Magellan consists of 
approximately 800 compute nodes of heterogeneous 
configurations totaling around 7,800 cores, 30 TB of 
memory and 1.2PB of storage. Resource use is un-
metered, but basic system quotas, such as core count, 
memory, storage capacity, and numbers of VM instanc-
es, are enforced. Magellan has been in operation for 
nearly 30 months as an OpenStack system and for much 
of this time was the largest deployment of OpenStack in 
the world. The system supports a large variety of user 
groups with different workloads, requirements, and 
expectations.  
 
During this time, we have experienced a variety of is-
sues caused by this lack of communication. Many of 
these were caused by ill-informed user expectations and 
high coordination costs.  Initially, users drew from their 
experiences with single physical machines, resulting in 
lots of independent, unique instances. Even worse, there 
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was a widespread lack of understand of the ephemeral 
storage concept that is widely used in systems. These 
factors conspired to result in issues where serious user 
data could be (and occasionally was) lost due to the 
failure of ephemeral resources. These factors resulted in 
substantial work in case of resource failures, and caused 
us to be concerned in cases where service operations 
required termination of ephemeral virtual machines. In 
turn, this greatly increased our communication burden 
when preparing for service operations. This kind of 
event is representative of a larger class of events where 
the user support service level should be carefully con-
sidered when deploying such a system. 
 
The cloud model for applications, that of horizontally 
scalable applications with robust fault tolerance, dy-
namic scalability, and extreme automation, is a poor 
match for legacy workloads, or some computational 
science workloads. The former architecture is ideal for 
cloud operators, as user services are tolerant to failures 
of underlying instances, while the latter is what many 
users need in order to achieve their goals. This mis-
match is one of the challenges facing private cloud op-
erators. Worse yet, this incongruity is hidden behind the 
abstractions provided by cloud APIs, limiting the ability 
of cloud operators and users to effectively collaborate. 
 
This issue can, and must, be alleviated by improving 
the communication between users and operators. In this 
paper, we will discuss concrete operational and usabil-
ity issues caused by this shortcoming, many of which 
are specific to private clouds. We will present poncho1, 
a lightweight conduit for API-driven communication 
via instance annotations, as well as comparing it with 
comparable facilities in public clouds. This system is 
currently in the early stages of deployment, with users 
beginning to incorporate annotations into their work-
loads. 
 

2.	  Operational Challenges of Private 
Clouds	  
 
Operationally, private clouds are distinct from public 
clouds and traditional computing infrastructure (HPC 
systems and server farms) in several ways. Private 
clouds are, by their nature, operated by an organization 
for internal users. While these are similar in many ways 
to public clouds, this model implies an alignment of 

                                                
1 Ponchos are useful in circumstances directly follow-
ing clouds filling. 

goals between system operators and users that does not 
exist in the market-based interactions of public clouds. 
This alignment means that operators and users are in-
vested in deriving the most institutional benefit from 
private cloud systems, and are expected to collaborate 
effectively. In many ways, this is analogous to server 
farms or HPC systems, where incentives are similarly 
aligned. The cloud user model becomes even more 
challenging on private clouds; responsibilities are di-
vided responsibilities in a far more complex ways than 
on traditional infrastructure, and both end users and 
system operators are expected to collaborate. These 
factors combine to cause operational challenges in a 
variety of dimensions. We will discuss these in turn. 
 
2.1 Private Clouds 
 
Private clouds are motivated by a desire to have the best 
of all possible worlds. Effectively, organizations want 
the benefits of public clouds in terms of flexibility, 
availability, and capacity planning, with the greater 
than 95% utilization rates of large scale HPC systems, 
and performance of traditional server farms. Also, 
many organizations want large multi-tenant systems, 
which enable economies of scale unavailable in uncon-
solidated infrastructure. Finally, organizations want a 
cloud where operators and users have aligned incen-
tives, and can collaborate on organizational goals. 
 
As always, the devil is in the details. When building 
private clouds, several challenges make it difficult to 
realize this ideal system goal. The state of private cloud 
software, while improving quickly, lags behind large 
scale public clouds like AWS. The flexibility of the 
cloud resource allocation model, where users have un-
fettered access to resources, requires that different 
groups perform specialized functions: operators build 
the cloud platform, while users build services and ap-
plications using these resources, and the APIs that en-
capsulate them. These APIs are insufficient to express 
the full range of user goals, rather, users specify re-
quests in resource-centric notation. The end results of 
this approach are a stream of requests that the cloud 
resource manager attempts to satisfy, with no 
knowledge of their relative importance, duration, or 
underlying use case. Because there is no conduit for 
user intent information, it is difficult for users and oper-
ators to coordinate effectively.  Moreover, this makes 
direct collaboration between users and operators, a key 
benefit of private clouds, considerably more difficult.  
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2.2 The Private Cloud/Openstack Resource 
Management Model 
 
OpenStack provides APIs to access compute, storage, 
and networking resources. Resource allocations in 
OpenStack have no time component; that is, there is no 
duration. This shortcoming has several important ef-
fects, all of which center on resource reclamation. First, 
resources can’t be reclaimed by the system when need-
ed for other work. This limits the ability of the sched-
uler to implement priority scheduling, as resources are 
committed to a request once they are awarded, until the 
user releases them. Second, when the system fills, it 
becomes effectively useless until resources are released. 
This disrupts the appearance of elasticity in the system; 
if users can’t request resources and be confident in their 
requests being satisfied, it causes them to behave patho-
logically, hoarding resources and so forth. Finally, this 
model poses serious challenges to the effectiveness goal 
of private clouds, because the system can’t reclaim re-
sources that are being ineffectively used or left idle 
altogether. This is a distinct goal of private clouds, be-
cause resource provider and resource consumer incen-
tives are aligned. 
 
OpenStack only has two methods for implementing 
resource management policies: request placement, and 
quotas. Both of these methods are inadequate for multi-
tenant systems, where users have competing goals. Re-
source placement includes methods for selection of 
resources when new requests arrive. These decisions 
are sticky, that is, they persist until the allocation is ter-
minated, so they aren’t useful for implementing policy 
in steady state operations. Quotas are a component of 
the solution, and are the only method to implement 
fairness by default. Because these quotas are static, and 
are hard quotas, they are a blunt instrument, and can’t 
be used to softly change user behavior.  
 
2.3 Private Cloud User Model and the Role 
of Platform Operators 
 
One of the major features of private clouds is a re-
formulation of responsibilities centering on the role of 
users and platform operators. In the private cloud mod-
el, platform operators are responsible for the health of 
the underlying cloud platform, including API endpoints, 
and hardware infrastructure, as well as aiming to meet 
the SLAs for allocated resources. Users are responsible 
for everything that happens inside of resources. Fur-
thermore, these resources are black boxes; platform 
operators don’t have any visibility into user allocations, 
or their states. This disconnect is problematic from a 
variety of perspectives. First, operators are unable to 

accurately assess the impact of failures, terminations, 
and service actions. Second, operators can’t determine 
which resources are in use for tasks important to users, 
versus lower priority tasks they may be running. Build-
ing a channel for communication between users and 
operators creates an opportunity for explicit collabora-
tion, where only ad-hoc methods previously existed. 
 
3. User/Operator Coordination on Private 
Clouds 
 
While private clouds are a quickly growing architecture 
for computing resources, the current state of the art 
leaves several operational gaps, as described above. In 
order to address these issues, we propose the addition of 
two methods for coordination between users and opera-
tors. The first of these is an annotation method, where-
by users can describe the properties of their VMs. This 
enables users to communicate requirements and expec-
tations to cloud operators unambiguously. Also, these 
annotations allow system operators to reclaim resources 
and take other actions while minimizing user impact. 
The second component is a notification scheme where-
by users are told when their resources are affected by 
failures, resource contention or administrative opera-
tions. Both of these mechanisms are used by the third 
component, which plans “safe” operations based on 
user annotations and notifies users as needed. In this 
section, we will discuss the explicit use cases this work 
addresses, as well as design and implementation of the-
se features. 
 
3.2 Use Cases 
 
Many private cloud operations are impacted by the lack 
of good information flows between users and operators, 
as well as the basic model offered for resource man-
agement. We find that users have particular use cases 
for each of their instances--information that should be 
communicated to the cloud operators. Operators need to 
perform a variety of service actions on the resources 
that comprise the cloud and lack the tools to plan ac-
tions while minimizing user impact. 
 
3.2.1 Instance Use Cases 
 
Most of the activity on our system is centered around 
the following broad use cases. Each of these is impact-
ed by the lack of good communication between opera-
tors and users.  
 
Service instances - Service instances implement net-
work accessible services. Often, these services must 
answer requests immediately, hence have availability 
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requirements, and have provisioned resources in a high 
availability configuration. They are managed with the 
help of auto-scaling software such as AWS CloudFor-
mation or Openstack Heat. Fault tolerance is often im-
plemented at the application layer, which can provide 
additional flexibility for the platform.  
 
Compute-intensive instances - These instances perform 
batch-oriented computation or analysis workloads. 
They are throughput oriented workloads, where the 
results of computation are needed, but not immediately. 
Batch queues or task managers usually manage this 
workload internal to the allocation and can restart failed 
tasks.  
 
Development instances - These instances have the in-
teractive character of service instances, but none of the 
HA qualities; users access resources directly for devel-
opment reasons. These instances are not heavily uti-
lized, as with the previous two use cases, and are only 
used when the user is active. They may contain unique 
data in some cases. 
 
Ad-hoc/Bespoke instances - These instances are the 
wild west. Users treat some instances like physical ma-
chines, building custom configurations and running ad-
hoc tasks. These instances are the most difficult to sup-
port, as they likely contain some unique data, and may 
have long-running application state that could be lost in 
event of failures or instance reboots. 
 
3.2.2 Operator Use Cases 
 
Operators need to be able to perform a variety of ser-
vice actions on the cloud. In both of these cases, user-
visible impact must be minimized. This goal is made 
more difficult by the poor flow of information between 
users and operators.  
 
Resource Maintenance 
Components of the cloud need proactive maintenance, 
for reasons ranging from software updates and security 
patches to signs of impending failure. In these situa-
tions, operators need to effectively coordinate with us-
ers. These processed may be manually or automatically 
initiated, and depending on the circumstances may be 
synchronous (in the case of impending failures) or 
asynchronous (in the case of software updates that may 
be delayed for a limited time).  
 
Rolling updates fall into this category. These updates 
need to be performed, but do not necessarily have a 
short-term deadline. Updates could be performed op-
portunistically when a resource is free, however, oppor-

tunity decreases as utilization increases. While this ap-
proach can result in substantial progress with no user-
visible impact, long-running allocations prevent it from 
being a comprehensive solution; user-visible operations 
are usually required on system-wide updates.  
Load Shedding 
In some cases, the cloud needs available resources for 
new requests, requiring some resource allocations to be 
terminated. This can occur due to hardware failure, 
single tenant deadlines, or a lack of fairness in the 
schedule. Ideally, load shedding minimizes visible im-
pact to user-run services, as well as the loss of local 
application state. In short, when resource allocations 
must be terminated, choose wisely. Our initial load 
shedding goal is to support a basic, synchronous model. 
More complex policies will follow as future work. 
 
 
Notifications 
A cross-cutting issue with all operator workflows is 
providing the appropriate notifications to users when 
actions are taken against resources. Sending an email or 
opening a service ticket works if an operator manually 
makes a few service actions during the day. But as ser-
vice actions are automated, notifications must also be-
come automated. 
 
3.3 Design 
 
The design of poncho is centered around the basic no-
tion that users and operators can coordinate through a 
combination of resource annotations and system notifi-
cations. That is, users and operators agree to mutually 
beneficial coordination for operations which can poten-
tially cause user-visible outages. These are subtly dif-
ferent from traditional SLAs, where the system operator 
agrees to provide a particular service level. Rather, in 
this case, users specify their goals, and the operators 
provide a best-effort attempt to minimize high impact 
changes. These goals are approached individually on a 
tenant by tenant basis, so inter-tenant prioritization 
doesn’t need to be expressed here. 
 
These goals have a few major parts. The first compo-
nent encodes the impact of service actions on a given 
instance, and describe conditions where an action will 
have acceptable impact on the user workload. An ex-
ample of this is “instance X can be rebooted during the 
interval between 10PM and 2AM”, or “instance Y can 
be rebooted at any time”. The second, closely related 
part describes how resources should be deallocated, 
when the system does so. For example, some resources 
should be snapshotted prior to shutdown, while others 
can be terminated with no loss of data. A third class of 
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annotations describe actions the system should take on 
the user’s behalf, such as killing instances after a speci-
fied runtime.  
 
The particular annotations we have chosen enable a key 
resource management capability: load shedding. With 
the addition of load shedding, more advanced resource 
management strategies can be implemented, where they 
were not previously possible. This outcome is a key 
deliverable of our design; its importance cannot be un-
derstated. 
 
The other major part of poncho’s architecture is a noti-
fication function. Users can register to be notified when 
service actions are performed. These notifications de-
scribe the resources affected, the action taken, and a 
basic reason for the action. For example, a notification 
might tell a user that “instance Z was terminated be-
cause of a load shedding event”. This would signal that 
requests to re-instantiate the instance would likely fail. 
Alternatively, a notification like “instance Z was termi-
nated due to failure” would signal that capacity is likely 
available for a replacement allocation request. Notifica-
tions are delivered on a best effort basis, with a limited 
number of immediate retries, but no guarantee of relia-
ble delivery. As most of this information is available 
through default APIs in an explicit way, applications 
can poll as a fallback. 
 
3.3.1 Annotation API 
 
We have modeled instance annotations as a series of 
key/value pairs, stored as instance metadata via the pre-
existing mechanism in OpenStack. [2] These values are 
described in the table below. Examples of common use 
cases are show in the following examples section.  
 
Table 2 : Instance annotations, metadata 

Table 3 : Conditional grammar 
 

Condition example Description 

“MinRuntime(durat
ion)” 

True if the instance has been running 
for the specified duration. 

“Notified(interval)” True if the interval has elapsed since 
a scheduled event notification was 
sent. 

“TimeOfDay(start, 
stop, tz)” 

True if the time of day is between 
start and stop with the optional time 
zone offset from UTC. Example: 
“TimeOfDay(22:00, 02:00, -05:00)”. 

 
These attributes specify user goals pertaining to in-
stance reboots and termination, as well as whether in-
stances should be snapshotted upon termination. Users 
can specify a notification URL where events are sub-
mitted, and a tenant-specific high availability group ID. 
The priority attribute is used to choose between in-
stances when load shedding occurs. If a tenant is chosen 
for load shedding, and multiple instances are flagged a 
terminatable, these instances are ordered in ascending 
order by priority, and the first instance(s) in the list are 
selected for termination. Priority settings of one tenant 
do not affect which instances are shed in another tenant. 
 
The high availability group annotations provide a lim-
ited set of features: they ensure that cloud operators do 
not load shed instances that are part of that group and 
leave it with less than the minimum number of instanc-
es allowed. In this implementation the user is still re-
sponsible for determining scale-up needs and identify-
ing an HA group failures that occur outside of planned 
operations. 

 
The conditional grammar terms shown 
in Table 3 describe when terminate or 
reboot actions have acceptable conse-
quences to the user. If multiple predi-
cates are specified, all must be satisfied 
for the operation to be deemed safe. 
Note that this condition is merely advi-
sory; failures or other events may result 
in resource outages causing user impact-
ing service outages regardless of these 
specifications. This difference is the 
major distinction between these specifi-
cations and SLAs. 
 
3.3.2 Notification API 

Key Name Description 

reboot_when Semicolon delimited list of conditions, see Table 
3. 

terminate_when Semicolon delimited list of conditions, see Table 
3. 

snap-
shot_on_terminate 

Boolean; create a snapshot of the instance before 
terminating. 

notify_url URL of service receiving event notifications. 

ha_group_id Tenant-unique ID of service HA group. 

ha_group_min Minimum number of instances within the HA 
group. 

priority A non-negative integer. 



22 27th Large Installation System Administration Conference USENIX Association

 
The primary goal of the notification API is to inform 
user about system actions that impact their instances. 
By annotating the instance with a “notify_url” tag, the 
user can specify a URL that listens for events from 
poncho. Events are sent as JSON encoded HTTP POST 
requests to the “notify_url”. All events contain the fol-
lowing basic attributes: 
 

● “timestamp” : A timestamp for the event 
● “type” : An event type, from a fixed list. 
● “description” : A descriptive explanation of 

why this event is happening. 
 
Specific event types contain additional attributes, listed 
in Table 4. 
Table 4. Description of notification event types 

 
Currently instances default to no notification URL. We 
have implemented an optional configuration of Poncho 
that formats messages for these instances as an email to 
the instance owner. For the HA group and shed-load 
events, messages are sent as emails to the tenant admin-
isters. 
 

User-written notification agents are fairly simple. A 
server responds to the HTTP endpoint registered as a 
notification URL, and takes appropriate actions. While 
simple notification agents are fairly general, we have 
found that most tenants want custom policies depending 
on their needs. 
 
3.4 Implementation 
 
We implemented poncho in three parts. The first is a set 
of scripts that provide a user-centric command line in-
terface to annotate nodes. The second is a notification 
library that is used by administrative scripts to notify 
userspace agents upon administrative action. The third 
is a set of administrative scripts that can be run interac-
tively or periodically to shed load, service nodes, or kill 
time limited tasks. This final component is run periodi-

cally in our initial prototype. The primary goal of this 
prototype is to gain some experiences coordinating with 
users in a productive fashion, so the system itself is 
deliberately simplistic until we validate our basic mod-
el.   
 
Our initial implementation of poncho is intended to 
function as a force multiplier, whereby administrators 

Event Type Description and supplemental information 

reboot_scheduled A reboot has been scheduled. Includes the instance ID, name and reboot time. 

rebooting The instance is now rebooting. Includes the instance ID, name. 

terminate_scheduled The instance has been scheduled to be terminated. Includes the instance ID, name 
and a termination time. 

terminating The instance is now being terminated. Includes the instance ID and name. 

terminated The instance was terminated at some point in the past. This notification is used for 
service failures where the instance cannot be recovered. Includes the instance ID 
and name. 

snapshot_created A snapshot of the instance has been created. Includes the instance ID, instance 
name and the ID of the created snapshot. 

ha_group_degraded The HA group for this instance no longer has the minimum number of instances. 
Includes the HA group ID and a list of instance IDs for instances still active within 
that group. Sent once per HA group. 

ha_group_healthy The HA group for this instance has transition from degraded to healthy. Includes 
the HA group ID and the list of instances active within the group. Sent once per 
HA group. 

shed_load_request A request by the operators to the tenant to deallocate instances if possible. This is 
sent out once for every unique notification URL within the tenant. 
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and users perform roughly similar sorts of tasks with 
the aid of scripts that streamline these processes. Opera-
tors gain the ability to perform some service actions in 
an automated fashion, and begin to understand the im-
pact of service options. Users gain the ability to submit 
allocation requests for fixed duration, with automatic 
termination, as well as the ability to communicate in-
formation about their workloads, like the impact of in-
stance outages. 
 
Poncho is an open-source Python application, leverag-
ing existing OpenStack Python APIs and is compatible 
with any Openstack deployment running Essex or new-
er releases. It is available on Github [12].  
 
While we hope to integrate similar functionality into 
Openstack, this version has been implemented in a min-
imally invasive fashion. Our goal in this effort is to gain 
sufficient experience to develop a comprehensive mod-
el for user/operator interactions. Once we have some 
confidence in our model, we plan to develop an Open-
stack blueprint and an implementation suitable for inte-
gration into Openstack itself.  
 
3.5 Example Use Cases 
 
For instances that have no annotations, a default anno-
tation is assumed which meets most users expectations 
for cloud instances: 
 
{ “terminate_when” : false, “reboot_when” : true } 
 
This annotation declares instance reboots to be safe at 
any time, but terminations to be deemed unsafe at any 
time.  
 
Running an instance for development work is a com-
mon use case on Magellan. For this case, we define a 
minimum runtime of twelve hours, a full day of work, 
before the instance can be terminated; we also enable 
automatic snapshotting since the user may have im-
portant work that needs to be saved. Our conservative 
policy is for tenants to delete unnecessary snapshots.  
 
{ “terminate_when” : “MinRuntime(12h)”, snap-
shot_on_terminate : true } 
 
For workloads that are throughput oriented, there are a 
number of annotation configurations that might work. 
The following annotation ensures that a minimum 
number of instances are working for the HA group, that 
the user is notified one hour before any scheduled 
events and that this instance is only considered after 
instances in the same tenant with a lower priority score: 

 
{ “terminate_when” : “Notified(1h)”, “ha_group_id” : 
12,  
  “ha_group_min” : 5, priority : 10,  
  “notify_url” : “http://example.com/notifications”  } 
 
4. Experiences and Discussion 
 
An initial version of poncho has been deployed to users 
on Magellan. Many of our tenants are invested in help-
ing us to develop the user model and resource manage-
ment capabilities, because they notice the lack of com-
munication, and feel they are using resources ineffi-
ciently. Initial user responses have been enthusiastic.  
 
At this point, our two largest tenants have begun to use 
these interfaces. One of these tenants has a throughput 
dominated workload, and had previously communicated 
this to us in an ad-hoc manner. In effect, the interfaces 
provided by this system formalize a manual arrange-
ment. Another of our major tenants has a development 
heavy workload, and had been looking for a system that 
reaped old instances after taking snapshots for several 
months. A third tenant, with a workload that consists of 
a combination of development and throughput-oriented 
instances has also agreed to begin using these interfaces 
as well. At this point, we have only tested poncho’s 
functionality in an artificial setting; we have not needed 
to shed load or service poncho-mediated resources yet; 
the system is fairly reliable, and all instances are not yet 
tagged. 
 
Our initial experiences with users have shown two basic 
models. Users with throughput oriented workloads are 
able to integrate these methods into their workflows 
relatively easily, as all of their resources are started up 
in a uniform way. Interactive users, largely instantiating 
development instances, start their instances in a variety 
of different ways, making uniform adoption considera-
bly more difficult. These latter kinds of instances con-
sume resources in a bursty fashion, while occupying 
resources consistently. In our experiences, tenants want 
to set custom policies for their development instances. 
This approach is similar in philosophy to the one taken 
by Netflix’s Janitor Monkey, and consolidates policy at 
the tenant level, not with either the system or individual 
users. 
 
It remains an open question how broad adoption of the-
se APIs will be across tenants on our system. For this 
reason, it was critical to set a reasonable default set of 
annotations for instances. Once clear conservative op-
tion is to define both instance reboots and terminations 
as invasive. Another more flexible option allows re-
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boots with 24 hour calendar notice emailed to users 
while still deeming terminations as invasive. We have 
chosen this latter option, as it gives users some incen-
tive to learn these APIs and put them into use if they 
have a sensitive workload.  
 
With the addition of load-shedding capabilities, we 
enable Openstack to implement a range of scheduling 
algorithms familiar from public clouds and HPC sys-
tems. This core capability is the fundamental infrastruc-
ture for AWS spot instances, and HPC system scaven-
ger queues. We plan to explore these options for im-
proving system productivity.  
 
Clouds put operators/system administrators into the role 
of building API driven services for their organizations. 
These new services implicitly include a collaborative 
function with users, with a division of responsibilities 
(which is familiar to administrators) and an abstraction 
barrier, which is new. In our view, it is critical that 
cloud operators be proactive, and help to design effec-
tive coordination facilities to enable users to use re-
sources effectively, both in throughput-oriented compu-
tational workloads and availability-oriented service 
workloads. APIs, which provide services to users, can 
just as easily be used to provide services to operators. 
With this sort of approach, traditionally expensive prob-
lems can be simply solved. Solutions of this kind are 
critical if private clouds are to grow to their full poten-
tial. 
 
5. Background and Related Work 
 
The problems of effective communication with users to 
enable efficient resource management, including load-
shedding, are old ones in system management. In HPC 
systems, resource allocations are explicitly annotated 
with a maximum runtime. HPC schedulers, such as 
Maui[17], and Slurm[18] can use these annotations to 
implement scheduling algorithms such as conservative 
backfill[25]. The availability of maximum runtimes 
also enable deterministic draining of resources, a luxury 
unavailable on private clouds due to the private cloud 
resource allocation model. In [24], the authors explore 
instituting explicit resource leases on top of the cloud 
resource allocation model. 
 
Public clouds have some features that enable effective 
coordination between platform operators and cloud 
users. Amazon’s Spot Instances[15] are a prime exam-
ple of that, and is specifically built on top of load-
shedding techniques.  
 

AWS and Rackspace both have an API specifically for 
coordinating planned outages. Instance and hypervisor 
reboots are scheduled and that schedule is queryable by 
the user. In some cases users may elect to reboot in-
stances at a time of their choosing before the scheduled 
maintenance window.[1,3] This enables users to per-
form the required upgrades in a controlled fashion, e.g. 
when personnel are available to diagnose and fix unex-
pected issues with the upgrade.  
 
Support for high availability service groups are widely 
supported; AWS and Microsoft Azure include mecha-
nisms to build such services. [1,7] In private cloud 
software stacks, Openstack (via Heat[16]) and Eucalyp-
tus both support similar mechanisms.  
 
Several systems provide auto-scaling functionality, 
which could be configured to receive events from pon-
cho. AWS includes integrated auto-scaling services, as 
does Azure. Heat provides related functionality for the 
Openstack ecosystem. Some of these systems use VM 
profiling tools to identify applications with high CPU or 
memory load to be scaled. 
 
Public cloud operators manage user expectations with 
SLAs. This approach is quite effective in conjunction 
with variable pricing across service classes. Our ap-
proach is slightly different, using annotations to signal 
user desires, as opposed to making guarantees to the 
users.  
 
Rightscale[26] and Cycle Computing[27] are third party 
resource management environments that implement 
advanced policies on top of public and private clouds 
for service and throughput-oriented workloads, respec-
tively. 
 
In [8], the authors propose a strategy of improving pri-
vate cloud utilization with high-throughput Condor 
tasks, which can implicitly be terminated at any time. 
This strategy, similar to Amazon’s spot instance strate-
gy, is less flexible than coordination solution presented 
in this paper, as it solely addresses the utilization prob-
lem, not the more general resource evacuation and load 
shedding problems. 
 
Netflix’s Simian Army[13] contains some resource 
management features that we intentionally designed 
into poncho. While most of the Simian Army applica-
tion is concerned with testing the fault tolerance of Net-
flix’s video streaming services, the Janitor Monkey 
application identifies idle development instances and 
terminates them after warning the owner. [14] 
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6. Conclusions 
 
In this paper, we have presented the design and imple-
mentation of poncho, a tool that enables better commu-
nication between private cloud operators and their us-
ers, as well as early experiences with the tool. Our ini-
tial implementation of poncho is relatively simplistic, 
and primarily aims to validate our model for API-driven 
coordination between users and cloud operators. Pon-
cho has been deployed to users, and initial feedback has 
been positive, suggesting users are willing to make use 
of such interfaces if it makes their lives easier or ena-
bles more efficient use of computing resources. 
 
One goal in writing this paper was to begin a communi-
ty discussion of this communication breakdown. As 
adoption of private clouds grows, these issues will grow 
more serious, particularly as these systems become 
more saturated. As a largely non-technical issue, we 
believe that broad experimentation, on real users, is the 
best way to develop effective solutions. Moreover, it is 
critical that system administrators, as they become pri-
vate cloud operators, remain cognisant of these issues, 
and strive to minimize their impact. 
 
Finally, as service-oriented computing infrastructure, 
like private clouds, becomes widespread, operators (and 
system administrators) will increasingly find their users 
hidden away behind abstraction barriers, from virtual 
machines to PaaS software and the like. Both building 
effective collaborative models with users, and design-
ing APIs that are efficient and productive, are critical 
tasks that system administrators are uniquely equipped 
to address within their organizations.  
 
7. Future Work 
 
This work is a set of first steps toward improved com-
munication between users and operators on Openstack 
private clouds. The prototype described here is a simple 
implementation of such a conduit, no doubt it will be 
refined or even redesigned as users develop more so-
phisticated requirements, driven by their application 
workloads.  
 
One of the critical pieces of infrastructure provided by 
this system is a mechanism that can be used for load 
shedding, as well as a way to communicate with users 
when this action is required. As a building block, load 
shedding enables a whole host of more advanced re-
source management capabilities, like spot instances, 
advanced reservations, and fairshare scheduling. After 
our initial assessment of this coordination model is 

complete, we plan to build an active implementation, 
that can directly implement these features. 
 
Notifications, particularly the explicit load-shedding 
request, enable the creation of hierarchical cooperative 
resource managers, which is probably the best path 
forward for integration with traditional resource man-
agers.  
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Abstract

Intrepid has a very-large, production GPFS storage sys-
tem consisting of 128 file servers, 32 storage controllers,
1152 disk arrays, and 11,520 total disks. In such a large
system, performance problems are both inevitable and
difficult to troubleshoot. We present our experiences, of
taking an automated problem diagnosis approach from
proof-of-concept on a 12-server test-bench parallel-file-
system cluster, and making it work on Intrepid’s storage
system. We also present a 15-month case study, of prob-
lems observed from the analysis of 624 GB of Intrepid’s
instrumentation data, in which we diagnose a variety of
performance-related storage-system problems, in a mat-
ter of hours, as compared to the days or longer with man-
ual approaches.

Tags: problem diagnosis, storage systems, infrastruc-
ture, case study.

1 Introduction
Identifying and diagnosing problems, especially perfor-
mance problems, is a difficult task in large-scale storage
systems. These systems are comprised of many com-
ponents: tens of storage controllers, hundreds of file
servers, thousands of disk arrays, and tens-of-thousands
of disks. Within high-performance computing (HPC),
storage often makes use of parallel file systems, which
are designed to utilize and exploit parallelism across
all of these components to provide very high-bandwidth
concurrent I/O.

An interesting class of problems in these systems is
hardware component faults. Due to redundancy, gener-
ally component faults and failures manifest in degraded
performance. Due to careful balancing of the number
of components and their connections, the degraded per-
formance of even a single hardware component may be
observed throughout an entire parallel file system, which
makes problem localization difficult.

At present, storage system problems are observed and
diagnosed through independent monitoring agents that
exist within the individual components of a system, e.g.,

disks (via S.M.A.R.T. [11]), storage controllers, and file
servers. However, because these agents act indepen-
dently, there is a lack of understanding how a specific
problem affects overall performance, and thus it is un-
clear whether a corrective action is immediately neces-
sary. Where the underlying problem is the misconfigura-
tion of a specific component, an independent monitoring
agent may not even be aware that a problem exists.

Over the past few years, we have been exploring the
use of peer-comparison techniques to identify, locate,
and diagnose performance problems in parallel file sys-
tems. By understanding how individual components may
exhibit differences (asymmetries) in their performance
relative to peers, and, based on the presence of these
asymmetries, we have been able to identify the specific
components responsible for overall degradation in sys-
tem performance.

Our previous work. As described in [17], we automat-
ically diagnosed performance problems in parallel file
systems (in PVFS and Lustre) by analyzing black-box,
OS-level performance metrics on every file server. We
demonstrated a proof-of-concept implementation of our
peer-comparison algorithm by injecting problems during
runs of synthetic workloads (dd, IOzone, or PostMark)
on a controlled, laboratory test-bench storage cluster of
up to 12 file servers. While this prototype demonstrated
that peer comparison is a good foundation for diagnos-
ing problems in parallel file systems, it did not attempt to
tackle the practical challenges of diagnosis in large-scale,
real-world production systems.

Contributions. In this paper, we seek to adapt our pre-
vious approach for the primary high-speed storage sys-
tem of Intrepid, a 40-rack Blue Gene/P supercomputer at
Argonne National Laboratory [21], shown in Figure 1.
In doing so, we tackle the practical issues in making
problem diagnosis work in large-scale environment, and
we also evaluate our approach through a 15-month case
study of practical problems that we observe and identify
within Intrepid’s storage system.

The contributions of this paper are:
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Figure 1: Intrepid, consists of 40 Blue Gene/P racks [2].

• Outlining the pragmatic challenges of making problem
diagnosis work in large-scale storage systems.

• Adapting our proof-of-concept diagnosis approach,
from its initial target of a 12-server experimental clus-
ter, to a 9,000-component, production environment
consisting of file servers, storage controllers, disk ar-
rays, attachments, etc.

• Evaluating a case study of problems observed in In-
trepid’s storage system, including those that were pre-
viously unknown to system operators.

We organize the rest of this paper as follows. We start
with a description of our approach, as it was originally
conceived, to work in a small-scale laboratory environ-
ment (see § 2). We then discuss the challenges of taking
the initial algorithm from its origin in a limited, control-
lable test-bench environment, and making it effective in
a noisy, 9,000-component production system (see § 3).
Finally, we present the new version of our algorithm that
works in this environment, and evaluate its capability to
diagnose real-world problems in Intrepid’s storage sys-
tem (see § 4).

2 In the Beginning . . .
The defining property of parallel file systems is that
they parallelize accesses to even a single file, by strip-
ing its data across many, if not all, file servers and
logical storage units (LUNs) within a storage system.
By striping data, parallel file systems maintain similar
I/O loads across system components (peers) for all non-
pathological client workloads. In our previous work [17],
we hypothesized that the statistical trend of I/O loads,
as reflected in OS-level performance metrics, should (i)
exhibit symmetry across fault-free components, and (ii)
exhibit asymmetries across faulty components. Figure 2
illustrates the intuition behind our hypothesis; the injec-
tion of a rogue workload on a spindle shared with a PVFS
LUN results in a throughput asymmetry between the
faulty and fault-free LUNs, where previously throughput
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Figure 2: Asymmetry in throughput for an injected fault;
provides intuition behind the peer-comparison approach
that serves as a good foundation for our diagnosis [17].

was similar across them.
In the context of our diagnosis approach, peers repre-

sent components of the same type or functionality that
are expected to exhibit similar request patterns. By cap-
turing performance metrics at each peer, and comparing
these metrics across peers to locate asymmetries (peer-
comparison), we expect to be able to identify and local-
ize faults to the culprit peer(s).

To validate our hypothesis, we explored a peer-
comparison-based approach to automatically diagnose
performance problems through a set of experiments on
controlled PVFS and Lustre test-bench clusters [17]. In
summary, these experiments are characterized by:

• Black-box instrumentation consisting of samples of
OS-level storage and network performance metrics.

• Two PVFS and two Lustre test-bench clusters, con-
taining 10 clients and 10 file servers, or 6 clients and
12 file servers, for four clusters in total.

• File servers each with a single, locally-attached stor-
age disk.

• Experiments, both fault-free and fault-injected, ap-
proximately 600 seconds in duration, where each
client runs the same file system benchmark (dd, IO-
zone, or PostMark) as a synthetic workload.

• Fault-injection of approximately 300 seconds in du-
ration, consisting of two storage-related, and two
network-related performance problems.

• A peer-comparison diagnosis algorithm that is able
to locate the faulty server (for fault-injection experi-
ments), and determine which of the four injected prob-
lems is present.

In [17], we evaluate the accuracy of our diagnosis
with true- and false-positive rates for diagnosing the cor-
rect faulty server and fault type (if an injected fault ex-
ists). Although our initial diagnosis algorithm exhibited
weaknesses that contributed to misdiagnoses in our re-
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sults, overall our test-bench experiments demonstrated
that peer-comparison is a viable method for performing
problem diagnosis, with low instrumentation overhead,
in parallel file systems.

3 Taking it to the Field
Following the promising success of our PVFS and Lustre
test-bench experiments, we sought to validate our diag-
nosis approach on Intrepid’s primary high-speed GPFS
file system (we describe GPFS in § 3.2 and Intrepid’s ar-
chitecture in § 3.3).

In doing so, we identified a set of new challenges that
our diagnosis approach would have to handle:

1. A large-scale, multi-tier storage system where prob-
lems can manifest on file servers, storage attachments,
storage controllers, and individual LUNs.

2. Heterogeneous workloads of unknown behavior and
unplanned hardware-component faults, both of which
are outside of our control, that we observe and charac-
terize as they happen.

3. The presence of system upgrades, e.g., addition of
storage units that see proportionally higher loads (non-
peer behavior) as the system seeks to balance resource
utilization.

4. The need for continuous, 24/7 instrumentation and
analysis.

5. Redundant links and components, which also exhibit
changes in load (as compared to peers) when faults
are present, even though the components themselves
are operating appropriately.

6. The presence of occasional, transient performance
asymmetries that are not conclusively attributable to
any underlying problem or misbehavior.

3.1 Addressing these New Challenges
While problem diagnosis in Intrepid’s storage system is
based on the same fundamental peer-comparison process
we developed during our test-bench experiments, these
new challenges still require us to adapt our approach at
every level: by expanding the system model, revisiting
our instrumentation, and improving our diagnosis algo-
rithm. Here we map our list of challenges to the subse-
quent sections of the paper where we address them.

Challenge #2. Tolerating heterogeneous workloads
and unplanned faults are inherent features of our peer-
comparison approach to problem diagnosis. We as-
sume that client workloads exhibit similar request pat-
terns across all storage components, which is a feature
provided by parallel file system data striping for all but
pathological cases. We also assume that at least half
of the storage components (within a peer group) exhibit
fault-free behavior. As long as these assumptions hold,
our peer-comparison approach can already distinguish

problems from legitimate workloads.

Challenges #1, #3, and #5. Unlike our test-bench,
which consisted of a single storage component type
(PVFS or Lustre file server with a local storage disk), In-
trepid’s storage system consists of multiple component
types (file servers, storage controllers, disk arrays, at-
tachments, etc.), that may be amended or upgraded over
time, and that serve in redundant capacities. Thus, we
are required to adapt our system model to tolerate each of
these features. Since we collect instrumentation data on
file servers (see § 4.1), we use LUN-server attachments
as our fundamental component for analysis. With knowl-
edge of GPFS’s prioritization of attachments for shared
storage (see § 3.3.2), we handle redundant components
(challenge #5) by separating attachments into different
priority groups that are separately analyzed. We han-
dle upgrades (challenge #3) similarly, separating com-
ponents into different sets based on the time at which
they’re added to the system, and perform diagnosis sepa-
rately within each upgrade set (see § 3.3.1). Furthermore,
by knowing which attachments are affected at the same
time, along with the storage system topology (see § 3.3),
we can infer the most likely tier and component affected
by a problem (challenge #1).

Challenge #4. As in [17] we use sadc to collect per-
formance metrics (see § 4.1). To make our use of sadc
amenable to continuous instrumentation, we also use a
custom daemon, cycle, to rotate sadc’s activity files
once a day (see § 4.1.1). This enables us to perform anal-
ysis on the previous day’s activity files while sadc gen-
erates new files for the next day.

Challenge #6. Transient performance asymmetries are
far more common during the continuous operation of
large-scale storage systems, as compared to our short
test-bench experiments. Treatment of these transient
asymmetries requires altering the focus of our analysis
efforts and enhancing our diagnosis algorithm to use per-
sistence ordering (see § 4.3).

3.2 Background: GPFS Clusters
The General Parallel File System (GPFS) [27] is a cluster
and parallel file system used for both high-performance
computing and network storage applications. A GPFS
storage cluster consists of multiple file servers that are
accessed by one or more client nodes, as illustrated for
Intrepid in Figure 3. For large I/O operations, clients
issue simultaneous requests across a local area network
(e.g., Ethernet, Myrinet, etc.) to each file server. To fa-
cilitate storage, file servers may store data on local (e.g.,
SATA) disks, however, in most clusters I/O requests are
further forwarded to dedicated storage controllers, either
via direct attachments (e.g., Fibre Channel, InfiniBand)
or over a storage area network.
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BG/P I/O Nodes

Ethernet LAN

128 NSD Servers

IB Attachments

1152 LUNs

Storage Array (1 of 16)

Figure 3: Intrepid’s storage system architecture.

Storage controllers expose block-addressable logical
storage units (LUNs) to file servers and store file sys-
tem content. As shown in Figure 4, each LUN consists
of a redundant disk array. Controllers expose different
subsets of LUNs to each of its attached the file servers.
Usually LUNs are mapped so each LUN primarily serves
I/O for one (primary) file server, while also allowing re-
dundant access from other (secondary) file servers. This
enables LUNs to remain accessible to clients in the event
that a small-number of file servers go offline. Controllers
themselves may also be redundant (e.g., coupled “A” and
“B” controllers) so that LUNs remain accessible to sec-
ondary file servers in the event of a controller failure.

The defining property of parallel file systems, includ-
ing GPFS, is that they parallelize accesses to even a sin-
gle file, by striping its data across many (and in a com-
mon configuration, across all) file servers and LUNs. For
example, when performing large, sequential I/O, clients
may issue requests, corresponding to adjacent stripe seg-
ments, round-robin to each LUN in the cluster. LUNs are
mapped to file servers so that these requests are striped to
each file server, parallelizing access across the LAN, and
further striped across the primary LUNs attached to file
servers, parallelizing access across storage attachments.

The parallelization introduced by the file system, even
for sequential writes to a single file, ensures that non-
pessimistic workloads exhibit equal loads across the
cluster, which in turn, should be met with balanced per-
formance. Effectively, just as with other parallel file
systems, GPFS exhibits the characteristics that make
peer-comparison a viable approach for problem diagno-
sis. Thus, when “hot spots” and performance imbalances
arise in a cluster, we hypothesize them to be indicative of
a performance problem. Furthermore, by instrumenting
each file server in the cluster, we can observe the per-
formance of file servers, storage controllers, and LUNs,
from multiple perspectives, which enables us to localize
problems to the components of the cluster where perfor-
mance imbalance is most significant.
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3.3 Intrepid’s Storage System
The target of our case study is Intrepid’s primary stor-
age system, a GPFS file system that consists of 128
Network Shared Disk (NSD) servers (fs1 through
fs128) and 16 DataDirect Networks S2A9900 stor-
age arrays, each with two storage controllers [21]. As
illustrated in Figure 4, each storage array exports 72
LUNs (ddn6_lun000 through ddn21_lun071) for
Intrepid’s GPFS file system, yielding a 4.5 PB file sys-
tem comprised from 1152 LUNs and 11,520 total disks.
At this size, this storage system demands a diagnosis
approach with scalable data volume and an algorithm
efficient enough to perform analysis in real-time with
modest hardware. In addition, because our focus is on
techniques that are amenable to such production envi-
ronments, we require an approach with a low instrumen-
tation overhead.

3.3.1 System Expansion
Of the 72 LUNs exported by each storage array, 48 were
part of the original storage system deployment, while the
other 24 were added concurrently with the start of our in-
strumentation to expand the system’s capacity. Since the
24 LUNs added in each storage array (384 LUNs total)
were initially empty, they observe fewer reads and more
writes, and thus, exhibit non-peer behavior compared to
the original 48 LUNs in each array (768 LUNs total). As
our peer-comparison diagnosis approach performs best
on LUNs with similar workloads, we partition Intrepid
into “old” and “new” LUN sets, consisting of 768 and
384 LUNs respectively, and perform our diagnosis sepa-
rately within each set.
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3.3.2 Shared Storage
Each Intrepid LUN is redundantly attached to eight
GPFS file servers with a prioritized server order-
ing defined in a system-wide configuration. We de-
note these LUN-server attachments with the conven-
tion controller.lun.server, e.g., 6.00.1 or
21.71.128.

GPFS clients, when accessing a LUN, will route
all I/O requests through the highest-priority, presently-
available server defined for that LUN. Thus, when all
servers are online, client I/O requests route through the
primary server defined for a given LUN. If the primary
server is unavailable, requests route through the LUN’s
secondary, tertiary, etc., servers based on those servers
availability.

Since redundant attachments do not have equal prior-
ity for a given LUN, this effectively creates eight system-
wide priority groups consisting of equal-priority LUN-
server attachments, i.e., the first priority-group con-
sists of all primary LUN-server attachments, the second
priority-group consists of all the secondary LUN-server
attachments, etc. Combined with the “system expansion”
division, the total of 9216 LUN-server attachments (1152
LUNs × 8 redundantly attached servers) must be ana-
lyzed in 16 different peer groups (8 priority groups × 2
for “old” vs. “new” LUNs) in total.

4 Making it Work for Intrepid
As we apply our problem-diagnosis approach to large
storage systems like Intrepid’s, our primary objective is
to locate the most problematic LUNs (specifically LUN-
server attachments that we refer to as “LUNs” hence-
forth) in the storage system, which in turn, reflect the
location of faults with greatest performance impact. This
process consists of three stages:

Instrumentation, where we collect performance met-
rics for every LUN (see § 4.1);

Anomaly Detection, where we identify LUNs that ex-
hibit anomalous behavior for a specific window of
time (see § 4.2);

Persistence Ordering, where we locate the most prob-
lematic components by their persistent impact on over-
all performance (see § 4.3).

4.1 Instrumentation
For our problem diagnosis, we gather and analyze OS-
level storage performance metrics, without requiring any
modifications to the file system, the applications or the
OS. As we are principally concerned with problems that
manifest at the layer of NSD Servers and below (see Fig-
ure 3), the metrics that we gather and utilize consist of
the storage-metric subset of those collected in our previ-
ous work [17].

Metric Significance

tps
Number of I/O (read and write) requests made to (a
specific) LUN per second.

rd_sec Number of sectors read from the LUN per second.
wr_sec Number of sectors written to the LUN per second.
avgrq-sz Average size (in sectors) of the LUN’s I/O requests.
avgqu-sz Average number of the LUN’s queued I/O requests.

await
Average time (in milliseconds) that a request waits
to complete on the LUN; includes queuing delay
and service time.

svctm
Average (LUN) service time (in milliseconds) of
I/O requests; does not include any queuing delay.

%util
Percentage of CPU time in which I/O requests are
made to the LUN.

Table 1: Black-box, OS-level performance metrics col-
lected for analysis.

In Linux, OS-level performance metrics are made
available as text files in the /proc pseudo file sys-
tem. Table 1 describes the specific metrics that we col-
lect. We use sysstat’s sadc program [15] to periodi-
cally gather storage and network performance metrics at
a sampling interval of one second, and record them in
activity files. For storage resources, sysstat provides us
with the throughput (tps, rd_sec, wr_sec) and la-
tency (await, svctm) of the file server’s I/O requests
to each of the LUNs the file server is attached to. Since
our instrumentation is deployed on file servers, we ac-
tually observe the compound effect of disk arrays, con-
trollers, attachments, and the file server on the perfor-
mance of these I/O requests.

In general we find that await is the best single metric
for problem diagnosis in parallel file systems as it reflects
differences in latency due to both (i) component-level
delays (e.g., read errors) and (ii) disparities in request
queue length, i.e., differences in workload. Since work-
load disparities also manifest in changes in throughput,
instances in which await is anomalous but not rd_sec
and wr_sec indicate a component-level problem.

4.1.1 Continuous Instrumentation
As our test-bench experiments in [17] were of relatively
short duration (∼600 s), we were able to spawn instances
of sadc to record activity files for the duration of our ex-
periments, and perform all analysis once the experiments
had finished and the activity files were completely writ-
ten. For Intrepid, we must continuously instrument and
collect data, while also periodically performing offline
analysis. To do so, we use a custom daemon, cycle,
to spawn daily instances of sadc shortly after midnight
UTC, at which time we are able to collect the previous
day’s activity files for analysis.

Although the cycle daemon performs a conceptually
simple task, we have observed a number of practical is-
sues in deployment that motivated the development of
robust time-management features. We elaborate on our
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experiences with these issues in § 6. To summarize, the
present version of cycle implements the following fea-
tures:

• Records activity files with filenames specified with an
ISO 8601-formatted UTC timestamp of sadc’s start
time.

• Creates new daily activity files at 00:00:05 UTC,
which allows up to five seconds of clock backwards-
correction without creating a second activity file at
23:59 UTC on the previous day.

• Calls sadc to record activity files with a number of
records determined by the amount of time remaining
before 00:00:05 UTC the next day, as opposed to spec-
ifying a fixed number of records. This prevents drifts
in file-creation time due to accumulating clock correc-
tions. It also allows for the creation of shorter-duration
activity files should a machine be rebooted in the mid-
dle of the day.

4.2 Anomaly Detection
The purpose of anomaly detection is to determine which
storage LUNs are instantaneously reflecting anomalous,
non-peer behavior. To do so, we use an improved version
of the histogram-based approach described in [17].

Inevitably, any diagnosis algorithm has configurable
parameters that are based on the characteristics of the
data set for analysis, the pragmatic resource constraints,
the specific analytical technique being used, and the de-
sired diagnostic accuracy. In the process of explaining
our algorithms below, we also explain the intuition be-
hind the settings of some of these parameters.

Overview. To find the faulty component, we peer-
compare storage performance metrics across LUNs to
determine those with anomalous behavior. We analyze
one metric at a time across all LUNs. For each LUN
we first perform a moving average on its metric values.
We then generate the Cumulative Distribution Function
(CDF) of the smoothed values over a time window of
WinSize samples. We then compute the distance between
CDFs for each pair of LUNs, which represents the degree
to which LUNs behave differently. We then flag a LUN
as anomalous over a window if more than half of its pair-
wise CDF distances exceed a predefined threshold. We
then shift the window by WinShi f t samples, leaving an
overlap of WinSize−WinShi f t samples between consec-
utive windows, and repeat the analysis. We classify a
LUN to be faulty if it exhibits anomalous behavior for at
least k of the past 2k−1 windows.

Downsampling. As Intrepid occasionally exhibits a
light workload with requests often separated by periods
of inactivity, we downsample each storage metric to an
interval of 15 s while keeping all other diagnosis parame-
ters the same. This ensures that we incorporate a reason-

able quantity of non-zero metric samples in each com-
parison window to detect asymmetries. It also serves as
a scalability improvement by decreasing analysis time,
and decreasing storage and (especially) memory require-
ments. This is a pragmatic consideration, given that the
amount of memory required would be otherwise pro-
hibitively large1

Since sadc records each of our storage metrics as a
rate or time average, proper downsampling requires that
we compute the metric’s cumulative sum, that we then
sample (at a different rate), to generate a new average
time series. This ensures any work performed between
samples is reflected in the downsampled metric just as it
is in the original metric. In contrast, sampling the metric
directly would lose any such work, which leads to inac-
curate peer-comparison. The result of the downsampling
operation is equivalent to running sadc with a larger
sampling interval.

Moving Average Filter. Sampled storage metrics, par-
ticularly for heavy workloads, can contain a large amount
of high-frequency (relative to sample rate) noise from
which it is difficult to observe subtle, but sustained fault
manifestations. Thus, we employ a moving average filter
with a 15-sample width to remove this noise. As we do
not expect faults to manifest in a periodic manner with
a periodicity less than 15 samples, this filter should not
unintentionally mask fault manifestations.

CDF Distances. We use cumulative histograms to ap-
proximate the CDF of a LUN’s smoothed metric values.
In generating the histograms we use a modified version
of the Freedman-Diaconis rule [12] to select the bin size,
BinSize = 2IQR(x)WinSize−1/3, and number of bins,
Bins = �Range(x)/BinSize� where x contains samples
across all LUNs in the time window. Even though
the generated histograms contain samples from a sin-
gle LUN, we compute BinSize using samples from
all LUNs to ensure that the resulting histograms have
compatible bin parameters and, thus, are compara-
ble. Since each histogram contains only WinSize
samples, we compute BinSize using WinSize num-
ber of observations. Once histograms are gener-
ated for each LUN’s values, we compute for each
pair of histograms P and Q the (symmetric) distance:
d(P,Q) = ∑Bins

i=0 |P(i)−Q(i)|, a scalar value that repre-
sents how different two histograms, and thus LUNs, are
from each other.

Windowing and Anomaly Filtering. Looking at our
test-bench experiments [17], we found that a WinSize
of ∼60 samples encompassed enough data such that
our components were observable as peers, while also

1We frequently ran out of memory when attempting to analyze the
data of a single metric, sampling at 1 s, on machines with 4 GB RAM.
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maintaining a reasonable diagnosis latency. We use a
WinShi f t of 30 samples between each window to ensure
a sufficient window overlap (also 30 samples) so as to
provide continuity of behavior from an analysis stand-
point. We classify a LUN as faulty if it shows anomalous
behavior for 3 out of the past 5 windows (k = 3). This
filtering process reduces many of the spurious anomalies
associated with sporadic asymmetry events where no un-
derlying fault is actually present, but adds to the diag-
nosis latency. The WinSize, WinShi f t, and k values that
we use, along with our moving-average filter width, were
derived from our test-bench experiments as having pro-
viding the best empirical accuracy rates and are similar
to the values we published in [17], while also providing
for analysis windows that are round to the half-minute.
The combined effects of downsampling, windowing, and
anomaly filtering result in a diagnosis latency (the time
from initial incident to diagnosis) of 22.5 minutes.

4.2.1 Threshold Selection
The CDF distance thresholds used to differentiate faulty
from fault-free LUNs are determined through a fault-free
training phase that captures the maximum expected devi-
ation in LUN behavior. We use an entire day’s worth of
data to train thresholds for Intrepid. This is not necessar-
ily the minimum amount of data needed for training, but
it is convenient for us to use since our experiment data is
grouped by days. We train using the data from the first
(manually observed) fault-free day when the system sees
reasonable utilization. If possible, we recommend train-
ing during stress tests that consist of known workloads,
which are typically performed before a new or upgraded
storage system goes into production. We can (and do)
use the same thresholds in on-going diagnosis, although
retraining would be necessary in the event of a system
reconfiguration, e.g., if new LUNs are added. Alterna-
tively we could retrain on a periodic (e.g., monthly) basis
as a means to tolerate long-term changes to LUN perfor-
mance. However, in practice, we have not witnessed a
significant increase in spurious anomalies during our 15-
month study.

To manually verify that a particular day is reasonably
fault-free and suitable for training, we generate, for each
peer group, plots of superimposed awaits for all LUNs
within that peer group. We then inspect these plots to en-
sure that there is no concerning asymmetry among peers,
a process that is eased by the fact that most problems
manifest as observable loads in normally zero-valued
non-primary peer groups. Even if training data is not per-
fectly fault-free (either due to minor problems that are
difficult to observed from await plots, or because no
such day exists in which faults are completely absent),
the influence of faults is only to dampen alarms on the
faulty components; non-faulty components remain unaf-

fected. Thus, we recommend that training data should be
sufficiently free from observable problems that an oper-
ator would feel comfortable operating the cluster indefi-
nitely in its state at the time of training.

4.2.2 Algorithm Refinements
A peer-comparison algorithm requires the use of some
measure that captures the similarity and the dissimilar-
ity in the respective behaviors of peer components. A
good measure, from a diagnosis viewpoint, is one that
captures the differences between a faulty component and
its non-faulty peer in a statistically significant way. In our
explorations with Intrepid, we have sought to use robust
similarity/dissimilarity measures that are improvements
over the ones that we used in [17].

The first of these improvements is the method of
histogram-bin selection. In [17] we used Sturges’
rule [31] to base the number of histogram bins on
WinSize. Under both faulty and fault-free scenarios (par-
ticularly where a LUN exhibits a small asymmetry),
Sturges’ rule creates histograms where all data is con-
tained in the first and last bins. Thus, the amount of
asymmetry of a specific LUN relative to the variance of
all LUNs is lost and not represented in the histogram. In
contrast, the Freedman–Diaconis rule selects bin size as
a function of the interquartile range (IQR), a robust mea-
sure of variance uninfluenced by a small number of out-
liers. Thus, the number of bins in each histogram adapts
to ensure an accurate histogram representation of asym-
metries that exceeds natural variance.

One notable concern of the Freedman–Diaconis rule
is the lack of a limit on the number of bins. Should
a metric include outliers that are orders of magnitude
larger than the IQR, then, the Freedman–Diaconis rule
will generate infeasibly large histograms, which is prob-
lematic as the analysis time and memory requirements
both scale linearly with the number of bins. While we
found this to not typically be an issue with the await
metric, wr_sec outliers would (attempt) to generate his-
tograms with more than 18 million bins. For diagno-
sis on Intrepid’s storage system, we use a bin limit of
1000, which is the 99th, 91st, and 87th percentiles for
await, rd_sec, and wr_sec respectively, and results
in a worst-case (all generated with 1000 bins) histogram-
computation time that is only twice the average.

The second improvement of this algorithm is its use
of CDF distances as a similarity/dissimilarity measure,
instead of the Probability Density Functions (PDFs) dis-
tances as we used in [17]. Specifically, in [17], we
used a symmetric version of Kullback-Leibler (KL) di-
vergence [9] to compute distance using histogram ap-
proximations of metric PDFs. This comparison works
well when two histograms overlap (i.e., many of their
data points lie in overlapping bins). However, where two
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Date.Hour: Value PG:LUN-server
20110417.00: 7 2:18.61.102 6 2:15.65.74 5 2:11.55.48 5 2:12.48.49
20110417.01: 14 2:15.65.74 9 2:16.51.84 8 1:6.39.8 8 1:10.03.36
20110417.02: 19 2:15.65.74 17 2:16.51.84 15 2:10.50.35 15 2:21.56.121
20110417.03: 25 2:16.51.84 15 2:15.65.74 14 2:21.56.121 13 2:10.50.35
20110417.04: 33 2:16.51.84 20 2:15.65.74 15 2:21.56.121 13 2:10.50.35
20110417.05: 41 2:16.51.84 22 2:15.65.74 13 2:19.53.110 10 1:16.30.87

Figure 5: Example list of persistently anomalous LUNs. Each hour (row) specifies the most persistent anomalies
(columns of accumulator value, peer-group, and LUN-server designation), ordered by decreasing accumulator value.

Feature Test Bench Intrepid Rationale

Separating upgraded components � �
Tolerates weighted I/O on recently added
storage capacity; addresses challenge #3.

Fundamental component for analysis LUNs LUN-server attachments
Provides views of LUN utilization across re-
dundant components; improves problem lo-
calization; addresses challenges #1 and #5.

cycle daemon � �
Enables continuous instrumentation with
sadc; addresses challenge #4.

Downsampling � 1 s → 15 s
Tolerates intermittent data, reduces resource
requirements; addresses challenge #1.

Histogram bin selection Sturges’ rule Freedman–Diaconis rule
Provides accurate representation of asym-
metries; improves diagnostic accuracy.

Distance metric KL Divergence (PDF) Cumulative Distance (CDF)
Accurate distance for non-overlapping his-
tograms; improves diagnostic accuracy.

Persistence Ordering � �
Highlight components with long-term prob-
lems; addresses challenge #6.

Table 2: Improvements to diagnosis approach as compared to previous work [17].

histograms are entirely non-overlapping (i.e., their data
points lie entirely in non-overlapping bins in distinct re-
gions of their PDFs), the KL divergence does not include
a measure of the distance between non-zero PDF regions.
In contrast, the distance between two metric CDFs does
measure the distance between the non-zero PDF regions,
which captures the degree of the LUN’s asymmetry.

4.3 Persistence Ordering
While anomaly detection provides us with a reliable ac-
count of instantaneously anomalous LUNs, systems of
comparable size to Intrepid with thousands of analyzed
components, nearly always exhibit one or more anoma-
lies for any given time window, even in the absence of an
observable performance degradation.

Motivation. The fact that anomalies “always exist” is a
key fact that requires us to alter our focus as we graduate
from test-bench experiments to performing problem di-
agnosis on real systems. In our test-bench work, instan-
taneous anomalies were rare and either reflected the pres-
ence of our injected faults (which we aimed to observe),
or the occurrence of false positive (which we aimed to
avoid). However, in Intrepid, “spurious” anomalies (even
with anomaly filtering) are common enough that we sim-
ply cannot raise alarms on each. It is also not possible to
completely avoid the alarms through tweaking of analy-
sis parameters (filter width, WinSize and WinShi f t, etc.).

Investigating these spurious anomalies, we find that

many are clear instances of transient asymmetries in our
raw instrumentation data, due to occasional but regular
events where behavior deviates across LUNs. Thus, for
Intrepid, we focus our concern on locating system com-
ponents that demonstrate long-term, or persistent anoma-
lies, because they are suggestive of possible impending
component failures or problems that might require man-
ual intervention in order to resolve.

Algorithm. To locate persistent anomalies, it is nec-
essary for us to order the list of anomalous LUNs by a
measure of their impact on overall performance. To do
so, we maintain a positive-value accumulator for every
LUN in which we add one (+1) for each window where
the LUN is anomalous, and subtract one (−1, and only if
the accumulator is > 0) for each window where the LUN
is not. We then present to the operator a list of persis-
tently anomalous LUNs that are ordered by decreasing
accumulator value, i.e., the top-most LUN in the list is
that which has the most number of anomalous windows
in its recent history. See Figure 5 for an example list.

4.4 Revisiting our Challenges
Table 2 provides a summary of the changes to our ap-
proach as we moved from our test-bench environment
to performing problem diagnosis in a large-scale storage
system. This combination of changes both adequately
addresses the challenges of targeting Intrepid’s storage
system, and also improves the underlying algorithm.
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Analysis Step Runtime Memory
Extract activity file contents (dump) 1.8 h < 10 MB
Downsample and tabulate metrics (table) 7.1 h 1.1 GB
Anomaly Detection (diagprep) 49 m 6.1 GB
Persistence Ordering (diagnose) 1.6 s 36 MB
Total 9.7 h 6.1 GB

Table 3: Resources used in analysis of await, for the
first four peer groups of the 2011-05-09 data set.

4.5 Analysis Resource Requirements
In this section, we discuss the resources (data volume,
computation time, and memory) requirements for the
analysis of Intrepid’s storage system.

Data Volume. The activity files generated by sadc at
a sampling interval of 1 s, when compressed with xz [8]
at preset level -1, generate a data volume of approxi-
mately 10 MB per file server, per day. The median-size
data set (for the day 2011-05-09) has a total (includes all
file servers) compressed size of 1.3 GB. In total, we have
collected 624 GB in data sets for 474 days.

Runtime. We perform our analysis offline, on a sep-
arate cluster consisting of 2.4 GHz dual-core AMD
Opteron 1220 machines, each with 4 GB RAM. Table 3
lists our analysis runtime for the await metric, when
utilizing a single 2.4 GHz Opteron core, for each step of
our analysis for the first four peer groups of the median-
size data set. Because each data set (consisting of 24
hours of instrumentation data) takes approximately 9.7 h
to analyze, we are able to keep up with data input.

We note that the two steps of our analysis that domi-
nate runtime—extracting activity file contents (which is
performed on all metrics at once), and downsampling
and tabulation of metrics (includes await only)—take
long due to our sampling at a 1 s interval. We use the
1 s sample rate for archival purposes, as it is the highest
sample rate sadc supports. However, we could sample
at a 15 s rate directly and forgo the downsampling pro-
cess, which reduces the extraction time in Table 3 by a
factor of 15 and tabulation time to 31 m, yielding a total
runtime of approximately 1.4h.

Algorithm Scalability. Our CDF distances are gener-
ated through the pairwise comparison of histograms is
O(n2) where n is the number of LUNs in each peer
group. Because our four peer groups consist of two sets
of 768 and 384 LUNs, and our CDF distances are sym-
metric, we must perform a total of 736,128 histogram
comparisons for each analysis window. In practice, we
find that our CDF distances are generated quickly, as il-
lustrated by our Anomaly Detection runtime of 49 m for
192 analysis windows (24 hours of data). Thus, we do
not see our pairwise algorithm to be an immediate threat
to scalability in terms of analysis runtime. We have also
proposed [17] an alternative approach to enable O(n)

scalability, but found it unnecessary for use in Intrepid.

Memory Utilization. Table 3 also lists the maximum
amount of memory used by each step of our analysis.
We use the analysis process’ Resident Set Size (RSS)
plus any additional used swap memory to determine
memory utilization. The most memory-intensive step of
our analysis is Anomaly Detection. Our static memory
costs come from the need to store the tabulated raw met-
rics, moving-average-filtered metrics, and a mapping of
LUNs to CDF distances, each of which uses 101 MB of
memory. Within each analysis window, we must gener-
ate histograms for each of the 2,304 LUNs in all four
of our peer groups. With a maximum of 1000 bins,
all of the histograms occupy at most 8.8 MB of mem-
ory. We also generate 736,128 CDF distances, which oc-
cupy 2.8 MB per window. However, we must maintain
the CDF distances across all 192 analysis windows for a
given 24-hour data set, comprising a total of 539 MB.
Using R’s [25] default garbage collection parameters,
we find that the steady-state memory use while gener-
ating CDF distances to be 1.1 GB. The maximum use of
6.1 GB is transient, happening at the very end when our
CDF distances are written out to file. With these memory
requirements, we are able to analyze two metrics simul-
taneously on each of our dual-core machines with 4 GB
RAM, using swap memory to back the additional 2–4 GB
when writing CDF distances to file.

Diagnosis Latency. Our minimum diagnosis latency,
that is, the time from the incident of an event to the time
of its earliest report as an anomaly is 22.5 minutes. This
figure is derived from our (i) performing analysis at a
sampling interval of 15 s, (ii) analyzing in time windows
shifted by 30 samples, and (iii) requiring that 3 out of
the past 5 windows exhibits anomalous behavior before
reporting the LUN itself as anomalous:

15 s/samples×30 samples/window×3windows = 22.5m

This latency is an acceptable figure for a few reasons:

• As a tool to diagnose component-level problems when
a system is otherwise performing correctly (although,
perhaps at suboptimal performance and reduced avail-
ability), the system continues to operate usefully dur-
ing the diagnosis period. Reductions in performance
are generally tolerable until a problem can be resolved.

• This latency improves upon current practice in In-
trepid’s storage system, e.g., four-hour automated
checks of storage controller availability and daily
manual checks of controller logs for misbehavior.

• Gabel et al. [13], which targets a similar problem of
finding component-level issues before they grow into
full-system failures, uses a diagnosis interval of 24
hours, and thus, considers this latency an acceptable
figure.
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In circumstances where our diagnosis latency would
be unacceptably long, lowering the configurable parame-
ters (sample interval, WinShi f t, and Anomaly Filtering’s
k value) will reduce latency with a potential for increased
reports of spurious anomalies, which itself may be an ac-
ceptable consequence if there is external indication that
a problem exists, for which we may assist in localiza-
tion. In general, systems that are sensitive to diagnosis
latency may benefit from combining our approach with
problem-specific ones (e.g., heartbeats, SLAs, threshold
limits, and component-specific monitoring) so as to com-
plement each other in problem coverage.

5 Evaluation: Case Study
Having migrated our analysis approach to meeting the
challenges of problem diagnosis on a large-scale system,
we perform a case study of Intrepid over a 474-day pe-
riod from April 13th, 2011 through July 31st, 2012. We
use the second day (April 14th, 2011) as our only “train-
ing day” for threshold selection.

In this study we analyze both “old” and “new” LUN
sets, for the first two LUN-server attachment priority
groups. This enables us to observe “lost attachment”
faults both with zero/missing data from the lost attach-
ment with the primary file server (priority group 1), and
with the new, non-peer workload on the attachment with
the secondary file server (priority group 2). We note that,
although we do not explicitly study priority groups 3–8,
we have observed sufficient file server faults to require
use of tertiary and subsequent file server attachments.

5.1 Method of Evaluation
After collecting instrumentation data from Intrepid’s file
servers, we perform the problem diagnosis algorithm de-
scribed in § 4.2 on the await metric, generating a list of
the top 100 persistently anomalous LUNs for each hour
of the study.

In generating this list, we use a feedback mechanism
that approximates the behavior of an operator using this
system in real-time. For every period, we consider the
top-most persistent anomaly, and if it has sufficient per-
sistence (e.g., an accumulator value in excess of 100,
which indicates that the anomaly has been present for
at least half a day, but lower values may be accepted
given other contextual factors such as multiple LUNs
on the same controller exhibiting anomalies simultane-
ously), then, we investigate that LUN’s instrumentation
data and storage-controller logs to determine if there is
an outstanding performance problem on the LUN, its
storage controller, file-server attachments, or attached
file servers.

At the time that a problem is remedied (which we
determine through instrumentation data and logs, but
would be recorded by an operator after performing the

restorative operation), we zero the accumulator for the
affected LUN to avoid masking subsequent problems
during the anomaly’s “wind-down” time (the time during
which the algorithm would continually subtract one from
the former anomaly’s accumulated value until zero is
reached). For anomalies that persist for more than a few
days before being repaired, we regenerate the persistent-
anomaly list with the affected LUNs removed from the
list, and check for additional anomalies that indicate a
second problem exists concurrently. If a second problem
does exist, we repeat this process.

5.2 Observed Incidents
Using our diagnosis approach, we have uncovered a vari-
ety of issues that manifested on Intrepid’s storage system
performance metrics (and that, therefore, we suspect to
be performance problems). Our uncovering of these is-
sues was done through our independent analysis of the
instrumentation data, with subsequent corroboration of
the incident with system logs, operators, and manual in-
spection of raw metrics. We have grouped these incidents
into three categories.

5.2.1 Lost Attachments
We use the lost attachments category to describe any
problem whereby a file server no longer routes I/O for a
particular LUN, i.e., the attachment between that LUN-
server pair is “lost”. Of particular concern are lost pri-
mary (or highest priority) attachments as it forces clients
to reroute I/O through the secondary file server, which
then sees a doubling of its workload. Lost attachments
of other priorities may still be significant events, but they
are not necessarily performance impacting as they are in-
frequently used for I/O. We observe four general prob-
lems that result in lost attachments: (i) failed (or simply
unavailable) file servers, (ii) failed storage controllers,
(iii) misconfigured components, and (iv) temporary “bad
state” problems that usually resolve themselves on re-
boot.

Failed Events. Table 4 lists the observed down file-
server and failed storage-controller events. The incident
time is the time at which a problem is observed in in-
strumentation data or controller logs. Diagnosis latency
is the elapsed time between incident time and when we
identify the problem using our method of evaluation (see
§ 5.1). Recovery latency is the elapsed time between
incident time and when our analysis observes the prob-
lems to be recovered by Intrepid’s operators. Device is
the component in the system that is physically closest to
the origin of the problem, while the incident’s observed
manifestation is described in description. In particular,
“missing data” refers to instrumentation data no longer
being available for the specified LUN-server attachment
due to the disappearance of the LUN’s block device on
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Diagnosis Recovery
Incident Time Latency Latency Device Description
2011-07-14 00:00 1.0 h 25.8 d ddn19a Controller failed on reboot; missing data on 19.00.105.
2011-08-01 19:00 17.0 h 8.9 d fs16 File server down; observed load on secondary (fs9).
2011-08-15 07:31 29 m 16.5 d fs24 File server down; observed load on secondary (fs17).
2011-09-05 03:23 8.6 h 18.5 d ddn20b Controller manually failed; missing data on 20.00.117.
2011-09-11 03:22 11.6 h 35.6 h fs25 File server down; observed load on secondary (fs26).
2011-10-03 03:09 12.9 h 42.5 d ddn11a Controller failed on reboot; observed load on secondary (fs41).

2011-10-17 16:57 22.1 h 28.0 d ddn12a,20a,21a
Controllers manually failed; observed loads on secondaries
(fs53,115,125).

2012-06-14 22:26 7.6 h 3.9 d ddn8a Controller manually failed; observed load on secondary (fs20).

Table 4: Storage controller failures and down file server lost attachment events.

Diagnosis Recovery
Incident Time Latency Latency Device Description

2011-05-18 00:21 39 m 49.9 d fs49,50,53,54

Extremely high await (up to 103 s) due to ddn12 resetting all LUNs,
results in GPFS timeouts when accessing some LUNs, which remain
unavailable until the affected file servers are rebooted; observed “0”
await on 12.48.49.

2011-08-08 19:36 8.4 h 21.9 h ddn19a
Servers unable to access some or all LUNs due to controller mis-
configuration (disabled cache coherency); observed “0” await on
19.50.107.

2011-11-14 19:41 7.6 h 3.9 d ddn14,18
Cache coherency fails to establish between coupled controllers af-
ter reboot, restricting LUN availability to servers; missing data on
14.41.67 and 18.37.103.

2012-03-05 17:50 3.2 h 4.2 d fs56
GPFS service not available after file server reboot, unknown reason;
observed loads on secondary (fs49).

2012-05-10 03:00 9.0 h 4.7 d ddn16b
LUNs inaccessible from fs84,88, unknown reason; fixed on con-
troller reboot; missing data on 16.59.84.

2012-06-13 03:00 3.0 h 8.7 d ddn11a
LUNs inaccessible from fs42,45,46, unknown reason; missing
data on 11.69.46.

Table 5: Misconfigured component and temporary “bad state” lost attachment events.

that file server, while a “0” value means the block device
is still present, but not utilized for I/O.

The lengthy recovery latency for each of these failed
events is due to the fact that all (except for fs25) re-
quired hardware replacements to be performed, usually
during Intrepid’s biweekly maintenance window, and
perhaps even after consultation and troubleshooting of
the component with its vendor. At present, Intrepid’s
operators discover these problems with syslog moni-
toring (for file servers) and by polling storage-controller
status every four hours. Our diagnosis latency is high
for file-server issues as we depend on the presence of
a workload to diagnose traffic to the secondary attach-
ment. Normally these issues would be observed sooner
through missing values, except the instrumentation data
itself comes from the down file server, and so, is miss-
ing in its entirety at the time of the problem (although
the missing instrumentation data is a trivial sign that the
file server is not in operation). In general, failed events,
although they can be diagnosed independently, are im-
portant for analysis because they are among the longest-
duration, numerous-LUN-impacting problems observed
in the system.

Misconfiguration and Bad State Events. Table 5 lists
the observed misconfiguration and temporary “bad state”

events that result in lost attachments. We explain the
two cache-coherency events as follows: Each storage ar-
ray consists of two coupled storage-controllers, each at-
tached to four different file servers, and both of which
are able to provide access to attached disk arrays in the
event of one controller’s failure. However, when both
controllers are in healthy operation, they may run in ei-
ther cache-coherent or non-coherent modes. In cache-
coherent mode, all LUNs may be accessed by both con-
trollers (and thus, all eight file servers) simultaneously,
as they are expected to by the GPFS-cluster configura-
tion. However, should the controllers enter non-coherent
mode (due to misconfiguration or a previous controller
problem), then they can only access arrays “owned” by
the respective controller, restricting four of the eight file
servers from accessing some subset of the controllers’
LUNs.

Cascaded Failure. The most interesting example in
the “bad state” events is the GPFS timeouts of May 18th,
2011, a cascaded failure that went unnoticed by Intrepid
operators for some time. Until the time of the incident,
the ddn12 controllers were suffering from multiple, fre-
quent disk issues (e.g., I/O timeouts) when the controller
performed 71 “LUN resets”. At this time, the controller
delayed responses to incoming I/O requests for up to
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Faultfree LUNs

Jittery ddn12
LUNs

Figure 6: I/O wait time jitter experienced by ddn12
LUNs during the May 17th, 2011 drawer error event.

103 s, causing three of the file servers to timeout their
outstanding I/Os and refuse further access to the affected
LUNs. Interestingly, while the controller and LUNs re-
main in operation, the affected file servers continue to
abandon access for the duration of 50 days until they are
rebooted, at which point the problem is resolved. This
particular issue highlights the main benefit of our holis-
tic peer-comparison approach. By having a complete
view of the storage system, our diagnosis algorithm is
able to locate problems that otherwise escape manual de-
bugging and purpose-specific automated troubleshooting
(i.e., scripts written to detect specific problems).

5.2.2 Drawer Errors
A drawer error is an event where a storage controller
finds errors, usually I/O and “stuck link” errors on many
disks within a single disk drawer. These errors can
become very frequent, occurring every few seconds,
adding considerable jitter to I/O operations (see Fig-
ure 6). Table 6 lists four observed instance of drawer
errors, which are fairly similar in their diagnosis char-
acteristics. Drawer errors are visible to operators as a
series of many verbose log messages. Operators resolve
these errors by forcibly failing every disk in the drawer,
rebooting the drawer, then reinserting all the disks into
their respective arrays, which are recovered quickly via
journal recovery.

5.2.3 Single LUN Events
Single LUN events are instances where a single LUN ex-
hibits considerable I/O wait time (await) for as little as
a few hours, or as long as many days. Table 7 lists five
such events although as many as 40 have been observed
to varying extents during our analysis.

These events can vary considerably in their behavior,
and Table 7 provides a representative sample. Occa-
sionally, the event will be accompanied by one or more
controller-log messages that suggests that one or more
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Figure 7: Sustained I/O wait time experienced by
21.34.124 during the June 25th single LUN event.

spindles in the LUN’s disk array is failing, e.g., the June
18th event is accompanied with a message stating that
the controller recovered an “8 + 2” parity error. Sin-
gle LUN events may correspond to single-LUN work-
loads, and thus, would manifest in one of the throughput
metrics (rd_sec or wr_sec) in addition to await.
Conversely, the June 25th event in Table 7 manifests in
await in the absence of an observable workload (see
Figure 7), perhaps suggesting that there is a load internal
to the storage controller or array that causes externally-
visible delay. Unfortunately, since storage-controller
logs report little on most of our single LUN events, it
is difficult to obtain a better understanding of specific
causes of these events.

5.3 Alternative Distance Measures
Our use of CDF distances as the distance measure for our
peer-comparison algorithm is motivated by its ability to
capture the differences in performance metrics between
a faulty component and its non-faulty peer. Specifically,
CDF distances capture asymmetries in a metric’s value
(relative to the metric’s variance across all LUNs), as
well as asymmetries in a metric’s shape (i.e., a periodic
or increasing/decreasing metric vs. a flat or unchanging
metric). The use of CDF distances does require pairwise
comparison of histograms, and thus, is O(n2) where n
is the number of LUNs in each peer group. While we
have demonstrated that the use of pairwise comparisons
is not an immediate threat to scalability (see § 4.5), it
is illustrative to compare CDF distances to alternative,
computationally-simpler, O(n) distance measures.

The two alternative distance measures we investigate
are median and thresh. For both measures, we use the
same Anomaly Detection and Persistence Ordering al-
gorithms as described in § 4.2 and § 4.3, including
all windowing, filtering, and their associated parame-
ters. For each time window, instead of generating his-
tograms we use one of our alternative measures to gen-
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Diagnosis
Incident Time Latency Duration Device Description
2011-05-17 20:30 3.5 h 3.9 h ddn12 Jittery await for 60 LUNs due to frequent “G” drawer errors.
2011-06-20 18:30 1.5 h 48.8 h ddn12 Jittery await for 37 LUNs due to frequent “G” drawer errors.
2011-09-08 02:00 12.0 h 27.0 h ddn19 Jittery await for 54 LUNs due to frequent “A” drawer errors.
2012-01-16 19:30 3.5 h 24.0 h ddn16 Jittery await for 11 LUNs due to frequent “D” drawer errors.

Table 6: Drawer error events.

Diagnosis
Incident Time Latency Duration Device Description
2011-06-18 08:00 18.0 h 10.5 d 15.37.78 Sustained above average await; recovered parity errors.
2011-08-18 20:00 26.0 h 79.0 h 19.12.109 Sustained above average await; until workload completes.
2011-09-25 04:00 20.0 h 4.3 d 11.12.45 Sustained above average await; unknown reason.
2012-04-19 12:00 38.0 h 7.2 d 9.04.29 Sustained above average await; unknown reason.
2012-06-25 16:00 8.0 h 6.6 d 21.34.124 Sustained await in absence of workload; unknown reason.

Table 7: Single LUN events.

erate, for each LUN, a scalar distance value from the
set of WinSize samples. For median, we generate a
median time-series, m by computing for each sample,
the median value across all LUNs within a peer group.
We then compute each LUN’s scalar distance as the
sum of the distances between that LUN’s metric value
x and the median value for each of the WinSize samples:
d(x,m) = ∑WinSize

i=0 |x(i)−m(i)|. We then flag a LUN as
anomalous over a window if its scalar distance exceeds
a predefined threshold, which is selected using the ap-
proach described in § 4.2.1.

We follow the same procedure for thresh, except that
each LUN’s scalar “distance” value is calculated sim-
ply as the maximum metric value x among the WinSize
samples: d(x) = maxx(i) |WinSize

i=0 . Here, thresh is neither
truly a measure of distance, nor is it being used to per-
form peer-comparison. Instead we use the thresh mea-
sure to implement the traditional “metric exceeds alarm-
threshold value” within our anomaly detection frame-
work, i.e., an anomalous window using thresh indi-
cates that the metric exceeded twice the highest-observed
value during the training period for at least one sample.

Performing a meaningful comparison of the median
and thresh measures against CDF distances is challeng-
ing with production systems like Intrepid, where our
evaluation involves some expert decision making and
where we lack ground-truth data. For example, while the
events enumerated in Tables 4–7 represent the most sig-
nificant issues observed in our case study, we know there
exists many issues of lesser significance (especially sin-
gle LUN events) that we have not enumerated. Thus it
is not feasible to provide traditional accuracy (true- and
false-positive) rates as we have in our test-bench experi-
ments. Instead, we compare the ability of the median and
thresh measures to observe the set of events discovered
using CDF distances (listed in Tables 4–7), by following
the evaluation procedure described in § 5.1 for the days
during which these events occur.

Event Type CDF Median Thresh
Controller failure 5 5 5
File server down 3 2 3
Misconfiguration / bad state 6 6 5
Drawer error 4 3 4
Single LUN 5+ 2 1

Table 8: Number of events observed with each distance
measure (CDF distances, median, and thresh).

5.3.1 Comparison of Observations
Table 8 lists the number of we events observe with the
alternative distance measures, median and thresh, as
compared to the total events observed with CDF dis-
tances. Both median and thresh measures are able to ob-
serve all five failed storage-controller events, as well as
most down file-server and misconfiguration/“bad state”
events. Each of these events are characterized by missing
data on the LUN’s primary attachment, and the appear-
ance of a load on the LUN’s normally-unused secondary
attachment. Unlike CDF distances, neither median nor
thresh measures directly account for missing data, how-
ever these events are still observed through the presence
of secondary-attachment loads. As the non-primary at-
tachments of LUNs are rarely used, these secondary-
attachment loads are significant enough to contribute to
considerable distance from the (near zero) median and
to exceed any value observed during fault-free training.
Both measures are also able to observe most drawer er-
rors as these events exhibit considerable peak await
that exceed both the median value and the maximum-
observed value during training.

Controller Misconfiguration. For the August 8th,
2011 controller misconfiguration event, a zero await
value is observed on the affected LUNs’ primary attach-
ments for the duration of the event, which is observed by
the median measure. However, this particular event also
results in zero await on the LUNs’ secondary attach-
ments, which are also affected, pushing the load onto the
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LUNs’ tertiary attachments. As we only analyze each
LUN’s first two priority groups, the load on the tertiary
attachment (and the event itself) goes unobserved. Thus,
the thresh measure requires analysis of all priority groups
to locate “missing” loads that are otherwise directly ob-
served with peer-comparison-based measures.

Single LUN Events. Two single LUN events go un-
observed by median as their manifestations in increased
await are not sufficiently higher than their medians to
result in persistent anomalies. Four of the events go un-
observed by thresh as await never exceeds its maxi-
mum value observed during training, except during the
June 25th, 2012 incident on a (normally-unused) sec-
ondary attachment where sustained await is observed
in absence of a workload.

5.3.2 Server Workloads.

The remaining three events that escape observation by
median (a down file-server, drawer error, and single LUN
events) are each due to the same confounding issue. As
described in § 3.3.2, shared storage is normally priori-
tized such that GPFS clients only use the highest-priority
available attachment. However, workloads issued by
GPFS file servers themselves preferentially make use of
their own LUN attachments, regardless of priority, to
avoid creating additional LAN traffic. Thus, for server-
issued workloads, we observe loads on each (e.g., 48) of
the server’s attachments, which span all priority groups,
as well as loads on each (e.g., 720) of the primary attach-
ments for LUNs that are not directly attached to those
servers. Such workloads, if significant enough, would
result in anomalies on each (e.g., 42) of the non-primary
attachments.

In practice, Intrepid’s storage system does not run
significant, long-running workloads on the file servers,
so this complication is usually avoided. The excep-
tion is that GPFS itself occasionally issues very low-
intensity, long-running (multiple day) workloads from
an apparently-random file server. These workloads are
of such low intensity (throughput < 10 kB/s, await <
1.0 ms, both per LUN) that their await values rarely ex-
ceed our CDF distance algorithm’s histogram BinSizes,
and thus, are regarded as noise. However, server-
workload await values on non-primary attachments do
exceed the (zero) median value, and thus, do contribute
to median anomalies. The result is that the presence of
a server workload during an analysis window often ex-
hibits a greater persistence value than actual problems,
which confounds our analysis with the median measure.
Thus, reliable use of the median measure requires an
additional analysis step to ignore anomalies that appear
across all attachments for a particular file server.

Event Type Median (h) Thresh (h)
Controller failure −7, 0, 5, 9, 12 −10, 0, 4, 5, 9
File server down 0, 1 −8, 0, 6
Misconfiguration / bad state −8, −3, 0, 4, 6, 7 −3, −1, 0, 3, 7
Drawer error −2, −1, 5 −2, −2, −1, 0
Single LUN −5, 6 −4

Table 9: Differences in diagnosis latencies for events ob-
served with alternative measures, as compared to CDF.

5.3.3 Comparison of Latencies
Table 9 lists the differences in diagnosis latencies for
events observed with the alternative distance measures,
median and thresh, as compared to the diagnosis laten-
cies observed with CDF distances. Negative values indi-
cate that the alternative measure (median or thresh) ob-
served the event before CDF distances, while positive
values indicate that the alternative measure observed the
event after. Differences are indicated in integer units as
our reporting for the case study is hourly (see Figure 5).

With a mean 1.6 h and median 0.5 h increased latency
for median, and a mean 0.2 h and median 0 h increased
latency for thresh, diagnosis latency among all three dis-
tance measures are comparable. However, for specific
events, latencies can vary as much as twelve hours be-
tween measures, suggesting that simultaneous use of
multiple measures may be helpful to reduce overall di-
agnosis latency.

6 Experiences and Insights
In preparing for our case study of Intrepid’s storage sys-
tem, we made improvements to our diagnosis approach
to address the challenges outlined in § 3. However, in
the course of our instrumentation and case study, we en-
countered a variety of pragmatic issues, and we share our
experiences and insights with them here.

Clock synchronization. Our diagnosis algorithm re-
quires clocks to be reasonably synchronized across file
servers so that we may peer-compare data from the same
time intervals. In our test-bench experiments [17], we
used NTP to synchronize clocks at the start of our ex-
periments, but disabled the NTP daemon so as to avoid
clock adjustments during the experiments themselves.
Intrepid’s file servers also run NTP daemons; however,
clock adjustments can and do happen during our sadc
instrumentation. This results in occasional “missing”
data samples where the clock adjusts forward, or the oc-
casional “repeat” sample where the clock adjusts back-
wards. When tabulating data for analysis, we represent
missing samples with R’s NA (missing) value, and re-
peated samples are overwritten with the latest recorded
in the activity file. In general, our diagnosis is insensitive
to minor clock adjustments and other delays that may re-
sult in missing samples, but it is a situation we initially
encountered in our table script.
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Discussion on timestamps. Our activity files are
recorded with filenames containing a modified2 ISO
8601-formatted [19]3 UTC timestamp that corresponds
to the time of the first recorded sample in the file. For ex-
ample, fs1-20110509T000005Z.sa.xz is the ac-
tivity file collected from file server fs1, with the first
sample recorded at 00:00:05 UTC on 2011-05-09. In
general, we recommend the use of ISO 8601-formatted
UTC timestamps for filenames and logging where possi-
ble, as they provide the following benefits:

• Human readable (as opposed to Unix time).
• Ensures lexicographical sorting (e.g., of activity files)

preserves the chronological order (of records).
• Contains no whitespace, so is easily read as a field by

awk, R’s read.table, etc.
• Encodes time zone as a numeric offset; “Z” for UTC.

With regard to time zones, ISO 8601’s explicit encod-
ing of them is particularly helpful in avoiding surprises
when interpreting timestamps. It is an obvious problem if
some components of a system report different time zones
than others without expressing their respective zones in
timestamps. However, even when all components use the
same time zone (as Intrepid uses UTC), offline analysis
may use timestamp parsing routines that interpret times-
tamps without an explicit time-zone designation in the
local time zone of the analysis machine (which, in our
case, is US Eastern).

A more troubling problem with implicit time zones
is that any timestamp recorded during the “repeating”
hour of transition from daylight savings time to stan-
dard time (e.g., 1 am CDT to 1 am CST) are ambigu-
ous. Although this problem happens only once a year, it
causes difficulty in correlating anomalies observed dur-
ing this hour with event logs from system components
that lack time zone designations. Alternatively, when
when components do encode time zones in timestamps,
ISO 8601’s use of numeric offsets makes it easy to con-
vert between time zones without needing to consult a
time zone database to locate the policies (e.g, daylight
savings transition dates) behind time-zone abbreviations.

In summary, ISO 8601 enables easy handling of hu-
man readable timestamps without having to work-around
edge cases inevitable when performing continuous in-
strumentation and monitoring of system activity. “Sec-
onds elapsed since epoch” time (e.g., Unix time) works
well as a non-human readable alternative as long as the
epoch is unambiguous. sadc records timestamps in
Unix time, and we have had no trouble with them.

2We remove colons to ensure compatibility with file systems that
use colons as path separators.

3RFC 3339 is an “Internet profile of the ISO 8601 standard,” that we
cite due to its free availability and applicability to computer systems.

Absence of data. One of the surprising outcomes of
our case study is that the absence of, or “missing data”
where it is otherwise expected among its peers, is the pri-
mary indication of problem in five (seven if also includ-
ing “0” data) of the studied events. This result reflects
on the effectiveness of peer-comparison approaches for
problem diagnosis as they highlight differences in behav-
ior across components. In contrast, approaches that rely
on thresholding of raw metric values may not indicate
that problems were present in these scenarios.

Separation of instrumentation from analysis. Our
diagnosis for Intrepid’s storage system consists of sim-
ple, online instrumentation, in conjunction with more
complex, offline analysis. We have found this separa-
tion of online instrumentation and offline analysis to be
beneficial in our transition to Intrepid. Our instrumen-
tation, consisting of a well-known daemon (sadc), and
a small, C-language auditable tool (cycle), have few
external dependencies and negligible overhead, both of
which are important properties to operators considering
deployment on a production system. In contrast, our
analysis has significant resource requirements and exter-
nal dependencies (e.g., the R language runtime and asso-
ciated libraries), and so is better suited to run on a ded-
icated machine isolated from the rest of the system. We
find that this separation provides an appropriate balance
in stability of instrumentation and flexibility in analysis,
such that, as we consider “near real-time” diagnosis on
Intrepid’s storage system, we prefer to maintain the ex-
isting design instead of moving to a full-online approach.

7 Future Work
While our persistence-ordering approach works well to
identify longer-term problems in Intrepid, there is a class
of problems that escapes our current approach. Occa-
sionally, storage controllers will greatly delay I/O pro-
cessing in response to an internal problem, such as the
“LUN resets” observed on ddn12 in the May 18th, 2011
cascaded failure event. Although we observed this par-
ticular incident, in general, order-of-magnitude increases
in I/O response times are not highlighted as we ignore
the severity of an instantaneous anomaly. Thus, the de-
velopment of an ordering method that factors in both the
severity of instantaneous anomaly, as well as persistence,
would be ideal in highlighting both classes of problems.

We also believe we could improve our current
problem-diagnosis implementation (see § 5.1) to further
increase its utility for systems as large as Intrepid. For
instance, problems in storage controllers tend to mani-
fest in a majority of their exported LUNs, and thus, a
single problem can be responsible for as many as 50 of
the most persistent anomalies. Extending our approach
to recognize that these anomalous LUNs are a part of
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the same storage controller, and thus, manifest the same
problem, would allow us to collapse them into a single
anomaly report. This in turn, would make it consider-
ably easier to discover multiple problems that manifest
in the same time period. Combining both of these im-
provements would certainly help us to expand our prob-
lem diagnosis and fault coverage.

8 Related Work
Problem Diagnosis in Production Systems. Gabel et
al. [13] applies statistical latent fault detection using
machine (e.g., performance) counters to a commercial
search engine’s indexing and service clusters, and finds
that 20% of machine failures are preceded by an in-
cubation period during which the machine deviates in
behavior (analogous to our component-level problems)
prior to system failure. Draco [18] diagnoses chron-
ics in VoIP operations of a major ISP by, first, heuris-
tically identifying user interactions likely to have failed,
and second, identifying groups of properties that best ex-
plain the difference between failed and successful inter-
actions. This approach is conceptually similar to ours in
using a two-stage process to identify that (i) problems
exists, and (ii) localizing them to the most problematic
components. Theia [14] is a visualization tool that an-
alyzes application-level logs and generates visual signa-
tures of job performance, and is intended for use by users
to locate and problems they experience in a production
Hadoop cluster. Theia shares our philosophy of provid-
ing a tool to enable users (who act in a similar capacity to
our operators) to quickly discover and locate component-
level problems within these systems.

HPC Storage-System Characterization. Darshan [6]
is a tool for low-overhead, scalable parallel I/O charac-
terization of HPC workloads. Darshan shares our goal of
minimal-overhead instrumentation by collecting aggre-
gate statistical and timing information instead of traces
in order to minimize runtime delay and data volume,
which enables it to scale to leadership-class systems and
be used in a “24/7”, always-on manner. Carns et al. [5]
combine multiple sources of instrumentation including
OS-level storage device metrics, snapshots of file system
contents characteristics (file sizes, ages, capacity, etc.),
Darshan’s application-level I/O behavior, and aggregate
(system-wide) I/O bandwidth to characterize HPC stor-
age system use and behavior. These characterization
tools enable a better understanding of HPC application
I/O and storage-system utilization, so that both may be
optimized to maximize I/O efficiency. Our diagnosis ap-
proach is complementary to these efforts, in that it lo-
cates sources of acute performance imbalances and prob-
lems within the storage system, but assumes that appli-
cations are well-behaved and that the normal, balanced

operation is optimal.

Trace-Based Problem Diagnosis. Many previous ef-
forts have focused on path-based [1, 26, 3] and
component-based [7, 20] approaches to problem diagno-
sis in Internet Services. Aguilera et al. [1] treats com-
ponents in a distributed system as black-boxes, inferring
paths by tracing RPC messages and detecting faults by
identifying request-flow paths with abnormally long la-
tencies. Pip [26] traces causal request-flows with tagged
messages that are checked against programmer-specified
expectations. Pip identifies requests and specific lines
of code as faulty when they violate these expectations.
Magpie [3] uses expert knowledge of event orderings
to trace causal request-flows in a distributed system.
Magpie then attributes system-resource utilizations (e.g.
memory, CPU) to individual requests and clusters them
by their resource-usage profiles to detect faulty requests.
Pinpoint [7, 20] tags request flows through J2EE web-
service systems, and, once a request is known to have
failed, identifies the responsible request-processing com-
ponents.

In HPC environments, Paradyn [22] and TAU [30]
are profiling and tracing frameworks used in debug-
ging parallel applications, and IOVIS [23] and Dinh [10]
are retrofitted implementations of request-level tracing
in PVFS. However, at present, there is limited request-
level tracing available in production HPC storage deploy-
ments, and thus, we concentrate on a diagnosis approach
that utilizes aggregate performance metrics as a readily-
available, low-overhead instrumentation source.

Peer-comparison Based Approaches. Ganesha [24]
seeks to diagnose performance-related problems in
Hadoop by classifying slave nodes, via clustering of
performance metrics, into behavioral profiles which are
then peer-compared to indict nodes behaving anoma-
lously. While the node-indictment methods are sim-
ilar, our work peer-compares a limited set of perfor-
mance metrics directly (without clustering). Bodik et
at. [4] use fingerprints as a representation of state to gen-
erally diagnose previously-seen datacenter performance
crises from SLA violations. Our work avoids using
previously-observed faults, and instead relies on fault-
free training data to capture expected performance devi-
ations and peer-comparison to determine the presence,
specifically, of storage performance problems. Wang
et al. [32] analyzes metric distributions to identify RU-
BiS and Hadoop anomalies in entropy time-series. Our
work also avoids the use of raw-metric thresholds by us-
ing peer-comparison to determine the degree of asymme-
try between storage components, although we do thresh-
old our distance measure to determine the existence of a
fault. PeerWatch [16] peer-compares multiple instances
of an application running across different virtual ma-
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chines, and uses canonical correlation analysis to filter
out workload changes and uncorrelated variables to find
faults. We also use peer-comparison and bypass work-
load changes by looking for performance asymmetries,
as opposed to analyzing raw metrics, across file servers.

Failures in HPC and Storage Systems. Studies of
HPC and storage-system failures motivate our focus on
diagnosing problems in storage-system hardware com-
ponents. A study of failure data collected over nine-years
from 22 HPC systems at Los Alamos National Labora-
tory (LANL) [28] finds that hardware is the largest root
cause of failures at 30–60% across the different systems,
with software the second-largest contributor at 5–24%,
and 20–30% of failures having unknown cause. The
large proportion of hardware failures motivates our con-
centration on hardware-related failures and performance
problems. A field-based study of disk-replacement data
covering 100,000 disks deployed in HPC and commer-
cial storage systems [29] finds an annual disk replace-
ment rate of 1–4% across the HPC storage systems,
and also finds that hard disks are the most commonly
replaced components (at 18–49% of the ten most fre-
quently replaced components) in two of three studied
storage systems. Given that disks dominate the num-
ber of distinct components in the Intrepid storage sys-
tem, we expect that disk failures and (intermittent) disk
performance problems comprise a significant proportion
of hardware-related performance problems, and thus, are
worthy of specific attention.

9 Conclusion

We presented our experiences of taking our problem di-
agnosis approach from proof-of-concept on a 12-server
test-bench cluster, and making it work on Intrepid’s pro-
duction GPFS storage system. In doing so, we analyzed
2304 different component metrics across 474 days, and
presented a 15-month case study of problems observed in
Intrepid’s storage system. We also shared our challenges,
solutions, experiences, and insights towards performing
continuous instrumentation and analysis. By diagnosing
a variety of performance-related storage-system prob-
lems, we have shown the value of our approach for di-
agnosing problems in large-scale storage systems.
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Abstract

Backing up important data is an essential task for sys-
tem administrators to protect against all kinds of failures.
However, traditional tools like rsync exhibit poor per-
formance in the face of today’s typical data sizes of hun-
dreds of gigabytes. We address the problem of efficient,
periodic, multi-gigabyte state synchronization. In con-
trast to approaches like rsync which determine changes
after the fact, our approach tracks modifications online.
Tracking obviates the need for expensive checksum com-
putations to determine changes. We track modification
at the block-level which allows us to implement a very
efficient delta-synchronization scheme. The block-level
modification tracking is implemented as an extension to
a recent (3.2.35) Linux kernel.

With our approach, named dsync, we can improve
upon existing systems in several key aspects: disk I/O,
cache pollution, and CPU utilization. Compared to tradi-
tional checksum-based synchronization methods dsync
decreases synchronization time by up to two orders of
magnitude. Benchmarks with synthetic and real-world
workloads demonstrate the effectiveness of dsync.

1 Introduction

“Everything fails all the time.” is the modus operandi
when it comes to provisioning critical IT infrastructure.
Although the definition of critical is up for debate, redun-
dancy is key to achieving high availability. Redundancy
can be added at many levels. For example, at the hard-
ware level, deploying two network cards per server can
allow one network card to fail, yet the server will still
be reachable. Performance may be degraded due to the
failure but the server is still available.

Adding hardware redundancy is just one piece of the
availability puzzle. To ensure data availability in the
presence of failures, the data must be replicated. How-
ever, synchronizing tens, hundreds, or even thousands of

gigabyte of data across the network is expensive. It is ex-
pensive in terms of network bandwidth, if a naı̈ve copy-
everything approach is used. It is also expensive in terms
of CPU cycles, if a checksum-based delta-copy approach
is used. Although a delta-copy minimizes network traf-
fic, it relies on a mechanism to identify differences be-
tween two versions of the data in question. Determining
the differences after the fact is less efficient than record-
ing modifications while they are happening.

One problem with synchronizing large amounts of
data, e.g., for backups, is that the backup operation takes
on the order of minutes to hours. As data sets continue
to grow, consumer drives now hold up to 4 TB, so does
the time required to synchronize them. For example, just
reading 4 TB stored on a single spinning disk takes more
than 6 hours [14]. Copying hundreds of gigabytes over a
typical wide area network for remote backups will pro-
ceed at a fraction of the previously assumed 170 MB/s.
Ideally, the time to synchronize should be independent of
the data size; with the size of updated/added data being
the main factor influencing synchronization speed.

The key insight is, that between two synchronizations
of a data set, most of the data is unmodified. Hence, it
is wasteful to copy the entire data set. Even if the data
sets are almost identical, the differences have to be deter-
mined. This is done, for example, by computing block-
wise checksums. Only blocks with mismatching check-
sums are transferred. Instead of detecting changes after
the fact, we propose to track and record them at run time.
Online tracking obviates checksum computations, while
still only transferring the changed parts of the data. The
benefits of online modification recording are plentiful:
(1) minimizes network traffic, (2) no CPU cycles spent
on checksum computation, (3) minimizes the data read
from and written to disk, and (4) minimizes page cache
pollution.

We implemented a prototype of our synchronization
solution, named dsync, on Linux. It consists of a
kernel modification and two complimentary userspace
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tools. The kernel extension tracks modifications at the
block device level. The userspace tools, dmextract and
dmmerge, allow for easy extraction and merging of the
modified block level state.

To summarize, in this paper, we make the following
contributions:

• Identify the need for better mechanisms to synchro-
nize large, binary data blobs across the network.

• Propose an extension to the Linux kernel to enable
efficient synchronization of large, binary data blobs.

• Extend the Linux kernel with block-level tracking
code.

• Provide empirical evidence to show the effective-
ness of our improved synchronization method.

• We share with the scientific community all code,
measurements, and related artifacts. We encour-
age other researchers to replicate and improve our
findings. The results are available at https://

bitbucket.org/tknauth/devicemapper/.

2 Problem

The task at hand is to periodically synchronize two phys-
ically distant data sets and to do so efficiently. The qual-
ifier “periodically” is important because there is little to
optimize for a one-off synchronization. With periodic
synchronizations, on the other hand, we can potentially
exploit the typical case where the majority of the data is
unmodified between successive synchronizations.

There exists no domain-specific knowledge about the
data being synchronized, i.e., we have to treat it as a bi-
nary blob. Using domain-specific knowledge, such as file
system meta-data, alternative optimizations are possible.
Synchronization tools routinely use a file’s last modified
time to check whether to consider it for a possible trans-
fer.

We are primarily interested in large data sizes of multi-
ple giga- to terabytes. The techniques we present are also
applicable to smaller sizes, but the problems we solve
with our system are more pressing when data sets are
large. One example in the cloud computing environment
are virtual machine disks. Virtual machine disks change
as a result of the customer starting a virtual machine, per-
forming computation, storing the result, and shutting the
virtual machine down again. As a result of the users’
actions, the disk’s contents change over time. However,
only a fraction of the entire disk is actually modified. It
is the cloud provider’s responsibility to store the virtual
machine disk in multiple locations, e.g., for fault toler-
ance. If one data center becomes unavailable, the cus-
tomer can restart their virtual machine in a backup data

center. For example, a cloud provider may synchronize
virtual machine disks once per day between two data cen-
ters A and B. If data center A becomes unavailable, data
center B has a copy which is at most 24 hours out of
date. If customers need more stringent freshness guaran-
tees, the provider may offer alternative backup solutions
to the ones considered in this paper.

Copying the entire data is a simple and effective way
to achieve synchronization. Yet, it generates a lot of gra-
tuitous network traffic, which is unacceptable. Assuming
an unshared 10 Gigabit Ethernet connection, transferring
100 GB takes about 83 seconds (in theory anyway and
assuming an ideal throughput of 1.2 GB/s). However,
10 Gigabit Ethernet equipment is still much more expen-
sive than commodity Gigabit Ethernet. While 10 Gigabit
may be deployed inside the data center, wide-area net-
works with 10 Gigabit are even rarer. Also, network links
will be shared among multiple participants – be they data
streams of the same applications, different users, or even
institutions.

The problem of transmitting large volumes of data
over constrained long distance links, is exacerbated by
continuously growing data sets and disk sizes. Offsite
backups are important to provide disaster recovery and
business continuity in case of site failures.

Instead of indiscriminatly copying everything, we
need to identify the changed parts. Only the changed
parts must actually be transmitted over the network.
Tools, such as rsync, follow this approach. The idea
is to compute one checksum for each block of data at the
source and destination. Only if there is a checksum mis-
match for a block, is the block transferred. While this
works well for small data sizes, the checksum compu-
tation is expensive if data sizes reach into the gigabyte
range.

As pointed out earlier, reading multiple gigabytes
from disks takes on the order of minutes. Disk I/O opera-
tions and bandwidth are occupied by the synchronization
process and unavailable to production workloads. Sec-
ond, checksum computation is CPU-intensive. For the
duration of the synchronization, one entire CPU is ded-
icated to computing checksums, and unavailable to the
production workload. Third, reading all that data from
disk interferes with the system’s page cache. The work-
ing set of running processes is evicted from memory,
only to make place for data which is used exactly once.
Applications can give hints to the operating system to
optimize the caching behavior [3]. However, this is not a
perfect solution either, as the OS is free to ignore the ad-
vice if it cannot adhere to it. In addition, the application
developer must be aware of the problem to incorporate
hints into the program.

All this is necessary because there currently is no way
of identifying changed blocks without comparing their
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checksums. Our proposed solution, which tracks block
modifications as they happen, extends the Linux kernel
to do just that. The implementation details and design
considerations form the next section.

3 Implementation

A block device is a well known abstraction in the Linux
kernel. It provides random-access semantics to a linear
array of blocks. A block typically has the same size as
a page, e.g., 4 KiB (212 bytes). The actual media un-
derlying the block device may consist of even smaller
units called sectors. However, sectors are not addressable
by themselves. Sectors are typically 512 byte in size.
Hence, 8 sectors make up a block. Block devices are
generally partitioned and formatted with a file system.
For more elaborate use cases, the Linux device mapper
offers more flexibility to set up block devices.

3.1 Device mapper

The Linux device mapper is a powerful tool. The device
mapper, for example, allows multiple individual block
devices to be aggregated into a single logical device. In
device mapper terminology, this is called a linear map-
ping. In fact, logical devices can be constructed from
arbitrary contiguous regions of existing block devices.
Besides simple aggregation, the device mapper also sup-
ports RAID configurations 0 (striping, no parity), 1 (mir-
roring), 5 (striping with distributed parity), and 10 (mir-
roring and striping). Another feature, which superficially
looks like it solves our problem at hand, is snapshots.
Block devices can be frozen in time. All modifications to
the original device are re-directed to a special copy-on-
write (COW) device. Snapshots leave the original data
untouched. This allows, for example, to create consistent
backups of a block device while still being able to service
write requests for the same device. If desired, the exter-
nal modifications can later be merged into the original
block device. By applying the external modifications to
a second (potentially remote) copy of the original device,
this would solve our problem with zero implementation
effort.

However, the solution lacks in two aspects. First, ad-
ditional storage is required to temporarily buffer all mod-
ifications. The additional storage grows linearly with the
number of modified blocks. If, because of bad planning,
the copy-on-write device is too small to hold all modi-
fications, the writes will be lost. This is unnecessary to
achieve what we are aiming for. Second, because modifi-
cations are stored out-of-place, they must also be merged
into the original data at the source of the actual copy; in
addition to the destination. Due to these limitations we

consider device mapper snapshots as an inappropriate so-
lution to our problem.

Because of the way the device mapper handles and in-
terfaces with block devices, our block-level tracking so-
lution is built as an extension to it. The next section de-
scribes how we integrated the tracking functionality into
the device mapper,

3.2 A Device Mapper Target
The device mapper’s functionality is split into sepa-
rate targets. Various targets implementing, for example,
RAID level 0, 1, and 5, already exist in the Linux ker-
nel. Each target implements a predefined interface laid
out in the target_type 1 structure. The target_type

structure is simply a collection of function pointers. The
target-independent part of the device mapper calls the
target-dependant code through one of the pointers. The
most important functions are the constructor (ctr), de-
structor (dtr), and mapping (map) functions. The con-
structor is called whenever a device of a particular tar-
get type is created. Conversely, the destructor cleans up
when a device is dismantled. The userspace program
to perform device mapper actions is called dmsetup.
Through a series of ioctl() calls, information rele-
vant to setup, tear down, and device management is ex-
changed between user and kernel space. For example,

# echo 0 1048576 linear /dev/original 0 | \

dmsetup create mydev

creates a new device called mydev. Access to the
sectors 0 through 1048576 of the mydev device are
mapped to the same sectors of the underlying device
/dev/original. The previously mentioned function,
map, is invoked for every access to the linearly mapped
device. It applies the offset specified in the mapping.
The offset in our example is 0, effectively turning the
mapping into an identity function.

The device mapper has convenient access to all the in-
formation we need to track block modifications. Every
access to a mapped device passes through the map func-
tion. We adapt the map function of the linear mapping
mode for our purposes.

3.3 Architecture
Figure 1 shows a conceptual view of the layered archi-
tecture. In this example we assume that the tracked
block device forms the backing store of a virtual machine
(VM). The lowest layer is the physical block device, for
example, a hard disk. The device mapper can be used

1http://lxr.linux.no/linux+v3.6.2/include/linux/

device-mapper.h#L130
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file system
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Figure 1: Two configurations where the tracked block
device is used by a virtual machine (VM). If the VM used
a file of the host system as its backing store, the loopback
device turns this file into a block device (right).

to create a tracked device directly on top of the physical
block device (Figure 1, left). The tracked block device
replaces the physical device as the VM’s backing store.

Often, the backing store of a virtual machine is a file in
the host’s filesystem. In these cases, a loopback device
is used to convert the file into a block device. Instead
of tracking modifications to a physical device, we track
modifications to the loopback device (Figure 1, right).
The tracked device again functions as the VM’s backing
store. The tracking functionality is entirely implemented
in the host system kernel, i.e., the guests are unaware of
the tracking functionality. The guest OS does not need to
be modified, and the tracking works with all guest oper-
ating systems.

3.4 Data structure
Storing the modification status for a block requires ex-
actly one bit: a set bit denotes modified blocks, unmod-
ified blocks are represented by an unset bit. The status
bits of all blocks form a straightforward bit vector. The
bit vector is indexed by the block number. Given the
size of today’s hard disks and the option to attach multi-
ple disks to a single machine, the bit vector may occupy
multiple megabytes of memory. With 4 KiB blocks, for
example, a bit vector of 128 MiB is required to track the
per-block modifications of a 4 TiB disk. An overview of
the relationship between disk and bit vector size is pro-
vided in Table 1.

The total size of the data structure is not the only
concern when allocating memory inside the kernel; the
size of a single allocation is also constrained. The ker-
nel offers three different mechanisms to allocate mem-
ory: (1) kmalloc(), (2) __get_free_pages(), and
(3) vmalloc(). However, only vmalloc() allows us
to reliably allocate multiple megabytes of memory with
a single invocation. The various ways of allocating
Linux kernel memory are detailed in “Linux Device
Drivers” [7].

Total memory consumption of the tracking data struc-
tures may still be a concern: even commodity (consumer)
machines commonly provide up to 5 SATA ports for at-
taching disks. Hard disk sizes of 4 TB are standard these
days too. To put this in context, the block-wise dirty sta-
tus for a 10 TiB setup requires 320 MiB of memory. We
see two immediate ways to reduce the memory overhead:

1. Increase the minimum unit size from a single block
to 2, 4, or even more blocks.

2. Replace the bit vector by a different data structure,
e.g., a bloom filter.

A bloom filter could be configured to work with a frac-
tion of the bit vector’s size. The trade-off is potential
false positives and a higher (though constant) computa-
tional overhead when querying/changing the dirty status.
We leave the evaluation of tradeoffs introduced by bloom
filters for future work.

Our prototype currently does not persist the modifica-
tion status across reboots. Also, the in-memory state is
lost, if the server suddenly loses power. One possible so-
lution is to persist the state as part of the server’s regular
shutdown routine. During startup, the system initializes
the tracking bit vector with the state written at shutdown.
If the initialization state is corrupt or not existing, each
block is marked “dirty” to force a full synchronization.

3.5 User-space interface
The kernel extensions export the relevant information to
user space. For each device registered with our cus-
tomized device mapper, there is a corresponding file in
/proc, e.g., /proc/mydev. Reading the file gives a
human-readable list of block numbers which have been
written. Writing to the file resets the information, i.e., it
clears the underlying bit vector. The /proc file system
integration uses the seq_file interface [15].

Extracting the modified blocks from a block device
is aided by a command line tool called dmextract.
The dmextract tool takes as its only parame-
ter the name of the device on which to oper-
ate, e.g., # dmextract mydevice. By conven-
tion, the block numbers for mydevice are read from
/proc/mydevice and the block device is found at
/dev/mapper/mydevice. The tool outputs, via stan-
dard out, a sequence of (blocknumber,data) pairs. Out-
put can be redirected to a file, for later access, or di-
rectly streamed over the network to the backup location.
The complementing tool for block integration, dmmerge,
reads a stream of information as produced by dmextract
from standard input, A single parameter points to the
block device into which the changed blocks shall be in-
tegrated.



USENIX Association  27th Large Installation System Administration Conference 49

Disk size Disk size Bit vector size Bit vector size Bit vector size Bit vector size
(bytes) (bits) (bytes) (pages)

4 KiB 212 20 20 20 1 bit
128 MiB 227 215 212 20 4 KiB

1 GiB 230 218 215 23 64 KiB
512 GiB 239 227 224 212 16 MiB

1 TiB 240 228 225 213 32 MiB
4 TiB 242 230 227 215 128 MiB

Table 1: Relationship between data size and bit vector size. The accounting granularity is 4 KiB, i.e., a single block
or page.

Following the Unix philosophy of chaining together
multiple programs which each serve a single purpose
well, a command line to perform a remote backup may
look like the following:

# dmextract mydev | \

ssh remotehost dmmerge /dev/mapper/mydev

This extracts the modifications from mydev on the lo-
cal host, copies the information over a secure channel to
a remote host, and merges the information on the remote
host into an identically named device.

4 Evaluation

The evaluation concentrates on the question of how much
the synchronization time decreases by knowing the mod-
ified blocks in advance. We compare dsync with four
other synchronization methods: (a) copy, (b) rsync,
(c) blockmd5sync, (d) ZFS send/receive. Blockmd5sync
is our custom implementation of a lightweight rsync.
The following sections cover each tool/method in more
detail.

4.1 Synchronization tools
4.1.1 scp/nc

scp, short for secure copy, copies entire files or direc-
tories over the network. The byte stream is encrypted,
hence secure copy, putting additional load on the end-
point CPUs of the transfer. Compression is optional
and disabled for our evaluation. The maximum through-
put over a single encrypted stream we achieved with
our benchmark systems was 55 MB/s using the (default)
aes128-ctr cipher. This is half of the maximum through-
put of a 1 gigabit Ethernet adapter. The achievable net-
work throughput for our evaluation is CPU-bound by the
single threaded SSH implementation. With a patched
version of ssh 2 encryption can be parallelized for some

2http://www.psc.edu/index.php/hpn-ssh

ciphers, e.g., aes128-ctr. The application level through-
put of this parallelized version varies between 70 to
90 MB/s. Switching to a different cipher, for example,
aes128-cbc, gives an average throughput of 100 MB/s.

To transfer data unencrypted, nc, short for netcat, can
be used as an alternative to ssh. Instead of netcat, the
patched version of ssh also supports unencrypted data
transfers. Encryption is dropped after the initial secure
handshake, giving us a clearer picture of the CPU re-
quirements for each workload. The throughput for an un-
encrypted ssh transfer was 100 MB/s on our benchmark
systems. We note, however, that whilst useful for evalua-
tion purposes, disabling encryption in a production envi-
ronment is unlikely to be acceptable and has other practi-
cal disadvantages, for example, encryption also helps to
detect (non-malicious) in-flight data corruption.

4.1.2 rsync

rsync is used to synchronize two directory trees. The
source and destination can be remote in which case
data is transferred over the network. Network trans-
fers are encrypted by default because rsync utilizes se-
cure shell (ssh) access to establish a connection between
the source and destination. If encryption is undesirable,
the secure shell can be replaced by its unencrypted sib-
ling, rsh, although we again note that this is unlikely
to be acceptable for production usage. Instead of rsh,
we configured rsync to use the drop-in ssh replacement
which supports unencrypted transfers. rsync is smarter
than scp because it employs several heuristics to min-
imize the transferred data. For example, two files are
assumed unchanged if their modification time stamp and
size match. For potentially updated files, rsync com-
putes block-wise checksums at the source and destina-
tion. In addition to block-wise checksums, the sender
computes rolling checksums. This allows rsync to effi-
ciently handle shifted content, e.g., a line deleted from a
configuration file. However, for binary files this creates
a huge computational overhead. Only if the checksums
for a block are different is that block transferred to the
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destination. For an in-depth description of the algorithm
please refer to the work of Tridgell and Mackerras [16].
While rsync minimizes the amount of data sent over
the network, computing checksums for large files poses a
high CPU overhead. Also note, that the checksum com-
putation takes place at both the source and destination,
although only the source computes rolling checksums.

4.1.3 Blockwise checksums (blockmd5sync)

rsync’s performance is limited by its use of rolling
checksums at the sender. If we discard the requirement
to detect shifted content, a much simpler and faster ap-
proach to checksum-based synchronization becomes fea-
sible. We compute checksums only for non-overlapping
4KiB blocks at the sender and receiver. If the checksums
for block Bi do not match, this block is transferred. For
an input size of N bytes, �N/B� checksums are computed
at the source and target, where B is the block size, e.g.,
4 kilobytes. The functionality is implemented as a mix of
Python and bash scripts, interleaving the checksum com-
putation with the transmission of updated blocks. We do
not claim our implementation is the most efficient, but
the performance advantages over rsync will become ap-
parent in the evaluation section.

4.1.4 ZFS

The file system ZFS was originally developed by Sun
for their Solaris operating system. It combines many
advanced features, such as logical volume management,
which are commonly handled by different tools in a tra-
ditional Linux environment. Among these advanced fea-
tures is snapshot support; along with extracting the dif-
ference between two snapshots. We include ZFS in our
comparison because it offers the same functionality as
dsync albeit implemented at a different abstraction level.
Working at the file system layer allows access to infor-
mation unavailable at the block level. For example, up-
dates to paths for temporary data, such as /tmp, may be
ignored during synchronization. On the other hand, ad-
vanced file systems, e.g., like ZFS, may not be available
on the target platform and dsync may be a viable alter-
native. As ZFS relies on a copy-on-write mechanism
to track changes between snapshots, the resulting disk
space overhead must also be considered.

Because of its appealing features, ZFS has been ported
to systems other than Solaris ([1], [9]. We use ver-
sion 0.6.1 of the ZFS port available from http://

zfsonlinux.org packaged for Ubuntu. It supports the
necessary send and receive operations to extract and
merge snapshot deltas, respectively. While ZFS is avail-
able on platforms other than Solaris, the port’s matu-
rity and reliability may discourage administrators from

adopting it. We can only add anecdotal evidence to
this, by reporting one failed benchmark run due to issues
within the zfs kernel module.

4.1.5 dsync

Our synchronization tool, dsync, differs from rsync in
two main aspects:

(a) dsync is file-system agnostic because it operates on
the block-level. While being file-system agnostic
makes dsync more versatile, exactly because it re-
quires no file-system specific knowledge, it also con-
strains the operation of dsync at the same time. All
the file-system level meta-data, e.g., modification
time stamps, which are available to tools like, e.g.,
rsync, are unavailable to dsync. dsync implicitly
assumes that the synchronization target is older than
the source.

(b) Instead of computing block-level checksums at the
time of synchronization, dsync tracks the per-block
modification status at runtime. This obviates the
need for checksum calculation between two subse-
quent synchronizations.

In addition to the kernel extensions, we implemented
two userspace programs: One to extract modified blocks
based on the tracked information, called dmextract.
Extracting modified blocks is done at the synchroniza-
tion source. The equivalent tool, which is run at the syn-
chronization target, is called dmmerge. dmmerge reads
a stream consisting of block numbers interleaved with
block data. The stream is merged with the target block
device. The actual network transfer is handled either by
ssh, if encryption is required, or nc, if encryption is un-
necessary.

4.2 Setup
Our benchmark setup consisted of two machines: one
sender and one receiver. Each machine was equipped
with a 6-core AMD Phenom II processor, a 2 TB spin-
ning disk (Samsung HD204UI) as well as a 128 GB SSD
(Intel SSDSC2CT12). The spinning disk had a 300 GB
“benchmark” partition at an outer zone for maximum se-
quential performance. Except for the ZFS experiments,
we formatted the benchmark partition with an ext3 file
system. All benchmarks started and ended with a cold
buffer cache. We flushed the buffer cache before each
run and ensured that all cached writes are flushed to disk
before declaring the run finished. The machines had a
Gigabit Ethernet card which was connected to a switch.
We ran a recent version of Ubuntu (12.04) with a 3.2 ker-
nel. Unless otherwise noted, each data point is the mean
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of three runs. The synchronized data set consisted of a
single file of the appropriate size, e.g., 16 GiB, filled with
random data. If a tool interfaced with a block device, we
created a loopback device on top of the single file.

4.3 Benchmarks
We used two types of benchmarks, synthetic and realis-
tic, to evaluate dsync’s performance and compare it with
its competitors. While the synthetic benchmarks allow
us to investigate worst case behavior, the realistic bench-
marks show expected performance for more typical sce-
narios.

4.3.1 Random modifications

In our synthetic benchmark, we randomly modified vary-
ing percentages of data blocks. Each block had the same
probability to be modified. Random modification is a
worst case scenario because there is little spatial local-
ity. Real world applications, on the other hand, usu-
ally exhibit spatial locality with respect to the data they
read and write. Random read/write accesses decrease
the effectiveness of data prefetching and write coalesc-
ing. Because conventional spinning hard disks have a
tight limit on the number of input/output operations per
second (IOPS), random update patterns are ill suited for
them.

4.3.2 RUBiS

A second benchmark measures the time to synchronize
virtual machine images. The tracked VM ran the RU-
BiS [5] server components, while another machine ran
the client emulator. RUBiS is a web application modeled
after eBay.com. The web application, written in PHP,
consists of a web server, and a data base backend. Users
put items up for sale, bid for existing items or just browse
the catalog. Modifications to the virtual machine image
resulted, for example, from updates to the RUBiS data
base.

A single run consisted of booting the instance, sub-
jecting it to 15 minutes of simulated client traffic, and
shutting the instance down. During the entire run, we
recorded all block level updates to the virtual machine
image. The modified block numbers were the input to
the second stage of the experiment. The second stage
used the recorded block modification pattern while mea-
suring the synchronization time. Splitting the experiment
into two phases allows us to perform and repeat them in-
dependently.

4.3.3 Microsoft Research Traces

Narayanan et al. [11] collected and published block level

traces for a variety of servers and services at Microsoft
Research 3. The traces capture the block level operations
of, among others, print, login, and file servers. Out of
the available traces we randomly picked the print server
trace. Because the print server’s non-system volume was
several hundred gigabytes in size, we split the volume
into non-overlapping, 32 GiB-sized ranges. Each oper-
ation in the original trace was assigned to exactly one
range, depending on the operation’s offset. Further anal-
ysis showed that the first range, i.e., the first 32 GiB of
the original volume, had the highest number of write op-
erations, close to 1.1 million; more than double of the
second “busiest” range.

In addition to splitting the original trace along the
space axis, we also split it along the time axis. The trace
covers over a period of seven days, which we split into
24 hour periods.

To summarize: for our analysis we use the block mod-
ification pattern for the first 32 GiB of the print server’s
data volume. The seven day trace is further divided into
seven 24 hour periods. The relative number of modified
blocks is between 1% and 2% percent for each period.

4.4 Results

4.4.1 Random modifications

We start the evaluation by looking at how the data set
size affects the synchronization time. The size varies be-
tween 1 and 32 GiB for which we randomly modified
10% of the blocks. The first set of results is shown in
Figure 2. First of all, we observe that the synchronization
time increases linearly with the data set size; irrespec-
tive of the synchronization method. Second, rsync takes
longest to synchronize, followed by blockmd5sync on
HDD and copy on SSD. Copy, ZFS, and dsync are fastest
on HDD and show similar performance. On SSD, dsync
and blockmd5sync are fastest, with ZFS being faster than
copy, but not as fast as dsync and blockmd5sync. With
larger data sizes, the performance difference is more
markedly: for example, at 32 GiB dsync, copy, and ZFS
perform almost identically (on HDD), while rsync takes
almost five times as long (420 vs. 2000 seconds). To our
surprise, copying the entire state is sometimes as fast as
or even slightly faster than extracting and merging the
differences. Again at 32 GiB, for example, copy takes
about 400 seconds, compared with 400 seconds for dsync
and 420 seconds for ZFS.

We concluded that the random I/O operations were in-
hibiting dsync to really shine. Hence, we performed a
second set of benchmarks where we used SSDs instead
of HDDs. The results are shown in Figure 3. While

3available at ftp://ftp.research.microsoft.com/pub/

austind/MSRC-io-traces/
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Figure 2: Synchronization time for five different syn-
chronization techniques. Lower is better. Data on the
source and target was stored on HDD.
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Figure 3: Synchronization time for five different syn-
chronization techniques. Lower is better. Data on the
source and target was stored on SSD.
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Figure 4: CPU utilization for a sample run of three syn-
chronization tools. 100% means all cores are busy.
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Figure 5: Network transmit traffic on the sender side
measured for the entire system. rsync and dsync trans-
mit about the same amount of data in total, although the
effective throughput of rsync is much lower.

the increased random I/O performance of SSDs does not
matter for rsync, its synchronization time is identical to
the HDD benchmark, SSDs enable all other methods to
finish faster. dsync’s time to synchronize 32 GiB drops
from 400 s on HDD to only 220 s on SSD.

Intrigued by the trade-off between hard disk and solid
state drives, we measured the read and write rate of our
drives outside the context of dsync. When extracting or
merging modified blocks they are processed in increas-
ing order by their block number. We noticed that the
read/write rate increased by up to 10x when processing
a sorted randomly generated sequence of block numbers
compared to the same unsorted sequence. For a random
but sorted sequence of blocks our HDD achieves a read
rate of 12 MB/s and a write rate of 7 MB/s. The SSD
reads data twice as fast at 25 MB/s and writes data more
than 15x as fast at 118 MB/s. This explains why, if HDDs
are involved, copy finishes faster than dsync although
copy’s transfer volume is 9x that of dsync: sequentially
going through the data on HDD is much faster than se-
lectively reading and writing only changed blocks.

To better highlight the differences between the meth-
ods, we also present CPU and network traffic traces for
three of the five methods. Figure 4 shows the CPU
utilization while Figure 5 shows the outgoing network
traffic at the sender. The trace was collected at the
sender while synchronizing 32 GiB from/to SSD. The
CPU utilization includes the time spent in kernel and user
space, as well as waiting for I/O. We observe that rsync
is CPU-bound by its single-threaded rolling checksum
computation. Up to t = 500 the rsync sender process is
idle, while one core on the receiver-side computes check-

sums (not visible in the graph). During rsync’s second
phase, one core, on our 6-core benchmark machine, is
busy computing and comparing checksums for the re-
maining 1400 s (23 min). The network traffic during
that time is minimal at less than 5 MB/s. Copy’s exe-
cution profile taxes the CPU much less: utilization oscil-
lates between 0% and 15%. On the other hand, it can be
visually determined that copy generates much more traf-
fic volume than either rsync or dsync. Copy generates
about 90 MB/s of network traffic on average. dsync’s ex-
ecution profile uses double the CPU power of copy, but
only incurs a fraction of the network traffic. dsync’s net-
work throughput is limited by the random read-rate at the
sender side.

Even though the SSD’s specification promises 22.5 k
random 4 KiB reads [2], we are only able to read at a sus-
tained rate of 20 MB/s at the application layer. Adding
a loopback device to the configuration, reduces the ap-
plication layer read throughput by about another 5 MB/s.
This explains why dsync’s sender transmits at 17 MB/s.
In this particular scenario dsync’s performance is read-
limited. Anything that would help with reading the modi-
fied blocks from disk faster, would decrease the synchro-
nization time even further.

Until now we kept the modification ratio fixed at 10%,
which seemed like a reasonable change rate. Next we
explore the effect of varying the percentage of modi-
fied blocks. We fix the data size at 8 GiB and randomly
modify 10%, 50%, and 90% percent of the blocks. Fig-
ure 6 and 7 show the timings for spinning and solid-
state disks. On HDD, interestingly, even though the
amount of data sent across the network increases, the net
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Figure 6: For comparison, rsync synchronizes the same
data set 6, 21, and 41 minutes, respectively. Copy took
between 1.5 and 2 minutes.

synchronization time stays almost constant for ZFS and
blockmd5sync; it even decreases for dsync. Conversely,
on SSD, synchronization takes longer with a larger num-
ber of modified blocks across all shown methods; al-
though only minimally so for ZFS. We believe the in-
crease for dsync and blockmd5sync is due to a higher
number of block-level re-writes. Updating a block of
flash memory is expensive and often done in units larger
than 4 KiB [8]. ZFS is not affected by this phenomenon,
as ZFS employs a copy-on-write strategy which turns
random into sequential writes.

4.4.2 RUBiS results

We argued earlier, that a purely synthetic workload of
random block modifications artificially constraints the
performance of dsync. Although we already observed
a 5x improvement in total synchronization time over
rsync, the gain over copy was less impressive. To high-
light the difference in spatial locality between the syn-
thetic and RUBiS benchmark, we plotted the number of
consecutive modified blocks for each; prominently illus-
trated in Figure 8.

We observe that 80% of the modification involve only
a single block (36k blocks at x = 1 in Figure 8). In com-
parison, there are no single blocks for the RUBiS bench-
mark. Every modification involves at least two consec-
utive blocks (1k blocks at x = 2). At the other end of
the spectrum, the longest run of consecutively modified
blocks is 639 for the RUBiS benchmarks. Randomly up-
dated blocks rarely yield more than 5 consecutively mod-
ified blocks. For the RUBiS benchmark, updates of 5
consecutive blocks happen most often: the total number
of modified blocks jumps from 2k to 15k moving from 4
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Figure 7: Varying the percentage of modified blocks for
an 8 GiB file/device. For comparison, rsync synchro-
nizes the same data set in 5, 21, and 41 minutes, respec-
tively. A plain copy consistently took 1.5 minutes.

to 5 consecutively modified blocks.
Now that we have highlighted the spatial distribution

of updates, Figure 9 illustrates the results for our RUBiS
workload. We present numbers for the HDD case only
because this workload is less constrained by the number
of I/O operations per second. The number of modified
blocks was never the same between those 20 runs. In-
stead, the number varies between 659 and 3813 blocks.
This can be explained by the randomness inherent in each
RUBiS benchmark invocation. The type and frequency
of different actions, e.g., buying an item or browsing the
catalog, is determined by chance. Actions that modify
the data base increase the modified block count.

The synchronization time shows little variation be-
tween runs of the same method. Copy transfers the en-
tire 11 GiB of data irrespective of actual modifications.
There should, in fact, be no difference based on the num-
ber of modifications. rsync’s execution time is domi-
nated by checksum calculations. dsync, however, trans-
fers only modified blocks and should show variations.
The relationship between modified block count and syn-
chronization time is just not discernible in Figure 9. Al-
ternatively, we calculated the correlation coefficient for
dsync which is 0.54. This suggests a positive correlation
between the number of modified blocks and synchroniza-
tion time. The correlation is not perfect because factors
other than the raw modified block count affect the syn-
chronization time, e.g., the spatial locality of updates.

The performance in absolute numbers is as follows:
rsync, which is slowest, takes around 320 seconds to
synchronize the virtual machine disk. The runner up,
copy, takes 200 seconds. The clear winner, with an av-
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Figure 8: Difference in spatial locality between a syn-
thetic and realistic benchmark run. In both cases 45k
blocks are modified. For the synthetic benchmark 80%
are isolated individual blocks (36k at x=1). The realistic
benchmark shows a higher degree of spatial locality, as
observed, for example, by the jump from 2.5k (x=3) to
15k (x=4) blocks.

erage synchronization time of about 3 seconds, is dsync.
That is a factor 66x improvement over copy and more
than 100x faster than rsync. dsync reduces the net-
work traffic to a minimum, like rsync, while being 100x
faster. Table 2 summarizes the results.

4.4.3 Microsoft Research Traces

In addition to our benchmarks with synchronizing a sin-
gle virtual machine disk, we used traces from a Microsoft
Research (MSR) printer server. The speed with which
the different methods synchronize the data is identical
across all days of the MSR trace. Because of the homo-
geneous run times, we only show three days out of the
total seven in Figure 10.
rsync is slowest, taking more than 900 seconds

(15 minutes) to synchronize 32 GiB of binary data.
The small number of updated blocks (between 1-2%)
decreases the runtime of rsync noticeably. Previ-
ously, with 10% updated blocks rsync took 35 min-
utes (cf. Figure 2) for the same data size. Copy and
blockmd5sync finish more than twice as fast as rsync,
but are still considerably slower than either ZFS or dsync.
The relative order of synchronization times does not
change when we swap HDDs for SSDs (Figure 11).
Absolute synchronization times improve for each syn-
chronization method. blockmd5sync sees the largest de-
crease as its performance is I/O bound on our setup: the
SSD offers faster sequential read speeds than the HDD,
230 MB/s vs 130 MB/s.

500 1000 1500 2000 2500 3000 3500 4000

# modified blocks

100

101

102

103

sy
nc

hr
on

iz
at

io
n

ti
m

e
[s

]

rsync dsync copy

Figure 9: Synchronization time for (a) copy, (b) rsync,
and (c) dsync. Block modifications according to the RU-
BiS workload.

4.5 Discussion

One interesting question to ask is if there exist cases
where dsync performs worse than rsync. For the scenar-
ios investigated in this study dsync always outperformed
rsync by a significant margin. In fact, we believe, that
dsync will always be faster than rsync. Our reasoning
is that the operations performed by rsync are a super-
set of dsync’s operations. rsync must read, transmit,
and merge all the updated blocks; as does dsync. How-
ever, to determine the updated blocks rsync must read
every block and compute its checksum at the source and
destination. As illustrated and mentioned in the capture
for Figure 4, the computational overhead varies with the
number of modified blocks. For identical input sizes, the
execution time of rsync grows with the number of up-
dated blocks.

The speed at which dsync synchronizes depends to a
large degree on the spatial distribution of the modified
blocks. This is most visible in Figures 6. Even though
the data volume increases by 5x, going from 10% ran-
domly modified blocks to 50%, the synchronization takes
less time. For the scenarios evaluated in this paper, a sim-
ple copy typically (cf. Figure 6, 2) took at least as long as
dsync. While dsync may not be faster than a plain copy
in all scenarios, it definitely reduces the transmitted data.

Regarding the runtime overhead of maintaining the
bitmap, we do not expect this to noticeably affect per-
formance in typical use cases. Setting a bit in memory is
orders of magnitude faster than actually writing a block
to disk.
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Figure 10: Synchronization times for realistic block-
level update patterns on HDDs. Lower is better.

5 Related work

File systems, such as ZFS, and only recently btrfs, also
support snapshots and differential backups. In ZFS lingo
the operations are called send and receive. The delta be-
tween two snapshots can be extracted and merged again
with another snapshot copy, e.g., at a remote backup ma-
chine. Only users of ZFS, however, can enjoy those fea-
tures. For btrfs, there exists a patch to extract differences
between to snapshot states [6]. This feature is, however,
still considered experimental. Besides the file system,
support for block tracking can be implemented higher up
still in the software stack. VMware ESX, since version
4, is one example which supports block tracking at the
application layer. In VMware ESX server the feature is
called changed block tracking. Implementing support for
efficient, differential backups at the block-device level,
like dsync does, is more general, because it works regard-
less of the file system and application running on top.

If updates must be replicated more timely to reduce the
inconsitency window, the distributed replicated block de-
vice (DRBD) synchronously replicates data at the block
level. All writes to the primary block device are mir-
rored to a second, standby copy. If the primary block de-
vice becomes unavailable, the standby copy takes over.
In single primary mode, only the primary receives up-
dates which is required by file systems lacking concur-
rent access semantics. Non-concurrent file systems as-
sume exclusive ownership of the underlying device and
single primary mode is the only viable DRBD configura-
tion in this case. However, DRBD also supports dual-
primary configurations, where both copies receive up-
dates. A dual-primary setup requires a concurrency-
aware file system, such as GFS or OCFS, to maintain
consistency. DRBD is part of Linux since kernel version
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Figure 11: Synchronization times for realistic block-
level update patterns on SSDs. Lower is better.

2.6.33.
There also exists work to improve the efficiency of

synchronization tools. For example, Rasch and Burns
[13] proposed for rsync to perform in-place updates.
While their intention was to improve rsync performance
on resource-constraint mobile devices, it also helps with
large data sets on regular hardware. Instead of creating
an out-of-place copy and atomically swapping this into
place at the end of the transfer, the patch performs in-
place updates. Since their original patch, in-place up-
dates have been integrated into regular rsync.

A more recent proposal tackles the problem of page
cache pollution [3]. During the backup process many
files and related meta-data are read. To improve system
performance, Linux uses a page cache, which keeps re-
cently accessed files in main memory. By reading large
amounts of data, which will likely not be accessed again
in the near future, the pages cached on behalf of other
processes, must be evicted. The above mentioned patch
reduces cache pollution to some extent. The operating
system is advised, via the fadvise system call, that
pages, accessed as part of the rsync invocation, can be
evicted immediately from the cache. Flagging pages ex-
plicitly for eviction, helps to keep the working sets of
other processes in memory.

Effective buffer cache management was previously
discussed, for example, by Burnett et al. [4] and Plonka
et al. [12]. Burnett et al. [4] reverse engineered the
cache replacement algorithm used in the operating sys-
tem. They used knowledge of the replacement algorithm
at the application level, here a web server, to change
the order in which concurrent requests are processed.
As a result, the average response time decreases and
throughput increases. Plonka et al. [12] adapted their net-
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tool sync state
time [s] transferred [MB]

rsync 950 310
copy 385 32768

blockmd5sync 310 310
ZFS 42 310

dsync 38 310

Table 2: Performance summary for realistic benchmark.

work monitoring application to give the operating system
hints about which blocks can be evicted from the buffer
cache. Because the application has ultimate knowledge
about access and usage patterns, the performance with
application-level hints to the OS is superior. Both works
agree with us on the sometimes adverse effects of the de-
fault caching strategy. Though the strategy certainly im-
proves performance in the average case, subjecting the
system to extreme workloads, will reveal that sometimes
the default is ill suited.

6 Conclusion

We tackled the task of periodically synchronizing large
amounts of binary data. The problem is not so much
how to do it, but how to do it efficiently. Even today,
with widespread home broadband connections, network
bandwidth is a precious commodity. Using it to trans-
mit gigabytes of redundant information is wasteful. Es-
pecially for data sets in the terabyte range the good old
“sneakernet” [10] may still be the fastest transmission
mode. In the area of cloud computing, large binary data
blobs prominently occur in the form of virtual machine
disks and images. Backup of virtual machine disks and
images, e.g., fault tolerance, is a routine task for any data
center operator. Doing so efficiently and with minimal
impact on productive workloads is in the operator’s best
interest.

We showed how existing tools, exemplified by rsync,
are ill-suited to synchronize gigabyte-sized binary blobs.
The single-threaded checksum computation employed
by rsync leads to synchronization times of 32 minutes
even for moderate data sizes of 32 GB. Instead of cal-
culating checksums when synchronization is requested,
we track modifications on line. To do so, we extended
the existing device mapper module in the Linux kernel.
For each tracked device, the modified block numbers can
be read from user-space. Two supplemental tools, called
dmextract and dmmerge, implement the extraction and
merging of modified blocks in user-space. We call our
system dsync.

A mix of synthetic and realistic benchmarks demon-

strates the effectiveness of dsync. In a worst case work-
load, with exclusively random modifications, dsync syn-
chronizes 32 GB in less than one quarter of the time that
rsync takes, i.e., 7 minutes vs 32 minutes. A more re-
alistic workload, which involves the synchronization of
virtual machines disks, reduces the synchronization time
to less than 1/100th that of rsync.
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Abstract

The management of virtual machine cluster (VMC) is
challenging owing to the reliability requirements, such
as non-stop service, failure tolerance, etc. Distributed s-
napshot of VMC is one promising approach to support
system reliability, it allows the system administrators of
data centers to recover the system from failure, and re-
sume the execution from a intermediate state rather than
the initial state. However, due to the heavyweight na-
ture of virtual machine (VM) technology, application-
s running in the VMC suffer from long downtime and
performance degradation during snapshot. Besides, the
discrepancy of snapshot completion times among VMs
brings the TCP backoff problem, resulting in network in-
terruption between two communicating VMs. This paper
proposes HotSnap, a VMC snapshot approach designed
to enable taking hot distributed snapshot with millisec-
onds system downtime and TCP backoff duration. At the
core of HotSnap is transient snapshot that saves the min-
imum instantaneous state in a short time, and full snap-
shot which saves the entire VM state during normal oper-
ation. We then design the snapshot protocol to coordinate
the individual VM snapshots into the global consistent
state of VMC. We have implemented HotSnap on QE-
MU/KVM, and conduct several experiments to show the
effectiveness and efficiency. Compared to the live migra-
tion based distributed snapshot technique which brings
seconds of system downtime and network interruption,
HotSnap only incurs tens of milliseconds.

1 Introduction

With the increasing prevalence of cloud computing and
IaaS paradigm, more and more distributed application-
s and systems are migrating to and running on virtual-
ization platform. In virtualized environments, distribut-
ed applications are encapsulated into virtual machines,
which are connected into virtual machine cluster (VM-

C) and coordinated to complete the heavy tasks. For
example, Amazon EC2 [1] offers load balancing web
farm which can dynamically add or remove virtual ma-
chine (VM) nodes to maximize resource utilization; Cy-
berGuarder [22] encapsulates security services such as
IDS and firewalls into VMs, and deploys them over a
virtual network to provide virtual network security ser-
vice; Emulab [12] leverages VMC to implement on-
demand virtual environments for developing and testing
networked applications; the parallel applications, such as
map-reduce jobs, scientific computing, client-server sys-
tems can also run on the virtual machine cluster which
provides an isolated, scaled and closed running environ-
ment.

Distributed snapshot [13, 27, 19] is a critical technique
to improve system reliability for distributed applications
and systems. It saves the running state of the application-
s periodically during the failure-free execution. Upon a
failure, the system can resume the computation from a
recorded intermediate state rather than the initial state,
thereby reducing the amount of lost computation [15]. It
provides the system administrators the ability to recover
the system from failure owing to hardware errors, soft-
ware errors or other reasons.

Since the snapshot process is always carried out peri-
odically during normal execution, transparency is a key
feature when taking distributed snapshot. In other word-
s, the users or applications should be unaware of the
snapshot process, neither the snapshot implementation
scheme nor the performance impact. However, the tra-
ditional distributed systems either implement snapshot
in OS kernel [11], or modify the MPI library to sup-
port snapshot function [17, 24]. Besides, many systems
even leave the job to developers to implement snapshot
on the application level [3, 25]. These technologies re-
quire modification of OS code or recompilation of appli-
cations, thus violating the transparency from the view of
implementation schema.

The distributed snapshot of VMC seems to be an ef-
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fective way to mitigate the transparency problem, since it
implements snapshot on virtual machine manager (VM-
M) layer which encapsulates the application’s running s-
tate and resources without modification to target applica-
tions or the OS. Many systems such as VNSnap [18] and
Emulab [12] have been proposed to create the distributed
snapshot for a closed network of VMs. However, these
methods still have obvious shortcomings.

First, the snapshot should be non-disruptive to the up-
per applications, however the state-of-the-art VM snap-
shot technologies, either adopt stop-and-copy method
(e.g., Xen and KVM) which causes the service are com-
pletely unavailable, or leverage live migration based
schema which also causes long and unpredictable down-
time owing to the final copy of dirty pages [26].

Second, the distributed snapshot should coordinate the
individual snapshots of VMs to maintain a global consis-
tent state. The global consistent state reflects the snap-
shot state in one virtual time epoch and regards causali-
ty, implying the VM before snapshot cannot receive the
packets send from the VM that has finished the snapshot
to keep the consistent state during distributed snapshot
(further explanations about global consistent state can be
referred in appendix A). However, due to the various VM
memory size, variety of workloads and parallel I/O oper-
ations to save the state, the snapshot start time, duration
time and completion time of different VMs are always
different, resulting in the TCP back-off issue [18], there-
by causing network interruption between the communi-
cating VMs. Figure 1 demonstrates one such case hap-
pened in TCP’s three-way handshake. Worse still, for
the master/slave style distributed applications, the mas-
ter always undertake heavier workloads so that cost more
time to finish the snapshot than the slaves, therefore, the
slaves which finish the snapshot ahead cannot commu-
nicate with the master until the master snapshot is over,
causing the whole system hung. As a result, the mas-
ter snapshot becomes the short-board during distributed
snapshot of master/slave systems.

Third, most distributed snapshot technologies adop-
t the coordinated snapshot protocol [13] to bring the
distributed applications into a consistent state. This re-
quires a coordinator to communicate snapshot-related
commands with other VMs during snapshot. In many
systems, the coordinator is setup in the customized mod-
ule such as VIOLIN switch in VNSnap [18] and XenBus
handler used in Emulab [12], thus lack of generality in
most virtualized environments.

To mitigate the problems above, we propose HotSnap,
a system capable of taking hot distributed snapshot that is
transparent to the upper applications. Once the snapshot
command is received, HotSnap first suspends the VM,
freezes the memory state and disk state, creates a tran-
sient snapshot of VM, and then resumes the VM. The

SYN_RCVD

TIME_OUT

snapshot

SYN

SYN_RCVD

SYN/ACK

VM1

VM2

snapshot

TIME_OUT

TCP state

SYN SYN/ACK

VM1

VM2

Figure 1: A TCP handshake case during distributed s-
napshot. V M2 first sends SYN to V M1 to request a TCP
connection, at this moment V M2 has not begin its snap-
shot; V M1 receives this request, turn its own state into
SYN RCVD, and then sends SYN/ACK back to V M2.
We notice that now V M1 has finished snapshot, and based
on the coordinated protocol, packets sent from V M1 will
not be accepted by V M2 until V M2 has finished its own
snapshot. If V M2’s snapshot duration exceeds TCP time-
out, connection will fail.

transient snapshot only records the minimum instanta-
neous state, including CPU and device states, as well
as two bitmaps reserved for memory state and disk s-
tate, bringing only milliseconds of VM downtime, i.e.,
hot for upper applications. The full snapshot will be ac-
quired after resuming the VM, it saves the entire memory
state in a copy-on-write (COW) manner, and create the
disk snapshot in the redirect-on-write (ROW) schema;
the COW and ROW schemas enable creating the full s-
napshot without blocking the execution of VM, i.e., live
snapshot. Because the transient snapshot introduces on-
ly milliseconds of downtime, the discrepancy of down-
time among different VM snapshots will be minor, there-
by minimizing the TCP backoff duration.

HotSnap is completely implemented in VMM layer, it
requires no modification to Guest OS or applications, and
can work without other additional modules. The major
contributions of the work are summarized as follows:

1) We propose a VM snapshot approach combined of
transient snapshot and full snapshot. The approach com-
pletes snapshot transiently, enables all VMs finish their
snapshots almost at the same time, which greatly reduces
the TCP backoff duration caused by the discrepancy of
VMs’ snapshot completion times.

2) A classic coordinated non-blocking protocol is sim-
plified and tailored to create the distributed snapshot of
the VMC in our virtualized environment.

3) We implement HotSnap on QEMU/KVM platform
[20]. Comprehensive experiments are conducted to eval-
uate the performance of HotSnap, and the results prove
the correctness and effectiveness of our system.

The rest of the paper is organized as follows. The
next section provides an analysis of the traditional dis-
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Figure 2: Comparison of VNSnap and HotSnap.

tributed snapshot and their problems. Section 3 intro-
duces the HotSnap method, describes the transient snap-
shot, full snapshot and coordinated protocol. Section
4 describes the implementation-specific details on QE-
MU/KVM platform. The experimental results are shown
in Section 5. Finally we present the previous work re-
lated to HotSnap in section 6 and conclude our work in
Section 7.

2 An Analysis of Distributed Snapshot

The distributed snapshot includes independent VM s-
napshot and the coordinated protocol. Stop-and-copy
schema is a simple way to create snapshot of individ-
ual VM, but this schema introduces long downtime of
Guest OS and the upper applications running inside the
VM, thus is impractical in many scenarios that deliver
services to users. The live snapshot technologies lever-
age pre-copy based migration to achieve live snapshot
by iteratively saving the dirty pages to the snapshot file
[12, 18]. In this section, we will analyze the live mi-
gration based distributed snapshot proposed in VNSnap
[18], and explain how it results in TCP backoff problem.

Figure 2(a) demonstrates the procedure of VNSnap
distributed snapshot. Although VNSnap exploits the VI-
OLIN [12] switch to execute the coordinated protocol,
we treat V M1 as the coordinator for clarity. Upon dis-
tributed snapshot, the coordinator, i.e., V M1, will send
SNAPSHOT command to V M2, and then create the snap-
shot of V M1 itself. VNSnap leverages live migration to

iteratively save the dirtied pages into stable storage or re-
served memory region until some requirements are satis-
fied, such as the amount of dirty pages are minor enough,
or the size cannot be further reduced even more iterations
are conducted. Then VNSnap suspends the VM, stores
the final dirty memory pages, saves other devices’ state
and creates the disk snapshot. After these steps, the snap-
shot of V M1 is over and V M1 is resumed. Upon receiving
the SNAPSHOT command from V M1, V M2 follows the
same procedure as V M1 to create its own snapshot. VN-
Snap drops the packets send from the post-snapshot VM
to pre-snapshot VM, to keep the global state consistent.

Take this tiny cluster which consists of two VMs as
an example, the distributed snapshot duration time is
from the start time of V M1 snapshot to the end time of
V M2 snapshot (suppose V M2 finishes snapshot later than
V M1), the TCP backoff duration is from the start of V M1
suspend to the end of V M2 suspend. The packets re-
sult in TCP backoff fall into three categories: 1) V M1
is suspended while V M2 is in live-snapshot, the packets
send from V M2 to V M1 will not arrive, as Arrow1 illus-
trates; 2) V M1 finishes snapshot and then turns into post-
snapshot state, but V M2 is before or during snapshot. In
this situation, packets send from V M1 will be dropped to
keep the consistent state of distributed snapshot. Arrow2
shows such a case. 3) V M1 is in post-snapshot, but V M2
is suspended, V M2 cannot receive the packets send from
V M1, as Arrow3 shows.

Based on the three types of packets, we can conclude
that two aspects affect the TCP backoff duration in dis-
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tributed snapshot. One is the downtime of individual VM
snapshot; the longer downtime implies more lost packet-
s, thereby causing longer TCP backoff duration. Another
is the discrepancy of the snapshot completion times, as
the Arrow2 illustrates, the packets send from V M1 which
has finished snapshot ahead will be dropped until V M2
completes the snapshot.

According to the above analysis, the VNSnap dis-
tributed snapshot method has three drawbacks: First, the
pre-copy based live migration method need to iterative-
ly save the dirtied pages, thus the snapshot downtime
is directly related to the workloads inside the VM and
I/O bandwidth; it may last seconds in memory intensive
scenarios [26]. Second, VNSnap proposes a VNSnap-
memory method to reduce the TCP backoff duration, it
saves the memory state into a reserved memory region
whose size is the same to the VM memory size; this
is wasteful and impractical in the IaaS platform which
aims to maximize resource utilization. Third, the snap-
shot duration time is proportional to the memory size and
workload, therefore the discrepancy of snapshot comple-
tion times would be large for VMs with various memory
sizes, further leads to long TCP backoff duration. Even
for the VMs with identical memory size and same appli-
cations, the snapshot completion times are still various
owing to the parallel disk I/O for saving large amount of
memory pages. Besides, the experimental results in VN-
Snap [18] also show this live migration based snapshot
method brings seconds of TCP backoff duration.

3 Design of HotSnap

The design of HotSnap includes a new individual VM
snapshot method and a coordinated non-block snapshot
protocol. We firstly describe the design of the HotSnap
method, then introduce the procedure of HotSnap for in-
dividual VM, and lastly describe the coordinated snap-
shot protocol to acquire a global consistent state of the
virtual machine cluster.

3.1 Overview of HotSnap

Figure 2(b) illustrates our HotSnap approach. Differen-
t from VNSnap which suspends the VM at the end of
the snapshot, HotSnap suspends the VM once receiving
the SNAPSHOT command, takes a transient snapshot of
VM and then resumes the VM. The full snapshot, which
records the entire memory state, will be completed dur-
ing the subsequent execution. Note that the VM actu-
ally turns to post-snapshot state after transient snapshot
is over. In this approach, the TCP backoff duration is
from the start of V M1 transient snapshot to the end of
V M2 transient snapshot, and the entire distributed snap-

shot duration starts from the start of V M1 transient snap-
shot to the end of V M2 full snapshot.

In HotSnap approach, we suspend the VM and create
the transient snapshot in milliseconds, thus the down-
time during individual VM snapshot would be minor.
Besides, in the nowadays IaaS platform or data center
which are always configured with high bandwidth and
low latency network, the round trip time is always less
than 1ms, so the VMs can receive the SNAPSHOT com-
mand and then start to create snapshot almost simultane-
ously. As a result, the transient snapshot of VMs can s-
tart almost simultaneously and finish in a very short time,
consequently minimizing the TCP backoff duration.

The individual VM snapshot combined of transient s-
napshot and full snapshot, as well as the coordinated pro-
tocol are two key issues to create the hot distributed s-
napshot, and will be described in detail in the following
parts.

3.2 Individual VM Snapshot

A VM snapshot is a point-in-time image of a virtual ma-
chine state; it consists of memory state, disk state and
devices’ states such as CPU state, network state, etc. Our
snapshot consists of two parts, one is a transient snapshot
which contains the devices state, disk state and metadata
of memory state; another is full snapshot which actually
records the memory state. We divide the individual VM
snapshot procedure into three steps as shown in Figure 3.

Step 1, Suspend VM and Create Transient Snap-
shot. We suspend the VM, store the devices state,
set write-protect flag to each memory page, create two
bitmaps to index the memory state and disk state, and
create a new null disk file. We adopt the redirect-on-
write method to create disk snapshot, therefore the disk
snapshot is completed after the bitmap and disk file are
created. This step only involves lightweight operations,
i.e., bitmap creation, flag setting and device state saving,
thus bringing only a few dozens of milliseconds down-
time.

Step 2, Resume VM and Create Full Snapshot. We
resume the VM to keep the Guest OS and applications
running during full snapshot. The running applications
will issue disk writes as well as dirty memory pages dur-
ing fault-free execution. For the disk write operation, the
new content will be redirected to a new block in the new
disk file by the iROW block driver [23]. For the write
operation on one memory page which is write-protected,
page fault will be caught in the VMM layer. HotSnap for
handling page fault will block the memory write opera-
tion, store the original page content into the snapshot file,
remove the write-protect flag, and then allow the guest to
continue to write the new content into the page. Mean-
while, a thread is activated to save memory pages ac-
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Figure 3: Steps of individual VM snapshot.

tively in background. The copy-on-write based memory
snapshot only saves each memory page once and thus
keeps the memory snapshot size to be the same to the
VM memory size.

Step 3, Snapshot Completion. After all the memory
pages are stored into the stable storage, the snapshot pro-
cess is completed. In the end, we clear the bitmap, and
stop the background thread.

3.3 Global Coordinated Non-block Snap-
shot Protocol

We design a global coordinated non-block snapshot pro-
tocol to coordinate the individual VM snapshot process-
es. Unlike Emulab [12] which synchronizes the clocks of
all VMs to ensure these VMs are suspended for snapshot
simultaneously, we deploy VMs on high bandwidth and
low latency network so that the VMs can receive the mes-
sage and start the snapshot at the same time. It is worth
noting that Emulab’s clock synchronization protocol can
be utilized to extend the scope of HotSnap.

The pre-snapshot, live-snapshot and post-snapshot are
both running state of individual VM, but they need to
be distinguished from the view of VMC distributed s-
napshot for consistency requirement. Note that VNSnap
suspends VM at the end of snapshot, so the live-snapshot
can be regarded as pre-snapshot. Similarly, in HotSnap
which suspends VM at the start, we consider the live-
snapshot as post-snapshot, i.e., the state after transient s-
napshot. We leverage the message coloring [21] method
to achieve the state distinction in the coordinated pro-
tocol, that is, we piggyback the white flag to the pack-
et which is send from the VM in pre-snapshot state and
represent the packets from the post-snapshot VM with
red flag. If one pre-snapshot VM receives a packet pig-
gybacked with a red flag, it will create its own snapshot
first, and then receive and handle the packet.

running
Full 

snapshot
Transient 
snapshot

Initiator Peer VM Peer VMs...SNAPSHOT

Figure 4: Global distributed snapshot protocol of Hot-
Snap.

There exist two roles in HotSnap system: initiator and
peer. Unlike the VNSnap [18] or Emulab [12] system-
s that use separate modules such as VIOLIN switch or
XenBus as the initiator, each VM in HotSnap can be ei-
ther the initiator or a peer. And there is only one initia-
tor during a failure-free VMC snapshot process. Each
peer records its snapshot states including transient snap-
shot state and full snapshot state. The initiator not only
records the snapshot states, but also maintains these s-
tates of the whole VMC distributed snapshot. Figure 4
illustrates how the coordinated protocol works, the ini-
tiator after receiving the SNAPSHOT command from the
user or administrator, will first broadcast this command
to all peers, and then takes its own transient snapshot.
The peers will trigger the snapshot process when receiv-
ing two kinds of packets, the SNAPSHOT message from
the initiator, or the packet piggybacked with red flag.
Once finishing the transient snapshot, the peer VM will
send a TRANSIENT SNAP FIN message to the initia-
tor, and color the transmitted packets with the red flag
to imply the peer is in post-snapshot state. After finish-
ing the snapshot itself and receiving all peers’ TRAN-
SIENT SNAP FIN messages, the initiator will broadcast
the ALL TRANSIENT SNAP FIN message to all peer
VMs to notify the completion of transient snapshot of
the whole VMC. The peers who receive this message
will cancel packet coloring and reset the packet with the
white flag immediately. The distributed snapshot proce-
dure continues until the initiator receives all VMs’ FUL-
L SNAP FIN message which marks the completion of
the full snapshot. The initiator will finally broadcast AL-
L FULL SNAP FIN message to all peer VMs, to declare
the completion of the distributed snapshot of the VMC.
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Figure 5: HotSnap system architecture.

4 System Implementation

This section presents the implementation issues in Hot-
Snap. We start by describing the overall architecture, and
then go on sub-level details and optimizations.

4.1 System architecture
We implement HotSnap on qemu-kvm-0.12.5 with Linux
kernel 2.6.32.5-amd64. The system architecture is illus-
trated in Figure 5. HotSnap consists of two main compo-
nents: the coordinated snapshot protocol component and
VM snapshot component.

The coordinated protocol component includes the
VMC Snapshot Manager and Packet Mediator. The VM-
C Snapshot Manager acts as the initiator during the dis-
tributed snapshot; it will firstly broadcast the SNAP-
SHOT command to other VMs, and then notify the VM
Snapshot Manager to take the snapshot of VM itself.
Packet Mediator has two functions: change the color
of the sending packets according to the VM snapshot
progress; decide whether or not to accept a packet by
comparing packet’s color with its own state.

VM Snapshot Manager is in charge of taking the
individual VM snapshot; it supports three snapshot
schemas, the HotSnap method, the Stop-and-copy snap-
shot method which is default adopted in QEMU/KVM,
and the VNSnap-disk snapshot proposed in VNSnap [18]
based on the pre-copy live migration in QEMU. In our
HotSnap system, VM Snapshot Manager calls the Disk
Snapshot Module to create the disk snapshot in the tran-
sient snapshot procedure, and exploits the Memory S-
napshot Module to save the memory state during both
transient snapshot and full snapshot. The details about
Disk Snapshot Module can be referred in our iROW work

[23], thus are omitted in this paper.

4.2 COW Based Memory Snapshot

We create the memory snapshot in the copy-on-write
(COW) manner. Writing large amount of memory state
into a file within the kernel is terrible and may crash the
system, so we save the memory state in user space when
taking the snapshot. However, in the QEMU/KVM plat-
form, the guest memory pages will be written by not only
the guest OS or applications inside, but also by the sim-
ulated DMA devices and the KVM module. In the fol-
lowing, we will describe how we save the entire memory
state in detail.

Guest Write Handler: During the
transient snapshot, we call the function
cpu physical memory set dirty tracking in QEMU
to set the write protect flag for each guest physical
memory page, so that the VMM layer can trap the write
page fault triggered by the running applications or the
guest OS. Once page fault occurs, the execution of Guest
OS will hang and exit to KVM module. Then we handle
the page fault in the function handle ept violation,
which is defined to handle memory access violation for
the specific CPU with the Extended Page Tables (EPT)
feature. If the trapped page fault is owing to be write
protected, we record the guest frame number (gfn) of the
page, set the exit reason as EXIT REASON HOTSNAP,
and then exit to QEMU for handling the exception. The
QEMU component when encountering the exit whose
reason is EXIT REASON HOTSNAP, will save the
memory page indexed by gfn into the snapshot file,
notify KVM to remove the write protect flag of the page,
and then issue the function kvm run to activate the VM.
Afterwards, the resumed VM will continue to run and
write that memory page without triggering page fault
again. In addition, each page fault incurs exit from Guest
to KVM kernel then to QEMU user space, as well as
entry in the opposite direction, resulting in performance
loss. Thus, we save dozens of memory pages and remove
their associated write protect flags when handling one
page fault. This can benefit from the feature of memory
locality, thereby reducing the frequency of page fault
and occurrences of context switch between Guest OS
and VMM layer.

DMA Write Handler: DMA is a widely-used tech-
nology to accelerate the transfer speed of I/O related de-
vices. QEMU also simulate the DMA schema for IDE
driver and virtio network driver in qemu-kvm-0.12.5.
In their implementation, a reserved memory region is
mapped between the guest and the simulated DMA driv-
er. For read or write operations, the driver just map the
data to or from the guest directly instead of I/O opera-
tions. This method dirties the guest memory pages with-
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out triggering the page fault and thus cannot be caught
in the Guest Write Handler way. Therefore, we intercept
the DMA write operations directly in QEMU. Take disk
I/O as an example, the function dma bdrv cb in QEMU
implements the DMA write operations, it first fetches the
address and length of the data to be written from the s-
catter/gather list, maps this address to the guest physi-
cal page by the function cpu physical memory map and
finally writes the data into the guest disk file. There-
fore, we intercept the write operation in the function d-
ma bdrv cb, save the original memory page content, and
then resume the execution of DMA write. One thing to
be noted is that only the disk device and network de-
vice in qemu-kvm-0.12.5 support the DMA schema, but
the newer versions such as qemu-kvm-1.4.0 add the D-
MA feature to more devices including disk device, sound
card and video card. However, the methodologies are the
same in dealing with DMA interception.

KVM Write Handler: The KVM kernel set val-
ue to the registers such as MSR for task switch opera-
tions, key-board operations, thus causing the guest mem-
ory pages dirtied. Similar to DMA Write Hanlder, we
intercept KVM write in the function kvm write guest
which is implemented in KVM to assign value to cer-
tain address space. The KVM kernel always repeated-
ly writes the same memory pages and the page coun-
t is only a little, so we first store the intercepted pages
into a kernel buffer without blocking the execution of
kvm write guest, then copy these pages in buffer to the
user space asynchronously. In this way, all the memory
pages dirtied by KVM will be saved to stable storage in
the user space.

Background Copy: To accelerate creating the memo-
ry snapshot, a background copy thread is issued to store
the guest memory pages concurrently. It traverses all the
guest memory pages and saves the pages that have not
been saved by the other three memory snapshot manners.
Since all these four kinds of memory snapshot manners
may save the same page simultaneously, a bitmap is re-
served for indexing whether the page is saved or not, to
guarantee completeness and consistency of the memory
state. The bitmap is shared between QEMU and KVM.
All the four manners should first store the page, then
set the associated bit value and remove the write-protect
flag. Or else, there will be concurrency bugs. Let us con-
sider an improper case that set bit and removes flag first.
Upon saving a page, the Background copy thread firstly
set the associated bit and removes the write-protect flag;
however, before the thread saving the page content, the
Guest OS dirties this page since write protect flag has
been removed, causing the thread to save the false page
content. Thus, when taking memory snapshot, the inter-
ceptions on DMA write and KVM write will first check
the associated bit value of the page about to write, save

the original page if the bit value is not set, or ignore oth-
erwise. The Guest Write Handler also takes the same
procedure, for the bit value has been set, it allows the
guest to continue running without exit to QEMU.

4.3 Log and Resend On-the-fly Packets

Dropping the on-the-fly packets send from post-snapshot
VM to pre-snapshot VM during TCP backoff duration is
a simple way to obtain the global consistent state. How-
ever, this way will increase the TCP backoff duration, the
reason is as follows: TCP or other upper level protocol-
s will retransmit the packets that are not acknowledged
in a certain time named Retransmit Timeout (RTO), to
achieve correctness and reliability of message passing.
That means, if the the packets are lost, these reliable pro-
tocols will delay resending the packet until timeout. The
default RTO value is 3 seconds in Linux 2.6.32 kernel,
it is always larger than the TCP backoff duration which
lasts tens of milliseconds in HotSnap system (in Section
5.3). Thus, if the packets are dropped, the actual network
interruption time will be the RTO value at the minimum,
i.e., 3 seconds. Worse still, the RTO value will increase
manyfold until receiving the acknowledgement.

Instead of dropping the packets directly, the Packet
Mediator component intercepts the read/write operations
issued by the tap device which is connected to the virtual
network interface card (VNIC) of VM, logs the on-the-
fly packets send from the post-snapshot VM to the pre-
snapshot VM, and then stores the packets into a buffer.
After completing the transient snapshot, the Packet Me-
diator will first fetch the packets from the buffer, send
them to the VNIC of the VM, and finally resume the nor-
mal network communication.

5 Experimental Evaluation

We apply several application benchmarks to evaluate
HotSnap. We begin by illustrating the results for cre-
ating snapshot of individual VM, and then compare the
TCP backoff duration between three snapshot modes un-
der various VMC configurations, lastly we characterize
the impacts on performance of applications in VMC.

5.1 Experimental Setup

We conduct the experiments on four physical server-
s, each configured with 8-way quad-core Intel Xeon
2.4GHz processors, 48GB DDR memory, and Intel
82576 Gigabit network interface card. The servers are
connected via switched Gigabit Ethernet. We configure
2GB memory for the virtual machines unless specified
otherwise. The operating system on physical servers and
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virtual machines is debian6.0 with 2.6.32-5-amd64 ker-
nel. We use qemu-kvm-0.12.5 as the virtual machine
manager. The workloads inside the VMs includes:

Idle workload means the VM does nothing except the
tasks of OS self after boot up.

Kernel Compilation represents a development work-
load involves memory and disk I/O operations. We com-
pile the Linux 2.6.32 kernel along with all modules.

Matrix Multiplication multiplies two randomly gen-
erated square matrices, this workload is both memory
and CPU intensive.

DBench [4] is a well known benchmark tool to evalu-
ate the file system, it generates I/O workloads.

Memcached [8] is an in-memory key-value store for
small chunks of data, the memcached server when re-
ceiving a request containing the key, will reply with the
value. We set memcached server in one VM, and config-
ure mcblaster [7] as client in another VM to fill the data
in the memcached instance and then randomly request
the data from the memcached server.

Distcc [5] is a compilation tool that distributes the
compilation tasks across the VMs connected in the VM-
C. It contains one Distcc client and several servers. The
client distributes the tasks to servers, and the servers af-
ter receiving the task will handle the task and then return
the result to the client. This workload is memory and
network intensive. We use Distcc to compile the Linux
2.6.32 kernel with all modules in the VMC.

BitTorrent [2] is a file transferring system, the peers
connect to each other directly to send and receive por-
tions of file. Different from distcc that is centralized,
BitTorrent is peer-to-peer in nature.

We compare the three snapshot methods, all these
methods save the snapshot file in local host.

Stop-and-copy. The default snapshot method used in
QEMU/KVM, it suspends the VM while creating snap-
shot.

VNSnap-disk. We implement the VNSnap-disk snap-
shot method based on live migration in QEMU/KVM,
save the memory state into the stable storage directly.

HotSnap. Our snapshot method that suspends the VM
first, then create the transient snapshot and full snapshot.

QEMU/KVM optimizes taking snapshot by compress-
ing the zero pages with one byte, thus reduce the amount
of saved state. This incurs unfairness in experiments, the
reason is, the VM after long time running may dirty more
zero pages, and experience longer snapshot duration than
the new booted VM which contains large number of zero
pages, thus leading to unpredictable TCP backoff dura-
tion between the two VMs. As a result, we abandon the
compression codes, save the whole zero page instead of
only one byte to eliminate the impact of zero pages.

5.2 Snapshot of Individual VM

We start by verifying the correctness of saved snapshot
state for individual VM, and then evaluate the snapshot
metrics including downtime, duration and snapshot file
size. When calculating the snapshot file size, we count
all devices’ state, memory state and bitmaps, as well as
the disk snapshot which is either a bitmap file in HotSnap
or multi-level tree file in the other two modes.

Correctness: Correctness means the snapshot correct-
ly records all the state of the running VM, so that the VM
can rollback to the snapshot time point and continue to
run successfully. To verify the correctness of HotSnap,
we compile the Linux kernel and take several snapshots
during normal execution. We pick the snapshots and con-
tinue running from these snapshot points, the compiled
kernel and modules can execute successfully. Besides,
we take snapshot in the Stop-and-copy manner, and then
create the HotSnap snapshot. The content of the two s-
napshots are identical and thus demonstrate the correct-
ness of our system.

Snapshot Metrics: We run Kernel Compilation, Ma-
trix Multiplication, Memcached and Dbench application-
s to evaluate the performance when taking snapshot of in-
dividual VM. We compare HotSnap with Stop-and-copy
and VNSnap-disk in terms of snapshot duration, down-
time and snapshot file size. As shown in Table 1, the VM
only experiences about 35 milliseconds downtime dur-
ing HotSnap, because this step is to create the transien-
t snapshot which only involves lightweight operations.
The downtime in VNSnap-disk is various, e.g., 381ms
for kernel compilation and 36.8ms when idle, it is re-
lated to the workload and I/O bandwidth. HotSnap also
achieves shorter snapshot duration and smaller file size
than VNSnap-disk. This is because HotSnap saves only
one copy for each memory page, while the live migration
based VNSnap-disk needs to iteratively save dirty mem-
ory pages to snapshot file. The Stop-and-copy method,
obviously, incurs dozens of seconds downtime. The
bitmap file size is only a little, e.g., 128KBytes to index
4GBytes memory of VM, so that the snapshot file size in
HotSnap and Stop-and-copy are both about 2.02GBytes.

5.3 Snapshot of VMC

In this section, we evaluate HotSnap in the virtual ma-
chine cluster and focus on the TCP backoff duration.
We compare the TCP backoff duration in three snapshot
modes, while changing the VMC configurations. The
VMC configurations include: VMC under various work-
load, VMC of different scales, VMC with different VM
memory size and disk size, and VMC mixed of VMs with
different memory size.

We will first illustrate the details on snapshot progress
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Figure 6: Comparison of TCP backoff details.

that lead to TCP backoff. We build a VMC with 16 VMs,
with Distcc running inside. When creating the individu-
al VM snapshot, we record the snapshot start time, VM
suspend start time, VM suspend end time and snapshot
completion time. The suspend end time equals snapshot
completion time in VNSnap-disk snapshot method be-
cause VNSnap-disk suspends the VM at the end of s-
napshot, the TCP backoff duration between two VMs is
from the first VM suspend start time to the last VM snap-
shot completion time. The snapshot start time is identical
to the suspend start time in HotSnap because HotSnap
suspends the VM at the start of snapshot, and the TCP
backoff duration is from the suspend start time to the last
suspend end time. Figure 6 shows the detailed results of
16 individual VM snapshot progresses in the VMC. The
Stop-and-copy downtime last dozens or even hundreds
of seconds, thus are not given in the figure.

We can see from Figure 6(a) that the duration from s-
napshot start to suspend end of VMs are almost identical
and are minor, and the average suspend duration (down-
time) is 116ms. The maximum TCP backoff duration
between two VMs is 273ms. For VNSnap-disk snapshot
method shown in Figure 6(b), although the snapshots s-

tart simultaneously, their suspend start time are various
owing to iteratively saving the dirtied memory pages.
The suspend duration are also different, ranges from tens
of milliseconds to hundreds of milliseconds. The V M9
which is the Distcc client even suffers from 2.03 second-
s downtime, because it undertakes the heaviest task and
generates large amount of memory during final transfer.
VNSnap-disk brings 359ms VM downtime in average,
only a little more than that of HotSnap. However, due to
the discrepancy of snapshot completion times, the TCP
backoff duration is much longer, e.g., the maximum val-
ue is 15.2 seconds between V M1 and V M9. This result
suggests that the TCP backoff in VNSnap-disk snapshot
method is much severe in the master/slave style distribut-
ed applications. The master always suffers from heavier
workloads, costs longer time to finish the snapshot than
the slaves, resulting in longer network interruption be-
tween master and slaves. However, the HotSnap method
can effectively avoid this short-board affect because the
downtime to create the transient snapshot is regardless
of the workload, and lasts only tens of milliseconds.

The TCP backoff duration between two VMs is easy
to acquire, but the backoff duration for the whole VMC

Metrics Duration(s) Downtime(ms) Snapshot Size(GBytes)

Benchmarks Stop-
and-copy

VNSnap-
disk

HotSnap Stop-
and-copy

VNSnap-
disk

HotSnap Stop-
and-copy

VNSnap-
disk

HotSnap

Idle 50.64 51.66 51.57 50640 36.83 31.88 2.02 2.04 2.02
Compilation 52.50 61.11 51.96 52500 381.72 34.16 2.02 2.38 2.02
Matrix Mul-
tiplication

49.34 51.75 52.31 49340 55.73 35.93 2.02 2.19 2.02

Memcached 53.09 69.43 54.72 53090 150.85 33.80 2.02 2.41 2.02
Dbench 56.93 60.76 50.18 56930 79.36 39.36 2.02 2.17 2.02

Table 1: Comparison of individual VM snapshot techniques.
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Figure 7: TCP backoff in VMC under various workloads.

is hard to depict, we approximate the value by the aver-
age of TCP backoff durations between each two VMs in
the VMC. Take Figure 6 as an example, the VMC TCP
backoff duration are 137ms and 8.6s for HotSnap and
VNSnap-disk methods respectively. In the following, we
will compare the results of VMC TCP backoff duration
under different VMC configurations in Figures 7-10. The
VMC TCP backoff duration is log transformed on y-axis
for clear comparisons:

VMC under various workloads. In this configura-
tion, we build the VMC with 16 VMs, which are de-
ployed evenly on four physical servers. The workloads
are Distcc, BitTorrent, MapReduce and MySQL Clus-
ter. For BitTorrent, we set one tracker in one VM, set
two VMs as clients to download files from other VMs as
seeds. We set up the Hadoop MapReduce [6] to count
the key words in the short messages data set from Chi-
na unicom, which contains over 600 million messages.
Besides, we use the MySQL Cluster [9] to build a dis-
tributed database across the VMs, we configure one VM
as management node, 13 VMs as database nodes, and ex-
ploit Sysbench [10] set up in two VMs to query the data
in parallel. Figure 7 compares the VMC TCP backof-
f duration under different snapshot modes. As expected,
the HotSnap distributed snapshot only suffers from about
100 milliseconds backoff duration under all the work-
loads, while the VNSnap-disk method incurs as many as
7 seconds in the MapReduce and MySQLCluster work-
loads, owing to the different snapshot completion times
among VMs.

VMC of different scales. We set up the VMC with
8, 16, 24 and 32 VMs with Distcc running inside. Same
as above, the VMs are deployed evenly on four physical
servers. Figure 8 shows that the VMC TCP backoff dura-
tion in HotSnap method keeps almost constant, i.e., less
than 200ms regardless of the number of VMs in the VM-
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Figure 8: TCP backoff in VMC with different scales.

C. That’s because the transient snapshot in HotSnap only
save a few megabytes data, involves CPU state, bitmap
files of disk and memory state. The VMC TCP backoff
duration in VNSnap-disk and Stop-and-copy rises with
the increase of VM number; the reason is the parallel ex-
ecution of writing more large files.

VMC with increased VM memory and disk size.
We configure the VMC with 16 VMs under the Distc-
c workload. Figure 9 compares the VMC TCP back-
off duration while increasing the VM memory size and
disk size. The VMC TCP backoff duration in all the
three modes increase while increasing the VM memo-
ry size and disk size. The increase in HotSnap method
is because HotSnap need to reserve larger bitmap files
for larger disk and memory size, and more operations to
set write protect flags to memory pages. The increase
in Figure 9(a) in VNSnap-disk may come from two as-
pects: the first is the parallel execution of writing larger
files, which is also the reason for the increase in the Stop-
and-copy method; the second is owing to longer time to
save more memory pages, which will further generate
more dirtied pages during iteration time. Because the
disk snapshot is created in VM suspend phase, and dif-
ferent disk size affects the VM downtime, so we show
the downtime instead of VMC TCP backoff duration in
Figure 9(b). As estimated, the redirect-on-write based s-
napshot method cost only tens of milliseconds, achieves
the reduction by more than 20x compared to the other t-
wo modes. Besides, the VNSnap-disk downtime reaches
several seconds, and is proportional to the VM disk size,
because most of the downtime is consumed to index the
disk blocks in the multi-level tree structure. The Stop-
and-copy takes the same method to create disk snapshot,
thus incurs the same downtime to VNSnap-disk.

VMC mixed of VMs with different memory size. In
this VMC configuration, we set up the VMC with two
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Figure 10: TCP backoff in VMC mixed of VMs with
different memory size.

VMs of different memory size. As illustrated in Figure
10, compared to the HotSnap TCP backoff duration that
keeps almost constant regardless of the discrepancy of
VM memory size, the TCP backoff duration of VNSnap-
disk increases proportionally to the raised discrepancy
between memory size, i.e., every 1G memory difference
will incur additional 27 seconds backoff duration. As
expected, the VMC which consists of 1G memory VM
and 4G memory VM obtains the largest backoff duration.
The Stop-and-copy method, on the other hand, increases
with the increasing memory size of VMs, this is easily
understand because more time will be consumed to write
larger files into the snapshot file.

5.4 Performance Impact on Individual VM

In the above experiments, we save the whole zero page
instead of only one byte to avoid the impacts of zero
pages. However, saving multiple large snapshot files si-
multaneously during distributed snapshot will degrade
performance seriously, and even cause write operation
timeout for I/O intensive applications. We consider the
optimization as our future work, but in this paper, we
simply resume the zero page compression mode to re-
duce the saved page count during snapshot.

As stated in the previous section, during the full snap-
shot step, we trap the write page fault in KVM and turn to
QEMU to handle the write fault, so that the memory op-
erations of Guest OS and user applications are affected.
Besides, we intercept the DMA write operations, which
may affect the guest I/O speed. So we first give the s-
tatistic on the four memory page saving manners during
HotSnap, and then evaluate the performance on applica-
tions.

Page count of different manners in HotSnap. Hot-
Snap saves the memory pages in four manners: Guest
Write Handler, DMA Write Handler, KVM Write Han-
dler and Background Copy. The saved page number of
these four types under various workloads are listed in Ta-
ble 2. The Guest Write pages always account more than
that of DMA Write and KVM Write, but the amount is
still minor even under memory intensive workloads, e.g.,
2.5% of all memory pages under Memcached. This is
possible because HotSnap saves dozens of neighbour-
ing pages when handling one page fault and thus it ben-
efits from the memory locality feature. Handling one
Guest Write page cost about 60us, including the time
to trap write page fault, exit to QEMU to save memo-
ry pages, remove write protect flag and resume the ex-
ecution. As a result, the total cost incurred by saving
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page in Guest Write is affordable. DMA Write opera-
tions and KVM Write operations always repeatedly ac-
cess the same memory pages, therefore the count is mi-
nor. Besides, the interception on DMA write and KVM
write lasts about 12us, making the impact can be negli-
gible.

Workloads Background
Copy

Guest
Write

DMA
Write

KVM
Write

Idle 528301 133 44 2
Compilation 524506 3912 59 3
Matrix Mul-
tiplication

520496 7916 65 3

Memcached 514814 13270 394 2
Dbench 526831 987 660 2

Table 2: Count of four page types during HotSnap.

Matrix multiplication time. Matrix Multiplication
involves large amount of memory and CPU operations.
We calculate the multiplication of two matrices while
increasing the matrix order, and obtain the calculation
time during No-Snapshot (i.e., normal execution), Hot-
Snap and VNSnap-disk snapshot. Figure 11 compares
the results of HotSnap and VNSnap-disk to the com-
pletion time of No-Snapshot as baseline. Both the two
live snapshot methods bring less than 5% additional time
to finish the computation, implying no obvious perfor-
mance penalty during distributed snapshot for this kind
of workload.

Kernel compilation time. Kernel compilation in-
volves both memory operations and disk IO opera-
tions, we compile Linux-2.6.32.5 kernel with all mod-
ules during continuous VM snapshot. Figure 12 com-
pares the compilation duration in No-Snapshot, Hot-
Snap and VNSnap-disk modes. The time during Hot-
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Figure 12: Kernel compilation time.

Snap and VNSnap-disk distributed snapshot are almost
equal, and both consume about 20% more time to com-
pile the kernel. The increase is owing to the CPU uti-
lization and I/O bandwidth consumed by the VM snap-
shot. The 20% reduction maybe unacceptable in many
performance-critical systems, and we leave the perfor-
mance optimization as our future work.

5.5 Performance Impact on VMC

We first build the VMC with different number of vir-
tual machines, and run Distcc to compare the comple-
tion time of normal execution, HotSnap distributed snap-
shot and VNSnap-disk snapshot. Then we set the VMC
with 16 virtual machines running on four physical server-
s evenly, and install BitTorrent to evaluate the download
speed during distributed snapshot.

Distcc compilation time. Distcc client distributes the
compilation task to servers, if it loses connection with
one server, the client will do the task in local; and the
client can continue to distribute the task once the serv-
er is connected again. Figure 13 depicts the compila-
tion time during continuous distributed snapshot while
increasing the number of VMs in the VMC. Compared to
the No-Snapshot mode, the compilation duration during
HotSnap distributed snapshot increases by about 20%.
The increase are mainly due to the snapshot overhead
such as I/O operations and CPU utilization, the similar
results are also illustrated in Figure 12. The duration
during VNSnap-disk is much longer, it cost about 7%
to 10% more time to finish compilation than that of Hot-
Snap. Obviously, this is due to the TCP backoff which
incurs network interruption between client and servers.

BitTorrent download speed. We set up the BitTor-
rent to evaluate the network performance loss incurred
during distributed snapshot. We build the tracker on
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one VM, treat one VM as the client to download a large
video file from other VMs as seeds, and record the down-
load speed every 100 milliseconds. Note that the prac-
tical download speed varies significantly even in adja-
cent epoches, we average the speed by twenty samples.
Figure 14 compares the download speed between nor-
mal execution and distributed snapshot. The download
speed reduces from 33.2MBytes/sec during normal run-
ning to 22.7MBytes/sec when taking snapshot. The d-
ifference of impact between HotSnap and VNSnap-disk
is also illustrated in the figure. HotSnap incurs a sharp
decrease at about the 6th seconds, which is actually the
distributed snapshot downtime to create the transient s-
napshot. Then the download speed will reach about
22.7MBytes/sec and keep the speed until the 55th sec-
ond. From this time point, many VMs finish the ful-
l snapshot and resume to normal execution, so that the
download speed will increase and finally reach the nor-
mal download speed, i.e., about 33.2MBytes/sec. The
download speed during VNSnap-disk distributed snap-
shot shows opposite result from the 55th second, it de-
creases and reaches 0MBytes/sec at the 68th second. The
reason is that the BitTorrent client experiences about 65
seconds to finish the snapshot, and will not receive the
packets from seed VMs that finish the snapshot ahead,
therefore decrease the download speed. After the client
resumes the execution from the 71st second, the down-
load speed also returns to normal.

6 Related Work

Distributed snapshot has been widely studied in the past
thirty years, and many techniques have been proposed
to create snapshot for distributed systems. The earlier
works mainly focus on designing the snapshot protocol
between the peers to maintain a global consistent state.
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Figure 14: BitTorrent download speed.

Chandy and Lamport [13] assume the message channel
is reliable and FIFO, and propose the coordinated proto-
col. Lai [21] proposes the message coloring based pro-
tocol to achieve consistency for non-FIFO channel. Kim
[19] blocks the peer running until all the distributed snap-
shot finishes to reserve the consistent state. In contrast
to optimize the snapshot protocol, we implement the co-
ordinated, non-blocking protocol in the high bandwidth
and low latency local area network, the protocol is sim-
ple and suitable for taking the distributed snapshot in the
virtualized environments.

Another key aspect of distributed snapshot is the snap-
shot technology. Copy-on-write, redirect-on-write, split
mirror are common methods to save the system state,
and are implemented on kernel level [11], library level
[24, 17, 25] or application level [3, 16] to create the s-
napshot. However, these methods require modification
of the OS kernel or applications, thus is unacceptable in
many scenarios.

The virtualization technology encapsulates the whole
application as well as the necessary resources; it con-
tributes to create the snapshot in an transparent manner.
Emulab [12] leverages live migration technique to enable
taking snapshots of the virtual machine network. By syn-
chronizing clocks across the network, Emulab suspends
all nodes for snapshot near simultaneously, and imple-
ments a coordinated, distributed snapshot. The synchro-
nization will block the execution of the VMs, thus inter-
fere with the applications running in the VMs. Besides,
Emulab requires modifications to the Guest OS, and is
hard to support legacy and commodity OS. VNSnap [18]
also leverages Xen live migration [14] function to min-
imize system downtime when taking VMN snapshots.
Unlike Emulab, VNSnap employs non-blocking coordi-
nation protocols without blocking VMs, and VNSnap re-
quires no modification to the guest OS. Our HotSnap pro-
posal shares a similar manner to VNSnap, but we design
a transient snapshot manner to suspend the VM first and
then create the full snapshot, which reduces the discrep-
ancy of snapshot completion time. Besides, we log and
resend the packets send from post-snapshot VM to pre-
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snapshot VM instead of dropping them which is adopted
by VNSnap. Both these two technologies achieve the no-
table reduction in the TCP backoff duration. Moreover,
we treat one VM as the initiator to avoid setting up a
customized module, which makes HotSnap to be easily
portable to other virtualized environments.

7 Conclusions

This paper presents a distributed snapshot system Hot-
Snap, which enables taking hot snapshot of virtual ma-
chine cluster without blocking the normal execution of
VMs. To mitigate TCP backoff problem and minimize
packets loss during snapshots, we propose a transient
VM snapshot approach capable of taking individual VM
snapshot almost instantaneously, which greatly reduces
the discrepancy of snapshot completion times. We have
implemented HotSnap on QEMU/KVM platform, and
conduct several experiments. The experimental results
illustrate the TCP backoff duration during HotSnap dis-
tributed snapshot is minor and almost constant regardless
of the workloads, VM memory size and different VM-
C configurations, thus demonstrate the effectiveness and
efficiency of HotSnap.

There still exists several limitations in HotSnap. First,
the newer QEMU version supports more DMA simu-
lators such as sound card and video card, implement-
ing DMA write interceptions for each simulated device
are fussy. Second, creating distributed snapshot involves
large amount of I/O operations, thus affect the I/O in-
tensive applications running insides the VMs. Therefore,
our ongoing works include designing an abstract layer
to intercept DMA write operations, scheduling the I/O
operations from Guest OS and HotSnap for application-
s’ performance requirements. We also plan to evaluate
HotSnap under real-world applications.
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A Global Consistent State

The virtual machine cluster is a message-passing system; there-
fore the global state of VMC to be saved consists of the indi-
vidual states of single VMs and the states of the communication
channels. The global consistent state requires: 1) if the state of
a process reflects a message receipt, then the state of the corre-
sponding sender much reflect sending this message; 2) A pack-
et can be in the sender, or flying in the channel, or is accepted
by the receiver, but cannot exist in two at the same time. Figure
15 illustrates a consistent and inconsistent state [15]. Figure
15(a) is consistent even the P1 do not receive m1, because m1
has been send from P0, and is travelling in the channel in this
case. On the other hand, Figure 15(b) describes an inconsis-
tent state, this is because m2 received by P2 has not been send
from P1 in this snapshot state. In such a case, P1 will resend

m2 after rollback to the inconsistent snapshot state, thus result
in fault state of P2. As a result, this kind of messages that send
from post-snapshot process to pre-snapshot process are always
dropped, or logged and then resend after snapshot is over.Rollback-Recovery Protocols in Message-Passing Systems 379

Fig. 2. An example of a consistent and inconsistent
state.

state in Figure 2(b). Note that the consis-
tent state in Figure 2(a) shows message
m1 to have been sent but not yet received.
This state is consistent, because it repre-
sents a situation in which the message has
left the sender and is still traveling across
the network. On the other hand, the state
in Figure 2(b) is inconsistent because
process P2 is shown to have received m2
but the state of process P1 does not reflect
sending it. Such a state is impossible in
any failure-free, correct computation. In-
consistent states occur because of failures.
For example, the situation shown in part
(b) of Figure 2 may occur if process P1 fails
after sending message m2 to P2 and then
restarts at the state shown in the figure.

A fundamental goal of any rollback-
recovery protocol is to bring the system
into a consistent state when inconsisten-
cies occur because of a failure. The recon-
structed consistent state is not necessarily
one that has occurred before the failure. It
is sufficient that the reconstructed state
be one that could have occurred before the
failure in a failure-free, correct execution,
provided that it be consistent with the in-
teractions that the system had with the
outside world. We describe these interac-
tions next.

2.3. Interactions with the Outside World

A message-passing system often interacts
with the outside world to receive input
data or show the outcome of a computa-
tion. If a failure occurs, the outside world
cannot be relied on to roll back [Pausch
1988]. For example, a printer cannot roll
back the effects of printing a character,
and an automatic teller machine cannot
recover the money that it dispensed to a
customer. To simplify the presentation of

how rollback-recovery protocols interact
with the outside world, we model the latter
as a special process that interacts with the
rest of the system through message pass-
ing. This special process cannot fail, and it
cannot maintain state or participate in the
recovery protocol. Furthermore, since this
special process models irreversible effects
in the outside world, it cannot roll back.
We call this special process the “outside
world process” (OWP).

It is necessary that the outside world
perceive a consistent behavior of the sys-
tem despite failures. Thus, before send-
ing a message (output) to OWP, the sys-
tem must ensure that the state from which
the message is sent will be recovered de-
spite any future failure. This is commonly
called the output commit problem [Strom
and Yemini 1985]. Similarly, input mes-
sages that a system receives from the out-
side world may not be reproducible during
recovery, because it may not be possible
for OWP to regenerate them. Thus, recov-
ery protocols must arrange to save these
input messages so that they can be re-
trieved when needed for execution replay
after a failure. A common approach is to
save each input message on stable storage
before allowing the application program to
process it.

Rollback-recovery protocols, therefore,
must provide special treatment for inter-
actions with the outside world. There are
two metrics that express the impact of this
special treatment, namely the latency of
input/output and the resulting slowdown
of system’s execution during input/output.
The first metric represents the time it
takes for an output message to be released
to OWP after it has been issued by the sys-
tem, or the time it takes a process to con-
sume an input message after it has been
sent from OWP. The second metric repre-
sents the overhead that the system incurs
to ensure that its state will remain con-
sistent with the messages exchanged with
the OWP despite future failures.

2.4. In-Transit Messages

In Figure 2(a), the global state shows
that message m1 has been sent but not

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Figure 15: An example of consistent and inconsistent s-
tate. p stands for independent process, and m represents
the message.
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Abstract

When managing cloud resources, many administrators
operate without a safety net. For instance, inadvertently
deleting a virtual disk results in the complete loss of
the contained data. The facility to undo a collection
of changes, reverting to a previous acceptable state, is
widely recognized as valuable support for dependability.
In this paper, we consider the particular needs of the sys-
tem administrators managing API-controlled resources,
such as cloud resources on the IaaS level. In particular,
we propose an approach which is based on an abstract
model of the effects of each available operation. Using
this model, we check to which degree each operation is
undoable. A positive outcome of this check means a for-
mal guarantee that any sequence of calls to such oper-
ations can be undone. A negative outcome contains in-
formation on the properties preventing undoability, e.g.,
which operations are not undoable and why. At runtime
we can then warn the user intending to use an irreversible
operation; if undo is possible and desired, we apply an AI
planning technique to automatically create a workflow
that takes the system back to the desired earlier state. We
demonstrate the feasibility and applicability of the ap-
proach with a prototypical implementation and a number
of experiments.

1 Introduction

Cloud computing is now a market larger than US$
150 billion worldwide, out of which Infrastructure-as-a-
Service (IaaS) is estimated at US$ 80 billion [8]. Ad-
ministrators executing applications on an IaaS platform
must provision, operate, and release the resources neces-
sary for that application. Administrators perform these
activities through the use of a fixed set of API operations
- those made available by the IaaS provider. The APIs
may be exposed as system administration commands,
Web service interfaces, programming language-specific

APIs, or by similar means.
When managing cloud resources, many administrators

operate without a safety net – for instance, inadvertently
deleting a virtual disk can result in the complete loss of
the contained data. Reverting to an earlier state manually
is difficult, especially for administrators with limited ex-
perience. The facility to rollback a collection of changes,
i.e., reverting to a previous acceptable state, a checkpoint,
is widely recognized as valuable support for dependabil-
ity [3, 5, 13]. This paper considers the particular needs of
administrators managing API-controlled systems to re-
vert to a previous acceptable state. This reversion can be
called an “undo” or “rollback”.

The need for undo for administrators is partially moti-
vated by the power of the provided APIs. Such APIs can
dramatically improve the efficiency of certain aspects
of system administration; but may increase the conse-
quences of human-induced faults. These human induced
faults play a large role in overall dependability [27, 28].

To support the administrator managing cloud re-
sources through an API, we aim to provide undoability to
a previously known consistent state. If the current state is
unsatisfactory for any reason, a consistent earlier state (or
a checkpoint) can be restored. This is similar to the con-
cept of “transactional atomicity” in that the period from
the consistent earlier state to a future consistent state can
be considered as a transaction that may be committed or
undone.

However, the nature of a cloud platform introduces
particular difficulties in implementing undo. One fun-
damental issue is the fixed set of operations: the ad-
ministrator cannot alter the set of operations provided by
the cloud provider in an API nor even examine its imple-
mentation. Administrators have to accept a given API,
which is not necessarily designed to support undo. One
implication of this inability to change the API is that it is
not totally possible to introduce locks to prevent multi-
ple administrators from attempting concurrent undos. It
is possible to introduce a lock mechanism on top of our

1
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undo but since administrators can directly use the origi-
nal API, they could circumvent the locks. We therefore
assume that single user undo is enforced by administra-
tive and not technical means.

In the following, we list particular challenges for un-
doability in the environment outlined above.

1. Completely irreversible operations. For some op-
erations, like deleting a virtual disk, no compensating
operation is provided. Although it is possible to re-
cover data stored in a disk if the backup exists, a disk
itself cannot be restored once it is deleted when no
such functionality is supported by a cloud provider.

2. Partly irreversible operations. Some operations are
mostly undoable, but not fully so. For example, start-
ing a machine seems to be an inverse operation for
stopping it. However, certain properties cannot neces-
sarily be restored: any property that is set by the cloud
provider when starting a machine cannot be guaran-
teed to match the value in the checkpointed state. Ex-
amples include the startup timestamp, dynamically al-
located private or public IP addresses or DNS names,
etc. Restoring the exact values of those properties
may or may not be important in a given administra-
tion task.

3. As-is API, requiring potentially complex undo
workflows. Since the user can manipulate the state of
the resources only through the provided API, restor-
ing a previous acceptable state can only be achieved
by calling the right API operations on the right re-
sources in the right order. A common assumption is
that a sequence of operation calls can be undone by
calling inverse operations in the reverse chronological
order – e.g., as suggested in ref. [14]; but this is not
always correct or optimal [16]. Further, constraints
between operation calls can be non-obvious and state-
specific. Contrast our accomplishing an undo via pro-
vided APIs with undos based on provider furnished
tools such as ZFS snapshotting. ZFS snapshotting
enables the recovery of a dataset via internal mech-
anisms. Administrators do not have access to such
internal mechanisms and so need to cope with the fea-
tures the provider made accessible.

4. Error-prone operations. Cloud API operations are
often themselves error-prone: we frequently observed
failures or timeouts on most major commercial cloud
platforms. Therefore, failures may occur during the
execution of an undo workflow, and need to be han-
dled, such as flexibly executing alternative operations.

To support undoability on existing cloud platforms or
similar API-controlled systems, we address the four is-
sues listed above as follows.

1. Introduction of Pseudo-Delete. An irreversible op-
eration, like delete, is replaced by corresponding
pseudo variant of the operation, like pseudo-delete
(see e.g., ref. [15]). Pseudo-delete first marks a re-
source for deletion while retaining ownership; the re-
source is actually released only when the whole oper-
ation sequence is successfully completed.

2. Undoability Checking. A major portion of the prob-
lem with partly irreversible operations is that their
effects are not necessarily known; another portion
is that the significance of changes in properties is
highly context-specific. We propose a novel method
to check the undoability of operations, based on a for-
mal model from AI planning (see e.g., ref. [30]).
Given the requirements on which properties need to
be restored after the combination of forward and undo
workflows, as well as which operations are to be exe-
cuted, the proposed method determines if these oper-
ations can be undone.

3. Generation of undo workflows. If rollback is de-
sired our system will automatically generate an undo
workflow, i.e., create an appropriate sequence of op-
eration calls from the given API, which, when exe-
cuted, brings the resources back to their checkpointed
state. To this end we use an AI planner [20], based
on the formal model of operations mentioned above.
Choosing a sequence of operations is a search in the
space of possible solutions; highly optimized heuris-
tics solve common cases of this computationally hard
problem in reasonable time.

4. Handling failures on rollback. We use a particular
AI planner [20] that produces plans which can handle
failures by including suitable “backup plans”, where
such plans exist.

This paper makes the following contributions. We
provide undoability support for API-controlled systems,
such as cloud management, by checking the undoability
of relevant operations. If accomplishing an undo is not
always feasible, we can identify the specific operation
and specific circumstances under which that operation
cannot be undone. If accomplishing an undo is feasible,
the undo system from our earlier work1 can provide an
undo workflow when desired. We further developed two
prototypes: one is the undoability checker and one is an
undo system for Amazon Web Services (AWS)2 manage-
ment operations. Based on these prototypes we evaluated

1A previous paper [31] was published at the 2012 USENIX HotDep
workshop, focused on the undo system. We summarize some of these
results here for completeness, but focus on the new aspects: undoability
checking, its implications, and new experiments.

2http://aws.amazon.com, accessed 30/4/2013

2
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our approach in depth. The website of the work is
http://undo.research.nicta.com.au .

The remainder of the paper is structured as follows. In
Section 2 we describe motivating examples. Section 3
gives an overview of the proposed system. Section 4 dis-
cusses the details of the domain model for AWS used in
AI planning techniques. Section 5 presents the undoabil-
ity checking approach, and Section 6 the undo system. In
Section 7 we discuss implications for system operations
in practice. In Section 8 we evaluate the feasibility of
our approach. Section 9 connects and contrasts our work
with related research. Section 10 concludes the paper
and suggests directions for further study. A technical re-
port contains formal details of the undoability checking
omitted here, and is available through the website.

2 Motivating Examples

To showcase the problems addressed in this paper, we
provide four concrete system administration scenarios
next. These scenarios are mainly taken from our day-
to-day system operations using public cloud resources
within Yuruware3, a NICTA spin-out offering a backup
and disaster recovery solution for cloud-based systems.
Some of them are also inspired by products for automat-
ing data center operations such as VMware vCenter Or-
chestrator4 and Netflix Asgard5. In the evaluation (Sec-
tion 8.3), we revisit these scenarios and discuss the find-
ings from our evaluation of the specific undoability of
each scenario.

Scenario 1. Adding a slave to an existing database
server. When traffic to one database server grows,
sooner or later it cannot provide enough capacity to han-
dle the workload in time. A common technique to ad-
dress the issue is to add slave database servers, serving
only read queries, while a master server only serves write
queries. This reconfiguration is typically performed dur-
ing scheduled maintenance time, where the database
server can be taken offline, and includes two steps: cre-
ating slave databases by cloning the database server, and
introducing a proxy server to distribute queries among
servers.

The first step, i.e., creating slave database servers, con-
sists of the following activities.
1. Stop the instance operating a database server
2. Take a snapshot of the volume storing the database
3. Create copy volumes from the snapshot
4. Launch new instances with a copy volume attached
5. Configure the new instances as slave database servers
6. Start the original instance and configure it as a master

3yuruware.com
4vmware.com/products/vcenter-orchestrator
5github.com/Netflix/asgard

The second step, i.e., introducing a proxy server, con-
sists of the following activities.
1. Launch a new instance
2. Re-allocate a virtual IP address from a master

database to the new instance
3. Configure the new instance as a database proxy

Challenges. If a failure occurs during the reconfigu-
ration, an administrator expects the undo mechanism to
remove all newly created resources and restore the state
of the instance operating the master database. It is trivial
to remove new resources. Properties to be restored are
the state (i.e., running), the allocation of the virtual IP
address, the instance ID, and the amount of resources al-
located. Many properties do not need to be restored such
as the public/private IP address allocated to. (In a variant
of this scenario, the system may rely on the private IP
address of the master database server, such that it must
be restorable as well.)

Scenario 2. Scaling up or down an instance. When
the underlying platform – such as Amazon Web Ser-
vices (AWS) – does not support dynamic resource re-
allocation (e.g., adding CPU cores without stopping a
guest OS), an administrator first needs to stop an in-
stance, change the resource allocation, and start the in-
stance up again.

Challenges. Depending on the context, a variety of
properties can be modified on a stopped machine, and
need to be restorable. However, stopping a machine on
AWS is most likely to change the private IP and the pub-
lic DNS name.

Scenario 3. Upgrading the Web server layer to a new
version. First an administrator creates a new load bal-
ancer, then launches instances operating a new version of
an application and registers them with the new load bal-
ancer. Subsequently, the traffic is forwarded to the new
load balancer by updating the respective DNS record.
Once all activities completed in the old Web layer, the
administrator creates a machine image from one of in-
stances in the old Web layer as a backup and decommis-
sions all resources comprising the old Web layer.

Challenges. In this scenario, all resources that com-
prise the old Web layer (i.e., the specific instances, a
load balancer, their association, etc.) and the DNS record
need to be restorable. In a variant of this scenario, in-
stances may be designed to be stateless; hence being able
to restore the original number of instances from the same
image suffices to undo the changes to the machines.

Scenario 4. Extending the size of a disk volume. In-
creasing the size of a disk volume in a database server
or a file server is a common administration task. Simi-
lar to the scenario shown in Scenario 1, an administrator
stops an instance, creates a copy of the data volume with

3
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larger size, and swaps the data volume of the instance
with the new copy. Then he/she starts the instance again
and deletes the old data volume and the snapshot.

Challenges. In this scenario, the original data volume
and the association with the instance must be restorable.

3 System Overview

In this section, we summarize the functionality of the
undoability checker and the undo system, before giving
more details in the next sections. A high-level overview
is given in Fig. 1.

Full domain model
- Operations (API)
- Resources and properties

Projected domain model
- Operations (inherited from full domain model)
- Properties required restorable on undo

List of
operations to 
execute

Undoability
Checker

Undo
System

Past resource state
(check point)

Current 
resource state

Cloud

Undo plan
Revert the state of resources to
the check point

Are the listed 
operations undoable ?

Figure 1: High-level overview of the framework

Our techniques rely on a suitable abstract model of the
domain, where each operation has a precise representa-
tion of its effects on each aspect of the abstract state, as
well as a precise representation of its preconditions, stat-
ing in which (abstract) states the operation can be exe-
cuted. This forms the full domain model in Fig. 1, which
can, e.g., capture operations from a management API
provided by Amazon Web Services (AWS). For instance,
the operation deleting a resource such as a disk volume
in AWS can only be executed when the disk is available
(precondition), and subsequently it is not available but
deleted (effect). More details are given in Section 4.

Based on this representation, we extended techniques
from AI planning (see e.g., ref. [30] for an overview) to
check the undoability of a domain at design time: can
each operation be undone in any situation? If no, what
are the exact problems? Such problems can be solved
by (i) abstracting from details or states that are irrele-
vant; or (ii) altering the set of operations, e.g., by replac-
ing non-reversible forward operations such as deleting a
disk volume through reversible variants, such as pseudo-
delete. The former can be achieved by altering the do-
main model. The latter can be achieved by replacing the

delete operation with pseudo-delete in a domain model
as well as replacing the actual implementation of delete
operation. In Fig. 1 the outcome of the model changes
is illustrated as a projected domain model. A projected
model is used to determine whether a given set of op-
erations (or all operations in a domain) are undoable –
whether the state of (projected) resources can be reverted
from the state after executing an operation to the state
before. Section 5 discusses undoability checking more
detail.

When undo is desired, i.e., an administrator wants to
revert the state of cloud resources from the current state
to a past checkpoint, we use an extended version of the
undo system from our previous work [31] to find and exe-
cute an undo plan. This is summarized in Section 6. Note
that the undo system operates on the projected domain
model, so that results from previous undoability checks
apply.

4 Domain Model

The domain model formally captures the actions of a do-
main – in our case, operations defined in a cloud manage-
ment API. As such, it forms the basis of the undoability
checking and the undo system.

While the problem and system architecture are
generic, the domain model is of course specific to the
management API to be modeled. For our proof-of-
concept prototype we focused on Amazon Web Services
(AWS) as the domain and chose the planning domain
definition language (PDDL) [25] as the planning formal-
ism. We modeled part of the Apache CloudStack API6

as well, namely those operations triggering state changes
on machines and disk volumes. However, the AWS doc-
umentation is more detailed, and the exact effects can
be observed from the single implementation of AWS.
Therefore, our focus remained on AWS.

One of the most critical aspects for applying AI plan-
ning is obtaining a suitable model of the domain [22].
For the purposes of this research, we designed a domain
model manually, formulated in PDDL. This model has
about 1100 lines of code, and contains representations
of 35 actions (see Table 1). Out of these, 18 actions
are for managing AWS elastic compute cloud (EC2) re-
sources, such as virtual machines (called instances) and
disk volumes, and 6 actions for managing the AWS auto-
scaling (AS) mechanisms. These actions have been se-
lected due to their high frequency of usage by the devel-
opers in our group. Four of the remaining actions are
for system maintenance, e.g., switching a server cluster
to/from maintenance modes. Those actions are not spe-

6cloudstack.apache.org/docs/api/, accessed
21/02/2013.
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cific to AWS but defined for generic system administra-
tion. The final 7 actions are added undelete actions, one
per resource type – which become available by replacing
delete with pseudo-delete.

Resource type API operations
Virtual machine launch, terminate, start, stop, change

VM size, undelete
Disk volume create, delete, create-from-snapshot,

attach, detach, undelete
Disk snapshot create, delete, undelete
Virtual IP address allocate, release, associate, disassoci-

ate, undelete
Security group create, delete, undelete
AS group create, delete, change-sizes, change-

launch-config, undelete
AS launch config create, delete, undelete

Table 1: AWS actions captured in the domain model –
adapted from [31]

Case Study: the PDDL definition of the action to
delete a disk volume is shown in Listing 1. From this
example, it can be seen that parameters are typed, predi-
cates are expressed in prefix notation, and there are cer-
tain logical operators (not, and, oneof, . . . ), also in prefix
notation. The precondition requires the volume to be in
state available, not deleted, and not be subject to an unre-
coverable failure. The effect is either an unrecoverable
failure or the volume is deleted and not available any
more.

Listing 1: Action to delete a disk volume in PDDL
1 (:action Delete-Volume
2 :parameters (?vol - tVolume)
3 :precondition
4 (and
5 (volumeAvailable ?vol)
6 (not (volumeDeleted ?vol))
7 (not (unrecoverableFailure ?vol)))
8 :effect
9 (oneof

10 (and
11 (volumeDeleted ?vol)
12 (not (volumeAvailable ?vol)))
13 (unrecoverableFailure ?vol)))

Unrecoverable failure is a predicate we define to
model the failure of an action, assuming that the affected
resource cannot be brought back to a usable state using
API operations. It should be noted that our planning do-
main model resides on a slightly higher level than the
respective APIs. When a planning action is mapped to
executable code, pre-defined error handlers are added as
well. For example, a certain number of retries and clean-
ups take place if necessary. Such a pre-defined error han-
dler, however, works only on the resource in question. If
it fails to address an error, an unrecoverable failure is

raised.
From the viewpoint of an AI planner the unrecoverable

failure poses two challenges: non-deterministic actions
and goal reachability. The outcome of Delete-Volume
(success or unrecoverable failure) is observed as a non-
deterministic event. In the presence of non-deterministic
actions, the planner has to deal with all possible out-
comes, which makes finding a solution harder than in
the purely deterministic case. This requires a specific
form of planning, called planning under uncertainty –
see, e.g., Part V in [30].

Further, the question “when is a plan a solution?”
arises. To cater for actions with alternative outcomes,
a plan may contain multiple branches – potentially in-
cluding branches from where it is impossible to reach
the goal. A branch that contains no unrecoverable failure
is the normal case; other branches that still reach the goal
are backup branches. A plan that contains more than one
branch on which the goal can be reached is called a con-
tingency plan. Branches from which the goal cannot be
reached indicate situations that require human interven-
tion – e.g., if a specific resource has to be in a specific
state to reach the goal, but instead raises an unrecover-
able failure, no backup plan is available. This also means
the action is not fully undoable (as long as unrecoverable
failures are considered).

In planning under uncertainty there are two standard
characterizations of plans: a strong plan requires all
branches of a plan to reach the goal, whereas a weak plan
requires at least one branch to reach the goal. Standard
planners that can deal with uncertainty are designed to
find plans satisfying either of them; however, neither is
suitable in our domain. It is highly likely that no strong
plan can be found: many of the actions can return an un-
recoverable failure, and many of possible branches can-
not reach the goal. Weak plans have the disadvantage that
only the “happy path” is found: a plan that allows reach-
ing the goal only if nothing goes wrong. When finding
a weak plan, a planner does not produce a contingency
plan, which we deem insufficient.

In prior work [20], a different notion of a weak plan
was introduced: the goal should be reached whenever it
is possible. This is desired in the setting given here, as it
will produce as many branches (i.e., a contingency plan)
as possible that still reach the goal, given such alterna-
tive branches exist. For finding plans with these solution
semantics, a highly efficient standard planner, called FF
[19], was extended in [20].

There are three discrepancies between the standard AI
planning and our use of it in the undo system and the
undoability checker, which require attention:

1. In the undo system, when new resources are created
after a checkpoint, the resources exist in the initial
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state (i.e., the state captured when a rollback is is-
sued) but not in the goal state (i.e., the state when a
checkpoint is issued). Unless treated, the AI plan-
ner simply leaves these excess resources intact: since
they are not included in the goal state, they are irrel-
evant to the planner. However, to undo all changes,
excess resources should be deleted. To discover plans
that achieve this, we perform a step of preprocess-
ing before the actual planning: the goal state is com-
pared with the initial state in order to find excess re-
sources; the goal state is then amended to explicitly
declare that these excess resources should end up in
the “deleted” state.

2. In the AI planning variant we employ, new resources
cannot simply be created out of nowhere. Instead, we
model this case through a unary predicate called not-
yet-created. In the undoability checker, we consider
not-yet-created to be equivalent to deleted.7 Thus, we
need to replace any occurrence of not-yet-created in
an undoability checking goal with not-yet-created OR
deleted. This allows us to undo effects of actions that
create new objects, by simply deleting them.

3. The equals predicate “=” is used in PDDL to mark the
equivalence of two constants. In our domain model,
we use it in the preconditions of several actions. In the
undoability checker, this would cause problems, since
the checker derives initial and goal states for planning
problems from actions’ preconditions and effects and
instantiates them with constants – which can cause
contradictions. We circumvent the problem by apply-
ing the meaning of the equals predicate in planning
tasks created by the undoability checker, and filtering
out any contradictory states.

Using these special treatments in the undo system and
the undoability checker, we can use a standard PDDL
domain model for both purposes – so long as it follows
our naming convention for deleted and not-yet-created
predicates.

5 Undoability Checking

As argued in the introduction and the motivating exam-
ples, it is not a priori clear if all operations can be rolled
back under any circumstances. In order to provide the
user with confidence, we devised an undoability checker,
which uses the domain model described in the previous
section. We herein summarize our undoability checking
approach – since the problem is highly non-trivial, a sep-
arate technical report is available, see Section 1, which
provides a full formal treatment of the matter.

7This point is related to the above, but different in that the check-
pointed state does not contain not-yet-created predicates.

5.1 Undoability Checking Overview

Fig. 2 provides an overview of the undoability checker.
It involves two separate roles: a tool provider and a user.
The tool provider defines the full domain model that for-
mally captures the inputs and the effects of operations
available in a cloud platform, such as Amazon Web Ser-
vices (AWS). The user of the undoability checker is as-
sumed to have enough knowledge to operate systems on
a cloud platform; however, he/she does not need to define
or know the details of the domain model.

Operation(s) to execute 
(e.g., script, command)

Resources and
properties required
restorable on undo

Define

Tool user
(e.g., sys admin)

Tool provider
Full domain model

(e.g., AWS)

Projection
Specification

Generate

Undoability CheckerDefine

Apply 
Projection

Generate

Projected
domain
model

Per operation: 
Generate pre and 

post-states

Check undoability per 
pre-post state pair

· Undoability (yes/no)
· List of causes if not 

undoable
Result

Feedback

Figure 2: Overview of the undoability checker

The user defines two inputs, both are optional. We re-
fer to these inputs as the context. The first one is a list
of operations the user plans to execute. It can be a script
defining a sequence of operations for a certain system ad-
ministration task, or a single operation. The other input
is a list of resources and properties the user wants to re-
store upon any failures. It is derived from the context of
the system administration as discussed in Section 2. For
example, a user may need the IP address of an instance
to be restored upon a failure, but not its exact identity.

Given those inputs, the undoability checker examines
whether all listed operations are undoable, i.e., the state
of all listed resources and properties can be restored after
executing these operations. If no operations are provided
by the user, the undoability checker tests all operations of
a domain. If no resources and properties are given by the
user, all resources with all their properties from the full
domain model are considered. If the output is positive,
the user can be sure that the system state can be restored,
as long as he/she executes operations listed in the input,
or for the whole domain if no operations were specified.
If the output is negative, the checker reports the causes –
e.g., that a certain property cannot be restored if the user
executes a specific operation. The user can consider us-
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ing alternative operations or accept a weaker undoability
guarantee by giving up the undoability of the property.
The tool can of course be used iteratively, until lists of
resources, properties, and operations are found which are
fully undoable.

5.2 Domain Model Projection

Undoability of the full domain indicates that all types of
resources and the properties can be restored after exe-
cuting any available operations in a cloud platform. De-
pending on system administration tasks, the part of the
domain that is required to be undoable might be sig-
nificantly smaller than the full domain model, however.
Therefore, before the actual undoability check is per-
formed, the undoability checker considers the context
provided by the user, if any, and extracts a subset of the
full domain. To achieve this, we introduce the concept of
a projection of a domain model.

From the list of resources and properties in the con-
text, the undoability checker creates a projected domain
that only captures resources and their properties involved
in a provided context. This is done by creating a projec-
tion specification in a specific format from the user input,
and applying the specification to the full domain. If no
list of relevant resources and properties is provided by
the user, the full domain is used instead of a projected
one. Projections can also include a role-player concept,
such that e.g., virtual machines can be said to play a role
(e.g., Web server), where their actual identity is less rel-
evant. A projected domain model is itself a valid domain
model in PDDL, so undoability checking can proceed as
per below, with or without projection.

In terms of our running example of AWS, without pro-
jection most actions in the AWS domain model would
not be considered undoable, due to the unrecoverable er-
rors discussed in Section 4. If an unrecoverable error oc-
curs, one cannot reverse back to the previous state of that
resource. Unless using a different resource to fulfill the
same purpose (e.g., a new machine instead of a crashed
one, from the same machine image) is acceptable, the un-
recoverable error is just that: unrecoverable. More inter-
esting is the question: assuming no unrecoverable error
occurs, do we have guaranteed undoability? This ques-
tion can be addressed by leveraging domain projection:
the user can define a context that excludes unrecoverable
errors.

Even so, most real-world domains do not require that
each and every aspect can be restored. For example, a
virtual machine in AWS has over 20 attributes such as
the resource identity assigned by the provider (e.g., ID
i-d21fa486), public and private DNS names assigned
by the provider (e.g., ec2-xxx.compute.amazon.com),
instance type indicating the amount of computing re-

sources allocated (e.g., m1.small roughly equals to
1.2GHz CPU and 1.7GB RAM), the identity of the ma-
chine image used to launch the virtual machine (e.g.,
ami-a6a7e7f4) and launch timestamp. Although
some of those properties are easy to be restored, oth-
ers are not. For example, to obtain an instance whose
machine image identity is the same as that of a termi-
nated one, an administrator simply launches a new in-
stance from the machine image used before. However,
there is no way to obtain the same resource identity or
public DNS name once an instance is terminated, since
these are assigned dynamically by the cloud provider.

5.3 Undoability Checking Algorithm
From a (projected) domain, the checker considers each
relevant action individually (either from the list provided
by the user, or all actions in the domain). For each rele-
vant action, the checker tries to find situations in which
executing the action may result in a state from which the
system cannot get back to the state before the action was
executed. If no such situation exists, we call the action
fully undoable. If each action can be reversed individu-
ally, then any sequence of actions can be reversed – this is
related to the Sagas approach [14], which is discussed in
Section 9. While such a sequence may be highly subop-
timal, we only use it to prove undoability on a theoretical
level – when the actual situation occurs, our undo system
finds a shorter undo workflow.

To check undoability of an action, we need to ascertain
undoability for any state in which the action could be
executed – the pre-states of the action. In general, this
is an infinite set. We derive a sufficient set of pre-states
for undoability checking – i.e., a set that captures any
distinct situation from the pre-states – by considering:

1. how many constants of which type may be used by
any of the actions in the domain;

2. analyzing which actions may contribute to undoing
the one currently being checked;

3. deriving any combination of the logical statements
from the combination of the above sets.

Based on the sufficient set of pre-states, we compute
the set of possible post-states – the outcomes of applying
the action being checked to each of the pre-states, where
non-determinism means a pre-state can result in multi-
ple post-states. For each post-state, we then check if the
corresponding pre-state is reachable, by formulating a re-
spective planning task and feeding it into the AI planner
[20]. The usual planning problem [30] is the following:
given formal descriptions of the initial state of the world,
the desired goal state, and a set of available actions, find
a sequence of actions that leads from the initial to the
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goal state. In the case of the undoability checker, the
question is: can the pre-state be reached from the post-
state? Thus, the post-state is the initial state of the plan-
ning problem, and the corresponding pre-state forms the
goal state. If there is a plan for each pre-post-state pair,
then full undoability (in the given context) is shown; else,
the problematic cases are reported back to the tool user.

5.4 Checker Usage Models
There are two ways to deploy the undoability checking:
offline and online. The offline deployment model is used
for checking a whole domain, or a specific script / work-
flow implementing a system administration task. When
used by administrators, this deployment model assumes
that the script / workflow will be executed in future, e.g.,
during scheduled downtime on the following weekend,
and the tool user prepares for it. In this scenario admin-
istrators usually spend enough time on developing a plan
in order to get maximum leverage out of the scheduled
maintenance period. Given a list of operations invoked
in a script8, the undoability checker examines if they are
reversible. The checker shows a list of operations not re-
versible if exists (Figure 2.) The user is expected to use
the undoability checker iteratively to improve the quality
of scripts to execute. For example, removing all irre-
versible operations from the script, placing irreversible
operations as late as possible to make the workflow re-
versible until calling one of the irreversible operations,
or altering the set of attributes to be undoable such as us-
ing a virtual IP address instead of an internal IP address.

The alternative deployment model, i.e., online deploy-
ment model, is used for checking the undoability of each
operation an administrator is about to execute. This de-
ployment model provides a safety net to an administrator
directly executing operations on a console. In this sce-
nario, each operation is executed through a wrapper (or a
proxy) rather than executed directly on cloud resources,
as discussed in the next section. Before an operation is
executed on cloud resources, the wrapper performs an
undoability check and sends a warning to the administra-
tor if the operation is not undoable.

The two models are built on different assumptions.
The offline model assumes that the concrete state of re-
sources such as IP addresses cannot be truthfully ob-
served, since the analysis is performed before a script is
actually executed. Therefore, it determines the undoabil-
ity of all operations against all possible pre-states. This
mode often results in very strong undoability guarantees
– arguably stronger than needed, since the undoability
checker examines pre-states that may never occur in the

8Our current implementation does not parse a script, e.g., a bash
script, directly to extract operations. We assume the user provides a list
of operations used in a script to the checker.

actual system. Say, for example, a machine had a ficti-
tious attribute ’unmodified since start’, which would be
true initially after starting a machine, but false after the
first change was applied. In general, any action modi-
fying the machine, e.g., changing its size, would be un-
doable – and detected as such by the offline check. How-
ever, the online check might encounter a state where this
attribute was already false – in this particular case, mod-
ifications to the machine would be undoable.

To address the limitation of the offline model, the on-
line model assumes that it can obtain the status of re-
sources by making calls to the API a cloud platform pro-
vides. If an operation is not known to be fully undoable
in a given administration context (by looking up the re-
sult that the offline check provides), it senses the state
of the resources and forwards this information to the un-
doability checker. The checker then takes this state as
the only pre-state, and checks if all possible outcomes of
executing the operation in this specific pre-state are un-
doable. Therefore, operations identified as not undoable
by the offline check could be identified as undoable by
the online check depending on the status of resources.

Although the online model is very targeted in terms of
the performed undoability checks, it may not be practi-
cal depending on the responsiveness of APIs. It is not
uncommon for a scan of the resources in public cloud
platform to take longer than 30 seconds depending on
the network latency, while it can be less that 1 second on
an on-premise virtualized environment. Depending on
the user’s preferences, the slow responsiveness may be
unacceptable.

6 Undo System Design

The main component of the undo system we propose
concerns automatically finding a sequence of operations
for realizing rollback. An earlier version of the undo sys-
tem was described in [31], which we summarize here.

6.1 Overview of the Undo System

Fig. 3 shows the overview of the undo system, which is
partially positioned between the user / operational script
and the cloud management API. An administrator or an
operational script first triggers a checkpoint to be taken9.
Our undo system gathers relevant information, i.e., state
of cloud resources and their relationship, at that time. Af-
ter a checkpoint, the system starts to offer rollback to
the checkpoint or committing the changes. Before either
of these command is called, the system transparently re-
places certain non-reversible operations, e.g., deleting a

9While the resources can form a vastly distributed system, their
state information is obtained from a single source of truth: AWS’s API.
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Figure 3: Overview of rollback via planning – adapted
from [31]

resource, with reversible ones, like pseudo-delete. Fur-
ther, it checks the undoability of each operation to be
executed, as discussed in Section 5.4. When a commit
is issued, the non-reversible changes are applied to the
cloud resources – thus, rollback is not offered anymore.
When a rollback is issued, the system again gathers the
state of cloud resources and feeds the pair of state infor-
mation to an AI planner to construct an undo sequence
of operations, as discussed in Section 6.3.

6.2 API Wrapper
The undo system offers a wrapper for cloud APIs. After
a checkpoint, when the user asks to delete a resource, the
wrapper sets a delete flag (or ghost flag), indicating that
the resource is logically deleted. Note that this requires
altering each subsequent API call to the resource through
the wrapper: queries to list provisioned resources need to
be altered in their responses by filtering flagged resources
out; changes to flagged resources need to be caught and
answered, e.g., by returning a “not found” error message.

When a delete operation is to be reversed – triggered
by a respective undelete operation – the wrapper simply
removes the delete flag. When the user requests a roll-
back, the AI planner includes an undelete call on that
resource. Only when a commit is issued, all resources
with a delete flag are physically deleted.

The wrapper is also the connection point to the un-

doability checker in the online deployment model (Sec-
tion 5.4). If an action is not undoable, it warns the user,
with an option to cancel.

6.3 Rollback via AI Planning

For rollback, the goal is to return to the state of the sys-
tem when a checkpoint was issued. Our undo system
finds a sequence of undo actions by using the AI planner
from [20]. In undo planning, the initial state is the state
of the system when rollback was issued. The desired
goal state is the system state captured in a checkpoint.
The available actions are the API operations offered by a
cloud provider, captured in the domain model.

In the undo system (Fig. 3), the planning problem (ini-
tial and goal states, set of available actions) is the input
to the planner. Its output is a workflow in an abstract no-
tation, stating which action to call, in which order, and
for which resources. The abstract workflow is forwarded
to a code generator, which transforms it into executable
code. The final step is to execute the workflow against
the wrapped API operations.

7 Implications for Practice

In this section, we discuss how the various parts of the
systems can be used by practitioners in the future. The
easiest case is when a domain is fully undoable. The
implication is that the user can do anything, and have
the confidence that the undo system can find a path back
to any checkpoint. Similarly, if a script consists only of
fully undoable actions, employing it can be done with
high confidence.

If properties need to be excluded through projection
to achieve undoability, the administrator gains explicit
knowledge of the boundaries of undoability. This knowl-
edge can be used for improving the dependability of
administration tasks through awareness, or to inform
changes to scripts or procedures. If no alternative action
exists, a script / workflow can potentially be re-ordered,
to schedule non-undoable actions as late as possible. The
rationale for doing so is that executing an irreversible ac-
tion can be seen as a form of commit: if anything goes
wrong before, it can still be undone; afterwards this is
not the case. As many reversible operations as possible
should therefore be done before the irreversible one(s).

Another way to leverage the results is to provide a safe
mode of an API, which includes the subset of operations
that are fully undoable. This subset can e.g., be used
in day-to-day operations, while using reversible opera-
tions might be reserved for users with higher privileges.
Untrusted or less experienced administrators may only
be allowed to operate within the boundaries of the safe
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mode, so that any mistakes or malicious behavior can al-
ways be undone.

Finally, the undo system’s checkpointing / commit /
rollback commands can be made part of scripts or work-
flows. For instance, a script may always set a checkpoint
before execution. If any of a set of known errors arises,
rollback is automatically triggered. If a final set of au-
tomated checks succeeds, the changes can be committed
before exiting the script.

8 Implementation and Evaluation

In this section, we describe our prototypical implementa-
tions and the experiments we conducted to evaluate our
approach. The latter include applying the undoability
checker to the AWS domain model, assessing the un-
doability of the scenarios from Section 2, as well as a
summary of performance experiments from our earlier
work [31].

8.1 Implementation
Both the undo system and the undoability checker have
been implemented as prototypes. The undo system has
been rolled out for internal beta-testing and used for fea-
sibility and performance experiments. Both prototypes
have been implemented in Java, making command line
calls to the version of the FF planner used in our work
[20]. The undo system further includes bash scripts for
use as a command line tool, replacing the AWS imple-
mentations of the operations in Table 1 and providing ad-
ditional operations for checkpointing, undelete, rollback,
and commit.

The undoability checker has around 17,500 lines of
Java code, including an extended version of an open
source parser, lexer, and PDDL data model10. The undo
system has roughly 7,300 lines of Java code, the FF plan-
ner as per above around 17,000 lines of code in C and
lexer / parser definitions.

The main limitations of the current prototypes are the
following.

• The undoability checker does not have a component
for generating projections as yet – desired projections
had to be applied by manually creating variants of the
Amazon Web Services (AWS) domain model.

• The API wrapper of the undo system is not integrated
with the undoability checker, although the latter has an
interface that can be adapted to implement this integra-
tion (checking undoability of single actions in specific
states).

10http://www.zeynsaigol.com/software/
graphplanner.html, accessed 8/4/2013

• Neither tool has been optimized for performance yet,
and both are still in the state of (well-tested) proto-
types. Particularly for the undo system, we plan to
change this in the near-term future.

8.2 Undoability of a Full Domain

Using the implementation of the undoability checker, we
performed several iterations of checking the AWS do-
main model. As expected, the domain model including
unrecoverable errors is not undoable. After implement-
ing a projection to remove unrecoverable errors as well
as several changing parameters such as internal IP ad-
dress, undoability is given for most actions. Note, that
this domain model includes our AWS extension of un-
delete actions.

In comparison to the earlier version of our domain
model, as described in [31], it should be noted that we
added more details in all but a few actions. This pri-
marily concerns statements in preconditions and effects
that were previously seen as not required. For instance,
deleting a volume (see Listing 1) now has a precondi-
tion of not volume deleted, which was previously seen as
implicitly following from volume available. We further
split up certain actions, without implications for practice
– e.g., instead of changing all auto-scaling group targets
(min, max, desired) at once, for the purposes of undoabil-
ity checking we split this action into three separate ones.
This reduces the number of separate planning tasks sig-
nificantly. Due to such changes, the domain model grew
from 800 to 1100 lines of code.

Our current results of checking undoability for the
whole domain model (Table 1) show 34 out of the 35
actions to be fully undoable, given the above projection.
For this purpose, the prototype ran for 11s inside a Vir-
tualBox VM on two (hyperthreaded) cores from an In-
tel i7-2600 quadcore CPU @ 3.4GHz, with 4GB RAM
available to it. During that time, it called the planner
with 1330 separate planning problems – i.e., pre-post-
state pairs as per Section 5.3.

The action for which undoability cannot currently be
shown is create auto-scaling group. This action creates
an AS group with the respective three sizes (min, max,
desired). The corresponding delete action has only the
precondition of max = 0 (which in practice implies min
= 0 = desired). However, this implication is not ex-
pressed to the planner as yet. If it were, then the number
of possible instantiations in pre/post-state pairs becomes
too large to be handled by the current implementation.
We believe that this issue can be solved in the future,
and undoability can be fully shown, when applying the
above-mentioned projection.

10
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8.3 Undoability of Administration Tasks

We next present our evaluation of the undoability of con-
crete system administration scenarios. As described in
Section 5.4, we assume that the tool user provides a list
of operations to execute in system administration task.
The undoability checker examines whether the list con-
tains irreversible operations given a set of properties to
be reversible. This section discusses the results that the
undoability checker produces for the four scenarios in-
troduced in Section 2.

Findings for Scenario 1. Adding a slave to an ex-
isting database server. All steps can all be undone
through the AWS management API. In particular, the
original configuration of the database server can be re-
stored by restoring the volume from a snapshot taken –
however, while this step is on top of our future work list,
it is currently not implemented in our undo system. The
variant relying on the private IP address of the database
server can be undone, so long as stop machine is replaced
with pseudo-stop, and assuming that reconfiguring the
database server can be done on a running machine. Note
that replacing stop with pseudo-stop has the side-effect
that no changes such as changing the machine size can
be done: such changes require the machine to be actually
stopped, in which case the private IP cannot be restored.

Findings for Scenario 2 Scaling up or down an
instance. In our current model, we support chang-
ing the instance size. Other aspects could be modeled
analogously: from studying the AWS documentation
of ec2-modify-instance-attribute11, we be-
lieve any aspect that can be changed can also be undone.
As for the implicit changes to private IP / public DNS
name, the undo system could be configured to warn the
user.

Findings for Scenario 3. Upgrading the Web server
layer to a new version. DNS records are outside the
scope of our domain, and need to be undone manually.
Load balancers and the creation/deletion of machine im-
ages are currently not captured, but could be in the fu-
ture. The remaining actions are all shown to be undoable
in our domain model.

Findings for Scenario 4. Extending the size of a
disk volume. This scenario uses solely operations shown
to be undoable. Since the machine is stopped by the ad-
ministrator at any rate, its private IP will change, so that
undoability is not affected. The warnings mentioned in
Scenario 3 can be applied here as well.

11http://docs.aws.amazon.com/
AWSEC2/latest/CommandLineReference/
ApiReference-cmd-ModifyInstanceAttribute.html,
last accessed 29/4/2013

8.4 Undo System Performance

We summarize the performance results from [31], and
discuss performance changes resulting from the changes
to the domain explained in Section 8.2. For this experi-
ment, we assembled over 70 undo planning tasks. When
tasked with finding the solution to undo problems requir-
ing up to 20 undo actions, the execution time of the plan-
ner was often close to or below the resolution of measure-
ment (10 ms) – i.e., all such plans were found in less than
0.01 seconds. Even plans with more than 60 actions were
found in less than 2 seconds, using the domain model
from [31]. However, after altering the domain model,
planning times changed as follows. Plans with less than
30 steps were still found in less than 10ms. More com-
plex plans took 8-15 times longer than with the original
domain model. To put this into perspective: scripts with
over 20 steps are unusual in our groups’ experience. In
comparison to the execution time of scripts on AWS –
for instance, the average execution time over 10 runs of
an 8-step undo plan of AWS operations was 145 seconds
– the cost for planning is marginal in many situations.

9 Related Work

Our undo approach is a checkpoint-based rollback
method [13, 29]. Alternative rollback methods are log-
based [13, 15] or using “shadow pages” in databases
[15]. In much research, checkpoints store a relevant part
of the state on memory and/or disk, and for rollback it
suffices to copy the saved information back into. In con-
trast, rollback in our setting means achieving that the
“physical state” of a set of virtual resources matches the
state stored in a checkpoint – i.e., achieving rollback re-
quires executing operations, not only copying informa-
tion.

Thus, our setting is similar to long-running transac-
tions in workflows or business processes. [16] gives
an overview of approaches for failure and cancellation
mechanisms for long-running transactions in the context
of business process modeling languages, where typical
mechanisms are flavors or combinations out of the fol-
lowing: (i) Sagas-style reverse-order execution of com-
pensators [14]; (ii) short-running, ACID-style transac-
tions; and (iii) exception handling similar to program-
ming languages like C++ and Java. As for (i), on cloud
platforms, compensating operations may not be avail-
able. Even when an operation is an inverse for another,
there may be non-obvious constraints and side-effects, so
that executing the apparently compensating operations in
reverse chronological order would not restore the previ-
ous system state properly; a different order, or even dif-
ferent operations, might be more suitable [16]. This ar-
gument supports our approach to use an AI planner for

11
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coming up with a targeted undo plan. ACID cannot be
achieved so (ii) is unsuitable in our setting: the state of
the cloud resources is externalized instantaneously, so
consistency and isolation are impossible to retain here.
As for (iii), hand-coded exception handling for whole
workflows can be implemented, but is error-prone; per-
operation exception handling is unsuitable, since the be-
havior of an action is non-deterministic, context-specific,
and the target state is not static. In summary, the tradi-
tional approaches are not a good fit for the problem at
hand.

Besides AI Planning, other techniques were used to
achieve dependability in distributed systems manage-
ment. [21] uses POMDPs (partially-observable Markov
decision processes) for autonomic fault recovery. An
architecture-based approach to self-repair is presented in
[4]. [26] is a self-healing system using case-based rea-
soning and learning. The focus in these works is self-
repair or self-adaptation, not undo for rollback.

AI Planning has been used several times for system
configuration, e.g., [1, 2, 7, 9, 10, 11, 23], and for cloud
configuration, e.g., [17, 18, 24]. Some works aim at
reaching a user-declared goal, e.g., [1, 7, 17, 18, 23],
whereas others target failure recovery, e.g., [2, 9, 10, 24].
The goal in the latter case is to bring the system back
into an operational state after some failure occurred.The
closest related work are [17, 18, 24]. In [18], planning
is applied in a straight-forward fashion to the problem
of reaching a user-specified goal.The work is well inte-
grated with cloud management tools, using Facter, Pup-
pet and ControlTier – all of which experience some level
of popularity among administrators nowadays. [24] ap-
plies hierarchical task network (HTN) planning on the
PaaS level for fault recovery. [17] uses HTN planning
to achieve configuration changes for systems modeled in
the common information model (CIM) standard.

As for the undoability checking, Burgess and
Couch [6] have shown that well-defined rollback is im-
possible to achieve in realistic systems, mostly due to
non-determinism and openness. This result concurs with
our argumentation for the need of projection: only fully
closed and deterministic systems have a chance of being
fully undoable without projection. For any other case,
our approach first can point out what prevents undoabil-
ity, and iteratively those issues can be projected away, so
as to understand under which assumptions undoability is
given. Our undo tool takes non-determinism of actions
into account directly.

Our undoability checking extends a model of re-
versible actions from Eiter et al. [12]. Our work differs
from [12] in two major ways: we consider undoability of
full and projected domains, and we assume the state to
revert to is known. This changes the underlying formal-
ism (described in the technical report – see Section 1),

and hence most formal results built on top of it.

10 Conclusions

In this paper we describe our support for undoability,
building on two approaches: (i) an undoability checker
analyses to what degree operations can be rolled back;
and (ii) an undo system that automatically generates
rollback workflows, when the need arises. The latter
can essentially provide transactional atomicity over API-
controlled environments, like cloud management. We
evaluated the approaches through the prototypes we de-
veloped, with performance experiments and by apply-
ing them to real-world examples of cloud management
APIs and best practices. An intrinsic limitation of our
approaches is that they operate on a manually created
model of the available operations. While we took care
to assess that the model truthfully captures the imple-
mentation, this cannot be formally guaranteed without
access to AWS’s API implementation, deployment, and
operation of the cloud platform. Further, the model is
not going to be aware of future changes to the API and
its implementation.

The prototype for the undo system is in the process of
being developed into a more mature tool, and we may
make it available for public use through our website –
see Section 1. It will likely feature different levels of un-
doability from which the users can choose, as established
through the undoability checker.

In future work, we plan to extend the undoability
checker with an approach to find projections leading
to full undoability automatically, such that the removed
properties are minimal. For the undo system, we plan an
extension to capture the internal state of resources when
checkpointing and to restore the internal state on roll-
back. For example, the content of a disk volume can
be captured by taking a snapshot. Finally, the undo sys-
tem will be extended to handle multiple checkpoints and
manage them by their names, where administrators can
then choose to rollback to checkpoint P1 or commit all
changes up to checkpoint P2.
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Abstract

Live update is a promising solution to bridge the need
to frequently update a software system with the pressing
demand for high availability in mission-critical environ-
ments. While many research solutions have been pro-
posed over the years, systems that allow software to be
updated on the fly are still far from reaching widespread
adoption in the system administration community. We
believe this trend is largely motivated by the lack of tools
to automate and validate the live update process. A ma-
jor obstacle, in particular, is represented by state transfer,
which existing live update tools largely delegate to the
programmer despite the great effort involved.

This paper presents time-traveling state transfer, a
new automated and fault-tolerant live update technique.
Our approach isolates different program versions into
independent processes and uses a semantics-preserving
state transfer transaction—across multiple past, future,
and reversed versions—to validate the program state of
the updated version. To automate the process, we com-
plement our live update technique with a generic state
transfer framework explicitly designed to minimize the
overall programming effort. Our time-traveling tech-
nique can seamlessly integrate with existing live update
tools and automatically recover from arbitrary run-time
and memory errors in any part of the state transfer code,
regardless of the particular implementation used. Our
evaluation confirms that our update techniques can with-
stand arbitrary failures within our fault model, at the cost
of only modest performance and memory overhead.

1 Introduction

In the era of pervasive and cloud computing, we are
witnessing a major paradigm shift in the way software
is developed and released. The growing demand for
new features, performance enhancements, and security
fixes translates to more and more frequent software up-

dates made available to the end users. In less than a
decade, we quickly transitioned from Microsoft’s “Patch
Tuesday” [39] to Google’s “perpetual beta” development
model [67] and Facebook’s tight release cycle [61], with
an update interval ranging from days to a few hours.

With more frequent software updates, the standard
halt-update-restart cycle is irremediably coming to an
impasse with our growing reliance on nonstop software
operations. To reduce downtime, system administrators
often rely on “rolling upgrades” [29], which typically
update one node at a time in heavily replicated software
systems. While in widespread use, rolling upgrades have
a number of important shortcomings: (i) they require re-
dundant hardware, which may not be available in particu-
lar environments (e.g., small businesses); (ii) they cannot
normally preserve program state across versions, limit-
ing their applicability to stateless systems or systems that
can tolerate state loss; (iii) in heavily replicated software
systems, they lead to significant update latency and high
exposure to “mixed-version races” [30] that can cause in-
sidious update failures. A real-world example of the lat-
ter has been reported as “one of the biggest computer er-
rors in banking history”, with a single-line software up-
date mistakenly deducting about $15 million from over
100,000 customers’ accounts [43].

Live update—the ability to update software on the
fly while it is running with no service interruption—
is a promising solution to the update-without-downtime
problem which does not suffer from the limitations of
rolling upgrades. A key challenge with this approach is
to build trustworthy update systems which come as close
to the usability and reliability of regular updates as possi-
ble. A significant gap is unlikely to encourage adoption,
given that experience shows that administrators are often
reluctant to install even regular software updates [69].

Surprisingly, there has been limited focus on automat-
ing and validating generic live updates in the litera-
ture. For instance, traditional live update tools for C
programs seek to automate only basic type transforma-
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tions [62, 64], while more recent solutions [48] make lit-
tle effort to spare the programmer from complex tasks
like pointer transfer (§5). Existing live update validation
tools [45–47], in turn, are only suitable for offline testing,
add no fault-tolerant capabilities to the update process,
require manual effort, and are inherently update timing-
centric. The typical strategy is to verify that a given
test suite completes correctly—according to some man-
ually selected [45, 46] or provided [47] specification—
regardless of the particular time when the update is ap-
plied. This testing method stems from the extensive fo-
cus on live update timing in the literature [44].

Much less effort has been dedicated to automating and
validating state transfer (ST), that is, initializing the state
of a new version from the old one (§2). This is some-
what surprising, given that ST has been repeatedly rec-
ognized as a challenging and error-prone task by many
researchers [13, 22, 23, 57] and still represents a major
obstacle to the widespread adoption of live update sys-
tems. This is also confirmed by the commercial success
of Ksplice [11]—already deployed on over 100,000 pro-
duction servers [4]—explicitly tailored to small security
patches that hardly require any state changes at all (§2).

In this paper, we present time-traveling state trans-
fer (TTST), a new live update technique to automate
and validate generic live updates. Unlike prior live up-
date testing tools, our validation strategy is automated
(manual effort is never strictly required), fault-tolerant
(detects and immediately recovers from any faults in
our fault model with no service disruption), state-centric
(validates the ST code and the full integrity of the fi-
nal state), and blackbox (ignores ST internals and seam-
lessly integrates with existing live update tools). Further,
unlike prior solutions, our fault-tolerant strategy can be
used for online live update validation in the field, which
is crucial to automatically recover from unforeseen up-
date failures often originating from differences between
the testing and the deployment environment [25]. Unlike
commercial tools like Ksplice [11], our techniques can
also handle complex updates, where the new version has
significantly different code and data than the old one.

To address these challenges, our live update tech-
niques use two key ideas. First, we confine different pro-
gram versions into independent processes and perform
process-level live update [35]. This strategy simplifies
state management and allows for automated state reason-
ing and validation. Note that this is in stark contrast with
traditional in-place live update strategies proposed in the
literature [10–12,22,23,58,62,64], which “glue” changes
directly into the running version, thus mixing code and
data from different versions in memory. This mixed ex-
ecution environment complicates debugging and testing,
other than introducing address space fragmentation (and
thus run-time performance overhead) over time [35].

Second, we allow two process-level ST runs using the
time-traveling idea. With time travel, we refer to the
ability to navigate backward and forward across program
state versions using ST. In particular, we first allow a for-
ward ST run to initialize the state of the new version from
the old one. This is already sufficient to implement live
update. Next, we allow a second backward run which im-
plements the reverse state transformation from the new
version back to a copy of the old version. This is done to
validate—and safely rollback when necessary—the ST
process, in particular to detect specific classes of pro-
gramming errors (i.e., memory errors) which would oth-
erwise leave the new version in a corrupted state. To this
end, we compare the program state of the original ver-
sion against the final state produced by our overall trans-
formation. Since the latter is semantics-preserving by
construction, we expect differences in the two states only
in presence of memory errors caused by the ST code.

Our contribution is threefold. First, we analyze the
state transfer problem (§2) and introduce time-traveling
state transfer (§3, §4), an automated and fault-tolerant
live update technique suitable for online (or offline) val-
idation. Our TTST strategy can be easily integrated into
existing live update tools described in the literature, al-
lowing system administrators to seamlessly transition to
our techniques with no extra effort. We present a TTST
implementation for user-space C programs, but the prin-
ciples outlined here are also applicable to operating sys-
tems, with the process abstraction implemented using
lightweight protection domains [72], software-isolated
processes [53], or hardware-isolated processes and mi-
crokernels [50, 52]. Second, we complement our tech-
nique with a TTST-enabled state transfer framework
(§5), explicitly designed to allow arbitrary state transfor-
mations and high validation surface with minimal pro-
gramming effort. Third, we have implemented and eval-
uated the resulting solution (§6), conducting fault injec-
tion experiments to assess the fault tolerance of TTST.

2 The State Transfer Problem

The state transfer problem, rigorously defined by Gupta
for the first time [41], finds two main formulations in
the literature. The traditional formulation refers to the
live initialization of the data structures of the new ver-
sion from those of the old version, potentially operat-
ing structural or semantic data transformations on the
fly [13]. Another formulation also considers the execu-
tion state, with the additional concern of remapping the
call stack and the instruction pointer [40, 57]. We here
adopt the former definition and decouple state transfer
(ST) from control-flow transfer (CFT), solely concerned
with the execution state and subordinate to the particu-
lar update mechanisms adopted by the live update tool
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--- a/ drivers /md/dm - crypt .c
+++ b/ drivers /md/dm - crypt .c
@@ -690,6 +690,8 @@ bad3:

bad2:
crypto_free_tfm (tfm );

bad1:
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc );
return -EINVAL ;

}
@@ -706,6 +708,9 @@ static void crypt dtr(...)

cc -> iv_gen_ops ->dtr(cc );
crypto_free_tfm (cc ->tfm );
dm_put_device (ti , cc ->dev );

+
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc );
}

Listing 1: A security patch to fix an information disclo-
sure vulnerability (CVE-2006-0095) in the Linux kernel.

considered—examples documented in the literature in-
clude manual control migration [40, 48], adaptive func-
tion cloning [58], and stack reconstruction [57].

We illustrate the state transfer problem with two up-
date examples. Listing 1 presents a real-world security
patch which fixes an information disclosure vulnerabil-
ity (detailed in CVE-2006-0095 [5]) in the md (Mul-
tiple Device) driver of the Linux kernel. We sampled
this patch from the dataset [3] originally used to evalu-
ate Ksplice [11]. Similar to many other common secu-
rity fixes, the patch considered introduces simple code
changes that have no direct impact on the program state.
The only tangible effect is the secure deallocation [24]
of sensitive information on cryptographic keys. As a re-
sult, no state transformations are required at live update
time. For this reason, Ksplice [11]—and other similar
in-place live update tools—can deploy this update online
with no state transfer necessary, allowing the new ver-
sion to reuse the existing program state as is. Redirecting
function invocations to the updated functions and resum-
ing execution is sufficient to deploy the live update.

Listing 2 presents a sample patch providing a reduced
test case for common code and data changes found in
real-world updates. The patch introduces a number of
type changes affecting a global struct variable (i.e.,
var)—with fields changed, removed, and reordered—
and the necessary code changes to initialize the new data
structure. Since the update significantly changes the in-
memory representation of the global variable var, state
transfer—using either automatically generated mapping
functions or programmer-provided code—is necessary to
transform the existing program state into a state compat-
ible with the new version at live update time. Failure to
do so would leave the new version in an invalid state af-
ter resuming execution. Section 5 shows how our state

--- a/ example .c
+++ b/ example .c
@@ -1,13 +1,12 @@

struct s {
int count ;

- char str[3];
- short id;
+ int id;
+ char str[2];

union u u;
- void *ptr;

int addr;
- short *inner ptr;
+ int *inner ptr;

} var;

void example_init ( char *str) {
- snprintf(var.str, 3, "%s", str);
+ snprintf(var.str, 2, "%s", str);

}

Listing 2: A sample patch introducing code and data
changes that require state transfer at live update time.

transfer strategy can effectively automate this particular
update, while traditional live update tools would largely
delegate this major effort to the programmer.

State transfer has already been recognized as a hard
problem in the literature. Qualitatively, many researchers
have described it as “tedious implementation of the trans-
fer code” [13], “tedious engineering efforts” [22], “te-
dious work” [23]. Others have discussed speculative [14,
16, 37, 38] and practical [63] ST scenarios which are
particularly challenging (or unsolvable) even with pro-
grammer intervention. Quantitatively, a number of user-
level live update tools for C programs (Ginseng [64],
STUMP [62], and Kitsune [48]) have evaluated the ST
manual effort in terms of lines of code (LOC). Table 1
presents a comparative analysis, with the number of up-
dates analyzed, initial source changes to implement their
live update mechanisms (LU LOC), and extra LOC to
apply all the updates considered (ST LOC). In the last
column, we report a normalized ST impact factor (Norm
ST IF), measured as the expected ST LOC necessary af-
ter 100 updates normalized against the initial LU LOC.

As the table shows, the measured impacts are compa-
rable (the lower impact in Kitsune stems from the greater
initial annotation effort required by program-level up-
dates) and demonstrate that ST increasingly (and heav-
ily) dominates the manual effort in long-term deploy-

#Upd LU LOC ST LOC Norm ST IF

Ginseng 30 140 336 8.0x
STUMP 13 186 173 7.1x
Kitsune 40 523 554 2.6x

Table 1: State transfer impact (normalized after 100 up-
dates) for existing user-level solutions for C programs.



92 27th Large Installation System Administration Conference USENIX Association

Reversed Version

TTST Control LibTTST Control Lib
ST Framework Lib

Instrumented Program
Live Update Lib

Future Version

TTST Control LibTTST Control Lib
ST Framework Lib

Instrumented Program
Live Update Lib

Past Version

TTST Control LibTTST Control Lib
ST Framework Lib

Instrumented Program
Live Update Lib

ST
CFT

5

ST

CFTSTART

TIME-TRAVELING

STATE TRANSFER COMPLETED

FORWARD

TRANSFER

1

2 5

4
3

6
7

9

8

STATE DIFF

10

BACKWARD

TRANSFER

BACK TO THE FUTURE

Figure 1: Time-traveling state transfer overview. The numbered arrows indicate the order of operations.

ment. Worse yet, any LOC-based metric underestimates
the real ST effort, ignoring the atypical and error-prone
programming model with nonstandard entry points, un-
conventional data access, and reduced testability and de-
buggability. Our investigation motivates our focus on au-
tomating and validating the state transfer process.

3 System Overview

We have designed our TTST live update technique with
portability, extensibility, and interoperability in mind.
This vision is reflected in our modular architecture,
which enforces a strict separation of concerns and can
support several possible live update tools and state trans-
fer implementations. To use TTST, users need to stat-
ically instrument the target program in preparation for
state transfer. In our current prototype, this is accom-
plished by a link-time transformation pass implemented
using the LLVM compiler framework [56], which guar-
antees pain-free integration with existing GNU build
systems using standard configure flags. We envision
developers of the original program (i.e., users of our
TTST technique) to gradually integrate support for our
instrumentation into their development model, thus re-
leasing live update-enabled software versions that can
be easily managed by system administrators using sim-
ple tools. For this purpose, our TTST prototype in-
cludes ttst-ctl, a simple command-line tool that trans-
parently interacts with the running program and allows
system administrators to deploy live updates using our
TTST technique with minimal effort. This can be sim-
ply done by using the following command-line syntax:

$ ttst-ctl `pidof program` ./new.bin
Runtime update functionalities, in turn, are imple-

mented by three distinct libraries, transparently linked
with the target program as part of our instrumentation

process. The live update library implements the update
mechanisms specific to the particular live update tool
considered. In detail, the library is responsible to pro-
vide the necessary update timing mechanisms [46] (e.g.,
start the live update when the program is quiescent [46]
and all the external events are blocked) and CFT imple-
mentation. The ST framework library, in turn, imple-
ments the logic needed to automate state transfer and ac-
commodate user-provided ST code. The TTST control
library, finally, implements the resulting time-traveling
state transfer process, with all the necessary mechanisms
to coordinate the different process versions involved.

Our TTST technique operates across three process in-
stances. The first is the original instance running the old
software version (past version, from now on). This in-
stance initiates, controls, and monitors the live update
process, in particular running the only trusted library
code in our architecture with respect to our fault model
(§4). The second is a newly created instance running
the new software version (future version, from now on).
This instance is instructed to reinitialize its state from the
past version. The third process instance is a clone of the
past version created at live update time (reversed version,
from now on). This instance is instructed to reinitialize
its state from the future version. Figure 1 depicts the re-
sulting architecture and live update process.

As shown in the figure, the update process is started
by the live update library in the past version. This hap-
pens when the library detects that an update is available
and all the necessary update timing restrictions (e.g., qui-
escence [46]) are met. The start event is delivered to
the past version’s TTST control library, which sets out
to initiate the time-traveling state transfer transaction.
First, the library locates the new program version on
the file system and creates the process instances for the
future and reversed versions. Next, control is given to
the future version’s TTST control library, requesting to
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complete a forward state transfer run from the past ver-
sion. In response, the library instructs the live update and
ST framework libraries to perform ST and CFT, respec-
tively. At the end of the process, control is given to the
reversed version, where the TTST control library repeats
the same steps to complete a backward state transfer run
from the future version. Finally, the library notifies back
the past version, where the TTST control library is wait-
ing for TTST events. In response, the library performs
state differencing between the past and reversed version
to validate the TTST transaction and detect state corrup-
tion errors violating the semantics-preserving nature of
the transformation. In our fault model, the past version
is always immutable and adopted as a oracle when com-
paring the states. If the state is successfully validated
(i.e., the past and reversed versions are identical), con-
trol moves back to the future version to resume execu-
tion. The other processes are automatically cleaned up.

When state corruption or run-time errors (e.g.,
crashes) are detected during the TTST transaction, the
update is immediately aborted with the past version
cleaning up the other instances and immediately resum-
ing execution. The immutability of the past version’s
state allows the execution to resume exactly in the same
state as it was right before the live update process started.
This property ensures instant and transparent recovery
in case of arbitrary TTST errors. Our recovery strategy
enables fast and automated offline validation and, more
importantly, a fault-tolerant live update process that can
immediately and automatically rollback failed update at-
tempts with no consequences for the running program.

4 Time-traveling State Transfer

The goal of TTST is to support a truly fault-tolerant
live update process, which can automatically detect and
recover from as many programming errors as possible,
seamlessly support several live update tools and state
transfer implementations, and rely on a minimal amount
of trusted code at update time. To address these chal-
lenges, our TTST technique follows a number of key
principles: a well-defined fault model, a large state val-
idation surface, a blackbox validation strategy, and a
generic state transfer interface.

Fault model. TTST assumes a general fault model
with the ability to detect and recover from arbitrary run-
time errors and memory errors introducing state corrup-
tion. In particular, run-time errors in the future and re-
versed versions are automatically detected by the TTST
control library in the past version. The process abstrac-
tion allows the library to intercept abnormal termination
errors in the other instances (e.g., crashes, panics) using
simple tracing. Synchronization errors and infinite loops
that prevent the TTST transaction from making progress,

in turn, are detected with a configurable update timeout
(5s by default). Memory errors, finally, are detected by
state differencing at the end of the TTST process.

Our focus on memory errors is motivated by three key
observations. First, these represent an important class of
nonsemantic state transfer errors, the only errors we can
hope to detect in a fully automated fashion. Gupta’s for-
mal framework has already dismissed the possibility to
automatically detect semantic state transfer errors in the
general case [41]. Unlike memory errors, semantic er-
rors are consistently introduced across forward and back-
ward state transfer runs and thus cannot automatically be
detected by our technique. As an example, consider an
update that operates a simple semantic change: renum-
bering all the global error codes to use different value
ranges. If the user does not explicitly provide additional
ST code to perform the conversion, the default ST strat-
egy will preserve the same (wrong) error codes across
the future and the reversed version, with state differenc-
ing unable to detect any errors in the process.

Second, memory errors can lead to insidious la-
tent bugs [32]—which can cause silent data corrup-
tion and manifest themselves potentially much later—
or even introduce security vulnerabilities. These errors
are particularly hard to detect and can easily escape the
specification-based validation strategies adopted by all
the existing live update testing tools [45–47].

Third, memory errors are painfully common in patho-
logically type-unsafe contexts like state transfer, where
the program state is treated as an opaque object which
must be potentially reconstructed from the ground up, all
relying on the sole knowledge available to the particular
state transfer implementation adopted.

Finally, note that, while other semantic ST errors can-
not be detected in the general case, this does not pre-
clude individual ST implementations from using addi-
tional knowledge to automatically detect some classes of
errors in this category. For example, our state transfer
framework can detect all the semantic errors that violate
automatically derived program state invariants [33] (§5).

State validation surface. TTST seeks to validate the
largest possible portion of the state, including state ob-
jects (e.g., global variables) that may only be accessed
much later after the live update. To meet this goal,
our state differencing strategy requires valid forward and
backward transfer functions for each state object to val-
idate. Clearly, the existence and the properties of such
functions for every particular state object are subject to
the nature of the update. For example, an update drop-
ping a global variable in the new version has no de-
fined backward transfer function for that variable. In
other cases, forward and backward transfer functions ex-
ist but cannot be automatically generated. Consider the
error code renumbering update exemplified earlier. Both
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State Diff Fwd ST Bwd ST Detected

Unchanged � STF STF Auto
Structural chg � STF STF Auto
Semantic chg � User User 1 Auto 1

Dropped � - - Auto
Added � Auto/User - STF

1Optional

Table 2: State validation and error detection surface.

the forward and backward transfer functions for all the
global variables affected would have to be manually pro-
vided by the user. Since we wish to support fully auto-
mated validation by default (mandating extra manual ef-
fort is likely to discourage adoption), we allow TTST to
gracefully reduce the state validation surface when back-
ward transfer functions are missing—without hampering
the effectiveness of our strategy on other fully transfer-
able state objects. Enforcing this behavior in our de-
sign is straightforward: the reversed version is originally
cloned from the past version and all the state objects that
do not take part in the backward state transfer run will
trivially match their original counterparts in the state dif-
ferencing process (unless state corruption occurs).

Table 2 analyzes TTST’s state validation and error de-
tection surface for the possible state changes introduced
by a given update. The first column refers to the nature
of the transformation of a particular state object. The
second column refers to the ability to validate the state
object using state differencing. The third and fourth col-
umn characterize the implementation of the resulting for-
ward and backward transfer functions. Finally, the fifth
column analyzes the effectiveness in detecting state cor-
ruption. For unchanged state objects, state differenc-
ing can automatically detect state corruption and transfer
functions are automatically provided by the state transfer
framework (STF). Note that unchanged state objects do
not necessarily have the same representation in the dif-
ferent versions. The memory layout of an updated ver-
sion does not generally reflect the memory layout of the
old version and the presence of pointers can introduce
representation differences for some unchanged state ob-
jects between the past and future version. State objects
with structural changes exhibit similar behavior, with a
fully automated transfer and validation strategy. With
structural changes, we refer to state changes that affect
only the type representation and can be entirely arbi-
trated from the STF with no user intervention (§5). This
is in contrast with semantic changes, which require user-
provided transfer code and can only be partially auto-
mated by the STF (§5). Semantic state changes high-
light the tradeoff between state validation coverage and
the manual effort required by the user. In a traditional

live update scenario, the user would normally only pro-
vide a forward transfer function. This behavior is seam-
lessly supported by TTST, but the transferred state ob-
ject will not be considered for validation. If the user pro-
vides code for the reverse transformation, however, the
transfer can be normally validated with no restriction. In
addition, the backward transfer function provided can be
used to perform a cold rollback from the future version
to the past version (i.e., live updating the new version
into the old version at a later time, for example when the
administrator experiences an unacceptable performance
slowdown in the updated version). Dropped state objects,
in turn, do not require any explicit transfer functions and
are automatically validated by state differencing as dis-
cussed earlier. State objects that are added in the update
(e.g., a new global variable), finally, cannot be automat-
ically validated by state differencing and their validation
and transfer is delegated to the STF (§5) or to the user.

Blackbox validation. TTST follows a blackbox val-
idation model, which completely ignores ST internals.
This is important for two reasons. First, this provides the
ability to support many possible updates and ST imple-
mentations. This also allows one to evaluate and com-
pare different STFs. Second, this is crucial to decouple
the validation logic from the ST implementation, mini-
mizing the amount of trusted code required by our strat-
egy. In particular, our design goals dictate the minimiza-
tion of the reliable computing base (RCB), defined as the
core software components that are necessary to ensure
correct implementation behavior [26]. Our fault model
requires four primary components in the RCB: the update
timing mechanisms, the TTST arbitration logic, the run-
time error detection mechanisms, and the state differenc-
ing logic. All the other software components which run
in the future and reversed versions (e.g., ST code and
CFT code) are fully untrusted thanks to our design.

The implementation of the update timing mechanisms
is entirely delegated to the live update library and its size
subject to the particular live update tool considered. We
trust that every reasonable update timing implementation
will have a small RCB impact. For the other TTST com-
ponents, we seek to reduce the code size (and complex-
ity) to the minimum. Luckily, our TTST arbitration logic
and run-time error detection mechanisms (described ear-
lier) are straightforward and only marginally contribute
to the RCB. In addition, TTST’s semantics-preserving
ST transaction and structural equivalence between the fi-
nal (reversed) state and the original (past) state ensure
that the memory images of the two versions are always
identical in error-free ST runs. This drastically simpli-
fies our state differencing strategy, which can be imple-
mented using trivial word-by-word memory comparison,
with no other knowledge on the ST code and marginal
RCB impact. Our comparison strategy examines all the
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function STATE DIFF(pid1, pid2)
a ← addr start
while a < shadow start do

m1 ← IS MAPPED WRITABLE(a, pid1)
m2 ← IS MAPPED WRITABLE(a, pid2)
if m1 or m2 then

if m1 �= m2 then
return true

if MEMPAGECMP(a, pid1, pid2) �= 0 then
return true

a ← a+ page size
return f alse

Figure 2: State differencing pseudocode.

writable regions of the address space excluding only pri-
vate shadow stack/heap regions (mapped at the end of
the address space) in use by the TTST control library.
Figure 2 shows the pseudocode for this simple strategy.

State transfer interface. TTST’s state transfer inter-
face seeks to minimize the requirements and the effort to
implement the STF. In terms of requirements, TTST de-
mands only a layout-aware and user-aware STF seman-
tic. By layout-aware, we refer to the ability of the STF to
preserve the original state layout when requested (i.e., in
the reversed version), as well as to automatically identify
the state changes described in Table 2. By user-aware,
we refer to the ability to allow the user to selectively
specify new forward and backward transfer functions
and candidate state objects for validation. To reduce
the effort, TTST offers a convenient STF programming
model, with an error handling-friendly environment—
our fault-tolerant design encourages undiscriminated use
of assertions—and a generic interprocess communica-
tion (IPC) interface. In particular, TTST implements an
IPC control interface to coordinate the TTST transaction
and an IPC data interface to grant read-only access to
the state of a given process version to the others. These
interfaces are currently implemented by UNIX domain
sockets and POSIX shared memory (respectively), but
other IPC mechanisms can be easily supported. The cur-
rent implementation combines fast data transfer with a
secure design that prevents impersonation attacks (access
is granted only to the predetermined process instances).

5 State Transfer Framework

Our state transfer framework seeks to automate all the
possible ST steps, leaving only the undecidable cases
(e.g., semantic state changes) to the user. The imple-
mentation described here optimizes and extends our prior
work [33–36] to the TTST model. We propose a STF
design that resembles a moving, mutating, and interpro-

cess garbage collection model. By moving, we refer to
the ability to relocate (and possibly reallocate) static and
dynamic state objects in the next version. This is to al-
low arbitrary changes in the memory layout between ver-
sions. By mutating, we refer to the ability to perform
on-the-fly type transformations when transferring every
given state object from the previous to the next version.
Interprocess, finally, refers to our process-level ST strat-
egy. Our goals raise 3 major challenges for a low-level
language like C. First, our moving requirement requires
precise object and pointer analysis at runtime. Second,
on-the-fly type transformations require the ability to dy-
namically identify, inspect, and match generic data types.
Finally, our interprocess strategy requires a mechanism
to identify and map state objects across process versions.

Overview. To meet our goals, our STF uses a combi-
nation of static and dynamic ST instrumentation. Our
static instrumentation, implemented by a LLVM link-
time pass [56], transforms each program version to gen-
erate metadata information that surgically describes the
entirety of the program state. In particular, static meta-
data, which provides relocation and type information
for all the static state objects (e.g., global variables,
strings, functions with address taken), is embedded di-
rectly into the final binary. Dynamic metadata, which
provides the same information for all the dynamic state
objects (e.g., heap-allocated objects), is, in turn, dy-
namically generated/destroyed at runtime by our allo-
cation/deallocation site instrumentation—we currently
support malloc/mmap-like allocators automatically
and standard region-based allocators [15] using user-
annotated allocator functions. Further, our pass can dy-
namically generate/destroy local variable metadata for a
predetermined number of functions (e.g., main), as dic-
tated by the particular update model considered. Finally,
to automatically identify and map objects across process
versions, our instrumentation relies on version-agnostic
state IDs derived from unambiguous naming and contex-
tual information. In detail, every static object is assigned
a static ID derived by its source name (e.g., function
name) and scope (e.g., static variable module). Every
dynamic object, in turn, is assigned a static ID derived
by allocation site information (e.g., caller function name
and target pointer name) and an incremental dynamic ID
to unambiguously identify allocations at runtime.

Our ID-based naming scheme fulfills TTST’s layout-
awareness goal: static IDs are used to identify state
changes and to automatically reallocate dynamic objects
in the future version; dynamic IDs are used to map dy-
namic objects in the future version with their existing
counterparts in the reversed version. The mapping pol-
icy to use is specified as part of generic ST policies,
also implementing other TTST-aware extensions: (i)
randomization (enabled in the future version): perform
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Figure 3: State transfer framework overview.

fine-grained address space randomization [34] for all the
static/dynamically reallocated objects, used to amplify
the difference introduced by memory errors in the over-
all TTST transaction; (ii) validation (enabled in the re-
versed version): zero out the local copy of all the mapped
state objects scheduled for automated transfer to detect
missing write errors at validation time.

Our dynamic instrumentation, included in a preloaded
shared library (ST framework library), complements the
static pass to address the necessary run-time tasks: type
and pointer analysis, metadata management for shared
libraries, error detection. In addition, the ST framework
library implements all the steps of the ST process, as de-
picted in Figure 3. The process begins with an initializa-
tion request from the TTST control library, which spec-
ifies the ST policies and provides access to the TTST’s
IPC interface. The next metadata transfer step transfers
all the metadata information from the previous version
to a metadata cache in the next version (local address
space). At the end, the local state objects (and their meta-
data) are mapped into the external objects described by
the metadata cache and scheduled for transfer according
to their state IDs and the given ST policies. The next
two data transfer steps complete the ST process, trans-
ferring all the data to reinitialize shared library and pro-
gram state to the next version. State objects scheduled
for transfer are processed one at a time, using metadata
information to locate the objects and their internal repre-
sentations in the two process versions and apply pointer
and type transformations on the fly. The last step per-
forms cleanup tasks and returns control to the caller.

State transfer strategy. Our STF follows a well-
defined automated ST strategy for all the mapped state
objects scheduled for transfer, exemplified in Figure 4.
As shown in the figure—which reprises the update exam-
ple given earlier (§ 2)—our type analysis automatically
and recursively matches individual type elements be-

tween object versions by name and representation, iden-
tifying added/dropped/changed/identical elements on the
fly. This strategy automates ST for common structural
changes, including: primitive type changes, array ex-
pansion/truncation, and addition/deletion/reordering of
struct members. Our pointer analysis, in turn, imple-
ments a generic pointer transfer strategy, automatically
identifying (base and interior) pointer targets in the previ-
ous version and reinitializing the pointer values correctly
in the next version, in spite of type and memory layout
changes. To perform efficient pointer lookups, our anal-
ysis organizes all the state objects with address taken in a
splay tree, an idea previously explored by bounds check-
ers [9, 27, 70]. We also support all the special pointer
idioms allowed by C (e.g., guard pointers) automatically,
with the exception of cases of “pointer ambiguity” [36].

To deal with ambiguous pointer scenarios (e.g.,
unions with inner pointers and pointers stored as inte-
gers) as well as more complex state changes (e.g., se-
mantic changes), our STF supports user extensions in the
form of preprocessor annotations and callbacks. Figure 4
shows an example of two ST annotations: IXFER (force
memory copying with no pointer transfer) and PXFER
(force pointer transfer instead of memory copying). Call-
backs, in turn, are evaluated whenever the STF maps or
traverses a given object or type element, allowing the
user to override the default mapping behavior (e.g., for
renamed variables) or express sophisticated state trans-
formations at the object or element level. Callbacks can
be also used to: (i) override the default validation poli-
cies, (ii) initialize new state objects; (iii) instruct the STF
to checksum new state objects after initialization to de-
tect memory errors at the end of the ST process.

Shared libraries. Uninstrumented shared libraries
(SLs) pose a major challenge to our pointer transfer strat-
egy. In particular, failure to reinitialize SL-related point-
ers correctly in the future version would introduce er-
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struct s,{,//old 
memcpy

ptrcpy

int,count;
char,str[3];
short id;

PXFER(int),addr;
void,*ptr;
union IXFER(u),u;

short,*inner_ptr;

ptrcpy

castcpy

memcpy

0
7
4a\04

0
0x...7f
{12,32}

mvar.id
},var;

int,count;
int id;,
char,str[2];

int new_element;
PXFER(int),addr;
union IXFER(u),u;

int,*inner_ptr;
*

struct s,{,//new 

},var;
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x

Figure 4: Automated state transfer example for the data structure presented in Listing 2.

rors after live update. To address this challenge, our STF
distinguishes 3 scenarios: (i) program/SL pointers into
static SL state; (ii) program/SL pointers into dynamic
SL state; (iii) SL pointers into static or dynamic program
state. To deal with the first scenario, our STF instructs
the dynamic linker to remap all the SLs in the future ver-
sion at the same addresses as in the past version, allow-
ing SL data transfer (pointer transfer in particular) to be
implemented via simple memory copying. SL reloca-
tion is currently accomplished by prelinking the SLs on
demand when starting the future version, a strategy sim-
ilar to “retouching” for mobile applications [19]. To ad-
dress the second scenario, our dynamic instrumentation
intercepts all the memory management calls performed
by SLs and generates dedicated metadata to reallocate
the resulting objects at the same address in the future
version. This is done by restoring the original heap lay-
out (and content) as part of the SL data transfer phase.
To perform heap randomization and type transformations
correctly for all the program allocations in the future ver-
sion, in turn, we allow the STF to deallocate (and re-
allocate later) all the non-SL heap allocations right af-
ter SL data transfer. To deal with the last scenario, we
need to accurately identify all the SL pointers into the
program state and update their values correctly to re-
flect the memory layout of the future version. Luckily,
these cases are rare and we can envision library devel-
opers exporting a public API that clearly marks long-
lived pointers into the program state once our live up-
date technique is deployed. A similar API is desirable
to mark all the process-specific state (e.g., libc’s cached
pids) that should be restored after ST—note that share-
able resources like file descriptors are, in contrast, au-
tomatically transferred by the fork/exec paradigm. To
automate the identification of these cases in our current
prototype, we used conservative pointer analysis tech-
niques [17, 18] under stress testing to locate long-lived
SL pointers into the program state and state differencing
at fork points to locate process-specific state objects.

Error detection. To detect certain classes of seman-
tic errors that escape TTST’s detection strategy, our

STF enforces program state invariants [33] derived
from all the metadata available at runtime. Unlike
existing likely invariant-based error detection tech-
niques [6,28,31,42,68], our invariants are conservatively
computed from static analysis and allow for no false pos-
itives. The majority of our invariants are enforced by our
dynamic pointer analysis to detect semantic errors during
pointer transfer. For example, our STF reports invariant
violation (and aborts ST by default) whenever a pointer
target no longer exists or has its address taken (accord-
ing to our static analysis) in the new version. Another
example is a transferred pointer that points to an illegal
target type according to our static pointer cast analysis.

6 Evaluation

We have implemented TTST on Linux (x86), with sup-
port for generic user-space C programs using the ELF
binary format. All the platform-specific components,
however, are well isolated in the TTST control library
and easily portable to other operating systems, archi-
tectures, and binary formats other than ELF. We have
integrated address space randomization techniques de-
veloped in prior work [34] into our ST instrumentation
and configured them to randomize the location of all the
static and dynamically reallocated objects in the future
version. To evaluate TTST, we have also developed a
live update library mimicking the behavior of state-of-
the-art live update tools [48], which required implement-
ing preannotated per-thread update points to control up-
date timing, manual control migration to perform CFT,
and a UNIX domain sockets-based interface to receive
live update commands from our ttst-ctl tool.

We evaluated the resulting solution on a workstation
running Linux v3.5.0 (x86) and equipped with a 4-core
3.0Ghz AMD Phenom II X4 B95 processor and 8GB of
RAM. For our evaluation, we first selected Apache httpd
(v.2.2.23) and nginx (v0.8.54), the two most popular
open-source web servers. For comparison purposes, we
also considered vsftpd (v1.1.0) and the OpenSSH dae-
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mon (v3.5p1), a popular open-source ftp and ssh server,
respectively. The former [23,45,48,49,57,63,64] and the
latter [23,45,64] are by far the most used server programs
(and versions) in prior work in the field. We annotated all
the programs considered to match the implemented live
update library as described in prior work [45, 48]. For
Apache httpd and nginx, we redirected all the calls to
custom allocation routines to the standard allocator in-
terface (i.e., malloc/free calls), given that our current
instrumentation does not yet support custom allocation
schemes based on nested regions [15] (Apache httpd) and
slab-like allocations [20] (nginx). To evaluate our pro-
grams, we performed tests using the Apache benchmark
(AB) [1] (Apache httpd and nginx), dkftpbench [2] (vs-
ftpd), and the provided regression test suite (OpenSSH).
We configured our programs and benchmarks using the
default settings. We repeated all our experiments 21
times and reported the median—with negligible standard
deviation measured across multiple test runs.

Our evaluation answers five key questions: (i) Perfor-
mance: Does TTST yield low run-time overhead and
reasonable update times? (ii) Memory usage: How much
memory do our instrumentation techniques use? (iii)
RCB size: How much code is (and is not) in the RCB?
(iv) Fault tolerance: Can TTST withstand arbitrary fail-
ures in our fault model? (v) Engineering effort: How
much engineering effort is required to adopt TTST?

Performance. To evaluate the run-time overhead im-
posed by our update mechanisms, we first ran our bench-
marks to compare our base programs with their instru-
mented and annotated versions. Our experiments showed
no appreciable performance degradation. This is ex-
pected, since update points only require checking a flag
at the top of long-running loops and metadata is ef-
ficiently managed by our ST instrumentation. In de-
tail, our static metadata—used only at update time—
is confined in a separate ELF section so as not to dis-
rupt locality. Dynamic metadata management, in turn,
relies on in-band descriptors to minimize the overhead

Type httpd nginx vsftpd OpenSSH

Static 2.187 2.358 3.352 2.480
Run-time 3.100 3.786 4.362 2.662
Forward ST 3.134 5.563 6.196 4.126
TTST 3.167 7.340 8.031 5.590

Table 3: TTST-induced memory usage (measured stati-
cally or at runtime) normalized against the baseline.

on allocator operations. To evaluate the latter, we in-
strumented all the C programs in the SPEC CPU2006
benchmark suite. The results evidenced a 4% aver-
age run-time overhead across all the benchmarks. We
also measured the cost of our instrumentation on 10,000
malloc/free and mmap/munmap repeated glibc alloca-
tor operations—which provide worst-case results, given
that common allocation patterns generally yield poorer
locality. Experiments with multiple allocation sizes
(0-16MB) reported a maximum overhead of 41% for
malloc, 9% for free, 77% for mmap, and 42% for
munmap. While these microbenchmark results are useful
to evaluate the impact of our instrumentation on alloca-
tor operations, we expect any overhead to be hardly vis-
ible in real-world server programs, which already strive
to avoid expensive allocations on the critical path [15].

When compared to prior user-level solutions, our
performance overhead is much lower than more intru-
sive instrumentation strategies—with worst-case mac-
robenchmark overhead of 6% [64], 6.71% [62], and
96.4% [57]—and generally higher than simple binary
rewriting strategies [10, 23]—with worst-case function
invocation overhead estimated around 8% [58]. Unlike
prior solutions, however, our overhead is strictly isolated
in allocator operations and never increases with the num-
ber of live updates deployed over time. Recent program-
level solutions that use minimal instrumentation [48]—
no allocator instrumentation, in particular—in turn, re-
port even lower overheads than ours, but at the daunting
cost of annotating all the pointers into heap objects.

We also analyzed the impact of process-level TTST
on the update time—the time from the moment the up-
date is signaled to the moment the future version re-
sumes execution. Figure 5 depicts the update time—
when updating the master process of each program—as
a function of the number of type transformations oper-
ated by our ST framework. For this experiment, we im-
plemented a source-to-source transformation able to au-
tomatically change 0-1,327 type definitions (adding/re-
ordering struct fields and expanding arrays/primitive
types) for Apache httpd, 0-818 type definitions for nginx,
0-142 type definitions for vsftpd, and 0-455 type defini-
tions for OpenSSH between versions. This forced our ST
framework to operate an average of 1,143,981, 111,707,
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Component RCB Other

ST instrumentation 1,119 8,211
Live update library 235 147
TTST control library 412 2,797
ST framework 0 13,311
ttst-ctl tool 0 381

Total 1,766 26,613

Table 4: Source lines of code (LOC) and contribution to
the RCB size for every component in our architecture.

1,372, and 206,259 type transformations (respectively)
at 100% coverage. As the figure shows, the number of
type transformations has a steady but low impact on the
update time, confirming that the latter is heavily domi-
nated by memory copying and pointer analysis—albeit
optimized with splay trees. The data points at 100%
coverage, however, are a useful indication of the upper
bound for the update time, resulting in 1263 ms, 180 ms,
112 ms, and 465 ms (respectively) with our TTST update
strategy. Apache httpd reported the longest update times
in all the configurations, given the greater amount of state
transferred at update time. Further, TTST update times
are, on average, 1.76x higher than regular ST updates
(not shown in figure for clarity), acknowledging the im-
pact of backward ST and state differencing on the update
time. While our update times are generally higher than
prior solutions, the impact is bearable for most programs
and the benefit is stateful fault-tolerant version updates.

Memory usage. Our state transfer instrumentation
leads to larger binary sizes and run-time memory foot-
prints. This stems from our metadata generation strategy
and the libraries required to support live update. Table 3
evaluates the impact on our test programs. The static
memory overhead (235.2% worst-case overhead for vs-
ftpd) measures the impact of our ST instrumentation on
the binary size. The run-time overhead (336.2% worst-
case overhead for vsftpd), in turn, measures the impact of
instrumentation and support libraries on the virtual mem-
ory size observed at runtime, right after server initial-
ization. These measurements have been obtained start-
ing from a baseline virtual memory size of 234 MB for
Apache httpd and less than 6 MB for all the other pro-
grams. The third and the fourth rows, finally, show
the maximum virtual memory overhead we observed
at live update time for both regular (forward ST only)
and TTST updates, also accounting for all the transient
process instances created (703.1% worst-case overhead
for vsftpd and TTST updates). While clearly program-
dependent and generally higher than prior live update
solutions, our measured memory overheads are modest
and, we believe, realistic for most systems, also given
the increasingly low cost of RAM in these days.
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Figure 6: TTST behavior in our automated fault injec-
tion experiments for varying fault types.

RCB size. Our TTST update technique is carefully de-
signed to minimize the RCB size. Table 4 lists the LOC
required to implement every component in our architec-
ture and the contributions to the RCB. Our ST instru-
mentation requires 1,119 RCB LOC to perform dynamic
metadata management at runtime. Our live update library
requires 235 RCB LOC to implement the update tim-
ing mechanisms and interactions with client tools. Our
TTST control library requires 412 RCB LOC to arbitrate
the TTST process, implement run-time error detection,
and perform state differencing—all from the past ver-
sion. Our ST framework and ttst-ctl tool, in contrast,
make no contribution to the RCB. Overall, our design
is effective in producing a small RCB, with only 1,766
LOC compared to the other 26,613 non-RCB LOC. En-
couragingly, our RCB is even substantially smaller than
that of other systems that have already been shown to be
amenable to formal verification [54]. This is in stark con-
trast with all the prior solutions, which make no effort to
remove any code from the RCB.

Fault tolerance. We evaluated the fault tolerance
of TTST using software-implemented fault injection
(SWIFI) experiments. To this end, we implemented an-
other LLVM pass which transforms the original program
to inject specific classes of software faults into predeter-
mined code regions. Our pass accepts a list of target pro-
gram functions/modules, the fault types to inject, and a
fault probability φ—which specifies how many fault lo-
cations should be randomly selected for injection out of
all the possible candidates found in the code. We config-
ured our pass to randomly inject faults in the ST code,
selecting φ = 1%—although we observed similar results
for other φ values—and fault types that matched com-
mon programming errors in our fault model. In detail,
similar to prior SWIFI strategies that evaluated the ef-
fectiveness of fault-tolerance mechanisms against state
corruption [65], we considered generic branch errors
(branch/loop condition flip or stuck-at errors) as well as
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Updates Changes Engineering effort

# LOC Fun Var Ty ST Ann LOC Fwd ST LOC Bwd ST LOC

Apache httpd 5 10,844 829 28 48 79 302 151
nginx 25 9,681 711 51 54 24 335 0
vsftpd 5 5,830 305 121 35 0 21 21
OpenSSH 5 14,370 894 84 33 0 135 127

Total 40 40,725 2,739 284 170 103 793 299

Table 5: Engineering effort for all the updates analyzed in our evaluation.

common memory errors, such as uninitialized reads (em-
ulated by missing initializers), pointer corruption (em-
ulated by corrupting pointers with random or off-by-1
values), buffer overflows (emulated by extending the size
passed to data copy functions, e.g., memcpy, by 1-100%),
and memory leakage (emulated by missing deallocation
calls). We repeated our experiments 500 times for each
of the 5 fault types considered, with each run starting a
live update between randomized program versions and
reporting the outcome of our TTST strategy. We report
results only for vsftpd—although we observed similar re-
sults for the other programs—which allowed us to collect
the highest number of fault injection samples per time
unit and thus obtain the most statistically sound results.

Figure 6 presents our results breaking down the data
by fault type and distribution of the observed outcomes—
that is, update succeeded or automatically rolled back af-
ter timeout, abnormal termination (e.g., crash), or past-
reversed state differences detected. As expected, the dis-
tribution varies across the different fault types consid-
ered. For instance, branch and initialization errors pro-
duced the highest number of updates aborted after a time-
out (14.6% and 9.2%), given the higher probability of in-
finite loops. The first three classes of errors considered,
in turn, resulted in a high number of crashes (51.1%,
on average), mostly due to invalid pointer dereferences
and invariants violations detected by our ST framework.
In many cases, however, the state corruption introduced
did not prevent the ST process from running to comple-
tion, but was nonetheless detected by our state differenc-
ing technique. We were particularly impressed by the
effectiveness of our validation strategy in a number of
scenarios. For instance, state differencing was able to
automatically recover from as many as 471 otherwise-
unrecoverable buffer overflow errors. Similar is the case
of memory leakages—actually activated in 22.2% of the
runs—with any extra memory region mapped by our
metadata cache and never deallocated immediately de-
tected at state diffing time. We also verified that the fu-
ture (or past) version resumed execution correctly after
every successful (or aborted) update attempt. When sam-
pling the 533 successful cases, we noted the introduction

of irrelevant faults (e.g., missing initializer for an unused
variable) or no faults actually activated at runtime. Over-
all, our TTST technique was remarkably effective in de-
tecting and recovering from a significant number of ob-
served failures (1,967 overall), with no consequences for
the running program. This is in stark contrast with all the
prior solutions, which make no effort in this regard.

Engineering effort. To evaluate the engineering ef-
fort required to deploy TTST, we analyzed a number
of official incremental releases following our original
program versions and prepared the resulting patches for
live update. In particular, we considered 5 updates for
Apache httpd (v2.2.23-v2.3.8), vsftpd (v1.1.0-v2.0.2),
and OpenSSH (v3.5-v3.8), and 25 updates for nginx
(v0.8.54-v1.0.15), given that nginx’s tight release cycle
generally produces incremental patches that are much
smaller than those of the other programs considered.
Table 5 presents our findings. The first two grouped
columns provide an overview of our analysis, with the
number of updates considered for each program and the
number of lines of code (LOC) added, deleted, or mod-
ified in total by the updates. As shown in the table,
we manually processed more than 40,000 LOC across
the 40 updates considered. The second group shows the
number of functions, variables, and types changed (i.e.,
added, deleted, or modified) by the updates, with a to-
tal of 2,739, 284, and 170 changes (respectively). The
third group, finally, shows the engineering effort in terms
of LOC required to prepare our test programs and our
patches for live update. The first column shows the one-
time annotation effort required to integrate our test pro-
grams with our ST framework. Apache httpd and nginx
required 79 and 2 LOC to annotate 12 and 2 unions with
inner pointers, respectively. In addition, nginx required
22 LOC to annotate a number of global pointers using
special data encoding—storing metadata information in
the 2 least significant bits. The latter is necessary to en-
sure precise pointer analysis at ST time. The second and
the third column, in turn, show the number of lines of
state transfer code we had to manually write to complete
forward ST and backward ST (respectively) across all the
updates considered. Such ST extensions were necessary
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to implement complex state changes that could not be
automatically handled by our ST framework.

A total of 793 forward ST LOC were strictly neces-
sary to prepare our patches for live update. An extra 299
LOC, in turn, were required to implement backward ST.
While optional, the latter is important to guarantee full
validation surface for our TTST technique. The much
lower LOC required for backward ST (37.7%) is easily
explained by the additive nature of typical state changes,
which frequently entail only adding new data structures
(or fields) and thus rarely require extra LOC in our back-
ward ST transformation. The case of nginx is particularly
emblematic. Its disciplined update strategy, which limits
the number of nonadditive state changes to the minimum,
translated to no manual ST LOC required to implement
backward ST. We believe this is particularly encouraging
and can motivate developers to deploy our TTST tech-
niques with full validation surface in practice.

7 Related Work

Live update systems. We focus on local live update
solutions for generic and widely deployed C programs,
referring the reader to [7, 8, 29, 55, 74] for distributed
live update systems. LUCOS [22], DynaMOS [58], and
Ksplice [11] have applied live updates to the Linux ker-
nel, loading new code and data directly into the run-
ning version. Code changes are handled using binary
rewriting (i.e., trampolines). Data changes are handled
using shadow [11, 58] or parallel [22] data structures.
OPUS [10], POLUS [23], Ginseng [64], STUMP [62],
and Upstare [57] are similar live update solutions for
user-space C programs. Code changes are handled us-
ing binary rewriting [10, 23], compiler-based instrumen-
tation [62,64], or stack reconstruction [57]. Data changes
are handled using parallel data structures [23], type
wrapping [62, 64], or object replacement [57]. Most
solutions delegate ST entirely to the programmer [10,
11, 22, 23, 58], others generate only basic type trans-
formers [57, 62, 64]. Unlike TTST, none of these so-
lutions attempt to fully automate ST—pointer transfer, in
particular—and state validation. Further, their in-place
update model hampers isolation and recovery from ST
errors, while also introducing address space fragmenta-
tion over time. To address these issues, alternative update
models have been proposed. Prior work on process-level
live updates [40, 49], however, delegates the ST burden
entirely to the programmer. In another direction, Kit-
sune [48] encapsulates every program in a hot swappable
shared library. Their state transfer framework, however,
does not attempt to automate pointer transfer without
user effort and no support is given to validate the state or
perform safe rollback in case of ST errors. Finally, our
prior work [34,35] demonstrated the benefits of process-

level live updates in component-based OS architectures,
with support to recover from run-time ST errors but no
ability to detect a corrupted state in the updated version.

Live update safety. Prior work on live update safety
is mainly concerned with safe update timing mecha-
nisms, neglecting important system properties like fault
tolerance and RCB minimization. Some solutions rely
on quiescence [10–13] (i.e., no updates to active code),
others enforce representation consistency [62, 64, 71]
(i.e., no updated code accessing old data). Other re-
searchers have proposed using transactions in local [63]
or distributed [55, 74] contexts to enforce stronger tim-
ing constraints. Recent work [44], in contrast, suggests
that many researchers may have been overly concerned
with update timing and that a few predetermined update
points [34, 35, 48, 49, 62, 64] are typically sufficient to
determine safe and timely update states. Unlike TTST,
none of the existing solutions have explicitly addressed
ST-specific update safety properties. Static analysis pro-
posed in OPUS [10]—to detect unsafe data updates—
and Ginseng [64]—to detect unsafe pointers into updated
objects—is somewhat related, but it is only useful to dis-
allow particular classes of (unsupported) live updates.

Update testing. Prior work on live update testing [45–
47] is mainly concerned with validating the correctness
of an update in all the possible update timings. Correct
execution is established from manually written specifica-
tions [47] or manually selected program output [45, 46].
Unlike TTST, these techniques require nontrivial man-
ual effort, are only suitable for offline testing, and fail to
validate the entirety of the program state. In detail, their
state validation surface is subject to the coverage of the
test programs or specifications used. Their testing strat-
egy, however, is useful to compare different update tim-
ing mechanisms, as also demonstrated in [45]. Other re-
lated work includes online patch validation, which seeks
to efficiently compare the behavior of two (original and
patched) versions at runtime. This is accomplished by
running two separate (synchronized) versions in paral-
lel [21, 51, 59] or a single hybrid version using a split-
and-merge strategy [73]. These efforts are complemen-
tary to our work, given that their goal is to test for errors
in the patch itself rather than validating the state trans-
fer code required to prepare the patch for live update.
Complementary to our work are also efforts on upgrade
testing in large-scale installations, which aim at creat-
ing sandboxed deployment-like environments for testing
purposes [75] or efficiently testing upgrades in diverse
environments using staged deployment [25]. Finally,
fault injection has been previously used in the context of
update testing [29, 60, 66], but only to emulate upgrade-
time operator errors. Our evaluation, in contrast, presents
the first fault injection campaign that emulates realistic
programming errors in the ST code.
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8 Conclusion

While long recognized as a hard problem, state transfer
has received limited attention in the live update literature.
Most efforts focus on automating and validating update
timing, rather than simplifying and shielding the state
transfer process from programming errors. We believe
this is a key factor that has discouraged the system ad-
ministration community from adopting live update tools,
which are often deemed impractical and untrustworthy.

This paper presented time-traveling state transfer, the
first fault-tolerant live update technique which allows
generic live update tools for C programs to automate and
validate the state transfer process. Our technique com-
bines the conventional forward state transfer transforma-
tion with a backward (and logically redundant) trans-
formation, resulting in a semantics-preserving manipu-
lation of the original program state. Observed deviations
in the reversed state are used to automatically identify
state corruption caused by common classes of program-
ming errors (i.e., memory errors) in the state transfer (li-
brary or user) code. Our process-level update strategy, in
turn, guarantees detection of other run-time errors (e.g.,
crashes), simplifies state management, and prevents state
transfer errors to propagate back to the original version.
The latter property allows our framework to safely re-
cover from errors and automatically resume execution in
the original version. Further, our modular and blackbox
validation design yields a minimal-RCB live update sys-
tem, offering a high fault-tolerance surface in both online
and offline validation runs. Finally, we complemented
our techniques with a generic state transfer framework,
which automates state transformations with minimal pro-
gramming effort and can detect additional semantic er-
rors using statically computed invariants. We see our
work as the first important step toward truly practical and
trustworthy live update tools for system administrators.
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Live upgrading thousands of servers from an ancient 
Red Hat distribution to 10 year newer Debian based one.

Marc MERLIN
Google, Inc.

Abstract

Google maintains many servers and employs a file level sync method with applications running in a different parti -
tion than the base Linux distribution that boots the machine and interacts with hardware.  This experience report
first gives insights on how the distribution is setup, and then tackles the problem of doing a difficult upgrade from a
Red Hat 7.1 image snapshot with layers of patches to a Debian Testing based distribution built from source. We
will look at how this can actually be achieved as a live upgrade and without ending up with a long “flag day” where
many machines are running totally different distributions, which would have made testing and debugging of appli -
cations disastrous during a long switchover period.

Like a coworker of mine put it, “It was basically akin to upgrading Red Hat 7.1 to Fedora Core 16, a totally unsup -
ported and guaranteed to break upgrade, but also switching from rpm to dpkg in the process, and on live machines.”

The end of the paper summarizes how we designed our packaging system for the new distribution, as well as how
we build each new full distribution image from scratch in a few minutes.

Tags: infrastructure, Linux, distribution, live upgrade

Introduction
The Linux operating  system that  Google  uses  in  our
service "production" environment has a strange history
which will be described before explaining how we up-
graded it.
Google’s production Linux OS is managed in three lay-
ers. The kernel and device drivers, user-space, and the
running applications.
The kernel and device drivers  are updated frequently
and separately from the operating system. These files
are maintained, fleet-wide, by a different team. Aside
from obvious  touch  points,  this  maintenance is unre-
lated to the work described in this paper.
Each application runs in a chroot-ed jail. This jail in-
cludes all the programs, shared libraries, and data files
required for the application to run. Therefore they are
not  entangled  with  the  rest  of  the  operating  system.
This independence from the underlying operating sys-
tem is fairly extreme:  even  external libraries are  stati-
cally linked. We provide multiple hermetic versions of
python, the C++ libraries, the C runtime loader and li-
braries that applications can choose from. These are all
decoupled from the booted operating system.
The  remaining  part  is  the  user-space  files -  the  init
scripts, the /usr/bin binaries, and so on. The OS’s na-
tive package system is only used for this part, which is
the focus of this paper.
Because  of  this  decoupling  the  user-space  portion
could go a long time without upgrades. In fact, it  re-
mained  at  the  equivalent  of  Red  Hat  7.1  for  many
years.

Changing a fleet  of thousands of machines  from one
distribution to another  is a rare event and there is no
“best practice” for doing so. One could convert small
groups of machines until the entire fleet is converted.
During the transition the fleet  would contain two dif-
ferent operating systems. That was unacceptable - the
entire Google fleet is kept within one or two minor OS
revisions at any given time.  Adding multiple operating
systems would have multiplied complexity.
Instead we chose to transition parts of the OS one at a
time: the boot scripts, the user-space binaries, the pack-
age  system,  etc.  Over  3  years  the  entire  OS  would
change, sometimes file by file, until it was completely
replaced.  This  permitted  each  little  step  to  be  fully
tested  and  possibly  reverted.  Most  importantly  users
would not see a “flag day” change. At our a large scale,
a small error is multiplied by thousands of machines.
The ability to move slowly, cautiously, and with large
amounts of testing, was critical.

System  Administrators  often  refer  to  their  work  as
“changing the tires while the car is driving down the
highway”.  In this  case  we changed the  front  left  tire
across the entire fleet. Once that was done we changed
the steering wheel across the entire fleet. This process
continued and after four years we had an entirely new
car.
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1. Google Servers and Linux, the early days
Like many startups, Google started with a Linux CD.
It started around 1998 with a Red Hat 6.2 that was in-
stalled on the production  machines.  Soon thereafter,
we  got  a  kickstart  network  install,  and  it  grew from
there.

Updates  and  custom  configurations  were  a  problem.
Machine owners had ssh loops to connect to machines
and  run  custom  install/update  commands.  At  some
point,  they  all  got  reinstalled  with  Red Hat  7.1  with
custom software re-installed on top, but obviously this
was not the right way to do things.

1.1. Better update management
The custom ssh loops were taking longer to run, and
missing  more  machines  each  time.  It  was  quick  and
dirty,  but  this  has  never  scaled.  Generally  any  push
based method is doomed.  

Now, it's  not uncommon to run apt-get  or  yum from
cron  and  hope  updates  will  mostly  work  that  way.
However, for those of you who have tried running apt-
get/dpkg/rpm/yum on thousands  of  servers,  you  may
have found that random failures, database corruptions
(for  rpm) due  to  reboots/crashes  during  updates,  and
other issues make this not very reliable.

Even if the package DBs don't fail, it's often a pain to
deal with updates to config files conflicting with pack-
ages, or unexpected machine state that breaks the pack-
age updates and causes all  subsequent updates to fail
until an admin fixes the machine manually, or a crude
script  simply  wipes  and  re-installs  the  machine.  The
first method doesn't scale and the second one can cause
data loss and outages.

1.2. Full file level filesystem sync
As crude as it is, file level syncing recovers from any
state and bypasses package managers and their unex-
pected  errors.  It  makes  all  your  servers  the  same
though,  so  custom  packages  and  configs  need  to  be
outside of the synced area or manually excluded. Each
server then has a list of custom files (network config,
resolv.conf, syslog files, etc...) that are excluded from
the sync.

Now, using rsync for entire machines off a master im-
age doesn't scale well on the server side, and can bog
the I/O on your clients, causing them to be too slow to
serve requests with acceptable latency. You also need
triggers that restart programs if certain files change.

So, we wrote custom rsync-like software where clients
initiate file level syncs from a master image. It then al-

lows  for  shell  triggers  to  be run  appropriately.  IO is
throttled so that it does not negatively impact machines
serving live requests while they are being upgraded.

1.3.  Isolating  server  packages  from  the
Server OS
We have custom per machine software that is outside
of the centrally managed root partition,  and therefore
does not interfere with updates. In other words, the dis-
tribution is a fancy boot loader with housekeeping and
hardware monitoring tools. Applications go in a sepa-
rate  partition  and  are  not  allowed  to  touch  the
dpkg/rpm database, or modify the root partition in any
other way. 

The software run by the server is typically run in a ch-
root with a limited view of the root partition, allowing
the application to be hermetic and protected from root
filesystem changes. We also have support for multiple
libcs and use static linking for most library uses. This
combination makes it easy to have hundreds of differ-
ent  apps  with  their  own dependencies  that  change at
their own pace without breaking if the OS that  boots
the machine changes.

The limited view of the root partition was achieved by
first having a blacklist of what not to include in the ch-
root  for  applications,  and  later  transitioning to  a
whitelist. In other words, our restricted chroot for user
applications only contains files that have been opted in.

This upgrade itself also gave us a chance to find places
where we weren't  fully hermetic like we should have
been.

2. How we did updates
Because had decoupled the booting OS from the appli-
cations running on top, the actual  OS saw a minimal
amount of updates.  Updates were mostly security up-
dates for bugs that did potentially affect us.  From time
to time we also needed a new feature that was added in
the userland tools that we used. In other words OS up-
dates were few and far in between and done only on
demand, . This is how we ended up still running some-
thing that was still mostly Red Hat 7.1 after about 10
years,  managed by 2 or fewer people. In some ways,
we pushed the “if it ain't broke, don't fix it” motto as
far as we could.

2.1. Server image updates
We effectively had a filesystem image that got synced
to a master machine, new packages were installed and
the new image was snapshotted. We had scripts to store
the  new  filesystem  snapshot  in  Perforce,  one  of  our
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source control systems, and allow for crude diffing be-
tween the two images. The new golden image was then
pushed to test  machines,  had to pass regression tests,
and pushed to a test cluster, eventually with some live
traffic. When the new image has seen enough testing, it
is pushed slowly to the entire fleet.

2.2. Dealing with filesystem image updates
After dealing with the obvious issues of excluding ma-
chine specific config files,  and logs from full filesys-
tem syncs, the biggest difference is dealing with pack-
age postinstalls. We removed most of them since any-
thing that is meant to run differently on each machine
doesn't work with a golden image that is file-synced.

Examples:
• Running ldconfig after a library change is ok.
• Creating files in postinstall works, but is undesirable

since those don't show up in the package file list. 
• For the case of files like ssh host keys, it's obviously

bad to create a single host key that gets snapshotted
and synced everywhere.

• Re-running  lilo  after  updating  lilo.conf  would  not
work.

• Restarting daemons doesn't work either.
• Many postinstalls have code to deal with cleaning up

for  upgrades  that  weren't  relevant  to  us,  so  they
could be ignored or removed.

We  dealt  with  postinstalls  that  were  necessary  on  a
case  by  case  basis  and  we  used  our  filesystem sync
post push triggers that restart daemons or re-install lilo
boot  blocks after  the relevant config files  or binaries
were updated.

2.3.  Testing  software  before  doing  image
updates
We wrote  a test-rpm-install/test-deb-install  script  that
takes a clean machine, installs the package, and gets a
before/after snapshot of the entire filesystem. This al-
lowed  us  to  verify  what  gets  added/removed  to  the
filesystem, as well as review unix permission changes,
and size increases.  We always fought  software  bloat,
which is how we managed to keep a small boot image
after years of evolution (it actually shrunk in size over
time as bloat was identified and removed).

Software engineers of course have mandated code re-
views and unit tests for their software.  Once those are
done for a change, we build an image with just the new
package and send it to our regression tester. The regres-
sion tester runs on a sample of our different platforms,
applies the update without rebooting, and ensures that
critical  daemons  and  services  continue  to  work  after

the update. Once that works, the machine is rebooted,
the services checked again, after which the machine is
rebooted first cleanly, and then a second time as a crash
reboot. If this all passes, the image is then reverted, we
make  sure  daemons  do  not  misbehave  when  down-
graded  (this  can  happen  if  the  old  code  cannot  deal
with  state  files  from  the  new  code),  and  the  down-
graded image is then rebooted to make sure everything
comes back up as expected.

While this test suite is not foolproof, it has found a fair
amount of bugs, and ideally let the software submitter
find problems before submitting the package for inclu-
sion in the next image cut.

2.4.  Reviewing  image  updates  before  de-
ployment, and test deployment.
We start  with the old image's files checked into Per-
force (Perforce was mostly chosen because it was our
main already in use source control system at the time).
Metadata  was  stored  into  a  separate  file  that  wasn't
much  reviewable  (dev  nodes,  hardlinks,  permissions,
etc...), but we had a reviewer friendly ls -alR type file
list to review permission and owner changes.

Image build input was a list of pre-approved packages
to  update  with  package  owners  providing  their  own
testing  notes,  and  features  they're  looking  at  adding.
They got  installed  on a test  machine,  and the output
was a  new filesystem image where  Perforce  allowed
reviewing diffs  of  ASCII  files,  and  we could  review
changes  in  binary  sizes  as  well  as  file  permissions.
From there, if approved, the image was sent to a pool
of early test machines, and deployed slowly fleet-wide
if no one complained about regressions.

2.5. Admin and debugging considerations
While the focus of this paper is on distribution manage-
ment and upgrades, there are a few things worth noting
related to management  of headless  machines  and  de-
bugging boot issues. We have serial consoles on some
test  machines,  but it's  not worth the price on all  ma-
chines.  As  a  result  we  use  bootlogd  to  capture  boot
messages  without  requiring  the  much  heavier  and
buggy plymouth. We also start a debug sshd before the
root  filesystem  is  fsck'ed  and  remounted  read-write.
That  way  we  can  easily  probe/debug  machines  that
aren't  rebooting  properly  or  failing  to  fsck  their  root
filesystem.

When you have so many machines, you want to keep
the init system simple and dependable. Whenever pos-
sible we want all our machines to behave the same. As
a result, we stuck with normal init, and looked at De-
bian's insserv and startpar for simple dependency boot-
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ing that we can set in stone and review at image cre-
ation time. Both upstart and systemd require way too
many  moving  pieces  and  introduce  boot  complexity
and unpredictability that was not worth the extra boot
time they could save. 

While shaving a few seconds of boot isn't that impor-
tant to us, we do save reboot time by avoiding double
reboots when the root filesystem needs repair, and do
so by doing a pivot-root to an initramfs with busybox,
release the root filesystem, fsck it, and then pivot-root
back to it to continue normal boot.

2.6 This worked amazingly well over time,
but it had many issues
• Like is often the case, our system was not carefully

thought  out and designed from the ground up,  but
just a series of incremental “we have to fix this now”
solutions that were the best the engineers with lim-
ited time could do at the time.

• Our entire distribution was really just a lot of over-
layed patches  on top of  a  Red Hat  7.1 live  server
snapshotted almost 10 years ago.

• A lot of software was still original Red Hat 7.1 and
we had no good way to rebuild it on a modern sys-
tem.  Worse,  we just  assumed that  the  binaries  we
had  were  indeed  built  from  the  original  Red  Hat
source.

• The core of our distribution was now very old, and
we knew we couldn't postpone upgrading it forever,
but had no good plan for doing so.

3.0. Upgrade Plan

3.1 Which distribution?
Back in the days,  we wasted too much time building
open source software as rpms, when they were avail-
able as debs. As a result, we were not very attached to
Red Hat due to the lack of software available in rpm
form vs what was available in Debian. We had already
switched away from Red Hat  on our Linux worksta-
tions years prior for the same reason (our workstations
are running a separately maintained linux distribution
because they have different requirements and tradeoffs
than our servers do) Back then, Red Hat 9 had 1,500
packages vs 15,000 in Debian. Today Fedora Core 18
has 13,500 vs 40,000 in Debian testing. Arguably Red
Hat fares better today than it did then, but still remains
inferior in software selection. 

As a result, ProdNG, our Linux distribution built from
source, was originally based off Ubuntu Dapper. At the
time Ubuntu was chosen because we were also using it

on our workstations. Later on, we switched to straight
Debian due to Ubuntu introducing several forced com-
plexities that were not optional and not reliable when
they were introduced, like upstart and plymouth.

3.2 ProdNG Design
Richard Gooch and Roman Mitnitski, who did the orig-
inal design for the new distribution came up with these
design points to address the limitations of our existing
distribution:

• Self hosting.
• Entirely rebuilt from source.
• All packages stripped of unnecessary dependencies

and libraries (xml2, selinux library, libacl2, etc..)
• Less is more: the end distribution is around 150MB

(without  our  custom  bits).  Smaller  is  quicker  to
sync, re-install, and fsck.

• No complicated  upstart,  dbus,  plymouth, etc. Tried
and true wins over new, fancy and more complex,
unless  there  is  measurable  benefit from  the  more
complex version.

• Newer  packages  are  not  always  better.  Sometimes
old is good, but only stay behind and fork if really
necessary. On the flip side, do not blindly upgrade
just because upstream did.

• Hermetic: we create a ProdNG chroot on the fly and
install  build tools each time for each new package
build.

• Each image update is built by reassembling the en-
tire distribution from scratch in a chroot. This means
there are no upgrades as far as the package manage-
ment is concerned, and no layers of patches on top
of  a  filesystem that  could  have  left-over  forgotten
cruft.

3.3 Upgrade Plan
Once we had a ProdNG distribution prototype that was
booting, self-hosting, and ready to be tested, we all re-
alized that switching over would be much harder than
planned.

There was no way we could just roll out a brand new
distribution that was 100% different from the old one,
with software that was up to 10 years newer, and hope
for the best.  On top of that,  our distribution contains
our custom software that is required for new hardware
bringup, or network changes, so we could not just have
paused updates to the old distribution for months while
we very slowly rolled out the new one. Cycles of find a
bug, pause the rollout or revert, fix the bug (either in
the distribution, or in the software that relied on the be-
havior of the old one), and try again, could have poten-
tially lasted for months. 
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It  could  have  been  possible  with  a  second  team  to
maintain  the  old  production  image  in  parallel  and  at
each  review  cycle  build  2  distributions,  but  this  had
many problems. To list just a few:

• Double the review load, but it was obviously not de-
sirable, nor really achievable with limited staffing.

• Would we really want to have a non-uniform setup
in production for that long? That's not going to make
debugging easy in case we notice failures in produc-
tion and for  months  we'd  now first  have to worry
about whether “Is it a ProdNG related problem, or a
distribution independent problem?”. Our monitoring
tools expect the same distribution everywhere,  and
weren't designed to quickly categorize errors based
on ProdNG or not  ProdNG.  This  could have been
done with a lot of work, but wasn't deemed a good
use of time when there was a better alternative (ex-
plained below).

• With  one  distribution  made  with  rpms,  while  the
other one is dpkg, using totally different build rules
and inter package dependencies, our package owners
would also have a lot more work.

• While it's true that we have few internal users who
depend on the distribution bits,  that  small  number,
from people  working  on the  installers,  and people
writing  software  managing  machine  monitoring,
hardware, and software deployment are still  a size-
able amount of people (more than just a handful we
can  sync  with  or  help  individually  if  we
change/break too many things all at once).

One motto at Google is that one team should not create
a  lot  of  work  for  other  teams  to  further  their  own
agenda, unless it's absolutely unavoidable and the end
goal is worth it. At the time, we were not able to make
a good enough case about the risk and work we would
have introduced. In hindsight,  it  was a good call,  the
switch if done all at once, would have introduced way
too many problems that were manageable handled one
by one over time, but not as much if thrown around all
the same time.
Around that  time,  Roman had  to  go back  to  another
project,  and with no good way to push ProdNG for-
ward due to the risk of such a big change, and impact
on other internal teams, it stalled.

3.4 The seemingly crazy idea that worked
Later, at the time I joined the team working on the pro-
duction image, Richard Gooch and I sat down to list
the requirements for a successful upgrade:

• We need to  keep  all  the  machines  in  a consistent
state,  and only stay with 2 images:  the current/old
one and the new one being pushed.

• If flag day there must be, it must be as short a day as
possible.

• Service  owners  should  not  notice  the  change,  nor
should their services go down.

• rpm vs dpkg should be a big switch for us, the main-
tainers, but not the server users.

• There are just too many changes, from coreutils  to
others, for the jump to be small enough to be safe.

• And since we can't have a big jump, we can't jump at
all.

Richard came up with the idea of slowly feeding our
ProdNG distribution  into our existing production  im-
age, a few packages at a time during each release cycle.
Yes, that did mean feeding debs into an rpm distro.

To most, it likely sounded like a crazy idea because it
was basically akin to upgrading Red Hat 7.1 to Fedora
Core 16, a totally unsupported and guaranteed to break
upgrade,  but also switching from rpm to dpkg in the
process, and on live machines.

An additional factor that made this idea “crazy” is that
our  ProdNG  packages  were  based  on  libc  2.3.6
whereas our production image was based on libc 2.2.2,
thus ProdNG binaries would simply not run on the old
image,  and  it  was unsafe  to  upgrade  the  system libc
without recompiling some amount of its users. Richard
had a key insight and realized that binary patching the
ProdNG binaries would allow them to run on the old
image. Since the original ProdNG prototype was devel-
oped and shelved, the production image had acquired a
hermetic C library for the use of applications outside of
the OS (this allowed applications to be use a libc, and
later  among several  available,  without  relying  on the
one from the OS).

At the time, his hermetic C library was also based on
libc  2.3.6  and  thus  ProdNG  binaries  could  use  it  as
long as the run-time linker path in the ELF header was
binary patched with a pathname of the same length.

Since doing unsupported live upgrades has been a side
hobby of mine since Red Hat 2.1, including switching
binary  formats  from  zmagic  to  qmagic  (libc4),  then
ELF with  libc5,  and finally  glibc  with libc6,  I  didn't
know  how  long  it  would  take,  but  I  figured  this
couldn't be any worse and that I could make it happen.

3.5 Implementing the slow upgrade
By then, ProdNG was still self hosting, and could build
new packages, so Richard wrote an alien(1) like pack-
age converter  that  took  a built  ProdNG package and
converted it to an rpm that would install on our current
production image (this did include some sed hackery to
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convert dependency names since Debian and Red Hat
use different package names for base packages and li-
braries that are required for other packages to install),
but overall it was not that complicated. The converter
then ran the binary patcher described above, and ran an
ugly script I wrote to turn Debian changelogs into Red
Hat  ones  so  that  package  upgrades  would  show  ex-
pected changelog diffs for the reviewers.

Because by the time I joined to help the production im-
age group, the ProdNG build had been stale for a cou-
ple of years, I started by refreshing ProdNG, and pack-
age by package, upgrading to more recent source if ap-
plicable, stripping all the new features or binaries we
didn't need, and feeding the resulting package as a nor-
mal rpm package upgrade in the next production image
release.

From  there,  I  looked  at  our  existing  binaries,  and
checked whether they would just work if libc was up-
graded and they weren't recompiled. Most passed the
test without problem, while a few showed 
Symbol  `sys_siglist'  has  different  size  in 

shared object, consider relinking

The other issue was that some binaries were statically
linked, and those have hardcoded pathnames to libnss
libraries,  which  were  the  ones  we were  trying  to  re-
move. Having non matching libc and libnss also caused
those  binaries  to  fail,  which  wasn't  unexpected.  This
problem was however quickly solved by removing the
old libc altogether and repointing ld-linux.so to the new
libc. I then added a few symlinks between the location
of the libnss libs from the old libc to the ones from the
new libc.

Note that we had to run with this dual libc configura-
tion for a while since we still had a self imposed rule of
only upgrading a few packages at each cycle. Therefore
we pushed fixed packages a few at a time until we were
ready one day to remove the old libc and replace it with
symlinks to the new one.

3.6 If you can delete it,  you don't have to
upgrade it
Despite of the fact that our image was a snapshot of a
live  Red  Hat  7.1  server  install,  it  contained  a  lot  of
packages that didn't belong in a base server install, or
packages that we didn't need for our uses.

Distributions with crazy dependency chains have only
been getting worse over time, but even in the Red Hat
7.1  days,  dependencies  in  Red  Hat  were  already  far
from minimal. Some were pure cruft we never needed
(X  server,  fonts,  font  server  for  headless  machines
without X local or remote, etc...). Next, I looked for all

things that made sense to ship as part of RH 7.1, but
were useless to us (locales and man pages in other lan-
guages, i18n/charmaps, keyboard mappings, etc...). 

After that, I looked for the next low hanging fruit and
found libraries  nothing  was using  anymore  (left  over
from prior upgrade, or shipped by default, but not used
by us). For some libraries, like libwrap, I was able to
remove  them  after  upgrading  the  few  packages  that
used them, while omitting the library from their builds.

When it was all said and done, I had removed 2/3rd of
the files  we had in the initial  image,  and shed about
50% of the disk space used by the Linux image (not
counting our custom in-house software).

3.7 The rest of the upgrade
What didn't get deleted, had to be upgraded however.
Once the libc hurdle was past, it was a lot of painstak-
ing work to deal with each weird upgrade differently,
and qualify each big software jump for things like cron,
or syslog, to be sure they would be safe and not fix a
bug that we were relying on. Just upgrading rsync from
2.x to 3.x took 4 months of work because of semantics
that changed in the code in how it handled permission
syncs, and our dependence on the old behavior.

Our  distribution  was  so  old  that  it  didn't  even  have
coreutils.  It  had  fileutils  +  textutils  +  sh-utils,  which
got replaced with fairly different binaries that unfortu-
nately were not backward compatible so as to be more
POSIX compliant. Upgrading just that took a lot of ef-
fort  to  scan  all  our  code  for  instances  of  tail  +1,  or
things scanning the output of ls -l. In the process, mul-
tiple utilities got moved from /bin to /usr/bin, or back,
which broke some scripts that unfortunately had hard-
coded paths.

Aside  from a couple of upgrades like coreutils,  there
weren't  too  many  upgrades  with  crazy  dependency
chains, so it was not a problem to upgrade packages a
few at a time (5 to 10 max each time).

On some days,  it  was the little  things.  The day I re-
moved  /etc/redhat-release,  it  broke  a  bunch  of  java
code that parsed this file to do custom things with fonts
depending on the presence of that file. At Google, who-
ever  touched  something  last  is  responsible  for  the
breakage, even if the bug wasn't in that change, so that
typically meant that I had to revert the change, get the
right team to fix the bug, wait for them to deploy the
fix on their side, and then try again later.
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3.8 Dealing with left over junk
Because our original image was a full filesystem image
that got snapshotted in Perforce, we ended up with files
that were not runtime created, and not part of any pack-
age either. We had junk that we didn't always know the
source of,  or sometimes whether it was safe to remove.

I  ended up finding  the  expected  leftover  files  (.rpm-
save,  old  unused  files),  lockfiles  and  logfiles  that
shouldn't have been checked in and /etc/rcxx initscript
symlinks.  Any  actual  program  that  wasn't  part  of  a
package, was identified and moved to a package.

Then, I had to scan the entire filesystem for files that
were not in a package, work through what was left on
the list and deal with the entries on an case by case ba-
sis.

That said, the goal was never to purge every single last
trace of Red Hat. We have some Red Hat pathnames or
functions left over to be compatible with things that ex-
pect Red Hat and aren't quite LSB compliant. We only
removed Red Hat specific bits (like rpm itself) when it
was simple to do so, or because maintaining them long
term was going to be more work than the cost of re-
moval.

3.9 A difficult problem with /etc/rc.d/...
Back in the day (mid 1990's) someone at Red Hat mis-
read  the  linux  filesystem  standard  and  put  the
initscripts  in  /etc/rc.d/rc[0-6].d  and  /etc/rc.d/nit.d  in-
stead of  /etc/rc[0-6].d,  as  implemented in  other  linux
distributions  including  Debian.  Migrating  to  Debian
therefore  included  moving  from  /etc/rc.d/init.d  to
/etc/init.d.

Unfortunately I  found a bug in our syncing program
when  switching  from  /etc/rc.d/init.d  (Red  Hat)  to
/etc/init.d  (Debian):  when the image syncer applied a
new  image  that  had  /etc/init.d  as  the  directory  and
/etc/rc.d/init.d  as  the  compatibility  symlink,  that  part
worked  fine,  but  then  it  also  remembered  that
/etc/rc.d/init.d was a directory in the old image that got
removed, and by the time it did a recursive delete of
/etc/rc.d/init.d, it followed the /etc/rc.d/init.d symlink it
had  just  created  and  proceeded  to  delete  all  of
/etc/init.d/ it also had just created.

The next file sync would notice the problem and fix it,
but  this  left  machines  in  an  unbootable  state  if  they
were rebooted in that time interval and this was not an
acceptable  risk  for  us  (also  the  first  file  sync  would
trigger restarts of daemons that had changed, and since
the initscripts were gone, those restarts would fail).

This was a vexing bug that would take a long time to
fix for another team who had more urgent bugs to fix

and features to implement. To be fair, it was a corner
case that no one had ever hit, and no one has hit since
then.

This was a big deal because I had to revert the migra-
tion to /etc/init.d,  and some of my coworkers pushed
for  modifying  Debian  forever  to  use  /etc/rc.d/init.d.
Putting aside that it was a bad hack for a software bug
that was our fault, it would have been a fair amount of
work to modify all of Debian to use the non standard
location, and it would have been ongoing work forever
for  my  coworkers  after  me  to keep  doing  so.  I  also
knew that  the changes to initscripts  in Debian would
force us to have local patches that would cause subse-
quent upstream changes to conflict with us, and require
manual merges.

So, I thought hard about how to work around it, and I
achieved  that  by  keeping  Debian  packages  built  to
use /etc/init.d, but by actually having the real filesys-
tem  directory  be  /etc/rc.d/init.d  while  keeping
/etc/init.d  as  a  symlink  for  the  time being.  This  was
done by setting those up before Debian packages were
installed in our image builder. Dpkg would then install
its files in /etc/init.d,  but unknowing follow the sym-
link and install them in /etc/rc.d/init.d. 

This was ok, but not great though because we'd have a
mismatch between the Debian file database and where
the files really were on disk, so I worked further to re-
move /etc/rc.d/init.d.

We  spent  multiple  months  finding  all  references  to
/etc/rc.d/init.d, and repoint them to /etc/init.d. Once this
was finished, we were able to remove the image build
hack that created /etc/rc.d/init.d. 

The bug did not trigger anymore because our new im-
age did not  have a /etc/rc.d/init.d  compatibility  sym-
link, so when the file syncer deleted the /etc/rc.d/init.d
directory, all was well.

3.10 Tracking progress
Our converted ProdNG packages had a special exten-
sion when they were converted to RPMs, so it was triv-
ial to use rpm -qa, look at the package names and see
which ones were still  original  RPMs and which ones
were converted debs.

I then used a simple spreadsheet to keep track of which
conversions  I  was  planning  on  doing  next,  and  for
those needing help from coworkers who had done cus-
tom modifications to the RPMs, they got advance no-
tice  to  port  those  to  a newer  Debian  package,  and  I
worked with them to make a ProdNG package to up-
grade their old RPM. They were then able to monitor
the  upgrade  of  their  package,  and  apply  the  relevant
tests  to  ensure  that  the  package  still  did  what  they
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needed. This allowed porting our custom patches and
ensuring that custom packages were upgraded carefully
and tested for their custom functionality before being
deployed (we do send out patches upstream when we
can, but not all can be accepted).

3.11  Communication  with  our  internal
users
We  used  different  kinds  of  internal  mailing  lists  to
warn the relevant users of the changes we were about
to make. Some of those users were the ones working on
the root partition software, others were our users run-
ning all  the software that runs google services  inside
the chroots we provide for them, and we also warned
the people who watch over all the machines and service
health when we felt we were making changes that were
worth mentioning to them. 

All that said,  many of those users also had access to
our release notes and announcements when we pushed
a new image, and quickly knew how to get image diffs
when debugging to see if we made an image change
that might have something to do with a problem they
are debugging.

4.0 Getting close to swichover time
After almost 3 years of effort (albeit  part time  since I
was  also  working  on  maintaining  and  improving  the
current  rpm based  image,  working  with  our  package
owners, as well as shepherding releases that continued
to go out in parallel), the time came when everything
had been  upgraded outside  of  /sbin/init  and Red Hat
initscripts.

Checking and sometimes modifying Debian initscripts
to ensure that they produced the same behavior that we
were getting from our Red Hat ones took careful work,
but in the end we got ProdNG to boot and provide the
same environment as our old Red Hat based image. To
make the migration easier,  I fed shell  functions from
Red  Hat's  /etc/init.d/functions  into  Debian's
/lib/lsb/init-functions  and  symlinked  that  one  to
/etc/init.d/functions.  This  allowed  both  Red  Hat  and
Debian  initscripts  from  3rd  party  packages  to  just
work.

4.1 Reverse conversions: rpms to debs
By then, a portion of our internal packages had been
converted from rpms to debs, but not all had been, so
we used reverse converter that takes rpms, and converts
them to debs, with help from alien. The more tedious
part was the converter I wrote to turn mostly free form
Red  Hat  changelogs  into  Debian  changelogs  which

have very structured syntax (for instance, rpms do not
even  require  stating  which  version  of  the  package  a
changelog entry was for, and if you do list the version
number, it does not check that the latest changelog  en-
try matches the version number of the package). Rpm
changelogs also do not contain time of day, or time-
zones  (I  guess  it  was  Raleigh-Durham  Universal
Time),  so I just  had to make those up, and problems
happen if two rpm releases happened on the same day
with no time since it creates a duplicate timestamp in
the debian changelog. Some fudging and kludges were
required to fix a few of those.

4.2 Time to switch
By then, ProdNG was being built in parallel with the
rpm production image and they were identical outside
of initscripts, and rpm vs dpkg. With some scripting I
made the ProdNG image look like a patch image up-
grade for the old image, and got a diff between the two.
We did manual review of the differences left between 2
images (file by file diff of still 1000+ files). There were
a few small  differences in permissions,  but otherwise
nothing that wasn't initscripts or rpm vs dpkg database
info.

It  then  became time to upgrade  some early  test  ma-
chines to ProdNG, make sure it did look just like the
older image to our internal users, and especially ensure
that it didn't have some bugs that only happened on re-
boot  0.5% of  the  time on just  one  of  our  platforms.
Then,  it  started going out to our entire  fleet,  and we
stood around ready for complaints and alerts. 

4.3 Switch aftermath
Early  deployment  reports  found  one  custom daemon
that was still storing too much data in /var/run. In Red
Hat 7.1, /var/run was part of the root filesystem, while
in ProdNG it was a small tmpfs. The daemon was re-
built to store data outside of /var/run (we have custom
locations for daemons to write bigger files so that we
can control their sizes and assign quotas as needed, but
this one wasn't following the rules).

Most of the time was actually spent helping our pack-
age owners convert their rpms to debs and switching to
new  upload  and  review  mechanisms  that  came  with
ProdNG since the image generation and therefore re-
view were entirely different.

As crazy as the project  sounded when it  started,  and
while it took awhile to happen, it did. Things worked
out beautifully considering the original ambition.
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4.4 Misc bits: foregoing dual package sys-
tem support
We had code to install rpms unmodified in our ProdNG
deb image,  and even have them update the dpkg file
list. We however opted for not keeping that complexity
since  dual  package  support  would  have  rough  edges
and unfortunate side effects. We also wanted to entice
our internal developers to just switch to a single system
to make things simpler: debs for all. They are still able
to make rpms if they wish, but they are responsible for
converting them to debs before providing them to us.

As a side result, we were able to drop another 4MB or
so of packages just for just rpm2cpio since rpm2cpio
required 3-4MB of dependencies. I was able to find a
20 line shell script replacement on the net that did the
job  for  us.  This  allowed  someone  to  unpack  an  old
legacy rpm if needed while allowing me to purge all of
rpm and its many libraries from our systems. 

Debian made a better choice by having an archive sys-
tem that can be trivially unpacked with ar(1) and tar(1)
vs  RPM that  requires  rpm2cpio  (including  too  many
rpm libraries) and still  loses some permissions which
are saved as an overlay stored inside the RPM header
and lost during rpm2cpio unpacking.

4.5 No reboots, really?
I stated earlier that the upgrades we pushed did not re-
quire  to  reboot  servers.  Most  services  could  just  be
restarted when they got upgraded without requiring a
reboot of the machine.

There were virtually no times where we had code that
couldn't  be  re-exec'ed  without  rebooting  (even
/sbin/init can re-exec itself), that said our servers do get
occasionally rebooted for kernel ugprades done by an-
other team, and we did benefit from those indirectly for
cleaning  up  anything  in  memory,  and  processed  that
didn't restart, if we missed anyway.

5.0 ProdNG Design Notes
While it's not directly related to the upgrade procedure,
I'll explain quickly how the new image is designed.

5.1 ProdNG package generation
Since one of the goals of our new distribution was to be
self-hosting,  and hermetic,  including building a 32bit
multiarch distribution (32bit by default, but with some
64bit  binaries),  it  made sense to build ProdNG pack-
ages  within  a  ProdNG  image  itself.  This  is  done  by
quickly unpacking a list of packages provided in a de-
pendencies file (mix of basic packages for all builds,

and extra dependencies you'd like to import in that im-
age to build each specific  package).  Debian provides
pbuilder which also achieves that goal, but our method
of unpacking the system without using dpkg is much
faster (1-2 minutes at most), so we prefer it.

We  use  the  debian  source  with  modifications  to
debian/rules to recompile with fewer options and/or ex-
clude sub-packages we don't need. We then have a few
shell  scripts  that  install  that  unpacked  source  into  a
freshly built ProdNG image, build the package, and re-
trieve/store the output. You get flexibility in building a
package in an image where for  instance libncurses is
not  available  and  visible  to  configure,  while  being
present in the image currently deployed (useful if you'd
like to remove a library and start rebuilding packages
without it).

After package build, we have a special filter to prune
things  we  want  to  remove  from  all  packages  (info
pages,  man  pages  in  other  languages,  etc...)  without
having to modify the build of each and every package
to remove those.  The last  step is comparing the built
package against the previous package, and if files are
identical,  but  the  mtime  was  updated,  we  revert  the
mtime to minimize image review diffs later.

5.2 ProdNG image generation
This  is  how we build our images in  a nutshell:  each
new image to push is generated from scratch using the
latest  qualified  packages  we  want  to  include  into  it
(around 150 base Linux packages). 

The image is built by retrieving the selected packages,
unpacking them in a chroot (using ar and untar),  and
chrooting into that new directory. From there, the im-
age is good enough to allow running dpkg and all its
dependencies, so we re-install the packages using dpkg,
which  ensures  that  the  dpkg  database  is  properly
seeded, and the few required postinstall scripts do run.
There  are  other  ways  to  achieve  this  result  (deboot-
strap),  but because our method runs in fewer than 10
minutes for us and it works, we've stuck with it so far.

As  explained,  package  builds  revert  mtime  only
changes, and squash binary changes due to dates (like
gzip of  the  same man page gives  a new binary each
time because gzip encodes the time in the .gz file). We
have a similar patch for .pyc files. As a result of those
efforts, rebuilding an image with the same input pack-
ages is reproducible and gives the same output.
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5.3 ProdNG image reviews
The new ProdNG images are not checked in Perforce
file by file. We get a full image tar.gz that is handed off
to our pusher and reviews are done by having a script
unpack 2 image tars,  and generate reviewable reports
for it:

• file changes (similar ls -alR type output)
• which packages got added/removed/updated
• changelog diffs for upgraded packages
• All ASCII files are checked into Perforce simply so

that we can track their changes with Perforce review
tools.

• compressed ASCII files (like man pages or docs) are
uncompressed to allow for easy reviews.

• Other binary files can be processed by a plugin that
turns them into reviewable ASCII.

6. Lessons learned or confirmed.

1. If you have the expertise and many machines, main-
taining  your  own  sub  Linux  distribution  in  house
gives you much more control.

2. At large scales,  forcing server users to use an API
you provide, and not to write on the root FS defi-
nitely helps with maintenance.

3. File  level  syncing  recovers  from  any  state  and  is
more reliable than other methods while allowing for
complex upgrades like the one we did.

4. Don't blindingly trust and install upstream updates.
They are not all good. They could conflict with your
config files, or even be trojaned.

5. If  you can,  prune/remove all  services/libraries  you
don't really need. Fewer things to update, and fewer
security bugs to worry about.

6. Upgrading to the latest Fedora Core or Ubuntu from
6 months ago is often much more trouble than it's
worth.  Pick  and  chose  what  is  worthwhile  to  up-
grade. Consider partial upgrades in smaller bits de-
pending on your use case and if your distribution is
flexible enough to allow them.

7. Prefer  a  distribution  where  you  are  in  control  of
what you upgrade and doesn't force you into an all
or nothing situation. Ubuntu would be an example to
avoid if you want upgrade flexibility since it directly
breaks  updates  if  you  jump  intermediate  releases.
Debian however offers a lot more leeway in upgrade
timing and scope.

8. Keep your system simple.  Remove everything you
know you don't need. Only consider using upstart or
systemd if you really know how their internals, pos-

sible race conditions, and are comfortable debugging
a system that fails to boot.
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Abstract
The explosive number of smartphones with ever grow-

ing sensing and computing capabilities have brought a

paradigm shift to many traditional domains of the com-

puting field. Re-programming smartphones and instru-

menting them for application testing and data gathering

at scale is currently a tedious and time-consuming pro-

cess that poses significant logistical challenges. In this

paper, we make three major contributions: First, we pro-

pose a comprehensive architecture, coined SmartLab1,

for managing a cluster of both real and virtual smart-

phones that are either wired to a private cloud or con-

nected over a wireless link. Second, we propose and

describe a number of Android management optimiza-

tions (e.g., command pipelining, screen-capturing, file

management), which can be useful to the community for

building similar functionality into their systems. Third,

we conduct extensive experiments and microbenchmarks

to support our design choices providing qualitative evi-

dence on the expected performance of each module com-

prising our architecture. This paper also overviews expe-

riences of using SmartLab in a research-oriented setting

and also ongoing and future development efforts.

1 Introduction

Last year marked the beginning of the post PC era2, as

the number of smartphones exceeded for the first time

in history the number of all types of Personal Comput-

ers (PCs) combined (i.e., Notebooks, Tablets, Netbooks

and Desktops). According to IDC3, Android is projected

to dominate the future of the smartphone industry with a

share exceeding 53% of all devices shipped in 2016. Cur-

rently, an Android smartphone provides access to more

than 650,000 applications, which bring unprecedented

possibilities, knowledge and power to users.

1Available at: http://smartlab.cs.ucy.ac.cy/
2Feb. 3, 2012: Canalys, http://goo.gl/T81iE
3Jul. 6, 2012: IDC Corp., http://goo.gl/CtDAC

Re-programming smartphones and instrumenting

them for application testing and data gathering at scale

is currently a tedious, time-consuming process that poses

significant logistical challenges. To this end, we have im-

plemented and demonstrated SmartLab [21], a compre-

hensive architecture for managing a cluster of both An-

droid Real Devices (ARDs) and Android Virtual Devices

(AVDs), which are managed via an intuitive web-based

interface. Our current architecture is ideal for scenar-

ios that require fine-grained and low-level control over

real smartphones, e.g., OS, Networking, DB and stor-

age [20], security [5], peer-to-peer protocols [22], but

also for scenarios that require the engagement of physical

sensors and geo-location scenarios [38],[24]. Our pre-

liminary release has been utilized extensively in-house

for our research and teaching activities, as those will be

overviewed in Section 7.

SmartLab’s current hardware consists of over 40 An-

droid devices that are connected through a variety of

means (i.e., wired, wireless and virtual) to our private

cloud (datacenter), as illustrated in Figure 1. Through

an intuitive web-based interface, users can upload and

install Android executables on a number of devices con-

currently, capture their screen, transfer files, issue UNIX

shell commands, “feed” the devices with GPS/sensor

mockups and many other exciting features. In this

work, we present the anatomy of the SmartLab Architec-

ture, justifying our design choices via a rigorous micro-

benchmarking process. Our findings have helped us

enormously in improving the performance and robust-

ness of our testbed leading to a new release in the coming

months.

Looking at the latest trends, we observe that open

smartphone OSs, like Android, are the foundation

of emerging Personal Gadgets (PGs): eReaders (e.g.,

Barnes & Noble), Smartwatches (e.g., Motorola MO-

TOACTV), Rasberry PIs, SmartTVs and SmartHome ap-

pliances in general. SmartLab can be used to allow

users manage all of their PGs at a fine-grain granular-
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Figure 1: Subset of the SmartLab smartphone fleet

connected locally to our datacenter. More devices are

connected over the wireless and wired network.

ity (e.g., screen-capture, interactivity, filesystem). Ad-

ditionally, we anticipate that the overtake of PC sales

by Smartphone sales will soon also introduce the notion

of Beowulf-like or Hadoop-like smartphone clusters for

power-efficient computations and data analytics.

Moreover, one might easily build powerful comput-

ing testbeds out of deprecated smartphones, like Micro-

cellstores [16], as users tend to change their smartphones

more frequently than their PC. Consequently, provid-

ing a readily available PG management middleware like

SmartLab will be instrumental in facilitating these direc-

tions. Finally, SmartLab is a powerful tool for Inter-

net service providers and other authorities that require

to provide remote support for their customers as it can be

used to remotely control and maintain these devices. The

contributions of this work are summarized as follows:

i) Architecture: We present the architecture behind

SmartLab, a first-of-a-kind open smartphone pro-

gramming cloud that enables fine-grained control

over both ARDs and AVDs via an intuitive web-

based interface;
ii) Microbenchmarks: We carry out an extensive ar-

ray of microbenchmarks in order to justify our im-

plementation choices. Our conclusions can be in-

strumental in building more robust Android smart-

phone management software in the future;
iii) Experiences: We present our research experiences

from using SmartLab in four different scenarios in-

cluding: trajectory benchmarking [38], peer-to-peer

benchmarking [22], indoor localization testing [24]

and database benchmarking; and
iv) Challenges: We overview ongoing and future de-

velopments ranging from Web 2.0 extensions to

urban-scale deployment and security studies.

The rest of the paper is organized as follows: Section 2

looks at the related work, Section 3 presents our Smart-

Lab architecture, while subsequent sections focus on the

individual subsystems of this architecture: Section 4 cov-

ers power and connectivity issues, Section 5 provides a

rigorous analysis of the Android Debug Bridge (ADB)

used by our SmartLab Device Server (DS) presented in

Section 6. Section 7 summarizes our research and teach-

ing activities using SmartLab, Section 8 enumerates our

ongoing and future developments while Section 9 con-

cludes the paper.

2 Related Work

This section provides a concise overview of the related

work. SmartLab has been inspired by PlanetLab [30]

and Emulab [17], both of which have pioneered global

research networks; MoteLab [37], which has pioneered

sensor network research and Amazon Elastic Compute

Cloud (EC2). None of the aforementioned efforts fo-

cused on smartphones and thus those testbeds had fun-

damentally different architectures and desiderata. In the

following subsections, we will overview testbeds that are

related to SmartLab.

2.1 Remote Monitoring Solutions

There are currently a variety of Remote Monitoring So-

lutions (RMSs), including Nagios [26], a leading open-

source RMS for over a decade, the Akamai Query Sys-

tem [9], STORM [14] and RedAlert [34]. All of these

systems are mainly geared towards providing solutions

for web-oriented services and servers. Moreover, none

of those RMSs provide any tools related to the configu-

ration and management of smartphone clusters. Smart-

Lab focuses on providing a remote monitoring solution

specifically for a smartphone-oriented cloud.

2.2 Wireless Sensor Network Testbeds

MoteLab [37] is a Web-based sensor network testbed de-

ployed at Harvard University that has pioneered sensor

network research. CitySense [27] has been MoteLab’s

successor enabling city-scale sensor network deploy-

ments. Mobiscope [1] is a federation of distributed mo-

bile sensors into a taskable sensing system that achieves

high density sampling coverage over a wide area through

mobility. EU’s WISEBED project [11] also federated dif-

ferent types of wireless sensor networks. Microsoft has

made several attempts in building Sensor Networks with

mobile phones [18], but none of these efforts has focused

on smartphones in particular and their intrinsic character-

istics like screen capturing, interactivity and power.

2
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2.3 Smartphone Testbeds

There are currently several commercial platforms provid-

ing remote access to real smartphones, including Sam-

sung’s Remote Test Lab [33], PerfectoMobile [29], De-

vice Anyware [19] and AT&T ARO [3]. These platforms

differ from SmartLab in the following ways: i) they are

mainly geared towards application testing scenarios on

individual smartphones; and ii) they are closed and thus,

neither provide any insights into how to efficiently build

and run smartphone applications at scale nor support the

wide range of functionality provided by SmartLab like

sensors, mockups and automation.

Sandia National Laboratories has recently developed

and launched MegaDroid [36], a 520-node PC clus-

ter worth $500K that deploys 300,000 AVD simulators.

MegaDroid’s main objective is to allow researchers to

massively simulate real users. Megadroid only focuses

on AVDs while SmartLab focuses on both ARDs and

AVDs as well as the entire management ecosystem, pro-

viding means for fine-grained and low-level interactions

with real devices of the testbed as opposed to virtual

ones.

2.4 People-centric Testbeds

There is another large category of systems that focuses

on opportunistic and participatory smartphone sensing

testbeds with real custodians, e.g., PRISM [13], Crowd-

Lab [12] and PhoneLab [4], but those are generally com-

plementary as they have different desiderata than Smart-

Lab.

Let us for instance focus on PhoneLab, which is a

participatory smartphone sensing testbed that comprises

of students and faculty at the University of Buffalo.

PhoneLab does not allow application developers to ob-

tain screen access, transfer files or debug applications,

but only enables programmers to initiate data logging

tasks in an offline manner. PhoneLab is targeted towards

data collection scenarios as opposed to fine-grained and

low-level access scenarios we support in this work, like

deployment and debugging. Additionally, PhoneLab is

more restrictive as submitted jobs need to undergo an

Institutional Review Board process, since deployed pro-

grams are executed on the devices of real custodians.

Finally, UC Berkeley’s Carat project [28] provides

collaborative energy diagnosis and recommendations for

improving the smartphone battery life from more than

half a million crowd-powered devices. SmartLab is com-

plementary to the above studies as we provide insights

and micro-benchmarking results for a variety of modules

that could be exploited by these systems.
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Figure 2: The components of the SmartLab Archi-

tecture: We have implemented an array of mod-

ules wrapped around standard software to bring for-

ward a comprehensive smartphone testbed manage-

ment platform.

3 SmartLab Architecture

In this section, we overview the architecture of our

testbed starting out from the user interface and data layer

moving on to the device server layer and concluding with

the hardware layer, as illustrated in Figure 2. We con-

clude with an overview of our security measures and de-

sign principles.

3.1 User Interface and Data Layers

Interaction Modes: SmartLab implements several

modes of user interaction with connected devices (see

Figure 2, top-left layer) using either Websocket-based in-

teractions for high-rate utilities or AJAX-based interac-

tions for low-rate utilities. In particular, SmartLab sup-

ports: i) Remote File Management (RFM), an AJAX-

based terminal that allows users to push and pull files

to the devices; ii) Remote Control Terminals (RCT), a

Websocket-based remote screen terminal that mimics

touchscreen clicks and gestures but also enables users

recording automation scripts for repetitive tasks; iii) Re-

mote Debug Tools (RDT), a Websocket-based debugging

extension to the information available through the An-

droid Debug Bridge (ADB); iv) Remote Shells (RS), a

Websocket-based shell enabling a wide variety of UNIX

commands issued to the Android Linux kernels of allo-

cated devices; v) Remote Mockups (RM), a Websocket-

based mockup subsystem for feeding ARDs and AVDs

with GPS or sensor data traces encoded in XML for

trace-driven experimentation.

3
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Figure 3: Connection Modalities supported by SmartLab. ARD-Local: Android Real Device (ARD) mounted

locally to the Device Server (DS) through USB; ARD-Remote: ARD mounted through a USB port on a gateway PC

to DS through a wired network; ARD-WiFi: ARD connected to DS through a WiFi AP; and AVD: Android Virtual

Device running on DS.

WebSockets/HTML5: In order to establish fast and reli-

able communication between the User Interface and the

underlying Device Server (DS), SmartLab has adopted

the HTML5 / WebSockets (RFC6455) standard thus

enabling bi-directional and full-duplex communication

over a single TCP socket from within the web browser.

WebSockets are preferable for high-rate HTTP interac-

tions, necessary in certain SmartLab subsystems, as op-

posed to AJAX calls that are translated into individual

HTTP requests. WebSockets comprise of two parts: i)

an HTTP handshake, during which certain application-

level protocol keys are exchanged; and ii) a data transfer

phase, during which data frames can be sent back and

forth in full-duplex mode.

Currently, there are different types of Websocket hand-

shakes implemented by web browsers (e.g., Hixie-75,

76, 00 and HyBi-00, 07 and 10). In order to support

websockets on as many browsers as possible, we have

modified an open-source plugin, the kanaka websockify

plugin4 formerly known as wsproxy, part of the noVNC

project. The given plugin takes care of the initial Web-

socket handshake from within the browser but also shifts

over to an SWF implementation (i.e., Adobe Flash), in

cases where a browser is not HTML5-compliant, en-

abling truly-compliant cross-browser compatibility.

File System: SmartLab currently utilizes a standard

ext4 local file system on the webserver. Upon user reg-

istration, we automatically and securely create a /user

directory on the webserver with a given quota. Our

filesystem is mounted with sshfs to all DS images run-

ning in our testbed, enabling in that way a unified view

of what belongs to a user. In respect to the connectiv-

ity between the filesystems of smartphones, we currently

support two different options: i) mounting the /user

4Kanaka, https://github.com/kanaka/websockify

directory on the devices with sshfs; and ii) copying data

from/to the devices through ADB. The former option is

good for performance reasons, but it is only available on

Android 4.0 ICS, which provides in-kernel support for

user-space filesystems (i.e., FUSE). On the contrary, the

latter option is more universal, as it can operate off-the-

shelf and this will be the major focus in this work.

SSHFS & MySQL: Communication between the web

server file system and the device server’s remote file sys-

tem is transparently enabled through the SSHFS proto-

col. The same protocol can also be utilized for offering

a networked file system to the smartphones, as this will

be explained later in Section 6. Finally, the web server

also hosts a conventional MySQL 5.5 database utilized

for storing data related SmartLab users, devices and re-

mote device servers.

3.2 Device Server (DS) Layer

Overview: DS is the complete Linux OS image having

the SmartLab subsystems and ADB installed, which con-

nects an ARD or AVD to our User Interface (UI). Cur-

rently, we are using CentOS 6.3 x64 with 4x2.4GHz vir-

tual CPUs, 8GB RAM, 80GB hard disk for our images.

User interface requests made through Websockets reach

DS at a Prethreaded Java TCP Server with Non-blocking

I/O and logging.

ATP: We have implemented a lightweight protocol on

top of websockets, coined ATP (ADB Tunnel Protocol)

for ease of exposition, in order to communicate DS

data to the UI and vice-versa (see Figure 2). Down-

ward ATP requests (from UI to DS) are translated into

respective calls using the ddmlib.jar library (including

AndroidDebugBridge) for file transfers, screen cap-

ture, etc., as well as monkeyrunners and chimpchat.jar

4
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for disseminating events (e.g., UI clicks). Alternatively,

one Downward ATP request might also yield a stream of

Upward ATP responses, as this is the case in our screen

capturing subsystem (i.e., one screenshot request yields

a stream of images) presented in Section 6.2.

Device Plug-n-Play: Physically connecting and discon-

necting smartphones from DS should update the respec-

tive UI status as well. Consequently, we’ve exploited the

respective AndroidDebugBridge interface listeners,

issuing the SQL statements to our MySQL database and

updating the device status changes on our website.

DS Limitations: Currently, each DS can only support

up to 16 AVDs and theoretically up to 127 ARDs, due

to limitations in the ADB server that will be presented

in Section 5. In order to support a larger number of

connected devices with the current ADB release, we

utilize multiple-DSs on each physical host of our dat-

acenter each connecting 16 devices (ARDs or AVDs).

This design choice is inspired from cloud environments

and shared-nothing architectures deployed by big-data

testbeds providing linear scalability by linearly engaging

more resources.

DS Administration: In addition to the custom made

Java Server each DS is also equipped with Apache and

PHP. The local web server is responsible to host the

administrative tools required for maintenance purposes

similarly to routers and printers.

3.3 Hardware Layer

Hardware & OS Mix: SmartLab’s hardware comprises

both of Android Smartphones and our Datacenter. The

latter encompasses over 16TB of RAID-5 / SSD stor-

age on an IBM X3550 as well as 320GB of main mem-

ory on 5 IBM / HP multiprocessor rackables. We addi-

tionally deploy over 40 Android smartphones and tablets

from a variety of vendors (i.e., HTC, Samsung, Google,

Motorola and Nokia). The majority of our smartphones

came with pre-installed Android 2.1-2.3 (Eclair, Froyo,

Gingerbread). These devices were “rooted” (i.e., the

process of obtaining root access) and upgraded to An-

droid 4.0.4 (Ice Cream Sandwich), using a custom XDA-

Developers ROM, when their warranty expired. Notice

that warranty and rooting are claimed to be irrelevant in

Europe5.

In SmartLab, rooted devices feature more functional-

ity than non-rooted devices. Particularly, rooted devices

in SmartLab can: i) mount remote filesystems over ssh;

ii) provide a richer set of UNIX shell commands; and

iii) support a higher performance to the screen captur-

ing system by incorporating compression. Nevertheless,

5Free Software Foundation Europe, http://goo.gl/fZZQe

SmartLab has been designed from ground up for non-

rooted devices, thus even without applying the rooting

process will support all features other than those enu-

merated above.

Physical Connections: We support a variety of connec-

tion modalities (see Figure 3) that are extensively evalu-

ated in Sections 4 and 5. In particular, most of our de-

vices are connected to the server in ARD-Local mode,

utilizing USB hubs, as this is explained in Section 4.

Similarly, more smartphones are also connected from

within our research lab, in the same building, using the

ARD-Remote mode.

This mode is particularly promising for scenarios

we want to scale our testbed outside the Department

(e.g., ARD-Internet mode, where latencies span beyond

100ms), which will be investigated in the future. Finally,

a few devices within the Department are also connected

in ARD-WiFi mode, but additional devices in this mode

can be connected by users as well.

3.4 Security Measures

Security is obviously a very challenging task in an en-

vironment where high degrees of flexibility to users are

aimed to be provided. In this section, we provide a con-

cise summary of how security is provided in our current

environment.

Network & Communication: SmartLab DS-servers

and smartphones are located in a DMZ to thwart the

spread of possible security breaches from the Internet

to the intranet. Although nodes in our subnet can reach

the public Internet with no outbound traffic filtering, in-

bound traffic to smartphones is blocked by our firewall.

Interactions between the user and our Web/DS servers

are carried out over standard HTTPS/WSS (Secure Web-

sockets) channels. DS-to-Smartphone communication is

carried out over USB (wired) or alternatively over se-

cured WiFi (wireless), so we increase isolation between

users and the risk of sniffing the network.

Authentication & Traceability: Each smartphone con-

nects to the departmental WiFi using designated creden-

tials and WPA2/Enterprise. These are recorded in our

SQL database along with other logging data (e.g., IP, ses-

sion) to allow our administrators tracing users acting be-

yond the agreed “Use Policy”.

Compromise & Recovery: We apply a resetting pro-

cedure every time a user releases a device. The re-

setting procedure essentially installs a new SmartLab-

configured ROM to clear settings, data and possible mal-

ware/ROMs installed by prior users. Additionally, our

DS-resident home directory is regularly backed up to

prevent accidental deletion of files. Finally, users have

the choice to shred their SDCard-resident data.

5
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3.5 Design Methodology/Principles

SmartLab’s architecture focuses on a number of desider-

ata such as modularity, openness, scalability and ex-

pandability. Its design was developed using a “greedy”

bottom-up approach; in each layer/step, all alternative

options that were available at the time it was designed

were taken into consideration and the most efficient one

was implemented. This was primarily because the re-

search community long craved for the ability to test ap-

plications on real smartphone devices at the time Smart-

Lab was designed. Because of this, we believed that

there was no abundant time to dedicate for design-

ing a clean slate architecture, like PlanetLab [30] and

other similar testbeds. Additionally, some of the soft-

ware/hardware technologies pre-existed in the laboratory

and there was limited budget for upgrades. However,

careful consideration was taken for each design choice

to provide flexibility in accommodating the rapid evolu-

tion of smartphone hardware/software technologies.

4 Power and Connectivity

In this section, we present the bottom layer of the Smart-

Lab architecture, which was overviewed in Section 3.3,

dealing with power and connectivity issues of devices.

In particular, we will analyze separately how wireless

and wired devices are connected to our architecture us-

ing a microbenchmark that provides an insight into the

expected performance of each connection modality.

4.1 Wired Devices

SmartLab wired devices (i.e., ARD-Local and ARD-

Remote) are powered and connected through D-Link

DUB-H7 7x port USB 2.0 hubs inter-connected in a cas-

cading manner (i.e., “daisy chaining”), through standard

1.8mm USB 2.0 A-connectors rated at 1500mA. One sig-

nificant advantage of daisy chaining is that it allows over-

coming the limited number of physical USB ports on the

host connecting the smartphones, reaching theoretically

up-to 127 devices.

On the other hand, this limits data transfer rates (i.e.,

1.5 Mbps, 480 Mbps and 5 Gbps for USB 1.0, 2.0

and 3.0, respectively). D-Link DUB-H7 USB 2.0 hubs

were selected initially because they guarantee a supply

of 500mA current on every port at a reasonable price, un-

like most USB hubs available on the market. At the time

of acquisition though, we were not sure about the exact

incurred workloads and USB 3.0 hubs were not available

on the market either.

USB 3.0: SmartLab is soon to be upgraded with USB

3.0 hubs that will support higher data transfer rates than

USB 2.0. This is very important as in the experiments

of Section 6.2, we have discovered that applications re-

quiring the transfer of large files are severely hampered

by the bandwidth limitation of USB 2.0 hubs (max. 480

Mbps). We have already observed that newer hubs on the

market are offering dedicated fast-charging ports (i.e., 2x

ports at 1.2A per port and 5x standard ports at 500mA per

port) in order to support more energy demanding devices

such as tablets.

Power-Boosting: Instead of connecting 6x devices plus

1x allocated for the next hub in the chain, we have de-

cided to use 3x Y-shaped USB cables in our release. This

allows ARDs to consume energy from two USB ports

simultaneously (i.e., 2x500mA), similarly to high-speed

external disks, ensuring that the energy replenishment ra-

tio of smartphones will not become negative (i.e., battery

drain) when performing heavy load experiments such as

stress testing or benchmarks (e.g., AnTuTu) on certain

Tablets (e.g., Galaxy Tab drew up to 1.3A in our tests).

A negative replenishment ratio might introduce an erratic

behavior of the smartphone unit, failure to function, or

overloading/damaging the ports.

Power Profiling: In order to measure physical power

parameters in our experiments, we employed the Plogg

smart meter plug connected to the USB hub, which

transmits power measurements (i.e., Watts, kWh Gen-

erated, kWh Consumed, Frequency, RMS Voltage, RMS

Current, Reactive Power, VARh Generated, VARh Con-

sumed, and Phase Angle) over ZigBee to the DS. These

measurements are provided on-demand to the DS admin-

istrator through the Administrative Tools subsystem. Ad-

ditionally, we have installed a USB Voltage/Ampere me-

ter (see Figure 1 top-left showing 4.67V), offering on-site

runtime power measurements of running applications.

4.2 Wireless Devices

In our current setup, wireless devices (i.e., ARD-WiFi)

are operated by the SmartLab research team that pow-

ers the devices when discharged. Additionally, users can

connect their own device remotely and these will be pri-

vately available to them only (e.g., see Figure 14 center).

This particular feature is expected to allow us offering

a truly programmable wireless fleet in the near future,

as this is explained in Section 8. In this subsection, we

will overview the underlying logistics involved in get-

ting a wireless device connected to SmartLab over wire-

less ADB. Note that this process is automated through

the SmartLab UI. In particular, the following commands

have to be issued on rooted devices such that a smart-

phone can accept commands from the device server:

# On Smartphone (rooted):

# Enable ADB over wireless

#(to disable set port -1):

6
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setprop service.adb.tcp.port 5555

stop adbd

start adbd

# On PC:

adb connect <device-ip>:5555

4.3 Connectivity Microbenchmark

In order to evaluate the time-efficiency of various con-

nection modalities (i.e., wired or wireless) to our DS, we

have performed a microbenchmark using wired ARDs

(i.e., ARD-Local and ARD-Remote) and wireless ARDs

(i.e., ARD-WiFi). The wireless connectivity is handled

by a 802.11b/g/n wireless router (max. 300 Mbps) de-

ployed in the same room as the ARDs and connected di-

rectly to the DS.

Those experiments were conducted for calculating the

time needed for transferring 2.5MBs to up to 16 devices.

As we already mentioned in Section 3.2, those results

can be generalized to larger configurations by increasing

the number of DS images. In our experimentation, we

observed that ARD-WiFi features the worst time com-

pared to the other two alternatives. For example, in the

case of 16 ARDs, the time required for sending the file

reaches 12 seconds as opposed to 4.8 seconds and 1.4

seconds for ARD-Remote and ARD-Local, respectively,

as this is summarized in Table 1. One reason for this is

because the cascading USB 2.0 hubs offer much higher

transfer rate (max. 480Mbps) than the wireless router,

which never reached over 130Mbps.

Table 1: Transferring a 2.5MB file to 16 Devices

Connectivity Mode Average Time (10 trials)

ARD-Local 1.4 seconds

ARD-Remote 4.8 seconds

ARD-WiFi 12 seconds

Another observation is that ARD-Local devices out-

perform ARD-Remote devices, as the former are locally

mounted to DS, thus avoid the overhead of transferring

data via a network. Yet, ARD-Remote devices are par-

ticularly promising for scaling our testbed outside the

server room, thus are considered in this study.

5 Android Debug Bridge (ADB)

In this section, we provide an in-depth understanding of

the Android Debug Bridge (ADB), which handles the

bulk of communication between the connected smart-

phones and the Device Server (DS) (see Figure 2).

The ADB command (version 1.0.31, in this study) is

part of the platform tools (version 16.0.1, in this study),

provided by the Android development tools enabling the
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����������������������� monkey, monkey runner 
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dmtracedump, systrace,  
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����	�����
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�
���������� shell, bmgr, logcat 

�	����������� aidl, aapt, dexdump, dx misc 

Figure 4: The Android Development Tools.

development, deployment and testing of applications us-

ing ARDs and AVDs. These tools are classified into two

categories (see Figure 4): i) the SDK tools, which are

platform-independent; and ii) the Platform tools, which

are customized to support the features of the latest An-

droid platform.

In the latter category, there are also some shell tools

that can be accessed through ADB, such as bmgr, which

enables interaction with the backup manager of an An-

droid device, and logcat, which provides a mecha-

nism for collecting and viewing system debug output.

Additionally, there platform tools such as aidl, aapt,

dexdump, and dx that are typically called by the An-

droid build tools or Android development tools.

5.1 Debugging Android Applications

Android applications can be developed using any

Android-compatible IDE (e.g., Eclipse, IntellijIDEA,

Android Studio) and their code is written using

the JAVA-based Android SDK. These are then con-

verted from Java Virtual Machine-compatible (.class)

files (i.e., bytecode) to Dalvik-compatible Executables

(.dex) files using the dx platform tool, shrinked and ob-

fuscated using the proguard tool and ported to the de-

vice using the adb install command of ADB. The

compact .dex format is specifically tailored for systems

that are constrained in terms of memory and processor

speed.

As illustrated in Figure 5 (right), each running appli-

cation is encapsulated in its own process and executed in

its own virtual machine (DalvikVM). Additionally, each

DalvikVM exposes a single unique port ranging from

8600-8699 to debugging processes running on both local

and remote development workstations through the ADB

7
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Figure 5: Android Debug Bridge (ADB). Overview of

components involved in the debugging/deployment pro-

cess of Android applications.

daemon (adbd) shown in Figure 5 (left). The adbd is run-

ning on each target device and facilitates the connection

with server processes (i.e., stream sockets) through the

java debug wire protocol (jdwp-adb) transport protocol.

Debugging applications can be accomplished through

the Dalvik Debug Monitor Server (DDMS), or its super-

set tool Android Device Monitor. DDMS can be exe-

cuted as: i) a stand-alone application (ddms.jar); ii) ini-

tiated by the IDE; or iii) embedded to a java applica-

tion (ddmlib.jar). All communication between DDMS

and target devices is handled via ADB, which deploys

a background process on the development machine, i.e.,

the ADB server that manages communication between

the ADB client and the ADB daemon.

5.2 ADB Pipelining Microbenchmark

As mentioned in the previous section, users must con-

nect directly on ADB or through a mediator library such

as ddmlib, monkeyrunner or chimpchat both of

which connect to ADB, in order to perform any action

on a target device. However, initiating individual ADB

connections for each action introduces a significant time

overhead as it involves scanning for existing connections

or creating new connections each time.

In order to justify this, we have conducted a mi-

crobenchmark using the Android chimpchat SDK tool,

which allows amongst other functionality propagating

events (e.g., mouse clicks) to a target device. More

specifically, we generate 100 mouse click events and dis-

tribute them up to 16 ARD-Locals using two different

settings: i) a new connection is initiated for each ADB

call, denoted as No Pipelining (np); and ii) a single
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Figure 6: ADB Pipelining Microbenchmark. Evalu-

ating the average time for one click with pipelining and

no-pipelining. SmartLab utilizes pipelining.

persistent connection is utilized for pipelining all ADB

calls, denoted as Pipelining (p). The latter can be ac-

complished through the creation of a connection at the

start of the script and then utilizing that connection for all

propagated events. Note that the reason we have selected

mouse click events is because they are extremely light-

weight and do not introduce other time-demanding over-

heads (e.g., I/O), thus allowing us to focus on the time-

overhead incurred by each connection when pipelining

ADB calls or not.

Figure 6 shows the results of our evaluation (averaged

over 100 trials). We observe that the overhead of not

pipelining ADB calls is extremely high. In particular,

1 click on 16 AVDs using no-pipelining requires 23s,

as opposed to pipelining that only requires 0.47s (i.e.,

a 98% improvement.) Such extreme time overheads may

be a prohibiting factor for some applications, thus care-

ful consideration must be taken to ensure that applica-

tions communicate with target devices through a single

connection.

In SmartLab, we utilize a single persistent ADB

connection for each particular component (e.g., sepa-

rate ADB for Screen Capture and Shell Commands.)

Through the persistent connection, all ADB calls are

pipelined thus alleviating the aforementioned ineffi-

ciency. The above configuration offloads the issue of

concurrent ADB calls to a single device from different

components, to ADB and the OS, as a device is allocated

to only one user at-a-time (thus high concurrency pat-

terns are not an issue.)

8
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6 Device Server (DS)

In this section, we present the middle layer of the Smart-

Lab architecture, which was overviewed in Section 3.2

and illustrated in Figure 2, dealing with device man-

agement. In particular, we will explain and evaluate

the following subsystems: Filesystem and File Manage-

ment, Screen Capture, Logging, Shell Commands and

Sensor/GPS Mockups.

6.1 File Management (RFM) Subsystem

We start out with a description of the File Management

UI and finally present some performance microbench-

marks for pushing a file and installing an application on

a device using ADB pipelining.

Remote File Management (RFM) UI: We have con-

structed an intutitive HTML5/AJAX-based web inter-

face, which enables the management of the local filesys-

tems on smartphones individually but also concurrently

(see Figure 7). In particular, our interface allows users

to perform all common file management operations in a

streamlined manner. The RFM interface starts by launch-

ing a separate window for each AVD or ARD that is

selected by the user and displays a tree-based repre-

sentation of its files and directories under the device’s

/sdcard directory. Similarly, it launches two addi-

tional frames (i.e., JQuery dialogs): i) one frame displays

the users’ “Home” directory (top-left); and ii) another

frame displays a /share directory, which is illustrated

in Figure 7 (top-center). The user is then able to move a

single file or multiple files to multiple target devices.

The File Management subsystem is also responsible

for replicating any files moved to the /share direc-

tory to each target device’s /sdcard/share directory.

Furthermore, an Update All button and a Push All button

have been placed below the /share directory in order to

support simultaneous updating or merging the /share

directory on existing and newly reserved devices. In or-

der to accomplish these operations, the RFM UI issues

separate web requests, which include: i) the target device

id (or multiple devices ids); ii) the absolute location of a

single file (or multiple files); and iii) the type of opera-

tion. Requests are transmitted using AJAX, to the device

server, which is responsible to execute the appropriate

adb push and adb pull commands to transfer files

to or from a device, respectively, all over the ATP proto-

col discussed earlier.

File-Push Microbenchmark: The time required to

transfer files from and to target devices differs signif-

icantly according to the type of device. In order to

investigate this, we have conducted a microbenchmark

that measures the time overhead for transferring files

to/from the aforementioned different types of target de-

Figure 7: Remote File Management (RFM) UI. A

share folder enables to push/pull files to devices concur-

rently. FUSE-enabled devices can feature sshfs shares.

vices. More specifically, we have utilized a 10MB file

and distributed this file to up to 16 AVDs, ARD-WiFi,

ARD-Remote and ARD-Local, respectively. The ARD-

WiFi devices were assigned to students that were moving

around our department premises in order to provide a re-

alistic mobility scenario. Each experiment was executed

10 times and we recorded the average at each attempt.

The results are shown on the left side of Figure 8,

which clearly illustrates the advantage of using ARD-

Local devices in experiments requiring large amounts of

data to be transferred to devices (e.g., large trajectory

datasets). Additionally, the results show that the disk

I/O overhead introduced by the usage of the emulated de-

vices (i.e., AVDs) justifies the linearly increasing amount

of time for transferring files on those devices. In the case

of remotely connected ARDs (ARD-Remote) the large

time delays are attributed to communicating over the net-

work. Finally, the ARD-WiFi devices feature the worst

time overhead because the file transfer is hampered by

the wireless network’s low bandwidth in mobility sce-

narios.

File-Install Microbenchmark: In order to examine the

cost of installing applications, which include transferring

the application file (.apk) and its installation, we have

conducted another microbenchmark that calculates the

required time. Similarly to the previous experimental set-

ting, we measure the time for transferring and installing

a sample application of typical 1MB size, to each type

of target devices. The results are shown on the right side

of Figure 8. We observe that transferring and installing

the selected sample application introduces an additional

time overhead. For example, in the 1x target device sce-

nario, the sample application requires a total of ≈2.2s

9
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Figure 8: File Management Microbenchmark. Evalu-

ating the average time for transferring files and installing

applications on different types of target devices.

from which 0.7s accounts for file transfer and 1.5s for

installing the application. The results provide a clear

indication that emulated devices are not the appropriate

type of Android devices for performing I/O intensive ex-

periments such as evaluating network performance and

database benchmarking. Additionally, the sample appli-

cation utilized in the experiments did not perform any

specialized deployment functions during setup (e.g., ex-

tracting other files, installing database), thus its instal-

lation overhead is minimal. The time required for in-

stalling more complex applications varies greatly accord-

ing to the requirements of the application.

6.2 Screen Capture (RCT) Subsystem

The Screen Capture subsystem enables capturing the ac-

tual screen of a target device so that it can be displayed

to the user through the Remote Control Terminal (RCT)

UI component (see Figure 9). Additionally, it supports

a variety of events using the chimpchat library such as:

i) control events (e.g., power button, home button); ii)

mouse events (e.g., click, drag); and iii) keyboard events

(e.g., key press).

Screen-Capture Alternatives: Capturing a screenshot

of an ARD or AVD can be accomplished through the

following means (either directly or through an applica-

tion): i) on ARDs using the cat command (/dev/fb0

or dev/graphics/fb0 according to the target de-

vice version) and redirecting the output to an image file;

ii) on both using the Android monkeyrunner script

command takeSnapshot(); iii) on both by continu-

ously invoking the getScreenShot() command pro-

vided by the ddmlib library; and iv) on both similarly

Figure 9: Remote Control Terminal (RCT) UI. Our im-

plementation allows concurrent interaction (e.g., clicks,

drag gestures, key press) on multiple devices.

to (iii), by continuously listening to the direct stream

that contains the contents of each consecutive screenshot

(i.e., readAdbChannel() in ddmlib). The Smart-

Lab screen capture component has been developed us-

ing the (iv) approach because it is more efficient both

in terms of memory and time as it utilizes buffered-

oriented, non-blocking I/O that is more suitable for ac-

cessing and transferring large data files as shown next.

Screen-Capture Microbenchmarks: In order to jus-

tify our selection, we have performed a microbenchmark

that evaluates the time required to generate and trans-

fer 100 consecutive screenshots from up to 16 ARD-

Local devices using the (ii) and (iv) approaches de-

noted as monkeyrunner python scripts and Screen Cap-

ture, respectively. Approaches (i) and (iii) were omit-

ted from the experiment because the former cannot pro-

vide a continuous stream of screenshots required by RCT

and the latter does not provide any guarantee that a

screenshot image will be ready when the ddmlib library’s

getScreenShot() command is invoked, which may

lead to presentation inconsistencies. The experiment was

performed only on ARD-Local devices that outperform

AVD, ARD-Remote and ARD-WiFi devices w.r.t. file

transfer operations as is the case of capturing and dis-

playing a screenshot image.

The results of our microbenchmark, depicted in Fig-

ure 10 (left), clearly justify our selection. In particu-

lar, SmartLab’s Screen Capture subsystem always main-

tains a competitive advantage over monkeyrunner python

scripts for all number of target devices. Additionally,

we notice that the time required for processing images

for up to 8 devices is almost identical at 0.97±0.03s.

However, when 16 devices are used, the time required
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Figure 10: Screen Capture Subsystem Microbenchmarks on ARD-Local devices. (left) Evaluating the time over-

head of capturing screenshot images using monkeyrunner python scripts and SmartLab’s Screen Capture subsystem;

Evaluation of SmartLab Screen Capture compression mechanism w.r.t.: (center) CPU Utilization.; and (right) Power

Consumption.

for processing the screenshot images increases by ≈30%

(i.e., 1.33s±0.6s). This may be inefficient in the case of

applications requiring real-time control of the target de-

vices. On the other hand, for automated bulk tests the

above is not a big problem, as these are not affected by

the interaction latency that is inherent in any type of re-

mote terminal like ours. By performing a number of file

transfer benchmarks on our USB 2.0 hubs, we discovered

that this happens because the maximum available band-

width for file transfer was approximately 250Mbps (the-

oretically up-to 480Mbps). Consequently, it was not ade-

quate to support the necessary 320Mbps USB bandwidth

incurred by the 16 devices each transferring a 480x800

screenshot with an approximate size of 2.5MB per shot

(i.e., 16 x 2.5MB x 8bps = 320Mbps).

On-Device Compression: Currently, producing large

screenshot files cannot be avoided as there are no mech-

anisms for reducing the file size (i.e., compression). In

order to alleviate this problem, we experimented with

an in-house module for rooted devices that provides the

ability to generate compressed screenshot images (e.g.,

JPEG, PNG) locally at the device prior to transmitting

them over the network. We evaluated the revised Screen

Capture subsystem, denoted Screen Capture (compres-

sion) using the same configuration as in the previous ex-

periment.

We observe in Figure 10 (left) that the Screen Capture

(compression) clearly outperforms the Screen Capture

(with no compression), as expected. This is because the

files generated by Screen Capture (compression) never

reached over 45KBs. As a result, the revised Screen Cap-

ture subsystem is not affected by the limitation of the

USB 2.0 hub as the combined bandwidth rate required

was 5.7Mbps (i.e., 16 x 45KB x 8bps) and this is the rea-

son why the time required per screenshot for all number

of devices remains persistent at 0.6±0.05s.

Power and CPU issues: Compressing images though,

requires additional CPU effort as well as increased power

consumption on a smartphone. In order to investigate

these parameters, we have utilized a custom SmartLab

System Monitor application (see Figure 9, third screen-

shot on top row for overview) and PowerTutor tools (see

on the same figure the second screenshot on bottom row),

in order to measure CPU utilization and power consump-

tion, respectively. Our findings are illustrated in Fig-

ure 10 (center and right). We observe that the CPU uti-

lization in the compression scenario reaches 28±15% as

opposed to 7±3% when no compression is performed.

This is important as applications requiring high CPU uti-

lization should use the conventional (i.e., no compres-

sion) approach. Similarly, the power consumption of

compression is higher. However, the difference is very

low compared to other smartphone functions (e.g., 3G

busy ≈ 900mW [8]). In the future, we aim to investigate

automated techniques to switch between available screen

capture modes.

6.3 Logging (RDT) Subsystem

The SmartLab Logging subsystem is responsible for

parsing the debug data generated locally at each target

device and providing comprehensive reports regarding

the status of each target device to the user. The log data is

generated automatically by the Android OS and includes

various logs such as system data, system state and error

logs. These can be accessed directly through the ADB

commands dumpsys, dumpstate, and logcat re-

spectively or through the bugreport command, which

combines all previous logs into a comprehensive log file.

The Logging subsystem is accessible through the Re-

mote Debug Tools (RDT) component of the web server.

The logging process starts with the RDT component,

which upon a user request for logs initiates a web request

11
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Figure 11: Logging (RDT) Microbenchmark. Time re-

quired for retrieving the report log from different target

devices.

including the target device id (or multiple devices ids) us-

ing AJAX. The Logging subsystem receives this request

and propagates an adb bugreport command to the

target devices selected by the user. Consequently, the re-

sulting log report is saved to a separate directory inside

the user home directory and the user is able to choose

whether to manually traverse the report or to use a more

sophisticated tool such as the ChkBugReport tool 6 that is

able to illustrate the results in a comprehensive graphical

manner. If the latter is chosen, the Logging subsystem in-

vokes the ChkBugReport tool, passing the log report file

as a parameter. Finally, the resulting HTML files gener-

ated by the ChkBugReport tool are stored in the users’

“Home” directory.

Currently, the Logging subsystem (using ChkBugRe-

port) extracts the following information: i) Stacktraces;

ii) Logs; iii) Packages; iv) Processes; v) Battery statis-

tics; vi) CPU Frequency statistics; vii) Raw data; and

viii) Other data. Additionally, each ChkBugReport plu-

gin can detect (possible) errors, which are highlighted in

the errors section of the HTML report files. For instance,

by looking at the Stack-trace section the user might ob-

serve deadlocks or strict mode violations in addition to

other useful information.

We have conducted a microbenchmark in order to

evaluate the time overhead for gathering log reports from

the target devices. More specifically, we gathered the bu-

greports from up to 16 AVDs, ARD-Remote and ARD-

Local devices, respectively. The results, shown in Fig-

ure 11 clearly illustrate that ARD-Remote and ARD-

Local devices outperform AVDs. This confirms again

that utilizing real devices can speed up the experimental

process and produce output results more efficiently.

6Check Bug Report, http://goo.gl/lRPUW.

Figure 12: Remote Shell (RS) UI. Allows concurrent

UNIX command executions on multiple devices.

6.4 Shell Commands (RS) Subsystem

The Shell Command subsystem works in collaboration

with the web server’s Remote Shells (RS) component

(see Figure 12) in order to execute shell commands from

SmartLab to all target devices selected by the user. These

commands include every available adb shell com-

mand supported by the Android OS on rooted devices

and a considerable subset on non-rooted devices. The

RS component propagates each shell command through

a bi-directional WebSocket to the Shell Commands sub-

system, which in turn executes each command on the tar-

get devices and returns the resulting data back to the RS

web interface. More specifically, it allows a user to se-

lect a set of target devices and launch a separate window

consisting of frames (JQuery dialogs) for each target de-

vice. Each frame represents an interactive shell on the

selected device allowing the user to remotely issue shell

commands to single or multiple devices at the same time.

6.5 Sensor/GPS Mockup (RM) Subsystem

A mockup provides part of a system’s functionality en-

abling testing of a design. In the context of Android,

Mockup refers to the process of extending an AVD’s or

ARD’s particular sensor or GPS with custom values. Ad-

ditionally, one important benefit of Mockups is that these

can support the addition of sensors that may not exist in

the hardware of a particular ARD (e.g., NFC). The An-

droid SDK 4.0 supports the mockup of GPS data through

the following command sequence:

# On PC running AVD (5554: emulator)

telnet localhost 5554

geo fix latitude longitude

In order to support both GPS and other sensor mock-

ups in SmartLab, (e.g., accelerometer, compass, orienta-

12
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<state>

<sensor type="proximity">

<value>0.0</value>

</sensor>

<sensor type="linear

acceleration">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="orientation">

<value>31.0</value>

<value>6.0</value>

<value>60.0</value>

</sensor>

<sensor type="pressure">

<value>0.0</value>

</sensor>

<sensor type="gyroscope">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="rotation

vector">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="light">

<value>0.0</value>

</sensor>

<sensor type="magnetic field">

<value>-43.7625.0</value>

<value>27.275002</value>

<value>-8.587501</value>

</sensor>

<sensor type="accelerometer">

<value>9.0057745</value>

<value>-1.23400</value>

<value>4.655435</value>

</sensor>

<sensor type="gravity">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="temperature">

<value>0.0</value>

</sensor>

</state>

Figure 13: Sensor/GPS Mockup (RM): (left, center)

A data trace of various sensor measurements encoded in

XML. The given file can be loaded to ARDs and AVDs

through this subsystem; (right) An application built with

SLSensorManager using the measurements.

tion, temperature, light, proximity, pressure, gravity, lin-

ear acceleration, rotation vector and gyroscope sensors)

on both ARDs and AVDs, we opted for a custom module.

In particular, we have been inspired by the Sen-

sorSimulator7 open source project, which establishes

a socket server on DS feeding devices with sensor

or GPS readings encoded in XML (see Figure 13

left). As this functionality is completely outside the

ADB interaction stream, we were required to pro-

vide each application with a custom library, coined

SLSensorManager.jar.

SLSensorManager Library: Our library can be embed-

ded to any Android application enabling interaction with

the SmartLab GPS/Sensor subsystem running on DS. For

example, Figure 13 (right) shows how a sample applica-

tion has been constructed with this library. In fact, our

library has precisely the same interface with the Android

SDK SensorManager, consequently a user can override

Android’s default behavior very easily achieving in that

way to feed its allocated device from a real and realistic

sensor dataset.

Hardware Emulation: With Android Tools r18 and An-

droid 4.0, developers have the opportunity to redirect

real sensor measurements, produced by the ARDs, to the

AVDs for further processing. It is important to mention

that this functionality is the reverse of what we are of-

fering. In our case, we want to be able to redirect data

from a text file to an ARD, such that a given experiment

on ARDs or AVDs uses a data file to drive its sensors.

Recording sensor readings to text files can be carried out

very easily with a variety of tools.

7Openintents, http://goo.gl/WkuN

7 Experiences using SmartLab

In this section, we present four different research efforts,

including: GPS-trajectory benchmarking [38], peer-to-

peer search [22], indoor positioning [24] and database

benchmarking (the last carried out in the context of a

graduate course.) None of the following studies would

have been feasible with AVDs, as all of the below scenar-

ios require fine-grained and low-level access (e.g., sd-

card, WiFi, real CPU and mobility).

7.1 Trajectory Benchmarking

SmartLab has been utilized in the context of the

SmartTrace[38] project8, which is a prototype crowd-

sourced trajectory similarity search framework enabling

analytic queries over outdoor GPS traces and indoor

WiFi traces, stored on users’ smartphones.

SmartLab was utilized to carry out a GPS mockup

study with the GeoLife GPS Trajectories [39]. The

SmartLab file management functionality was extremely

useful in disseminating input traces and collecting our

experimental results from the local sdcards of smart-

phones. Additionally, the Remote Control Terminals

were equally important in order to setup and run the ex-

periments. Finally the device diversity allowed us to test

trajectory comparison algorithms on many smartphones

(see Figure 14, left).

As SmartLab is currently firewalled (i.e., the device

server is only accessible through the webserver), it is

not feasible to have some outside process connect to the

SmartLab smartphone processes internally. In order to

overcome this correct security configuration, we wrote

our Smarttrace smartphone clients in a manner that these

only issued outgoing TCP traffic (i.e., connecting to the

outside server) as opposed to incoming TCP traffic.

Finally, in order to scale our experiments to 200 smart-

phone processes, in the absence of such a large number,

we launched 10 concurrent threads to each of our 20 re-

served ARD devices.

7.2 Peer-to-Peer Benchmarking

SmartLab was also utilized in the context of a Peer-

to-Peer benchmarking study (i.e., the SmartP2P [22]

project). SmartP2P offers high-performance search and

data sharing over a crowd of mobile users participating

in a social network. Similarly to SmartTrace, the ex-

perimental evaluation of SmartP2P was performed on

real devices reserved through SmartLab. A subtle dif-

ference of this study was that the UI interactions were

recorded from within RCT into automation scripts stored

on SmartLab. Those scripts, running on our Device

8SmartTrace, http://smarttrace.cs.ucy.ac.cy/
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Figure 14: Research with SmartLab. (Left) Testing trajectory comparison algorithms on a diverse set of smartphones

in SmartTrace [38]; (Center) Testing indoor localization using ARD-WiFi mode in Airplace [24]; (Right) Testing

various SQLite tuning parameters in the context of an advanced databases course.

Server, would automatically repeat an experimental sim-

ulation improving automation and repeatability of the ex-

perimental evaluation process.

7.3 Indoor Localization Testing

WiFi-based positioning systems have recently received

considerable attention, both because GPS is unavail-

able in indoor spaces and consumes considerable en-

ergy. In [24], we have demonstrated an innovative in-

door positioning platform, coined Airplace, in order to

carry out fine-grained localization with WiFi-based Ra-

dioMaps (i.e., 2-4 meters accuracy). SmartLab has fa-

cilitated the development, testing and demonstration of

Airplace and its successor project Anyplace9 consider-

ably as explained next.

Firstly, we extensively used the ARD-WiFi mode,

which allowed us to move around in a building local-

izing ourselves while exposing the smartphone screen on

a remote web browser through SmartLab (e.g., see Fig-

ure 14, center). The particular setting has proved con-

siderably useful for demonstrations at conferences as the

bulk of existing AndroidScreenCapture software are both

USB-based, which hinders mobility, but are also ineffi-

cient as they provide no compression or other optimiza-

tions.

Secondly, SmartLab allowed us to collect and com-

pare Received Signal Strength (RSS) indicators from dif-

ferent WiFi chip-sets, which is important for RSS mea-

surements and would not be possible with AVDs. Finally,

SmartLab allowed us to test the generated APK on a va-

riety of devices.

7.4 DB Benchmarking

A recent study by NEC Labs America [20], has shown

that underlying flash storage on smartphones might be

9Anyplace, http://anyplace.cs.ucy.ac.cy/

a bottleneck in many smartphone applications, which

cache results locally.

In the context of an Advanced DB course at our de-

partment, students were asked to carry out an extensive

experimental evaluation of SQLite, the most widely de-

ployed SQL database engine in the world that is readily

available by the Android SDK. One particular objective

of this study was to find out how the reads and writes

could be optimized. For the given task students parsed

the sqlite data files stored by various smartphone apps

in their sqlite dbs. Subsequently, students carried out a

number of trace-driven experimentations.

Figure 14 (right) for example, shows how sequen-

tial inserts are affected by disabling the PRAGMA

synchronous and PRAGMA journal mode run-

time options on a smartphone storing its data on a

FAT32-formatted sdcard. In respect to SmartLab, it is

important to mention that APK and data trace files were

seamlessly transferred to target devices. Additionally, af-

ter installing the APKs it was very efficient working on

several RCT control terminals concurrently, carrying out

the experimental study quickly.

8 Future Developments

In this section, we outline some of our current and future

development plans:

8.1 Experimental Repeatability

Allowing seamless experimental repeatability and stan-

dardization is a challenging task for smartphone-oriented

research. Looking at other research areas, somebody

will realize that open benchmarking datasets and asso-

ciated ground truth datasets have played an important

role and academic and industrial research over the last

decades. For instance, the TREC Conference series co-

sponsored by National Institute of Standards and Tech-
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nology (NIST) of the U.S. Commerce Department is

heavily embarked by the information retrieval commu-

nity. Similarly, the TPC (Transaction Processing Perfor-

mance Council) non-profit corporation, founded to de-

fine transaction processing and database benchmarks, is

heavily embarked by the data management community.

In the context of our project we are: i) collecting our

own data on campus (e.g., WiFi RSS data [24]) and ad-

ditionally trying to convince other research groups con-

tributing their own data to the SmartLab repository. In re-

spect to storage, we are using a prototype Apache HBase

installation within our datacenter, to store sensor read-

ings in a tabular and scalable (i.e., column-oriented) for-

mat.

Apache HBase is an open-source version of Google’s

Bigtable [7] work utilized to store and process Crawling

data, Maps data, etc., without the typical ACID guaran-

tees that are slowing and scaling down distributed rela-

tional databases (e.g., MySQL-Cluster-like DBs). The

given store can be utilized to store billions of sensor read-

ings that can be advantageous to our GPS/Sensor Mockup

subsystem. This will allow a researcher to test an al-

gorithm or application using tens or hundreds of smart-

phone devices using automated scripts, similarly to [36]

but with bigger data. Another envisioned scenario would

be to enable smartphone experimentation repeatability

and standardization.

8.2 Urban-scale Deployment

We are currently working with local telecommunication

authorities in order to obtain mobile data time for our

mobile fleet and local transportation companies in order

to have them move our devices around in a city, with pos-

sible free WiFi access to their customers as an incentive.

The envisioned scenario here is to be able to test an

algorithm, protocol or application with ARD-Mobile de-

vices in an urban environment, providing in that way an

open mobile programming cloud. This could, for exam-

ple, support data collection scenarios, e.g., VTrack [35],

CitySense [27], and others, which rely on proprietary

software/hardware configurations, but also online traf-

fic prediction scenarios, trajectory and sensor analytics,

crowdsourcing scenarios, etc.

Such ARD-Mobile devices need of course limiting

the capabilities of users (e.g., prohibit the installation of

custom ROMs, disable camera, sound and microphone.)

We are addressing this with a customized after-market

firmware distribution for Android (i.e., ROM), named

CyanogenMod 10. We did not opt for the Android Open

Source Project (AOSP), as it was fundamentally diffi-

cult to port the drivers of all ARD we have ourselves.

10CyanogenMod, http://www.cyanogenmod.org/

Moreover, notice that the AOSP project currently sup-

ports only the Google Nexus family 11 of phones off-the-

shelf. Enabling urban sensing scenarios also has a legal

dimension as Europe has a strict Data Protection Policy

(e.g., Directive 95/46/EC on the protection of individuals

with regard to the processing of personal data and on the

free movement of such data.)

8.3 Web 2.0 API

We are currently working on a Web 2.0 JSON-based

API of our testbed using the Django framework12.

Django comes with rich features including a Model-

View-Controller (MVC) architecture that separates the

representation of information from the users’ interaction

with it. In particular, this effort will allow users to access

the subsystems of our testbed in a programmable manner

(i.e., Web 2.0 JSON interactions) and write applications

to extend SmartLab, similarly to NagMQ [32].

Consider for instance the Eclipse IDE, which we are

currently extending with Smartlab integration function-

ality through its API. The high level idea here is to al-

low developers to compile their code and deploy it im-

mediately on available devices accessible on SmartLab,

by having the Smartlab UI become part of the Eclipse

IDE.

Finally, we are considering the integration with

Google App Inventor13, such that programmers can see

their developments immediately on SmartLab.

8.4 Federation Issues and PG Management

Our Web 2.0 API will allow us to implement Smart-

Lab federation scenarios. For example, groups around

the globe can interface with SmartLab enabling a truly

global smartphone programming cloud infrastructure.

Additionally, we aim to develop a SmartLab derivative

for Personal Gadget (PG) management, which was mo-

tivated in the introduction. This will be facilitated by the

fact that personal gadgets are quantitatively and qualita-

tively increasing but more importantly, by the fact that

PGs are reusable after they become deprecated as they

are programmable and feature-rich.

8.5 Security Studies

SmartLab can be utilized in order to conduct experiments

related to enhanced smartphone security and privacy.

SmartLab smartphones can be used as honey pots for

investigating intruders’ behavior. Additionally, smart-

phones can be used as replicas of real devices enabling

11Nexus Factory Images, http://goo.gl/v1Jwd
12Django Framework, https://www.djangoproject.com/
13MIT AppInventor, http://appinventor.mit.edu/
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the replication of real event execution performed on real

devices. As a result, researchers can use SmartLab in

order to identify newly introduced threats by gathering

statistics from multiple replicas. Furthermore, SmartLab

can be utilized in the context of projects using replicated

execution [31] for validation and verification purposes.

Carefully investigating the security aspects related to

SmartLab will be a topic of future research. At the end,

SmartLab’s administrators will be able to present their

experiences related to managing security in a distributed

mobile environment similarly to the work presented by

Intel on how to secure PlanetLab [6].

9 Conclusions

In this paper, we have presented the first comprehensive

architecture for managing a cluster of both real and vir-

tual Android smartphones. We cover in detail the subsys-

tems of our architecture and present micro-benchmarks

for most of the internally components.

Our findings have helped us enormously in improving

the performance and robustness of our testbed. In partic-

ular, by pipelining Android Debug Bridge (ADB) calls

we managed to improve performance by 98%. Addition-

ally, by compressing screen capture images with mod-

erate CPU overhead we improve capturing performance

and minimize the network overhead.

This paper has also presented four different research

and teaching efforts using SmartLab, including: GPS-

trajectory benchmarking, peer-to-peer search, indoor po-

sitioning and database benchmarking. Finally, this paper

has overviewed our ongoing and future SmartLab devel-

opments ranging from Web 2.0 extensions to urban-scale

deployment primitives and security.

Our long-term goal is to extend our testbed by engag-

ing the research community that can envision and realize

systems-oriented research on large-scale smartphone al-

locations but also enable a platform for Personal Gadget

(PG) management.
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Abstract
YinzCam allows sport fans inside NFL/NHL/NBA venues
to enjoy replays and live-camera angles from different per-
spectives, on their smartphones. We describe the evolu-
tion of the system infrastructure, starting from the initial in-
stallation in 2010 at one venue, to its use across a dozen
venues today. We address the challenges of scaling the
system through a combination of techniques, including dis-
tributed monitoring, remote administration, and automated
replay-generation. In particular, we take an in-depth look at
our unique automated replay-generation, including the dash-
board, the remote management, the remote administration,
and the resulting efficiency, using data from a 2013 NBA
Playoffs game.

1 Introduction
Fans inside sporting venues are often far removed from the
action. They have to rely on the large stadium video-boards
to see close-ups of the action or be fortunate enough to be
close to the field. YinzCam started as a Carnegie Mellon
research project in 2008, with the goal of providing live
streaming camera angles and instant to hockey fans on their
Wi-Fi-enabled smartphones inside the Pittsburgh Penguins’
venue, Mellon Arena [5]. The original concept consisted
of the Penguins Mobile app that fans could download and
use on their smartphones, exclusively over the in-arena Wi-
Fi network, in order to receive the unique in-stadium video
content. Figure 1 shows the user experience at our initial
installation for the Pittsburgh Penguins.

While YinzCam started with an in-stadium-only mobile
experience, once the research project moved to commercial-
ization, the resulting company, YinzCam, Inc. [21], decided
to expand its focus beyond the in-venue (small) market to
encompass the out-of-venue (large) market.

YinzCam is currently a cloud-hosted mobile-video ser-
vice that provides sports fans with real-time scores, news,
photos, statistics, live radio, streaming video, etc., on their
mobile devices anytime, anywhere, along with live video
and replays from different camera angles when these fans
are inside sports venues. The game-time live video and in-
stant replays are effectively gated to the stadium because of

Figure 1: Fan experience at the original Mellon Arena
deployment for YinzCam, May 2010, showing three dif-
ferent smartphones displaying three different live cam-
era angles for a Pittsburgh Penguins home game.

broadcast rights; all of the other content is available to fans
outside the stadium. YinzCam’s primary infrastructure is
currently hosted on Amazon Web Services (AWS) [1] and
supports over 7 million downloads of the official iOS, An-
droid, BlackBerry, and Windows Phone mobile apps of 40+
NHL/NFL/NBA sports teams and venues within the United
States. Twelve of these venues additionally support Yinz-
Cam’s live video (including the NFL RedZone Channel at
NFL stadiums) and instant replay technology over both Wi-
Fi and cellular distributed antenna systems (DAS) [6].

The production of live video and instant replays requires
the orchestration of both computerized systems and human
efforts. In the video-processing plane, we utilize hundreds
of virtual and physical machines that communicate over var-
ious wireless and wired networks. These systems include au-
dio and video encoders, stream routers, web servers, media
servers, and databases. In the management plane, we utilize
remote-access technologies, automated-monitoring systems,
and a game-day-operations team. We group these compo-
nents into three major systems: the content-generation sys-
tem (CGS), the mobile-wireless network (MWN), and the
management-operations system (MOS).

Our first in-venue installation was located at Mellon
Arena, the home of the Pittsburgh Penguins until 2010. In

1



134 27th Large Installation System Administration Conference USENIX Association

this installation, the CGS, MWN, and MOS were all co-
located in a small room that was adjacent to the arena’s video
production studio. Our equipment included a video encoder,
three rack-mounted servers, and a terminal for the operator.

As we grew from one team in 2010 to five teams in 2011,
we struggled to scale the initial design of our system to mul-
tiple installations with thousands of users. The load on our
systems became too much for a single server or encoder to
handle. Teams wanted to use more than the maximum of
four camera angles that our initial designs allowed. New
technologies like 4G LTE [17] and WiMAX [19] made cel-
lular networks a viable option for the MWN, but our sys-
tem was designed only for Wi-Fi. Replay cutting was a
slow, labor-intensive, and error-prone process that frequently
frustrated our system operators. Adding to the frustration,
our operators were immersed in a high-pressure, game-time
environment filled with distractions. Travel costs piled up
while we shuttled operators back and forth across the coun-
try for every sporting event. There was a critical need for a
cost-effective, low-latency scalable automated solution that
addressed these challenges.

Contributions. The overarching goal of this paper is to
describe how we evolved our initial system, with all of its
limitations, into the scalable and efficient system that we use
today to support thousands of sports fans across venues in
the United States. Instead of simply scrapping our existing
design and starting over, we slowly evolved our system by
addressing each of the aforementioned challenges individu-
ally. In this paper, we discuss candidly the weaknesses in
our original system architecture, the changes we introduced
to make our system work efficiently and cost-effectively at
scale, and the lessons we learned during this transformation.
Concretely, our contributions in this paper are:

• A case-study of our migration to the cloud, including a
discussion of how we chose which components to mi-
grate and how the cloud helped us scale;

• A description and evaluation of our automated-replay-
cutting system, including a discussion of how we im-
proved its efficiency, reliability, and maintainability
through automation, decoupling of subsystems, and
configuration management;

• A description of our remote-management infrastruc-
ture, including our automated-monitoring systems and
operations dashboards.

To the best of our knowledge, there exists no other auto-
mated mobile-replay generation and management system for
sports venues.

The rest of this paper is organized as follows. Section 2
describes our mobile applications in detail and also gives a
general description of the systems that support them. Sec-
tion 3 describes our initial design for in-venue installations.
Section 4 describes the technical challenges we faced in scal-
ing up our initial design. Section 5 describes the changes we
made to our initial design to solve these technical challenges,

and provides insight into the system we use today. Finally,
section 6 discusses the lessons we learned throughout this
process.

2 The YinzCam System
YinzCam develops the official mobile apps for more than
40 professional sports teams across four leagues (the NHL,
NFL, NBA, and MLS). We provide these apps for over 7
million users across iPhone, iPad, Android, BlackBerry, and
Windows Phone 7/8. YinzCam-powered apps have access to
a wide variety of sports-related content such as news, photos,
videos, podcasts, schedules, rosters, stats, and scores. This
content is updated in real time as teams publish new statistics
and media.

User Experience. YinzCam apps also support unique fea-
tures not available in other sports apps, such as exclusive
live-video streaming and on-demand instant-replays. From
their seats or anywhere in the building, fans can use Yinz-
Cam apps to watch live game action from multiple camera
angles on their smartphone. In addition, fans can watch
replays of game events from the same set of camera an-
gles. Some venues also provide fans with streams of pop-
ular sports-related TV-channels, such as the NFL RedZone
channel [13].

To use our in-venue features, the user first configures his
or her smartphone to connect to the in-venue Wi-Fi network
(this step is not required for DAS networks). Next, after
opening the app, the user navigates to a special in-venue sec-
tion of the app. As shown in Figure 2, the user can then
choose to watch live camera angles or browse through sev-
eral replays of game action. Both live videos and instant
replays are offered from multiple different camera angles.
Only one camera angle may be viewed at a time.

These features are only accessible to fans while inside the
team’s home venue. Once inside and connected to an in-
venue network, fans are able to access a special in-venue
section of the mobile app. This section initially presents fans
with a list of game highlights, as well as options for view-
ing additional replays or live streams (see Figure 2). Once a
fan chooses a live stream or instant replay, he or she is pre-
sented with a selection of camera angles available for that
item. Upon choosing an angle, the app begins playback of
the corresponding video.

Although only a part of a large app that contains a wealth
of other features and content, our in-venue live streaming
and instant replays have proven to be the most technically-
sophisticated (and technically-challenging) of all of the ser-
vices we provide. We separate our system into a content
plane and a management plane, with some components ex-
isting in both planes. The content plane includes compo-
nents for encoding combined audio-video streams, convert-
ing streaming formats as needed by mobile devices, cut-
ting segments of live video into instant replays, and serving
live video and instant replays to clients over wireless net-
works. The management plane includes remote-access ser-
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Figure 2: A user’s navigation through the United Center Mobile application, in order to watch a replay.

vices, monitoring systems, software configuration and de-
ployment, and operations dashboards.

The content plane contains the content-generation system
(CGS), which is a multi-stage pipeline that produces our live
video and instant replays. This content is generated in three
main stages. In the first stage, one or more YinzCam servers
receive signals (i.e. feeds) from in-venue video-cameras
and TV-tuners. The servers receiving these feeds encode
them into compressed, high-quality data-streams suitable for
transmission via IP networks. In the second stage, both the
live streaming and the replay cutting components receive
identical copies of these streams. The live streaming com-
ponent converts the high-quality stream into a lower-quality
stream suitable for playback over bandwidth-constrained
wireless networks. The replay cutting component segments
the live video stream into discrete video files, which are also
encoded at a lower quality. Finally, in the third stage, both
the live streaming and replay cutting services publish their
content for consumption by mobile apps via the in-venue
mobile wireless network (MWN).

Although just one stage in our pipeline, the final publish-
ing and distribution step is unusually complex due to the
wide variety of stream formats we need to support. Each
smartphone platform that we support accepts a different set
of stream formats. For example, iOS devices and Android
4+ accept Apple’s HTTP Live Streaming (HLS) format [3];
both Android 2+ and BlackBerry accept the RTSP/RTP for-
mat [16]; and Windows Phone only accepts Microsoft’s IIS
Live Streaming (ISM) format [22]. To successfully stream
to all of the platforms we support, we must provide each of
our streams in the RTSP/RTP, HLS, and ISM formats.

The management plane contains services that our content-
plane systems expose for the purposes of automated and
manual management. Every YinzCam server provides re-
mote access in the form of SSH or remote desktop (RDP)
[7] access. Furthermore, some components like the replay
cutter have human interfaces for monitoring and manual in-
tervention. In later iterations of our system, this plane also
includes automated-monitoring systems and virtual-private
networks (VPNs).

The replay-cutting interface is the most complex compo-
nent of our management system due to its unique require-
ments. To cut a replay, the operator first finds the correct
segment of video in the each of the live-video streams. Once
identified, the operator submits these segments for encoding,
creating multiple video-clips (one for each stream) that are
packaged in MPEG-4 containers [12]. The operator then an-
notates the replay with a title and description and publishes it
to the app, which is a process where the system writes all of
the metadata into a database table. Done manually, the entire
process for a single replay may take 30 seconds or longer,
and an operator will likely process over 150 replays during
a typical game. The operator also has control over which re-
plays are shown in the highlights list and can remove replays
altogether if needed.

3 2010: Supporting our First Venue
While still a research project at Carnegie Mellon, Yinz-
Cam set up its first in-venue installation at Mellon Arena,
the home of the Pittsburgh Penguins NHL team in 2008.
Our base of operations was adjacent to the arena’s video-
production studio, which made it easy for us to obtain the
our input video feeds. Our back-end equipment included a
hardware encoder and three rack-mounted servers, all inter-
connected via the arena’s single wired-network. The Wi-Fi
network also shared this wired network for access to our in-
venue services as well as the Internet. In addition to setting
up our own back-end equipment, we also had the privilege
of installing the Wi-Fi network at the arena.

In our first installation, the CGS pipeline consisted of an
encoder that provided two outputs, one to a live-streaming
server and the other to a replay-cutting server. Figure 3 is a
diagram of this architecture. This Figure also shows the ter-
minal that our operators used to monitor each of the system
components via RDP [7].

The video-capture component converted standard-
definition, analog video into compressed streams suitable
for transmission over IP networks. For this component, we
used an Axis Q-series video encoder [4], which converted
up to 4 analog, NTSC-formatted inputs into 4 digital,
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Figure 3: The architecture diagram of the first YinzCam
installation at Mellon Arena. Black lines indicate con-
tent flows, while gray lines indicate management traffic
(2010).

H.264-encoded streams. The encoder served these streams
via the stadium’s wired network segment in two formats,
Motion-JPEG (MJPEG) [11] and RTSP/RTP [16].

Because the Axis encoder lacked the resources to handle
hundreds of simultaneous connections, we wrote a custom
proxy for the encoder’s MJPEG output that could run on
general-purpose hardware. This proxy server was a .NET
application hosted on a Dell R200 server running the Win-
dows Server 2008 operating system. Our proxy server re-
ceived and buffered MJPEG frames from the Axis encoder,
and it also maintained HTTP connections to each mobile app
displaying a live stream. When the proxy received a new
MJPEG frame from the encoder, it immediately sent a copy
of the frame to each connected client. This decoupled the
clients from the Axis encoder, allowing us to scale the num-
ber of clients by scaling our server capacity.

We also used custom software to cut replays from the live
streams. Like the live-stream proxy, this software also re-
ceived and buffered MJPEG frames from the encoder. How-
ever, instead of distributing frames to clients, the replay cut-
ter buffered the last 5 minutes of frames in memory. The
replay cutter indexed these frames by the time when they
were received, with a separate index for each stream. To cut
a replay, the system first used these indexes to look up the
sequence of frames between the start and end times for the
replay. The replay cutter then spawned encoding processes
to concatenate the sequences, one for each combination of

live stream and mobile platform. This process created sev-
eral MP4 [12] files that were made available for download
over the in-venue Wi-Fi network via an IIS web server run-
ning on the same machine.

The Wi-Fi network initially used 4 Xirrus access points
[20] covering 2000 season-ticket-holder seats. This was later
expanded to 8 access points to meet increased demand. Each
access point had 8 radios. Of the 8 radios, 3 use the 2.4 GHz
band and 3 use the 5 GHz band. One or two radios are used
as monitors, providing feedback about network conditions.

In the initial installation, all of the monitoring, configu-
ration, and software maintenance were entirely manual pro-
cesses managed by a single system-operator. During a game,
the operator’s primary task was to find and annotate each re-
play. If any problems occurred, the operator was expected
to diagnose and resolve the problem using remote desktop
access to each of the other servers.

The replay cutter provided a Windows-Forms [8] interface
for managing its operation. This interface allowed the opera-
tor to seek backwards through the last 5 minutes of live video
to find replays. Once the operator identified the start and
end positions for the replay, the interface communicated the
corresponding timestamps to the replay cutter for encoding.
Once encoded, the operator assigned a title and description
to the replay and published the replay into the app.

4 2011: Scaling to Four Venues
In 2011, YinzCam expanded to work with its first three
NFL teams: the New England Patriots, the Pittsburgh Steel-
ers, and the San Francisco 49ers. We built nearly-identical
copies of our Mellon Arena installation at their respective
home stadiums, Gilette Stadium, Heinz Field, and Candle-
stick Park. We sent an operator to each stadium for every
home game during the 2011 season. During the game, the
operator managed the replay cutter and responded to any on-
site problems.

Although technically feasible, scaling up to these 4 new
NFL installations caused significant management problems.
While the original system architect could be on-site (or at
least on-call) for every Penguins game, NFL games are often
played simultaneously, so we had to send less-experienced
operators to some games. This made it difficult for us to
diagnose and resolve problems that occurred in the field.
Travel costs for our operators were also a concern.

We first attempted to resolve these issue by extending the
initial design with remote access. As shown in Figure 4, we
added a dedicated server that hosted a VPN service, allowing
remote access to the network from any Internet-accessible
location. This VPN provided all of our operators with re-
mote access to our systems. This lessened the burden on the
single operator who managed the replay cutter, while simul-
taneously giving remote systems-experts the ability to trou-
bleshoot problems.

Because of its maturity and low operation-cost, we chose
OpenVPN [14] to provide a secure connection between re-
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Figure 4: The revised architecture diagram of our initial
design, showing the infrastructure added for manage-
ment. Black lines indicate content flows, and gray lines
indicate management traffic. The connection between
the Remote Ops Workstation and the Management Gate-
way is secured by a VPN (2011).

mote system-operators and our installations. A dedicated
management-server at each installation hosted the OpenVPN
service. Our system operators installed OpenVPN clients
on their work machines, which gave them secure network-
access to all of our installations anywhere at any time. This
connection allowed our operators to open tunneled SSH and
RDP [7] connections to each of our servers and manage them
as if they were located on-site.

While this was sufficient for the 2011 season, we contin-
ued to encounter management issues as we expanded to 12
teams during the 2012 season. Monitoring, configuration,
and software maintenance was still an entirely-manual pro-
cess. Although manageable with just 4 installations, as we
scaled up, major system-changes and software upgrades be-
came tedious and error-prone tasks. Furthermore, the lack of
a single network that connected all of our installations made

it difficult for us to deploy infrastructure-wide management
or monitoring software.

On the business side, the cost of having a person on site
for every game was tremendous. We had to purchase airfare,
meals, ground transportation, and lodging for each operator
sent to a game not played in Pittsburgh. For example, during
the 2011 49ers season, we purchased 10 round-trip flights
from Pittsburgh to San Francisco. These costs were unbear-
able for a young company like ours.

In addition to management issues, replay cutting for NFL
games has much more strenuous operations-requirements
than for NHL games. While the replays published to NHL
apps are chosen at the operator’s discretion, our NFL apps
show replays of every play of every game. Although this
makes it easier for the operator to find replays, the opera-
tor has to be focused on cutting replays during every second
of the game. Furthermore, NFL replays cannot be skipped,
meaning that the operator’s replay queue frequently became
backlogged. Not only did this make replay cutting more
stressful, but some replays also took minutes to generate due
to the backlog. We clearly needed a more efficient system.

Finally, our system was not prepared for the introduction
of 4G cellular-technologies in late 2011. These technolo-
gies, coupled with the distributed-antenna system (DAS) [6],
allowed cellular networks to provide high-bandwidth, low-
latency data-connections in high-user-density environments.
Such networks were ideal for our video-streaming applica-
tion in stadiums or arenas. However, since our initial design
assumed that the MWN would always be Wi-Fi network,
it required a private LAN connection between the wireless
network and our servers. Cellular networks do not permit
such connections, and all data services for these networks
must operate on the public Internet. Due to bandwidth con-
straints, using the venue’s Internet connection to meet this
requirement was also out of the question.

5 2012: Our Infrastructure Today
Today, YinzCam operates 12 in-venue installations in pro-
duction across 12 NFL teams, 1 NHL team, and 1 NBA
team. We no longer struggle to support new installations
or handle heavy game-day-usage, and we can easily sup-
port multiple MWNs co-existing in a single installation. To
achieve success at this scale, we redesigned our system to
be more flexible, modular, and to embrace new technologies
in the areas of cloud computing, elastic scaling, system au-
tomation, and distributed monitoring.

5.1 To The Cloud
This section describes, in detail, our transition from an ar-
chitecture relying entirely on private infrastructure to one
heavily-dependent upon Amazon’s public EC2 cloud [2].
The transition was neither smooth nor seamless, and we can-
didly discuss the rationale for each of our design changes.
We also discuss, in hindsight, the advantages and disadvan-
tages of our approaches.
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5.1.1 A Global VPN

We first turned to cloud computing to solve the problem of
needing an infrastructure-wide private-network with which
to coordinate the management all of our installations. One
of the challenges we faced during the 2011 season was the
tedium of manually managing each deployment as a sepa-
rate, unique installation. We needed a way to centrally man-
age the configuration of each system component across all
of our installations.

In pursuit of this goal, we knew that we needed a single,
common network across all of our installation. We reasoned
that hosting this component on the cloud would result in a
more reliable service than hosting it at our offices on a cable-
broadband connection. It would also be cheaper, since we
would not need to purchase or operate the infrastructure our-
selves. In late 2011 we set up a low-capacity, Linux-based
EC2-instance to act as an OpenVPN server. We migrated all
client certificates to this server, and converted the OpenVPN
servers running on each installation’s management gateway
into a client of our new, cloud-hosted VPN.

One problem we faced while setting up this VPN was ad-
dressing. While it would be simple to assign blocks of IP
addresses from a reserved, private address-space, we had to
be careful to avoid address conflicts. Both sporting venues
and Amazon EC2 use blocks of addresses chosen from all of
the reserved private IP address blocks [15] (192.168.0.0/16,
172.16.0.0/12, and 10.0.0.0/8), with most heavy usage in the
192.168 and 10 blocks. We chose at random a /16 prefix in
the 10-block, 10.242.0.0/16, and we hoped that this space
never conflicted with any other routable network inside of a
venue or on Amazon EC2. In hindsight, this was poor choice
because our 10.242 subnet did conflict with the private ad-
dresses of some of our EC2 instances. We resolved these
conflicts using host routes, but this complicated our server
configuration.

We also developed a hierarchical strategy for assigning
our global VPN’s address space. We delegated a /24 sub-
net to each installation, starting with 10.242.1.0/24 for our
Pittsburgh office and incrementing the third octet for each
installation. We assigned the final octet of the address to
each machine based on its role; for example, the VPN in-
terface for all live streaming servers is assigned the address
10.242.xxx.20. We grouped these per-role addresses into
blocks of 10, so that we could assign sequential addresses
for up to 10 machines in the same role.

While our cloud-based VPN worked well normally, it had
trouble coping with failures. The main weakness of our
initial design was the single point of failure on the cloud.
Should this server fail, the entire VPN would disappear. We
reasoned that the use of a low-TTL DNS record and an EC2
Elastic IP Address would allow us to quickly boot up and
route traffic to a new VPN server should any problems arise.

However, we found that OpenVPN’s automatic reconnec-
tion mechanism was not reliable in the case of network or
server failure. During an unexpected failure, some clients

AWS U.S. West Region

AWS U.S. East Region

United 
Center

Figure 5: YinzCam’s global VPN, showing the 12 instal-
lations that we remotely administer.

fail to detect a connection loss. When the server comes back
online, these clients do not attempt reconnection and remain
permanently offline. The same situation can occur after a
network outage. Getting these systems back online requires
an on-site technician to either reboot the server or log in and
restart the VPN client. Due to these issues, we decided that
our VPN was not reliable enough for continued production
usage, and began examining alternatives.

Today, we use peer-to-peer (P2P) VPN software to solve
our reliability problems. Instead of OpenVPN’s client-server
model, P2P VPN systems view each machine as a node in a
mesh network. These systems use dynamic-routing proto-
cols like OSPF [9] to find the best available routes for traf-
fic. Like the Internet, as long as a sequence of connected
VPN nodes exists between any two points, traffic can flow
between them. P2P VPNs also permit two nodes to form di-
rect connections if possible, eliminating unnecessary routing
hops.

In the cloud, we now have 6 EC2 instances across 2 AWS
regions that serve as rendezvous points for VPN connec-
tions. Each of our machines is configured with the FQDNs
of the 3 VPN rendezvous instances in the nearest AWS re-
gion. Upon startup, the VPN software on the machine con-
nects to all three of these nodes. As long as at least 1 of the
3 nodes is functioning, the node has full access to the VPN.
Between the 2 regions, the 3 nodes in each region maintain
connections to the three nodes in the other region, providing
connectivity between the regions. Figure 5 shows how these
connections are organized across our U.S. installations.

5.1.2 Supporting Multiple MWNs

The second phase of our cloud migration occurred in re-
sponse to the widespread adoption of 4G technologies (LTE
and WiMAX) by mid-2012. With the installation of DAS
systems in several sporting venues, cellular networks could
provide the high-bandwidth, low-latency data-connections
required for our in-venue technologies. Unfortunately, cellu-
lar networks do not offer the same direct, private-LAN con-
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Figure 6: Our Wi-Fi/DAS hybrid architecture, utilizing
two parallel content-generation pipelines. For clarity,
management systems are not shown (2012).

nections as in-venue Wi-Fi networks; instead, all external
traffic must come from the Internet.

Our first approach was to provide external access to our
in-venue servers via the stadium’s Internet connection. Un-
fortunately, supporting just 1000 concurrent connections to
our live-video service with 400-kbps streams requires 400
Mbps of bandwidth. Stadiums typically have Internet con-
nection capacities of 100 Mbps to 1 Gbps, shared across all
services in the building (including Wi-Fi Internet, ticketing,
vending, etc.). Reserving such a large portion of this con-
nection for our use was simply not feasible.

We turned to cloud computing to provide the needed band-
width. By sending a third copy of the video encoder’s output
to the cloud, we were able to duplicate our entire content-
generation pipeline on Amazon EC2. The live streams and
instant replays generated by this pipeline were superficially-
equivalent to those generated by the in-venue pipeline. How-
ever, the cloud pipeline’s output would already be on the
cloud, ready for distribution to 4G clients using the vast
Internet-bandwidth available to us through AWS.

The architecture we designed to implement our idea is
shown in Figure 6. We sent one copy of each of the source
video-streams to the cloud at 2 Mbps average bit-rate each.
For a typical installation processing 4 simultaneous streams,
this required a tolerable 8 Mbps of upload bandwidth from
the venue. We configured virtual machines on EC2 in the
same way as our in-venue physical live-streaming servers
and replay cutters. Instead of receiving feeds directly from
the venues, we set up these virtual machines to retrieve video
streams from a video-distribution server, using software to

proxy the streams received from the video-capture server in
the venue.

5.2 Automated Replay Cutting
As mentioned earlier, replay cutting prior to automation was
by far the most labor-intensive and error-prone task in all of
our system operations. During a typical three-hour game,
manual replay-cutting required the complete and undivided
attention of a single system-operator during every second of
game time. This system was subject to numerous sources
of delays and errors, stemming from the time taken to find
replay boundaries and the unpredictable rate at which new
replays needed to be cut.

Driven by our frustration with manual replay-cutting, we
were able to automate the entire process with production-
quality accuracy for football, hockey, and basketball games.
Furthermore, we improved our system’s robustness by refac-
toring its components into three separate processes that com-
municate via middleware, allowing each component to fail
independently. We also improved maintainability by intro-
ducing automated configuration management and upgrade
software.

Before beginning our implementation, we needed to find
an approach for automating our system. Our replay cut-
ter operates by buffering short segments of video, indexing
these segments by time, and then joining the segments be-
tween two timestamps into a video file. We wanted auto-
mate the selection of timestamps to eliminate the burden of
searching manually through video streams to find the start
and end points of replays. We developed a set of rules
that estimate the duration of replays. For example, in foot-
ball, plays that advance the ball further generally take longer
to execute than short-distance plays. We slowly improved
these rules, using the manual replays from previous games
as training data, until our system was able to consistently
estimate correct replay durations.

The timing rules provided us with all of the information
needed to automate the replay cutting process. In our auto-
mated system, the video-buffering and encoding component
remains the same as in the manual system. We added a new
component that executes our timing rules for each replay,
outputting start and end timestamps. A manager component
tracks all of the replays and triggers the video cutter when
start or end timestamps change. Once a replay is cut, the
manager inserts the title, description, and video-file URLs
into the list of available replays. A web server sends this
list to our apps as an XML document [18] whenever the user
opens the instant replay feature of our apps.

Also, there are many reasons that the automatic cut may
be incorrect and require manual intervention. Data entry er-
rors occasionally occur. In rare cases, our automated esti-
mation is incorrect and needs adjustment. To handle these
cases, we provide the option for an operator to override the
automatic cut of any replay.

Although some rare cases still require human intervention,
replay cutting now requires much less human effort than in
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Figure 7: The architecture of our automated replay cutter, showing the in-venue and out-of-venue components.

the entirely-manual system. Operators now take a monitor-
ing role, watching replays and correcting errors as needed.
The reduction in human effort has made our replay cutter
more efficient, reducing the time taken to generate our re-
plays from 30 seconds (or more) to consistently less than 10.

We also introduced an automated configuration manage-
ment and deployment system to ease maintenance of our
software across multiple deployments. The core of this
system is a central database of all currently-running com-
ponents, their configurations, and their software versions.
When upgrading a software component, the administrator
simply has to upload the appropriate software artifact (usu-
ally a Java JAR file) to the system and select which installa-
tions to update. The automated deployment system handles
shutting down the component to upgrade, copying the soft-
ware update, and restarting the component. Configuration
changes (in the form of XML documents) are also uploaded
to the server and deployed using a similar stop-copy-restart
process.

5.3 Remote Management Infrastructure
To keep our systems running smoothly, we need to quickly
identify and respond to any problems that occur. These prob-
lems range from minor errors, such as video-encoding mis-
takes or replays containing the wrong video, to complete

outages of machines or even entire installations. This wide
range of problems requires an equally wide range of moni-
toring and management systems.

5.3.1 Distributed Automated Monitoring

We use a distributed approach to monitor our infrastructure,
where each machine individually monitors its own compo-
nents and alerts operators of any problems. While a cen-
tralized approach would permit more advanced analysis, it
would also require the transmission, storage, and processing
of large quantities of system-log data. We opted for a dis-
tributed approach to avoid these performance and cost ob-
stacles.

Our most basic level of monitoring is based on checking
system-level metrics for anomalies. A daemon process on
each machine monitors resources for excessive usage; for ex-
ample, high CPU utilization, memory exhaustion, low disk
space, and high network utilization. This daemon also mon-
itors our configuration files for unexpected changes, which
helps us catch problems early and provides auditing and
other security benefits. When anomalies are detected, these
daemons alert the entire operations team via email with de-
tails of the problem.

In addition to system-level monitoring, we also use
service-log monitoring. A daemon on each machine mon-
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Figure 8: Operator perspective: A screenshot of our
replay-cutting dashboard in action. The game shown is
the NBA Playoffs game between the Chicago Bulls and
the Brooklyn Nets on Saturday, April 27, 2013.

itors logs from both standard network services, like sshd, as
well as in-house services like our video encoders and replay
cutters. This daemon uses rules specific to the log format to
detect unusal log messages (e.g. errors, repeated warnings,
etc.), which are then emailed to our operations team for fur-
ther review.

Our final tier of automated monitoring performs periodic
liveness checks. The daemons in this tier periodically make
network requests to ensure that our services are function-
ing normally. The simplest of these tests is a ping test to
ensure network connectivity. We also perform more de-
tailed service-level monitoring. For HTTP-based services,
the monitoring daemons issue HTTP requests and check
the responses for correctness. For example, to monitor our
live streaming for iOS and Android 4 devices, our monitor-
ing system periodically issues HTTP requests for the HLS
playlist file and ensures that the response is valid. It then
makes additional HTTP requests to ensure that the video
files in the playlist are actually available.

5.3.2 End-to-End Monitoring

In addition to our automated monitoring, we also use tools
for end-to-end monitoring. We use modified smartphones
which allow our system operators to use the in-venue fea-
tures of our apps as if they were physically located inside
of the stadium or arena. We accomplished this by equipping
smartphones with VPN connections, and using a special ver-
sion of our apps that play live video and instant replays using
the VPN connection.

We’ve found that end-to-end monitoring is necessary to
ensure that the fan experience is not compromised due to
system failure. Without end-to-end monitoring, it is very
difficult to ensure that fans are seeing the correct app content.
Furthermore, this monitoring allows us to do manual checks
of our video content for problems that are difficult to detect
manually, such as video distortion and encoding errors.

Figure 9: User perspective: A photo of the United Center
Mobile app in action during a Chicago Bulls basketball
game. Using his smartphone, this fan is able to watch the
game close-up from his upper-level seat.

5.3.3 Replay-Cutter Dashboards

We have built various web services and web-based dash-
boards for managing the more complex, distributed compo-
nents of our system, such as our replay cutter. We have two
separate management dashboards for this system. The first
is a systems-level dashboard, which allows us to remotely
monitor, configure, and upgrade all of the replay cutters in
our fleet. The second is our operator dashboard, which gives
operators the ability to view and edit replays as well as select
which replays should be shown in our apps as highlights.

Our systems dashboard ties in to the middleware layer of
our replay cutter, allowing system administrators to moni-
tor and manage all of the components of each replay cutter
in our fleet. Once a replay-cutter’s components are linked
with the system dashboard, administrators can manage each
of its components independently. The dashboard shows the
current state of each component and provides commands to
stop and start the execution of each. To aid in debugging, ad-
ministrators can also view the logs generated by each com-
ponent. This dashboard also provides the administrative in-
terface to our configuration management system, which our
system administrators use to update our software and system
configurations as mentioned earlier.

Our replay cutting system also provides an interface that
allows our operators to manually override the decisions
made by the automated system. This interface takes the form
of a web-based dashboard. Using this dashboard, the opera-
tor may adjust the time synchronization between the events
feed and the video streams, manually override the start and
end times for any event, and even disable replays entirely for
certain events. The dashboard also provides insight into the
internal operation of the system, such as the list of events
and the systems progress in cutting each replay. Finally, the
dashboard allows the operator to view the automatically- and
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manually-cut replay videos for every game event, camera an-
gle, and mobile platform.

This combination of features allows replay-cutter opera-
tors to primarily act as an observer to the system. Typically,
operators just watch the automatically-cut replay videos via
the dashboard and check for correctness. When the system
creates an incorrect replay, our dashboard gives the operator
the ability to easily intervene in the automatic operation. The
streamlined interface also allows a single manager to easily
monitor the replay cutting system across multiple concurrent
sporting events.

5.3.4 Replay-Cutting Efficiency

By timing our system’s progress through the various stages
of replay cutting, we were able to compare the efficiencies of
the manual and automated versions of our system. Our met-
ric of interest is “time-to-app” (TTA), which is the time du-
ration measured between our system receiving a new game
event and the replay of that event appearing in the app for
fans to watch. We measured the TTA for replays using both
automated and manual workflows during the Chicago Bulls
NBA Playoff game on April 27, 2013.

We measured the TTA of each workflow by summing the
time spent in individual stages of the system. The stages
we measured were search, encoding, and publishing. We
used our replay-cutter dashboard to measure both workloads
by timing the delay between state transitions in the dash-
board. For example, when a new event is received, the
dashboard shows a new line for the event in the ENCOD-
ING state. Once encoding is complete, the state changes to
PUBLISH, indicating that the replay is being published in
the replay list. The time taken for the ENCODING state to
change to PUBLISH is the encoding-stage duration. The to-
tal time for the event to transition from ENCODING to PUB-
LISH to COMPLETE is the TTA for the automated work-
flow. For the manual workflow, we recorded an additional
phase called SEARCH, where a human operator manually
searched through the video stream for the replay. The TTA
for the manual workflow was the total time for the transition
from SEARCH, through ENCODING and PUBLISH, and
finally to COMPLETE.

The result of our experiment is shown in Figure 10. The
figure shows the average TTA for both the manual and auto-
mated workflows during the game. Each bar is broken down
by pipeline stage, showing where time was most spent on
average.

The results show a significant difference in average TTA
between the two workflows. The average TTA for the man-
ual workflow was 34.30 seconds, while the average TTA was
just 5.38 seconds for the automated workflow. By automat-
ing our workflow, we achieved an 84.3% reduction in av-
erage TTA. While encoding and publishing times remained
nearly constant in both workflows, most of the time savings
in the automated workflow resulted from the elimination of
the manual-search step.
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Figure 10: The time-to-app comparison of our manual
and automated workflows during the NBA Playoffs game
between the Chicago Bulls and the Brooklyn Nets on Sat-
urday, April 27, 2013.

6 Lessons Learned
In this section, we summarize some of the lessons that we
have learned in building and evolving our YinzCam in-venue
infrastructure over the course of three years.

• Don’t locate operations efforts in high-pressure en-
vironments. There should be some amount of phys-
ical separation between the operations team and the
field environment. Intense, high-pressure environments
are filled with distractions, which means that problem-
solving takes longer and resources are harder to access.
We accomplished this by migrating our operations ef-
forts (both people and infrastructure) to a single remote
location from where all of our venues can be managed
simultaneously.

• Take advantage of the cloud for short-term-CPU-
intensive or bandwidth-intensive processes. The
cloud’s pay-as-you-go model makes it well-suited for
short-term tasks. Instead of purchasing physical servers
that will mostly sit idle, we migrated these tasks to
the cloud to lower our operations costs. Also, cloud-
infrastructure providers have vast amounts of Internet
bandwidth available for bandwidth-intensive services
like video streaming. We leveraged Amazon EC2’s
bandwidth to provide our content to fans on cellular net-
works. While our out-of-stadium capabilities are out-
side the scope of this paper, our other work [10] also
demonstrates how the cloud is an ideal platform for our
usage profile (spiky loads on gamedays, mostly idle on
non-game-days).
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• Ensure that system administrators have remote ac-
cess to all systems. The costs of sending technicians
on-site for repairs can quickly add up. By allowing
administrators to fix problems remotely, many of these
costs can be eliminated. Our global VPN architecture
allows us to monitor all of our physical assets remotely,
providing insight into problems that need resolution. In
addition, having a technical contact at remote sites also
helps in case the system is not responding over the net-
work.

• Automate labor-intensive and error-prone manual-
efforts whenever possible. Automating such tasks
reduces human error and frees up staff to do other
work. Furthermore, automated tasks are easily repeat-
able across multiple systems. Our automated replay-
generation system is a clear case where we were able to
efficiency gains and cost reduction through automation.

• Use end-to-end monitoring of the user experience. It
is important to have insight not only into the system be-
havior, but also into the end-user’s experience. We ac-
complished this by ensuring that our operations staff is
equipped with smartphones that mimic the user experi-
ence inside the venue from a remote location. It should
be noted that there are some problems cannot be repro-
duced in this manner, e.g., low Wi-Fi signal strength in
seating locations.

• Allow system operators to manually override auto-
matic decisions. No system is perfect; automated sys-
tems will eventually make mistakes due to unforeseen
circumstances. Ensure that systems allow operators to
manually override automatic decisions. Our replay-
cutting dashboard allows human operators to compen-
sate for incorrectly-cut replays.

While Yinzcam’s architecture and internal details might be
application specific, we believe that these lessons are broadly
applicable to other systems. Specifically, our lessons apply
to systems that require the remote monitoring of geographi-
cally distributed sites, the separation of services at the edge
versus in remote data-centers, and the use of application-
specific automation to increase efficiency and lower costs,
wherever possible.
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Abstract 
 

Deploying a large-scale distributed ecosystem such as 
HBase/Hadoop in the cloud is complicated and error-prone. 
Multiple layers of largely independently evolving software 
are deployed across distributed nodes on third party 
infrastructures. In addition to software incompatibility and 
typical misconfiguration within each layer, many subtle and 
hard to diagnose errors happen due to misconfigurations 
across layers and nodes. These errors are difficult to 
diagnose because of scattered log management and lack of 
ecosystem-awareness in many diagnosis tools and 
processes.  
 
We report on some failure experiences in a real world 
deployment of HBase/Hadoop and propose some initial 
ideas for better trouble-shooting during deployment. We 
identify the following types of subtle errors and the 
corresponding challenges in trouble-shooting: 1) dealing 
with inconsistency among distributed logs, 2) 
distinguishing useful information from noisy logging, and 
3) probabilistic determination of root causes.  

1. Introduction 
 
With the maturing of cloud and Hadoop technologies, more 
and more organizations are deploying and using systems in 
the Hadoop ecosystem for various purposes.  Hadoop is an 
ecosystem that consists of multiple layers of largely 
independently evolving software and its deployment is 
across distributed nodes and different layers.  

Even for experienced operational professionals with limited 
experience with the Hadoop ecosystem, the deployment 
and use is highly error-prone and error diagnosis and root 
cause identification takes a significant amount of time.  

Traditionally, logs and error messages are important 
sources of information for error diagnosis. In a distributed 
system, logs are generated from multiple sources with 
different granularities and different syntax and semantics. 
Sophisticated techniques have been proposed to produce 
better logs or analyze existing logs to improve error 
diagnosis. However, there are a number of limitations of 
the existing approaches for the situation outlined above. 

Consider one of the error messages that we encountered in 

our experiments “java.net.ConnectException: Connection refused “. 
One existing approach is to correlate error messages with 
source code. Yet knowing where in the Java library this 
message was generated will not help determine the root 
cause. The cause of this error is, most likely, a 
misconfiguration but it is a misconfiguration that indicates 
inconsistency between multiple items in the ecosystem. 
Trouble shooting an error message such as this requires 
familiarity with the elements of the ecosystem and how 
they interact. This familiarity is primarily gained through 
experience, often painful. Furthermore, the messages 
leading up to this error message may be inconsistent or 
irrelevant. They are usually voluminous, however. 

Providing assistance to non-expert installers of a 
complicated eco-system such as HBase/Hadoop is the goal 
of the work we report on here. In this paper, we report 
some failure experiences in real world deployments of 
HBase/Hadoop. Specifically, we focus on three key 
challenges: 1) dealing with inconsistency among distributed 
logs, 2) distinguishing useful information from noisy 
logging, and 3) probabilistic determination of root causes. 

There are two assumptions about this work. First, it came 
out of observing and studying errors committed by non-
expert installers of Hadoop ecosystems. Our target is 
system administrators and non-experts in HBase/Hadoop. 
Second, we assume that the developers of such systems will 
not change the way they record logs significantly although 
we do hope they produce them with operators more in 
mind. Thus our initial solutions are around dealing with 
inconsistency and uncertainties with existing logs.  The 
case studies are all based on an Hadoop/HBase [3][5] 
cluster running on AWS EC2s[2]. 

The contributions of this paper include: 
1. Identification of different types of errors in Hadoop 
ecosystem deployment using real world cases and 
investigations into the root causes of these errors. The 
majority of errors can be classified into four types: 

• Operational errors such as missing/incorrect 
operations and missing artifacts. Errors introduced 
during restarting/shutting down nodes, artifacts (files 
and directories) not created, created with the wrong 
permission or mistakenly moved and disallowed 
operations due to inconsistent security environment are 
the major ones.  
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• Configuration errors include errors such as illegal, 
lexical, and syntax errors in standalone software 
systems and cross-systems/nodes inconsistency in an 
ecosystem.  

• Software errors include compatibility issues among 
different parts of an ecosystem (e.g. HBase and HDFS 
compatibility issues) and bugs.  

• Resource errors include resource unavailability or 
resource exhaustion, especially in cloud environment, 
that manifest themselves in highly uncertain ways and 
lead to system failures. 

The diagnosis of these errors and locating the true causes is 
more difficult in an ecosystem setting, which leads to our 
second contribution. 
2. Identified specific error diagnosis challenges in multi-
layer ecosystems deployed in distributed systems: 1) 
dealing with inconsistency among distributed logs, 2) 
distinguishing useful information from noisy logging, and 
3) probabilistic determination of root causes. These 
highlighted the gaps in the current approaches and lead to 
our third contribution. 
3. Introduced a new two-phase error diagnosis general 
framework for distributed software ecosystem from the 
operator (rather than the developer) perspective. This new 
approach attempts to remove some inconsistency and noise 
by combining phase-one local diagnosis with phase-two 
global diagnosis and produces a probability-ranked list of 
potential root causes. This simplifies the complexities of 
constructing correlations between logging information and 
root causes.  

2. Related Works 
 
In previous work, efforts have been placed into the 
improvement of logging mechanisms for providing more 
comprehensive system information to assist system 
management. For example, Apache Flume [2] aims to offer 
a scalable service for efficiently collecting, aggregating, 
and moving large amounts of log data in large-scale 
distributed computing environments. Similar logging 
systems include Facebook Scribe [9], Netflix Edda [13] and 
Chukwa [16], which are systems for aggregating real-time 
streams of log data from a large number of servers. These 
developments of logging systems provide a good basis for 
collecting up-to-date system information in complex 
distributed systems, but they do not have the capability to 
bridge the gap between logging information and error 
diagnosis. 
Another focus of research of using logging information to 
assist troubleshooting is to explore effective machine 
learning approaches for mining critical messages associated 
with  known problems. For example, Xu et. al. [21] studied 
the correlation between logs and source code. In [12], 
Nagaraj et. al. troubleshoot performance problems by using 
machine learning to compare system logging behaviors to 

infer associations between components and performance. In 
[11], Narasimhan and her team members studied the 
correlation of OS metrics for failure detection in distributed 
systems. In [24][25][26], Zhou’s research group studied the 
trace of logging information in source codes, and 
introduced a new logging mechanism to locate the position 
of bugs with more efficiency.  And in [15], Oliner et. al. 
studied the connections between heterogeneous logs and 
quantified the interaction between components using these 
logs. There is a general lack of ecosystem awareness in 
these tools and the ability to deal with log inconsistency 
and uncertainty as well as cross system incompatability. 
Misconfigurations are another significant issues leading to 
software system errors. Zhou and her colleagues conducted 
an empirical study over different types of 
misconfigurations and their effects on systems by studying 
several open source projects, including MySQL, Tomcat 
and etc. [23]. They focus on the misconfigurations of each 
individual system, while the correlation of configurations 
across systems, especially in a distributed environment, is 
ignored. Randy Katz and his colleagues [17] studied the 
connection between configuration and software source code 
to improve misconfiguration detection but did not cover the 
connection between configurations and logs, which is 
critical to operators.  
These existing works give a good basis for understanding 
some challenges in error diagnosis. But many studies are 
from the viewpoint of software developers rather than 
operators. They also did not consider issues around the 
connections among the logs and configurations at different 
layers and across different nodes.  

3. Case Study: HBase Cluster on Amazon 
EC2 
 
Our case study comes from a real world privacy research 
project where the goal is to process large amounts of 
anonymised information using different approaches to see 
if one can still infer identity from the information. Several 
sub-projects want to share a HBase/Hadoop cluster which 
is deployed in Amazon EC2. The operators and users of the 
cluster are IT-savvy researchers and system admins but not 
Hadoop or distributed system experts. Although Amazon 
provides an Elastic Map Reduce (EMR) system with 
Hadoop pre-installed, the different requirements of the sub-
projects led to a fresh deployment on EC2 virtual machines.   
 
An HBase/Hadoop cluster consists of Hadoop Distributed 
File System (HDFS) for distributed files storage, 
Zookeeper for distributed service coordination, and HBase 
for fast individual record lookups and updates in distributed 
files. Each node in an HBase cluster consists of multiple 
layers of software systems, shown as Figure 1 (a). Every 
layer must perform in a correct manner to ensure the 
communication across layers/nodes and overall system 
availability, as shown in Figure 1 (b).   
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The communication between nodes in a Hadoop ecosystem 
relies on SSH connections, so security, ports and protocols 
required by SSH must be available. Hadoop, Zookeeper 
and HBase rely on Java SDK. Updated versions of Java 
that are compatible are necessary. The Hadoop layer is the 
basis of an HBase cluster. This layer is controlled by HDFS 
and MapReduce [3]. The configurations over the 
Namenode and all Datanodes [3] must be correct, ensuring 
the communication and computation over this layer, so that 
clients of Hadoop can access HDFS or MapReduce 
services. (HBase does not need MapReduce, but 
applications of HBase may require MapReduce). 
Zookeeper performs a role of distributed service 
coordinator for HBase. Its responsibilities include tracking 
server failures and network partitions. Without Zookeeper, 
HBase is not operational. Based on these underlying 
distributed services, HBase requires communication 
between the HMaster and the Regional Servers [5] in the 
HBase layer. The full deployment and running of some of 
our small programs went through several false starts in a 
matter of weeks by different people independently. We 
asked the people to record their major errors, diagnosis 
experiences and root causes. 

  
(a) (b) 

Figure 1 Layers of software systems in Hadoop 
 

4. Logging Exceptions and Uncertainties in 
Determining Root Causes 
 
In Table 1, we list some key examples of logs and error 
messages collected in our Hadoop/HBase deployment 
process. The “Logging Exception” column records the error 
messages when the deployment process got interrupted. 
The “Possible Causes” column listed the possible causes 
and the relevant information that different operators 
mentally considered or physically examined during error 
diagnosis. For errors that are related to connection issues, 
we use Src and Dest to respectively represent the source 
and destination nodes.  

 
 

Table 1: Logging Exceptions and Potential Causes 
 
  Source Logging Exception Possible Causes: Required Information for Examination  
1 HBase/Had

oop  
“org.apache.hadoop.hdfs.server.datanode.DataNod
e: DataNode is shutting down: 
org.apache.hadoop.ipc.RemoteException: 
org.apache.hadoop.hdfs.protocol.UnregisteredData
nodeException” 

In the problematic DataNodes: 

• Instance	  is	  down:	  ping,	  ssh	  connection	  
• Access	  permission:	  check	  authentication	  keys,	  check	  ssh	  connection	  
• HDFS	  configuration:	  conf/slaves	  
• HDFS	  missing	  components:	  check	  the	  datanode	  setting	  and	  directories	  in	  hdfs	  

2 Zookeeper 
 

“java.net.UnknownHostException at 
org.apache.zookeeper.ZooKeeper.<init>(ZooKeepe
r.java:445)” 

In Src and Dest nodes: 
• DSN:	  DSN	  configuration	  and	  testing	  
• Network	  connection:	  ssh	  testing	  
• Zookeeper	  connection:	  JPS	  and	  logging	  messages	  in	  zoo.out	  
• Zookeeper	  configuration:	  zoo.cfg	  
• Zookeeper	  status:	  processes	  (PID	  and	  JPS)	  
• Cross-‐node	  configuration	  consistency	  

3  HDFS/ 
MapReduce
/ HBase/ 
Zookeeper 

“java.net.ConnectException: Connection refused “ In Src and Dest: 
• Network	  connection:	  ping	  IPs,	  ping	  hostnames	  and	  check	  ssh	  connection	  
• Security	  setting:	  check	  ssh	  connection	  and	  check	  authentication	  keys	  
• Hostname/IP/Ports	  configuration:	  check	  configuration	  files,	  netstat	  and	  lsof	  
• Software	  status:	  check	  processes	  
• Software	  compatibility:	  detect	  and	  check	  system	  and	  library	  versions	  
• Cross-‐layer	  configuration	  consistency	  
• Cross-‐node	  configuration	  consistency	  

4   HBase/Had
oop 

“org.apache.hadoop.hdfs.server.namenode.NameN
ode: java.lang.IllegalArgumentExcepti 
on: Does not contain a valid host:port authority: 
file” 

In Src and Dest: 
• Missing	  configuration	  files:	  hostfile,	  hadoop	  configuraitons	  	  	  
• Security	  file	  missing	  or	  incorrect:	  connection	  permission,	  host/port	  permission	  
• Host	  and	  Port	  setting	  in	  HDFS:	  core-‐site.xml,	  hdfs-‐site.xml	  	  
• Host	  and	  Port	  settings	  in	  DNS	  
• Network	  host	  and	  port	  settings:	  netstat,	  lsof	  etc	  
• Cross-‐node	  configuration	  consistency	  

5 HBase/Had
oop 

“org.apache.hadoop.hdfs.server.common.Inconsiste
ntFSStateException: Directory 

In the problematic nodes: 
• Missing	  files	  in	  HDFS	  file	  system:	  look	  for	  directory	  in	  hdfs	  
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/app/hadoop/tmp/dfs/name is in an inconsistent 
state: storage directory does not exist or is not 
accessible.” 

• Missing/Incorrect	  operations	  on	  HDFS:	  hdfs	  format	  	  
• Directory	  misconfiguration:	  core-‐site.xml	  

6 HBase/Had
oop 

“WARNorg.apache.hadoop.metrics2.impl.MetricsS
ystemImpl: Source name ugi already exists! 
ERRORorg.apache.hadoop.hdfs.server.datanode.D
ataNode: java.io.IOException: Incompatible 
namespaceIDs in /app/hadoop/tmp/dfs/data:” 

In the problematic NameNode and DataNode: 
• Misconfigurations	  on	  the	  hadoop:	  scan	  the	  name	  space	  setting	  in	  hadoop	  
• File	  System	  duplication:	  scan	  the	  hdfs	  file	  system	  	  
• Other	  nodes	  with	  the	  same	  name	  started:	  scan	  configurations	  and	  hostfiles	  
 

7 Zookeeper  “JMX enabled by default 
Using config: /home/ubuntu/zookeeper-
3.4.5/bin/../conf/zoo.cfg 
Error contacting service. It is probably not 
running.” 

In the problematic Nodes: 
• Misconfigurations	  on	  JAVA:	  Java	  version	  and	  Java	  Path	  
• Missing	  components	  in	  JAVA:	  Update	  Java	  version	  
• JAVA	  configurations	  in	  Zookeeper:	  JAVA_HOME	  Path	  
• Zookeeper	  configurations:	  configurations	  in	  zoo.cfg	  
• Zookeeper	  version	  problem:	  the	  compatibility	  of	  Zookeeper,	  JAVA	  and	  OS	  

8 Hadoop/Ma
pReduce 

 In deployment testing, “class is not found: 
maxtempreturemapper , and the job is not defined 
in the jar , when running map reduce jobs…” 

In the problematic Nodes: 
• Misconfiguration	  in	  Jobtracker:	  the	  path	  to	  the	  MapReduce	  Jar	  
• Misconfigurations	  in	  MapReduce:	  mapred-‐site.xml	  
• Class	  compiling	  by	  JAVA:	  the	  Java	  compiler	  
• The	  correctness	  of	  the	  Jar	  file:	  the	  source	  code	  of	  the	  MR	  application	  

9 HBase/Had
oop 

“ERROR 
org.apache.hadoop.security.UserGroupInformation: 
PriviledgedActionException as:ubuntu 
cause:java.io.IOException: File 
/app/hadoop/tmp/mapred/system/jobtracker.info 
could only be replicated to 0 nodes, instead of 1” 

In the problematic Nodes: 
• Security	  setting:	  RSA	  settings	  	  
• Directory	  configuration:	  scan	  configuration	  files	  core-‐site.xml	  
• HDFS	  files	  system	  directories:	  scan	  the	  Hadoop	  file	  system,	  run	  hadoop	  scripts,	  
or	  scan	  hadoop	  log	  	  

 
10 HBase/Had

oop 
“FATAL org.apache.hadoop.hdfs.StateChange: 
BLOCK* NameSystem.getDatanode … 
ERROR 
org.apache.hadoop.security.UserGroupInformation: 
PriviledgedActionException as:ubuntu 
cause:org.apache.hadoop.hdfs.protocol.Unregistere
dDatanodeException” 

In the problematic Nodes: 
• Hadoop	  misconfiguration:	  scan	  hadoop	  configuration	  files	  core-‐site.xml	  and	  
conf/slaves	  

• HDFS	  not	  formatted:	  scan	  hadoop	  file	  system,	  run	  hadoop	  scripts	  
• HBase	  Configurations:	  scan	  	  HBase	  configurations	  conf/hbase-‐site.xml	  
• Cross-‐layer	  configuration	  consistency:	  scan	  the	  configurations	  with	  
dependencies	  in	  HBase	  and	  Hadoop	  

• System	  security:	  test	  SSH	  conncetions	  
11 HBase/Had

oop 
“org.apache.hadoop.hbase.client.RetriesExhausted
Exception: Failed setting up proxy interface 

In the Src and Dest Nodes: 
• Hadoop	  status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  Hadoop	  commands	  	  
• Hadoop	  client	  and	  server	  configurations:	  the	  master	  name	  setting	  in	  hdfs	  	  
• Permission	  in	  the	  system:	  RSA	  and	  ssh	  connnections	  
• Cross-‐layer	  configuration	  consistency:	  HBase	  configurations	  is	  inconsistent	  to	  
the	  Hadoop	  configuraitons,	  e.g.,	  the	  ports	  and	  the	  names	  of	  file	  systems	  

12 HBass/Had
oop 

"WARN 
org.apache.hadoop.hdfs.server.datanode.DataNode: 
java.io.IOException: Too many open files at 
java.io.UnixFileSystem.createFileExclusively(Nati
ve Method) at 
java.io.File.createNewFile(File.java:883)  
 … 

In nodes used by HBase 
• configuration	  of	  HBase:	  maximum	  number	  of	  files	  setting	  
• Workload	  of	  HBase:	  under	  heavy	  work	  load	  
• Configuration	  of	  Hadoop:	  maximum	  number	  of	  files	  setting	  
• OS	  environment	  misconfiguration:	  e.g.	  default	  ulimit	  (user	  file	  limit)	  on	  most	  
unix	  systems	  insufficient	  

  
13  Hadoop “org.apache.hadoop.hdfs.DFSClient: DataStreamer 

Exception: 
org.apache.hadoop.ipc.RemoteException: 
java.io.IOException: File 
/app/hadoop/tmp/mapred/system/jobtracker.info 
could only be replicated to 0 nodes, instead of 3” 

In Src and Dest Nodes 
• Hadoop	  Status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  Hadoop	  commands	  
• MapReduce	  Status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  MapReduce	  commands	  
• Directory	  in	  Hadoop	  configurations:	  the	  number	  of	  replicas	  in	  hdfs-‐site.xml,	  the	  
number	  of	  slaves	  in	  conf/slaves	  

• Connection	  problems:	  e.g.	  node	  IP	  configurations	  
• HDFS	  file	  system:	  the	  directory	  does	  not	  exist	  in	  the	  HDFS	  	  
• Cross-‐node	  configuration	  consistency:	  the	  Hadoop	  states	  in	  each	  node	  

14  Zookeeper “org.apache.zookeeper.ClientCnxn: Session 
0x23d41f532090005 for server null, unexpected 
error, closing socket connection and attempting 
reconnect” 

In Src and Dest Nodes 
• Zookeeper	  Configurations:	  the	  clinet	  port,	  name	  of	  nodes	  etc.	  in	  zoo.cfg	  
• Network	  Configurations:	  the	  ssh	  connections	  to	  other	  nodes	  
• Security	  Configurations:	  the	  RSA	  settings	  
• Cross-‐node	  configuration	  consistency:	  the	  zookeeper	  configurations	  in	  each	  
node,	  the	  configuration	  over	  networks	  in	  each	  node	  

• States	  of	  Zookeeper:	  running,	  waiting	  or	  failed	  
15 HBase/Had

oop/Zookee
per 

“FATAL 
org.apache.hadoop.hbase.regionserver.HRegionSer
ver: ABORTING region server 
hbaseSlave1,60020,1362958856599: Unexpected 
exception during initialization, aborting 
org.apache.zookeeper.KeeperException$Connectio
nLossException: KeeperErrorCode = 

In Src and Dest Nodes 
• HBase	  configurations:	  the	  zookeeper	  setting	  in	  HBase,	  conf/hbase-‐site	  and	  
conf/hbase-‐env.sh,	  the	  authority	  to	  use	  Zookeeper	  from	  HBase	  

• The	  OS/Network	  problem	  on	  the	  nodes:	  the	  ssh	  connection	  and	  the	  
compatibility	  between	  JAVA,	  HBase	  and	  OS	  

• Zookeeper	  configurations:	  the	  Zookeeper	  availability	  
• Cross-‐layer	  configuration	  consistency:	  the	  ports,	  quorum	  and	  authority	  setup	  
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ConnectionLoss for /hbase/master 
 at 
org.apache.zookeeper.KeeperException.create(Kee
perException.java:99)” 

in	  zookeeper	  and	  HBase	  

 
From the operator experiences in the project, locating a root 
cause from a logging exception is very difficult. A logging 
exception could result from multiple causes while the 
connections to these causes are not obvious from an error 
message. For example, a logging 
“java.net.ConnectException: Connection refused”, shown 
in Figure 2, has at least 10 possible causes. And exceptions 
on different software (in the ecosystem) or on different 
nodes are sometimes inconsistent but related in a direct and 
indirect manner. It is an extremely exhausting search 
process to locate a root cause in a large-scale domain with 
highly coupled information and many uncertainties.  
 
In this study, we classify the error analysis into three 
layers: exception, source and cause. Exception is the error 
message returned in log files or console; source is defined 
as the component that originally leads to this exception 
message; and cause is the reason that the source got the 
exception.  And we classify errors into four groups: 
operations, configurations, software and resources. We use 
these classifications in our proposed approach to organize 
local diagnosis and a global diagnosis.  
 

 
Figure 2 Three layers of error diagnosis: exception-source-
cause 
 
Configuration errors 
Misconfigurations include legal ones with unintended 
effects and illegal ones (e.g. lexical, and syntax errors) that 
are commonly seen in standalone software systems [23]. 
We also include the cross-domain inconsistent 
configurations in such distributed ecosystems. The later one 
is more difficult to detect because all configurations must 
be taken as a whole for error examination. We give an 
example that caused issues in the project. 
 
Example 1.  HDFS directory used in HBase must be 
consistent with the Hadoop file system default name. In 
HBase, hbase-site.xml, the setting of hbase.rootdir: 

 

 
must be consistent with the setting of fs.default.name in 
Hadoop core-site.xml 

 
Mismatch of these configurations results in failures of 
HBase startup. For an enterprise HBase cluster deployment, 
such as CDH4, there are hundreds of options requiring 
customizable configurations in 20+ sub-systems [7][17]. 
These configurations are inter-correlated, but 
misconfigurations are hard to detect. 
 
Operation errors: 
Operation errors include missing operations and incorrect 
operations. Operation errors cause missing components and 
abnormal system behaviors, resulting in software failures.  
For example, HDFS initialization requires a newly 
formatted file system. Inconsistent File System State 
Exception shown below will return if this required 
operation was missing. The formatting is performed 
externally. The message is not obviously interpretable to 
lack of formatting.  
 
Example 2: 

 
 
Software errors 
Software errors came from software incompatibility and 
bugs. One instance is the incompatibility between Hadoop 
0.20.x version and HBase 0.90.2, resulting in potential data 
loss [14]. Another commonly seen failure due to system 
incompatibility is certain required Java libraries do not 
exist. Such case usually happens because of the 
incompatibility between Java and the OS, and so some 
required Java libraries are not installed.   Here are two 
examples of logging errors returned by Hadoop and 
Zookeeper installation in the project. However, both 
messages are not at all clear about the root causes and can 
lead operators to the wrong places. But after examining 
related logs in other layers, the root cause was located.  
 

<property> 
       <name>hbase.rootdir</name> 
       <value>hdfs://hbaseMaster:54310/hbase</value> 
 </property> 
 

<property> 
        <name>fs.default.name</name> 
        <value>hdfs://hbaseMaster: 54310/value>  
 </property> 

org.apache.hadoop.hdfs.server.common.InconsistentFSStateEx
ception: Directory /app/hadoop/tmp/dfs/name is in an 
inconsistent state: storage directory does not exist or is not 
accessible. 
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Example 3: JAVA problem in Hadoop: 

 
 
Example 4: JAVA problem in ZooKeeper: 

 
 
Resource errors 
Resource errors refer to resource unavailability occurring in 
the computing environment.  For example, limitation of 
disk I/O (or failure of SAN disks) could result in significant 
performance degradation in some nodes, resulting in some 
exceptions of timeout.  However, one key challenge is that 
many such resource errors are hidden in log files and not 
correlated with respective resource metrics. Only by 
looking at different logs from different layers of software in 
the ecosystem, can the root cause be identified.  
 

5. Discussion: Three Challenges to 
Troubleshoot Errors with Logs 
 
Logs guide error diagnosis. There are three challenges that 
should be addressed for achieving more accurate and 
efficient error diagnosis in distributed ecosystem. 
 
5.1 Dealing with inconsistency among logs 
 
Inconsistent loggings around states and events introduce 
significant issues to error diagnosis. Inconsistency may 
occur in a single log file, across multiple log files in 
different components. Inconsistency of logging information 
includes two types: inconsistent contexts and inconsistent 
timestamps.  
 
Taking a Hadoop ecosystem as an example, an ecosystem 
consists of a large number of interacting heterogeneous 
components. Each component has logging mechanism for 
capturing specific states and events, what messages are put 
into log files is often determined by the requirements of 
component itself with no global coordinator for managing 
these logging messages across components. The decisions 
of what states and events are put into the log file under 
what context are not the same in different components. 
When taking these logging messages across components as 
a whole for error diagnosis, missing, redundant and 
contradictory information may introduce context 
inconsistency.  
 
Another type of inconsistency comes from inconsistent 
timestamps in large-scale systems where network latency 

cannot be ignored. Information logging could be 
asynchronous as errors and other corresponding 
information are written into log files. This asynchronous 
logging contributes to risks of timing inconsistency, which 
may be misleading in error diagnosis and omit correlated 
events. Solutions to timing correlation problems exist such 
as NTP1  and Google Spanner [8] but these solutions are 
not currently implemented in our test stack. Again, we are 
attempting to deal with what is, rather than what should be. 
 
5.2 Distinguishing useful information from noisy 
logging 
 
Large-scale distributed systems are constantly producing a 
huge amount of logs for both developers and operators. 
Collecting all of them into a central system is often itself a 
significant challenges. Systems have emerged to create 
such centralized log collection, for example Scribe from 
Facebook, Flume from Apache, Logstash2  and Chukwa 
[16] .  
Due to the large amount of information available, error 
diagnosis is often very time-consuming whether it is done 
by humans querying the centralized log system or through 
machine learning systems across all the logs. Traditional 
error analysis algorithms could encounter scalability issues 
dealing with a large number of logging messages. Some 
scalable clusters for logging analysis were developed for 
addressing this issue [21][22]. But these solutions focus on 
offline analysis to identify source code bugs while 
operation issues often require online or nearline analysis 
putting significant challenge to the analysis infrastructure 
and algorithm. Thus, it is important to discard noise earlier 
and effectively for different types of errors at different 
times.  
In many cases, such as performance issues and connection 
problems, additional tests and associated logs are required 
for analysis. They are often time consuming if planned and 
done reactively through human operators. These additional 
tests should be incorporated into the error diagnosis tools 
and logging infrastructure so they are automatically carried 
out at certain stage of the error diagnosis or proactively 
done, adding more useful signals to the error diagnosis 
process.  
 
5.3 Probabilistic determination of root causes dealing 
with uncertain correlations  
 
In error diagnosis, correlation of logging events is critical 
for identifying the root causes. Many machine-learning 
techniques have been developed for exploring the 
correlated events in log files in order to construct more 
accurate and more comprehensive models for 
                                                                    
1 http://en.wikipedia.org/wiki/Network_Time_Protocol 
2 http://logstash.net/ 

Error msg: "java[13417:1203] Unable to load realm info from 
SCDynamicStore" when running any HDFS command 

JMX enabled by default 
Using config: /home/ubuntu/zookeeper3.4.5/bin/../conf/zoo.cfg 
Error contacting service. It is probably not running. 
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troubleshooting [11]. However, uncertainties in logs 
introduce significant challenges in determining root causes 
Uncertainties in log files are often caused by missing 
logging messages, inconsistent information and ambiguity 
of logging language (lexical and syntax). We classify the 
uncertainties into four types:  
 
Uncertainties Between Exceptions 
In distributed systems, an error occurring in one place often 
triggers a sequence of responses across a number of 
connected components. These responses may or may not 
introduce further exceptions at different components. 
However, simply mining exception messages from these 
distributed log files may not detect the connections among 
these exceptions. Known communications between 
components should be considered in correlating exceptions 
and comparing different root causes diagnosis at each 
component or node. 
 
Uncertainties Between Component States  
Accurate logging states and context help filter useless 
information and guides error diagnosis. They are important 
information for understanding component statuses and 
limiting the scope for searching the root cause to errors. 
Logging states could be fully coupled or fully independent, 
or with somehow indirect connections. But these dependent 
relationships among state logging are not described in log 
files. And missing and inconsistent states logging may 
further introduce uncertainties in the relationships between 
states.  Dependencies in an ecosystem must be taken into 
consideration when analysing state logs.  
 
Uncertainties Between Events  
In error diagnosis exploring the coherence of logging 
events is a critical task for tracking the change of system 
subject to errors, providing a basis for inferring the root 
cause from exceptions. A challenge for constructing event 
coherence is uncertainties lying in the relationships 
between logging events. These uncertainties destroy 
connections between information, losing data for modeling 
the sequence of system change subject to errors.  
 
Uncertainties Between States And Events  
In most cases, logging states and events must be considered 
at the same time for modeling the system behavior in terms 
of logging conditions. Ideally logging messages deliver 
details of events and of corresponding sates across this 
process. But this obviously is over optimistic. In most log 
files the connections between states and events contain 
uncertainties, which destroy the event-state mapping, 
creating a gap for finding the root causes from logging 
errors.  
 

6. A Two-Phase Error Diagnosis Framework 
 
The above challenges are the consequence of current 
logging mechanisms and overall designs, which are often 

out of the control of the users. So error diagnosis requires 
an effective approach that is capable of figuring out the 
most possible root causes for errors despite of the 
inconsistency, noise and uncertainty in logs. To achieve 
this goal in a large-scale distributed computing 
environment, we are working on two ideas. The first idea is 
to treat the operations as a set of explicit processes 
interacting with each other. We model and analyze these 
processes and track the their progression at runtime. We 
use the processes to connect seemingly independent events 
and states scattered in various logs and introduce “process 
context” for error diagnosis [27]. In this paper, we 
introduce the second idea, which proposes a two-phase 
error diagnosis framework for error diagnosis. The first-
phase error diagnosis is conducted at each distributed node 
with agents for local troubleshooting, and a second-phase is 
performed on a centralized server for global error diagnosis 
to compare the various local diagnoses and deal with node-
to-node errors. Unlike existing solutions that have a 
centralized database aggregating all logging information, in 
our approach information is highly filtered for the second-
phase diagnosis depending on the error types, environment 
and local diagnosis.  
 
A framework of this design is shown in Figure 3. The key 
is to let each node or log-file propose a set of potential 
causes for the errors (if there are logging exceptions in the 
file) and gather the states of the relevant components, then 
send these likely causes and component states to a 
centralized second-phase diagnosis for probability-ranked 
list of causes using a gossip algorithm [19]. The logging 
information that we consider in this framework includes log 
files from software components, e.g. Hadoop, Zookeeper 
and HBase, and historical information of resource 
components, which include records of resource 
(CPU/Memory) consumption, disk I/O, network 
throughput, and process states monitored by agent-based 
systems (e.g. JMX and Nagios in our environment). All of 
these are seen as log files of components in our approach.  
 

 
 

Figure 3: Architecture of the 2-phase error diagnosis 
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6.1 The first-phase error diagnosis 
 
The first-phase error diagnosis is conducted with agents 
located at each distributed node for identifying the errors in 
the components in the node. This process is described with 
Figure 4.  
 

 
 

Figure 4: The process of error diagnosis in the first-phase 
 
Inputs to an agent include log files of components and 
configuration files. An agent first summarizes each log file, 
which is a process to convert logging information into a 
standard format with consistent terms (lexical and syntax) 
for later identification. This operation is conducted in the 
stage of log simplification. For each summarized log file 
given by the log simplification, the agent uses a mapper, 
which is a small expert knowledge base responsible to 
deliver a set of likely causes in response to the logging 
exception. A mapper offers: a) a list of candidate causes 
that may contribute to the logging exceptions (which 
include ERROR and WARNING messages), denoted by 
Ce

r, standing for a cause r that may lead to an exception e 
in component C. Each cause may include a set of sub-
causes Ce’ 

r’, and b) the status of the component, denoted by 
Cs, which includes the status of domain name, ports, 
accounts, security, tractable actions for software 
components, and utilization and performance for resource 
components. Each Ce

r is associated with a weight w, whose 
initial value is 1. We define a tuple [Ce

r, w] to indicate this 
relationship. These proposed causes and monitored 
component statuses are considered as a whole by a gossip 
algorithm, updating the weight w of each Ce

r with a rule: 
when a cause Ce

r conflicts to a component status C’
s, the 

associate weight w is reduced by 1; and when a cause Ce
r is 

supported by another log file, the weight w is then 
increased by 1. This strategy reduces the number of 
correlated features (across logging messages) that are less 
related to errors, creating potential for handling complex 
problems in a large-scale systems. 
 
6.1.1 An Example 
The following is an example for troubleshooting cross-
system inconsistent configuration within an HBase cluster. 
Cross-system misconfiguration is hard to detect because it 
is difficult to trace exceptions across multiple systems. In 
an HBase node (with IP: 10.141.133.22, which is a master 
node in this cluster), it includes log files respectively from 
HBase, Hadoop, Zookeeper. When a log file from HBase 
returns an exception, shown as: 
 
2013-03-08 09:31:44,934 INFO org.apache.hadoop.ipc.Client: 
Retrying connect to server: hbaseMaster/10.141.133.22:9000. 

Already tried 9 time(s). 

2013-03-08 09:31:44,938 FATAL 
org.apache.hadoop.hbase.master.HMaster: Unhandled exception. 
Starting shutdown. 

java.net.ConnectException: Call to 
hbaseMaster/10.141.133.22:9000 failed on connection exception: 
java.net.ConnectException: Connection refused 
… 

ERROR org.apache.hadoop.hbase.master.HMasterCommandLine: 
Failed to start master 

,where hbaseMaster is a domain name defined in the 
configuration file. In the phase-one error diagnosis, this 
logging information is summarized as: 
HBaseMaster:9000 failed  
connection exception: hbaseMaster/10.141.133.22:9000 
The mapper takes this as input and returns a set of likely 
causes to the exception and gives the states of the 
component: 
 
1. Hadoop	  server:	  	  unavailable	  (Ce_HDavail:	  1)	  
2. Hadoop	  server:	  	  not	  accessible	  (Ce_HDaccess:1),	  whose	  

prerequisite:	  Cs_HDavail=true,	  and	  with	  sub	  causes:	  
a. domain	  name	  is	  unavailable	  (Ce_HDhbaseMaster:9000	  :1)	  
b. user	  account	  is	  unavailable	  (Ce_HDact	  :1)	  
c. security	  setting	  is	  unavailable	  (Ce_HDsec	  :1)	  

status: HBase HMaster: failed (Cs_HBseHMaster
avail = false).  

 
In the same node, the log file from Hadoop NameNode 
gives the information  
2013-03-08 09:23:02,362 INFO 
org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll 
FSImage from 10.141.133.22 

2013-03-08 09:23:02,362 INFO 
org.apache.hadoop.hdfs.server.namenode.FSNamesystem: 
Number of transactions: 0 Total time for transactions(ms): 
0Number of transactions batched in Syncs: 0 Number of syncs: 1 
SyncTimes(ms): 8 

 
Because there are no logging exceptions, no causes are 
proposed from this Hadoop log file. So it can give: 
Cs_HD

avail=true. And since no configurations regarding 
account and security are found in the configuration files, it 
gives Cs_HD

act =true and Cs_HD
sec =true. And it can be achieved 

from the summary of Hadoop log that: 
Cs_HD

hbaseMaste:54310=true, where hbaseMaste:54310 is the 
domain name of Hadoop.  
 
A combination of this information given by Mappers is 
used in the Gossip protocol for updating the weight 
associated with each proposed cause. Output is shown as 
below. The reasons are described in the bracket in the right-
hand side. 
 
1. [Ce_HD

avail  : 0] (Ce_HD
avail =false conflicts  Cs_HD

avail=true ) 
2. [Ce_HD

access: 1] (Cs_HD
avail=true, and no information directly 

related to Ce_HD
access) 

     a.[Ce_HD
hbaseMaster:9000: 1] (no information directly related to 

*
Configuration

Log 
Simplification

Log File of 
a 

Component

causes to 
exception

component 
status

gossip protocol causes with 
updated weightsMapper
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Ce_HD
hbaseMaster:9000) 

     b.[Ce_HD
act :0] (Ce_HD

act =false conflicts  Cs_HD
act=true ) 

     c.[Ce_HD
sec :0] (Ce_HD

sec =false conflicts  Cs_HD
sec=true ) 

 
 
The cause to this “java.net.ConnectException” is limited to 
the availability of domain name of hbaseMaster:9000 (cause 
2.a). Although this approach does not provide a 100% 
accurate error diagnosis, it shows the possibility of using 
limited information to sort out the most likely causes for a 
logging error in a complex computing environment with 
many connected systems. 
  
6.2 The second-phase error diagnosis 
 
The second-phase error diagnosis offers troubleshooting for 
the exceptions that may be across multiple nodes. This 
process sorts out the possibility of causes that are delivered 
by the agents in the first-phase error diagnosis.  
 
Each agent summaries the output of the first-phase error 
diagnosis into a message, which includes the likely causes 
with updated weights (if the weight is greater than zero), 
and the status of each component.   
 
6.2.1 An Example 
For example, the agent in the above node will deliver the 
second-phases error diagnosis a message with the 
information of: 
Agent ID: 10.141.133.22 
HBase Log: 
[Ce_HD

access: 1] 
[Ce_HD

ç:1] 
Cs_HBseHMaster

 avail = false, Cs_HBseHMaster
 act =true, Cs_HBseHMaster

 sec 
=true 
Hadoop Log: 
Cs_HD

avail=true, Cs_HD
hbaseMaste:54310=true, Cs_HD

 act =true, Cs_HD
 

sec=true 
Zookeeper Log: 
[Ce_ZK 

hbaseSlave3:3888 :1] 
Cs_ZK

avail=true, Cs_ZK
myID:1=follower, Cs_ZK

 act =true, Cs_ZK
 sec=true 

 
This message includes the information of Zookeeper. 
Because there is a WARN message given in the Zookeeper 
log file, shown as: 
Cannot open channel to 4 at election address 
hbaseSlave3/10.151.97.82:3888 
 
and the Zookeeper status has shown that this Zookeeper 
quorum is performing follower, a possible cause with 
weight is shown as [Ce_ZK 

hbaseSlave3:3888 :1]. This warning error 
message is related to anther Zookeeper quorum on: 
hbaseSlave3:3888. It is handled by the second-phase error 
diagnosis. 
 
For this troubleshooting, input information regarding this 
error for the second-phase error diagnosis includes:  
Agent ID: 10.141.133.22, prose error [Ce_ZK 

hbaseSlave3:3888 :1] 

Agent ID: 10.36.33.18, where the zookeeper quorum is selected as 
leader, propose error [Ce_ZK 

hbaseSlave3:3888 :1] 
Agent ID: 10.151.97.82, where locate the problematic zookeeper 
quorum hbaseSlave3:3888  
 
Because the Zookeeper status is found in the Agent ID: 
10.151.97.82, the weight of Ce_ZK 

hbaseSlave3:3888 is updated to  
[Ce_ZK 

hbaseSlave3:3888 :2]  
in the second-phase error diagnosis with the gossip protocol 
to find out the most likely cause to guide troubleshooting. It 
locates the issue on the zookeeper quorum on 10.151.97.82. 
And since no states of this Zookeeper quorum are returned, 
the focus of troubleshooting can be limited on: 
Network communication between nodes, and  
Configurations of the zookeeper quorum in Zookeeper and 
HBase 
 
This simple example shows that the 2-phase error diagnosis 
can use existing limited information to determine a list of 
ranked possible causes to logging errors dealing with 
uncertainty challenges we identified earlier. And the 
strategy is simple to implement as it uses an existing gossip 
algorithm to compare local diagnosis, which could be in 
turn based on past work and ad-hoc knowledge database, 
and it can handle cross-layer and cross-node errors.  
 

7.  Conclusions and Future Works 
 
Using a real world case study, we identified some difficult-
to-diagnosis errors committed by non-expert 
Hadoop/HBase users. We classified errors and documented 
the difficulties in error diagnosis, which led to three key 
challenges in ecosystem error diagnosis. We proposed a 
simple and scalable two-phased error diagnosis framework 
that only communicates the absolute necessary information 
for global diagnosis after local diagnosis.  We 
experimented and demonstrated the feasibility of the 
approach using a small set of common Hadoop ecosystem 
errors. We are currently implementing the full framework 
and performing large-scale experiments. 
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Abstract	  
High	  performance	  computing	  systems	  need	  a	  similarly	  large	  scale	  storage	  system	  in	  
order	  to	  manage	  the	  massive	  quantities	  of	  data	  that	  are	  produced.	  The	  unique	  
aspects	  of	  each	  customer’s	  site	  means	  that	  the	  on-‐site	  configuration	  and	  creation	  of	  
the	  filesystem	  will	  be	  unique.	  In	  this	  paper	  we	  will	  look	  at	  the	  installation	  of	  
multiple	  separate	  Lustre	  1.8.6	  filesystems	  attached	  to	  the	  Los	  Alamos	  National	  
Laboratory	  ACES	  systems	  and	  their	  management	  back-‐end.	  We	  will	  examine	  the	  
structure	  of	  the	  filesystem	  and	  the	  choices	  made	  during	  the	  installation	  and	  
configuration	  as	  well	  the	  obstacles	  that	  we	  encountered	  along	  the	  way	  and	  the	  
methods	  used	  to	  overcome	  them.	  
	  
1.	  Introduction	  
	  

Every	  high	  performance	  computing	  system	  requires	  an	  equally	  high	  
performance	  filesystem	  in	  order	  to	  properly	  manage	  the	  massive	  quantities	  of	  data	  
that	  is	  produced	  by	  the	  computations	  ongoing	  on	  the	  machine.	  The	  physical	  
installation	  of	  our	  system	  was	  performed	  by	  trained	  Cray	  hardware	  engineers.	  The	  
unique	  challenges	  of	  our	  installation	  arose	  with	  the	  software	  portion	  of	  the	  
installation.	  Software	  is	  usually	  the	  domain	  of	  the	  on-‐site	  system	  analyst	  team	  to	  
install	  and	  customize	  to	  their	  needs,	  and	  in	  this	  case	  Cray	  has	  permanent	  on-‐site	  
system	  analysts	  as	  part	  of	  that	  team	  providing	  the	  software	  expertise	  to	  install,	  test,	  
configure	  and	  operate	  the	  filesystem	  software.	  	  

The	  installation	  is	  designed	  to	  be	  built	  as	  an	  externally	  connected	  filesystem	  
that	  is	  mounted	  by	  the	  Cielo	  supercomputer[1],	  a	  Cray	  XE6	  system	  operated	  by	  the	  
Los	  Alamos	  National	  Labs,	  and	  one	  of	  their	  major	  HPC	  resources.	  	  Lustre	  was	  chosen	  
as	  a	  solution	  due	  to	  the	  experience	  that	  Cray	  has	  with	  integrating	  Lustre	  into	  their	  
computational	  environment,	  as	  well	  being	  able	  to	  provide	  extensive	  support	  for	  the	  
filesystem.	  	  

Lustre	  is	  a	  parallel	  distributed	  filesystem,	  consisting	  of	  a	  series	  of	  metadata	  
servers	  (MDS)	  which	  keep	  track	  of	  metadata	  objects,	  storage	  servers	  (OSS)	  which	  
manage	  data	  storage	  objects,	  and	  object	  storage	  targets	  (OST)	  which	  physically	  
store	  the	  data	  objects,	  arranged	  in	  a	  hierarchical	  format	  to	  allow	  the	  distribution	  of	  
data	  across	  many	  devices.	  Clients	  first	  contact	  the	  MDS	  to	  begin	  their	  transaction,	  
then	  communicate	  directly	  with	  the	  appropriate	  OSS	  nodes	  to	  read/write	  to	  an	  OST.	  
The	  installed	  filesystem	  is	  connected	  to	  the	  mainframe	  via	  an	  LNet	  (Lustre	  
Networking)	  network	  protocol	  which	  provides	  the	  communication	  infrastructure.	  
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The	  system	  uses	  specialized	  LNet	  router	  nodes	  to	  translate	  traffic	  between	  the	  Cray	  
Gemini	  network	  (the	  proprietary	  Cray	  interconnect)	  and	  Infiniband	  using	  the	  LNet	  
protocol.	  
	   In	  this	  paper	  we	  will	  explore	  the	  methods	  used	  to	  install,	  test,	  configure	  and	  
operate	  three	  Lustre	  1.8.6	  filesystems	  from	  the	  perspective	  of	  the	  permanent	  Cray	  
on-‐site	  system	  analyst.	  The	  filesystems	  discussed	  consists	  of	  two	  2PB	  systems,	  one	  
4PB	  system,	  and	  two	  350TB	  testbed	  systems.	  The	  PB	  filesystems	  are	  attached	  via	  
fibre-‐channel	  to	  12,	  12	  and	  24	  racks	  of	  disk	  arrays	  respectively,	  configured	  in	  a	  
RAID6	  8+2	  format.	  Management	  is	  by	  a	  single	  Dell	  rack-‐mount	  server	  providing	  
boot	  images	  and	  configuration	  management	  to	  the	  filesystem	  nodes.	  The	  focus	  will	  
remain	  on	  the	  Cielo	  portion	  of	  the	  installation,	  since	  many	  of	  the	  unique	  challenges	  
we	  encountered	  manifested	  within	  Cielo’s	  environment	  and	  scale.	  

	  
	  
	  
	  
2.	  System	  Capabilities	  	  &	  Overview	  
	  

The	  Cielo	  Lustre	  filesystem	  (dubbed	  an	  esFS	  or	  external	  service	  filesystem	  in	  
Cray	  parlance)	  is	  a	  96	  OSS,	  6	  MDS	  system	  connected	  to	  48	  storage	  racks	  with	  a	  total	  
storage	  capacity	  of	  8PB,	  managed	  by	  a	  single	  external	  service	  management	  server	  
(esMS).	  All	  of	  the	  blades	  (OSS,	  MDS	  and	  esMS)	  nodes	  are	  Dell	  R710	  blades.	  The	  
storage	  racks	  consist	  of	  	  128	  2TB	  hard	  drives	  apiece	  configured	  into	  an	  8+2	  RAID	  
controlled	  by	  a	  redundant	  LSI	  controller.	  The	  network	  routing	  on	  the	  Cray	  system	  
side	  is	  handled	  by	  104	  service	  nodes	  configured	  as	  LNet	  routers.	  The	  interconnect	  
between	  the	  storage	  racks	  and	  the	  Lustre	  servers	  is	  a	  fibre	  channel	  connection,	  and	  
between	  the	  Lustre	  servers	  and	  the	  Cielo	  system	  is	  an	  Infiniband	  network.	  The	  

Fig.	  1	  A	  simplified	  diagram	  of	  Cielo’s	  Lustre	  filesystem	  
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Infiniband	  network	  on	  Cielo	  makes	  use	  of	  two	  Director	  class	  Infiniband	  switches	  to	  
manage	  the	  network.	  The	  management	  network	  between	  the	  esMS	  and	  the	  OSS	  
nodes	  consists	  of	  basic	  1GigE	  Ethernet.	  
	   The	  sum	  of	  resources	  are	  then	  split	  into	  three	  different	  filesystems	  managed	  
by	  the	  single	  esMS	  blade:	  two	  2PB	  filesystems	  and	  one	  4PB	  filesystem.	  Each	  of	  the	  
two	  2PB	  filesystems	  are	  assigned	  12	  racks	  of	  disks,	  and	  the	  4PB	  filesystem	  is	  
assigned	  24	  racks.	  	  
	   The	  Infiniband	  network	  is	  shared	  between	  all	  three	  filesystems,	  and	  connects	  
the	  Lustre	  components	  to	  the	  compute	  portion	  via	  an	  LNet	  network	  managed	  by	  the	  
Cray	  LNet	  router	  nodes.	  The	  LNet	  routers	  are	  pooled	  together	  and	  shared	  by	  all	  
three	  filesystems	  instead	  of	  separating	  them	  into	  smaller	  groups.	  
	   The	  software	  stack	  consists	  of	  three	  separate	  portions.	  On	  the	  Cielo	  side,	  the	  
LNet	  routers	  use	  the	  Cray	  Linux	  Environment	  (CLE)	  OS	  customized	  with	  the	  
necessary	  LNet	  and	  Lustre	  kernel	  modules.	  The	  esMS	  uses	  a	  SLES11	  base	  OS.	  The	  
OSS	  and	  MDS	  nodes	  are	  managed	  using	  Bright	  Cluster	  Manager	  (BCM)	  software	  
running	  on	  the	  esMS.	  BCM	  is	  used	  to	  manage	  the	  different	  boot	  images	  and	  
configuration	  options	  for	  the	  OSS	  and	  MDS	  nodes,	  which	  PXE	  boot	  their	  OS.	  The	  OSS	  
and	  MDS	  nodes	  run	  a	  CentOS	  5.4	  base	  system	  customized	  by	  Cray	  with	  Lustre	  1.8.6	  
software.	  	  
	   The	  performance	  of	  the	  filesystem	  is	  measured	  across	  several	  dimensions,	  
and	  is	  described	  in	  detail	  in	  section	  3.4.	  	  
	  
3.	  Challenges	  
	  
3.1	  Initial	  Setup	  Challenges	  
	   The	  setup	  of	  the	  esFS	  system	  would	  be	  the	  responsibility	  of	  the	  Cray	  on-‐site	  
system	  engineers	  and	  system	  analysts	  to	  install,	  test,	  and	  operate	  the	  filesystems.	  
The	  first	  challenges	  manifested	  at	  the	  Cray	  factory	  where	  the	  initial	  test	  and	  
development	  systems	  would	  be	  constructed	  and	  configured	  before	  shipment.	  These	  
test	  systems	  would	  be	  the	  template	  for	  the	  larger	  Lustre	  filesystems,	  as	  well	  as	  
platforms	  for	  test	  and	  development.	  One	  of	  the	  site	  analysts	  travelled	  to	  the	  Cray	  
factory	  in	  order	  to	  participate	  in	  the	  construction	  and	  learn	  directly	  from	  the	  
engineers	  assembling	  the	  system.	  	  
	   The	  following	  elements	  were	  constructed	  at	  the	  factory	  for	  the	  test	  and	  
development	  system:	  OSS	  &	  MDS	  hardware	  configuration,	  Infiniband	  network,	  fiber	  
connections	  to	  disk	  racks,	  esMS	  hardware	  configuration,	  LUN	  (a	  type	  of	  storage	  
object)	  creation,	  esMS	  software	  stack,	  and	  the	  OSS	  &	  MDS	  software	  stack.	  The	  actual	  
Lustre	  filesystem	  was	  not	  created,	  and	  the	  LNet	  network	  that	  connects	  the	  Cray	  
compute	  hardware	  to	  the	  Lustre	  filesystem	  was	  also	  not	  assembled	  at	  the	  factory.	  
The	  security	  stance	  of	  the	  LANL	  site	  is	  such	  that	  it	  requires	  incoming	  systems	  to	  be	  
built	  up	  from	  bare	  metal,	  meaning	  that	  any	  assembly	  at	  the	  Cray	  factory	  would	  be	  
useful	  only	  for	  testing	  purposes.	  Thus	  it	  was	  critical	  for	  the	  on-‐site	  system	  analysts	  
to	  learn	  as	  much	  as	  possible	  from	  the	  Cray	  engineers.	  The	  task	  of	  building	  the	  entire	  
filesystem	  and	  its	  management	  node	  (the	  esMS)	  from	  the	  ground	  up	  would	  be	  their	  
responsibility.	  	  
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3.2	  Site	  Set-up	  Challenges	  	  
	   The	  first	  steps	  in	  bringing	  up	  the	  Lustre	  filesystems	  was	  to	  first	  build	  and	  
configure	  the	  esMS	  node	  which	  would	  provision	  and	  monitor	  the	  OSS	  and	  MDS	  
nodes.	  Despite	  the	  fact	  that	  the	  project	  was	  on	  schedule,	  there	  was	  significant	  
pressure	  to	  stand	  up	  the	  filesystem	  as	  quickly	  as	  possible	  and	  to	  not	  deviate	  from	  
the	  setup	  of	  the	  test	  &	  development	  system.	  However,	  there	  was	  a	  key	  critical	  
difference	  between	  the	  test	  &	  development	  system	  and	  the	  full-‐scale	  production	  
filesystem:	  the	  full-‐scale	  system	  was	  meant	  to	  have	  a	  backup	  esMS	  node	  with	  
automatic	  failover	  configured.	  The	  test	  and	  development	  system	  had	  no	  such	  esMS	  
backup	  system	  configured.	  The	  consequence	  was	  that	  the	  full-‐scale	  system	  was	  
initially	  configured	  with	  only	  a	  single	  esMS	  node	  instead	  of	  the	  intended	  (and	  
required	  by	  contract)	  primary/secondary	  esMS	  configuration.	  Cray	  documentation	  
for	  adding	  a	  secondary	  esMS	  to	  an	  already	  configured	  and	  running	  single	  esMS	  
didn’t	  exist.	  We	  would	  be	  the	  first	  site	  to	  execute	  this	  task.	  
	   Building	  a	  single	  esMS	  was	  a	  straightforward	  procedure.	  It	  uses	  the	  SLES11	  
operating	  system	  as	  its	  basis,	  modified	  to	  add	  Cray	  Lustre	  control	  packages.	  BCM	  
uses	  its	  own	  installation	  tool	  that	  requires	  inputting	  necessary	  configuration	  
options	  (network,	  etc.)	  and	  allowing	  it	  to	  set	  up	  the	  entire	  OS	  under	  BCM	  
management.	  Custom	  Cray	  scripts	  for	  monitoring	  and	  managing	  automatic	  failover	  
were	  also	  installed	  at	  this	  time.	  	  	  
	   Once	  the	  esMS	  was	  fully	  built	  and	  configured	  it	  was	  time	  to	  power	  on	  and	  set	  
up	  the	  OSS	  and	  MDS	  nodes.	  During	  power-‐up	  each	  of	  the	  physical	  nodes	  were	  
checked	  in	  order	  to	  confirm	  that	  the	  BIOS	  settings	  had	  been	  set	  properly	  at	  the	  
factory.	  A	  small	  number	  of	  nodes	  had	  been	  overlooked	  and	  needed	  to	  be	  
reconfigured	  on-‐site.	  	  Finally,	  the	  MDS/OSS	  node	  boot	  images	  were	  	  configured	  into	  
BCM.	  
	  
3.3	  Configuration	  Challenges	  

We	  decided	  that	  we	  would	  use	  the	  configuration	  from	  another	  Cray	  
installation	  site,	  the	  National	  Energy	  Research	  Scientific	  Computing	  (NERSC)	  Center,	  
as	  the	  basis	  of	  our	  own	  configuration.	  This	  met	  with	  a	  few	  obstacles	  from	  a	  
managerial	  perspective.	  The	  desire	  to	  have	  as	  safe	  and	  stable	  system	  as	  possible	  
meant	  that	  there	  was	  a	  great	  deal	  of	  pushback	  against	  any	  sort	  of	  deviation	  from	  a	  
known	  quantity,	  namely	  the	  NERSC	  configuration.	  However,	  we	  faced	  a	  few	  issues	  
that	  made	  duplicating	  NERSC	  unreasonable.	  First,	  the	  scale	  of	  the	  LANL	  filesystem	  
was	  much	  larger	  than	  NERSC.	  Second,	  the	  LNet	  and	  Infiniband	  network	  at	  LANL	  
used	  a	  very	  different	  set	  of	  hardware.	  Finally	  the	  software	  stack	  at	  LANL,	  unlike	  
NERSC,	  was	  productized	  into	  a	  cohesive	  package	  managed	  by	  BCM.	  
	  
3.4	  Testing	  &	  Acceptance	  Challenges	  

The	  testing	  plan	  for	  the	  Lustre	  filesystem	  measured	  the	  baseline	  hardware	  
performance,	  the	  ability	  to	  meet	  a	  minimum	  level	  of	  filesystem	  performance,	  and	  
the	  ability	  of	  the	  system	  to	  ride	  through	  an	  interruption	  of	  one	  or	  more	  of	  the	  
hardware	  components.	  Each	  Infiniband	  link	  between	  MDS/OSS	  nodes	  and	  LNet	  
nodes	  were	  tested	  at	  ~2.7GB/s	  average	  per	  link.	  Aggregated,	  the	  system	  saw	  a	  
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maximum	  raw	  throughput	  of	  ~70.3GB/s	  between	  52	  LNet	  and	  48	  OSS	  nodes.	  Under	  
load,	  the	  system	  saw	  a	  peak	  of	  77.4GB/s	  for	  a	  2k	  core	  job	  (65.5GB/s	  required).	  
Metadata	  operations	  showed	  ~22k-‐24k	  creates/11k-‐18k	  deletes	  per	  second	  (10k/s	  
each	  required)	  when	  each	  core	  operated	  on	  its	  own	  file.	  All	  performance	  tests	  
passed	  with	  only	  minor	  adjustments	  to	  meet	  requirements.	  	  	  

The	  fault	  injection	  tests	  tested	  for	  events	  such	  as	  a	  power	  failure,	  node	  crash,	  
or	  network	  failure.	  The	  deliverables	  required	  automatic	  component	  failover	  and	  
stated	  that	  the	  system	  would	  be	  able	  to	  automatically	  failover	  an	  ailing	  component	  
in	  the	  following	  circumstances:	  A	  normal	  shutdown	  of	  an	  LSI	  Controller,	  MDS,	  or	  
OSS	  node;	  An	  unexpected	  power	  failure	  of	  an	  LSI	  Controller,	  MDS,	  or	  OSS	  node;	  A	  
loss	  of	  an	  LNet	  router;	  The	  loss	  of	  network	  connectivity	  between	  the	  Infiniband	  
switch	  and	  an	  MDS,	  OSS,	  or	  LNet	  router;	  Loss	  of	  one	  or	  both	  fibre	  channel	  
connection	  between	  an	  OSS	  node	  and	  an	  LSI	  controller.	  Of	  these	  tests,	  all	  had	  to	  
either	  continue	  to	  serve	  data	  albeit	  at	  a	  degraded	  performance,	  or	  signal	  an	  IO	  error	  
that	  would	  unambiguously	  indicate	  that	  IO	  was	  the	  fault	  of	  the	  job	  failing.	  

Tested	  failures	  degraded	  performance	  during	  recovery	  from	  no	  measurable	  
impact	  (LNet	  router	  failure)	  to	  as	  much	  as	  87%	  of	  peak,	  and/or	  caused	  an	  
acceptable	  IO	  error	  (OSS,	  LSI	  Controller,	  etc.).	  Lustre	  attempts	  to	  rescue	  transactions	  
from	  the	  failed	  components,	  and	  transactions	  that	  don’t	  recover	  are	  discarded	  to	  
avoid	  storing	  corrupted	  data.	  After	  recovery,	  performance	  degrades	  roughly	  
proportional	  to	  the	  amount	  of	  filesystem	  resources	  made	  unavailable.	  	  
	   	  Despite	  these	  requirements,	  the	  monitoring	  and	  failover	  scripts	  were	  
released	  to	  the	  customer	  capable	  only	  of	  automatically	  failing	  over	  a	  node	  if	  network	  
connectivity	  was	  lost,	  or	  if	  the	  node	  panic’d	  and	  froze	  but	  remained	  powered	  on.	  

The	  orderly	  shutdowns	  of	  the	  various	  hardware	  components	  were	  not	  
designed	  to	  initiate	  a	  failover	  on	  the	  assumption	  that	  if	  an	  orderly	  shutdown	  were	  
taking	  place,	  that	  the	  responsible	  administrator	  would	  have	  either	  quiesced	  the	  
system	  or	  manually	  instigated	  a	  failover	  in	  order	  to	  power	  off	  a	  node.	  A	  node	  simply	  
being	  “off”	  meant	  that	  the	  monitoring	  system	  would	  not	  know	  if	  it	  had	  already	  
performed	  a	  failover	  (A	  failing	  node	  is	  “STONITHed”,	  or	  powered	  off,	  in	  order	  to	  
ensure	  that	  it	  will	  not	  interfere	  with	  its	  backup.)	  or	  if	  that	  node	  had	  freshly	  failed.	  
Erring	  towards	  safety,	  the	  monitoring	  software	  would	  not	  initiate	  a	  failover	  for	  a	  
node	  that	  was	  simply	  turned	  off.	  This	  behavior	  also	  affected	  how	  the	  system	  
responded	  to	  an	  unexpected	  power	  loss,	  namely	  that	  it	  did	  not	  initiate	  a	  failover.	  	  

Other	  fault	  injection	  tests	  were	  never	  designed	  to	  initiate	  an	  automatic	  
failover,	  or	  even	  interrupt	  operations	  of	  the	  filesystem.	  The	  LSI	  controllers	  used	  a	  
shared	  power	  supply	  that	  was	  internally	  redundant	  and	  powered	  pairs	  of	  
controllers,	  so	  a	  power	  loss	  would	  always	  affect	  both,	  but	  never	  a	  single	  controller.	  
Fibre-‐channel	  connections	  were	  not	  designed	  to	  be	  monitored	  by	  the	  esMS	  or	  the	  
OSS/MDS	  nodes,	  and	  their	  redundant	  connection	  meant	  that	  losing	  one	  connection	  
meant	  there	  were	  still	  routes	  available	  to	  connect	  to	  the	  disk	  racks.	  The	  fault	  
injection	  testing	  proved	  as	  much,	  with	  minimal	  impact	  on	  performance.	  

The	  LNet	  network	  had	  another	  set	  of	  challenges	  that	  only	  arose	  at	  scale.	  The	  
LNet	  network	  check	  that	  ran	  on	  each	  of	  the	  OSS	  and	  MDS	  nodes	  would	  ping	  a	  
randomly	  chosen	  peer	  somewhere	  out	  on	  the	  Infiniband	  network,	  and	  if	  that	  ping	  
were	  successful	  it	  would	  report	  back	  that	  it	  had	  passed.	  If	  that	  ping	  timed	  out,	  then	  
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it	  would	  report	  a	  failure	  and	  the	  esMS	  would	  initiate	  a	  failover.	  Internally,	  BCM	  
executes	  these	  checks	  serially	  every	  few	  minutes.	  At	  scale,	  we	  found	  ourselves	  
monitoring	  96	  nodes	  spread	  across	  three	  different	  filesystems.	  The	  check	  executed	  
every	  60s,	  but	  it	  took	  as	  much	  as	  90s	  for	  a	  failed	  node	  to	  report	  that	  its	  ping	  had	  
timed	  out	  and	  failed.	  Due	  to	  the	  serial	  nature	  of	  BCM’s	  testing,	  this	  meant	  that	  if	  a	  
node	  near	  the	  end	  of	  the	  list	  of	  nodes	  to	  check	  were	  to	  fail,	  the	  timeout	  for	  the	  ping	  
(and	  thus	  the	  affirmative	  “failed”	  condition)	  would	  not	  complete	  and	  notify	  the	  
esMS.	  The	  esMS	  assumes	  a	  ‘pass’	  if	  not	  explicitly	  notified	  that	  a	  node	  had	  failed,	  and	  
would	  have	  already	  moved	  on	  to	  the	  next	  iteration	  of	  checks	  and	  discarded	  the	  
results	  of	  the	  previous	  pass.	  We	  needed	  to	  change	  the	  behavior	  of	  the	  monitoring	  
scripts	  dramatically.	  	  

The	  solutions	  to	  our	  mismatched	  expectations	  of	  our	  monitoring	  and	  failover	  
scripts	  are	  described	  in	  section	  5	  below.	  It	  caught	  the	  management	  team	  off	  guard,	  
and	  required	  close	  collaboration	  between	  the	  developers	  and	  field	  personnel	  to	  
effect	  a	  solution	  in	  the	  field.	  
	  
3.5	  Operational	  Challenges	  
	   Few	  operational	  challenges	  arose.	  The	  stability	  of	  the	  filesystem	  was	  such	  
that	  its	  popularity	  among	  the	  users	  rose	  to	  the	  point	  of	  the	  system	  beginning	  to	  
show	  signs	  of	  strain	  due	  to	  heavy	  load.	  Despite	  users	  doing	  their	  utmost	  to	  eke	  every	  
last	  bit	  of	  performance	  out	  of	  the	  filesystem,	  it	  remained,	  and	  still	  remains,	  
incredibly	  stable.	  
	   Once	  the	  system	  was	  up	  and	  tested	  and	  released	  to	  users,	  we	  began	  to	  see	  a	  
series	  of	  false-‐positive	  events	  triggered	  by	  the	  network	  checks	  in	  our	  monitoring	  
scripts.	  The	  first	  check	  to	  throw	  out	  false-‐positives	  and	  cause	  unintended	  automatic	  
failovers	  was	  the	  LNet	  network	  connectivity	  check.	  We	  had	  already	  tinkered	  with	  
the	  timing	  during	  the	  initial	  fault	  injection	  testing	  to	  validate	  the	  check.	  Now	  the	  
check	  was	  too	  sensitive.	  Lustre	  uses	  only	  one	  transaction	  credit	  allocated	  to	  pings,	  
and	  prioritizes	  that	  very	  low.	  High	  traffic	  on	  the	  system	  meant	  that	  a	  ping	  could	  
easily	  end	  up	  timing	  out	  if	  its	  wait	  in	  the	  queue	  took	  longer	  than	  90	  seconds	  (the	  test	  
timeout	  parameter)	  to	  complete.	  Subsequent	  LNet	  pings	  could	  and	  would	  succeed,	  
but	  the	  health	  check	  relied	  on	  a	  single	  ping	  to	  initiate	  a	  failover	  event.	  
	   Even	  checks	  such	  as	  TCP	  ping	  and	  power	  status	  checks	  began	  to	  see	  events	  
such	  as	  these	  as	  the	  system	  load	  increased	  and	  the	  responsiveness	  of	  the	  OSS	  and	  
MDS	  nodes	  became	  sluggish.	  Since	  all	  of	  these	  checks	  relied	  on	  a	  single	  ping	  or	  poll,	  
it	  became	  more	  and	  more	  likely	  that	  one	  of	  those	  checks	  would	  time	  out.	  Without	  
retries	  of	  these	  checks,	  a	  healthy	  yet	  busy	  node	  would	  be	  considered	  unhealthy.	  
Again,	  the	  design	  of	  our	  health	  checks	  had	  serious	  flaws.	  
	  
4.	  Resolutions	  
	  
4.1	  Initial	  Set-up	  
	   Education	  of	  the	  site	  system	  analysts	  was	  critical	  in	  this	  phase	  in	  order	  to	  
ensure	  that	  the	  proper	  expertise	  would	  be	  on-‐hand	  when	  the	  system	  would	  be	  built	  
on-‐site.	  This	  was	  accomplished	  by	  sending	  one	  of	  the	  site	  analysts	  to	  the	  Cray	  
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factory	  for	  a	  week	  to	  shadow	  the	  system	  construction	  and	  spend	  face-‐to-‐face	  time	  
with	  the	  developers.	  By	  having	  the	  site	  analyst	  in	  the	  factory,	  that	  analyst	  was	  also	  
able	  to	  get	  hands-‐on	  experience	  with	  building	  up	  the	  filesystem	  while	  having	  the	  
Cray	  development	  team	  on	  hand	  to	  instruct	  them	  through	  the	  process.	  Valuable	  to	  
the	  developers	  was	  the	  ability	  to	  closely	  watch	  how	  an	  admin	  who	  had	  not	  been	  
involved	  in	  the	  design	  of	  the	  system	  would	  follow	  the	  installation	  documentation,	  
and	  thus	  improve	  the	  quality	  of	  the	  documentation.	  
	  
4.2	  Site	  set-up	  
	   Arguably	  the	  biggest	  obstacle	  during	  the	  set-‐up	  was	  the	  installation	  of	  the	  
backup	  esMS.	  Lacking	  Cray	  documentation,	  the	  admins	  performing	  the	  installation	  
found	  themselves	  in	  a	  difficult	  position.	  The	  solution	  was	  to	  bring	  in	  direct	  
assistance	  from	  the	  developers	  to	  bypass	  and	  fix	  issues	  in	  the	  procedure	  that	  
prevented	  moving	  forward.	  Little	  troubleshooting	  was	  needed,	  as	  this	  was	  fresh	  
ground.	  The	  process	  involved	  repartitioning	  an	  in-‐use	  disk	  to	  make	  partitions	  that	  
would	  be	  mounted	  by	  the	  backup	  esMS,	  then	  migrating	  data	  to	  the	  new	  partitions.	  
Next,	  the	  backup	  esMS	  would	  mount	  those	  portions	  and	  make	  an	  initial	  copy.	  From	  
there,	  the	  backup	  esMS	  would	  monitor	  the	  primary	  for	  failure,	  and	  make	  periodic	  
incremental	  updates	  from	  the	  primary.	  The	  process	  of	  adding	  the	  backup	  esMS	  
highlighted	  many	  weaknesses	  in	  the	  documentation	  and	  initial	  setup	  configuration	  
that	  needed	  clarification	  and	  correction,	  and	  instigated	  the	  improvements	  to	  the	  
Cray	  documentation.	  Overall,	  despite	  the	  problems	  it	  introduced,	  the	  delayed	  
inclusion	  of	  the	  backup	  esMS	  improved	  the	  quality	  of	  the	  entire	  esFS	  installation	  
procedure,	  which	  can	  then	  be	  shared	  with	  other	  Cray	  sites.	  
	  
4.3	  Configuration	  
	   The	  NERSC	  configuration	  served	  as	  an	  excellent	  starting	  point	  for	  the	  initial	  
setup	  and	  configuration.	  The	  main	  resolution	  to	  this	  particular	  point	  of	  the	  
installation	  was	  to	  make	  effective	  arguments	  for	  the	  necessity	  of	  changing	  the	  
configuration	  to	  better	  match	  our	  hardware.	  The	  integrated	  software	  stack	  meant	  
that	  configuration	  for	  the	  OSS	  and	  MDS	  nodes	  could	  be	  managed	  from	  a	  central	  
location.	  Scaling	  was	  larger,	  so	  certain	  parameters	  in	  the	  LNet	  configuration	  in	  
terms	  of	  numbers	  of	  transfer	  credits	  and	  length	  of	  timeouts	  had	  to	  be	  adjusted	  
upwards	  in	  order	  to	  handle	  the	  additional	  load.	  Finally,	  the	  biggest	  difference	  was	  
the	  configuration	  of	  the	  LNet	  routers	  into	  a	  single	  pool	  shared	  between	  all	  three	  
filesystems	  rather	  than	  dividing	  them	  up	  into	  separate	  networks	  or	  even	  down	  to	  a	  
fine-‐grained	  routing.	  Pooling	  the	  routers	  has	  potential	  loss	  of	  performance	  due	  to	  
needing	  to	  switch	  traffic,	  and	  risks	  of	  instabilities	  if	  an	  LNet	  router	  fails	  
spectacularly.	  However,	  the	  Director-‐class	  Infiniband	  switches	  provide	  plenty	  of	  
horsepower	  to	  allow	  a	  pool	  configuration	  to	  work	  without	  a	  performance	  impact.	  
With	  a	  pool	  of	  LNet	  routers,	  the	  set-‐up	  and	  configuration	  was	  much	  simpler	  (simply	  
place	  them	  all	  into	  the	  same	  network),	  and	  it	  provided	  a	  great	  deal	  of	  redundancy	  in	  
that	  if	  any	  LNet	  router	  failed,	  the	  traffic	  that	  router	  was	  serving	  could	  easily	  be	  sent	  
through	  any	  other	  router	  on	  the	  network.	  
	  
4.4	  Testing	  &	  Acceptance	  
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	   The	  Cray	  development	  team	  quickly	  provided	  an	  updated	  rpm	  that	  enabled	  
failover	  for	  the	  contractually	  required	  failover	  triggers.	  The	  scripts	  were	  in	  fact	  
already	  capable	  of	  performing	  failover	  actions	  in	  all	  required	  cases,	  but	  the	  tests	  
simply	  had	  not	  yet	  included	  the	  code	  to	  initiate	  those	  actions.	  The	  updated	  RPM	  
simply	  empowered	  those	  tests	  to	  carry	  out	  failovers.	  	  
	   In-‐field	  rewrites	  of	  the	  monitoring	  and	  failover	  scripts	  were	  the	  solution	  to	  
the	  problem	  of	  LNet	  network	  checks	  not	  completing	  and	  bypassing	  themselves.	  We	  
first	  monitored	  the	  return	  values	  from	  the	  nodes.	  Noting	  that	  nodes	  at	  the	  end	  of	  the	  
node	  list	  weren’t	  reporting	  back	  before	  a	  new	  health	  check	  started	  we	  then	  
compared	  timing	  values.	  Noting	  the	  mismatch	  between	  LNet	  ping	  timeout,	  we	  then	  
wrote	  into	  the	  check	  script	  a	  progressive	  timeout	  logic	  that	  checked	  to	  see	  if	  the	  test	  
passed	  immediately,	  within	  5	  seconds,	  10	  seconds,	  etc.	  until	  ultimately	  the	  test	  
failed	  and	  a	  failure	  was	  reported.	  The	  code	  sped	  up	  the	  checks	  on	  a	  healthy	  system,	  
and	  left	  plenty	  of	  time	  available	  for	  a	  failed	  check	  to	  fully	  timeout.	  The	  modifications	  
were	  fed	  back	  to	  the	  development	  team,	  who	  integrated	  them	  into	  the	  code	  base.	  
However,	  the	  new	  code	  did	  not	  yet	  address	  the	  issue	  of	  an	  otherwise	  healthy	  but	  
heavily	  loaded	  system	  from	  failing	  a	  single	  lnet	  ping	  check	  when	  a	  re-‐try	  would	  
confirm	  that	  the	  lnet	  network	  is	  perfectly	  functional.	  
	   Poorly	  understood	  fault	  injection	  tests,	  namely	  the	  LSI	  controller	  tests,	  were	  
solved	  through	  frank	  and	  earnest	  discussions	  the	  engineers	  and	  management	  staff.	  
The	  previously	  existing	  trust	  between	  the	  two	  parties	  made	  it	  easy	  to	  explain	  the	  
technical	  realities,	  and	  agree	  on	  the	  necessary	  reinterpretation	  of	  the	  results.	  All	  the	  
people	  working	  were	  fully	  invested	  in	  putting	  forth	  their	  very	  best	  work.	  
	  	  
4.5	  Operations	  
	   Once	  again,	  in-‐field	  changes	  to	  the	  monitoring	  scripts	  were	  necessary	  to	  
check	  the	  status	  of	  the	  networks	  without	  failing	  due	  to	  a	  mere	  single	  TCP	  ping,	  or	  
LNet	  ping,	  timing	  out.	  We	  were	  able	  to	  discover	  the	  false	  positives	  examining	  
internal	  Lustre	  stats,	  and	  discovering	  that	  the	  system	  would	  periodically	  
oversubscribe	  its	  available	  credits,	  including	  the	  ping	  credit.	  The	  Cray	  development	  
team	  took	  a	  proactive	  approach,	  and	  added	  into	  the	  code	  base	  retries	  for	  all	  
appropriate	  health	  checks.	  The	  system	  analysts	  implemented	  a	  field	  fix	  of	  disabling	  
active	  failure	  in	  favor	  of	  notifying	  via	  pager	  the	  analysts	  in	  the	  event	  of	  specific	  
health	  checks	  failing.	  They	  kept	  field	  fixes	  in	  place	  while	  waiting	  for	  the	  next	  
polished	  version	  of	  the	  esFS	  monitoring	  scripts	  were	  released.	  
	  
5.	  Lessons	  Learned	  
	  
Recognize	  and	  react	  to	  the	  differences	  between	  the	  test	  and	  production	  
systems.	  –	  The	  difficulty	  of	  adding	  the	  backup	  esMS	  after	  the	  full	  installation	  was	  a	  
troublesome	  and	  dangerous	  procedure	  that	  was	  forced	  by	  prioritizing	  the	  deadline	  
and	  slavishly	  sticking	  to	  mirroring	  the	  test	  &	  development	  system.	  If	  the	  production	  
and	  test	  systems	  will	  differ	  by	  design,	  prepare	  for	  the	  installation	  plan	  between	  the	  
two	  to	  differ	  as	  well.	  
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Documentation	  of	  the	  underlying	  structure	  is	  incredibly	  valuable.	  –	  Knowledge	  
of	  the	  underlying	  structure	  of	  the	  various	  parts	  of	  the	  esMS/esFS	  systems	  was	  
critical	  to	  solving	  many	  of	  the	  build	  problems,	  namely	  the	  esMS	  backup.	  	  
	  
Embrace	  the	  fact	  that	  your	  installation	  will	  be	  unique.	  –	  A	  great	  deal	  of	  
discomfort	  was	  felt	  over	  the	  fact	  that	  the	  actual	  configuration	  parameters	  differed	  
from	  the	  model.	  Realizing	  that	  we	  must	  differ	  smoothed	  out	  the	  decision	  making	  and	  
allowed	  for	  more	  rational	  choices	  in	  configuration.	  
	  
Test	  all	  of	  the	  contractual	  requirements	  as	  early	  as	  possible.	  –	  We	  came	  very	  
close	  to	  having	  real	  problems	  with	  contractual	  obligations	  in	  our	  failover	  scripts.	  
While	  we	  were	  able	  to	  add	  in	  the	  required	  aspects,	  had	  we	  tested	  them	  earlier	  there	  
would	  have	  been	  less	  pain	  involved.	  
	  
Empower	  the	  local	  site	  analysts	  to	  create	  and	  implement	  fixes	  in	  the	  field.	  –	  
The	  fact	  that	  the	  local	  analysts	  were	  not	  only	  able,	  but	  encouraged	  to	  implement	  
their	  own	  fixes	  led	  to	  quick	  and	  effective	  solutions.	  It	  gave	  the	  site	  analysts	  a	  sense	  
of	  ownership	  of	  the	  system,	  and	  gave	  the	  developers	  a	  short-‐cut	  to	  improving	  the	  
overall	  code	  base.	  
	  
6.	  Conclusions	  
	  
	   The	  installation	  of	  a	  new	  filesystem	  is	  a	  complex	  task	  with	  many	  moving	  
parts,	  that	  was	  only	  complicated	  by	  the	  fact	  that	  many	  tasks	  that	  could	  have	  been	  
performed	  and	  tested	  in	  a	  factory	  setting	  were	  required	  to	  be	  completed	  in	  the	  field.	  
In	  addition,	  the	  entire	  product	  was	  one	  of	  	  the	  first	  releases	  of	  the	  actual	  
productization	  of	  the	  Cray	  esFS	  filesystem.	  The	  challenges	  of	  building	  such	  a	  large	  
installation	  were	  met	  with	  a	  great	  deal	  of	  dedication	  and	  expertise	  on	  the	  part	  of	  the	  
developers	  and	  site	  system	  analysts.	  The	  expected	  challenges	  of	  configuring	  the	  
different	  aspects	  of	  the	  network,	  formatting	  the	  filesystem,	  installing	  the	  
management	  software,	  testing	  performance,	  etc.	  were	  all	  present	  and	  expediently	  
dealt	  with.	  
	   We	  were	  able	  to	  respond	  to	  the	  various	  unexpected	  challenges	  with	  in-‐field	  
fixes	  that	  were	  later	  integrated	  into	  the	  release	  products	  and	  made	  available	  for	  
other	  sites	  to	  use.	  Additionally,	  we	  were	  able	  to	  keep	  to	  the	  timetable	  due	  to	  the	  
proactive	  nature	  of	  the	  implementation	  of	  these	  fixes	  in	  the	  field	  rather	  than	  waiting	  
on	  a	  development	  cycle	  to	  provide	  a	  patch.	  This	  kind	  of	  dynamic	  relationship	  with	  
the	  home	  office	  based	  developers	  proved	  to	  be	  an	  exceptionally	  strong	  one	  that	  
produced	  effective	  solutions	  very	  quickly.	  
	   The	  final	  result	  of	  this	  work	  is	  an	  exceptionally	  stable	  and	  popular	  filesystem	  
that	  has	  exceeded	  the	  users	  expectations	  for	  availability,	  stability,	  and	  performance.	  
While	  improvements	  can	  always	  be	  made,	  the	  efforts	  made	  during	  the	  initial	  set	  up	  
will,	  in	  my	  opinion,	  pay	  off	  in	  terms	  of	  the	  long-‐term	  health	  of	  the	  filesystem.	  
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