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Abstract 
Purpose – The article assesses the impact of seven variables that emerge from forensic 
research on facial-composite construction and naming using contemporary police systems: 
EvoFIT, Feature and Sketch. 
Design/methodology/approach – The paper involves regression- and meta-analyses on 
composite-naming data from 23 studies that have followed procedures used by police 
practitioners for forensic face construction.  The corpus for analyses contains 6464 
individual naming responses from 1,069 participants in 41 experimental conditions. 
Findings – The analyses reveal that composites constructed from the holistic EvoFIT system 
were over four-times more identifiable than composites from 'Feature' (E-FIT and PRO-fit) 
and Sketch systems; Sketch was somewhat more effective than Feature systems.  EvoFIT 
was more effective when internal features were created before rather than after selecting 
hair and the other (blurred) external features.  Adding questions about the global appearance 
of the face (as part of the Holistic-Cognitive Interview, H-CI) gives a valuable improvement 
in naming over the standard face-recall Cognitive Interview (CI) for all three system types 
tested.  The analysis also confirmed that composites were considerably less effective when 
constructed from a long (1 - 2 day) compared with a short (0 - 3.5 hour) retention interval. 
Originality/value – Variables were assessed that are of importance to forensic practitioners 
who construct composites with witnesses and victims of crime.  The main result is that 
EvoFIT using the internal-features method of construction is superior; an H-CI administered 
prior to face construction is also advantageous (cf. face-recall CI) for EvoFIT as well as for 
two further contrasting production systems. 
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Fifteen years ago, a prevalent view among forensic practitioners was that procedures used to 

construct composites had been largely optimised and the effectiveness of a composite was 

determined by the ability of the witness.  The procedures used to construct composites in a 

forensic setting were detailed (described in Fodarella et al., 2016), with the aim of allowing 

a witness (who may also be a victim) to create the best likeness of an offender.  In brief, for 

traditional ‘feature’ systems, a practitioner would administer cognitive-interviewing (CI) 

techniques, to obtain a description of the offender’s face from a witness, and then prepare an 

‘initial’ composite: a face with facial features (eyes, nose, mouth, etc.) to match this 

description.  Next, the practitioner would present alternative features from the software 

system for the witness to select best-matching items, with selected features adjusted for size 

and placement.  Finally, a paint package could be used to add lines, wrinkles, etc.  

Alternatively, a forensic artist would produce a composite sketch.  The artist would obtain a 

description of the offender’s face from a witness (via a CI) and prepare an ‘initial’, faintly-

drawn sketch.  Artist and witness would work together on the configural properties of the 

face (spacing of features), and then to increase the overall level of detail.  In either case, the 

resulting composites would be shown to other people (police officers and members of the 

public) to identify.  

 

To quantify the effectiveness of composites, Frowd et al. (2005a) defined a ‘gold’ standard 

by which composite systems (or new techniques) should be assessed in the laboratory: 

composite construction should follow procedures used in police interviews and composite 

effectiveness should be based on people’s ability to spontaneously name these images.  

Using this procedure, a decade of research has revealed that fairly good performance 

emerges when the interval is up to a few hours in duration from encoding a target face to 

constructing a composite of it.  Constructors using sketch and modern feature systems 

prevalent in the US, UK and Europe (e.g., E-FIT, PRO-fit, FACES, Identikit 2000) create 

composites that other people name with a mean of around 20% correct (e.g., Brace et al., 

2000; Bruce et al., 2002; Frowd et al., 2005a).  However, when the retention interval is one 

or two days, a usual minimum in police investigations, mean correct naming is usually low 

(M ≈ 5%; e.g., Frowd et al., 2005b, 2007d).  Thus, procedures used for face construction 

seemed to be neither effective nor optimal. 

 

Considerable effort has sought solutions which are more closely aligned to face recognition 

(a holistic process) than to face recall (describing a face).  As we tend to recognise faces as 

complete entities rather than by component parts (facial features) (e.g., Davies and Milne, 
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1982; Tanaka and Farah, 1993), face construction should be effective if accomplished 

likewise.  This concept has long been implemented in modern feature systems: individual 

features are presented for selection in the context of a complete face (Skelton et al., 2016).  

For the emerging ‘holistic’ systems, this concept is taken one step further: constructors 

repeatedly select whole faces (or whole-face regions) from arrays of alternatives, with 

characteristics of selected items being ‘bred’ together, to ‘evolve’ a composite.  They also 

contain scales for changing age and other global properties of an evolved face.  Overall, the 

approach is based on recognition, which is more stable over time than recall (Davies, 1983), 

and requires holistic processing of faces rather than explicit recall of features.  There are 

three main implementations: EvoFIT, which has been assessed extensively using the gold 

standard (Frowd, 2015); EFIT-V (Gibson et al., 2009), evaluated using the gold standard in 

one published study (Valentine et al., 2010); and ID (Tredoux et al., 2006). 

 

A crucial observation that led to a forensically-useful system, EvoFIT, concerns differences 

regarding the way in which faces are processed when constructed and named.  Face 

construction is performed by a witness who is usually unfamiliar with a target (an offender), 

and so a witness’s processing of the face is influenced strongly by external features (hair, 

ears and neck); in contrast, internal features (the inner region encompassing eyes, brows, 

mouth, etc.) are particularly important for recognition of a familiar face (e.g., Bruce et al., 

1999; Ellis et al., 1979; Young et al., 1985)—in this case, for successful naming of a 

composite (Frowd et al., 2007a, 2011).  Frowd et al. (2010) used a Gaussian (‘blur’) filter to 

de-emphasise external features in EvoFIT arrays.  They demonstrated that this technique 

helped constructors to create composites with fairly good correct naming (M = 25%) after a 

two-day retention interval, presumably as this prevented external features from dominating 

during construction of an unfamiliar face.  Composites with even higher naming (M = 45%) 

were produced when just internal features were shown, with external features added 

thereafter (Frowd et al., 2012d); for an example face array, see Fodarella et al. (2016). 

 

A further important development was made by facilitating holistic processing prior to face 

construction: after witnesses have freely recalled a target face using CI techniques (e.g., 

Wells et al., 2007), they reflect silently on its character for one minute and then make seven 

whole-face judgements—such as its level of perceived honesty or masculinity.  These two 

whole-face techniques, when used after a face-recall CI, form the Holistic-Cognitive 

interview (H-CI).  Constructors then build the face as normal.  The H-CI improves 
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composite naming from EvoFIT (Frowd et al., 2012a), feature systems (Frowd et al., 2008) 

and artists’ sketches (Kuivaniemi-Smith and Frowd, unpublished, see Discussion).   

 

Naming is improved still further when composites are viewed (i) as a dynamic caricature 

(e.g., Frowd et al., 2007c), an image format that exaggerates and de-emphasises distinctive 

aspects of the face, and (ii) from side-on, to allow the face to appear long-and-thin (e.g., 

Davis et al., 2016; Frowd et al., 2013a).  Some of the aforementioned developments are also 

complimentary, and combine to increase naming substantially.  In Frowd et al. (2013b), 

EvoFIT composites, constructed after a 24 hour retention interval using the H-CI and 

masked external features, were named side-on with a mean of 74% correct (and a similar 

level of identification has been found for EvoFIT in criminal cases: Frowd et al., 2012b).  

Such performance is also possible from feature systems (see Discussion).  Together, these 

results indicate that it is now possible to construct highly-identifiable composites from 

contrasting systems. 

 

To summarise, the approach of accessing memory by selection from face arrays with 

blurred external features produces more effective composites than by selection of individual 

facial features.  The question is by how much, and how does this improve when external 

features are masked in the face arrays during construction?  Similarly, what is the overall 

benefit of the H-CI?  Answers to questions such as these should be of interest to forensic 

practitioners, to allow them to assess the effectiveness of composites created in criminal 

investigations, and for contributing to theories about how we construct and recognise faces.   

 

Our main aim then is to quantify factors (independent variables, IVs) involved in face 

construction: interview (CI and H-CI), system (holistic, feature and sketch), EF (external-

features blurring and masking) and associated factors (e.g., retention interval).  Based on 

available and sufficient composite-naming data from published and unpublished studies that 

have followed the gold-standard procedure, two main analyses are presented.  First is a 

logistic regression involving studies that have investigated system, interview and study 

characteristics.  Second is a meta-analysis looking at interview.  Direction is provided for 

future research. 

 

Method 

The Composite Data Set 
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Research studies were considered for inclusion with designs that aimed to mimic the 

forensic use of composites.  This necessitated that studies were conducted in the past 10 

years, as this was when the gold standard was developed (Frowd et al., 2005b).  To adhere 

to the standard, it was necessary that researchers involved in face construction: (a) did not 

see the target under construction, so as not to inadvertently influence the participant, (b) 

were trained in cognitive-interviewing techniques and administered CI (or H-CI) for 

participants to recall the appearance of a target face, and (c) were trained on the relevant 

composite system and aimed to create the best likeness possible with participants without 

time constraints.  At a minimum, researchers were trained ‘in house’ and practiced 

extensively on interview and system prior to constructing composites for the relevant study.  

It was also important that the primary measure (the dependent variable, DV) was 

spontaneous naming: while other metrics have been used to assess the visual quality of 

composites (e.g., Bruce et al., 2002; Ellis et al., 1975; Frowd et al., 2007b), the ecological 

validity of composite systems can only be properly assessed via direct face recognition.  

Also pertinent to this standard were constructors who were unfamiliar with the target 

identities and created a composite after a minimum retention interval of one day.  Projects 

with other study characteristics (SC) were considered (see following section), to allow 

preliminary analyses to be conducted on these variables. 

 

We also required at least four sets of naming responses for each IV or SC, to allow 

computation of stable estimates.  This requirement led to exclusion of EFIT-V, as only one 

set was available (Valentine et al., 2000); FACES 3.0, as there were only two sets (Frowd et 

al., 2005a, 2007d); and the archaic Photofit (Frowd et al., 2005b).  Data were also excluded 

from non-commercial prototypes of EvoFIT, specifically prior to development of external-

features blurring around 2006, since these experimental versions make it difficult to define a 

specific system.   See following section for further details of criteria for inclusion. 

 

Composite naming data from 23 studies met these main criteria for research emanating from 

the Universities of Stirling, Central Lancashire, Dundee and Winchester.  As can be seen in 

Table 1, 15 studies involved data on EvoFIT, 15 on PRO-fit and E-FIT ‘Feature’ systems, 

and four on Sketch.  Of these, two studies included a comparison between Feature and 

Sketch, and one between Feature and EvoFIT.  Seven studies contributed data to more than 

one condition, and so are listed in separate rows in the table [e.g., FS13(a) and FS13(b)], 

while four studies contributed to both CI and H-CI (FS13, FN12, FB08 and KSUP).  There 
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are 41 individual conditions, summarised in the table as 34 rows for CI and another seven 

for H-CI (far right column). 

 

The corpus comprised full-data sets described in academic journals and proceedings of 

conferences, and, to limit overestimation of effect sizes (e.g., McLeod and Weisz, 2004), 

from seven unpublished studies (N = 9 conditions).  Twenty-seven trained researchers 

administered standard face-construction and face-naming procedures on 1,069 adult (17+ 

years) fluent-English-speaking participants.  A total of 432 participants constructed a single 

composite from memory with the assistance of one of these researchers.  Each study 

produced between eight and 16 composites (M = 10.3, SD = 1.3) per experimental 

condition.  These composites were then presented sequentially to a further 637 participants 

to name.  The set contained 6464 individual naming responses. 

 

Coding and exclusions 

The primary DV was accurate naming.  A value of 1 was assigned when participants gave a 

correct name or an appropriate unambiguous semantic description for a composite: a value 

of 0 was assigned for an incorrect name or when a name was not given.  For all included 

studies, after attempting to name their randomly-assigned set of composites, participants 

were invited to name a photograph of the targets, to establish familiarity with the relevant 

identities.  When such a target was not correctly named, it was assumed that the participant 

would have been unable to accurately name the associated composite.  In these cases (M = 

4.2% overall), the relevant items were treated as missing data and not subject to analyses.  

Note that this coding scheme gives an estimate of central tendency that can be different but 

very similar to mean values reported in the relevant papersi. 

 

The second DV was inaccurate responses.  Overall, an increase in the number of mistaken 

names per se indicates less accurate composites, images which tend to be similar to another 

identity.  In signal detection terms, when correct and mistaken names increase at the same 

rate, this indicates an increase in response bias, a representation that elicits more frequent 

responding.  From a forensic perspective, a mistaken name can generate a false lead; 

however, mistaken names are arguably less harmful than no names at all, since mistaken 

names provide a mechanism for potential suspects to be eliminated from an investigation. 

 

Responses to composites were coded as 1 for wrong name, and 0 if no name was offered.  

Cases were again screened for incorrectly-named targets, but also for composite responses 
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that were named correctly (to give N = 3372 responses).  As a measure of central tendency, 

the fraction incorrect is the number of wrong names divided by sum of wrong names and no 

names.  In the first data row of Table 1, for instance, a name (correct or incorrect) was given 

for almost all composites when the target was familiar: 67.2% of these cases were correct 

and, of the remaining 32.8%, 92.9% were wrong names and 7.1% were no-name responses. 

 

The available data set contained sufficient responses (for N ≥ 4 individual conditions) to 

include three important independent variables (IVs) and four study characteristics (SCs): 

1. System (IV).  Four prevalent face-production systems were included: EvoFIT, E-FIT, 

PRO-fit and Sketch.  E-FIT and PRO-fit are very similar in function (e.g., the Frowd et al., 

2005 papers), and are considered ‘Feature’ systems.  Similarly, sketches were created by 

three artists and were coded equivalently.  System thus had three levels (1 = EvoFIT, 2 = 

Feature and 3 = Sketch), as illustrated in Figure 1.  Based on the aforementioned research 

(e.g., Frowd et al., 2010, 2012d), EvoFIT was expected to produce composites with highest 

correct naming. 

 

Figure 1 

 

2. Interview (IV).  The CI included rapport-building, and mnemonics for participants to: 

(i) think back to the time of target encoding and visualise the face (reinstatement of 

context), and (ii) recall as much detail about the face as possible, without guessing.  

Researchers did not interfere with this free-recall exercise, except to ask participants to slow 

down if they spoke too fast for written notes to be made.  The CI varied across studies, 

sometimes involving a second cycle of free recall (e.g., Frowd et al., 2005a), or inviting 

elaboration (cued recall) on an initial account (e.g., Frowd et al., 2005b).  Such variation 

was not expected to noticeably change composites’ identification (see Frowd et al., 2012a 

for a discussion on this issue).  The H-CI involved face-recall CI followed by character 

attribution.  Type of interview (Table 1, far-right columns) was coded as 1 for CI and 2 for 

H-CI.  Composites were expected to be superior following H-CI than CI. 

3. External Features, EF (IV).  Constructors traditionally create a composite using 

Feature and Sketch systems with external features always present.  For EvoFIT, they 

repeatedly select from arrays of faces presented in one of two ways.  In the first, external 

features appear blurred (Blur); in the second, which research suggests is more effective 

(e.g., Frowd et al., 2012d), arrays contain internal features only (IF) and external features 



8 

are chosen towards the end of construction.  EF type (1 = EF Blur and 2 = IF) was thus 

assessed in a separate analysis for EvoFIT composites. 

4. Target Mode (SC).  Targets were presented to constructors in colour as a photograph 

or video (1 = photograph and 2 = video).  The latter mode involved a person (i) speaking 

into the camera or (ii) interacting with another person in a natural setting (e.g., café); 

participants listened to video clips on headphones.  Two meta-analyses (Meissner and 

Brigham, 2001; Shapiro and Penrod, 1986) report no reliable effect of mode of presentation 

on recognition hits, and so the same null outcome was predicted for correct naming of 

composites.  Clearly, presentation is more forensically valid for videos than photographs. 

5. Target Source (SC) varied considerably.  A preliminary analysis of the data suggested 

that composites were less effective for well-known identities in the public eye (‘Celebrity’ 

in Table 1, N = 7), an effect which might be due to larger target-pool size (see Discussion), 

and so Target Source was coded dichotomously (1 = non celebrity and 2 = celebrity). 

6. Retention Interval (SC) spanned 0 (immediate construction), 3-to-4 hours, 20-to-28 

hours and 44-to-52 hours.  Correct naming of composites was expected to decline with 

increasing delay between target encoding and face construction, but not as a linear function 

(e.g., a greater decline from 0 to 1 day than from 1 to 2 days, based on Ellis et al., 1980; cf. 

Ebbinghaus, 1885).  Coding was short (0 hours, N = 4), medium (3 - 4 hours, N = 6) and 

long (20 - 52 hours, N = 31).  The long interval is most forensically relevant in current 

practice. 

7. Foil Composites (SC).  The final variable concerned laboratory naming of composites.  

Fourteen conditions included from two to 10 ‘foil’ composites; foils were of unfamiliar 

identities, not from the target set.  Participants were warned of their presence, the aim being 

to avoid naming by a process of elimination and reflect real-world use: composites are not 

always of a familiar identity.  Foil use should inhibit a lax response criterion, a prediction 

supported by Shapiro and Penrod (1986), who report fewer misidentifications (false alarms) 

for presence of foils (decoys).  Foil use was dichotomised (1 = absent and 2 = present). 

Exclusions.  While duration of target encoding is interesting to study, few conditions 

varied from 60 seconds for photographs, and so this SC was not included.  Similarly, 

offenders are sometimes a familiar identity (to a witness), and a composite can be useful in 

cases of uncertain identity (e.g., for confidence crimes).  While research indicates sizeable 

benefit for construction of familiar targets (e.g., Davies et al., 2000; Frowd et al., 2011), 

data were again insufficient to allow analysis by target familiarity; indeed, all studies 

constructed an unfamiliar targetii.  Likewise, not included were conditions with (i) 

unconventional face-databases (sketch-like features), (ii) unconventional presentation mode 
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of target stimuli (greyscale), (iii) constructors asked to make unusual decisions (rapid face 

selection), (iv) unconventional construction (sequential presentation of arrays), (v) 

constructors subjected to a stress intervention at encoding, and (vi) non-white targets. 

 

Table 1 
 

Logistic Regression 

The principal analyses used Logistic Regression due to superior statistical power (cf. 

ANOVA).  Separate analyses were conducted (using SPSS version 21) on accurate- and 

inaccurate-naming responses: for Model A involving all variables except EF, and for Model 

B, to assess EF for EvoFIT composites. 

 

Validity checks. For both models, usual checks were made for a goodness-of-fit test: 

f(observed) > 0, and f(expected) < 5 for ≤ 20% of cells.  No issues of validity (Field, 2009) 

were apparent for Model A (Collinearity: predictors’ VIF < 1.6 and Tol. > .7, eigenvalues 

were sensible in the scaled cross-products matrix; dependencies were not strong between 

variables; and residual errors were independent, 1.5 < Durbin-Watson < 2.0).  For Model B 

(EvoFIT), the variable Target Source was not included due to collinearity (VIF = 8.5, Tol. = 

.1), and Retention Interval was not included due to insufficient data; also, responses to 

composites from the single short-delay condition FNUP were excluded (due to their sizeable 

impact on accurate naming). 

 

Models’ Beta coefficients and their standard errors were checked for improbable (too low or 

high) values, and the fit of points was confirmed appropriate (< 2.4% of cases had 

Studentized residuals > 2, and < 0.1% were > 2.5); no points exerted undue influence 

(Cook’s Distance < 0.03; Leverage ≈3*(k+1)/n; 0.01 < |DFBeta|(max) < 0.14), indicating 

stability. 

 

Model A. All systems 

Accurate naming.  The analysis commenced with a saturated model containing all predictors 

except for EF, with IVs and SCs subject to backward-sequential removal (p > .1) based on 

Likelihood Ratioiii.  All six predictors made a reliable contribution to accurate naming and 

so were included in the final model (Table 2).  For each predictor, the lowest numerically-

coded category was taken as reference (variables that are underlined in Tables 2 - 4), and 

Beta (B) coefficients reflect this scheme.  CI (coded as 1) was reference for Interview and, 
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as H-CI (2) promoted more accurate faces, B is positive: B is negative for Source, as more 

identifiable faces emerged for non-celebrity (1) than celebrity targets (2).  For System 

(trichotomous IV), contrasts indicated superiority of EvoFIT over (i) Feature and (ii) 

Sketch; a third contrast (iii) revealed benefit of Sketch over Feature.  With Retention 

Interval (trichotomous IV), naming was higher for short than long, and for medium than 

long; the deficit from short to medium approached significance.   

 

Any reliable increment in correct naming of composites would be welcomed in forensic 

practice, but a worthwhile benefit occurs when Exp(B) > 2—that is, for predictors which 

more than double naming rates.  Exp(B) of around 2 is interpretable as a ‘medium’ effect 

size by Sporer and Martschuk (2014), but we argue (as do Morris and Fritz, 2013) that 

effect sizes should be domain specific: for composites, this gain should be considered 

‘large’, due to impact for policing, with Exp(B) of 1.5 as ‘medium’ and 1.2 as ‘small’.  

Based on these guidelines, large effects occur for EvoFIT (cf. Feature and Sketch), H-CI (cf. 

CI) and long (cf. short and medium) delays.  For these three variables, the 95% confidence 

intervals of the effect size were narrow; also, the lower interval was large in size, indicating 

a substantial effect for the vast majority of likely true means.  Mode, Source and Foils 

exerted much weaker effects.  To aid interpretation, Estimated Marginal Means (EMMeans) 

are presented for each variable in Table 1 (see also Note).  

 

Table 2 
 

Inaccurate naming.  Higher mistaken names per se indicate less accurate composites.  The 

analysis followed the procedure as above.  System was not a reliable predictor for this DV 

(p = .28) and so was removed in Step 1, yielding the final model (Table 3).  For Interview, 

while accurate naming greatly improved with the H-CI, as found above, inaccurate names 

decreased—the ideal forensic outcome.  Each categorical increase in retention interval 

(from short to medium, and from medium to long) roughly halved inaccurate names, which 

is somewhat similar to the decrease in accurate naming—essentially, a reduction in response 

bias.  While target photographs promoted slightly more accurate composites than videos, 

inaccurate names were much less frequent, revealing superiority for photographs.  Celebrity 

(vs. non-celebrity) stimuli reduced accurate and, to a much greater extent, inaccurate names.  

Lastly, foil composites were expected to inhibit a liberal response criterion, but the opposite 

emerged: foil use markedly increased inaccurate responses. 
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Table 3 
 

Model B. EvoFIT  

Accurate naming.  There were 2539 accurate responses to EvoFITs, of which 5.4% were 

screened—for targets which were not correctly named, but also for responses from the 

short-delay condition (as explained above).  Source was removed in Step 1 (p = .24) and 

Foils in Step 2 (p = .32); Table 4 summarizes the final model.  There was a sizeable benefit 

for IF (cf. blur) construction, and the H-CI benefit was similar to that found in Model A. 

  
Table 4 
 

Inaccurate naming.  The EvoFIT model for inaccurate naming is also summarised in Table 

4.  IF (cf. blur) construction led to composites with somewhat higher inaccurate responses; 

the other variables produced effects consistent with those of Model A. 

 

Meta-Analysis 

There is a dearth of meta-analyses on facial composites.  Arguably the most relevant is 

Meissner and Brigham (2001) who reveal that constructing a composite increases 

constructor’s ability to identify a target (by 1.6 times).  Here, we assess the extent to which 

holistic components of the interview improve the identifiability of a composite.  Results 

were expected to be similar to and support those from the above Logistic Regression.   

 

The unit of analysis for meta-analysis is at the level of the individual study rather than at the 

level of the participant, item or individual response.  Meta-analyses estimate the existence 

and magnitude of effects while accounting for “noise” within different studies, in particular 

for the random-effects model (used here) which assumes heterogeneity (inter-study 

variability).  They assume that larger samples provide more accurate estimates of 

corresponding populations—that is, the error of the effect size tends to reduce for larger 

than for smaller samples.  

 

We followed procedures of Lipsey and Wilson (2001) and (as SPSS does not have inherent 

functionality) conducted the meta-analyses using a modified version of the Microsoft Excel 

template made available by Neyeloff et al. (2012). 

 

Studies.  The same seven comparisons comparing CI and H-CI were used; DVs were 

participant responses to composites for which the relevant target had been correctly named. 
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Approach.  Responses to composites are dichotomous (correct or incorrect) and so meta-

analyses are expressed as the weighted logged Odds Ratio, ORlogged, an effect size analogous 

to Exp(B).  In our regression analysis, accurate responses were compared with no-name plus 

mistaken responses.  This approach was followed for the meta-analysis, but we also directly 

compared accurate with inaccurate naming, to provide an estimate of the overall naming 

advantage of H-CI.  Effect sizes were first obtained by calculating the odds ratios (ORs) for 

each interviewing outcome.  The remaining calculations require values to be centred on zero 

and, as ORs are centred on one, the natural log of the ORs was used, to give ORlogged, and 

then aggregated, assuming a random-effects’ model.  

 

Results 

Accurate naming.  The main analysis contained 1489 correct-name and no-name responses, 

and detailed results are shown in the Forest plot in Figure 2.  See Neyeloff et al. (2012) for 

how to interpret this type of graph—briefly, a square indicates the odds ratio for a study 

with area proportional to size of the effect; horizontal lines indicate 95% CI.  Interview was 

reliable [Z = 3.20, p < .001, Q = 33.7, I2(6) = 82.2%, ORlogged  = -0.82], with an effect size 

(OR = 2.4, 95% CI [1.4, 4.0]) that is very similar to that measured in Model A (Exp(B) = 2.5 

[2.1, 3.1]), supporting the superiority of H-CI over CI by correct naming.  Note that the 

confidence intervals of the effect size are much narrower for the regression than the meta-

analysis since the former is based on individual observations (rather than summary 

statistics), resulting in greater precision (for the regression analyses).  Note also that 

between-study variability (heterogeneity I2) is large, highlighting the presence of additional 

variability—as other factors are involved (e.g., system, retention interval). 

 

Figure 2 

 

Accurate versus inaccurate naming.  This analysis contained 1468 responses that were 

correct versus mistaken (without no-name responses).  Interview was reliable (Z = 3.02, p < 

.001, ORlogged = -0.89, Q = 32.6, I2(6) = 81.6%, OR = 2.4 [1.4, 4.4]), indicating a substantial 

overall advantage for H-CI over CI. 

 

Discussion 

It is crucial that law enforcement obtain effective composites from witnesses and victims, to 
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allow offenders to be apprehended promptly.  Here, to assess the effectiveness of key stages 

in the process, a corpus of naming data was assembled from 23 studies using procedures 

that were aligned to forensic face construction and naming.  The logistic-regression analysis 

confirmed a large advantage of (i) the H-CI (cf. CI), supported by the meta-analysis, and (ii) 

EvoFIT, both overall and using the internal-features (cf. EF blur) method of construction.   

 

Accessing memory by EvoFIT is clearly effective: accurate naming was over four times that 

of Feature or Sketch (Table 2).  Note that confidence intervals were fairly narrow, indicating 

a consistent, large estimate for this observation (even at the lower 95% CI); indeed, this 

same level of consistency occurred for all effect sizes for this DV, as one would expect 

using the current methodology of combining individual-response data from multiple studies.  

Another advantage of the EvoFIT approach (cf. traditional systems) is that witnesses are 

permitted to construct a composite even when they are unable to recall an offender’s facial 

features (ACPO, 2009)—although if they can, an H-CI can be administered, facilitating 

performance (Frowd et al., 2013b).  Facial detail is forgotten rapidly (e.g., Ellis et al., 

1980), and this information loss arguably contributes to the decline in utility of feature 

systems with increasing delay.  Here, longer retention intervals led to less accurate 

representations (Model A), faces with much lower accurate and inaccurate naming.  This 

reduction in response bias suggests that faces are constructed more generically (less like any 

specific identity) with increasing delay— not surprising, as this variable also affects face 

recognition (e.g., Shapiro and Penrod, 1986).  While other feature systems should likewise 

produce ineffective faces after long delays (e.g., Frowd et al., 2007d), data are insufficient 

to be confident of the rate of decline for sketch.  Ongoing research is charting naming rates 

by system, for delays upward of a week, which also occur in forensic practice (e.g., Frowd 

et al., 2012b). 

 

The work also confirms the benefit of the IF method of construction: while incorrect names 

increased using this procedure relative to EF blur, correct names increased to a greater 

extent.  When first applied to a feature system, this IF method did not generalise: in fact, 

correct naming of composites reduced.  More recent work, however, reveals a large benefit 

in naming for IF construction when using H-CI rather than CI (manuscript in preparation).  

It seems that a side-effect of H-CI is to shift a constructor’s attention from the whole face to 

internal features, allowing IF construction to be effective after an H-CI.  Similarly, H-CI 

was not initially effective for Sketch (Stops, unpublished).  Using this method, witnesses 

usually describe facial features (via a CI) and a forensic artist draws an ‘initial’ sketch; they 
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then request changes to this face.  What seems to be important for the H-CI (cf. CI) is that 

constructors select features in the context of a complete face (which is how feature systems 

usually operate, Skelton et al., 2016) rather than carrying out what is essentially a recall 

task: to request changes to an initial sketch.  Indeed, sketches created in this way (via 

whole-face feature selection) following an H-CI were included in our analyses (KSUP). 

 

Results from Model A also established, in line with previous work (Laughery and Fowler, 

1980), that Sketch is somewhat-more effective [Exp(B) = 1.6] than feature systems.  Sketch 

production involves a potentially important qualitative advantage: witnesses tend to work on 

groups of features rather than on individual features, so allowing this forensic method to be 

closer aligned to holistic face processing (Davies and Little, 1990; Laughery et al., 1986).  

Evidence was also provided to speak to an issue raised by Frowd et al. (2005b): some 

sketches have limited detail, potentially causing confusion about the intended identity.  

There was no evidence of this concern, as inaccurate naming did not vary reliably by 

system.  In this case, all three types of system created composites that were mistakenly 

named to the same extent.  The work did reveal that naming data were limited for Sketch, 

and research could address this issue along with quantifying individual differences between 

artists, which are known to exist (ibid.).   

 

Unfortunately, even less naming data are available for the other holistic system in forensic 

use, EFIT-V (Gibson et al., 2009), software that involves similar face selection and breeding 

to EvoFIT.  EFIT-V has not been assessed extensively by naming, but one study, Valentine 

et al. (2010), reports naming of individual composites at 20.3% correct (targets were videos 

of TV soap actors, CI was administered, retention interval was short, and foils were not 

deployed).  This mean value is comparable to naming of feature composites constructed 

likewise (M = 26.6% for FTUP(a), FS11 and FB07) after a short retention interval.  As 

EvoFITs are correctly named at a much higher rate even after a long retention interval 

(EvoFIT IF construction, Table 1), EFIT-V is unlikely to be as effective.  This may, in part, 

be due to EFIT-V showing face arrays with intact external features: neither EF blurring nor 

IF construction is used, both of which are effective (also confirmed here).  Future research 

could establish whether this is indeed the case, how EFIT-V fares under forensically-

relevant conditions (a long retention interval) and whether the H-CI is effective.  

 

The remaining variables concern study characteristics.  Accurate naming marginally 

favoured targets shown as photos rather than videos (the effect was null for EvoFIT, 
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presumably due to reduced power for Model B).  This trend suggests that static images used 

for laboratory research are a good proxy to moving stimuli when the DV is correct naming.  

Mistaken names for target videos were much higher both overall and for EvoFITs, however, 

indicating encoding superiority for photos.  While videos are closer to real life, short 

encoding of photos does parallel the situation where an offender’s face is seen briefly.  In 

addition, the photos in our constituent studies tended to present a frontal face, the same view 

as in the composite systems, and so stages of processing at construction overlap (Frowd et 

al., 2014)—although perhaps not optimally for unfamiliar-face construction, as the best 

view may not be frontal (Ness et al., 2016).  For target videos, fine facial details may not be 

encoded as effectively as for photos, leading to composites that are more easily confused 

with other identities: hence the large increase in inaccurate names (Model A).  Indeed, 

composites do seem to be more identifiable following feature (cf. more global) encoding 

(e.g., Frowd et al., 2007b; Wells and Hryciw, 1984).  It should also be the case that 

encoding duration (not assessed here due to insufficient data) is positively related to 

accurate naming, with the opposite effect for inaccurate naming, much as it is for face 

recognition (e.g., Shapiro and Penrod, 1986); by contrast, interference at encoding reduces 

composite quality (Marsh et al., 2016).  Future work could explore the impact of these 

forensically-relevant variables. 

 

Targets in the public eye are sometimes used in lab studies at encoding, and our work 

reveals that using such well-known celebrities result in composites with lower correct and 

lower mistaken naming (although note that CIs for the latter DV were somewhat wider than 

elsewhere, indicating greater variability for the production of mistaken names).  One 

explanation is that we are familiar with more celebrities than identities from any other 

category: we may be familiar with hundreds of celebrities, but far fewer top UK football 

players.  For celebrities, this would create a higher density space of possible faces (cf. 

Lewis, 2004), leading to composites that are less effective as probes, suppressing name 

production.  Future work might usefully explore the relationship between potential size of 

target pool and frequency of name production.  Recent research (manuscript in preparation), 

however, hints that an alternative explanation may be related to attractiveness, a facial 

property which is normally higher for celebrity than non-celebrity targets.  The research 

reveals that lower-attractiveness targets promote more identifiable composites (even when 

controlling for factors such as distinctiveness), a result which fits with the current finding.  

Ongoing research is attempting to resolve which of these explanations is likely to be correct. 

 



16 

In relation to the first explanation, researchers exercise caution if target-pool size is limited, 

such as when targets are staff from a university department: a warning is given to (naming) 

participants that not all composites are of a specific category (department staff) and foil 

composites are introduced into the testing set.  The aim is to avoid naming by a process of 

elimination.  We have confirmed that foil use suppresses correct naming (Model A), 

although the effect size was small.  In contrast, inaccurate naming was much higher with 

foil use, a result that runs counter to their influence in face-recognition studies (Shapiro and 

Penrod, 1986).  It may simply be that observers become less discriminative after they know 

that foils are present, prompting them to offer more names and be less accurate overall.  It is 

currently unknown, however, whether this effect is being driven by prior warning of foils, or 

their actual presence.  Future research could inform on this methodological issue. 

 

To conclude, the project sought a greater understanding of the effectiveness of composites.  

A corpus of data was assembled from studies conducted over the last decade where naming 

was the dependent variable.  The holistic EvoFIT system was found to produce composites 

with over four times higher correct naming than composites from Feature and Sketch 

systems; EvoFIT was also much more effective when external features were masked than 

blurred in face arrays; and composites were somewhat more identifiable from Sketch than 

Feature systems.  Use of holistic components to cognitive interviewing and a shorter (cf. 

longer) retention interval both promoted more identifiable composites.  Milder benefits to 

composite identification emerged for use of target photos (cf. videos) and without involving 

‘foil’ composites.  Ongoing work is exploring the impact of retention interval by system, the 

impact of facial attractiveness, and target-pool size at naming. 
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Figure 1. Composites constructed in the included studies from (left to right) EvoFIT, 

Feature and Sketch systems.  Composites were produced by different constructors (in 

different studies) 24 hours after each person had seen a photograph of UK footballer, Frank 

Lampard.  For copyright reasons, we are unable to reproduce the photograph itself; instead, 

an accurate likeness has been created, far right (courtesy of forensic artist, Heidi 

Kuivaniemi-Smith).  
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Figure 2. Forest plot of the H-CI versus CI advantage (ORlogged) for accurate naming. 
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Table 1. Characteristics of studies included in the analyses. 

Study System EF Target     Naming  
   Mode Source Delay 

(hr) 
 

Foils CI H-CI 

FNUP EvoFIT Blur Photo Football 0 
 

0 67.2 (92.9)   
FS13(a) EvoFIT Blur Photo TV Soap 24 

 
0 24.1 (42.6) 42.5 (50.0) 

FN12(a) EvoFIT Blur Photo Football 24 
 

4 17.6 (22.5) 32.5 (36.4) 
FL09 EvoFIT Blur Photo Football 24 

 
0 21.3 (5.3)   

FS12(a) EvoFIT Blur Photo Football 24 
 

4 23.4 (44.6)   
FN12(b) EvoFIT Blur Video Retail 24 

 
5 24.1 (65.1) 39.6 (69.6) 

FN12(c) EvoFIT Blur Video Retail 24 
 

4 22.5 (68.8) 35.8 (46.8) 
HB11 EvoFIT Blur Photo Uni/staff 24-48 

 
10 26.5    

FOUP EvoFIT Blur Photo Retail 48 
 

2 24.4 (66.2)   
FP10(a) EvoFIT Blur Photo Snooker 48 

 
0 21.6 (27.6)   

FF15 EvoFIT IF Photo TV Soap 24 
 

0 41.8 (22.8)   
FEUP EvoFIT IF Photo TV Soap 24 

 
4 37.8 (60.9)   

FS13(b) EvoFIT IF Video TV Soap 24 
 

0 36.7 (46.0) 53.8 (43.2) 
FS12(b) EvoFIT IF Photo Football 24 

 
4 45.9 (40.3)   

FDUP EvoFIT IF Photo Football 24 
 

0 44.8 (35.5)   
FTUP(a) Feature Vis. Photo Football 0 

 
0 27.5 (39.7)   

FS11 Feature Vis. Photo Football 0 
 

0 31.9    
FB07 Feature Vis. Photo Uni/staff 0 

 
8 17.5    

FR05(a) Feature Vis. Photo Celebrity 3.5 
 

0 22.4    
FR05(b) Feature Vis. Photo Celebrity 3.5 

 
0 16.0    

FB08 Feature Vis. Video TV Soap 3.5 
 

0 8.6 (69.4) 41.2 (65.4) 
FTUP(b) Feature Vis. Photo Football 3.5 

 
0 7.5 (35.1)   

FM05(a) Feature Vis. Photo Celebrity 48 
 

0 0.0    
FM05(b) Feature Vis. Photo Celebrity 48 

 
0 1.5    

FM07 Feature Vis. Photo Celebrity 48 
 

0 1.1 (7.5)   
FN07 Feature Vis. Photo Football 48 

 
0 4.2 (50.7)   

FTUP(c) Feature Vis. Photo Football 48 
 

0 11.3 (39.4)   
FF11 Feature Vis. Photo Football 48 

 
0 1.3 (9.3)   

PS06 Feature Vis. Photo Football 48 
 

0 3.1 (35.0)   
FP10(b) Feature Vis. Photo Snooker 48 

 
0 4.1 (35.5)   

FR05(c) Sketch Vis. Photo Celebrity 3.5 
 

0 9.8    
SAUP Sketch Vis. Video TV Soap 24 

 
4 15.8 (68.8)   

KSUP Sketch Vis. Photo Football 24 
 

4 14.3 (45.2) 23.5 (40.4) 
FM05(c) Sketch Vis. Photo Celebrity 48   0 6.9       

EMMeans†            

   1 EvoFIT 
56.0  

Blur 
29.0 

Photo 
29.0ª 

Non celebrity 
33.0 

0 hr 
42.0ª 

 

No foils 
30.0 

CI 
19.0 

 H-CI 
37.4 

 

   2 Feature 
14.7  

IF 
50.1 

Video 
25.8ª 

Celebrity 
23.4 

3.5 hr 
35.6ª 

 Foils 
26.2 

 

   

   3 Sketch 
21.7  

      1-2 day 
12.3  

            

   

 Note. Figures are in percentage for accurate naming and, where available, for inaccurate naming in 
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parentheses; see text for their calculation.  For conciseness, a succinct code for each Study has been created: 

see list of References for definitions.  For EF (external features), the coding was whether this region was 

visible (Vis.), blurred (Blur) or masked (IF, internal features only) at face construction.  For Source, targets for 

(a) Football were UK international-level footballers, (b) Retail were staff working in retail outlets, (c) 

Uni/staff were staff working at a university, (d) Snooker were professional snooker players and (e) Celebrity 

were well-known famous faces (e.g. David Beckham, Ronan Keating, David Tennant and Prince William). 

   †Estimated Marginal Means (EMMeans) are percentage-correct naming by numerically-coded category.  All 

contrasts for predictors are significant, p < .02, except for column-wise ª .05 < p < .10.  See Endnote iv for 

calculation of EMMeans (listed at the bottom of the table) for the associated Odds Ratio.  
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Table 2: Accurate naming for the full Logistic-Regression model. 
 

Variable N      B  SE(B)    Χ²  DF   p  Exp(|B|) 
System 

 
  315.88 2   < .001  

     i. EvoFIT > Feature 16 -2.01 0.11 312.21 1   < .001 7.4   [6.0, 9.3] 
     ii. EvoFIT > Sketch 5 -1.54 0.17 84.66 1   < .001 4.6   [3.3, 6.5] 
     iii. Sketch > Feature 5 -0.47 0.16 8.97 1     .003 1.6   [1.2, 2.2] 
Interview: H-CI > CI 7 0.94 0.09 103.98 1   < .001 2.5   [2.1, 3.1] 
Mode: Photograph > Video 11 -0.16 0.09 2.97 1     .09 1.2   [1.0, 1.4] 
Source: Non-Celebrity > Celebrity 7 -0.48 0.15 10.71 1     .001 1.6   [1.2, 2.2] 
Retention interval    192.42 2   < .001  
     i. Short > Medium 4 -0.27 0.15 3.36 1     .07 1.3   [1.0, 1.8] 
     ii. Short > Long 4 -1.64 0.13 157.19 1   < .001 5.2   [4.0, 6.7] 
     iii. Medium > Long 6 1.37 0.14 103.76 1   < .001 3.9   [3.0, 5.1] 
Foil composites: None > Foils 15 -0.19 0.08 5.48 1     .019 1.2   [1.0, 1.4] 
Constant   -0.96 0.08 148.49 1   < .001  2.6 

 
   Note.  Model [X2(8) = 724.3, p < .001, Cox and Snell R2 = .11, Nagelkerke R2 = .17].  Presented for each 

predictor is the Beta (B) coefficient (slope of regression line), standard error of B (SE(B)), Wald (X2), DF, model 

fit (p-value), Odds Ratio effect size (Exp(|B|)) and (in square brackets) 95% CI for Exp(|B|).  The inequalities 

under Variable indicate the direction of each difference: B values may be positive or negative depending on 

coding (variables with the lowest numerically coded-category are shown underlined, but see also text).  For 

ease of interpretation, Odds Ratios are shown with values greater than 1.0, rather than allowing them to 

appear as a Risk Ratio (a value less than 1.0).  N is the minimum number of comparisons involved in the 

calculation; for instance, N = 7 for Interview as there are 34 conditions for CI and 7 for H-CI.    
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Table 3: Inaccurate naming for the full Logistic-Regression model. 

Variable N      B  SE(B)    Χ²  DF   p  Exp(|B|) 
Interview: CI > H-CI 7 -0.24 0.10 5.66 1     .017 1.3   [1.0, 1.5] 
Mode: Video > Photograph 11 0.94 0.10 95.13 1   < .001 2.6   [2.1, 3.1] 
Source: Non-Celebrity > Celebrity 7 -1.49 0.40 14.08 1   < .001 4.5   [2.0, 9.7] 
Retention interval    92.11 2   < .001  
     i. Short > Medium 4 -0.65 0.24 7.51 1     .01 1.9   [1.2, 3.0] 
     ii. Short > Long 4 -1.51 0.22 48.89 1   < .001 4.5   [2.9, 6.8] 
     iii. Medium > Long 5 0.86 0.12 52.35 1   < .001 2.4   [1.9, 3.0] 
Foil composites: Foils > None 15 0.84 0.09 85.17 1   < .001 2.3   [1.9, 2.8] 
Constant   -0.21 0.22 0.89 1     .35  1.2 

 

   Note.  Model [X2(7) = 462.4, p < .001, Cox and Snell R2 = .13, Nagelkerke R2 = .17].  For definition of 

variables, see Table 2, Note.  
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Table 4: Accurate and inaccurate naming for Logistic Regression Model B (EvoFIT 
composites). 
 

Variable N      B  SE(B)    Χ²  DF   p  Exp(|B|) 

   Accurate         
      External Features (EF): IF > Blur 7 0.90 0.10 86.42 1 < .001 2.5  [2.0,  3.0] 
      Interview: H-CI > CI 5 0.61 0.10 33.85 1 < .001 1.8  [1.5,  2.2] 
      Constant   -0.44 0.06 61.20 1 < .001 1.5   
   Inaccurate         
      External Features (EF): IF > Blur 5 0.48 0.14 11.62 1   .001 1.6  [1.2,   2.1] 
      Interview: CI > H-CI 6 -0.24 0.14 2.73 1 .10 1.3  [1.0,   1.7] 
      Mode: Video > Photograph 6 1.03 0.12 69.11 1 < .001 2.8  [2.2,   3.6] 
      Foil composites: Foils > None 7 1.21 0.13 92.98 1 < .001 3.3  [2.6,   4.3] 
      Constant   -0.25 0.08 10.65 1   .001     

 

   Note.  Accurate Model [X2(2) = 104.0, p < .001, Cox and Snell R2 = .04, Nagelkerke R2 = .06].  Inaccurate 

Model [X2(4) = 180.1, p < .001, Cox and Snell R2 = .11, Nagelkerke R2 = .15].  See Table 2, Note. 
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Footnotes 
                                                 
i A frequently-used measure is Conditional Naming Rate.  CNR is the number of correctly-named composites 
divided by the relevant number of correctly-named targets; it can be calculated by-participants and by-items, 
and subjected to ANOVA.  For examples, see Frowd et al. (2005b) and Valentine et al. (2010).  When 
differences by target familiarity are minimal, the uncorrected naming rate is usually reported (e.g., Brace et al., 
2000; Frowd et al., 2008).  For the same reasons as ours, recent research (e.g., Frowd et al., 2012c) has used 
regression techniques to analyse naming responses. 
ii Studies contained a pre-screening phase to check that targets were unfamiliar: Constructors glanced at a 
(randomly-selected) target; if the face was reported familiar, another target was presented likewise, and 
participants encoded the first unfamiliar face.  A post-screening phase presented target images to ‘naming’ 
participants after composites had been seen, to check that identities were familiar.  Also applied was an a-
priori rule: each participant was required to correctly name most targets (typically M > 75%) for their data to 
be analysed (if not, another participant was recruited as replacement). 
iii Models were re-run without backward elimination.  While this was not necessary for Model A (accurate), as 
all variables were reliable, for other models, saturated and final solutions contained the same reliable 
predictors with virtually identical coefficients. 
iv If n is percentage-correct naming for one condition, the fraction correct p = n / 100, and the odds that a 
composite will be correctly named P’ = [p / (1 – p)].  Similarly, if m is percentage-correct naming in an 
associated condition, the fraction correct q = m / 100, and the odds Q’ = [q / (1 – q)].  The Odds Ratio OR = P’ 
/ Q’ or [p / (1 – p)] / [q / (1 – q)].  Rearranging, m = P’ / [OR + P’] * 100.  For example, from Table 1, Column 
2, for EvoFIT, n = 56.0, P’ = [.56 / (1 - .56)] = 1.273, OR (EvoFIT to Feature) = 7.4, and so naming 
m(Feature) = 1.273 / [ 7.4 + 1.273 ] * 100 = 14.7%. 


