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The definable (p, q)-theorem for distal theories

Gareth Boxall, Charlotte Kestner

January 23, 2017

Abstract

Answering a special case of a question of Chernikov and Simon, we

show that any non-dividing formula over a model M in a distal NIP theory

is a member of a consistent definable family, definable over M .

1 Introduction

The behaviour of forking in NIP structures is a mysterious topic currently under
investigation. It is well-known that forking provides a good notion of indepen-
dence for stable and even simple structures and that it fails to do so in the
unstable NIP setting in some quite significant ways. However, certain aspects
of the good behaviour of forking in stable structures do extend to NIP and there
has been considerable work in identifying which these are. A notable example
is the equivalence of forking and dividing over models, which Chernikov and
Kaplan showed to be true even in the more general NTP2 setting in [1]. Con-
jecture 1.1, if true, would be another interesting example. It is stated in [2]
(as a question, but has subsequently achieved the status of a conjecture). As
is discussed in Section 2 of [4], it can be seen as a definable analogue of the
(p, q)-theorem from combinatorics.

Conjecture 1.1. Let M ≺ N be NIP L-structures. Let ϕ(x, y) be an LM -

formula and let b ∈ N |y|. Assume ϕ(x, b) does not divide over M . Then there is

an LM -formula ψ(y) ∈ tp(b/M) such that {ϕ(x, b′) : b′ ∈ ψ(M)} is consistent.

This has been proved in certain special cases by Simon and Starchenko. In
[6] Simon proves it under the additional assumption that the theory ofM is dp-
minimal and has small or medium directionality. In [8] Simon and Starchenko
obtain a stronger conclusion for a certain class of dp-minimal structures includ-
ing all those with definable Skolem functions. In [4] Simon proves Conjecture 1.1
under the additional assumption that there is some countableM ′ ≡M with the
property that, for any complete type p over M ′ and any elementary extension
N ′, only countably many complete types over N ′ are coheirs of p. Conjecture
1.1 is known under the additional assumption of stability. There are also two
interesting approximations to Conjecture 1.1 which we mention in §2.

Our main result is to establish Conjecture 1.1 under the additional assump-
tion that M is distal.

Theorem 1.2. Let M ≺ N be distal NIP L-structures. Let ϕ(x, y) be an LM -

formula and let b ∈ N |y|. Assume ϕ(x, b) does not divide over M . Then there is

an LM -formula ψ(y) ∈ tp(b/M) such that {ϕ(x, b′) : b′ ∈ ψ(M)} is consistent.
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We recall a definition of distality in §2. Simon introduced this concept in [5]
to single out the class of (in some sense) completely non-stable NIP structures.
It is encouraging to have the conclusion of Conjecture 1.1 now for both stable
and distal NIP structures. With both extremes covered, perhaps the remaining
inbetween cases will follow soon. Simon has, in recent work, explored ways
in which a type in an NIP structure can be “decomposed” into a stable part
and a distal part. He suggested the idea of using this work to remove the distal
assumption in Theorem 1.2. This is an appealing idea, but we have not managed
to implement it.

So-called strict Morley sequences play an important role in our proof of The-
orem 1.2 and we have a lemma concerning them which may be of independent
interest. We discuss strict Morley sequences in §2 and then present our lemma in
§3. In §4 we combine the various ingredients to complete the proof of Theorem
1.2.

We would like to thank Pierre Simon for valuable discussions concerning this
work, including pointing out errors in earlier attempts. We would also like to
thank the anonymous referee for, among other things, improving the concluding
argument and suggesting the present title of the paper.

2 Preliminaries

In this section we recall some background material. We begin with two ap-
proximations to Conjecture 1.1. The first replaces ψ(y) with tp(b/M) and was
established in [1]. The second replaces “consistent” with something weaker and
is a corollary of Proposition 25 in [2], in combination with the sentence preceding
the statement of that result in [2]. Both are discussed in [4].

Proposition 2.1. Let M ≺ N be NIP L-structures. Let ϕ(x, y) be an LM -

formula and let b ∈ N |y|. Assume ϕ(x, b) does not divide over M . Let q(y) =
tp(b/M). Then {ϕ(x, b′) : N |= q(b′)} is consistent.

Proposition 2.2. Let M ≺ N be NIP L-structures with N sufficiently satu-

rated. Let ϕ(x, y) be an LM -formula and let b ∈ N |y|. Assume ϕ(x, b) does not

divide over M . Then there exist an LM -formula ψ(y) ∈ tp(b/M) and a finite

Aψ ⊆ N |x| such that, for each b′ ∈ ψ(M), there is some a ∈ Aψ such that

N |= ϕ(a, b′).

The concept of distality was introduced by Simon in [5] to single out those
NIP structures which are, in some sense, completely unstable. There are var-
ious equivalent definitions. The following is (almost the same as and clearly
equivalent to) the one used in [2] together with the assumption of NIP (as we
shall not want it without that assumption).

Definition 2.3. A structure M is said to be distal if it is NIP and, for all

M ≺ N , indiscernible (bi)i∈Z in N |b0| and A ⊆ N , if (..., b−2, b−1, b1, b2, ...) is

indiscernible over A then also (..., b−2, b−1, b0, b1, b2, ...) is indiscernible over A.

Like NIP, this is really a property of the complete theory ofM . Theorem 21
in [2] gives a characterisation of distality for NIP structures. The following result
is a special case of one direction of this characterisation (modulo the obvious
and well-known fact that an expansion of a distal structure by constants is again
distal).
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Proposition 2.4. Let N be a distal L-structure. Then, for every LN -formula

ϕ(x, y), there exist an LN -formula θ(x, z) and a natural number k such that

|z| = k|y| and, for all B,C ⊆ N |y| and a ∈ N |x|, if

1. |C| ≥ 2,

2. B ⊆ C,

3. B is finite and

4. N |= ϕ(a, b) for all b ∈ B

then there is some c ∈ Ck such that N |= θ(a, c) and, for all b ∈ B, N |=
∀x(θ(x, c) → ϕ(x, b)).

The notion of a strict Morley sequence comes from work of Shelah and
plays an important role in [4]. An indiscernible sequence of realisations of a
complete type over M is a strict Morley sequence if it is strictly non-forking
over M . By the fact, from [3], that non-forking implies invariance (for types
over models), one obtains the following statement which we give in place of the
original definition.

Fact 2.5. Let M ≺ N be NIP structures with N sufficiently saturated. Let q(y)
be a complete type over M . Let (bn)n∈N be a strict Morley sequence in N |y| for

q(y). Then (bn)n∈N is indiscernible over M , b0 |= q(y) and, for each n ∈ N, the

following two conditions are satisfied:

1. tp(bn+1/Mb0...bn) extends to a complete type over N which isM -invariant

and

2. tp(b0...bn/Mbn+1) extends to a complete type over N which isM -invariant.

If (bn)n∈N satisfies the conclusion of Fact 2.5 then it is clear that any other
realisation of tp(b0b1b2b3.../M) in N will too. The following was established, in
greater generality, by Chernikov and Kaplan in [1]. See also [7].

Fact 2.6. Let M ≺ N be NIP structures with N sufficiently saturated. Let q(y)
be a complete type over M . Then there exists a strict Morley sequence (bn)n∈N

in N |y| for q(y).

3 Fitting indiscernible sequences around sets

In this section we note the following lemma which might be of independent
interest. It is an almost immediate consequence of Fact 2.5.

Lemma 3.1. Let M ≺ N be NIP structures with N sufficiently saturated. Let

q(y) be a complete type over M . Let (bn)n∈N be a strict Morley sequence for

q(y) in N |y|. Let B ⊆ N |y| be a finite set of realisations of q. Then there is a

sequence (dn)n∈Z in N |y| such that, for each d ∈ B, (..., d−2, d−1, d, d1, d2, ...) is
indiscernible over M and has the same EM-types as (bn)n∈N over M .

Proof. For each positive k ∈ N we can use part 2 of Fact 2.5 to obtain d0, ..., dk−1

and then part 1 of Fact 2.5 to obtain dk+1, dk+2, ... such that, for all d ∈ B,
(d0, ..., dk−1, d, dk+1, ...) has the same type as (bn)n∈N over M . The result then
follows by compactness.
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4 Proof of the main result

We now combine the various ingredients to give a proof of Theorem 1.2. Let
M ≺ N be distal L-structures. Let ϕ(x, y) be an LM -formula and let b ∈ N |y|.
Assume ϕ(x, b) does not divide over M . Let q(y) = tp(b/M). The conclusion
of Theorem 1.2 follows trivially when b ∈M |y|. We assume b /∈M |y|. So q has
infinitely many realisations. We may assume N is sufficiently saturated.

Proposition 4.1. There exist an LM -formula θ(x, z), a natural number k such

that |z| = k|y| and a complete type r(z) over M such that, for each finite set

B ⊆ N |y| of realisations of q(y), there is some c ∈ N |z| such that the following

conditions are satisfied.

1. N |= r(c),

2. θ(x, c) does not divide over M and

3. for all d ∈ B, N |= ∀x(θ(x, c) → ϕ(x, d)).

Proof. Let θ(x, z) and k be as in Proposition 2.4. Let (bn)n∈N be a strict Morley
sequence for q(y) in N |y|. Let a ∈ N |x| be such that N |= ϕ(a, bn) for all
n ∈ {1, ..., k + 1}. Such a exists because ϕ(x, b) does not divide over M . Then
there is a tuple i1...ik from {1, ..., k + 1} such that N |= θ(a, bi1 ...bik) and, for
all a′ ∈ N |x|, if N |= θ(a′, bi1 ...bik) then, for all n ∈ {1, ..., k+1}, N |= ϕ(a′, bn).

Since forking equals dividing over models, by [1], we may assume there is
some small N ′ such that M ≺ N ′ ≺ N and, for all n ∈ N, bn ∈ N ′|y| and a
realises a complete type over N ′ which does not fork over M . It then follows
that θ(x, bi1 ...bik) does not divide over M .

Let i ∈ {1, ..., k + 1} \ {i1, ..., ik}. Let B ⊆ N |y| be a finite set of real-
isations of tp(b/M). Let (dn)n∈Z in N |y| be indiscernible over M with the
same EM -types over M as (bn)n∈N and with the property that, for all d ∈ B,
(..., d−2, d−1, d, d1, d2, ...) is indiscernible over M . The existence of such a se-
quence comes from Lemma 3.1. Taking r = tp(bi1 ...bik/M) and then c =
d(i1−i)...d(ik−i) yields the desired result.

Let r(z) be as in Proposition 4.1. Let c ∈ N |z| be such that N |= r(c). Then
θ(x, c) does not divide over M (since that is a property of r(z) and does not
depend on which realisation we are using). It follows by Proposition 2.2 that
there exist τ(z) ∈ r(z) and a finite set Aτ ⊆ N |x| such that, for all c′ ∈ τ(M),
there is some a ∈ Aτ such that N |= θ(a, c′).

Let j = |Aτ |. By Proposition 4.1 and compactness, there is some ψ(y) ∈
tp(b/M) such that, for all B ⊆ ψ(M) with |B| ≤ j, there exists c′ ∈ τ(M) such
that N |= ∀x(θ(x, c′) → ϕ(x, d)) for all d ∈ B.

We complete the proof of Theorem 1.2 by showing that there is some a ∈ Aτ
such that N |= ϕ(a, b′) for all b′ ∈ ψ(M). Suppose not. Enumerate the elements
of Aτ as a1, ..., aj . Then, for each i ∈ {1, ..., j}, there is some bi ∈ ψ(M) such
that N |= ¬ϕ(ai, bi). Then B = {b1, ..., bj} is a subset of ψ(M) such that
|B| ≤ j. So there is some c′ ∈ τ(M) such thatN |= ∀x(θ(x, c′) → ϕ(x, bi)) for all
i ∈ {1, ..., j}. Also there is some i ∈ {1, ..., j} such that N |= θ(ai, c

′). Therefore
there is some i ∈ {1, ..., j} such that N |= ϕ(ai, bk) for all k ∈ {1, ..., j}. This is
a contradiction and the proof is finished.

4



References

[1] Artem Chernikov and Itay Kaplan. Forking and dividing in NTP2 theories.
J. Symbolic Logic, 77(1):1–20, 2012.

[2] Artem Chernikov and Pierre Simon. Externally definable sets and dependent
pairs ii. Transactions of the American Mathematical Society, 367:5217 –
5235.

[3] Saharon Shelah. Dependent first order theories, continued. Israel Journal

of Mathematics, 173(1):1–60, 2009.

[4] Pierre Simon. Invariant types in nip theories. Journal of Mathematical Logic,
0(0):1550006, 0.

[5] Pierre Simon. Distal and non-distal NIP theories. Ann. Pure Appl. Logic,
164(3):294–318, 2013.

[6] Pierre Simon. Dp-minimality: Invariant types and dp-rank. The Journal of

Symbolic Logic, 79:1025–1045, 12 2014.

[7] Pierre Simon. A Guide to NIP Theories. Cambridge University Press, 2015.
Cambridge Books Online.

[8] Pierre Simon and Sergei Starchenko. On forking and definability of types in
some dp-minimal theories. The Journal of Symbolic Logic, 79:1020–1024, 12
2014.

5


	1 Introduction
	2 Preliminaries
	3 Fitting indiscernible sequences around sets
	4 Proof of the main result

