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Abstract—We study the use of 3D Ray Tracing (RT) to
construct radiomaps for WLAN Received Signal Strength (RSS)
fingerprint-based positioning, in conjunction with calibration
techniques to make the overall process device-independent. RSS
data collection might be a tedious and time-consuming process
and also the measured radiomap accuracy and applicability
is subject to potential changes in the wireless environment.
Therefore, RT becomes a more attractive and efficient way
to generate radiomaps. Moreover, traditional fingerprint-based
methods lead to radiomaps which are restricted to the device
used to generate the radiomap and fail to provide acceptable
performance when different devices are considered. We address
both challenges by exploiting 3D RT-generated radiomaps and
using linear data transformation to match the characteristics of
various devices. We evaluate the efficiency of this approach in
terms of the time spent to create the radiomap, the amount of
data required to calibrate the radiomap for different devices and
the positioning error which is compared against the case of using
dedicated radiomaps collected with each device.

I. INTRODUCTION

Fingerprint-based positioning became a very popular topic

of research in the communication research community over

the last decades [1]. It consists of two main phases; the

offline phase where pre-measured location-dependent signal

information (e.g. RSS), known as “fingerprints” that cover the

entire area of interest, are stored in the database (radiomap)

and an online phase where the instantaneous measurement is

correlated with the fingerprints in the radiomap to estimate the

position.

Generating and maintaining the radiomap is very important

and it can be either done through an extensive measurement

campaign or through radio propagation modeling techniques.

Experimental measurements might lead to more accurate

fingerprints, but this process might be very laborious and

also the applicability of the measured radiomap is reduced if

the wireless environment is changed. Therefore, propagation

modeling techniques, such as Ray Tracing, have been used

for the creation and maintenance of the radiomap [2]–[5].

Still, RT accuracy is subject to the precise definition of the

geometry and morphology (e.g., wall electrical parameters)

of the environment and also the accurate definition of the

transmitter and receiver antennas. Such information is usually

hard to obtain and this might necessitate the crude calibration

of the RT tool in order to achieve higher accuracy.

Another basic limitation of fingerprint-based techniques is

that the device heterogeneity may degrade the positioning per-

formance when the device to be positioned is different from the

device that was used to collect the radiomap. Differences may

arise due to the different antenna characteristics of the mobile

terminals which are usually difficult to know or predict. There

is work reported in literature that tries to address the issue of

device diversity; mainly by calibrating the RSS measurements

collected from a mobile device to be positioned to match the

fingerprints contained in the radiomap (created using another

device), either through linearly transforming the collected

measurements with each device to match the fingerprints in the

radio map [6], [7], or by recording the signal ratios between

pairs of APs [8]. In this work we address both challenges

by using a single artificial radiomap generated through 3D

RT simulations and thereafter use linear transformation to fit

this radiomap to a set of fingerprints collected using four

different WLAN-enabled devices. Specifically, we focus on

the amount of fingerprints that need to be collected to obtain

appropriate linear transformation parameters that guarantee

low positioning error for each device.

Section II describes the fingerprint radiomap generation

using both measurements and RT simulations, Section III

describes the device calibration procedure which is applied on

the simulated and measured data. Section IV summarises the

results and performance of our approach. Finally, Section V

provides concluding remarks and ideas for future work.

II. FINGERPRINT RADIOMAP GENERATION

In order to assess the use of RT-generated radiomaps for

enabling fingerprint-based positioning with diverse devices,

WLAN RSS measurements have been collected in an indoor

wireless environment which has been also modeled and sim-

ulated using a 3D RT Simulator.

For the measurements, we have used 3 Android-based

handsets (HTC Desire HD, Samsung Nexus S and Samsung



Galaxy Tab) and one laptop (Lenovo X100e). Measurements

have been performed at the same time with all four devices

logging data from up to 6 D-Link 802.11b APs installed

inside the building and the RSS values range from -98dBm

to -15dBm. Data was measured at 110 equally-spaced (1m

spacing) training locations. At every location 30 fingerprints

have been recorded (1 sample/sec) and the mean fingerprint

value, averaged for each AP, has been computed to build each

device-specific radiomap. The whole data collection process

took 2 hours to complete. For testing purposes additional

RSS fingerprints have been collected with all devices along a

route that comprises 40 distinct locations, while 10 fingerprints

were measured at every test location with no averaging. The

floorplan of the experimentation area, the installed APs, the

training locations and test route are depicted in Figure 1.

To enable random selection of data, distributed uniformly in

the environment, we divide the whole area into seven non-

overlapping regions Ai, i = 1, . . . , 7 representing rooms and

large open spaces (see Figure 1), i.e. {A1 : ℓj, j = 1, . . . , 11},

{A2 : ℓj, j = 12, . . . , 30}, {A3 : ℓj, j = 31, . . . , 40},

{A4 : ℓj , j = 41, . . . , 59}, {A5 : ℓj = 60, . . . , 69},

{A6 : ℓj, j = 70, . . . , 89}, {A7 : ℓj , j = 90, . . . , 110} where

j is the training location index.
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Fig. 1. Experimentation Area Floor Plan (Reference Locations and APs).

Also, the radiomap has been created using 3DTruEM; a

powerful 3D Ray Tracing Simulator developed by Sigint

Solutions Ltd. Its calculation engine relies on a RT algorithm

which uses the 3D EM formulation of reflection, refraction

and diffraction based on the Universal Theory of Diffraction

(UTD). It offers the ability to define the receiver and trans-

mitter antenna characteristics from a wide range of standard

antennas, as well as the flexibility to import a custom-made

antenna by defining its 3D radiation pattern. A snapshot of

our simulator user interface is shown in Figure 2.

The indoor environment has been modeled into the RT

Simulator by importing its CAD file into the CAD designer

including features of the environment such as desks, tables

etc. The 110 receiving locations have been defined at the same

positions where the measurements with the devices have been

carried out. In every receiving location a rectangular grid of

36 equally-spaced (10cm) isotropic receivers (at 90cm height)

have been defined in order to remove potential fast fading

behavior by obtaining their local average. The accuracy of

the RT simulator relies strongly on the precise definition of

the electrical parameters of the walls defined in the geometric

model of the environment and also on the accurate antenna

pattern used. For this reason a Ray Tracing calibration process

[9] was carried out in order to fine-tune the walls constitutive

parameters and improve the accuracy of the RT simulations

when these are compared with the measurements received

using the Nexus device. Some of the calibration iterations

are tabulated in Table I. As a first iteration, random electrical

parameters have been used to characterise the walls and also

for the 6 access points (at 2.3m height) we have used antenna

patterns for typical dipole antennas. This iteration has achieved

an error of 7.2±5.22dB. In addition to the fact that the

parameters used were unrealistic, the presence of the wall in

the near-field of the antenna slightly modifies its pattern. For

this reason we have carried out in-situ measurements using

a spectrum analyser to better characterise the AP antenna

pattern. We have used this pattern in the second calibration

iteration together with typical electrical parameters obtained

from literature [10] decreasing the error to 6.77±4.29dB. At

the final iteration (11) the parameters have been fine-tuned,

further decreasing the error to 5.62±4.23dB. This error is

mainly due to the fact that the receiver antenna pattern is

unknown and it has been assumed as isotropic. To investigate

the effect of diffraction an additional iteration was carried out

showing minor effect on the accuracy (arround 0.5±0.2dB).

Also, for positioning accuracy investigations (see later) the

COST model was also used to create the radio map (error

13.1±23.6dB). The radiomaps generated at these iteration

steps will be used in section III to investigate the effect of

the RT calibration on the positioning accuracy.

TABLE I
RAY TRACING CALLIBRATION ITERATIONS

Iteration Description
Mean

Error (dB)
Std.

Deviation (dB)

1
Random Parameters

+ Dipole Antennas
7.2 5.22

2
Typical Parameters
+ Custom Antennas

6.77 4.29

11 Fine-Tuned Parameters 5.62 4.23

12
Like iteration 11
with out Diffraction

6.04 4.47

COST COST 231 Model 13.1 23.6

It is also of special interest to investigate the amount

of device-specific data that are required to assist this RT

calibration process and achieve acceptable accuracy. For this

reason data is selected by varying the number of training

locations which are used in this process. To achieve uniform

distribution of the training data in the area we randomly

selected a specific number of locations in every each region

described earlier. Using the radiomap generated at the last

calibration iteration (11) and by randomly selecting training

locations in every region of the environment we compared the

accuracy of the simulations against the device measurements.



Fig. 2. 3DTruEM Ray Tracing Simulator

The result shown in Figure 3 indicates that with few samples

per region the mean error and standard deviation do not

vary significantly, however increasing the number of locations

leads to higher confidence on these statistics. If a ±0.5dB

confidence interval on these statistics is acceptable, 4 locations

per region (i.e. 28 locations in total) are enough to achieve a

good accuracy between the measurements and the simulations.
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Fig. 3. Ray Tracing Calibration with Partial Measurement Data

III. DEVICE CALIBRATION

The fine-tuned RT radiomap can be used thereafter as a

reference radiomap for positioning various devices. However,

the mobile devices report different RSS values depending on

the hardware vendor of the WLAN adapter or the antenna

sensitivity and pattern. Therefore, the range of RSS values

can greatly vary among devices, thus rendering the direct use

of a single reference radiomap questionable. This necessitates

the use of device calibration to deliver a consistent level of

performance, regardless of the device used during positioning.

In our approach we investigate linear transformation by

using the training data for mapping the RSS values recorded

with each target device to the RT radiomap. The RT radiomap

contains the expected (mean) RSS value of each AP at every

training location inside the area of interest. For this reason, we

perform the linear data fitting in a least-squares sense using
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Fig. 4. Device calibration through linear fitting between the Ray Tracing
radiomap and the data collected with HTC Desire.

the mean RSS values of each device averaged over multiple

fingerprints collected at each training location. In this fashion,

the two linear coefficients are estimated and can be used in

a pre-processing step during positioning in order to scale the

observed RSS values accordingly.

The data fitting between the RT radiomap and the HTC

Desire is illustrated in Figure 4 indicating a strong linear

correlation between the respective mean RSS values. Inter-

estingly, the linear fitting obtained by using only 10% of the

training data (dashed line), i.e. the mean RSS values in the

fingerprints from 11 randomly selected locations, is very close

to the respective fitting when all available training data are

considered (solid line). This implies that we may use only

few data for the device calibration to considerably reduce the

data collection time for all target devices, thus increasing the

applicability of our approach.

IV. PERFORMANCE EVALUATION

We assess the effectiveness of the proposed approach with

respect to the positioning accuracy in an indoor environment

and compare it with the case of using device-specific ra-

diomaps collected with each device. Specifically, we employ

the experimental data collected with all four commercial

devices, as detailed in Section II, in order to investigate

the positioning error pertaining to our testing dataset. We

focus on the improvement achieved solely by combining the

RT radiomap with the device calibration, rather than the

fingerprint-based positioning method itself. Thus, our results

are obtained using the well known Nearest Neighbor (NN)

method [2]. Note that the proposed approach is independent

of the underlying fingerprint-based method and using a more

sophisticated approach, including probabilistic methods, would

incur additional accuracy improvement in the overall position-

ing system.

First, we examine the performance in case the Ray Trac-

ing radiomap is utilized without any device calibration. Our

findings are summarized in Table II that shows the statistics



of the positioning error, while the respective results if device-

specific radiomaps had been used are shown in parentheses for

comparison. Our first observation is that for the Nexus S and

Galaxy Tab devices the performance when the RT radiomap

is employed for positioning is similar with the case of using

device-specific radiomaps. Specifically, the mean error remains

the same for the Nexus S, while for the Galaxy Tab it is

slightly increased (2.2m compared to 1.9m). However, the RT

radiomap fails to provide adequate positioning accuracy for the

Desire and X100e devices, without any calibration. For these

two devices the mean error is increased by 0.9m and 1.3m,

respectively and this suggests that there is room for improving

accuracy by means of device calibration.

TABLE II
POSITIONING ERROR [M] USING AN UNCALIBRATED RT RADIOMAP

COMPARED TO DEVICE-SPECIFIC RADIOMAPS.

X100e Desire Nexus S Galaxy Tab

Mean 4.4 (3.1) 3.0 (2.1) 2.2 (2.2) 2.2 (1.9)
Median 4.4 (2.6) 2.5 (1.6) 2.1 (2.0) 2.1 (1.5)
67% cdf 5.1 (3.5) 3.3 (2.2) 2.8 (2.5) 2.7 (2.5)
95% cdf 7.6 (7.1) 6.7 (4.4) 4.9 (4.7) 4.7 (4.6)
Max 11.3 (11.1) 8.4 (10.2) 7.5 (8.5) 8.6 (9.4)

The question is how much training data are required to

calibrate each device and ensure a good mapping between

the RSS values observed during positioning and the RT

radiomap. We investigate this by employing the device-specific

training data and study the effect of using part of the data for

calibrating the devices, as detailed in Section III. Similarly to

the RT calibration process in Section II, partial data is selected

by varying the number of training locations in our setup

that contribute their mean value fingerprints in the calibration

process. In order to achieve a uniform distribution of the

training data utilized for calibration we randomly select a

specific number of locations from each region described in

Section II. The average and standard deviation of the mean

and 95% CDF positioning error, obtained over 100 runs using

a variable number of randomly selected locations per region

in each run, are tabulated in Table III. In this case all 30

fingerprints available for each location are used to calculate

the mean RSS fingerprints for the device calibration.

TABLE III
POSITIONING ERROR [M] USING A VARIABLE NUMBER OF TRAINING

LOCATIONS PER REGION.

X100e Desire Nexus S Galaxy Tab

Mean error
1 location 3.3±0.1 2.4±0.1 2.3±0.1 2.5±0.2
4 locations 3.3±0.0 2.4±0.0 2.3±0.0 2.5±0.1
All locations 3.3 2.4 2.3 2.4

95% CDF error
1 location 7.9±0.4 5.6±0.7 4.9±0.3 5.9±0.8
4 locations 8.0±0.1 5.8±0.3 5.0±0.1 5.9±0.3
All locations 8.0 5.9 4.9 5.8

Regarding the mean positioning error, shown in rows 1-

3, it seems that using the data from only one location per

TABLE IV
PERFORMANCE OF THE PROPOSED APPROACH USING 4 LOCATIONS PER

REGION AND 5 FINGERPRINTS PER LOCATION FOR DEVICE CALIBRATION.

X100e Desire Nexus S Galaxy Tab

Mean 3.4±0.0 2.4±0.0 2.3±0.0 2.5±0.1
Median 2.7±0.1 2.1±0.0 2.1±0.0 2.1±0.1
67% cdf 3.6±0.1 2.5±0.0 2.8±0.0 2.8±0.1
95% cdf 8.0±0.0 5.8±0.3 5.0±0.1 5.9±0.2
Max 10.4±0.4 9.0±0.3 7.5±0.1 8.5±0.2

region, provides the same performance with the case when

the data from all 110 training locations are used. The standard

deviation is also very low, indicating that the mean error is not

affected by the selection of specific locations in each region.

On the other hand, data from more locations per region should

be used to narrow the confidence interval for the 95% CDF

positioning error (rows 4-6). For instance, using data from four

locations per region decreases further the uncertainty around

the expected value of the 95% CDF error. This is justified

because these partial data actually contain several RSS values

from all APs, which cover a wide range of values, thus the

data fitting during the device calibration is very effective.

Another important issue is the number of fingerprints,

containing raw RSS values, that need to be collected at each

location in order to calculate the mean RSS fingerprints, as it

can greatly affect the time spent at a particular location for

collecting a series of samples. Thus, we additionally varied

the number of fingerprints that contribute to the mean RSS

fingerprint at each location. Our preliminary results suggest

that by using only five fingerprints per location does not affect

the performance of the proposed approach and provides the

same positioning accuracy, as with the case of using all 30

fingerprints per location. Combining this with our previous

finding on the number of training locations leads to great time

savings with respect to the device calibration process, as only

a small fraction of time needs to be spent for collecting device-

specific data.

The accuracy results, assuming data from only four loca-

tions per region and five fingerprints per location are used

in the device calibration, are reported in Table IV. For the

X100e and Desire devices the proposed approach improves

considerably the performance compared to using the RT

radiomap without any calibration, while the positioning error

is close to the error achieved when device-specific radiomaps

are employed; see Table II for comparison. For the Nexus S

device similar behavior was observed, while in the case of

Galaxy Tab the device calibration leads to some higher errors

during positioning that slightly increase the mean error.

In any case, the traditional fingerprint-based approach can

be replaced by the proposed approach, which requires only

five fingerprints at four random locations in each of the seven

regions inside our experimentation area for device calibration.

The amount of fingerprints collected can be also used in order

to fine-tune the electrical parameters of the building walls in

order to improve the RT positioning accuracy as presented in

Section II. Essentially, less than five minutes of tedious data



TABLE V
POSITIONING ACCURACY [M] VS RT ACCURACY [DB]

Iteration
Model

Accuracy
X100e Desire Nexus S Galaxy Tab

COST 13.1±23.6 4.3±0.1 2.8±0.3 3.2±0.2 3.3±0.2

1 7.2±5.22 3.3±0.0 2.7±0.0 2.7±0.1 2.5±0.0

2 6.77±4.29 3.6±0.1 2.9±0.0 2.9±0.1 2.6±0.1

11 5.62±4.23 3.4±0.0 2.4±0.0 2.3±0.0 2.5±0.1

12 6.04±4.47 3.4±0.1 2.4±0.0 2.4±0.0 2.6±0.1

TABLE VI
POSITIONING ACCURACY [M] ATTAINED WITH VARIOUS ALGORITHMS

X100e Desire Nexus S Galaxy Tab

KNN (K = 1) 3.4±0.0 2.4±0.0 2.3±0.0 2.5±0.1
KNN (K = 5) 2.9±0.1 1.9±0.0 2.0±0.0 1.9±0.0
WKNN (K = 5) 2.9±0.1 1.9±0.0 2.0±0.0 1.9±0.0
Probabilistic (σ = 6) 2.9±0.0 1.9±0.0 2.0±0.0 1.9±0.0

collection is needed for each target device, compared to around

two hours of RSS data logging for building each device-

specific radiomap. If we also consider that RT simulations for

this wireless environment took about 40 minutes to generate

the radiomap the total time saving is around 60%.

It is also interesting to investigate the effect of the RT

simulation accuracy on the positioning accuracy. Table V

shows the positioning accuracy achieved using the radiomaps

obtained at the various RT calibration iterations in conjunction

with the linear fitting technique described above. Compared to

the COST231 model, RT leads to better positioning accuracy

even if random or typical uncalibrated parameters are used for

characterising the building walls. If the electrical parameters

are fine-tuned (iteration 11) in order to better match a set of

measurement data (as presented in Section II) the positioning

accuracy is significantly improved. Also, ignoring diffraction

has minimal effect in the RT simulation accuracy and ef-

fectively on the positioning precision; compare the results

obtained at the 11th and 12th iteration in Table V. This

opposes to the findings in [11] where it is claimed that ignoring

the effect of diffraction leads to 700% degradation in the

positioning accuracy.

As mentioned earlier, the proposed approach is independent

of the underlying fingerprinting method and more sophis-

ticated methods are expected to incur additional accuracy

improvement in the overall positioning system. This is verified

in Table VI which tabulates the mean positioning error of

several positioning techniques; the KNN method [2] with

K = 5, the Weighted KNN method [12] with K = 5 and

a probabilistic technique based on the Bayesian Inference

method with kernel width σ = 6 [13].

V. CONCLUSION

Fingerprint-based positioning with respect to device diver-

sity is an active research field because the time consuming data

collection process, using several target devices, is involved

in the construction of the necessary radiomap. In this work

we focus on the use of a powerful 3D RT simulator to

automatically obtain a reference radiomap with much less

effort. Subsequently, we combine that with a device calibration

phase, which is based on linear fitting, to effectively map

the RSS values observed during positioning to our reference

RT radiomap, irrespectively of the user device. The proposed

approach mitigates the cumbersome task of recording large

datasets of RSS values throughout the area of interest with

multiple devices. Our performance evaluation indicates that

only a small amount of device-specific data are required to

reach the same level of positioning accuracy attained with

a manually collected radiomap. Thus, our approach is far

less laborious compared to traditional radiomap construction.

Moreover, the radiomap can be easily updated if the propaga-

tion environment changes in the future (e.g. APs are added or

removed, furniture or heavy equipment is relocated, etc.) by

running the RT simulator, instead of collecting the radiomap

data from scratch.
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