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Some results on dependent random variables and a
connection with the multivariates-increasing convex

order

Milto Hadjikyriakou∗

Abstract

In this paper some new concepts of dependence are introduced that generalize the con-

cepts of positive and negative association. The new concepts of dependence are linked to the

multivariates-increasing convex order (Denuit and Mesfioui (2010, 2013)). Furthermore, a

Kolmogorov-type inequality and a H̀ajek-R̀enyi inequality are proven that lead to an asymp-

totic result for these new random objects.

Key words and phrases: positive association, negative association, Kolmogorov-type in-

equality, H̀ajek-R̀enyi inequality, multivariates-increasing convex order.
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1 Introduction

Stochastic orders between random vectors have been studied extensively by various authors exactly

because of their wide range of applications in several fields of probability and statistics. Some

stochastic orders can be defined by reference to some class of measurable functions. Consider

two n-dimensional random vectorsX andY. The random vectorX is said to be smaller than the

random vectorY in the�∗ ordering associated to the classU[n]
∗ of real-valued functions defined on

(a subset of) then-dimensional real spaceRn if

E[g(X)] ≤ E[g(Y)] for all g ∈ U[n]
∗ . (1)

Some of the most celebrated stochastic orders are the ones that involve convex functions. For

example, in the case whereU[1]
∗ includes convex functions, (1) defines the univariate convex order

while if U[n]
∗ includes multivariate convex functions then the multivariate convex order is defined.

The directionally convex order can be defined in a similar way. Multivariate extensions involving

convex functions can also be found in Denuit et al (1999), Denuit and Mesfioui (2010, 2013)

while recently Sordo (2016) introduced a multivariate extension of the increasing convex order

that can be used in the case where the components of the random vectors that are involved are

heterogeneous. For an interested reader we refer the books of Shaked and Shanthikumar (2007)

and Müller and Stoyan (2002).

Let s = (s1, s2, . . . , sn) be a vector of non-negative integers andS ⊆ Rn. LetUs−icx(S) be the

class of all functionsg : S→ R such that

∂k1+k2+∙∙∙+kn

∂xk1
1 ∂x

k2
2 ∙ ∙ ∙ ∂x

kn
n

g(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ S, (2)

whereki = 0,1, . . . , si , i = 1,2, . . . , n, k1 + k2 + ∙ ∙ ∙ + kn ≥ 1.

Consider twon-dimensional random vectors (X1, . . . ,Xn) and (Y1, . . . ,Yn) valued inS. Denuit and

Mesfioui (2010) introduced the concept of thes-increasing convex order as follows:

2
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Definition 1 The random vector(X1, . . . ,Xn) is said to be smaller than(Y1, . . . ,Yn) in the s-

increasing convex order, which is denoted by(X1, . . . ,Xn) �s−icx (Y1, . . . ,Yn) if

E[g(X1, . . . ,Xn)] ≤ E[g(Y1, . . . ,Yn)] for all g ∈ Us−icx(S),

provided that the expectations exist.

For this new stochastic order Denuit and Mesfioui (2010) provided the following result (Property

6.1(i)).

Lemma 2 Let (X1, . . . ,Xn) and(Y1, . . . ,Yn) be nonnegative random variables. Then

X �s−icx Y ⇒ Ψ(X) �(∑n
i=1 si)−icx Ψ(Y)

for any non-negative functionΨ inUs−icx. In particular,

X �s−icx Y ⇒
n∑

i=1

αiXi �(∑n
i=1 si)−icx

n∑

i=1

αiYi for anyα1, . . . , αn ≥ 0.

Denuit and Mesfioui (2013) generalized the above comparison for vectors of partial sums.

Lemma 3 If (X1, . . . ,Xn) �s−icx (Y1, . . . ,Yn) then

(S1, . . . ,Sn) �(s1,s1+s2,∙∙∙ ,s1+s2+∙∙∙+sn)−icx (T1, . . . ,Tn)

where Sj = X1 + ∙ ∙ ∙ + Xj and Tj = Y1 + ∙ ∙ ∙ + Yj for j = 1, . . . , n.

It is of interest to study whether the results of Denuit and Mesfioui (2010, 2013) are applicable

to vectors of random variables that are somehow dependent. A variety of concepts of dependence

appear in the literature. These concepts have generated wide interest since they have a variety

of applications in many different fields such as multivariate statistical analysis, reliability theory,

actuarial science etc. Two of the most celebrated notions of dependence are positive and negative

association, introduced by Esary et al (1967) and Joag-Dev and Proschan (1983) respectively. Let

3
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us recall the definitions of positive and negative association since these two concepts are of major

importance for what follows in this paper.

Definition 4 A finite collection of random variables X1, . . . ,Xn is said to be (positively) associated

if

Cov( f (X1, . . . ,Xn),g(X1, . . . ,Xn)) ≥ 0

for any two componentwise nondecreasing functions f, g provided that the covariance is defined.

An infinite collection is associated if every finite subcollection is associated.

Definition 5 A finite collection of random variables X1, . . . ,Xn is said to be negatively associated

(NA) if

Cov( f (Xi , i ∈ A),g(Xj , j ∈ B)) ≤ 0

for any disjoint subsets A and B of{1,2, . . . , n} and for any two componentwise nondecreasing

functions f, g onR|A| andR|B| respectively, provided that the covariance is defined. An infinite

collection is negatively associated if every finite subcollection is negatively associated.

The last decades the notions of positive and negative association have been studied extensively

by many researchers and among the various results obtained for these concepts are several gener-

alized notions of dependence. Newman and Wright (1982) introduced the concept of demimartin-

gales in order to provide a much more general class than positively associated random variables.

The definition of demimartingales is given below.

Definition 6 Let {Sn,n ≥ 1} be a collection of random variables defined on a probability space

(Ω,A,P). The sequence{Sn,n ≥ 1} is called a demimartingale if for every componentwise non-

decreasing function f and for j> i

E
[(

Sj − Si

)
f (S1, . . . ,Si)

]
≥ 0 (3)

4
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If moreover (3) is valid for any nonnegative componentwise nondecreasing function f , then{Sn,n ≥

1} is called a demisubmartingale.

Note that it is straight forward to prove that the partial sums of mean zero positively associated

random variables form a sequence of demimartingales. Motivated by the definition of demimartin-

gales Christofides (2003) introduced the concept of N-demimartingales. It can easily be proven

that the partial sums of mean zero negatively associated random variables satisfy the structure of

an N-demimartingale sequence.

Definition 7 Let {Sn,n ≥ 1} be a collection of random variables defined on a probability space

(Ω,A,P). The sequence{Sn,n ≥ 1} is called an N-demimartingale if for every componentwise

nondecreasing function f and for j> i

E
[(

Sj − Si

)
f (S1, . . . ,Si)

]
≤ 0 (4)

If moreover (4) is valid for any nonnegative componentwise nondecreasing function f , then{Sn,n ≥

1} is called a N-demisupermartingale.

Results related to demimartingales and N-demimartingales can be found in the monograph of

Prakasa Rao (2012).

In this paper we provide the definitions of two new concepts of dependence similar in structure

as the concepts of demimartingales and N-demimartingales. Firstly, we introduce the concept of a

sequence that is said to have strong N-demimartingale differences.

Definition 8 Let {Sn,n ∈ N} be a sequence of random variables with S0 ≡ 0. If for any f and g

componentwise nondecreasing functions

Cov[g(Sn+1 − Sn), f (S1,S2 − S1, . . . ,Sn − Sn−1)] ≤ 0 for n = 1,2, . . . (5)

the sequence{Sn, n ∈ N} is said to have strong N-demimartingale differences.

5
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The above definition is closely related to the concept of negative association. Let{Xn,n ∈ N}

be a sequence of NA random variables and let{Sn,n ∈ N} be the sequence of their partial sums,

i.e. Sn =
∑n

i=1 Xi , for n ∈ N. Because of the negative association property we have that

Cov[g(Sj+1 − Sj), f (S1,S2 − S1, . . . ,Sj − Sj−1)] = Cov[g(Xj+1), f (X1,X2, . . . ,Xj)] ≤ 0.

This latter inequality proves that the sequence of partial sums of NA random variables has strong

N-demimartingale differences.

Furthermore, it is trivial to verify that the random variablesX1 andX2 are NA if and only ifX1

andX1 + X2 have strong N-demimartingale differences.

However, it is crucial to verify that the class of random variables that have the property of strong

N-demimartingale differences does not include only the sequence of partial sums of negatively

associated random variables but it is actually a wider class of random variables. This is proven via

the counterexample that follows.

Example 9 Let X1,X2,X3 and X4 be random variables with joint probability mass function P de-

fined as

P(0,0,0,0) =
1
96
, P(1,0,0,0) =

1
48
, P(0,0,0,1) =

7
96
, P(1,0,0,1) =

17
144

P(0,0,1,0) =
1
32
, P(1,0,1,0) =

3
144
, P(0,0,1,1) =

5
96
, P(1,0,1,1) =

1
144

P(0,1,0,0) =
1
16
, P(1,1,0,0) =

1
36
, P(0,1,0,1) =

35
144
, P(1,1,0,1) =

1
9

P(0,1,1,0) =
1
16
, P(1,1,1,0) =

1
72
, P(0,1,1,1) =

19
144
, P(1,1,1,1) =

1
72

where P(a,b, c,d) = P(X1 = a, X2 = b, X3 = c, X4 = d) and let Sn =
∑n

i=1 Xi for n = 1,2,3,4.

It can be proven that{S1,S2,S3,S4} satisfy (5) since for any f and g componentwise nonde-

creasing functions the following relations are valid

Cov(g(X2), f (X1)) ≤ 0, (6)

6
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Cov(g(X3), f (X1,X2)) ≤ 0, (7)

and

Cov(g(X4), f (X1,X2,X3)) ≤ 0. (8)

It can also be proven that for

g(1,1) = 4, g(0,1) = 2, g(1,0) = 1, g(0,0) = 0

and

f (0,0) = 1, f (0,1) = 2, f (1,0) = 1, f (1,1) = 2.

the covariance

Cov( f (X1,X2),g(X3,X4)) =
1

1728
(79f (0,0)+ 99f (0,1)− 95f (1,0)− 83f (1,1))

=
1

108
> 0.

The latter inequality proves that{X1,X2,X3,X4} are not negatively associated.

Similar to the concept of sequences having strong N-demimartingale differences we can pro-

vide the definition of a sequence that is said to have strong demimartingale differences.

Definition 10 Let {Sn,n ∈ N} be a sequence of random variables with S0 ≡ 0. If for any f and g

componentwise nondecreasing functions

Cov[g(Sn+1 − Sn), f (S1,S2 − S1, . . . ,Sn − Sn−1)] ≥ 0 for n = 1,2, . . . (9)

the sequence{Sn,n ∈ N} is said to have strong demimartingale differences.

Let {Xn,n ∈ N} be a sequence of associated random variables and let{Sn,n ∈ N} be the

sequence of their partial sums, i.e.Sn =
∑n

i=1 Xi , for n ∈ N. Then

Cov[g(Sj+1 − Sj), f (S1,S2 − S1, . . . ,Sj − Sj−1)] = Cov[g(Xj+1), f (X1,X2, . . . ,Xj)] ≥ 0

7
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proving that the sequence of partial sums of associated random variables satisfies (9).

Next we provide an example of a sequence that is said to have strong N-demimartingale differ-

ences.

Example 11 Let X1,X2, . . . be normally distributed random variables with meanμi and variance

σ2
i for i = 1,2, . . . and let X0 ≡ 0. Define Yi = Xi − Xi−1 for i = 1,2, . . .. Then Yi are normally dis-

tributed with meanμi−μi−1 and varianceσ2
i−1+σ

2
i −2ρi−1,iσi−1σi whereρi−1,i = Corr(Xi−1,Xi). Sup-

pose that the bivariate distribution of the vector(Yi ,Yj) is given by the Farlie-Gumbel-Morgenstern

system

FYi ,Yj (x, y) = FYi (x)FYj (y){1+ αi j [1 − FYi (x)][1 − FYj (y)]}, αi j ∈ (−1,0) (10)

where FYi and FYj are the marginal cumulative distribution functions of the random variables Yi

and Yj. Schucany et al. (1978) proved that for the bivariate distribution described by (10)

Cov(Yi ,Yj) =
αi j

π

and sinceαi j ∈ (−1,0) the random variables Yi ,Yj are negatively correlated. But negatively cor-

related random variables that are normally distributed form a sequence of negatively associated

random variables. Therefore for any f and g componentwise nondecreasing functions

Cov(g(Xi+1 − Xi), f (X1,X2 − X1, . . . ,Xi − Xi−1)) ≤ 0 for i = 1,2, . . .

proving that{Xn,n ∈ N} forms a sequence that is said to have strong N-demimartingale differences.

In the case where the random variables Xi’s are positively correlated then it is known that they

are also positively associated. In this example it has been proven that it is also a sequence that is

said to have strong N-demimartingale differences.

Remark 12 Note that if the details of the example presented above are properly modified, i.e.

αi j ∈ (0,1), we can obtain an example of a sequence that is said to have strong demimartingale

sequences.

8
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Remark 13 The counterexample provided in Example 9 highlights the fact that a sequence of

partial sums of random variables can satisfy the definition of a sequence that is said to have

strong N-demimartingale differences without the random variables to be negatively associated.

Furthermore, Example 11 provides a sequence of random variables that is said to have strong

N-demimartingale differences even in the case where the random variables are positively asso-

ciated. Additionally, the random variables in Example 11 can be negatively associated and at

the same time the random variables themselves to be a sequence that is said to have strong N-

demimartingale differences and not their partial sums. These two examples prove that the classes

introduced in this paper are wider classes than the classes of positively and negatively associated

random variables.

The purpose of this paper is to prove that a vector of random variables that are said to have

strong N-demimartingale differences (strong demimartingale differences) is smaller (larger) than

the vector of their independent duplicates with respect to the multivariates-increasing convex

order. As a direct consequence this kind of stochastic ordering can also be obtained for nega-

tively/positively associated random variables as well. The desired result is obtained as a direct

application of a much more general comparison inequality proven in Section 2. Furthermore in

Section 3, the comparison inequality is utilized to provide useful probability inequalities such as a

Kolmogorov-type inequality, a H̀ajek-R̀enyi type inequality and a strong law for random variables

that are said to have strong N-demimartingale differences.

2 Comparison inequalities for moments of functions of random

variables

The two results that follow are instrumental for the proof of the main result of this section. For the

details of their proofs the interested reader can study Theorem B (page 5) and Theorem A (page 9)

9
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of Roberts and Varberg (1973) respectively.

Theorem 14 If f : I → R is convex, then the left and right derivatives, denoted by f′
−(x) and f′+(x)

respectively, exist and are increasing.

Theorem 15 A function f : (a,b) → R is convex if and only if there is an increasing function

g : (a,b)→ R and a point c∈ (a,b) such that for all x∈ (a,b),

f (x) − f (c) =
∫ x

c
g(t)dt.

Remark 16 Recall that a function f: Rn → R is considered to be a componentwise convex

function if it is convex in each variable. Assume that g: Rn → R is a componentwise convex

function. The function f(x) = g(x1, x2, . . . , xi−1, x, xi+1, . . . , xn) is a convex function with respect to

x for all i = 1,2, . . . , n and therefore Theorems 14 and 15 are valid for the function f .

The theorem that follows provides a comparison theorem for the expectations of functions of ran-

dom vectors that have strong N-demimartingale differences and their independent duplicates.

Theorem 17 Let{Sn,n ∈ N} be a sequence of random variables that have strong N-demimartingale

differences and let Xi = Si − Si−1. Let X∗i be independent random variables such that Xi =st X∗i .

Then

E
[
g(X1, . . . ,Xn)

]
≤ E

[
g(X∗1, . . . ,X

∗
n)
]

(11)

for every componentwise convex function g such that its right derivative with respect to the i-th

component, is componentwise nondecreasing for all i= 1,2, . . . , n.

Proof. The proof is inspired by Christofides and Vaggelatou (2004). Without loss of generality we

assume thatX1, . . . ,Xn andX∗1, . . . ,X
∗
n are independent. First, it needs to be proven that

E
[
g(X1, . . . ,Xn−1,Xn)

]
≤ E

[
g(X1, . . . ,Xn−1,X

∗
n)
]
. (12)

10
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For anyx, x0 ∈ R and for every componentwise convex functiong we can write

g(X1, . . . ,Xn−1, x) = g(X1, . . . ,Xn−1, x0) +
∫ x

x0

hn(X1, . . . ,Xn−1, t)dt

= g(X1, . . . ,Xn−1, x0) +
∫

R

[I [x > t] − I [x0 > t]] hn(X1, . . . ,Xn−1, t)dt

wherehn is the right derivative ofg with respect to the last variable. Since the equality stated above

is valid for all real numbers, it follows that

g(X1, . . . ,Xn−1,Xn) − g(X1, . . . ,Xn−1,X
∗
n) =

∫

R

[
I [Xn > t] − I [X∗n > t]

]
hn(X1, . . . ,Xn−1, t)dt.

By taking expectations on both sides we have that

E[LHS] =

∫

R

E{
(
I [Xn > t] − I [X∗n > t]

)
hn(X1, . . . ,Xn−1, t)}dt

=

∫

R

{E [I [Xn > t]hn(X1, . . . ,Xn−1, t)] − E
[
I [X∗n > t]hn(X1, . . . ,Xn−1, t)

]
}dt

=

∫

R

{E [I [Xn > t]hn(X1, . . . ,Xn−1, t)] − E(I [X∗n > t])E(hn(X1, . . . ,Xn−1, t))}dt

=

∫

R

{E [I [Xn > t]hn(X1, . . . ,Xn−1, t)] − E(I [Xn > t])E(hn(X1, . . . ,Xn−1, t))}dt

=

∫

R

Cov(I (Xn > t),hn(X1, . . . ,Xn−1, t))dt

=

∫

R

Cov(I (Sn − Sn−1 > t),hn(S1,S2 − S1 . . . ,Sn−1 − Sn−2, t))dt

where the third equality follows by the independence ofX∗n andX1, . . . ,Xn−1 and the fourth by the

fact thatXn =st X∗n.

Observe that for all values oft, I (Sn − Sn−1 > t) is a nondecreasing function ofSn − Sn−1 and

by assumptionhn(S1, . . . ,Sn−1 − Sn−2, t) is a componentwise nondecreasing function ofS1,S2 −

S1, . . . ,Sn−1 − Sn−2. Therefore by the definition of{Sn,n ∈ N}

Cov(I (Sn − Sn−1 > t),hn(S1, . . . ,Sn−1 − Sn−2, t)) ≤ 0.

11
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This last inequality yields (12).

The proof of (11) follows by induction. Forn = 2 we have that

E[g(X∗1,X
∗
2)] = E[g(X1,X

∗
2)] ≥ E[g(X1,X2)] because of (12).

Next, assume that the statement is true forn− 1. Then forn-dimensional random vectors we have

that

E[g(X∗1, . . . ,X
∗
n)] = E{E[g(X∗1, . . . ,X

∗
n)|X∗n]}

=

∫

R

E[g(X∗1, . . . ,X
∗
n)|X∗n = x]dFX∗n(x)

=

∫

R

E[g(X∗1, . . . ,X
∗
n−1, x)]dFX∗n(x)

≥
∫

R

E[g(X1, . . . ,Xn−1, x)]dFX∗n(x) (by the induction hypothesis)

=

∫

R

E[g(X1, . . . ,Xn−1,X
∗
n)|X∗n = x]dFX∗n(x)

= E{E[g(X1, . . . ,Xn−1,X
∗
n)|X∗n]}

= E[g(X1, . . . ,Xn−1,X
∗
n)]

≥ E[g(X1, . . . ,Xn−1,Xn)]

where the fourth equality follows from the independence ofX∗n andX1, . . . ,Xn−1 and the last equal-

ity follows by (12).

Next, we provide the comparison inequality for a sequence of random variables that is said to

have strong demimartingale differences. The proof follows by applying the same steps as in the

proof of Theorem 17 and therefore is omitted for brevity.

Theorem 18 Let {Sn,n ∈ N} be a sequence of random variables that have strong demimartingale

differences and let Xi = Si − Si−1. Let X∗i be independent random variables such that Xi =st X∗i .

Then

E
[
g(X1, . . . ,Xn)

]
≥ E

[
g(X∗1, . . . ,X

∗
n)
]

(13)

12
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for every componentwise convex function g such that its right derivative with respect to the i-th

component is componentwise nondecreasing for all i= 1,2, . . . , n.

3 A connection to the multivariate s-increasing convex order

The results provided in Theorems 17 and 18 allow us to give an answer to the question stated earlier

i.e. whethers-increasing convex order can be obtained for random variables that are somehow

dependent.

Henceforth, following the notation of Denuit and Mesfioui (2013), for all vectorss= (s1, s2, . . . , sn)

of non-negative integers define

Σi(s) = s1 + s2 + ∙ ∙ ∙ + si , i = 1,2, . . . , n

and

Σ(s) = (Σ1(s), . . . ,Σn(s)).

Theorem 19 Let {Sn,n ∈ N}, {Xn,n ∈ N} and {X∗n,n ∈ N} be as stated in Theorem 17 and let

Ŝn =
∑n

i=1 X∗i . Then for all vectorss= (s1, s2, . . . , sn) where si ≥ 2 for all i = 1,2, . . . , n

1.

(X1, . . . ,Xn) �s−icx (X∗1, . . . ,X
∗
n), (14)

2.

(X1, . . . ,Xk) �s−icx (X∗1, . . . ,X
∗
k) for k = 1,2, . . . , n, (15)

3. In the case of nonnegative random variables,

Sk �∑k
i=1 si−icx Ŝk for k = 1,2, . . . , n, (16)

4.

(S1, . . . ,Sn) �Σ(s)−icx (Ŝ1, . . . , Ŝn). (17)

13
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Proof. Note that Theorem 17 was proven for any componentwise convex functiong such that

its right derivative with respect to thei-th component is componentwise nondecreasing for all

i = 1,2, . . . , n. It is essential to mention that the result is valid for functions that are not necessarily

differentiable. In the case where the functiong satisfies condition (2) forsi ≥ 2, then it is consid-

ered to be componentwise convex and its derivatives are componentwise nondecreasing functions.

Therefore, the assumptions of Theorem 17 are satisfied and the proof of (14) follows directly from

Theorem 17.

The fact that thes-icx order is closed under marginalization leads to (15). The validity of (16)

follows by Lemma 2 (Property (6.1i) of Denuit and Mesfioui (2010)). Finally, (17) follows by

applying the result of Lemma 2 (Proposition (3.1) of Denuit and Mesfioui(2013)).

In the case of sequences that are said to have strong demimartingale differences a similar theo-

rem can be obtained with the reversed inequalities.

Theorem 20 Let {Sn,n ∈ N}, {Xn,n ∈ N} and {X∗n,n ∈ N} be as stated in Theorem 18 and let

Ŝn =
∑n

i=1 X∗i . Then for all vectorss= (s1, s2, . . . , sn) where si ≥ 2 for all i = 1,2, . . . , n

1.

(X1, . . . ,Xn) �s−icx (X∗1, . . . ,X
∗
n),

2.

(X1, . . . ,Xk) �s−icx (X∗1, . . . ,X
∗
k) for k = 1,2, . . . , n,

3. In the case of nonnegative random variables,

Sk �∑k
i=1 si−icx Ŝk for k = 1,2, . . . , n,

4.

(S1, . . . ,Sn) �Σ(s)−icx (Ŝ1, . . . , Ŝn).

14
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Remark 21 It is worth mentioning that the results of Theorems 19 and 20 can lead to similar

inequalities for negatively and positively associated random variables respectively.

4 Some results on dependent random variables

Even though the motivation for this research work was to provide a connection between the new

concepts of dependence and the multivariates-increasing convex order, the comparison inequality

that was proven in Section 2, allows us to obtain some very useful probability inequalities. Firstly,

let’s state as a remark an observation that is instrumental for the rest of the paper.

Remark 22 Theorem 17 is valid for every function g that is componentwise convex and its right

derivative with respect to the any of its component is a componentwise nondecreasing function.

The function

f1(x1, x2, . . . , xn) =
n∑

i=1

xi

satisfies both conditions.

Two useful functions that also posses the desired properties (see the Appendix for the proofs)

are

f2(x1, x2, . . . , xn) = max
1≤k≤n

k∑

i=1

xi

and

f3(x1, x2, . . . , xn) = max
1≤k≤n




k∑

i=1

xi




2

.

A direct consequence of Theorem 17 and of the remark stated above is the result that follows.

Theorem 23 Let{Sn,n ∈ N} be a sequence of random variables that have strong N-demimartingale

differences and let Xi = Si − Si−1. Let X∗i be independent random variables such that Xi =st X∗i .

Then

E


 f




n∑

i=1

Xi





 ≤ E


 f




n∑

i=1

X∗i





 (18)

15
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

and

E


 f


max

1≤k≤n

k∑

i=1

Xi





 ≤ E


 f


max

1≤k≤n

k∑

i=1

X∗i





 (19)

for every f increasing convex function.

Proof. By using Remark 22 and the fact thatf is an increasing convex function, the functions

g1(x1, . . . , xn) = f
(∑n

i=1 xi
)

andg2(x1, . . . , xn) = f
(
max1≤k≤n

∑k
i=1 xi

)
satisfy the conditions of The-

orem 17 and therefore inequalities (18) and (19) follow directly from(11).

The fact that the sequence of partial sums of NA random variables satisfies (5) leads to the corol-

laries that follow.

Corollary 24 Let {Xn,n ∈ N} be a sequence of NA random variables and let X∗
i be independent

random variables such that Xi =st X∗i for i = 1,2, . . .. Then

E
[
g(X1, . . . ,Xn)

]
≤ E

[
g(X∗1, . . . ,X

∗
n)
]

for every componentwise convex function g such that its right derivative with respect to the i-th

component is componentwise nondecreasing for all i= 1,2, . . . , n.

Corollary 25 Let {Xn,n ∈ N} be a sequence of NA random variables and let X∗
i be independent

random variables such that Xi =st X∗i for i = 1,2, . . .. Then

E


 f




n∑

i=1

Xi





 ≤ E


 f




n∑

i=1

X∗i





 (20)

and

E


 f


max

1≤k≤n

k∑

i=1

Xi





 ≤ E


 f


max

1≤k≤n

k∑

i=1

X∗i





 (21)

for every f increasing convex function.

Remark 26 Observe that (21) is in full agreement with inequality (1.3) presented in Shao (2000).

Theorem 17 is instrumental for proving the Kolmogorov-type inequality that follows.
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Corollary 27 Let Sn, Xn and X∗n be as stated in Theorem 17 with E(Xi) = 0and EX2
i < ∞ for all i ∈

N. Then forε > 0

P
(
max
1≤k≤n
|Sk| ≥ ε

)
≤

4
ε2

n∑

i=1

E(X2
i ). (22)

Proof.

P
(
max
1≤k≤n
|Sk| ≥ ε

)
≤ P

(
(max
1≤k≤n
|Sk|)

2 ≥ ε2
)

= P
(
max
1≤k≤n

S2
k ≥ ε

2
)

≤
1
ε2

E
(
max
1≤k≤n

S2
k

)

≤
1
ε2

E


max

1≤k≤n




k∑

i=1

X∗i




2

≤
4
ε2

n∑

i=1

E(X∗i )2

=
4
ε2

n∑

i=1

E(Xi)
2

where the third inequality follows by applying the result of Theorem 17 for the functiong(x1, . . . , xn) =

max1≤k≤n(x1 + ∙ ∙ ∙ + xk)2 and the fourth inequality by Doob’s inequality for martingales.

The Kolmogorov-type inequality is the key result for obtaining the Hàjek-R̀enyi inequalities

for random variables that are said to have strong N-demimartingale differences. The proof can

be obtained by applying standard arguments (see for example Chen et al.(1999)) and therefore is

omitted for brevity.

Corollary 28 Let Sn and Xn be as stated in Theorem 17 with EX2
i < ∞ for all i ∈ N and let

{bn,n ∈ N} be a nondecreasing sequence of positive real numbers. Then

P

(

max
1≤k≤n

∣∣∣∣∣
1
bk

(Sk − ESk)
∣∣∣∣∣ ≥ ε

)

≤
16
ε2

n∑

i=1

Var(Xi)

b2
i

(23)

and

P

(

max
m≤k≤n

∣∣∣∣∣
1
bk

(Sk − ESk)
∣∣∣∣∣ ≥ ε

)

≤
64
ε2




n∑

i=m+1

Var(Xi)

b2
i

+

n∑

i=1

Var(Xi)
b2

m


 . (24)
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As a direct consequence of the Hàjek-R̀enyi inequality we can easily obtain the following

strong law for random variables that are said to have strong N-demimartingale differences. Again

the proof can be obtained by applying similar steps as in the proof of Theorem 3.1 of Chen et

al.(1999) and therefore is omitted.

Theorem 29 Let Sn and Xn be as stated in Theorem 17 and let{bn,n ≥ 1} be a sequence of positive

nondecreasing real numbers with
∑∞

n=1
VarXn

b2
n
< ∞.

Then for any0 < r < 2,

E sup
n

(
|Sn|
bn

)r

< ∞.

Assume that0 < bn ↑ ∞, then for n→ ∞

Sn − ESn

bn
→ 0 a.s..

The result of the Theorem that follows, derives directly by applying the comparison inequality

obtained in Theorem 18.

Theorem 30 Let {Sn,n ∈ N} be a sequence of random variables that have strong demimartingale

differences and let Xi = Si − Si−1. Let X∗i be independent random variables such that Xi =st X∗i .

Then

E


 f




n∑

i=1

Xi





 ≥ E


 f




n∑

i=1

X∗i





 (25)

and

E


 f


max

1≤k≤n

k∑

i=1

Xi





 ≥ E


 f


max

1≤k≤n

k∑

i=1

X∗i





 (26)

for every f increasing convex function.

Remark 31 Denuit et al. (2001) introduced another notion of dependence that is very useful for

actuaries, namely the positive cumulative dependence (PCD). Based on Theorem 3.1 of their paper,

the result stated in (25) is also valid for random variables that are PCD. Since the dependence

notion proposed in this paper is stronger than PCD, (25) can be reduced to a known result.
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Since the concept of positive association is closely related to the concept of sequences with

strong demimartingale differences we can easily obtain the results that follow by applying the

result of Theorem 18.

Corollary 32 Let {Xn,n ∈ N} be a sequence of associated random variables and let X∗
i be inde-

pendent random variables such that Xi =st X∗i for i = 1,2, . . .. Then

E
[
g(X1, . . . ,Xn)

]
≥ E

[
g(X∗1, . . . ,X

∗
n)
]

for every componentwise convex function g such that its right derivative with respect to the i-th

component, hi is componentwise nondecreasing for all i= 1,2, . . . , n.

Corollary 33 Let {Xn,n ∈ N} be a sequence of associated random variables and let X∗
i be inde-

pendent random variables such that Xi =st X∗i for i = 1,2, . . .. Then

E


 f




n∑

i=1

Xi





 ≥ E


 f




n∑

i=1

X∗i





 (27)

and

E


 f


max

1≤k≤n

k∑

i=1

Xi





 ≥ E


 f


max

1≤k≤n

k∑

i=1

X∗i





 (28)

for every f increasing convex function.
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Appendix

Lemma 34 Consider the following functions

f (x1, . . . , xn) = max{x1, x1 + x2, . . . , x1 + x2 + ∙ ∙ ∙ + xn}

and

g(x1, . . . , xn) = max{x2
1, (x1 + x2)

2, . . . , (x1 + x2 + ∙ ∙ ∙ + xn)
2}.

The right derivatives of these functions with respect to the i-th component are componentwise

nondecreasing functions for all i= 1,2, . . . , n.

Proof. Without loss of generality we will calculate the right derivative of these functions with

respect to their last variable.

Let h1(t) = f ′+(x1, x2, . . . , xn−1, t) andsj =
∑ j

i=1 xi. Then

h1(t) = lim
h→0+

f (x1, x2, . . . , xn−1, t + h) − f (x1, x2, . . . , xn−1, t)
h

= lim
h→0+

max{s1, s2, . . . , sn−1, sn−1 + t + h} −max{s1, s2, . . . , sn−1, sn−1 + t}
h

= lim
h→0+

max{max{s1, . . . , sn−1}, sn−1 + t + h} −max{max{s1, . . . , sn−1}, sn−1 + t}
h

.

Let max{s1, s2, . . . , sn−1} = sj , j = 1,2, . . . , n− 1. Then

f ′+(x1, x2, . . . , xn−1, t) = lim
h→0+

max{sj , sn−1 + t + h} −max{sj , sn−1 + t}

h
.

Case1

Let max{sj , sn−1 + t} = sj. The value forh can be chosen sufficiently small such thatsj >

sn−1 + t + h. Therefore

f ′+(x1, x2, . . . , xn−1, t) = 0.
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Case2

Let max{sj , sn−1 + t} = sn−1 + t. Thensn−1 + t + h > sj. Hence

f ′+(x1, x2, . . . , xn−1, t) = lim
h→0+

(sn−1 + t + h) − (sn−1 + t)
h

= 1.

Thus, f ′+(x1, x2, . . . , xn−1, t) is a componentwise nondecreasing function.

For the second function we defineh2(t) = g′+(x1, x2, . . . , xn−1, t). Then

h2(t) = lim
h→0+

g(x1, x2, . . . , xn−1, t + h) − g(x1, x2, . . . , xn−1, t)
h

= lim
h→0+

max{s2
1, s

2
2, . . . , s

2
n−1, (sn−1 + t + h)2} −max{s2

1, s
2
2, . . . , s

2
n−1, (sn−1 + t)2}

h

= lim
h→0+

max{max{s2
1, . . . , s

2
n−1}, (sn−1 + t + h)2} −max{max{s2

1, . . . , s
2
n−1}, (sn−1 + t)2}

h
.

Let max{s2
1, . . . , s

2
n−1} = s2

j , for j = 1,2, . . . , n− 1. Then

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

max{s2
j , (sn−1 + t + h)2} −max{s2

j , (sn−1 + t)2}

h
.

Note that

(sn−1 + t)2 − s2
j = (2sj + s+ t)(s+ t)

and

(sn−1 + t + h)2 − s2
j = (2sj + s+ t + h)(s+ t + h),

wheres= xj+1 + xj+2 + ∙ ∙ ∙ + xn−1.
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Case1

Let 2sj + s+ t > 0 ands+ t > 0. This leads to

max{s2
j , (sn−1 + t)2} = (sn−1 + t)2

and since 2sj + s+ t + h > 0 ands+ t + h > 0 we also have that

max{s2
j , (sn−1 + t + h)2} = (sn−1 + t + h)2.

Hence

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

(sn−1 + t + h)2 − (sn−1 + t)2

h

= lim
h→0+

h[2(sn−1 + t) + h]
h

= 2(sn−1 + t).

Case2

Let 2sj + s+ t > 0 ands+ t < 0. This leads to

max{s2
j , (sn−1 + t)2} = s2

j .

The value ofh can be chosen sufficiently small such that 2sj + s+ t+ h > 0 ands+ t+ h < 0. Then

max{s2
j , (sn−1 + t + h)2} = s2

j .

Hence

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

s2
j − s2

j

h
= 0.

Case3
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Let 2sj + s+ t < 0 ands+ t > 0. This leads to

max{s2
j , (sn−1 + t)2} = s2

j .

The value ofh can be chosen sufficiently small such that 2sj + s+ t+ h < 0 ands+ t+ h > 0. Then

max{s2
j , (sn−1 + t + h)2} = s2

j .

Hence

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

s2
j − s2

j

h
= 0.

Case4

Let 2sj + s+ t < 0 ands+ t < 0. This leads to

max{s2
j , (sn−1 + t)2} = (sn−1 + t)2.

The value ofh can be chosen sufficiently small such that 2sj + s+ t+ h < 0 ands+ t+ h < 0. Then

max{s2
j , (sn−1 + t + h)2} = (sn−1 + t + h)2.

Hence

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

(sn−1 + t + h)2 − (sn−1 + t)2

h

= lim
h→0+

h[2(sn−1 + t) + h]
h

= 2(sn−1 + t).

Case5
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Let s+ t = 0⇒ (sn−1 + t)2 = s2
j . Then (sn−1 + t + h)2 − s2

j = (2sj + h)h.

(i) If 2 sj + h > 0 then

max{s2
j , (sn−1 + t + h)2} = (sn−1 + t + h)2.

Then

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

(sn−1 + t + h)2 − s2
j

h

= lim
h→0+

(2sj + h)h

h

= 2sj .

(ii) If 2 sj + h ≤ 0 then

max{s2
j , (sn−1 + t + h)2} = s2

j .

Then

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

s2
j − s2

j

h
= 0.

Case6

Let 2sj + s+ t = 0⇒ (sn−1 + t)2 = s2
j . Then (sn−1 + t + h)2 − s2

j = (s+ t + h)h.

(i) If s+ t + h ≤ 0 then

max{s2
j , (sn−1 + t + h)2} = s2

j .

Then

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

s2
j − s2

j

h
= 0.

(ii) If s+ t + h > 0 then

max{s2
j , (sn−1 + t + h)2} = (sn−1 + t + h)2.

26
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Then

g′+(x1, x2, . . . , xn−1, t) = lim
h→0+

(sn−1 + t + h)2 − (sn−1 + t)2

h

= lim
h→0+

h(2sn−1 + 2t + h)
h

= 2sj + 2s+ 2t

= s+ t.

Thus,g′+(x1, x2, . . . , xn−1, t) is a componentwise nondecreasingfunction.
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