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Some results on dependent random variables and a
connection with the multivariateincreasing convex
order

Milto Hadjikyriakou®

Abstract

In this paper some new concepts of dependence are introduced that generalize the con-
cepts of positive and negative association. The new concepts of dependence are linked to the
multivariate s-increasing convex order (Denuit and Mesfioui (2010, 2013)). Furthermore, a
Kolmogorov-type inequality and adjek-Renyi inequality are proven that lead to an asymp-

totic result for these new random objects.

Key words and phrases positive association, negative association, Kolmogorov-type in-

equality, Hajek-Renyi inequality, multivariats-increasing convex order.
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1 Introduction

Stochastic orders between random vectors have been studied extensively by various authors exactly
because of their wide range of applications in several fields of probability and statistics. Some
stochastic orders can be defined by reference to some class of measurable functions. Consider
two n-dimensional random vectods andY. The random vectoX is said to be smaller than the
random vectol in the <, ordering associated to the cla&" of real-valued functions defined on

(a subset of) tha-dimensional real spad” if
E[9(X)] < E[g(Y)] for all g € T/, 1)

Some of the most celebrated stochastic orders are the ones that involve convex functions. For
example, in the case whefé!™ includes convex functions, (1) defines the univariate convex order
while if 2 includes multivariate convex functions then the multivariate convex order is defined.
The directionally convex order can be defined in a similar way. Multivariate extensions involving
convex functions can also be found in Denuit et al (1999), Denuit and Mesfioui (2010, 2013)
while recently Sordo (2016) introduced a multivariate extension of the increasing convex order
that can be used in the case where the components of the random vectors that are involved are
heterogeneous. For an interested reader we refer the books of Shaked and Shanthikumar (2007)

and Miller and Stoyan (2002).

Lets= (s, S,...,S,) be a vector of non-negative integers &d R". Let Us ix(S) be the
class of all functiong : S — R such that

ak1+k2+---+kn
8x';18x'§2---6x,'§"g(xl""’xn) >0 forall xq,...,%, €S, (2)

wherek, =0,1,...,s,i=12,....,n, K + ko +--- + k, > 1.
Consider twan-dimensional random vectorX{, ..., X,) and (Y1, ...,Y,) valued inS. Denuit and

Mesfioui (2010) introduced the concept of thancreasing convex order as follows:

ACCEPTED MANUSCRIPT
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Definition 1 The random vectofXy, ..., X,) is said to be smaller tharfYy,...,Y;) in the s

increasing convex order, which is denoted(By, . .., X,) <s-icx (Y1,..., Yp) if
E[g(X1, ..., Xn)] < E[9(Y1,...,Yy)] forall g € Us ix(S),
provided that the expectations exist.

For this new stochastic order Denuit and Mesfioui (2010) provided the following result (Property

6.1(i)).
Lemma 2 Let(Xy,...,X,) and(Y,...,Y,) be nonnegative random variables. Then

X Zsiex Y = ¥(X) ﬁ(zi”

L, §)-icx P(Y)

for any non-negative functiof in Us i« In particular,

n n

X Zsix Y = Z ai X ﬁ(zin:ls)_icx Z a;Y, for anyas,...,an > 0.
i=1 i=1
Denuit and Mesfioui (2013) generalized the above comparison for vectors of partial sums.
Lemma 3 If (Xq,...,Xn) Zsicx (Y1,...,Yy) then
(Sl, cee Sn) 5(sl,sl+sz,---,sl+sQ+---+sn)—icx (Tl, cee Tn)

where § =Xy +---+ Xjand Ty =Y, +---+Yjforj=1,...,n.

It is of interest to study whether the results of Denuit and Mesfioui (2010, 2013) are applicable
to vectors of random variables that are somehow dependent. A variety of concepts of dependence
appear in the literature. These concepts have generated wide interest since they have a variety
of applications in many dierent fields such as multivariate statistical analysis, reliability theory,
actuarial science etc. Two of the most celebrated notions of dependence are positive and negative

association, introduced by Esary et al (1967) and Joag-Dev and Proschan (1983) respectively. Let
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us recall the definitions of positive and negative association since these two concepts are of major

importance for what follows in this paper.

Definition 4 A finite collection of random variables X . ., X is said to be (positively) associated
if

CoUf(Xg,..., X0),0(Xg,...,%Xy)) >0
for any two componentwise nondecreasing functiang ffrovided that the covariance is defined.

An infinite collection is associated if every finite subcollection is associated.

Definition 5 A finite collection of random variables; X. ., X, is said to be negatively associated
(NA) if
Couf(Xi,i € A),g(X;,jeB) <0

for any disjoint subsets A and B ¢f, 2,...,n} and for any two componentwise nondecreasing
functions f g onR” andR'® respectively, provided that the covariance is defined. An infinite

collection is negatively associated if every finite subcollection is negatively associated.

The last decades the notions of positive and negative association have been studied extensively
by many researchers and among the various results obtained for these concepts are several gener-
alized notions of dependence. Newman and Wright (1982) introduced the concept of demimartin-
gales in order to provide a much more general class than positively associated random variables.

The definition of demimartingales is given below.

Definition 6 Let{S,,n > 1} be a collection of random variables defined on a probability space
(Q, A, P). The sequencEs,, n > 1} is called a demimartingale if for every componentwise non-

decreasing function f and for i

E[(S;-Si) f(Sw.....S)| 2 0 (3)

ACCEPTED MANUSCRIPT
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If moreover (3) is valid for any nonnegative componentwise nondecreasing function {Sgher:

1} is called a demisubmartingale.

Note that it is straight forward to prove that the partial sums of mean zero positively associated
random variables form a sequence of demimartingales. Motivated by the definition of demimartin-
gales Christofides (2003) introduced the concept of N-demimartingales. It can easily be proven
that the partial sums of mean zero negatively associated random variables satisfy the structure of

an N-demimartingale sequence.

Definition 7 Let{S,,n > 1} be a collection of random variables defined on a probability space
(Q, A, P). The sequencES,,n > 1} is called an N-demimartingale if for every componentwise

nondecreasing function f and for>ji
E|(S;-S)f(Sw....S)| <0 (4)

If moreover (4) is valid for any nonnegative componentwise nondecreasing function {Sgher:

1} is called a N-demisupermartingale.

Results related to demimartingales and N-demimartingales can be found in the monograph of
Prakasa Rao (2012).

In this paper we provide the definitions of two new concepts of dependence similar in structure
as the concepts of demimartingales and N-demimartingales. Firstly, we introduce the concept of a

sequence that is said to have strong N-demimartingélerences.

Definition 8 Let{S,,n € N} be a sequence of random variables withS5 0. If for any f and g

componentwise nondecreasing functions
CoMg(Sni1 — Sh), f(S1,S,-S4,...,Sh—Sn1)] <0forn=1,2,... (5)

the sequencEs,, n € N} is said to have strong N-demimartingalgfdrences.

ACCEPTED MANUSCRIPT
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The above definition is closely related to the concept of negative associatiofiX,lete N}
be a sequence of NA random variables and$gtn € N} be the sequence of their partial sums,

i.e.S, =YL, X, forne N. Because of the negative association property we have that
CO\{g(S]+l - SJ)7 f(S:L’ SZ - Sl’ ey S] - Sj—l)] = CO\{g(XJ+1)’ f(xl’ XZ, ey x])] < 0

This latter inequality proves that the sequence of partial sums of NA random variables has strong
N-demimartingale dferences.

Furthermore, it is trivial to verify that the random variabdsand X, are NA if and only ifX;
andX; + X, have strong N-demimartingaleffirences.

However, it is crucial to verify that the class of random variables that have the property of strong
N-demimartingale diferences does not include only the sequence of partial sums of negatively
associated random variables but it is actually a wider class of random variables. This is proven via

the counterexample that follows.

Example 9 Let X, X5, X3 and X, be random variables with joint probability mass function P de-

fined as
1 1 7 17
P(OOOO)_— P(lOOO)_ P(OOOl)_ P(lOOl)—144
1 3 5 1
P(0,0,l,O)_s—z, P(1,0,1,0) = — 144 P(0011)_ P(1011) 124
1 1 35 1
P(OlOO)— P(llOO)— P(0101)—144 P(1,1,0,1) =
1 1 19 1
P(0,1,1,0) = 16 P(1,1,10) = 7 P0,1,11)= 1az P(1,1,11)= 7

where Ra,b,c,d) = P(X; =a, Xo=b, Xg=c¢, X, =d)andletS =Y, X forn=1,2 3, 4.
It can be proven thatS;, S,, Ss, S4} satisfy (5) since for any f and g componentwise nonde-

creasing functions the following relations are valid

Covg(Xa), f(X1)) <0, (6)

ACCEPTED MANUSCRIPT
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CoUg(Xa). (X1, X2)) < 0, (7)

and

CoUg(Xa), (X1, Xz, X3)) < 0. (8

It can also be proven that for
9(1,1)=4,9(01)=2 9(1,0)=1,9(0,0)=0

and

f(0,0)=1, f(0,1)=2, f(L0)=1, f(L1)=2

the covariance

1

To5(797(0.0) + 99f(0.1) - 95f(1.0) - 83f(L. 1))
1

= 708~ °

Cou(f (X1, X2), 9(Xs, Xa))

The latter inequality proves thdk;, X,, X3, X4} are not negatively associated.

Similar to the concept of sequences having strong N-demimarting@éetices we can pro-

vide the definition of a sequence that is said to have strong demimartinffaledces.

Definition 10 Let{S,, n € N} be a sequence of random variables with=50. If for any f and g

componentwise nondecreasing functions
CO\{g(SrH_]_ - Sn), f(Sl, S, —S4,...,S,— Sn_]_)] >0forn=12,... (9)
the sequencEs,, n € N} is said to have strong demimartingalgfdrences.

Let {X,,n € N} be a sequence of associated random variables an&/agt € N} be the

sequence of their partial sums, i®, = > ; X, for n € N. Then
CoMg(Sj+1—Sj), (S1,S2-S1,...,Sj = Sj-1)] = CoMg(Xj11), F(X1, X, ..., Xj)] = 0

ACCEPTED MANUSCRIPT
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proving that the sequence of partial sums of associated random variables satisfies (9).
Next we provide an example of a sequence that is said to have strong N-demimartifigale di

ences.

Example 11 Let X, X5, ... be normally distributed random variables with mearand variance
Uiz fori=12,...andlet % =0. Define Y= X — Xi_yfori =1,2,.... Then Yare normally dis-
tributed with mear; —pi_ and variancer? | +02—2pi_1o_10 wherepi_1; = Corr(X_, X;). Sup-
pose that the bivariate distribution of the vec(df, Y;) is given by the Farlie-Gumbel-Morgenstern
system

Frivi(%Y) = Fv(QFy;(W{1 + aij[1 = Fy (X1 - Fy,(W]}, @ € (-1,0) (10)

where K, and R, are the marginal cumulative distribution functions of the random variables Y

and Y;. Schucany et al. (1978) proved that for the bivariate distribution described by (10)
CouY,Y) = 2
/s

and sincen;; € (-1, 0) the random variables;YY; are negatively correlated. But negatively cor-
related random variables that are normally distributed form a sequence of negatively associated

random variables. Therefore for any f and g componentwise nondecreasing functions
CoMg(Xis1 — Xi), F(Xy, Xo = Xq,..., X = Xi_1)) <O0fori=1,2,...

proving that{X,, n € N} forms a sequence that is said to have strong N-demimartinggiésetces.
In the case where the random variable&are positively correlated then it is known that they
are also positively associated. In this example it has been proven that it is also a sequence that is

said to have strong N-demimartingalgjdrences.

Remark 12 Note that if the details of the example presented above are properly modified, i.e.
@ij € (0,1), we can obtain an example of a sequence that is said to have strong demimartingale

sequences.

ACCEPTED MANUSCRIPT
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Remark 13 The counterexample provided in Example 9 highlights the fact that a sequence of
partial sums of random variables can satisfy the definition of a sequence that is said to have
strong N-demimartingale fferences without the random variables to be negatively associated.
Furthermore, Example 11 provides a sequence of random variables that is said to have strong
N-demimartingale gferences even in the case where the random variables are positively asso-
ciated. Additionally, the random variables in Example 11 can be negatively associated and at
the same time the random variables themselves to be a sequence that is said to have strong N-
demimartingale dferences and not their partial sums. These two examples prove that the classes
introduced in this paper are wider classes than the classes of positively and negatively associated

random variables.

The purpose of this paper is to prove that a vector of random variables that are said to have
strong N-demimartingale fierences (strong demimartingalgfdrences) is smaller (larger) than
the vector of their independent duplicates with respect to the multivagiatereasing convex
order. As a direct consequence this kind of stochastic ordering can also be obtained for nega-
tively/positively associated random variables as well. The desired result is obtained as a direct
application of a much more general comparison inequality proven in Section 2. Furthermore in
Section 3, the comparison inequality is utilized to provide useful probability inequalities such as a
Kolmogorov-type inequality, a 8jek-Renyi type inequality and a strong law for random variables

that are said to have strong N-demimartingatéegences.

2 Comparison inequalities for moments of functions of random
variables

The two results that follow are instrumental for the proof of the main result of this section. For the

details of their proofs the interested reader can study Theorem B (page 5) and Theorem A (page 9)

ACCEPTED MANUSCRIPT
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of Roberts and Varberg (1973) respectively.

Theorem 14 If f : | — R is convex, then the left and right derivatives, denoted’ify) find f/(x)

respectively, exist and are increasing.

Theorem 15 A function f: (a,b) — R is convex if and only if there is an increasing function

g: (a,b) » R and a point cs (a, b) such that for all xe (a, b),
X
f(x) - f(c) = f g(t)dt.
C

Remark 16 Recall that a function f: R" — R is considered to be a componentwise convex
function if it is convex in each variable. Assume that 8" — R is a componentwise convex
function. The function (&) = g(Xq, X2, ..., X1, X, Xi41, . . . , Xn) IS @ cOnvex function with respect to

xforalli =12, ...,n and therefore Theorems 14 and 15 are valid for the function f.

The theorem that follows provides a comparison theorem for the expectations of functions of ran-

dom vectors that have strong N-demimartingal&edences and their independent duplicates.

Theorem 17 Let{S,, n € N} be a sequence of random variables that have strong N-demimartingale
differences and letX= S; — S;_;. Let X be independent random variables such that=x X
Then

Elg(X, ..., Xa)] < E[9(XL. . ... X7)] (11)

for every componentwise convex function g such that its right derivative with respect to the i-th

component, is componentwise nondecreasing forallj2,...,n.

Proof. The proof is inspired by Christofides and Vaggelatou (2004). Without loss of generality we

assume thaXy, ..., X, andXj, ..., X; are independent. First, it needs to be proven that

E [g(X17 ) Xn—la Xn)] <E [g(xl’ SRR Xn—la X;)] : (12)

ACCEPTED MANUSCRIPT
10



ACCEPTED MANUSCRIPT

For anyx, X € R and for every componentwise convex functgpwe can write

g(Xl, ceey Xn_l, X)

g(Xl, ceey Xn—la Xo) + f hn(Xl, ceey Xn—la t)dt
Xo

9(Xes - ., X1, Xo) + f [1[X > t] = 1[Xo > t]] ha(Xa, .. ., Xn_g, )t

whereh, is the right derivative ofj with respect to the last variable. Since the equality stated above

is valid for all real numbers, it follows that

g(Xl, ooy Xnots Xn) - g(Xl, ey Xnots X:) = f [l [Xn > t] - |[X: > t]] hn(X]_, cees Xn_l,t)dt.
R

By taking expectations on both sides we have that

E[LHS] f E{(1[% > 1] = 1[X > 1)) ha(Xa, - . ., Xoog, D)}t
R

f (E[1[X%n > ha(Xas - .., X, )] = E[I[XE > ]ha(Xas - ., Xos, D]}l

R

f (E[1[Xn > Tha(Xas - s X1, )] = EA[XE > ) E(hn(Xas - . ., Xo_s, 1)) }dlt

f{E (X > t]ha(Xa, - - -, Xne1, )] = E([Xn > ) E(hn(Xa, - - -, Xno1, 1)) }dt
R

f Corl (Xn > 1), ha(Xas - . ., Xn_1, 1))dlt
R

fCO\(l (Sn -S> t), hn(Sl, S, —S1...,Sn1- S0, t))dt
R

where the third equality follows by the independenc&pandX, ..., X,-; and the fourth by the
fact thatX, =¢ X.

Observe that for all values df 1(S, — S,.1 > t) is a nondecreasing function &, — S,_; and
by assumptiom,(S;,...,Sn1 — Sn_2, 1) is @ componentwise nondecreasing functiorsefS, —

Si1,...,Sn.1 — Sn2. Therefore by the definition 45, n € N}

CO\(' (Sn -S1> t), hn(Sl, ey Spe1 = Snoo, t)) <0.

ACCEPTED MANUSCRIPT
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This last inequality yields (12).

The proof of (11) follows by induction. Far = 2 we have that
E[9(X1. X3)] = E[9(X1, X5)] = E[g(X1, X2)] because of (12)

Next, assume that the statement is truernferl. Then forn-dimensional random vectors we have

that

B[00, - X)] = E(E[G0G .. X))
= [ EL00K. ... X% = P (9

_ fR E[G0K, ., X1, X (X)

\%

f E[9(X1, ..., Xn-1, X)]dFx:(X) (by the induction hypothesis)
R
) f E[9(Xs, - ., X2, X)IX5 = X]dFy; (X)
R
= E{E[g(xl’ e ey anl’ X;)|X;’k]]}
= E[g(Xs, ..., Xn-1, X3)]

E[g(X1, ..., Xno1, Xn)]

\%

where the fourth equality follows from the independenc&pandX;, ..., X,-; and the last equal-
ity follows by (12). =

Next, we provide the comparison inequality for a sequence of random variables that is said to
have strong demimartingaleffirences. The proof follows by applying the same steps as in the

proof of Theorem 17 and therefore is omitted for brevity.

Theorem 18 Let{S,, n € N} be a sequence of random variables that have strong demimartingale
differences and let X= S; — S;_;. Let X' be independent random variables such thatx X
Then

E[9(Xe..... Xa)] 2 E[9(X1,.... X))] (13)

ACCEPTED MANUSCRIPT
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for every componentwise convex function g such that its right derivative with respect to the i-th

component is componentwise nondecreasing forallj2,...,n.

3 A connection to the multivariate s-increasing convex order

The results provided in Theorems 17 and 18 allow us to give an answer to the question stated earlier
i.e. whethers-increasing convex order can be obtained for random variables that are somehow
dependent.

Henceforth, following the notation of Denuit and Mesfioui (2013), for all vectetgs;, S, . .., Sn)

of non-negative integers define
() =S +S+--+S, i=1,2,...,n

and
Z(s) = (Z4(9), - - -, Zn(9))-

Theorem 19 Let {S,,n € N}, {X,,n € N} and{X},n € N} be as stated in Theorem 17 and let

S, = ity X£. Then for all vectors = (s, S, ..., ) where > 2foralli =1,2,...,n

1.
(X1, -+, Xn) Ssmiex (X1, X)), (14)

(Xl, ceey Xk) ﬁs_icx (X*, ey X;) for k = 1, 2, e ey n, (15)
3. In the case of nonnegative random variables,

Sk =gk soiex SkfOrk=1,2,...,n, (16)

(S1,.-.»Sn) <x9-iex (S1.---»Sn). (17)

ACCEPTED MANUSCRIPT
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Proof. Note that Theorem 17 was proven for any componentwise convex fungtsuch that

its right derivative with respect to thieth component is componentwise nondecreasing for all
i=12,...,n. Itis essential to mention that the result is valid for functions that are not necessarily
differentiable. In the case where the functgsatisfies condition (2) fog > 2, then it is consid-

ered to be componentwise convex and its derivatives are componentwise nondecreasing functions.
Therefore, the assumptions of Theorem 17 are satisfied and the proof of (14) follows directly from
Theorem 17.

The fact that thes-icx order is closed under marginalization leads to (15). The validity of (16)
follows by Lemma 2 (Property (6.1i) of Denuit and Mesfioui (2010)). Finally, (17) follows by
applying the result of Lemma 2 (Proposition (3.1) of Denuit and Mes{@di 3)). m

In the case of sequences that are said to have strong demimartingaierdies a similar theo-

rem can be obtained with the reversed inequalities.

Theorem 20 Let {S,n € N}, {X,;,n € N} and {X:,n € N} be as stated in Theorem 18 and let

S, = ity X¢. Then for all vectors = (s, S, ..., &) where > 2foralli =1,2,...,n
Xty s Xn) Zsriox (X, -+, X0,

(Xl,...,xk) zs_icx (X*""’Xli) fork: l,2,...,n,
3. In the case of nonnegative random variables,
S fork=1,2....n,

Sk Zzt

1 §—icx

(Sl, s Sn) Z):(s)—icx (§1’ s §n)

ACCEPTED MANUSCRIPT
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Remark 21 It is worth mentioning that the results of Theorems 19 and 20 can lead to similar

inequalities for negatively and positively associated random variables respectively.

4 Some results on dependent random variables

Even though the motivation for this research work was to provide a connection between the new
concepts of dependence and the multivarsatecreasing convex order, the comparison inequality
that was proven in Section 2, allows us to obtain some very useful probability inequalities. Firstly,

let’s state as a remark an observation that is instrumental for the rest of the paper.

Remark 22 Theorem 17 is valid for every function g that is componentwise convex and its right
derivative with respect to the any of its component is a componentwise nhondecreasing function.

The function
n
FL(X0 Yoo %) = X
i=1

satisfies both conditions.
Two useful functions that also posses the desired properties (see the Appendix for the proofs)

are
k

fo(X1, X2, . ... Xn) = MaAx » X
1<k<n 4

and )

k
fa(Xy, X2, .., Xn) = max[z xiJ .

1<k<n

i=1

A direct consequence of Theorem 17 and of the remark stated above is the result that follows.

Theorem 23 Let{S,, n € N} be a sequence of random variables that have strong N-demimartingale
differences and letX= S; — S;_;. Let X be independent random variables such that=X X/

Then

({8 o{ 57

i=1 i=1

ACCEPTED MANUSCRIPT
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and

k k
(S pgr) oo

for every f increasing convex function.

Proof. By using Remark 22 and the fact thhtis an increasing convex function, the functions
O1(Xe, ..., %) = F (2, %) andga(Xq, ..., %) = f (maxlskan!‘zlxi) satisfy the conditions of The-

orem 17 and therefore inequalities (18) and (19) follow directly f{ad). m

The fact that the sequence of partial sums of NA random variables satisfies (5) leads to the corol-

laries that follow.

Corollary 24 Let {X,,n € N} be a sequence of NA random variables and lebX independent

random variables such that % X* fori =1,2,.... Then

for every componentwise convex function g such that its right derivative with respect to the i-th

component is componentwise nondecreasing foralli2,...,n.

Corollary 25 Let {X,,n € N} be a sequence of NA random variables and lebX independent

random variables such that % X fori = 1,2,.... Then

([ o{ 57

i=1 i=1

k k
E [f [max Xi)) < E(f (max X;“J] (22)
1<k<n — 1<k<n —

for every f increasing convex function.

and

Remark 26 Observe that (21) is in full agreement with inequality (1.3) presented in Shao (2000).

Theorem 17 is instrumental for proving the Kolmogorov-type inequality that follows.
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Corollary 27 LetS,, X,and X; be as stated in Theorem 17 witl{)s) = Oand E)g2 <ooforalli e

N. Then fore > 0

P(maxlSkl > e) < é Z EQQ). 22)
i=1

1<k<n

Proof.

IA

P(maxlSkl > e)

1<k<n

P((maxlSkl)2 > 62)
1<k<n

= P(maxSﬁ > 62)

1<k<n

IA

1
SE (maxsﬁ)

€ 1<k<n

1 Y

i=1

4 n
= ) EXY
i=1

n
4
E2

IA

IA

E(X)

i=1
where the third inequality follows by applying the result of Theorem 17 for the fungfon. . ., X,) =
Max,<k<n(X1 + - - - + X)? and the fourth inequality by Doob’s inequality for martiigs. m
The Kolmogorov-type inequality is the key result for obtaining thegei-Renyi inequalities
for random variables that are said to have strong N-demimartinglraehces. The proof can
be obtained by applying standard arguments (see for example Chen et al.(1999)) and therefore is

omitted for brevity.

Corollary 28 Let S, and X%, be as stated in Theorem 17 with E)« oo foralli € N and let

{bn, N € N} be a nondecreasing sequence of positive real numbers. Then

16 & Var(X
_Zzﬁ

1
P({Q&( b_k(Sk -ESY)| > 6) < & L blz (23)
and
1 64( <~ Var(X) < Var(X)
P(Wrggg 5 (S—ES9| 2 e) <= [i;l T .le et (24)
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As a direct consequence of theajdk-Renyi inequality we can easily obtain the following
strong law for random variables that are said to have strong N-demimartinff@eedces. Again
the proof can be obtained by applying similar steps as in the proof of Theorem 3.1 of Chen et

al.(1999) and therefore is omitted.

Theorem 29 Let S, and X, be as stated in Theorem 17 and{let, n > 1} be a sequence of positive

VarX,
b3

r
E sup(ls—d) < 00
n bn

nondecreasing real numbers wigt}: < 00,

Then foranyd <r < 2,

Assume thab < by, T oo, then for n— oo

Sh—ES,

b — 0as.

The result of the Theorem that follows, derives directly by applying the comparison inequality

obtained in Theorem 18.

Theorem 30 Let{S,, n € N} be a sequence of random variables that have strong demimartingale

differences and letX= S; — S;_;. Let X be independent random variables such thatx X

Then
n n
E[f[z X ||=E|f Zx]) (25)
i=1 i=1
and
k k
E[f ({2@(; X||>E|f {gg%(i:l X ]) (26)

for every f increasing convex function.

Remark 31 Denuit et al. (2001) introduced another notion of dependence that is very useful for
actuaries, namely the positive cumulative dependence (PCD). Based on Theorem 3.1 of their paper,
the result stated in (25) is also valid for random variables that are PCD. Since the dependence

notion proposed in this paper is stronger than PCD, (25) can be reduced to a known result.
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Since the concept of positive association is closely related to the concept of sequences with
strong demimartingale flerences we can easily obtain the results that follow by applying the

result of Theorem 18.

Corollary 32 Let{X,,n € N} be a sequence of associated random variables and;ldteXnde-

pendent random variables such that=¢; X* fori =1,2,.... Then

E[9(Xs, ..., X)] =2 E[9(X], ..., X))]

for every componentwise convex function g such that its right derivative with respect to the i-th

component, iis componentwise nondecreasing foral i, 2, ..., n.

Corollary 33 Let {X,,n € N} be a sequence of associated random variables and:ldéteXnde-
pendent random variables such that=¢; X* fori =1,2,.... Then

n n
E[f[in )zE(f(ZX;“D (27)
i=1 i=1

and

k k
E[f [max X ) > E(f (max Xi*]] (28)
1<k<n 4 1<k<n 4

for every f increasing convex function.
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Appendix
Lemma 34 Consider the following functions
f(Xg, ..., X0) = MaX Xy, Xp + Xo, .., Xy + Xo 4 -+ + Xp}

and

O(X1, . . ., Xa) = MaXXs, (X + X2)2, ..., (Xg + Xo + -+ + Xn)?).

The right derivatives of these functions with respect to the i-th component are componentwise

nondecreasing functions foralH 1,2,...,n.

Proof. Without loss of generality we will calculate the right derivative of these functions with

respect to their last variable.

Lethy(t) = (X1, X2, ..., X1, t) @nds; = ZiLl)q. Then

f(Xl, Xo, ...y Xne1, L+ h) - f(Xl, X2,...,Xn_1,t)

o = h
_im MXSL S S S A TN - MAXS, S, St s O
h—0* h
_ i MeXmaxs,. .., Siad S+ U4 R} - maXmaxs,, . Shoad Sos + U
B h—0* h )

Letmaxs, s,....S-1} =S, j=12,...,n-1. Then

maxs;, S,-1 + t + h} — maxs;, Si-1 + t}
5 .

, T
f+(Xl’ X29 ] Xn—l’ t) - hll—q)]*

Casel

Let maxs;,s-1 + t} = s;. The value forh can be chosen fliciently small such thas; >

S-1 +t + h. Therefore

f:_(Xl, Xo, .oty Xn=1, t) =0.

ACCEPTED MANUSCRIPT
22



ACCEPTED MANUSCRIPT

Case?

Let maxs;, Si-1 +t} = S-1 + t. Thens,_; + t+ h > s;. Hence

(Srat+t+h) —(sh1+1) _

h 1

f (X1, X2y ...y Xn1, 1) = lim
h—0+

Thus, f/ (X1, X2, . . -, Xn_1, t) IS @ cOmponentwise nondecreasing function.

For the second function we defihg(t) = g (X1, X2, . . ., Xn-1,t). Then

g(xla XZa ey Xn—l,t + h) - g(XL X2’ ey Xn—l, t)

Il
=)

ha(t) '

h—0* h

i maxss, 5, ..., S 1 (Si1 +t+ h)2 —max<s, 3, ..., &, (She1 + )%
T hoo* h
_ im maxmaxss, ..., 2 .} (Sv1 + t+ )% —maxmaxss, ..., 2}, (sv1 + )3
T hoo h

Letma&ﬁ,...,ﬁ_l}:sf, forj=1,2,...,n—1. Then

maxs’, (-1 + t+h)?} — maxs’, (s,1 +t)?)

9\ (X1, X2, - -5 Xn1, 1) = r!Lrg h
Note that
(S +1t)’ = =25 +s+t)(S+1)
and

(Se1+t+h)?—s=2s+s+t+h)(s+t+h),

wheres = Xj.1 + Xji2 + -+ - + Xn_1.

ACCEPTED MANUSCRIPT
23



ACCEPTED MANUSCRIPT

Casel

Let 2s; + s+t > 0ands+t > 0. This leads to
maxs’, (-1 + t)?} = (S + 1)°
and since & + s+t+h> 0ands+t+h> 0 we also have that
maxs’, (i1 + t+h)?} = (sh-1 + t+ h)2.

Hence

im St tHh)? - (S +1)°

g;(xla X2, .. 5 Xn-1, t)

h—0+ h
i M2+ 4 h]
h—0* h
= 2(S-1t1).

Case?

Let2s; + s+t > 0ands+t < 0. This leads to
maxs;, (s-1 +t)7) = 5.
The value oh can be chosen fliciently small such that® + s+t+h > 0ands+t+h < 0. Then
maxs’, (sr-1+t+h)’) = <.

Hence
, S-S
g+(X1, X2, .o o5 Xn1s t) = hl—%]Jr T =0.

Case3
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Let2s; + s+t < Oands+t> 0. This leads to
maxs;, (s-1 + ) = 5.
The value oh can be chosen fliciently small such thatf + s+t+h < 0ands+t+h> 0. Then
maxs’, (s,-1+t+h)’) = 5.

Hence
, ; -
g+(X1, X2, ..o s Xn1s t) = IA]I_)I’TS+ T =0.

Cased

Let2s; + s+t <0Oands+t<0. This leads to
Maxsy, (Sn-1 + )7} = (i1 + 1)%
The value oh can be chosen fliciently small such that® + s+t+h < 0ands+t+h < 0. Then

maxs’, (-1 + t+h)?} = (s + t+ h)2.

Hence
. 1+ t+h)?2— (s +1)?
0, (X1, X2, - . s Xne1,t) = r!|—>n3+ (Sh1 )h (sh-1+1)
_ im M2+ ) +h]
h—0t h
= 2(sr1+1).
Caseb
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Lets+t=0= (s1+1)° =5 Then g1 +t+h)>— s = (25 + h)h,
(i) If 2s; + h> 0 then
maxs’, (-1 + t+h)?} = (-1 + t+ h)2.

Then
, _ (satt+hP-¢
g, (X1, X2, . . ., Xn-1,1) = h"lH ;
2s: + h)h
~ im &80
h—0t
= ZSJ'.

(i) If 2s; + h< O then
maxs;, (s +t+h)?} = 5.

Then

, — im i
g, (Xw, X2, . . ., Xn-1,1) = lim. T 0.

Caseb

Let2sj+s+t=0= (s,1+1)*=s. Then &1 +t+h)> - s = (s+t+h)h.
@) If s+t+h<O0then
max(s;, (sy-1 +t+h)%) = 5.

Then
g:_(X]_, X2 ,,,,, Xn_]_, t) = r!”‘g Tj = O

(i) If s+t+h>0then
max{sjz, (St +t+ N2 = (1 +t+ )2
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Then

2 2
im Gt ) —(Sa+1)

g;_(xl’ X2’ ey Xn—la t) =

h—0* h

_ im h(2s,.1 + 2t + h)
h—0* h

= 25j+2s+ 2t

= S+it.

Thus,d, (X1, X2, - - . , Xa-1, t) IS @ componentwise nondecreasfogction. m
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