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ABSTRACT 

This work is concerned with the thermal and structural behaviour of reinforced 

concrete members in fire conditions. The numerical analyses of temperature histories 

and mechanical behaviour of reinforced concrete structural members subjected to fire 

are the major components of this research. 

In this thesis a non-linear finite element procedure is proposed to predict the 

temperature distribution history in the cross section of structural members, such as 

beams composed of reinforced concrete, in fire conditions. A theoretical analysis of 

heat and moisture transfer in concrete was made which incorporated the 

simplifications that energy transfer by convection and diffusion in concrete could be 

neglected. However, the effect of water evaporation in concrete was considered. The 

thermal properties of concrete were considered as temperature and moisture dependent 

and the thermal properties of steel as temperature dependent only. The fire conditions 

were described by standard time-temperature fire curves and convection and radiation 

boundary conditions were used. In order to validate the model a series of verification 

tests have been carried out through a quantitative comparison of the model predictions 

against known test results. Fairly good accuracy has been found. 

A non-linear finite element procedure for predicting the structural behaviour of the 

planar reinforced concrete members is also developed. The proposed procedure is 

based on "plane stress" theory and an iterative, secant stiffness formulation is 

employed. The complex features of structural behaviour in fire conditions, such as 

thermal expansion, shrinkage, creep, transient strains, cracking or crushing and change 

of material properties with temperature are considered in this model. Predictions from 

the model proposed are compared against experimental results, as well as against the 

model proposed by previous researchers, and a better correlation to experimental data 

is found. It is shown that the secant stiffness approach can provide good numerical 

stability for the analysis of planar reinforced concrete members in fire conditions. The 

model proposed in this study has the potential to predict the fire resistance of a planar 
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reinforced concrete members with an accuracy that is adequate for practical purposes 

if realistic material properties are available. 
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NOMENCLATURE 

a (Chapter 3) = absorption coefficient of surface 

A (Chapter 2) = constant, defined by equation (2.18). dimensionless 

A (Chapter 3) = convection coefficient of fire [W °C-N m-2 ] 

[B] (Chapter 3) = temperature gradient interpolation matrix 

[B] (Chapter 4) = strain displacement transformation matrix 

[Be] = strain displacement transformation matrix of concrete element 

[Ba] = strain displacement transformation matrix of reinforced steel bar element 

Cp = specific heat at constant pressure [J °C-'kg-'] 

Cr = pmCP m/ 
(p CP), heat capacity ratio, moist air/concrete 

C= heat capacity matrix 

[C] = constitutive matrix of plane stress 

[Cýý = constitutive matrix of concrete 

[C]rr = constitutive matrix of reinforced concrete 
[C] 

= constitutive matrix of cracked concrete in principal axes (1,2) 

D (Chapter 2) = post-crushing parameter of concrete, dimensionless 

D (Chapter 3) = diffusion coefficients for Fick's law for air-vapour mixture [m2 s-' ] 

E= elastic modulus of material [MPa] 

E, = modulus of elasticity of concrete [MPa] 

ES = elastic modulus of steel reinforcement [MPa] 

Ef = secant value of Young's modulus of concrete at failure [MPa] 

E< = secant value of Young's modulus of concrete [MPa] 

E, secant modulus of concrete in principal axis 1 [MPa] 

E, 2 = secant modulus of concrete in principal axis 2 [MPa] 

E, -,, = secant modulus of concrete at fc [MPa. ] 

E, = secant modulus of steel reinforcement [MPa] 

= tensile strength of concrete I MPa] 

Jr = compressive strength of concrete [MPa] 



f, = yield strength of steel reinforcement [MPa] 

F(t) = fire curve 

{ F} = nominal structure nodal force vector [N] 

IF, }m = nominal nodal force vector of concrete element [NJ 

{FT }m = nominal nodal force vector of reinforced steel bar element [N] 

Gc = shear modulus of concrete [MPa] 

h (Chapter 3) = linear convection coefficient [W °C-' m-2] 

h fß ,= heat of evaporation of water [J kg-'] 

J2 = second invariant of stress deviator tensor 

k= thermal conductivity [W °C-lm-' ] 

ks, = thermal conductivity of the solid phase of concrete without pores [W °C-'m-'] 

k,,, = element conductivity matrix 
[keim = concrete element stiffness matrix 

[kým = stiffness matrix of reinforced steel bar element 

K= heat conductivity matrix 

[K] = structure stiffness matrix 

L (Chapter 3) = dimension of x-direction of members [m] 

L, = D0/ao, modified Lewis number 

Ii, = number of concrete elements 

n, = number of reinforced steel bar elements 

N (Chapter 3) = convection power factor 

{q} = displacement vector 

Q= external heat flow vector 

{Q} = structure internal force vector 

R (Chapter 3) = gas constant per unit mass [J °C-' kg-'] 

{ R} = structure external force vector 

t= time 

T= temperature [°C] 

T= wmpcraturc vector 



T= temperature time rate of change vector 

[T] = transformation matrix 

u= displacement in x-direction 

um = velocity of moist air [m s-1 ] 

Um = Um Liao, dimensionless velocity 

{u,. }= displacement vector of concrete element 

{u., }= displacement vector of reinforced steel bar element 

{ U} = structure nodal displacement vector 

v (Chapter 3) = radiation view factor ( v, for horizontal surfaces and v2 for vertical 

surfaces) 

v (Chapter 4) = displacement in y-direction 

VV = volume of concrete element 

Vs = volume of reinforced steel bar element 

w= moisture content by weight [%] 

Wa = pQ /p, 
n , mass fraction of air with respect to the density of air-vapour mixture 

X (Chapter 2) = invariant, defined by equation (2.19), dimensionless 

x. y, z= global Cartesian co-ordinates 

a (Chapter 3) = thermal diffusivity [m2 s-1 ] 

e (Chapter 3) = absolute temperature [K] 

p= density [kg m-3 ] 

pººº = pm/p, ' dimensionless density 

p, = mass of liquid water for univolum of concrete [kg m-3 ] 

PI = mass of liquid water per unit volume of liquid water [kg m-3 ] 

a (Chapter 3) = Stefan-Boltzmann constant [J s-' m-2 K-4] 

a (Chapter 4) = normal stress [MPa] 

ßc = normal stress of concrete [MPa] 

CC, = principal stress in concrete. relative principal axis 1 [MPa] 

G(. 2 = principal stress in concrete, relative principal axis 2 [MPa] 

6a = tensile stress of concrete [MPa] 
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ß. s = steel reinforcement stress in bar axes [MPa] 

aJ = nominal stress of reinforced steel caused by free strains [MPa] 

{a} = stress vector 

{a, }= stress vector of concrete 
{ac }12 = stress vector of concrete, relative to principal axes (1,2) 

{a, }, = stress vector of concrete, relative to axes (x, y) 

{CY F} = nominal stress vector of concrete caused by free strains [MPa] 

i= shear stress [MPa] 

is = shear stress of concrete [MPa] 

tic12 = shear stress of concrete, relative to principal axes (1,2) 

E (Chapter 2) = porosity of concrete 

E (Chapter 4) = normal strain 

Ec = normal strain of concrete 

Coo = concrete compressive strain at fý 

Ec, = principal strain in concrete, relative to principal axis 1 

F- E C2 = principal strain in concrete, relative to principal axis 2 

Er, = tensile strain of concrete 

c, (Chapter 3) = surface emissivity 

e, (Chapter 2 and Chapter 4) = steel reinforcement strains in bar axes 

F -f = flame emissivity of fire 

c, = yield strain of steel reinforcement 

free normal creep strain of concrete 

F- S'' = free normal shrinkage strain of concrete 

E`= Cri c normal thermal strain of concrete 

i= free normal transient strain of concrete 

`ieep = free creep strain of steel S 

CT = free thermal strain of steel 

Eý' = mechanical strains of reinforced steel 

F-s = free strain of reinforced steel 
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{E} = strain vector 
{CC}12 = strain vector of concrete, relative to principal axes (1,2) 

{c }., = strain vector of concrete, relative to axes (x, y) 

{c"` }= mechanical strain vector of concrete 

IEFl = free strain vector of concrete 
{EcrP }= free creep strain vector of concrete 

{Esh }= free shrinkage strain vector of concrete 

{E`,. ' }= free transient strain vector of concrete 

{E }= free thermal strain vector of concrete 

y (Chapter 2) = non-linearity index of concrete, dimensionless 

-y (Chapter 4) = shear strain 

yc = shear strain of concrete 

7(-12 = shear strain of concrete, relative to principal axes (1,2) 

7f= non-linearity index of concrete at failure, dimensionless 

y`reeP = free creep shear strain of concrete 

A= free shrinkage shear strain of concrete 

yý = free thermal shear strain of concrete 

'yýr = free transient shear strain of concrete 

v= elastic Poisson's ratio of material 

v, = elastic Poisson's ratio of concrete 

vf= secant value of Poisson's ratio of concrete at the failure of crushing 

Vcr = creep Poisson's ratio of concrete 

v" = secant value of Poisson's ratio of concrete 

1;, 
I = production rate of moisture vapour per unit total volume [kg m- 3s-' ] 

Subscripts: 

a=air 

r= concrete 

cý = dry concrete 

i 



f=fire 

1= liquid 

m= moist air 

s (Chapter 2) = steel 

s (Chapter 3) = surface 

st (Chapter 3) = steel 

v= vapour 

x= in x co-ordinate direction 

y= in y co-ordinate direction 

z= in z co-ordinate direction 

xy = in x-y co-ordinates plane 

0= initial condition or datum 

00 = ambient 
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1. INTRODUCTION 

1.1 General Introduction 

Fire causes tremendous losses both in lives and property. Many of these fires occur in 

buildings; combustible materials begin to burn, non combustible materials such as 

load-carrying members gradually decompose and lose their stiffness and strength. and 

in some cases collapse. The catastrophic failure of building elements can lead to the 

consequential loss of further lives and property. If a building is not properly designed 

for fire resistance, it may fail in a relatively short period of time. Thus, the endurance 

of a building and it's structural components during a fire is a critical factor in fire 

protection. 

The behaviour of a structural element exposed to fire is described in terms of its fire 

endurance (or fire resistance) which is the period of time on exposure to fire at 

which failure occurs. Currently, the fire resistance of elements of building 

construction is expressed in terms of fire endurance as determined by standard fire 

tests. These criteria may vary from code to code but the most widely used is the 

ISO 834 Standard, "Fire resistance tests on elements of building construction" [1]. The 

British Standard BS476, "Fire test on building materials and structures: part 20: 

method of determination of the fire resistance of elements of construction (general 

principles)", [2] is largely based on the ISO specifications. 

Since fire tests can rarely be carried out on complete buildings. The likely behaviour 

of the building is predicted from the fire test data on single elements and in order to 

achieve this, simplifications must be made. An important way in which the behaviour 

of elements in buildings is critically different from the furnace tests concerns the 

boundary conditions. There are two main reasons. The first is that in the furnace tests 

the furnace temperature can be controlled to follow the standard fire curves. However, 

the actual severity of a read fire in a compartment depends upon three main factors: (a) 

fucl for the fire, or fire load: (b) ventilation ( e. g. air supply ) to promote its growth; 

and (c) the geometric and physical characteristics of the compartment. Because of the 
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complexity of real fires it is difficult to model each of these factors exactly using the 

standard fire curves. The second is the structural restraint boundary condition. Due to 

the limitations of experimental conditions some simplified arrangements are employed 

for the restraint of the tested elements during standard fire tests. For example, there is 

either no restraint or nearly full restraint. It is still hard to model the real structural 

restraint for standard fire tests (e. g. restraint provided by structural continuity). 

Therefore, the standard tests such as ISO and the British Standard, require the tested 

specimens to be realistic prototypes of the construction to be used in practice and 

should be full size. The tested sample should be subjected to a loading that models the 

natural situation. The standard also requires the specimen to be supported or restrained 

at the ends as they would be in service. Thus, the standard fire tests require large 

specialist apparatus and are more expensive and time consuming than computer 

predictions. 

It is, therefore, becoming increasingly important to have analytical methods that can 

predict the structural capacity of structures when subject to fire conditions. High 

speed digital computers and modern methods of numerical analysis provide the tools 

necessary for a reliable analytical solution and such analytical solutions, when verified 

by a sufficiently wide range of experimental data and observations of behaviour in 

actual fires, can reduce the necessity for experimental testing, and provide the basis 

for safer design of elements of buildings. 

Computing the fire response of elements of structure has several advantages over 

physical testing: 

(a) In buildings, the expansion of structural elements during a fire is resisted by the 

surrounding structure, giving rise to restraint forces on the element. Although the 

structural element support conditions can be accounted for in computer 

programmes it is difficult to simulate support conditions physically, generally 

requiring that standard fire tests are carried out under constant load. 

(h) The results from a fire test on a structural member are valid only for the 

particular dimensions, reinforcement. loading. and composition of the specimen 
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tested. It is hardly conceivable that all forms of structural member could ever be 

subjected to fire tests, since any variation in construction would required a 

separate test. However, when using computer programmes, it is relatively easy to 

vary some structural member's characteristics such as material properties. amount 

of reinforcement, and loading conditions, and to investigate the sensitivity of 

member's response to such variations. 

(c) In most fire tests, the deterioration mechanisms of members are not visible (e. g. 

cracking and crushing within the member). Therefore, calculated responses, 

which predict deterioration resulting from fire, can help in the interpretation of 

physical test results. 

Clearly, the analytical predictions of the structural response in fires can play an 

important role in the development of judicial structural design for fire safety. 

The analytical study of the behaviour of a reinforced concrete element during fire 

conditions should include an investigation of the effect of temperature on the 

properties and laws of materials. Therefore, the thermal and structural analyses are 

two major parts of this research. 

1.2 General Literature Review 

A brief review of analytical studies made on the fire response of reinforced concrete 

structures is given here. Detailed reviews on specific topic follow in later Chapters. 

1.2.1 Thermal Analysis of Reinforced Concrete 

The aim of thermal analysis of reinforced concrete in fire conditions is to predict the 

temperature distribution histories within the components. Since concrete is a capillary- 

porous material, the problem is complicated by the presence of moisture. Heat and 

mass transfer take place simultaneously in concrete during heating conditions and the 

tL'mperaturc distributions are affected by the presence of the moisture. 

There have been a number of studies undertaken using non-linear finite element 

procedure to predict the temperature distribution histories in reinforced concrete 
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subject to fire conditions [3,4]. Ellingwood and Lin [5] used a two-dimensional finite 

difference approach to solve the heat flow equation to predict temperature distribution 

histories of cross-sections of reinforced concrete beams in fire conditions. However. 

these studies did not consider the effect of moisture in the concrete. Wickström [6] 

used the concept of enthalpy to consider the effect of moisture subjected to 

evaporation in concrete. However, it is difficult to modify the enthalpy curve for 

concrete to allow for varying initial moisture content. 

1.2.2 Structural Analysis of Reinforced Concrete 

A more well-known computer programme, FIRES-RC, which can be used to analyse 

the structural response of reinforced concrete frames in a fire has been developed by 

Becker and Bresler [7]. This programme was an extension of the work done by Bizri 

[3]. The programme considers non-linearity due to thermal expansion, the change of 

mechanical properties of the material with temperatures, degradation of the section, 

and shrinkage and creep. The finite element method was used as the solution 

technique. In this study geometrical non-linearity and the structural failure procedure 

has not been considered. Ellingwood and Lin [5] used modified FIRES-RC to take 

into account the transient strain of concrete at elevated temperatures and to perform 

the structural analysis of reinforced concrete beams in fire conditions. Weeks [8] 

developed a computer programme, SAFE-RCC, which made use of a stiffness 

approach where loads are tested for convergence and the resultant deflections 

calculated. The geometrical non-linearity, plastic hinge, and interaction of the column 

with the surrounding structure were taken into account. Lie and Irwin [9] proposed a 

method to calculate structural behaviour of reinforced concrete columns subjected to 

tires. 

The analyses stated above were based on the "plane sections" theory. The researchers 

CMTled out the one-dimensional stresses analysis. Transverse stresses, strains, and 

shear forces wcrc ignored. However, Nizamuddin [10] developed an analytical 
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procedure based on, tangent stiffness approach to predict the fire response of 

reinforced concrete slabs. 

1.3 Purpose and Scope of the Research 

In this thesis, an analytical procedure and computer programme for predicting 

temperature distribution histories of cross-sections of structural members, such as 

beams composed of reinforced concrete, in fire conditions is developed and verified. 

Developing a procedure for the thermal analysis of reinforced concrete structural 

members is complicated by the present of moisture in the concrete. In this study a two- 

dimensional non-linear finite element procedure is proposed which is based on a one- 

dimensional heat and mass transfer theoretical model in concrete proposed by Sahota 

I II ] and a computer programme, FPRCBC-T, has been developed to predict the 

temperature distribution histories of the cross-section of reinforced concrete structural 

members in fire conditions (see Chapter 3). In this procedure three assumptions were 

made to evaluate the effect of water evaporation in the concrete. The thermal 

properties of concrete were considered as temperature and moisture dependent. 

The effect of temperature upon the thermal properties (conductivity, density, and 

specific heat) of concrete and steel was investigated (see Chapter 2). The study 

showed that thermal properties at temperatures met with in fires differ considerable 

from those at room temperature. 

In this study it was assumed that the temperature distribution histories were not 

aft'ected by structural response, such as cracking and crushing. Therefore, thermal 

analysis can be carried out separately from the structural analysis. The temperature 

distribution histories generated by FPRCBC-T can be used as temperature input for 

predicting the mechanical response of reinforced concrete structural members. 

A non-linear finite element procedure and computer programme for predicting the 

structural behaviour of planar reinforced concrete members subject to fires is 

developed and verified in this thesis. The procedure proposed is based on the "plane 

stress" theory (sec Chapter 4). In this procedure the structural members were divided 



into concrete and the main reinforcing steel bar elements. The concrete elements were 

sub-divided into layers to consider temperature distribution on cross-section of the 

members. A secant stiffness formulation and an iterative analysis approach were 

employed to model the complex features of structural behaviour in fire conditions, 

such as, thermal expansion, shrinkage, creep, cracking or crushing, and the change of 

material properties with temperatures. 

The effect of temperature on the strength and deformation properties of concrete and 

steel was investigated (see Chapter 2). In this study stress and strain normal to the load 

plane of structure may be neglected so that any point in the concrete elements can be 

considered to be in a state of plane stress (biaxial state of stress). Hence, the strength 

and deformation properties of concrete were developed for plane stress. 

The effect of high temperature on the non-linear stress-strain relationship and failure 

criteria of concrete under biaxial loading was reviewed and appropriate mathematical 

models were developed. From the literature reviewed, it was concluded that the 

strength and stiffness of concrete generally decrease with a rise in temperature. This 

decrease can be attributed to either weakening or failure of the bond at the 

mortar/coarse aggregate interface as a result of stresses accompanying incompatible 

thermal expansion of these constituents. 

The deformation properties of concrete on creep, shrinkage, transient, thermal 

expansion under biaxial loading at elevated temperature were reviewed and 

appropriate mathematical models were developed. A similar investigation was made 

on the effect of temperature on the uniaxial stress-strain relationship, uniaxial creep, 

and coefficient of thermal expansion of steel, and appropriate models were developed. 

The study showed that, in general, the strength and deformation properties of concrete 

and stccl at temperatures encountered in fires differ considerably from those at 

ambient conditions. 

The exact nature of the material properties of concrete and steel at elevated 

temperature is much debated and still in need of further research. Therefore, the 
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models of material behaviour used in this research can provide only a first order 

approximation of the relationships. 

For verification of the proposed analytical model, a series of proving tests have been 

carried out using a quantitative verification of the model against known test response 

data. These indicate that the proposed analytical methods incorporating these material 

models predict both thermal and structural response with fairly good accuracy at least 

in certain circumstances. 
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2. MATERIAL PROPERTIES AT ELEVATED 

TEMPERATURES 

2.1 Introduction 

In this chapter the effect of temperature on the properties of concrete and steel are 

reviewed, and mathematical models describing these properties are established. 

Detailed discussions on specific properties can be found in the references cited in this 

chapter. 

The behaviour of a reinforced concrete structural member subjected to fires largely 

depends on the thermal and mechanical properties of the concrete and steel. Most of 

these properties are temperature dependent, some of them are also stress dependent, 

and some are time dependent, such as shrinkage and creep. For success in evaluating 

the response of a reinforced concrete member in fire conditions it is very important to 

understand the properties of the component materials in the temperature range caused 

by fires (20 - 1100 °C). 

The properties of concrete are known to depend on a large number of factors including 

mix proportions, environmental conditions, load level, size and shape of member, age 

at loading and duration of load. In addition, the properties of concrete generally vary 

throughout the structure. Therefore, the material properties discussed here can only be 

considered to represent an average state in the body. Moreover, concrete is a 

heterogeneous material consisting of mortar and aggregate, for purposes of analysis it 

is considered as homogeneous in a macroscopic sense. Compared to concrete, the 

properties of reinforcing steel are generally well defined. 

It is well known that concrete is not physiochemical stable at high temperatures which 

cause physical and chemical change in cement paste and aggregate, and internal 

stresses are induced due to the difference in coefficients of thermal expansion between 

cement paste and aggre(pte. Because of the complexity of concrete, the material 

properties are affected by many factors and different testing procedures produce 

different results. This makes direct comparisons between the experimental results 
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from different sources of research difficult. The range of the reported values for any 

property at any particular temperature is quite broad. In this study the load cycling on 

the material properties is not considered. 

2.2 Thermal Properties of Materials at Elevated Temperatures 

For evaluating the temperature distribution histories of a reinforced concrete structure 

in fire conditions it is necessary to know the thermal properties of concrete and steel in 

the temperature ranges associated with fire. 

2.2.1 Thermal Conductivity of Concrete, kc 

Bizri [3] made a wide literature search for the determination of the thermal properties 

of concrete. The principal finding was that in spite of the wide range of values for any 

one property for different concretes the general trends found by different 

investigations are quite consistent. It has been shown that conductivity, k, decreases 

with increase in temperature. 

2.2.1.1 The Factors Influencing the Conductivity, k, 

(1) Moisture: 

Since the conductivity of air is much lower than that of water, the degree of saturation 

of concrete strongly affects its conductivity. It is to be expected that drying (loss of 

fret water) by replacing moisture with air, and dehydration (e. g. loss of chemically 

combined water which forming a definite part of the hydrated compounds) would 

result in a lowering of the conductivity. On the other hand, the simultaneous presence 

of tree moisture with an increase in temperature might lead to an increase in the rate 

of heat transfer by diffusion of water vapour, thus resulting in higher conductivity. 

These opposite; cffects on the conductivity are very clear from the results produced by 

Harmathy 1 121 who studied concrete specimens with 01/c, 4% and 8% (by volume) 

initial moisture content. Only the specimen with 0% moisture experiences 

dehN, dration, thus kc decreases steadily. The specimens at 49 and 8'7 moisture 
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content exhibit an initial increase in the rate of hydration. thus k, increases to a 

maximum value at a temperature of about 100 °C. At this point the drying process is 

more potent than any possible further hydration and, k, starts decreasing and as this 

proceeds dehydration also begins and further decreases the conductivity. Finally, the 

three curves for 0%, 4% and 8% moisture content meet at a temperature of about 125 

°C and coincide thereafter. 

(2) Mix characteristics: 

a) Water-cement ratio: The main effect of the water cement ratio is on the initial 

value of the conductivity, k,. It has a direct bearing on the amount of hydrated 

products and on the amount of free moisture available. Because the conductivity 

of water is less than half that of the cement paste, it can be stated that the lower 

the water content of the mix, the higher the conductivity of concrete. Except for 

the influence of moisture, the effect of the water-cement ratio upon the 

conductivity is negligible. 

h) Aggregate-cement ratio: The cement paste has a lower thermal conductivity than 

normal density aggregate (2000-2700 kg/m3 ), so that the leaner the mix, the 

higher is the conductivity. 

c) Aggregate tyl2e: Investigations [13] show that the thermal conductivity of the 

cement paste in concrete does not vary greatly with temperature. However, 

variations in the thermal conductivity of aggregates are relatively large and 

responsible for the variation in the thermal conductivity of concrete. Even at 

room temperature different aggregates have different conductivities. In general, 

the conductivity of the aggregate decreases with an increase in temperature. The 

changes in kc are even more pronounced when an aggregate experiences a change 

of mineralogical character. From research [14], it could be concluded that kc 

might experience sudden drops at about 570 °C or 650 °C if quartz or biolite are 

prescht. 

d) Curing and a, -, c: Have a slight effect on the initial values of k_. This effect 

becomes negligible at high temperature. 

16 



(3) Test conditions: 

a) Exposure time at high temperature and heating rate: At high temperatures free 

moisture either combines at an accelerated rate with the still unhydrated products 

or evaporates. These two processes have opposing effects on k, Their relative 

importance depends on both the exposure time at high temperature and the 

heating rate. 

b) Furnace temperature condition at testing: Zoldners [14] reported that the 

conductivities of specimens that were cooled after exposure to high temperature, 

then tested were 10 to 20% higher than the corresponding values of the hot test 

specimens. The same conclusion could be reached by examination of Crispino's 

results [15]. In Crispino's investigation the specimens were heated to about 200 

°C then cooled to room temperature, and measurements of k, were taken 

continuously. It was found that k, increased during the cooling process in 

agreement with Zoldner's results. Note, however, that the curve representing the 

values of the conductivity during the cooling process is continuously below the 

curve representing the values of k, during the heating process. This is due to the 

free moisture which cannot be recovered once it is lost. 

2.2.1.2 The Mathematical Model of kc 

Because of the complexity of concrete, available data on conductivity from references 

is subject to wide variation. However, the thermal conductivity of concrete shows a 

tendency to decrease with increasing temperature over the entire temperature range of 

interest for fire application. In this study, a two-dimensional non-linear finite element 

procedure to predict the temperature distribution histories of cross-section of 

reinforced concrete structural members in fire conditions is developed based on a one- 

dimensional heat and mass transfer theoretical model in the concrete proposed by 

Sahota [ 11 j (see Chapter 3). In this model it is assumed that free water boils at 120 °C 

(sce Scction 3.1). After this point it is assumed that the concrete cannot heat up further 

until all the frc water has evaporatcd. That is when the temperature is above 120 °C 
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there is no free water in the concrete, the concrete is dry. Two formulas are used to 

calculate kc, one for wet concrete, the other for dry concrete. 

The thermal conductivity of wet concrete may be calculated using the following 

empirical equation suggested by Kingery [16]: 

i 
n 

k, _E- 
PI kmn + 

P* kin + (1- E) k3 n 
Pt Pi 

(2.1) 

where, n is a power constant, -1 <_ n <_ 1 and n#0. A value of n=0.25 estimated 

by Harmatly [ 17] for fire clay brick was assumed to apply for concrete [11]. 

For dry concrete a model used by Ellingwood and Lin [5] is modified to represent kd 

as a function of temperature (see Figure 2.1). This is expressed mathematically as 

follows: 

kd = kd o 

kd = [1. O-8.9347x104(T-20)]kdo 

kd = [o. 7498-4.7166 x1O(T-3OO)kd. o 

kd = [0.5140 
- 8.6326 x 10-` (T - 800) kd. o 

(T <_ 20 °C) (2.2a) 

(2o<Tý 300 °C) (2.2b) 

(300<Tý 800 °C) (2.2c) 

(800 <T <_ 1500 °C) (2.2d) 

Where, k, 1 o is thermal conductivity of dry concrete at room temperature for normal 

wcight concrete, a typical value for kd ° is 1.75 (W °C-' m-1) [3]. 

A pseudo k, for the purposes of using equation (2.1) may be calculated from equation 

(2.1) by putting kd =1.75 (11" oC-' m-') when p1 = 0. According to Sahota [ 111, the 

values of k 1l, k, 
n . and E to be used are 0.651,0.026 (W ''C-' mm-' ), and 0.21. 

respcctivcly. Thus pseudo k, = 3.31 (1v `'C' m-') is obtained. With this value of k, 

and for a maximum p1 = 210 (kg nl- 3), the maximum value of the overall thermal 
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Figure 2.1 Thermal Properties of Dry Concrete: The Relationship of 

the Percentage Change of Ambient Values of the Specific 

Heat and Thermal Conductivity with Temperature [5,13] 
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conductivity of wet concrete, k, is calculated to be 2.48 (W °C-' m-'). Thus kk may 

vary between 1.75 and 2.48 (W °C-' m-'). 

2.2.2 Density, p, and Specific Heat, Cp,,, of Concrete 

When the concrete is subjected to high temperature it experiences a weight loss. The 

three major factors responsible for the weight loss are drying, dehydration and 

disintegration. Moreover, due to the thermal expansion, the volume of concrete 

increase with temperature. Therefore, the density of concrete, p, should decrease 

with an increase in temperature. 

Unfortunately, most of the experimental data available in the literature gives values 

for the weight loss and the linear expansion of concrete, but do not give values for 

volumetric change or changes in density of concrete. Therefore, it is assumed that 

density of dry concrete, pd 7 is constant and the effect of the change of dimension of 

material with temperature upon thermal analysis is not considered in this study. 

As mentioned in Section 2.2.1, the concrete is considered as wet or dry. For wet 

concrete, overall specific heat can be expressed as: 

CpC _ 
Pd 

Cpd + 
PI 

Cpl (2.. 3) 

PPl 

where, p= pd + PI . 
Typical values of normal weight concrete for Cp 1 and pd at room temperature are 

4187 (J °C-' kg-') and 2400 (kg m-3) respectively [3]. 

A model proposed by Harmathy [13] is modified to represent Cpd as a function of 

tt'rnperature (see Figure 2.1). The model is expressed mathematically as follows: 

C,,,, 
1 = Cp, d, o 

Cp ,= 
[l. o+1. o34Ox1Y(T-2O)]CPdO 

(T <_ 20 °C) (2.4a) 

(20 < T<_ 200 °C) (2.4b) 
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CP d= 
[1.2941 + 8.8235 X 10-4 (T - 200) Cp, d, o 

Cp d= 
[i. 4706 + 9.8039 x 10-5 (T - 400) Cp, d, O 

CP 
d=1.5294 Cp d, 0 

(200 < T<_ 400 "C) (2.4c) 

(400 < T<_ 1000 "C) (2.4d) 

(1000°c<T) (2.4e) 

Where, Cp, d, O is the specific heat of dry concrete at room temperature, for normal 

weight concrete, a typical value for Cp d° is 850 (J °C' kg-') [131. 

2.2.3 Thermal Conductivity of Steel, ks 

Steel constitutes only a small percentage in volume of reinforced concrete structures. 

Therefore, small variations in its thermal properties would have a negligible effect on 

the distribution of temperatures [3]. However, the thermal properties of steel have 

been investigated more thoroughly than those of concrete [181, and may be easily 

described. 

Similar to concrete, the thermal conductivity of steel, kr, decreases with rise in 

temperature. The amount and rate of this decrease depends mainly upon the 

composition of the steel, especially the carbon content. A typical model proposed by 

Bizri 131 is modified to represent ks as a function of temperature (see Figure 2.2). 

This model can be expressed mathematically as follows: 

kS = ks ° 
(T <_ 20 °C) (2.5a) 

k, = [1. o-5.6384x1o4(T-2o)]k0 0 (20 < T<- 593 °C) (2.5b) 

kc = 0.6769 ks. o 
(593 "C < T) (2.5c) 
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Where, ks ° is the thermal conductivity of steel at room temperature, a typical value for 

k, ° is 50.83 (W °C-' rn-') [3] 

2.2.4 Specific Heat, Cp 
S, and Density, ps. of Steel 

Available data in the literature shows that there is no appreciable decrease in density 

of steel, p, at high temperatures (T<600 °C) [3,18]. Therefore, ps. may be assumed 

constant and a typical valve of p, f 
is 7690 (kg m- 3) [3]. 

However, the available data on the specific heat of steel, Cp 
S, shows that Cp 

s 

increases with rise in temperature [18,3]. A model proposed by Bizri [3] is modified 

to represent Cps as a function of temperature (see Figure 2.2). This is expressed 

mathematically as follows: 

Cps = Cp 
s, 0 

Cps = [1. o+8.1815x1o(T-2o)]c0 

Cps = [1.31o9+1.3115x1o3(T-4oo)]C0 

Cps = 1.5 640 Cp, 
s, o 

(T <_ 20 °C) (2.6a) 

(20 <T <_ 400 °C) (2.6b) 

(400 < T<_ 593 °C) (2.6c) 

(593 °C < T) (2.6d) 

Where, C0 is the specific heat of steel at room temperature, a typical value of CP0 
S, O 

is 460 (J °C-1 kg-') [3]. 
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2.3 Strength and Deformation Properties of Materials at Elevated Temperatures 

This section deals with the strength and deformation properties used in the structural 

analysis of planar reinforced concrete members in fire conditions. These properties are 

entered into the computer programme, FPPRCM-S, which evaluates the structural 

response of planar reinforced concrete members to fire. 

Temperature change in the structural members causes changes in its strength and 

dimensions. In order to be able to predict the structural response of the members at 

different times during exposure to fire, it is necessary to know the strength and 

deformation properties of the constituent materials, steel and concrete, at temperatures 

met with in fires. The strength and deformation properties of concrete and steel are all 

temperature-dependent, some are also stress-dependent, and some are time-dependent. 

In this study, structural members were modelled as an assemblage of quadrilateral 

concrete elements and main reinforced bar elements (see Chapter 4). Therefore, any 

point in the concrete elements may be considered to be in a state of plane stress and 

the bar element is treated as a structural member capable of transmitting stresses only 

in the direction normal to the cross-section. The strength and deformation properties 

of steel in the one dimensional state at elevated temperatures are generally well known. 

However, the strength and deformation properties of concrete at high temperatures, 

especially under combined states of stress, have not been thoroughly investigated. 

2.3.1 Constitutive Modelling of Plain Concrete 

At present, there is still very little data and few theoretical models available on the 

constitutive modelling of concrete under biaxial states of stress at elevated 

temperatures. Therefore, in this study the models at room temperature were extended 

to elevated temperatures simply considering all the relevant parameters of the material 

as temperature dependent. 
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2.3.1.1 Failure Envelope 

There is very little data available in the literature on the effect of heating on the failure 

of concrete under biaxial loading. However, several investigators have studied the 

biaxial strength of concrete at room temperature [ 19,20]. These results show that the 

biaxial tensile strength of concrete is approximately equal to its uniaxial tensile 

strength. In the region of biaxial compression-tension, the results show that the tensile 

stress at failure decreased as the simultaneously acting compressive stress was 

increased. Finally, in the region of biaxial compression, the results show that 

considerably higher strength is obtained in biaxial compression than in uniaxial 

compression. 

Examination of the crack pattern in flat specimens after failure indicates that the 

failure can be classed into two distinct modes: cracking and yielding. Tests have 

shown that in the biaxial tension region or biaxial tension-compression region failure 

is characterised by the formation of a single cleavage perpendicular to the maximum 

tensile stress. On the other hand, in biaxial compression, numerous micro cracks 

parallel to the free surfaces of the specimen (plane of loading) are formed. However, 

the specimen can still undergo some apparent plastic deformation before it collapses 

completely. The eventual failure is by tensile splitting in a plane parallel to the load, 

when the third dimension is unrestrained. This suggests that tensile deformation is 

vital in the failure mechanism of concrete. 

As mentioned before, there is very little data on the biaxial strength of concrete at 

higher temperatures. For this study, however, the formulation of the failure envelope 

proposed by Barzcgar-Jamshidi [21] (see Figure 2.3) which was based on a slight 

modification of the Kupfer and Gerstle [221 expressions was adopted with the 

parameters considered temperature dependent. 

In Figure 2.3. the failure surfaces of the biaxial strength envelope is divided into four 

regions, which depend on the stress state as represented by the principal-stress ratio 

a= 6O/ac, Compressive stresses are assumed to be negative and tensile stresses 
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positive, and the principal directions are chosen so that a,, >_ a^, algebraically. It can 

be seen that for compression stresses smaller than 0.75 ff failure is assumed to occur 

by the cracking of the concrete perpendicular to the principal tensile stress direction, 

and for higher compressive stresses the failure is due to the crushing of the concrete. 

The four regions of the failure surfaces of the strength envelope can be expressed as 

follows: 

(1) In the tension-tension region (a,, = tension, ace = tension), line segment A-B, 

failure by cracking: 

ail =f' 

ßa >_ 1.0 (2.7) 
= c2 a 

(2) In the tension-compression region (cc, = tension, ace = compression), line 

segment B-C, failure by cracking: 

ac, =a act 

' X9 -0.73r (2.8) 
__ 

f 
6c2 

a-0.6r 

where, r=f, 
/I f, I. 

(3) In the tension-compression region (ail = tension, (3c2 = compression), line 

segment C-D, failure by crushing: 

ail =a act 

cf[9, +a+(9r+)2 -66.56r2 12. r 

(4) In the compression-compression region (ß,, = compression, 6c2 = compression), 

line segment D-E, failure by crushing: 
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ac, =a act 

1+3.65( 
(1+(X)2 

f` 6e2 = 
0<a<1 (2.10) 

Within this model the initiation of a cracking or crushing process at any location 

occurs when the concrete stresses reach one of the failure surfaces. 

The main advantages of this model are that it is simple and the required data are 

readily obtainable from uniaxial tests on the concrete. 

2.3.1.2 Concrete Stiffness: Integral Values and Stiffness After Failure by Crushing 

Ideally a constitutive model for concrete should reflect definite strain hardening 

characteristics before failure, the failure itself, as well as some strain softening in the 

post-failure regime. The model should also perform satisfactorily under different 

states of multiaxial loading and yet be simple, flexible and numerically feasible. 

Finally, the material model must be easy to calibrate to a particular type of concrete. 

Therefore, a model which is constructed upon uniaxial test data is preferable. 

A non-linear elastic model encompassing most of the above properties was proposed 

by Ottosen [23] at room temperature. This model is capable of representing, in a 

simple way, most of the characteristics of concrete behaviour for a general state of 

stress. These features include: (1) the effect of all three stress invariants provided the 

failure criteria are formulated based on those invariants: (2) consideration of dilation; 

(3) the production of completely smooth stress-strain curves; (4) the prediction of 

realistic failure stresses: (5) the simulation of post-crushing behaviour; and (6) the 

applicability to all stress states including those where tensile stresses occur. In 

addition, its calibration to a specific concrete requires only uniaxial test data. Any 

failure criterion can be employed in conjunction with the constitutive model and this is 

accomplished by modifying a single parameter in the model. 
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Barzegar-Jamshidi [21] used this model for the constitutive modelling of plain 

concrete at room temperature. In this study the model is extended to fire conditions 

simply by considering all the relevant parameters as temperature dependent. 

In this isotropic model the stress-strain relationship is described by appropriate 

changes in the secant values of Young's modulus and Poisson's ratio. The adopted 

constitutive model is a specialised 2-D form of the actual 3-D model by Ottosen [23]. 

In this isotropic model the stress-strain relationship of the concrete is expressed as: 

aCX ] vc 

_ 
Ec 

c, y - -2 
v' 10C, 

y jr 
- v- 

'c`, xy 00 -v` 
2 

and the constitutive matrix of the concrete is 

Ec [C]C - -2 vc 
1-vc 

0 

vc 0 

10 

0 
1-vc 

2 

(2.11) 

(2.12) 

in which the secant value of Young's modulus, Ec, and Poisson's ratio, vc, are 

modified and described in following section to account for material nonlinearites such 

as softening and dilatation. 

(1) Change in the secant value of Young's modulus: 

The expression used to describe Young's modulus, E,, is as follows [211: 

Ec - 
Eý 

-, y 
F 

-Ef ± -7 
E` 

-Ef 
2 

+Ef2 y[D(1-Y)-1] 
2 

(2.13) 
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In which the positive and negative signs apply to the ascending and descending part of 

the stress-strain curves, respectively. 

In equation (2.13) the non linearity index, 'y, is a measure of the actual loading in 

relation to the failure envelope. Its value determines the amount of non linearity in the 

stress-strain curves. Assuming tension as positive and compression as negative, for a 

biaxial compression loading the non linearity index, y, is defined as (see Figure 2.4): 

ace 
6 

c2'f 

(2.14) 

where, 6c2 is the actual maximum compressive principal stress, and 6c2 r is its 

corresponding failure value. Provided that the other principal stress, a 1, is unchanged 

((T 
c1 

> cT 2). ace f can be calculated using following formula: 

=- 
fý 2 6`' act 

acef 

2 lfý1 
+1.0+ 1.0-10.6 

If'IJ 
(2.15) 

Using equations (2.14) and (2.15) y can be calculated, 'y < 1, 'y =1,7 >I correspond 

to stress states located inside, on, and outside the failure envelope, respectively. 

When tensile stresses occur, the actual state of stress (acl 9 (Tc2 )'where at least aC, is a 

tensile stress, is transformed to a uniaxial compressive case by superposing a 

hydrostatic pressure, - ac, , on to the existing field thereby obtaining the new stress 

state (0, (T 2) in which 6c2 = ace - ßc, , then y is defined as: 

Y=6, _ 
6c2 

6c2, f 
fc 

(2.16) 
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In this case, y<1 always holds. This reduction in the non linearity index is consistent 

with the fact that the more the stress state involves tensile stresses. the more the 

concrete behaviour is linear. In equation (2.13) Ec is the elastic modulus, and 

Ef= Epp is the secant modulus at peak stress of a uniaxially loaded compressive 

specimen determined as ESP = fý /c, 
0 . For a biaxial compressive loading the secant 

value of Young's modulus at failure, Er , is calculated from: 

Ef= 
Ecp 

(2.17) 
1+4(A-1)X 

where, 

A=E (2.18) 
E 

,p 

Uf'I(VJ2 

)1J 

(2.19) 

, 

X represents the dependence on the actual loading. The term (%Ji/f'I)f denotes the 

failure value of the invariantV J2 lI fc' I9 where the failure stress state is connected with 

the determination of non linearity index, equation (2.14). Therefore, 

22l J2 =3( 6cl +(T 
c2, f - 6c1 6c2, f 

) (2.20) 

1/V is the value of ý J2 lI fý I) 
f 

for the case of a uniaxially loaded specimen in 

compression. When tensile stress occur, it is assumed that Ef = Epp. Note that we 

presently only deal with compressive stress states and have X >_ 0. where X=0 holds 

for uniaxial compressive loading. The value Ef = Epp holds when X=0, otherwise 

Ef< Ew applies. The dependence of Ef on the actual type of concrete is represented 

in equation (2'. 17) by the parameters E,,, and A. 
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The parameter D in equation (2.13) determines the degree of strain softening when 

crushing of concrete occurs. It affects the stress-strain curves before failure only 

slightly. The parameter D determines the post-failure behaviour, the precise form of 

this part of the curve is unknown, and is in fact, not obtained by a standard uniaxial 

compressive test. Therefore, the actual value of D is simply chosen so that a 

convenient post-failure curve results. However, there are certain limitations to D, its 

range of value is determined as: 

1-A 
2<D 

<- 1+A(A-2) A<-2 (2.21a) 
2 

0<_ D <_ 1 A>_2 (2.21b) 

Under uniaxial or biaxial compression, crushing occurs when the stress point reaches 

segment DE of the failure envelope (see Figure 2.3). The post-crushing behaviour in 

this zone is controlled by equation (2.13) using negative sign before the square root 

along with a suitable choice of the parameter D. 

The post-crushing behaviour in tension-compression zone has not been determined 

experimentally but can be modelled conveniently as follows: for a given state of 

biaxial tension-compression that lies on segment CD of the failure envelope (see 

Figure 2.3) the non linearity index at failure, 'y f<1, is determined from 'Y f= 6c2 / fc 

where ace = ace - aC, . As shown in Figure 2.5 the post-crushing curve AB is then 

assumed to be obtained by the translation parallel to the horizontal axis of the part MN 

of the original descending branch of the curve. Corresponding to some actual y value, 

in the post-crushing region the secant value is obtained as: 

Ec 
E., f, %, E:, Em 

EA E., i +yfE. %f. %, 
(E. 

1 - E;, ) 
(2.22) 
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in which, E MN is determined from equation (2.13) with the negative sign before the 

square root, using y. EA and Em are the secant value corresponding to 7f which are 

determined from equation (2.13) using the positive and negative signs before the 

square root, respectively. 

(2) Change in the secant value of Poisson's ratio: 

Experimental evidence indicates that under uniaxial and biaxial compression concrete 

first compacts and then dilates due to internal micro cracking. To take this into 

account the expressions for the secant value of Poisson's ratio are assumed to have the 

following form: 

vc =V ý/<_fa (2.23a) 

2 

uc =Vf- 
(V 

f-V c) 
1- 

7-7a 

f> 'Y a 
(2.23b) 

1- ya 

where, vC is the initial secant Poisson's ratio and vf is the secant Poisson's ratio at the 

failure of crushing. Figure 2.6 is the plot of the non linearity index, -y vs. the secant 

Poisson's ratio as determined from equations (2.23a) and (2.23b). Equation (2.23) is 

valid up to crushing of the concrete. Although very little is known of the amount of 

increase in Poisson's ratio in the post crushing regime it is an experimental fact that 

dilatation continues in this region. In order to incorporate volumetric increases in the 

post-crushing region, the value of the secant bulk modulus at failure, 

Mf=Ef /3(1- 2v f) is slightly increased. For a given value of the secant Young's 

modulus, E,, in the post-crushing phase there exists a corresponding secant Poisson's 

ratio v- , so that the corresponding secant bulk modulus, M, is unchanged, that is 

M= 
E` 

= 1º1 f= constant 
ý (1 2 v. ) (2.24a) 
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or 

v, = 0.5- 
E` 

6 Mf 
(2.24b) 

In this study vc = vc is employed in the post-crushing region. 

For a biaxial tension-compression state of stress leading to crushing of concrete the 

same procedure is used to calculated v, in the post-crushing phase. In the model an 

upper bound v, <_ 0.45 is set to eliminate problems associated with Poisson's ratio 

approaching 0.5. It is suggested by Ottosen [23] that in equation (2.23) selecting 

7a=0.8 and vf=0.36 for most types of concrete and loading conditions gives a fair 

approximation of the behaviour. Unless otherwise stated, these values will also be 

employed in this study. As before, the value of y to be applied in equation (2.23) is 

determined by equation (2.14) when only compressive stresses occur, and by equation 

(2.16) when tensile stresses are present. 

(3) Required input for the concrete model: 

The foregoing model is calibrated using six parameters: the two initial elastic 

parameters, E_ and v, the two strength parameters, ff' and f1', the strain, cco, at 

maximum uniaxial compressive stress, and finally the post-crushing parameter, D. The 

first five parameters are determined from standard uniaxial tests and considering as 

tcmperature dependent for extending the model to fire conditions. 

Detailed experimental verification of the above constitutive modelling of plain 

concrete at room temperature can be found in Reference 21. The performance of the 

model under uniaxial and biaxial stress state were illustrated and in general good 

agreement with the experimental results was found. 

2.3.1.3 Concrete Stiffness after Cracking 

The tensile weakness of concrete and the ensuing cracking that results therefrom, is a 

major (Actor contributing to the non-linear behaviour of reinforced concrete (RIC) 

structures [241. During monotonic loading, of a R/C structure continued up to its 
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failure, cracking occurs at an early stage of loading and introduces a distinct 

geometrical discontinuity within the structure. Therefore, the modelling of cracking is 

very important for finite element analysis of R/C structures. In order to model crack 

initiation and post-cracking behaviour three basic components must be incorporated in 

the analytical model. These include: a criterion for crack initiation, a method for crack 

representation and finally, a criterion for crack propagation [24]. 

At present, two methods of crack representation (discrete crack or smeared crack) 

have been introduced. Most models rely on a strength criterion for crack initiation. 

Therefore, in this study the strength criterion is employed and the crack is initiated 

once a stress point violates the failure envelope in the cracking zone (see Figure 2.3). 

In the finite element analysis of R/C structures crack can be modelled using either a 

discrete or smeared cracking approach. 

The discrete crack modelling introduces an actual gap in the FE mesh at the location 

of a crack . It achieves this by doubling and separating the nodal co-ordinates along 

the crack path. This implies important changes in the numbering of nodes and element 

connectivities which in turn affects the global stiffness matrix. From the numerical 

point of view there are two major disadvantages for such an approach. The first is the 

crack propagation path has to follow the boundaries of the existing element. The 

second is to redefine the FE mesh as cracking propagates. These appear to require 

intricate programming techniques and to be still significantly restricted in use because 

complicated mesh refinements become necessary to accommodate the propagation of 

only it few discrete cracks. On the other hand, the discrete model is suitable for cases 

in which only a few cracks dominate the behaviour of the structure such as a shear 

beam. In plate and shell type structures, if punching shear failure can be avoided, in 

general, many cracks form before the failure is reached and no single crack dominates 

the behaviour. 

The smeared rack approach makes use of drastic material property changes at the 

location of'cracking, as a mcans of simulating discontinuity. Such a change is achieved 

by reducing the stiffness properties in the direction orthogonal to the crack. without 
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involving any real gap in the mesh. Since material properties are evaluated only at 

sampling point in an element, such as the integration points or the nodes, such an 

approach represents average behaviour of some tributary area around that point. This 

has the effect of smearing the cracks over a certain area and imposes discontinuities in 

the stress field without making the displacement field discontinuous. Using the 

smeared approach cracks in different directions can be generated automatically 

without the need for redefining the initial finite element mesh. Due to its generality 

and simplicity, the smeared crack approach is employed in this study for crack 

representation. 

Within this model the initiation of a cracking process at any Gauss Point happens 

when the concrete stress reach one of the failure surfaces (see Figure 2.3) either in 

biaxial tension, segment AB or in a combined tension-compression region, segment 

BC. After single cracking has taken place, the concrete is treated as an orthotropic 

material with principal axes normal and parallel to the crack direction (see Figure 

2.7(a)). The concrete parallel to the crack direction is still capable of resisting 

either tensile or compressive forces. When it is subjected to tension, a pure linear 

elastic behaviour is assumed and when tensile stress exceeds the tensile strength a 

second crack is formed normal to the first crack (see Fig. 2.7(b)). On the other hand, 

when it is subjected to compression, experimental results show that the tensile cracks 

have caused damage to the concrete with the transverse tensile strain, having a 

degrading effect not only on the compressive strength but also on the compressive 

stiffness. Therefore, concrete in this situation is softer, with weaker values than those 

recorded from a standard cylinder test. The possibility of the crack closing and 

reopening was considered in this model. That is, when cracks closed the concrete was 

assumed to act as un-cracked concrete. 

A model to determine the principal compressive stress (parallel to the crack direction) 

suggested by Vecchio [25] is used in this study, that is 
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(a) Cracking in One Principal Direction 

(h) Cracking in Both Principal Directions 
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2 
ac2 =c 

max 
2 

F'c2 
_ 

F-c2 
(2.25) 

Eco Ec0 

where 

(Tc, max 
=1<1.0 (2.26) 

fc 0.8-0.34 FIC' 
F, 

co 

where, c0 is the strain corresponding to the maximum concrete compressive strength, 

fý. 
(1) Tension stiffening: 

Fracture and crack propagation in concrete depend on the properties of the material in 

tension and its post-cracking behaviour. The experimental studies carried out by 

Willan, et al [26] indicate that the behaviour after cracking is not completely brittle 

and that there is some ductility in the post-cracking region. The behaviour of the 

uniaxially loaded specimen (deformation-controlled) is illustrated in more detail in 

Figure 2.8. Upon increasing tension the critical cross section of specimen reaches the 

strength limit, f, ' (see Figure 2.8(a)). At this stage micro cracks develop to form a 

fracture zone. Increasing the deformation causes the intact concrete outside the 

fracture zone to unload (see Figure 2.8(b)) while the material in the fracture zone 

undergoes strain softening (see Figure 2.8(c)). Finally, at the termination of strain 

softening behaviour the micro cracks coalesce to form one continuous macro crack 

and stresses in the specimen diminish to zero. This phenomenon is termed tension 

SIiffening. 

For modelling the tension stiffening behaviour of concrete in this study the secant 

normal stiffness is determined using a bilinear tension stiffening curve suggested by 

Rots ct at 1271 (sec Figure 2.9 curve ABC). The curve ABC can be expressed 

mathematically as follows: 
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For line AB, 

6. f1 (ec, F- ß. aýý = f' - 2F- 
u- 

9e 
r 

For line BC: 

-f _3f 
2 

6ý` 37 cu 

(EC--ECU) 

c <e 
29 

Ecu (2.27) 

C(2.28) 
2 

CCU < Ect < 

Cu 

9 

where, cc, is the strain in concrete at cracking, gcr = f, /Ec 
, and F, is the strain 

levels to terminate the artificially assigned softening branch, EcU = al Ecru 

a, = 10-25 [21]. 

(2) Stiffness matrix for cracked concrete: 

With the smeared crack representation, cracked concrete can be considered as a 

orthotropic material with its principal axes, normal and parallel to the crack direction 

(see Figure 2.7). Further, after cracking, Poisson's effect can be considered to be 

negligible due to the lack of interaction between the two orthogonal directions. Thus, 

the concrete material stiffness matrix evaluated with respect to the principal 1,2 axes 

system is 

acl Eci 
6c2 = Ü 

Tc12 0 

or 

00 Eil 
Ec2 0 Ec2 

0ß GC 'Yc, 2 

I CY 
C112 

":::::: 

(2.29a) 

(2.29b) 

where, E,, and E, -, are the secant moduli. They can he evaluated using following 

formulas: 
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Figure 2.8 Stress-strain Curves for the Concrete Specimen under Uniaxial 
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(a) Representation of Test Specimen Subject to Uniaxial Tensile Loading 

(h) Stress-Strain Relationship for Concrete outside the Fracture Zone 

(c) Stress-Strain Relationship for Concrete within the Fracture Zone 
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Ecu = °' (2.30) 
Ecl 

Ec2 = 
a`2 (2.31) 
Erz 

P is the shear retention factor with 0< P<_ 1.0 . 

After cracking has taken place, failed concrete can still transfer shear forces through 

the aggregate interlock or by shear friction and dowel action. Using a reduced shear 

modulus not only improves the realism of cracking representation during the finite 

element analysis but also removes most of the numerical difficulties caused by the 

singularity of composite material's constitutive matrix [24]. However, numerous 

analytical results have demonstrated that the particular value chosen for ß (between 0 

and 1) does not appear to be critical, but values greater than zero are necessary to 

prevent numerical instabilities [24]. Therefore, a constant value of 13 = 0.25 is used in 

this investigation. 

Finally, it is necessary to express the stiffness matrix, [C], in terms of the global (x, 

y) co-ordinate system. This can be done by standard co-ordinate transformation. The 

strains corresponding to the (1,2) axes are related to the strains corresponding to the 

(x, y) axes by the following formula: 

ECG 

Er2 = 

Yc12 

or 

cos, 6 

sin' 6 
sine6 

cost 0 

-2 sin 0 cos 02 sin 0 cos 0 

Ic 112 
= 

sin 0 cos 0 F-C, X 
-sin6cosO 6c, y 
cost 6- sine 0 YC, X, 

(2.32a) 

(2.32b) 
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where, 0 is the angle from the x-axis to the 1-axis (see Figure 2.7). 

Similarly, the stresses in the two co-ordinate systems are related by: 

6c, 
x 

COS 2B 

6c 
y= 

sine e 

'Lcxy sin0cos0 

or 

{ß, }xy 
=[T(')]"{ßc}12 

singe -2sineCosO ßcl 
Cost 8 2sin0cos0 6c2 

-sin 6 cos O cost 0- sine 0 ic12 

(2.33a) 

(2.33b) 

where, T signifies the transpose of the matrix. Thus, from equations (2.29), (2.32), 

and (2.33) one can be obtained: 

fa, I 
-XY 

= [T(O)]T[C, ][T(O)]IF-, l 
XY 

(2.34) 

and 

[C], =[T((, )lT [C, ][T(O)] (2.35) 
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2.3.1.4 Modulus of Elasticity of Concrete, E, 

The modulus of elasticity of concrete, E, has been studied by several investigators 

e. g. [28,29]. Most of the investigation show that the modulus of elasticity of concrete 

decreases with increasing temperature. 

(1) The main factor affecting Ec 

(a) Moisture: 

Lankard et al [30] show that the loss of moisture due to heating leads to a decrease in 

Ec. Dehydration at high temperatures leads to a further reduction in Ec. 

(b) Mix characteristics 

i. Water-cement ratio: The higher the water-cement ratio the greater the reduction 

in Ec at high temperatures [31]. 

ii. Curing and age: Curing and age have a slight effect on the initial value of E,. 

This effect becomes negligible at high temperatures. 

iii. Mix ratio and compactness: This effect becomes negligible on E, at high 

temperatures. 

iv. Aggregate type: Effect of aggregate type becomes apparent at the temperatures 

where mineralogical changes in aggregate occur. The temperature at which 

transformations in minerals take place depends on the amount of impurities 

present in the minerals. The influence of aggregate type obtained by Zoldners 

32] shows that the concrete with more expansive aggregates are subjected to a 

great reduction in E, at high temperatures. 

v. Cement type: E, is reduced more at high temperatures, when the cement has low 

C3A and high C; S and CAF content [30]. 

(c) Test conditions: 

i. Maximum temperature reached: The temperature level reached has a significant 

effect on the amount of dehydration and on the transformations that take place. 

Whcrcin the higher the temperature, the greater the reduction in E. 
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ii. Exposure time at high temperature and the rate of heating The longer the 

specimen is left at high temperature, the greater is the loss in E,. This is due to 

loss of moisture, dehydration, and possible subsequent deterioration. 

iii. Furnace temperature condition at test: Test data indicates that, in general, there is 

a greater reduction in E, if the specimen is cooled prior to loading [30]. The 

extent of reduction in E, depends on the method of cooling. For example, a great 

drop in E, occurs if the specimen is quenched. 

iv. State of stress while heating: The drop in E, is less if the specimen is stressed 

while heating [33]. 

(2) General form of the mathematical model: 

Available data from various investigations on the modulus of elasticity of concrete at 

elevated temperatures are quite spread. In this study a model proposed by Nizamuddin 

[10] is modified to represent as a function of temperature (see Figure 2.10(a)). It can 

he expressed mathematically as follows: 

E, 
_= 

[1.0-1.175x10-3(T-20)]EE, o 

EE= [0.6534 -5.1597x10-4(T-315 1E0 

E, = 0.4806 E�o 

where Ec ° is the value of Ec at 20 'C. 

2.3.1.5 Compressive Strength of Concrete, f 

20<_ T< 315 °C (2.36a) 

315<_ T< 650 °C (2.36b) 

650 °C<_ T (2.36c) 

The compressive strength of concrete has been the most widely investigated at high 

temperatures. The general tendency is for the compressive strength to decrease when 

concrete is heated. However, some of the research [32] indicates that an increase in f, ' 

4 



120 

100 

80 

60 

rn 
40 

a 20 

0 

(a) 

700 

600 

= 500 
d 

E 400 

0 300 

200 
CD U 

ä 100 

0 
0 200 400 600 800 1000 1200 

Temperature (C) 

(b) 

Figure 2.10 The Relationship of the Percentage Change of Ambient Values of the 

Material Properties of Concrete with Temperature [10]: 

(a) Compressive Strength, Tensile Strength, f, ; Modulus of 

Elasticity, E, 

(b) Strain at Compressive Strength. 

49 

0 300 600 900 1200 

Temperature (C) 



may occur in the temperature range 180 - 290 °C 
, i. e. an increase with respect to the 

reference strength at room temperature. This is thought to be due to the loss of 

evaporable water during heating, accompanied by an increase in volume of the cement 

grains, which leads to densification of the internal structure of concrete. The 

magnitude of the increase depends mainly on the degree of hydration of concrete, 

which varies with age and curing conditions. The relative increase in f, I in older, dried 

specimens become insignificant or vanishes. At temperature higher than 290 °C, f, ' 

decrease with increasing temperature. 

(1) The main factors affecting f,: 

(a) Moisture: 

Moisture affects f, , at high temperatures. Sealed concrete specimens usually undergo 

greater reduction in compressive strength at high temperature than unsealed concrete 

specimens. The compressive strength of dry concrete may be 20-40% greater than that 

of saturated concrete tested at the same temperature. 

(b) Mix characteristics: 

i. Water-cement ratio: Research by Malhotra [341 indicates that the water-cement 

ratio has little influence on changes of compressive strength in concrete heated to 

600 'C. 

ii. Curing and age: Curing and age have a slight influence on the initial values of 

f, .; however, this influence become negligible at high temperature. 

iii. Mix ratio and compactness: The results obtained by Malhotra [34] indicate that 

lean mixes (low cement/aggregate ratio) exhibit less reduction in fý at high 

temperature than rich mixes ( high cement/aggregate ratio). 

iv. Aggregate type: Zoldners [32] indicated that aggregates exert considerable 

influencing on the compressive strength of concrete at high temperature. 

Concrete containing limestone aggregate is thought to be more suitable than 

concrete containing igneous gravel or sandstone aggregate at high temperature. 

Concrete made with expanded slag was found to have the worst effect on f, ' at 

high temperature. Crispino [ 151 proposed that in order to eliminate the reductions 
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in the compressive strength of concrete at high temperature. the thermal 

incompatibility between the aggregate and cement paste should be as small as 

possible. At temperatures below the ones at which mineralogical changes in the 

aggregates occur, the effect of aggregate type is not very significant (except its 

obvious effect on the initial values of f, ' at room temperature). But when the 

aggregate nature changes, there are further reductions in the values of f, at high 

temperatures. 

v. Cement tvT There is a pronounced deterioration in the concrete at high 

temperatures, when the cement has low C3A and high C3S and C4AF contents 

[30]. 

(c) Test conditions: 

i. Exposure time at high temperature, and the rate of heating: The longer the 

specimen is left at high temperature, the greater is the loss in fe' . This is due to 

loss of moisture, dehydration, and possible subsequent deterioration. 

ii. Furnace temperature condition at testing A greater reduction in f, ' results if it is 

determined after heat treatment and subsequent cooling to room temperature 

[30]. The extent of reduction in f, depends on the method of cooling. For 

example, great drop in f, ' occurs if the specimen is quenched. 

iii. State of stress while heating: The drop in f, due to heating is less if the 

specimen is loaded while heating it [33]. 

(2) General form of the mathematical model: 

Available data from various investigation on the compressive strength, f, ', at elevated 

temperatures are quite broad. A model proposed by Nizamuddin [101 is modified to 

represent as a function of temperature (see Figure 2.10(a)). It can be expressed 

mathematically as follows: 

fý _ 11.0 +3.1573x 1O-4 (T- 20) ] 
, 
t" o 

. 
f, =11.0931 -1.5930x10-'(T-315)] ýýo 

20<_ T< 315 "C (2.37a) 

31><_ T<650 C (2.37b) 
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f' = 0.5594f, 10 650 ''C<_ T (2.37c) 

where fß, 0 is the value of f' at 20 'C. 

2.3.1.6 Strain of Concrete at Compressive Strength, cco 

In general, F -, O at room temperature varies within a very limited range, 0.002 to 

0.0025, for concrete of different compositions and strengths [35]. The data available 

in the literature on the variation with temperature of 6,0, the strain at maximum stress 

f, ,, is the data taken from Furumura's stress-strain curves [36]. Furumura's data shows 

that Eco increase significantly with temperature. 

Based on Furumura's data a model proposed by Nizamuddin [10] is modified to 

represent F,,,, as a function of temperature (see Figure 2.10(b)). It is expressed 

mathematically as follows: 

Eco =[1.0 + 2.7818 x 10-'(T- 20) ] cco, o 

F-,.,, = [1.2225 +1.2453x10-'(T-100)] E, o, o 

Eco = [1.5463 +6.1411x10-3(T-360)] Eco, o 

20<_ T< 100 °C (2.38a) 

100_<T<360 °C (2.38b) 

360 °C<_ T (2.38c) 

where Eco, o is the value of cco at 20 'C. A typical value for cco, o is 2.46 x 10-3 

2.3.1.7 Tensile Strength of Concrete, fr 

While the compressivc strength test is virtually standardised, there are fundamentally 

different types of tensile strength tests such as the flexure test, the splitting test, and 

the ring test. Each type of test yields a different value for the tensile strength of 

Concrete. 
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The effect of heating on the tensile strength has been studied by relatively few 

investigators. The results of these investigation [30,37] show that. in general. the 

tensile strength of concrete decreases with increased temperature, with the fastest 

deterioration in the interval 300 to 600 °C 
. At 600 °C the tensile strength has 

decreased to 20 to 30% of the original strength. 

(1) The main factors affecting f1 

(a) Moisture: 

In the temperature interval of 20 to 260 °C, if the moisture content is high, the heating 

results in increased drying and hardening of the concrete and, compared with the 

initial value, the strength tends to increase. At temperature higher than 260 to 320 °C, 

dehydration leads to a drop in f, '. On the other hand, if the concrete has been dried 

prior to heating the increase in strength has already taken place and thus heating 

results in a relative decrease in fr . 
Sealed concrete specimens usually undergo greater 

reduction in f, ' at high temperature than unsealed concrete specimens. 

(h) Mix characteristics: 

i. Water-cement ratio: Water-cement ratio has little influence on changes of ff' at 

high temperatures. Weigler and Fischer [38] point out that the reduction in f1 I in 

the interval 20 to 260 °C depends markedly on age and curing conditions. If the 

concrete is fresh and humid, the heating results in drying and hardening of the 

concrete and, compared with the initial value, the strength increase. 

ii. Mix ratio and compactness: Thelandersson [39] point out that the relative 

decrease of tensile strength at high temperatures is somewhat less in concrete of 

higher quality, where the percentage of cement is larger than that in concrete of 

low quality. The difference, however, is of little practical importance. 

iii. Aggregate type: Zoldners [32] indicates that at temperatures below the ones at 

which mineralogical changes in the aggregates occur, the effect of aggregate type 

is not very important (except its obvious effect on the initial value of f1 at room 

temperature). But when the aggregate nature changes at high temperatures the 

effect of' aggregate type on the reductions in f1 become important. Concrete 
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containing limestone aggregate is more suitable than concrete containing igneous 

gravel or sandstone aggregate. 

(c) Test conditions: 

i. Exposure time at high temperature and the rate of heating: Thelandersson [39] 

indicates that the rate of heating has very little or no effect upon the tensile 

strength of concrete. 

ii. Furnace temperature conditions on testing: Some investigator have dealt with the 

residual tensile strength determined after heat treatment and subsequent cooling 

to room temperature. The residual tensile strength is, as a rule, somewhat lower 

than the strength at high temperature [39]. Lankard et al [30] reported that below 

80 °C both methods of testing give the same results; between 80 and 120 °C the 

residual tensile strength (cooled specimens) is greater than the strength of the hot 

specimens; and above 120 °C hot specimens are stronger than the cooled ones. 

The difference between the tensile strength in the hot state and the tensile 

strength immediately after cooling may be due to the further mechanical 

influence taking place when cooling. 

iii. State of stress while heating: The drop in fr due to heating is less if the 

specimen is loaded while heating it. 

(2) General form of the mathematical model: 

Based on the reviewed literature, available data on ff' at elevated temperatures are 

quite spread. A model proposed by Nizamuddin [10] is modified to represent fr as a 

function of temperature (see Figure 2.10(a)). It can be expressed as follows: 

fI _ [1.0 -1.2579x10-3(T-20)] f, o 20<_ T< 650 °C (2.39a) 

fr = 0.2075f, ",, 650 °C<_ T (2.39b) 

where f, is the value of t, at 20 °C 
.A typical value for fß. 0 is 2.0 MPa for normal 

10 

\\, cit-Tht concrete. 

54 



2.3.1.8 Elastic Poisson's Ratio of Concrete, vc 

Like other materials, concrete deforms laterally under the action of a longitudinal 

(axial) stress. The Poisson's ratio of concrete at high temperatures has not been 

thoroughly investigated. At room temperature concrete has a Poisson's ratio of 0.15 to 

0.20 regardless of the type of aggregate used [35]. Under biaxial stress, Poisson's ratio 

has been measured to be 0.20 in compression-compression, 0.18 in tension-tension, 

and between 0.18 and 0.20 for compression-tension [40]. 

The results from various investigations of Poisson's ratio determined at higher 

temperatures are very erratic. Some investigators indicate that the Poisson's ratio of 

concrete, in general, decreases as the temperature increases [28,31], while other 

investigators indicate that Poisson's ratio increases as the testing temperature increases 

[ 15]. The deference in test results can be partially attributed to the differences in 

testing methods. 

Therefore, in this research, the elastic Poisson's ratio, vC is assumed as constant. A 

typical value adopted for v, is 0.18 [10]. 

During the cooling phase the concrete does not recover its initial strength because of 

initial degradation and chemical decomposition of the cement paste. Therefore, in this 

research the values of E, f. 
7, F-co, f, during the cooling phase of the SDHI fire (short 

duration high intensity fire) [5] are assumed to be the same as their values at 

maximum temperatures. 

2.3.2 Constitutive Modelling of Steel 

The present study is confined to non-prestressed steel, which is generally called 

'reinforcing'. In order to estimate the behaviour of reinforced concrete structures 

exposed to fire, it is necessary to know the strength and deformation properties of the 

FL'inforcing steel under fire conditions. In this research, the reinforcement steel is 

considered as carrying only uniaxial stress and the steel is assumed to have the same 

properties in tension and compression. 
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2.3.2.1 Modulus of Elasticity, Es. and Yield Strength, fy, of Steel 

In general, the modulus of elasticity. Es, and yield strength , fy, of steel decrease 

gradually with increasing temperature. 

According to the AISE manual [41] the yield strength of carbon steel at 540 °C (1000 

°F) is approximately 70% of its room temperature value while the modulus of 

elasticity decreases linearly to about 86% of its room temperature value. There is some 

spread between the results obtained by various authors, probably owing to variability 

of the quality and dimensions of test specimens and the accuracy of the testing 

methods. 

In this research a model proposed by Ellingwood and Lin [5] is used to represent E, as 

a function of temperature (see Figure 2.11). The mathematical expressions for the 

modulus of elasticity of steel at high temperature is given as follows: 

Es = [1.0-3.2609x10-4(T-20)] Es. o 

Es = [O. 85-1.9101x103(T-480)] Es, o 

Es =O 

whcrc, Es 
,O 

is the value of ES at room temperature. 

20<_ T<480 °C (2.40a) 

480 <_ T <_ 925 °C (2.40b) 

925 °C <_ T (2.40c) 

The model for calculation of yield strength at high temperature is expressed 

mathematically as follows: 

f, _ [1. o-6. l728xlo(T--2o)]f, 0 

f, o t, _ [0.75 -1.4925 x 10-3 (T - 425)] 

f, _ {O. 25-6.4103x104 (T - 760)] fy. o 

20<_T<425 °C (2.41a) 

425<_ T<76() °C (2.41 h) 

c) 760<_ T< 1150 "C (22.41 
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Steel with Temperature [5] 
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fy= U 1150 "C<_ T (2.41d) 

where, fy o is the yield strength at room temperature. 

2.3.2.2 Stress Strain Relationship of Steel 

Stress-strain diagrams have been reported by Harmathy and Stanzak [42]. The results 

show a markedly consistent round shape of the stress-strain curve at high temperatures 

starting at relatively low stress levels and then gradually turning into an almost linear 

strain hardening pattern at higher strains. The yield stress region, which is strongly 

marked at ordinary room temperature, gradually disappears as the temperature 

becomes higher. 

The stress-strain curve of reinforcing steel is modelled by an idealised bilinear curve 

identical in tension and compression (see Figure 2.12) [4]. This relationship is 

determined by the modulus of elasticity, E, the yield strength, f,, or yield strain, cy , 

and the strain hardening modulus, EP, as shown in Figure 2.12. Unloading in the 

strain hardening region is assumed to follow a straight line with a slope equal to the 

modulus of elasticity, E, 
S, 

(see Figure 2.12). 

The secant modulus of steel can be calculated as following: 

Before yielding, 

Es = ES (2.42) 

After yielding, 

CF E(2.43) = 

where, if ßr is tensile then 

is 



E 

Figure 2. I2 Idealised Stress-Strain Curve for Steel [4] 
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6r =f y+ 
Ep (ES-E\) 

or if ßs is compression then 

6s =- fy +4yp (F- 
s +Ey 

where, ESP is strain hardening modulus. 

(2.44) 

(2.45) 

Failure of the steel is assumed to occur when the steel ruptures at a value of stress 

related strain equal to 10ey [8]. 

2.3.3 Constitutive Modelling of Shear Reinforcement and Reinforced Concrete 

In this study, the longitudinal main reinforcement is modelled in a discrete manner 

using the bar elements, and the shear reinforcement is included in the properties of the 

concrete elements, and thus modelled in a smeared manner. The doweled action of the 

reinforcement was neglected and the bond between steel and concrete was assumed to 

remain perfect. 

2.3.3.1 Constitutive Matrix of Shear Reinforcement 

For the shear reinforcement component of i-th reinforcing direction the reinforcement 

material stiffness matrix, I C]Si , in the material co-ordinates (x', y') as shown in Figure 

2.13 is evaluated as follows: 

p; Es; 00 

000 
(2.46) 

where p; and ES; are the steel reinforcement ratio and the secant moduli for the shear 

reinforcement in the i-th direction, respectively. A detailed calculation of E.,, can be 

found in Section 2.3.2. 
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2.3.3.2 Constitutive Matrix of Reinforced Concrete 

The total material stiffness matrix for reinforced concrete, [C]rc, is the sum of 

transformed component matrices of concrete and shear steel reinforcement. It can be 

written as: 

n 

IcIrc 
i=1 

(2.47) 

where 4; is the direction angle of the i-th direction reinforcement (see Figure 2.13). 

The summation in the second term of equation. (2.47) is over n reinforcing directions. 

2.3.4 Free Creep Strain of Concrete 

Creep is defined as the time-dependent deformation due to sustained stress 

2.3.4.1 Uniaxial Creep 

It has been known that an accurate stress analysis of a heated, loaded concrete 

structure is not possible to accomplish without taking into account time-dependent 

deformation. Even in the case of fire exposure of short duration, the time dependent 

strains seem to be of considerable important to the magnitude of stresses and restraint 

forces. This is due to the fact that the rate of creep increases rapidly with increasing 

temperature. The creep strains at room temperature have been extensively investigated, 

and both experimental results and various mathematical models are available. 

On the other hand, information on creep at high temperatures for application in fire 

simulation models is limited. From the review of the research literature, the most 

pertinent data on creep for fire applications is that of Cruz [43]. Cruz conducted creep 

tests on a concrete cylinder made with sand and gravel aggregate to grade 28 MPa. 

The specimens were heated until the test temperature was reached, and then this 

tomperaturc was held constant throughout the test. 
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The model used in this research was that suggested by M. Mukaddam [44]. This 

model is based on a temperature compensated time model that reflects the thermal 

acceleration of creep. Moreover, this model uses the superposition principle combined 

with an effective stress concept that accounts for non-linear effects at higher stress 

levels. The model can be expressed mathematically as the following: 

C(t, T) _ Ji rl_e-a,; $(T)`J 
i=l L 

where, 

C (t, T) = creep compliance in millionths/MPa; 

J. = linear constant; 

X; = exponential constants; 

O(T) = temperature shift function; 

t= time. 

(2.48) 

Using the experimental data of Cruz [43] the following coefficients were evaluated for 

the first four terms of equation (2.48), m=4, by assuming certain values for the ? 
, 's 

and then using a least squares curve fitting technique to obtain four values for the J, 's 

(see Table 2.1) when is measured in hours. 

Table 2.1 The List of J, 's Values 

l 2 3 4 

0.1 0.01 0.001 0.0001 

J; 20.70 24.58 10.23 397.06 
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Moreover, based on Cruz's data, the following temperature shift function was derived: 

O(T) = eW(T) 

where, 

W(T) =0 

y1(T) = 1.841 x 10-2 (17.7778+T)-0.767 

V (T) = 1.248x10-2(I 7.7778 + T) + 0.220 

yf(T) = 7.128x10-3(17.7778+T)+2.900 

(2.49) 

T<_25 °C (2.50a) 

25< T<_ 150 °C (2.50b) 

150< T<_ 480 °C (2.50c) 

480 °C <T (2.50d) 

To account for the non-linear creep at high stress levels, an effective stress model is 

used, which is based the work of Roll [45] and Freundenthal and Roll [46]. This 

model accounts for the increased specific creep at high stress levels and takes the 

following form: 

arjj _ 

2.330x-0.465ff 

a<0.35 
fl 

0.35< <_1.0 
fý 

(2.51) 

A general expression for the overall creep strain of a concrete element at time to can 

be obtained by assuming the stresses to be constant through each time step (see Figure 

2.14), the temperature to be constant through each time step (average temperature, T. ) 

and using the well-known superposition principal as follows: 
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n-1 
ECcreep (tn) I C(Atj, Tj)A5e11(j) (2.52) 

1=o 

where, 
creep (tn) = total creep strain at time to ; 

n 
to =1 Ott ; 

j=0 

Atj= time interval for time step j; 

T; = average temperature during time step j; 

A ßeff(j) = effective stress increment during time step j. 

When evaluating expression (2.52), all the previous stress history must be stored 
(A(yeff(j), j =0,..., n) in order to be able to calculate ECree' (t ). Since, in general, in the 

structural analysis the structure is divided into a large number of elements and the time 

domain is divided into a large number of time steps the storage requirements for 

A 5e ff (j) in all element at all time steps become excessive. However, by assuming that 

all time steps, A tP are equal, the computational efforts and storage requirements for 

the evaluation of equation (2.52) are greatly reduced. The solution scheme 

implementing the creep model, equation (2.52), when all time steps are equal proceeds 

as follows: 

m 

Ecreep (tný = lo-'y ai (n) (2.53) 
i=0 

where, 

�Ti 

ao (n) = ao (n -1) +A ßeff (n -1) Ji (2.54) 

[a1(n-1) 
- JjA 

rff(n-1)]e-x, 
ý('r. )A t (2.55) 

and 
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ao (0) =0 (2.56) 

aý (o) =v (2.57) 

Finally, since only limited research data is presently available on tensile creep. it is 

assumed in this research that the creep of concrete in tensile or compression is the 

same for equal stresses (in absolute values). The results of a study on tensile creep in 

concrete at room temperature conducted by Akatsuka et al [47] indicated that the 

difference between the magnitude of tensile creep being slightly higher than 

compressive creep. Therefore, the error introduced by the assumption that tensile 

creep and compressive creep are equal will be negligible. 

2.3.4.2 Creep Poisson's Ratio, vc, 

A generalisation of the uniaxial creep relation to the biaxial case requires a knowledge 

of Poisson's ratio for creep strains, which may be called the creep Poisson's ratio. The 

experimental work undertaken to investigate the creep of concrete under biaxial stress 

conditions at room temperature and moderately high temperatures is limited. 

Moreover, there is very little experimental data on the biaxial creep of concrete at high 

temperature associated with fires ( up to 1100 °C). Fortunately, Poisson effects are 

generally small and the reported data provides a basis for making acceptable 

approximations in the value of the creep Poisson's ratio. Kordina [48] observed that 

the creep Poisson's ratio of concrete fluctuates with time between 0.1 and 0.3. 

Zicnkiewicz and Watson [49] stated that with viscoelastic strain in concrete, the creep 

Poisson's ratio remains constant. The effect of heating on the creep Poisson's ratio of 

concrete has been investigated by Geymager [50]. Geymager reviewed 34 reports on 

the cffcct of elevated temperatures (up to 150 °C) on the creep of concrete. Based on 

the results of this literature review, Geymayer concluded that the creep Poisson's ratio 

is not affected by clcvated temperatures. In this study, the creep Poisson's ratio is 
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taken as constant, that is, it is assumed not to vary with time, temperature, or ratio of 
lateral stress to axial stress. A typical value of vc, is 0.15 [ 101. 

2.3.4.3 Biaxial Creep 

From the fact that there is lateral creep induced by an axial stress, it follows that under 

biaxial stresses in any direction there is creep due to the stress applied in that 

direction and also creep due to the Poisson's ratio effect of creep strain in the other 

normal direction. The general procedure for dealing with the biaxial creep is to find a 

pair of specific compliance in shear and isotropic compression. Taylor, et al [511 

represented the behaviour of viscoelastic materials by a shear relaxation modulus 

while considering that bulk modulus remains constant with time. 

The above general procedure can be simplified at the outset by considering that the 

creep Poisson's ratio is independent of time, In this case, creep behaviour under biaxial 

stress can be predicted, approximately, from uniaxial creep test results by applying the 

method of superposition to creep strains. That is, creep strain resulting from the lateral 

stress due to Poisson's effect is superimposed on creep strain resulting from the axial 

stress [52,53]. Hence, this method is used in this research. 

The shear creep function, C, 
}. 
(t, T), is related to the uniaxial creep function by 

Arutyunyan [54], that is 

CX,, (t, T) = 2(1+vc, )C(t, T) (2.58) 

Based on the assumption that concrete is an homogeneous, isotropic body and that the 

application of the method of superposition to creep strain valid, the two-dimensional 

relationship between stresses and creep strains may therefore be expressed as: 

creep 
\rnl 

Y C(Atj. Tj)`\Off.. 
r(I) - ý'cr C(AtjITj) A 

eff, y(J) j=u j=O 
(2.59a) 
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n-1 
_ 

n-1 
Scree rtl C Ot ,T 

l0a ( 
Vcr C Ot., T 0a (2.59b 

c, yP\ nI -1 efl, Y\ýý -11 efJ'x\. 
l) 

j=0 j=0 

n-1 
cre 

xp(tn) =21 
(1+Vcr)C(Atj, 

j)Ateffy 
(j) (2.59c) Vc 

j=0 

When the creep Poisson's ratio is taken as constant with temperature, then vc, could 

be taken out of the summation sign. Equation (2.59) can be expressed in matrix form 

as: 

C, 
creep 0 

X 
(tn, 

- Vcr 
ý 

creep (1_ 
F-c, 

Y 
rn -V cr0 

vc, 
xcreep 

to 00 2(l +Vc 
r) 1 

n-1 

where represents the operator C (0 tj 
-T 

j) 
j-o 

constant. 

2.3.5 Free Shrinkage Strain of Concrete 

A aeff, 
x 

U) 

0 6e1Y, 
y 

(f ) 

A'telf. 
xy 

(j) 

(2.60) 

and Vcr is considered to be 

Shrinkage is defined as the time-dependent volume change which occurs 

independently of externally applied stresses and of temperature volumetric expansion 

(or contraction). In general, shrinkage and creep interact in a complex manner with 

changes in environmental conditions to produce stresses and deformations in concrete. 

However, from a mathematical standpoint, it is convenient to consider the creep and 

shrinkage as independent phenomena. That is, creep strains and shrinkage strains are 

assumed to he additive. 

Some experimental and theoretical investigations have been conducted to study the 

time dependent shrinkage strain in concrete members at room temperature [55]. 

Howcvci-, very little systematic study of shrinkage at elevated temperatures has yet 

been made. The reason for this is probably that it is difficult to make relevant tests 
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when elevated temperatures are involved. The limited data available indicates that 

shrinkage in concrete due to moisture loss is highly temperature dependent [56]. 

2.3.5.1 Uniaxial Free Shrinkage 

Shrinkage in concrete due to moisture loss is highly temperature dependent. This 

dependence is reflected both in the total amount of shrinkage that may occur and the 

rate at which it occurs. 

Free shrinkage is defined as the contraction an element of material would undergo if it 

were unrestrained by neighbouring elements. The basic free shrinkage model is given 

below [7] (in the following discussion, free shrinkage will simply be referred to as 

shrinkage). 

dc'' (t, T) 
= a(T)[CA (T)-cch(t)] 

dt 

where, 
dEýh (t, T) 

d= shrinkage rate at time t and temperature T (1/hr); 
t. 

EC"(t. ) = cumulative shrinkage strain at time t, ( note: in this case, 

contraction is positive); 

c, '_ (T) = total potential shrinkage, function of temperature, T; 

a(7) = rate constant, function of temperature T, (11hr); 

t= time, hrs; 

(2.61) 

It is assumed that shrinkage continues until the temperature of 100 °C is reached. 

Upon reaching 100 "C, all remaining shrinkage is considered to occur within the 

current time step. In addition, the total amount of shrinkage occurring within any time 

step cannot cause the cumulative shrinkage to exceed the total potential shrinkage for 

the temperature at that time step. Lastly, shrinkage is considered to be an irreversible 

process. 
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The rate parameter, a(J), may be assumed to be a quadratic function of temperature. 

while the ultimate potential shrinkage, cc" (T), is assumed to be a linear function of 

temperature. Such expressions for a(T) and ech (T) are given below [101: 

a(T) = 0.001+ T-20 2 
(2.62) 

80 

9sh (T) = 0.0005 1+ 
T-20 

(2.63) 
80 

Both equation (2.62) and (2.63) are valid in the range 20 °C to 100 °C. The maximum 

ultimate shrinkage strain at the upper range, 100 'C, is 0.001. 

The incremental free shrinkage strain during time step i is calculated with the 

following equation: 

AEsh(tiýTi) = a(Ti)LEch 
(Ti 

Esch (ti-1)] A ti (2.64) 

where, 
O -c" 

(t,, T; ý = incremental free shrinkage strain; 

Ti = average temperature during time step i; 

A t; = time step 1. 

The total free shrinkage strain, C '(t, ), is then calculated as follows: 

Ech (rný -A e`h (ri ,T 
(2.65) 

2.3.5.2 Biaxial Free Shrinkage 

In this study. it is assumed that free shrinkage strains at a point in the material are the 

same in all directions. Free shrinkage shear strains are therefore assumed to be zero. 
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Thus, for the two dimensional problems, the free shrinkage strain vector is taken as 

follows: 

Ec, 
x\tnl 

gch(tnl 

E, 
Y\tnI 

Ech\tn! 

1'ýxy(tn) 
0 

(2.66) 

For temperatures above 100 °C, the incremental shrinkage strain, AE (t1, T1), is 

assumed to be zero. At these temperatures, the values of the coefficients of expansion 

are assumed to include the effect of any remaining shrinkage. 

2.3.6 Free Thermal Strain of Concrete 

Like most engineering materials, concrete has a positive coefficient of thermal 

expansion. The thermal expansion of concrete depends primarily on the thermal 

expansion of the individual constituents, e. g. cement paste and aggregate, since the 

overall expansion of concrete is a resultant of the two values. 

A comprehensive review of the thermal expansion behaviour of concrete at high 

temperature has been made by Zoldners [14]. In general, the coefficient of expansion 

of concrete is a function of the quantity of aggregate by itself. The data of the thermal 

expansion of concrete at high temperatures, obtained from various investigations [31, 

38] is subject to great variability. However, from these results a mathematical 

expression of the typical model for the coefficient of thermal expansion of concrete, 
0C-1 

ci (), as a function of temperature can be given as the following [10]: 

(x, (T) = 1. O8x 10 -s 

cc, (T) = 1.62x 10-5 

0 <_ T< 540 °C (2.67a) 

540 °C <_ T (2.67b) 
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The determination of changes in thermal strain for concrete is achieved through the 

product of temperature dependent coefficient of expansion and change in temperature. 

The free thermal strain increment in concrete in time step i is thus calculated as shown 

below: 

AEA (i) = aC(T)(T -T-1) (2.68) 

The total free thermal strain at time step n is then calculated as follows: 

n 

ET (n) _0 ET (i) (2.69) 
i=l 

For the biaxial case, it is assumed that free thermal expensing produces zero shear 

strains. Hence, the free thermal strain vector is formed as follows: 

9T 
, 

(n) 1 19T (11 

Ty(n) 
= ec £ (n) 

l, T, (n) 0 

2.3.7 Free Transient Strain of Concrete 

(2.70) 

Transient strains are those strains that cannot otherwise by accounted for due to the 

decomposition of the cement paste. They occur under compressive stresses as 

temperature increases, are essentially permanent, unrecoverable and only occur under 

initial heating. 

Transient strains are temperature dependent and independent of time. When the 

transient strain is not included in the structural analysis, the computed thermal stresses 

hocomes very large and leads to a prediction of failure much earlier than would he 

OhSCrVL'd 15]. 
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A model proposed by Anderberg and Thelandersson [57] is adopted to calculate 

uniaxial free transient strain of concrete in this research and described as follows: 

E tr = 
c 

where, 

g(T) 

fc, 0 

6ý 

a` 
g(T ) fc, 

0 

=a function of temperature, 

= compressive strength of concrete at ambient condition, 

(2.71) 

= applied compressive stress in the concrete from the previous time 

increment. 

Inspection shows that g(T) is approximately proportional to A -c , that is, 

AF, "= -k 
6` Ac' c2c fc, 

0 
20<T<500 °C (2.72) 

where, k2 is a dimensionless constant varying with cement type. Anderberg and 

Thelanderson [57] found by mean of linear regression that a value of k2 equal to 2.35 

best describes the quartzite concrete used in their tests. This value is used in this 

research. 

For temperatures above 500 °C there is an accelerated effect on transient strains. 

Anderberg [58] proposed the following expression for the incremental change in c: 

Ac =- (). 1 iý 10-3 AT 
6c 

fc, 
0 

500 °C <_ T 

where, AT is temperature increment during time step i. 

The total free transient strain at time step n is then calculated as following: 

A 

Fc (n) _J Eýý 

(2.73) 

(2.74) 
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For the biaxial case, the transient shear strains are ignored for the purpose of 

simplicity. Therefore the free transient strain vector is expressed as: 

c (n) 1 1ecr (n) 

E�y(n) _ Ei(n) 

, yl'xy (n) 
(2.75) 

Since transient strains are considered as therefore irrecoverable and only occur under 

initial heating, in this study the transient strain is assumed to remain unchanged and 

equal to the value attained at the maximum temperature of the concrete which is 

reached during the cooling period of the concrete. This assumption is used, for 

example, when the concrete is exposed to SDHI Fire [5]. 

2.3.8. Free Creep Strain of Steel 

Previous investigations concerning creep tests on steel specimens have used the 

conventional method, e. g. constant temperature and constant stress. Strain-time 

relation curves were obtained which can be divided into three creep stages [7]: they 

are illustrated in Figure 2.15. The primary creep state (OA) is the stage where the 

creep rate decreases with time. The creep rate decreases up to point at which the creep 

rate becomes relatively constant (point A). The secondary creep stage is the stage 

where the creep rate remains constant with time (AB). As creep deformation 

proceeds the creep rate eventually begins to increase (point B), and after some time 

rupture occurs (point Q. The stage of increasing creep rate (BC) is known as the 

tertiary creep stage. 

The model for creep in reinforcing steel used in this study considers only the primary 

and secondary phases of creep behaviour, neglecting tertiary creep. It is assumed that 

creep rates are identical in both tension and compression. 
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Figure 2.15 Typical Creep Curve [7] 
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A creep model for constant temperature and stress can be extended to variable 

temperature by use of Dom's 6-Method [59] and to variable stress by a strain 

hardening rule. It is known that the creep rate for secondary creep is a constant in the 

domain of temperature-compensated time, thus 

where, 

dE creep 

_ r7 

Ae 
L. 

F- creep = creep strain in steel; 

8= temperature-compensated time; 

Z= Zener-Hollomon constant. 

(2.76) 

Harmathy [60] has suggested that this basic relationship can be extended for use in 

both the primary and secondary creep phases through the following modification: 

creep creep dis 
=Z coth2 

F- 
creep 

(2.77) AeE creep 
s, 0 

where, F-""' is axis intercept of secondary creep phase (see Figure 2.16). 
S'O Y-' PP 

The temperature-compensated time. 0, which combines temperature and time into one 

single parameter, can be calculated by the following equation: 

or 

where. 

AH 

e= rr 
[eT+273)]dt 

(2.78) 

, 
J0 

. 1I1 
A_ 

e(T+2T (2.79) 
dt 

AH= activation energy of creep. (J/kg. molc) 

R= the as constant. (J/kg. mol ('. K) 
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Figure 2.16 Harmathy's Formulation of Creep Model [7] 
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Harmathy [61 ] has suggested a computational algorithm that combines his creep 

model with Dom's 0 -Method and a strain-hardening rule. It is this method with minor 

modifications [7] that is used in this investigation. The incremental creep strain is 

given by the following equation: 

- creep 

AEscreep = Z(ß)A (T, At)co h2 sep (2.80) 

E 
S, O 

where, 

AH 

AO(T, At) = Ate R(T+273) ý2. g1ý 

-creep 

Es= the accumulative absolute creep strain in steel, that is 

n 
-creep 

=LIA Ecreep 
l 

(2.82) Es 
si 

i=1 

Z(a), AH/R, Ec pep(') are constants varying with steel type. They may be 

expressed as follows: 

Z((T) =A ßB for ß <_ ß* (2.83a) 

Z(a) = CccD6 for a> a* (2.83b) 

creep =E 6F (2.84) 
s, 0 1 

Where, 6 is the steel stress in MPa. A, B, C, D, E. F and 6` are empirical constants. 

The terms A to F and ß* as well as the A H/R term are defined in Table 2.2 for 

reinforcing stccls. The values for ASTM A36. CSA G40.12. ASTM A421 
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steels are from Harmathy and Stanzack [42], and for Ks40010. Ks4O08 and Ks6008 

are from Weeks [8]. 

The results obtained using this creep model can be very sensitive to the experimental 

coefficients used. If a steel of a yield strength higher than that intended for the set of 

coefficient is used, excessive creep will be predicted. Likewise, if a steel of lower 

yield strength is used, the creep affect may be underestimated. Because of this 

sensitivity to experimental coefficients, the steel creep model should be used with 

caution. 
-creep 

In the first time step where c =0, the hyperbolic cotangent term goes to infinity. 

The creep strain for the first time step is calculated by the following approximate 

equation: 

I 

cre OE creep = Ecreep = 
[3z0 (eP)2]+zo (2.85) 

This initial approximation was first suggested by Harmathy [60]. From this work the 

expression is considered as providing a reliable approximation of the creep strain for 

1n -creep 
Values of Ccreep up to 0.5 F-s 

2.3.9 Free Thermal Strain of Steel 

Skinner [62] collected data from some 80 different sources covering a much wider 

range of steel composition than would be encountered in any type of structural steel. 

Test data indicates that the coefficient of thermal expansion for steel, as, increases 

with an increase in temperature up to 650 °C (1200 °F). Test results indicate that as 

is not significantly dependent on the carbon content [18]. 
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Table 2.2 Empirical Constants, A, B, C, D, E, F, a*, Used in Equations (2.83) 
to (2.84) For Several Reinforcing Steels [8,42] 

Steel ASTM CSA ASTM Ks40 Ks40 Ks60 

Type A36 G40.12 A421 (D10 (D8 (D8 
_ 
A 3.7485 2.8341 1.9524 6.9600 4.5800 5.1100 

x108 x109 x108 x101° x107 x107 

B 4.7 3.25 3.0 4.7 4.72 2.93 

C 1.23x1016 3.69 8.21 5.28 7.50 1.59 

X1014 X1013 x1018 X1014 X1016 

D 0.04351 0.0319 0.0145 0.0443 0.5120 0.0313 

E 1.0304 1.8129 9.2618 2.8500 3.3900 2.0600 

X 10-6 x 10-s x 10-s x 10-8 x 10-7 x 10-6 

F 1.75 1.0 0.67 1.037 0.531 0.439 

104 104 172 84 90 90 

_HR 38900 36110 30560 45000 40000 40000 

AH = activation energy of creep 
R= the gas constant 
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A model developed by Nizamuddin [10] is adopted for calculation of the coefficient 

of thermal expansion of steel, a., ("C-'), at high temperature in this study. This model 

can be expressed mathematically as follows: 

as = [1.10+9.7029x 10-4(T-20) x10-5 

as = 1.728x10-s 

20<_ T< 650 °C (2.86a) 

650 °C <T (2.86b) 

The determination of changes in thermal strain for steel is achieved through the 

multiplication of the temperature dependent coefficient of expansion by the change in 

temperature. The free thermal strain increment in steel in time step i is thus calculated 

as shown below: 

OST (i) = as (T -T -1) 
(2.87) 

The total free thermal strain at time step n is then calculated as follows: 

(n) = 0£s (1) (2.88) 

2.4 Summary 

In this chapter, available experimental data on thermal, strength, and deformation 

properties of concrete and steel at elevated temperatures were reviewed and 

mathematical models describing these properties were proposed based on this review. 

The results of this review showed that: 

(1) the conductivity of concrete and steel decrease with an increase in temperature; 

(2) the specific heat of concrete and steel increases with an increase in temperature; 
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(3) the strength and stiffness of concrete and steel decrease. in general. with an 

increase in temperature, except that the compressive strength of concrete in some 

cases showed an initial increase up to about 300 °C ; 

(4) creep of concrete and steel increase significantly with an increase in temperature; 

(5) shrinkage of concrete increases with an increase in temperature; 

(6) the coefficients of expansion of concrete and steel increase with an increase in 

temperature, and 

(7) Practically little information is available on the mechanical properties of 

biaxially loaded concrete at elevated temperatures. 

(8) The material model developed in this chapter will be used to calculate the 

properties of materials for the thermal and structural analysis of reinforced 

concrete structure in fire conditions. 
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3. THERMAL ANALYSIS 

3.1 Introduction 

In this Chapter, a two-dimensional finite element simulation to evaluate the 

temperature distribution histories of cross-section of structural member for fire 

conditions will be described (see Figure 3.1). The model will comprise a two- 

dimensional representation of the cross-section of structural member based on the 

assumption that no heat flows along the longitudinal axis of a structural member. This 

assumption is because the longitudinal dimension of a structural member is much 

larger than the dimensions of cross-section of the member. Therefore, the temperature 

gradient along the longitudinal axis of the member is much smaller than that for the 

lateral directions of the member. The heat transferred along the longitudinal axis of the 

member is so small compared to that for the lateral directions of the member that the 

heat flow along the longitudinal axis can be neglected. However, if the longitudinal 

and lateral dimensions of the member are of the same order three-dimensional thermal 

analysis must he applied. 

In this model, the presence of moisture will be taken into account and the thermal 

properties of concrete will be considered as both temperature and moisture dependent 

(see Chapter 2). The heat flow problem solved by this model is non-linear because of 

the variable thermal properties of materials and fire boundary conditions. These non- 

linearities are handled by local linearization about a current temperature distribution. 

Simulation of the fire environment is through the use of standard fire curves [1,2,631, 

expressed as a time dependent curve, while convective and radiative mechanisms are 

used to model the fire boundary conditions. 

The finite element method will he used as the solution technique. This general 

approach has been presented in the works of Wilson and Nicked [64] and Zienkiewicz 

1651, and extended to the fire situation by Bizri [3] and Becker [4]. 
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3.2 The Theoretical Background of the Model 

Since concrete is a capillary-porous material, the thermal analysis of concrete is 

complicated by the presence of moisture. Heat and mass transfer take place 

simultaneously in concrete during heating conditions and the temperature distributions 

are affected by the presence of the moisture. 

For decades, scientists and engineers have paid attention to the problem of heat and 

moisture transfer in porous media. Three theories have been developed to explain the 

physical phenomenon of moisture transfer in porous media: the diffusion theory [66], 

the capillary flow theory (or the non-linear diffusion theory) [67], and the evaporation 

and condensation theory [68]. The diffusion theory of moisture transfer was 

questioned by Ceaglske and Hougen [69] and Hougen et al [70] who compared the 

theoretical solutions obtained by the diffusion theory and the capillary flow theory 

with experimental data for sand, and their results strongly favour the capillary flow 

theory. However, at the pendular state, the liquid threads in the porous system become 

progressively discontinuous, and liquid islands are formed inside the porous medium. 

Motion due to capillary forces is greatly reduced. Under these circumstances, both 

diffusion and convection in the vapour phase are the primary mechanisms by which 

the moisture can be transferred. Thus the temperature of the porous system plays an 

important role in mass transfer, and the temperature gradient becomes a driving force 

along with the concentration gradient. 

Moisture transfer under isothermal conditions has been investigated by many 

researchers[ 71-73]. Phillip and DeVries [74] and DeVries [75] proposed a theory of 

moisture movement in porous materials under combined temperature and moisture 

gradients which included a set of governing equations describing moisture and heat 

transfer. Similarly governing equations for heat and mass transfer in porous systems 

were published by Luikov [76]. For solving such a set of governing equations. the heat 

and mass transport properties of moist porous media are of fundamental importance. 

However. there is very little data available and few convenient means for the 
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measurement of these properties. Wang and Yu [77] proposed a method for the 

evaluation of heat and mass transport properties of moist porous media at different 

temperatures in the range 0<T< 100 °C, based on the measured mass diffusivity and 

thermo-mass diffusivity data at a specified reference temperature. They indicated 

that all the transport properties are sensitive to both temperature and moisture content. 

However, the research was limited and did not consider the total pressure gradient in 

the porous media. 

In all of the previous theoretical treatments of heat and moisture transfer in porous 

media, the governing differential equations were inferred in a phenomenological 

manner. Based on the principles of transport phenomena and non-equilibrium 

thermodynamics, Harmathy [17] derived a set of governing differential equations of 

heat and mass transfer in porous media during the pendular state and gave the solution 

with particular reference to clay bricks. Huang et al [78] extended the Hannathy's [ 17] 

work to the inclusion of the funicular state. Whitaker [79] developed a theory of 

drying in porous media based on the transport equations with an averaging technique. 

Wei et a] [80] indicated that the models developed by Huang et al [78] and Harmathy 

[17] for predicted temperature, moisture content, and pressure profiles in the pendular 

state were not sufficient to explain the dynamic phenomena occurring in heated 

materials. They modified Whitaker's [79] derivations and applied the model to a 

sandstone subjected to mild heating conditions. 

Most of the literature cited above does not take into account the pressure build up 

inside the porous medium due to evaporation and subsequent movement of the fluids. 

This phenomena is very important when porous media is heated under fire conditions. 

If the temperature in the porous body is not in excess of the boiling point of the liquid 

the mass diffusion will be important because most of the evaporation takes place 

below the boiling point. 

Previous works concerning heat and mass transfer in porous media considered the 

issue of phase change 18 1-82]. but the researches were limited to the steady-state and 

the heat pipe effect. Motakef and El-masri 1831 analytically investigated simultaneous 
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heat and mass transfer with phase change in a porous slab. The medium was divided 

into three regions of dry-wet-dry by two internal boundaries. The research was 

extended by Shapiro and Motakef [84] and unsteady one-dimensional heat and mass 

transfer with phase change in a porous slab was investigated analytically. The criteria 

for the validity of the analytical solutions were compared with experimental data. 

Saito and Seki [85] analysed a one-dimensional moist porous material subjected to 

sudden heating; neglecting mass diffusion, postulating a dry-wet interface, and 

neglecting the volume occupied by the liquid. These researches contain a common 

disadvantage: that is the problem of locating the dry-wet interface in the porous 

medium. This is very inconvenient for the analysis of multi-dimensional systems. 

Rubin and Schweitzer [86] considered the flow of liquid from a reservoir at high 

pressure entering a porous medium that was heated from the other side causing 

evaporation of the liquid within the medium. But they ignored mass diffusion 

completely. Sahota [I II proposed a theoretical model which takes into account mass 

diffusion, convection, evaporation, and condensation. No dry-wet interface was 

postulated. The advantages of this are: (1) the problem of locating the dry-wet 

interface is eliminated, which is particularly useful in multi- dimensional systems; (2) 

no boundary conditions at the interface are required. Movement of the liquid was 

neglected. 

Based on the literature review above the theoretical model developed by Sahota [11] 

will be adopted as the theoretical foundation of thenual analysis of reinforced concrete 

in fire conditions in this study. 

3.2.1 One-dimensional Energy Equation 

In one dimensional form the energy equation can be expressed as II I] 
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aT 
= aa2T 

i ak 
_C +D(CP, V -Cp, a) 

awa aT 

at axe 
+ 

PC, ax 
r um Cpm ax ax 

1 hf8 rma (PmRmT ) 

P Cp at 

(3.1) 

Sahota [I I] carried out an order of magnitude analysis for the various terms in the 

governing equation. Sahota's analysis provides guidelines to determine the range of 

parameters required to describe the general result and the following simplifications 

may be made in the energy equation (3.1): the orders of magnitude of terms Cu,, and 

C, 
D(Cp, 

v- 
Cp, 

a) 
a Wa 

, which respectively represent energy transfer by convection CP,. ax 

and mass diffusion, are <<I. 

For the term 
a (p,, R 

.. 
T), which is the result of the difference between the enthalpy at 

and internal energy of air-vapour mixture, the order of magnitude is also << 1. 

Compared to the conduction terms for which the orders of magnitude are unity, the 

three terms noted above may be neglected. Thus the simplified energy equation can be 

written as: 

aT a2T 1 ak aT 1 

at - °` axe 
+ 

pCP ax ax - PCP 
hrg rm (3.2) 

Which is the ordinary conduction equation with a heat sink tenn due to evaporation of 

water. 

Equation (3.2) holds, if 

a) q� « 1, which is always the case, 

b) CrFi, << 1, which Nvill be the case if um is not too large ( >> 100 ) due to strong 

heating and if the porous medium is not very light weight with a very low 

spocific heat so as, to make C, larger this is the case in the majority of practical 

eascs. 
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C) CL, << 1, which is again mostly true if the modified Lewis number is < 100 and 

if C, is not too large ( >> 10- ' ). 

If one is interested only in the temperature field, equation (3.2) can be solved for T 

with initial and boundary conditions if F, the rate at which moisture vapour is 

produced, is known. The following assumptions are made to evaluate F,,,: 

(1) Under physically realistic conditions, the energy transfer due to mass diffusion is 

negligible compared to that by conduction. Neglecting the contribution of the 

mass diffusion term to heat transfer implies that the contribution due to 

evaporation of water is unimportant as long as liquid water does not start to boil. 

(2) It should be noted that the boiling point temperature of water depends upon the 

pressure inside the concrete. Fortunately, it is observed that the saturation 

temperature for water is a weak function of the saturation pressure. For example, 

water boils at 100 OC at one atmosphere pressure and at ten atmospheres the 

boiling point temperature is about 180 OC. From experimental evidence [87], the 

boiling point of water in concrete is seen to be in the range from 100 to 140 'C. 

In this study it is assumed that water boils at 120OC; that is for the purpose of 

calculating the temperature field inside the concrete the average pressure is taken 

as two atmospheres. 

(3) Movement of the liquid water is neglected. This means the value of Darcy's 

coefficient for movement of liquid water is so small compared to that for the 

gases in concrete that the liquid water movement is considered not to be of 

significance. This is substantiated by Harmalthy [17] and Min and Emmoms [88] 
1 

who claim that the liquid water, particularly at low moisture content, is present in 

the pendular state. That is, the liquid water in different pores is not 

interconnected. 

As a result of assumption (1), Tý, in equation (3.2) is put equal to zero at each point in 

the wet rcuion in the interior of the concrete elements where temperature is less than L- 
120 0C. r, is also zero in the dry i-cgion. As the temperature at a Nvot node approaches 

1,, ()"C. it cannot increaso further according to assumption (2) until all the liquid water 
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at that node is evaporated. So, the temperature at all the wet nodes is kept at 1200C 

while liquid water evaporates. I-,,, is non-zero only when the liquid water is boiIiii-g. 

when the temperature is known to be 1200C. Therefore, equation (3.2) can be used to 

calculate the value of I', n: 

I-' =1 ka2T+akaT (3.3) 
hfg axe ax ax 

As 
aT=0. 

at 
Physically, equation (3.3) represents a simple energy balance at a point. Usually, this 

energy balance is used to calculate temperature, but since the temperature is known, 

the same energy balance gives F, Once I-,, is known, a new liquid density is 

calculated at that node using the continuity equation for the liquid. That is, 

pt=_r 
r. m (3.4) 

Once the liquid density becomes zero, the temperature increases again with r.. = 0. 

3.2.2 Two-dimensional Energy Equation 

From equation (3.2), the two-dimensional energy equation can be expressed as 

follows: 

pC -_a kaT +a kaT +H at ax ax aYa1, 
(3.5) 

wheiv, H is intcrnal heat generation, 

for concrete: 

H= -hfgrn, (3.6) 
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for steel: 

H=O (3.7) 

Equation (3.3) can be used for calculation of r,., in the two-dimensional analysis, that 

is 

r=1 a (kT+ 
M hjg ax ax aylk ayJJ 

(3.8) 

where aT/at=O. 

3.2.3 Initial and Boundary Conditions 

There are five principal boundary conditions which are used for solving equation 

(3.5). Over any portion of the bounding surface of the body one of the following 

conditions are usually used: 

(1) Known surface temperature: 

T (P, t) =f (P, t) (3.9) 

where, the point P is on the surface and flP, 7) is a prescribed function. 

(2) Known heat input: 

kaT (P, t) =q (P, t) (3.10) 
all 

where, n is the outward nomial to the surface at point P, and q(P, t) is the heat flow at 

point P. 

92 



Perfectly insulated surface: By definition such a surface is one across which 

there is no heat flux, that is, 

aT(Pt)=o 

an 

(4) Convection and radiation boundary condition: 

a) Convection heat transfer between reinforced concrete element and ambient 

k 
aT 

(P, t) =h (T -TS) an 

Non-linear heat transfer from fire to the reinforced concrete element: 

ao 

-OS)N + Of 4 
_F k (P, t) =A (Of vcy[a P-f _, 

0, 

an 

(3.11) 

(3.12) 

(3.13) 

Two solid bodies in contact: For this study it is assumed that the interface 

between steel and concrete is in perfect thermal contacted. That means the following 

equation is satisfied at all such interfaces. 

T (P, t) - T,, (P, t) c 

kc 
±T T 

c (P, t) = k-,, 
ý" 

(P, t) 
nan 

(3.14) 

The initial condition will, naturally, be the temperature distribution at the initial time, 

prior to fire exposure. 

3.3 Finite Element Solution Procedure 

A number of approximate numerical methods are sufficiently well developed to solve 

a lar(-, c variety of licat transfer problems. The finite difference method has been the 
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most widely used. Another numerical method is the finite element method which has 

become widely accepted as a valuable technique for solving complex problems. 

The finite element method is completely general with respect to geometry. material 

properties, complex shapes composed of many different materials are easily 

represented. Non-linearity of material and boundary conditions can be treated by the 

finite element method easily. Therefore, the finite element method will be used as the 

solution technique in this research. 

3.3.1 The Basic Equation 

The heat transfer equation for a solid idealised by a system of finite elements can be 

physically interpreted as a statement of heat flow equilibrium at each node of the 

system at any time. That is 

Rate at which heat is 

stored in the controlled 

volume of a node contributed 
by its aqjacent elements 

+ 

Rate at which heat 

flows by conduction 
into a node from its 

adjacent elements 

Rate at which 

external heat 

enters a node 
(3.15) 

If all nodes are considered, the above heat flow equilibrium equation can be written in 

matrix fomi as follows: 

C (p, Cp) t+ K(k) T= Q(T, w, F(t)) (3.16) 

In the above equation, C, K, and Q are known matrices at each instant of time. 

Therefore, the equation can be solved by a numerical integration scheme. 

3.3.2 Conductivity N/latrix, K 

The ternis of flhe conductivit-N, niatrix are associated with the rate of heat flow from the 

clonicilts ad'accilt to cach node. The conductivity matrix for the system being analysed 

is jisscniblcd from element conductivity matrices, k,,,. 'niat is 
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m 

K=Ik. (3.17) 
M=j 

where, m is the element number and M is the total number of elements. 

In order to have geometric flexibility, the isoparametric three-node triangular and 

four-node quadrilateral elements are used as basic elements for the idealisation of the 

two-dimensional body in this research. This assumes a linear temperature distribution 

within the element. 

3.3.2.1 Conductivity Matrix of Isoparametric Three-node Triangular Element 

The element is called "isoparametne" since the geometry of the element and the 

assumed temperature distribution within the element are described in terms of the 

same "parameters" (or shape functions) and are of the same order (linear in this case). 

For the three-node triangle (see Figure 3.2), the temperature at any point within the 

element is expressed in the natural co-ordinate system (4,4,4) in terms of the 

temperatures at nodes I to 3 by the following equation: 

T= LT, +L2T2 +L3T, 
-- 

[N]ITil 

Similarly, the global co-ordinates are defined with the same shape function: 

.v=Lv +I., x, + Lx =[N]I. x, 1 
1'133 

and y=L, _111 
+4 Y2 + L, Y3 = [N]fyij 

where, [N]=[LI L2 L31 
* 

(3.18) 

(3.19a) 

(3.19h) 
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Figure 3.2 Triangle Natural Co-ordinates and Side Designation 
ltý I 
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The natural co-ordinates are related through the expression 

L, +4+4,:,,: l (3.20) 

When calculating the element conductivity matrix, an expression for temperature 

gradient within the element will be needed. Differentiation of equation (3.18) with 

respect to x, y yields: 

a T' [N]- 
ax ax 

jTj I= [B]ITi I 
aT a [N] 
a Y, ay 

Treating L, as the independent variable, one can be written as 

aT aT ax 
+ 

aT ay 

a4 ax a4 ay a4 

Also, treating 4 as the independent variable gives us 

dT aT ax 
+ 

aT ay 
a L, axdL, ayaL., 

or in matrix form, 

ax av a T' aT 

a 
a. v T aT I 

a L, aL aY aL 

(3.21) 

(3.22) 

Now. substituting the denvative of equations (3.18) and (3.19) into equation (3.22) 

N" IcI cis 
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Ia T' 
Xi X3 YI - Y3 ax TI -T3 

X2 X3 Y2 Y31 aT 
'T,, - 

T3 (3.23) 

Solving for the global co-ordinate derivatives from equation (3.23), one can be 

obtained as: 

T' 
T x1 [y2-y3 Y31-YI 13 

T T IJI X3 -X2 X -X3 2 -T 

T 
13 

ay) 

where Ul is the Jacobian determinant of the transformation matrix for the two co- 

ordinate systems, that is 

I JI : -:: 
(XI 

-X3)(y2 -Y3)-(X2 -X3)(Yl -Y3)=2 (area) 

Now substitute the following: 

-1 Ti 

The resultant forni of the expression is 

ax-.,. V, 
aT. - V- v -XI, IJI 

I bi b, 1), 

c, c, cl, 
I 

J11 ]{} 
(3.24) 
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Comparing equations (3.21) and (3.24), 

[b, b2 b3 

I J1 cl C2 C3 

I 

(3.25) 

According to the energy minimisation principle, it can be shown that the element 

conductivity matrix is given by [89] 

km = 
ff [B]T k[B]bdxdy 
A 

(3.26) 

where, k is material isotropic thermal conductivity. b is the thickness of the element. 

Substituting equation (3.25) into (3.26) and integrating it, the element conductivity 

matrix can be given as: 

bý 2+c2 

kb 
21JI 

symm. 

blb2 + Cl C2 

bý C2 

blb3 + Cl C3 

b2b3 + C2C3 

b2+c2 33 

3.3.2.2 Conductivity Matrix of Isoparametric Four-node Quadrilateral Element 

(3.27) 

For the four-node quadrilateral element (see Figure 3.3), the temperature at any point 

within the element is expressed in the natural co-ordinate system (T, 'T) in terms of 

the temperatures at nodes I to 4 by the following equation 

T=N, TI+N, T, +N, T, +N 4T4 
= [N]fTil 

For global co-ordinates 

V= Ni lici + JV, x, +N ll -ic-; + N4 -1C4 =[ N] J. v, 1 

(3.28) 

(3.29a) 
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and Y: - NI YI +N2 Y2 +N3 Yl +N4Y4 = [N] jyj I 

where, [N]=[NI N2 N3N4] and, 

N, 
4 

0+ X) (I + N3 
-- 4 

N2 
(1+01-y-) 

4 

N4 (I - 30 0+ 57) 
4 

(3.29b) 

The expression of temperature gradient within the element is same as equation (3.21). 

treating 5ý as the independent variable, 

aT-aTax+aTay 
aT ax ax- a. ), aT 

and with y as the independent variable, 

aT 
_ 

aT_ax 
+aTay a ax av ay ay 

or in matrix form, 

a. v dY aT a 

a 1, aT aT 
a. V 

- , 
a. v 

, , 
a. -v 

Solving for the spatial derivative ternis, one can be obtained: 

(3.30) 
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Figure 3.3 Standard Local Node Numbering and Co-ordinate 

Axes of Quadrilateral 
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T' 

x 
T 

ayý 

or 

ay ay- aT' 

a 57 a 3F a 5E 
ax ax aT 

- ay a 5E 
- 

ay, 

T' ay 

x a 57 

T ax 
ayl 

--ay 

ay a [N]' 
a x- a x- IT 1 

ax a [N] 
axay 

where, IJI is the Jacobian determinant, 

ay ax ay ax 
a57ax aTay 

Comparing equation (3.31) with (3.21), 

ay 

-ax aY 

_ay- 
a[N]' 

ax- ax- 
ax a [N] 

ay 

(3.3 1 

(3.3 1 b) 

(3.32) 

Equation (3.26) can be used to form the element conductivity matrix. Because matrix 

JB] is not constant the determination of the conductivity matrix, km, requires 

integration of the matrix product over the volume, b dA, of the element. There are two 

"difficulfies": 

(1) The [B] matrix has entries that involve ratios of functions of the natural 

co-ordinates T and . 
-v - 

The differential area dA can be easily expressed as Jvdy, but this integration 

variable is not the same as the [B] matrix vanablc, so a change of vanable must be 

undertaken. Therefore, first the integyration will be done numerically. and second, the 

co-ordinates of the differcnfial arca will be changed from the physical x, and v to the 
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natural 7 and Y by application of the Jacobian determinant of the transformation 

equations r the two co-ordinate systems. Note that [89], 

dV =b dx dy =bI JI dx- dy- (3.33) 

So, equation (3.26) become as follows: 

km= kbf [B]T [ B] 1 JI dx- dy- (3.34) 
A. 

To carry out the integration of equation (3.34), two-point formula of Gauss quadrature 

is employed here to calculate k,,,. 

3.3.3 Heat Capacity Matrix, C 

The heat capacity associated with a node is the rate at which heat is absorbed for a 

unit rate of change of the temperature at that node. This capacity matrix contains 

terms that are dependent on the specific heat CP and density p of the elements 

immediately aqjacent to each node. 

The heat capacity for an element is given by: 

nt .. 
p cp f=V (3.35) 

where, V,,, is volume of element that is equal to unit thickness multiplied by the area of 

element. 

The contribution of an element, in, to a particular node, i, is given by (see Figure 3.4): 

CIIIJ p CP 
Am 

III 
(3.36) 

I () 



where, Am is area of element adjacent to node, i; n, is number of vertexes of the 

element; so that, the heat capacity matrix of a node, i, is 

M, 

=If. ý M=l 
(3.37) 

where, M' is the number of elements adjacent to node i. The heat capacity matrix of 

the system is 

n2 

ci 

where, 172 is the number of nodes of system. 

3.3.4 External Heat Flow Vector, 

(3.38) 

For the solution of a heat flow problem one of two conditions must be known for each 

node: the temperature of the node, or the external heat flow associated with the node. 

The external heat flow is expressed in the following summation: 

Q= QE +QF +Q K 

For this study: 

(3.39) 

(1) Q is to be considered as the internal heat generation vector. So, for an element, 

In, can be expressed by 

1, 'H, QE, 
nt 

- (3.40) 

where, V,,, is volume of the in-th element; and H.. is internal hcat generation rate for 

in-th element. 
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Figure 3.4 Heat Capacity and Internal Heat Generation Idealisation 
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Using the same analysis as for the heat capacity matrix (see Figure 3.4), the 

contribution of an element, m, to a particular node, i, is given by: 

H 
mAm n, 

(3.41) 

where, Am and n, have the same meaning as in equation (3.36). So that, the internal 

heat generation of a node, i, is 

M, 
QEJ -= 

I QE(m, 
i) 

M=l 

(3.42) 

where, M' is the number of element adjacent to node i-, and the vector QE is then 

n2 

QE QEJ (3.43) 

where, n, is the number of nodes of system. 

(2) Q is to be considered a function of both convective and radiative 

mechanisms. 

Fires affecting structures are here considered to be those in a post-flashover regime, 

which allows the assumption of a unifon-n room temperature. This time-temperature 

relationship for a fire is represented by the fire curve F(t). The boundary of the system 

exposed to a fire or ambient is assumed to be made up of surfaces of a unit thickness 

connecting aqjacent nodes ( e. g., i and j ). Thus, the external heat flow over a surface 

can be represented by: 

Q=0.5 x 
- 

F, m 
(3.44) 

where, I is separation of nodes i'andi, q is rate of external heat flow per unit area. 

For firc boundary, q can be expressed as (see equation (3.13)) 
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A (Of 
- 0, ) N+ 

vcr la Ff 0f4- Es os 4] 
(3.45) 

Where, Os = average absolute surface temperature, (Oi +Oj)/2 

Of = absolute temperature of pseudo-fire, F(t). 

For ambient boundary, q can be calculated by (see equation (3.12)) 

h(7L -T, ) (3.46) 

where, T, is average surface temperature, (Tj + Tj)12. 

For the internal nodes of the system, 

F, m 
-= 0, 

m=i, j (3.47) 

and the vector QF is then 

"2 

Fj (3.48) 

where, n2 is the number of nodes of system. 

(3) QK is a prescribed heat flow vector and it is directly entered as data. 

3.3.5 Numerical Scheme 

The heat flow equation and associated boundary conditions are solved using a finite 

element method. The technique reduces the differential equation to a system of 

algebraic equations. Equation (3.16) can now, be simplified in representation to: 

C Jýj + KT, =Q (3.49) 
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where, 1 is to represent the i-th time step. Using a linear approximation for the 

temperature rate of change vector T-, . that is 

Q: 
i - Ti-1) 

At 
(3.50) 

where, At is the time step interval. Substituting equation (3.50) into equation (3-49) 

yields 

ICZ: 

i-, 
) +K Ti (3.51) 

At - 

By defining two new matrices, the modified conductivity matrix K* and the 

modified external heat flow vector Q*, that is, 

K* = K+ Ic (3.52) 
At 

Q+ IC Ti-I (3.53) 
At 

Substituting equations (3.52), (3.53) into equation (3.51) the following is obtained: 

K* Ti = Q* (3.54) 

where, both K* and Q* are functions of the current temperature Ti. In particular, 

K, C. and Q are functions of Ti. There are two basic approaches that can be used in 

resolving this problem. 

(I) Use the temperature distribution from the pivvious time step, 1:, 
_, 

to calculate the 

necessary values (that is. K, C, and Q) and thus solve equation(3.54) directly. 
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(2) Use an iterative solution technique that allows the necessary variables to be 

continually revised on the basis of the converging solution. This method was 

employed by Becker et al [4]. 

Evidently, method (1) is simpler than method (2), and can save a lot of computing 

time. However, since QF is more sensitive to the surface temperature of the structural 

member (see equation (3.45)). An approximation is used to linearize the equation 

(3.54) to solve the problem, that is, for a function 0=f (z), 

ao 
Az (3.55) 00 + az 

10 

So, equation (3.45) can be linearised as: 

=A[N(Of, i-l -Os, i-, 
) 

(N-1) 
(Of, 

i - O, j) - 
(N - 1) (Of, 

i-l - Os, i-l 
)NJ 

(3.56) 

+V cy[aF-f 
of4 

'i - cs (4 Os, 'i 0-304 
-1 s, i S'i-I 

Now, equation (3.54) can be solved easily with the previous time step (i- 1) 

information known. In this research, method (1) with the approximation described 

above has been employed to solve equation (3.54). 

3.3.6 Fire Boundary Conditions 

A buildin(-, fire has three main phases: ignition and growth, full development and 

decay. It is during the fully developed phase that most of the structural damage 

occurs. The severity of a real fire in a compartment depends upon three main factors: 

(1) fuel for the fire or fire load, (2) Ventilation (i. e. air supply) to promote its growth. 

and (3) the characteristics of the compartment. Therefore, rational modelling of real 

fire is more complicated and need further investigation. 
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At present, building code requirements for fire resistant design in most countries are 

based on the standard fire endurance test. In those tests the temperature in furnaces 

are following the standard fire curve (temperature-time relation). 

3.3.6.1 Standard Fire Curves 

The International Organisation of Standardisation has defined in ISO 834 [I], the 

standardised temperature-time relation in the standard fire test that is used by the 

national building codes of most countries, and has been adopted by British Standard 

BS 476 [2]. The standard fire exposure is defined as (see Figure 3.5) 

T -T = 345loglo(8t+l) f0 

where, t= the time (minutes) 

T= the furnace temperature at time t ('C) 
f 

To = the initial furnace temperature ('C) 

(3.57) 

Another standard fire curve commonly used in the North American countries is 

ASTM-E 119 Fire [63] which is defined by American Society for Testing and 

Materials. This temperature course can be approximately described by the following 

expression [90] 

Tf = 20+750 11- exp (-3.79 553-, ft-) + 170.41 -, 
ft-] (3.58) 

where, t= the time (hours) 

T= the furnace temperature at time t ('C) 
f 

Most laboratory tests used to determine fire resistance of building elements are 

conducted in furnaces following these temperature relationships. However, it is noted 

that the standard fire curve is not a realistic model of an ýictual fire. For most real fires, 

the temperature of internal concrete and steel does not reach the levels indicated in the 

standard firc test 1911. The standard fire curve will be cmployed in this research for 
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the computer simulation. However, it is a relatively easily process to modify the model 

to use other kinds of fire curves. 

3.3.6.2 The Parameters of Fire Boundary Condition 

A non-linear boundary condition will be used in this research. The surface heat 

transfer will be calculated by equation (3.45), that is, the heat transfer between fire 

and reinforced concrete surface can be expressed as: 

q=q, + qr (3.59) 

where, 

qc = flow of heat by convection; 

qr = flow of heat by radiation; 

and 

qc =A (Of 
- 0., ) Iv (3.60) 

Many researchers [58,91,92] suggested a simple estimation of the heat transfer 

coefficient, A, in the range of 10 to 30 (W m -2 K-'), while suggesting the convection 

power, N, equal to 1.0 is adequate in most standard fire resistance calculations. Odeen 

and Nordstrom [92] indicated the coefficient should be in the interval of 23 to 29 

(Wl?, - K-'), while CEB [93] and Malhotra [91] took a value of 25 (Wm-'ý K-'). 

Theoretical calculations verified by tests Anderberg [581 employed a value equal to 12 

K-'). 

WickstrOm 16] has evaluated the parameters A and N based on a complex theoretical 

approach in i-cladon to a specific test programme and found that for a cool side A=2.2 

(I Iýr In -2 K- 1 25 ), N=1.25 and for an exposed side A=1.0 (Illm- 2 K- 1.33 ), N--1.33. 

According to Harniathy 194] A= 1.78 (Wlll- 2 K- 1,25) for vertical surface, A=2.5() 

(11,111- K- 1-2-5) for horizontal surfacc. and N=1.25. 
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At elevated temperatures in fire conditions the heat flow rate from convection is of 

secondary importance when compared to the heat flow from radiation and, therefore. 

the values of A and N proposed by Harmathy [94] will be used for the proving test 

(see Chapter 5). 

The radiation term, q, can be expressed as: 

qr =v (T (a F-f 0f4_ F-s Os 4) (3.61) 

The phenomena associated with heat transfer in the turbulent environment of fire is 

difficult to model exactly. Assuming the acceptability of the pseudo-fire concept, the 

critical parameters appear to be the emissivity of both the flame and the surface of the 

structural element. According to Becker et al [4], a value of 0.9 may be used for the 

emissivity of concrete, e, the value of flame emissivity, F-f I appears to be more 

uncertain with potential values ranging from 0.3 to 0.9 depending on the fuel. Bresler 

and Iding [95] stated that emissivities should range in value from 0.5 to 0.9 for the 

concrete surface, F, and 0.5 or 0.7 for the flame, ef, Pettersson [96] took a value for 

the emissivity of a steel surface of 0.8 and stated the emissivity of flames should be in 

the interval of 0.6 to 0.9, with 0.85 used in his calculation. 

It should be noted that the flame emissivity will depend on the particulate content of 

the flame, which may very greatly between the controlled fire of a test furnace and the 

uncontrolled environment of an actual fire. 

Bresler and Wing [95] suggested a radiation view factor, v, may be taken in the 

interval of 0.0 to 1.0, and employed a value of 1.0 for horizontal surfaces and 0.5 for 

vertical surfaces in calculations. The surface absorption, ýi, is usually set to around 0.9. 

Because of the complexity offire boundary conditions, Based on the literature review 

above, a range of 0.6 to 0.9 for the values of fire emissivity, F-f, will be used in 

proving, test to eviduatc their sensitive to the thermal analysis (see Chapter 5). 
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3.3.7 Description of Computer Programme, FPRCBC-T 

FPRCBC-T is a computer programme for the Fire Performance of Reinforced 

Concrete Building Components - ihermal, which is a two dimensional non-linear 

thermal model for predicting the temperature histories of the cross-sections of 

reinforced concrete structural members subjected to a fire environment. The cross- 

section is modelled through the use of quadrilateral or triangular finite elements. 

FPRCBC-T is written in FORTRAN77. The flow chart of the programme is presented 

in Figure 3.6. 

The temperature distributions generated by FPRCBC-T wiH be used for predicting the 

mechanical response of a reinforced concrete structure, providing an overall capability 

of predicting the fire endurance of structures subjected to fires (see Chapter 5). 
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START 

I Input Programme Heading I 

I Initialize System I 

Input Constants of Material, Boundary 
Conditions, and Convergence Data 

I 

I Input Nodal and Element Data I 

Form Element Conductivity Matrices 
Based on Element Dimensions 

I 

I Input Current Time Step Information I 

Use (i-1) Time Step Information to Calculate 
Thermal Properties of Materials for Time Step i 

Fonn K( Ti ), Store in Array A 

I Form C( Ti ), Store in Array CI 

I Forrn 
_QE, 

Store in Array BQE I 

Form Q F, Store in Array B QF, 
Fonn Q, Store in Array B 

Modify Array A, by 
-C 

/At, 
and AffayB by CTi-i /At 

I 

Use Gauss-Seidel Iteration, 
Solve for I i, pii 

I 

Print to Screen Output if Desired 

No Is Time Step ' Yes 
-<ýSequence Ended 

Output of Results 

END 

Figure 3.6 Flowchart for Programme FPRCBC-T 
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4. STRUCTURAL ANALYSIS 

4.1 Introduction 

The objective of this chapter is to develop a non-linear finite element model based on 

the "plane stress" theory to predict the structural behaviour of planar reinforced 

concrete members in a fire environment. In this model a non-linear finite element 

method which is based on an iterative, secant stiffness formulation, is used in order to 

consider the complex features of structural behaviour in fire conditions. These are: 

dimensional changes caused by temperature differentials, (2) changes in the 

mechanical properties of the material with change in temperature, (3) degradation of 

the element by cracking or crushing, and (4) shrinkage, creep and transient strains. 

These effects pose a complex analysis problem in which the strength and stiffness of 

the structure as well as the internal forces in the structure continually change. 

In this chapter, the analytical method used in the computer programme, FPPRCM-S, 

is described. The model evaluates the non-linear structural response history (i. e. stress, 

strain, deterioration, etc. ) of planar reinforced concrete members subjected to fire. The 

temperature histories of cross-section of the structural member is predicted by the 

computer programme, FPRCBC-T. The material models used in FPPRCM-S were 

described in Chapter 2. 

The exposure of reinforced concrete members to fire results in local cracking and 

crushing of concrete and inelastic behaviour of steel reinforcement, causing 

degradation in strength and stiffness of the members. Under some conditions, spalling 

of concrete exposes steel reinforcement to much higher temperatures with further 

degradation of strength and stiffness. However, FPPRCM-S does not attempt to model 

spalling, as the calculated temperature distribution history is based on the assumption 

that the structural member remains intact. 

Degradation 01, stit ,t, iless of structural member leads to an increase in deformation, 

possibly leading to the development of large secondary forces due to geometric 

nonlinearitics and, in sonic cýtscs. leading to Instbility and fwlurc. These effects are 
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not considered in this study since it is not concerned with various modes of failure. 

but, rather with a time-history of structural response prior to failure. 

4.2 Mathematical Background of Plane Stress Problem 

In this research the analysis of two-dimensional plane stress is introduced to model the 

structural behaviours of planar reinforced concrete members. Mathematical 

formulations for this kind of problem are briefly discussed as follows: 

4.2.1 Plane Stress Behaviour 

The following relations can be found in many texts on theory of elasticity, for example 

by Timshenko and Goodier [97]. These relations are derived on the basis of small 

displacement theory. 

4.2.1.1 S tress- strain Relations. 

Refer to Figure 4.1, for this case the normal and shear stress components act in two 

co-ordinate directions only. In general, the longitudinal strain is non zero in all co- 

ordinate directions and, (Tz = 0, rzx = IT ZY = 0. 

The relation between stress and strain is 

E 
(Ty 

-VI 

or 

ýc7.1 = ICIIF-l 

0x 

0y 

1-v -y xy 2- 

1 

1 b) 
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(T 

F1 vy igure 4.1 Nomial and Shear Stresses on the x and y Faces 

ol'a Differential Solid [97] 
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4.2.1.2 Strain-displacement Relations 

The relation between strain and displacement can be expressed as follows: 

ax 

y 
lu l ay v 

yxy aa 

-ay 
ax 

or 

IP-1 
= [B]Iql 

4.2.1.3 Differential Equation of Equilibrium 

The differential equation of equilibrium can be written as: 

a ax 
+ý 

'r ý" 
ax aY 

I Ily 
++ py 

aY ax 

, PY are body forces in x and y directions, respectively. where, P 

4.2.1.4 Boundary Conditions 

(4.2a) 

(4.2b) 

(4.3) 

Equation (4.3) must be satisfied at afl points throughout the volume of the body. The 

stress components vary owr the volume of the plate. At the boundary points they must 

be such as to bc in equilibrium with the cxternal forces on the boundary of the plate, 

so that external foi-ces must be regarded as a continuation of the internal stress 
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distribution. Hence, at the plate boundaries either boundary forces or boundary 

displacements must be specified. 

4.2-1.5 Compatibility Equations 

The equation (4.3) derived by application of the equations of static and containing 

three stress components cv, (Ty ý rxy . are not sufficient for the determination of these 

components. The problem is a statically indeterminate one. and in order to obtain the 

solution, the elastic deformation of the body must also be considered. For two- 

dimensional problems we consider three strain components, ex 7 ey, y), Y, 
From 

equation (4.2) it can be seen that these three strain components are expressed by two 

unctions u an v, ence, t ey cannot be taken arbitrarily. There exists a certain 

relation between the strain components which can be expressed as follows: 

2E a 2E 

+y2 
-Y 

"y 
ay2 dX2 xa 

(4.4) 

This differential relationship, called the condition of compatibility, must be satisfied 

by the strain components to secure the existence of functions u and v connected with 

the strain components by equation (4.2). 

The equations of equilibrium (4.3) together with the boundary conditions and 

compatibility equation (4.4) produce a system of equations that is usually sufficient 

for the complete determination of the stress distribution in a two-dimensional 

problem. 

4.3 Non-linear Finite Element Analysis Procedure 

At present. the exact method for the solution of equations (4.3) to (4.4) for reint'orced 

concrete members in fire conditions is not available. Therefore. approximate 

numerical methods must be used. With the help ot'a computer. approximate numerical 

methods such as the finitc diffcrcnce. and finite element methods have become 
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practica . The most recent and one of the most potentially powerful techniques for the 

analysis of structural problems is the technique of finite element. Therefore a non- 

linear finite element method coupled with a time step integration is employed to deal 

with the complex features of the behaviour of planar reinforced concrete members in 

the fire environment. 

4.3.1 Discretization by Finite Element Method 

In this research, structural members are modelled as an assemblage of concrete 

elements and main reinforced bar elements (see Figure 4.2). The Concrete element is 

sub-divided into several layers and every layer is assumed to have a uniform 

temperature (see Figure 4.2). The longitudinal main steel reinforcements are modelled 

in a discrete manner using the bar element and this bar element is a structural member 

capable of transmitting stresses only in the direction normal to the cross-section. It is 

assumed that this normal stress is constant over the cross-sectional area of bar and that 

during deformation the area itself remains constant. The shear reinforcement is 

induced in the properties of the concrete elements and thus modelled in a smeared 

manner (see Chapter 2). 

In this chapter all parameters are relative to global co-ordinates except where stated 

otherwise. The basic analytical problem is to find the deformation history of the 

nodes, JU(t)j, when external loading at the nodes, JR(t)j, and temperature histories 

within the members, are specified. In this procedure A parameters are time 

dependent. The basic equilibrium equation at time t, that define the structural system 

is as follows: 

JR(t)l - 
IQ(IU(t)l)l 

---: 0 (4.5) 

where, the vector JR(t)j is the externally applied nodal loads, and jQ(jU(t)j)j is 

the NýCctor of internal nodal point forces that are equivalent to the element stresses. 

Equation (4.5) means that the internal forccs acting at the nodes, fQj 
, must be equal 
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x 

Figure 4.2 Division of Reinforced Concrete Member into Concrete 

and Main Reinforced Steel Bar Elements 
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to the external forces at nodes, f RI, at all time t. The internal forces at each node 

represent the deformational resistance contributed by each element attached to that 

node and depend on the geometry and material composition of the elements. 

The time-dependant behaviour of the structures is approximated by time step 

integration. That is, equation (4.5) is solved for conditions existing at t=O 

(JR(0)1, T(O) ) to obtain JU(O)l = JUOJ. Then, time is incremented at an amount 

At, and the equations resolved to obtain juj for the loading and temperature 

conditions existing at time ti * The process is repeated gradually generating a sequence 

of deformation histories (JU01, JU11, JU21, 
... ) that approximate to the response 

history of the structure, JU(t)l. 

Equation (4.5) can be expressed as [89]: 

n, n, 

B 
]T fa, I dV +I, )[Bs]T cy, dV = JR1 (4.6) 1 fv, 

c 
fv, 

M=j M=l J 

1(y, I can be represented by, 

[C] 
rc 

(JEM 1- JEF {a 
-c, c 

1) (4.7) 

where, 

I F-c' J= [Bc ]fu, 1 (4.8) 

FI 
= 

Jcreepl+Ishj+I. Irl+I. TI 

F- c-c-c-c-c 
(4.9) 

and cy can be written as, 
.V 

=- 
(Vr? i _EF) (YS E, s-s 

123 



where, 
cm = 

creep T Es = Es '+ F-s (4.12) 

Substituting equations (4.7), (4.8), (4.10), and (4.11) into equation (4.6) one can be 

obtained: 

[K]IUI = IRI+IFI (4.13) 

where, 

n, n, 
I [k, ], 

n 
+I 

M=j M=l 

where, 

[k, ]m =fV, 
(. ) 

[ 
jtý 

]T[ C] 
r, 

[k] dV (4.15) 

_ (. ) 
[BjT [k, [B, ]dV (4.16) 

ni 

fv 

and 

IFI =1 IF, 1. +Yý IF, 1, 
n 

(4.17) 
M=l m=I 

where, 

I=f[B, C7 
FI dV F: Im 

Ic 
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'. ) 
[fB ]T dV 

v-( s 

For a reinforced concrete structural member in the fire conditions, equation (4.13) is 

highly non-linear because of the non-linear stress-strain laws for concrete and steel, 

and the tendency of concrete to crack or crush. Also, the nominal nodal forces 

produced by the free strains, JFJ, are influenced by temperature history and time 

dependent factors such as creep and shrinkage. Therefore, in this study the non-linear 

time dependent equation (4.13) is solved by an iterative procedure which is based on 

secant stiffness approach. In each cycle a linear analysis is performed. Details of this 

procedure are given in Section 4.3.5. Calculation of the stiffness matrix, [K], and the 

nominal node forces vector, I FI, are discussed next. 

4.3.2 Structural Stiffness Matrix, [K] 

The stiffness matrix for the reinforced concrete structure being analysed is assembled 

from stiffness matrix of concrete elements and reinforcing steel bar elements (see 

equation (4.14)). 

4.3.2.1 Stiffness Matrix of Concrete Element, [k, ],,, 

In this study, the concrete elements are modelled through the use of isoparametric 

four-node quadrilateral elements because of its simplicity and economy. With 

reference to Chapter 3 Section 3.3.2.2, the quadrilateral with the local node numbering 

convention is shown in Figure 3.3 in real x-y space and also in terms of the natural co- 

ordinates. 
Strain displacement transformation matrix of concrete element [B, ]: 

The interpolation formulas for displacements in x-direction, u, and y-direction, v, can 

be expressed as follows: 

it = N, u, + N, it, ) + N', it, + N4 114 (4.20a) 
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v=N, v, +N2 V2+N 3 V3+N4 ý'4 (4.20b) 

Global co-ordinates, x, y, can be expressed by equation (3.29) and the shape functions 

NI) N2, NPN4 can be found in Section 3.3.2.2. 

The determination of strain requires partial differentiation of the displacement 

functions with respect to the global co-ordinates. The displacement functions are 

written in terms of the natural co-ordinates (see equation (4.20)). Replacing T by u in 

equation (3.31 a) one can be obtained, 

au, - ay 
-ay- 

au, 
ax 
au 

1 
IJI 

a7 ax- 

-ax 
ax 

ax- 

au 
ay ay ax ay, 

Instead of T by v in equation (3.3 1 a) again one can be obtained, 

av, ay 
ax ay 

av 
-ax 

lay La 57 

where, 

ay- al', 
ax- ax- 
ax av 
ax- 

ay ax ay ax 

Perforniing the differentiation of equations (3.29) yields 

4 

1 a Ni 
Y 

a-i' l=I a -l a -ic i=I 
i a. -v 

ax 4 a Ni al, 
- 

-4 a Ni. 

a. v 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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Substituting equation (4.24) into (4.23) an expression for the Jacobian. determinant, 

is 

xi 

I JI 7- 
[YI 

Y2 Y3 Y4 
] [91 X2 

X3 

IX4 

where, 

aNi aNj aNi aNj 

'gi i --": a7aT aT ay 

From equation (4.21), 

au 1 ay au ay au 
ax = 1 il 

[ 
a y- a x- 

] 
a x- a y- 

whereas from equation (4.20), 

Ni. 
u 

av 
- 

4 

=1 
a Ni 

ax- i=I i) a x- ax- i=l a x- 
all 4 aNi 

u 
av 4 a Ni 

v aY i) a i 

and using equation (4.24), one can be obtained as, 

au 1 

, ', 1a 111 

[1,1 
Y2 Y" 

Return to equation (4.2 1). 

Ul 

Y4 
] [91 

U2 

it, 

Y4 

12 7 

(4.25) 

(4.26) 

(4.27) 

(4.28) 



au -1 rax au ax au 
ay IJI 

[-ä= 

y al al 
y1 

in matrix form, 

au -1 [x 
ay jil I 

X2 X3 X41 
[91 

Ul 

U2 

U3 

U4 

From equation (4.22), 

av I ay av ay av 
= 

ax IJI 
[ 
a57 aT 

] 
aTaY 

that is, 

vi 

av [Yl Y2 Y3 Y41 [91 V2 

ax IJI V3 

IV4 

and 

ax av ax av 

that is, 

(4.29) 

(4.30) 
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vi 

m av Ecly [XI 
X' X3 XII 

[91 

V3 

IV4 

The shear strain is defined as 

mau 
av 

C, xy ay ax 

(4.31) 

This is the sum of equations (4.29) and (4.30). So, the mechanical strain matrix of 

concrete element can be expressed as, 

Ul 

m vi 
EC, 

x 

I ml = Emy 
11? 

- [ý, 1 luc 1 EC C, y 
[B] (4.32) 

m YC, XY, j U4 

V4 

From equation (4.28) the entries of matrix [B, ], Bc, (I, j), can be identified as follows: 

yi gii i=1,2,3,4 (4.33a) 

Bc, (I, j) = () 2,4,6,8 (4.33b) 

From equation (4-3 1), 

14 

BC. 
( -i -, j) 111 

1-, 
"N ij 

i=1,2,3,4 (4.33c) 
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k, 
(2, j) =0i=1,3,5,7 (4.33d) 

From equations (4.29) and (4.30), 

Bc, 
(3, j) =: Bc, 

(2, (j+l)) 
i=1,3,5,7 (4.3 3 e) 

Bc, 
(3, j) =Bc, (I, (j-1)) i=2,4,6,8 (4.33f) 

The entries in the matrix [B, ] are recognised to be functions of the natural co- 

ordinates X- and y 
The element stiffness matrix, [k, ]m: 

According to the energy minimisation principle, the element stiffness matrix can be 

found as follows: 

[k, ]m = 
fV, 

(. ) 
[ B, ]T[C]" [B] dV (4.34a) 

or 

[k, ]m = 
fff [Be ]T ICIrc [Bc I dXdydZ 

Vc (4.34b) 
ff [B]T (f [ClrcdZ) [ Bc I dX dy 
A 

using [C-] =f (C], dz , 

[k]m = 
ff [B, ]"[C-][B, ] dxdY (4.34c) 
A 

Changing the integration variable, one can be obtained as the following: 

(4.35) [B, ]"[C][B, ]jJjJ-xd-v 
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In this study two-point formula of Gauss quardrature is used to calculate [k, ],,. 

Therefore, in this chapter all stresses, strains, and the constitutive matrix of materials 

discussed are correspondent to Gauss integration points. 

Since the concrete elements are divided into layers along z axis direction (see Figure 

4.2), material properties are assumed to be constant within each layer at each time 

step. Therefore, the matrix [U] at a Gauss point is a function of z only, and the inner 

integration f [C], dz in equation (4.34b) can be carried out separately. This 

integration along the z-axis are replaced by summation over the layers as: 

n 

Cl 
rc 

dz (Zi+l - Zi )I Cl 
rc, i (4.36) 

where, ICIrcj is the material constitutive matrix of i-th layer, and n is number of the 

layers. 

4.3.2.2 Stiffness Matrix of Steel Bar Element, [k, ] 
in 

In this research, steel bar elements are used to model the main longitudinal 

reinforcement. The steel bar element is modelled as two-point isoparametric truss 

element in conjunction with the concrete elements. 

In the following model we consider a truss element that has an arbitrary orientation in 

x-Y plane and is described by two nodes, as shown in Figure 4.3. The global co- 

ordinate of nodal points of the element are 
(X,, 

YI). 
(X2'Y2 ) and r is natural co-ordinate. 

Strain displacement transformation matrix of reinforcing steel bar element, [B, ]: 

The interpolation formula for displacement in the global co-ordinates are: 

it = N, u, + N, it, (4.37a) 

v=N, v, + N., v, (4.37b) 

131 



For the global co-ordinates: 

x= Nlx, +N2 X2 

y= Nly, +N2Y2 

For the arc length, s, at the material point (x, y) given by 

s= Nls, +N2 S2 

where, the shape function for one independent variable, r, are define as 

N =±(1_r), 12 
N2 =I 

2 

(4.38a) 

(4.38b) 

(4.39) 

Since, for the truss element the only stress is the normal stress on its cross-sectional 

area,, therefore only the corresponding longitudinal strain is considered. Hence, one 

can be obtained [89] as follows: 

9 in A du 
+ 

dy dv 
d3 Jý ds ds 

Since, 

Iv dr 
ds dr ds 
dii du dr 
ds dr ds 

A di, dr 
ds, dr ds 
dv di, dr 
ds- dr ds 

/ 

(4.40) 



xT 

x 

Figure 4.3 Two-node Bar Element 
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substituting these expression into equation (4.40), that is, 

.m=1 
(dx du dy dv) 

.f+ --) IJI' dr dr dr dr 

where, I JI = L/2, and L is the length of bar element, 

dx 2 dM. 1 Xi dr j=I dr 
du 2 dN Y, i Ui dr 

=, 
dr 

dy 2 dNi I Yi dr i=l dr 
2 dv dAý- 

v dr dr 

and 

dN, 
_I dr 2 

dN2 
-1 dr 2 

To develop the strain- displacement matrices we define 

fXIT = 
[XI 

YJ X2 Y2 

T fu 
sI= 

lul 
V, 11, V,, 

[H] = 
12 dN2 12 

0] [ 

dr dr 01 

Hence, equation (4.41) can be expressed as 

TT 
es 

jr 
IXI [H] [H]ju, Fj r 

So that 

T 

jr 
JXJ [H]"[H] 

(4.41) 

(4.42) 

(4.43) 
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where, the entries in the [B, ] are, 

B, I dN 2 dlý- 
xi , (1, I) =I FJf dr i=l dr 

B-L 
(dN2 2 dNi 

s, (1,3) IjI2 ý-j Xi 
dr i=, dr 

I dNj ' dAý. 
IjI2 dr dr 

I dN ,2 dAý 
r r 171T dr r 

The stiffness of element corresponding to the global co-ordinates can be expressed as 

the following: 

[k, ]m = 
fv, 

. 
[Bs ]T r, [Lý, ] dV (4.44) 

Since, dV = As ds, so 

[=f ]T 
s k] [, 4 - [LýT] As d 

m5 1ý1 

Because items in [B, ] are constant, therefore 

[k, ]111 = LA 
s 

Es [ BS ]T[ BS ] (4.45) 

4.3.3 Nominal Nodal Force Vector, f Fj 

The nominal nodal force vector for the structure being analysed, IFI, is assembled 

from the nominal nodal force vector of concrete elements and steel bar elements (see 

equation (4.17)). 

4.3.3.1 Nominal Nodal Force Vcctoi-of Concrete Element, fIJ, 

According to equation (4.18), 

I Is 35 



Im pý ]TI 
CV FI dV fv 

c 

c 

f 
'. ) 

[BjT J(37FIdX 
d ffv( 

cy 
dz 

fA ]T f 
CFCF JdZ) dX d fy 

Using 1-(Yl f fa FjdZ 
c 

[BjT -61 d f F, Im ffA I dx y 

Changing the integration variable, that is 

f [Bf Iy ffýlm 
= 

fA, 

. 
-(T IIJI dx- dy- 

(4.46a) 

(4.46b) 

(4.47) 

As discussed in Section 4.3.2.1 the two-point formula of Gauss quardrature is used to 

calculate JFj.. therefore f U1 at a Gauss point is a function of z only and the inner 

integration ffa FjdZ in equation (4.46a) can be expressed by summation over the C 

layers as, 

f(T (T F JdZ I= z +1 _ Zi i (4.48) 

where ja, 'j 
I. 

is nominal stress vector in the i-th concrete layer and n is the number of 

the layers. 

4.3.3.2 Nominal Nodal Force Vector of Steel Bar Elements, J, ý, Im 

From equation 

[4, ]T 

(T 
F dV 

[ ]T CFF A, ds fl 
s 

(4.49) 
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In equation the terms of [Bj are constant therefore, 

ýFs I=LA (T 
F [B f 

msss 
(4.50) 

4.3.4. External Loading Vector, JR1 

External loading vector, JR1, in equation (4.13) is represented as nodal force vector of 

the system being analysed. JR1 is assembled from element nodal loading force vector 

JRjm, that is 

n 

f RI =I IRIm 
M=l 

where, n is the number of elements. 

4.3.4.1 Element Nodal Loading Force Vector, JR)m 

There are three types of element loading to be considered: 

(1) Concentrated forces applied to nodes, 
frINF, that is, 

x 

y 
frIN, 

r4, 
x 

_r4, 
y., 

Equivalent nodal forces for distributed surface traction, JrjTF 

(4.51) 

(4.52) 

Distributed edge loading intensities are specified as force per unit length or force per 

unit area. The force per unit area at a particular point is called the stress traction 

vector. I SI. Distributed stress traction on one side of the element is shown in Figure 

4.4. The general expression for the equivalent nodal loads for this distributed surface 

traction is [981, 
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bfp [N] T Sx 
dý (4.53) Sý 

where, 
[N] = shape function matrix, for the four-node quadrilateral, 

[N] 
N, 0 N2 0 N3 0 N4 0 

(4.54) 
0 N, 0 N2 0 N3 0 N, 

] 

b= the thickness of the element 

= the length of the element edge 
S", 

the force vector per unit area at a particular point. SY 

(3) Equivalent nodal forces for distributed body forces, fr IBF 

Forces that are exerted on each element of mass throughout the continuum (element) 

are called body forces, gravitational loading is a common example of a body force. 

The units of the loading are force per unit volume. As the same principal as equation 

(4.53) equivalent nodal forces for distributed body forces, jrj,,, can be expressed as 

t. ollowing: 

B 
Ir bf ]T x IBF 

A 
[N 

Bý 
dx dy (4.55) 

where, B, I B, are the body forces in the x and ), directions. 

The element nodal loading force vector, I RIm 9 is 

I Rlm ": - 
1 

1- 
INF +I"I 

7T 
+I"I 

BF (4.56) 

I 



y 

x 

Figure 4.4 Distributed Stress Traction on One Side 

of the Element 
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4.3.5 Boundary Conditions 

In the solution of the non-linear equilibrium equations for the structure beinLy 

analysed, one of two conditions must be known for each node: the externally applied 

load at the node, or displacement of the node. 

It is also possible to model flexible supports by using flexible spring stiffness at these 

supports. This option can be very useful for modelling the effect that adjacent parts of 

the structure surrounding the members being analysed. The values of these spring 

stiffness can be found from a standard linear structural analysis programme (e. g. 

[99]). The basic idea of the analysis is to find the force exerted by the surrounding 

structure on the substructure being analysed when a unit displacement is imposed at 

the boundary node. The spring can have an axial stiffness at the displacement degrees 

of freedom or a rotational stiffness at the rotational degrees of freedom. 

4.3.6 Numerical Solution Procedure of Non-linear Analysis 

Employing finite element method to deten-nine the structural response under applied 

loads and fire conditions the equation (4.13) should be solved, that is, 

[K]IUI = IRI+IFI = IR'l (4.57) 

The procedure contains two parts, the first part is to analyse the structural behaviour 

subject to applied loading before fire conditions and the second part is to analyse the 

structural behaviour during the fire. 

Considering the non-linear material behaviour, [K] to be a function of the load vector, 

IR'l, an iterative method should employed to reach the solution of the system of 

equations in (4.57). In this study since a secant non-linear elastic model is used for 

concrete, the system of equations in (4.57) is set up so that the nodal force vector f R'l 

is equal to the total load corresponding to the structure. 'I'his implies that a secant 

method of solution rather than the usual tangent technique is employed. At any load 

step (previous fire) or time step (during fire), iterations are carried out and at each 
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iteration [K] is updated until the constitutive equations for concrete and reinforcement 

are in accordance with the total loads, f R'j. 

In the following sections all stresses, strains, and the constitutive matrix of materials 

discussed are correspondent to Gauss integration points of each layer of concrete 

elements and each steel bar element. 

4.3.6.1 Numerical Solution Procedure Preceding the Fire 

During the actual loading applied to the structure before fire, the nominal nodal load 

vector I Fj = 0, therefore IR'l = JR1 equation (4.57) become, 

[K]fUl = fRI (4.58) 

The secant stiffness approach for solving equation (4.58) is illustrated in Figure 4.5. 

The basic steps of this solution procedure is described as following: 

(1) Determining the external nodal loading vector IRI,, for load step i, 

f RI, = IRI, 
-, 

+ JARI, (4.59) 

where, JARI, is the load increment vector at load step i. 

Assuming secant stiffness matrix of materials, for the first iteration of the first 

load step, the isotropic elastic module of concrete and steel is used as the secant 

stiffness value. After this, at each iteration j of load step i the material stiffness 

matrix calculated at iteration (j - 1), [C] is used as the new estimate secant 

sfiffness value, [C]. 

Using the secant stiffness matrix of material formed in step (2) layer stiffness of 

concrete elernentýs are calculated and integrated to form element stiffness 

matrIxes, [k, ],,,, and stiffness matrixes of steel bar elements, [k, ]m, are formed. 

Thesc are then assembled into the structural stiffness matrix. [K]. 
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Step 3 

Step 2 

Step 1. 

Displacement 

Figure 4.5 Iterative Procedure for the Solution of Non-linear 

Equilibrium Equations (4.58) 
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(4) Equilibrium equations are solved to obtain the nodal displacement Nector, f U1 - 
For each element step (5) is executed to obtain the current state of stresses and 

strains. 

(5) Strain vectors are computed and from the constitutive relationships stress state is 

obtained. 

(6) The stresses are checked against the failure criteria and adjusted accordingly, 

then according to known value of strains and stresses the new secant stiffness 

matrix of materials, [C]' are formed. 

(7) Comparing [C] with assuming value of secant stiffness matrix of materials, [C], 

in step (2), if the material stiffness matrixes have not converged, that is, the 

difference between [C] and [C] is not satisfied the convergent criteria then go 

back to step (2), the analysis repeated. After several iterations the calculated 

values will converge and final results can be obtained and then go to step (1) to 

begin the new load step. 

(8) If total load is reached the structural analysis before fire is finished. All structural 

behaviours (e. g. stresses, strains, stiffness matrix of materials, displacements of 

nodes) are used as initial conditions for fire environment. 

4.3.6.2 Numerical Solution Procedure During Fire 

During the fire environment the nominal load vector IFI#O, therefore 

jR'j=tRj+jFj. So, equation (4.57) has to be solved. A finite element secant 

stiffness formulation coupled with a step-by-step integration scheme in the time 

domain is used to solve equation (4.57). The entire time period, for which the response 

history of the structure is to be traced, is divided into a number of time steps, 

At,, At,, At.,, ---ý Atn , 
As mentioned in Chapter 2, in this study the same time increment 

At is used, that is, At, = At2 = At, = ... = Atn = At (see Figure 4.6). it is assumed that 

changes in the external nodal loads and temperature, if any. occur only at the 

bcginning or at the end of a time step. During a time step the external loads and 
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temperature in the layers of concrete elements and steel bar elements are assumed to 

remain constant. 
The basic steps of this computational procedure are discussed as follows. All 

superscriptj and subscript i represent iteration j and time step i. 

(1) A time step begins with the reading of the time increment, At, and external load 

increment, JARI,, which are added to the previous time and load values to obtain 

the current time, tj . and the current load vector, f Rj,, that is, 

ti = ti-I +At (4.60) 

JR1, = IRI, 
_, 

+ JARI, (4.61) 

Moreover, current temperature distribution in the member is entered. 

(2) Free strain vector for time step i is calculated as follows: 

Fli 
= 

fcreepli 
+fsh trji + FTji 

cIi+fE 
I_ fec 

ccc (4.62a) 

F)i 
. 

(, creep), +(, T) (ES 
ýs i 

(4.62b) 

(3) Assuming secant stiffness matrix of materials at each iteration j of time step i the 

material stiffness matrix calculated at iteration (i - 1), [C]', is used as the new 

estimate secant stiffness value, [C]. 

(4) Using the secant stiffness matrix of material formed in step (3), layer stiffness of 

concrete elements are calculated and integrated to form element stiffness 

matrixes, ([k,, ],, )j, and stiffness matrlxes of steel bar elements, ([k, ],,, ) J. are 
ii 

formed. These are then assembled into the structural stiffness matrix, [K] 

Fli. (CF)i, 
t Tsing the I ree strain vector calculated in step (2), 1CC 

-S the nominal nodal 

force vector of concrete elements and steel bar elements, (f Fý 1, (f F, 1j, are 
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Figure 4.6 Load and Displacement History for Non-linear 

Analysis Procedure 
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formed then these are assembled into the nominal nodal load vector of structure, 
f Fjj. Then jR'jj is determined as, ii 

JR), +jFjj (4.63) 

(5) According to equation (4.57) nodal displacement vector, f Uji' is calculated. The 

mechanical and stress-related strains can be calculated as follows: 

lem J= I'Mi lu, li (4.64a) cli ii 

(es )i= [ý, ]i ju., li (4.64b) 

c11 
1Ei (4.65a) 

(E m), -(F-, 
)i (4.65b) 

S)i 
(es 

is 

(6) Using the current value of the stress-related strain vector, IF, 1, 
, 
(F,, ), 

, together 

with the stiffness matrix of material determined in step (3), [C], the current 

values of stress, J(T, 1, 
, 
(aji 

, can be detennined. Then the stresses are checked 

against the failure criteria and adjusted accordingly, and the new secant stiffness 

matrix ot materials, [C] are formed. 

(7) Comparing [C] with the assumed value of secant stiffness matrix of materials, 

[C], formed in step (3), if the material stiffness matrixes have not converged, 

that is, the difference between [C] and [C] dose not satisfy the convergent 

criteria, go back to step (3) and repeat the iteration procedure j+1. After several 

iterations the calculated values will converge and final results can be obtained 

and then return to step (1) to begin the new time step I+1. 
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(8) The calculation procedure is continued until the required time is reached or 

failure of the structure being analysed occurs, which means solution procedure is 

unstable. 

It is noted that because of the complexity of the concrete material, a large number 

of iterations are required to satisfy the convergent criterion during some time 

steps. Therefore, in this study a small time step, one minute, and a limited 

iteration number, 15, is employed. This means that the automatic 

increamentation of load or time step is used only if the convergence is not 

achieved during the iteration process. 

4.3.7 Description of Computer Programme, FPPRCM-S 

Based on the previous analysis a special finite element programme, FPPRCM-S, has 

been developed. FPPRCM-S is a computer programme for the Fire Performance of 

Planar Reinforced Concrete Members - Structural. In this programme the concrete 

elements are modelled through the use of isoparametric four-node quadrilateral 

element, and two-point I'ormula of Gauss quadrature is employed. The main steel 

reinforcing bar are modelled as a two-point bar element in conjunction with the 

concrete elements. FPPRCM-S is written in FORTRAN77. The main flow chart of the 

programme is presented in Figure 4.7. The temperature histories of cross-section of 

the member are predicted by the computer programme FPRCBC-T (see Chapter 3). 

Programme FPPRCM-S has been developed as an analytical tool for use in studying 

the fire response of planar reinforced concrete members. The programme is capable of 

providing a broad spectrum of response data including time history of displacements, 

internal stresses and strains in concrete and reinforcing bar, as well as the current 

states of concrete (cracking and crushing) and steel reinforcement (yielding). 
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5. VERIFICATION OF ANALYTICAL METHODS 

5.1 Introduction 

In this chapter the analytical models described in previous chapters are applied to 

several problems for which experimental results are available in an attempt to assess 

the ability of the theoretical models to simulate the behaviour of actual structural 

systems in fire environments. The proving test of the thermal analysis programme, 

FPRCBC-T, is given first, followed by examples demonstrating the capabilities of the 

structural analysis programme, FPPRCM-T. 

5.2 Thermal Analysis 

The results of the actual tests to which the analytical predictions are compared were 

performed at the Swedish National Testing Institute in Boras, Sweden according to 

ISO 834 Fire Test [1] and were reported in Haksever and Anderber [87]. 

5.2.1 The Schematic Diagrams 

The test arrangement is illustrated in Figure 5.1. The reinforced concrete test columns 

were placed at the opening of a vertical furnace such that they were exposed to heating 

on three sides. The furnace measured 3x1.8 x3 m' and lightweight concrete walls 

were used to close the test furnace. The fire exposure is followed, according to ISO 

834 11 J, by 9 thermocouples placed around the column as shown in Figure 5.1. 

The columns were 2m in length with a cross section of 200 mm by 200 mm. For steel 

reinforcement eight 16mm diameter bars of grade Ks40 (hot rolled steel) were 

employed with a yield stress of 453 MPa. The schematic diagram of cross-section of 

die column is shown in Figure 5.2. The concrete used for the column specimens had a 

cube strength of about 46 MPa with a testing age of I 10 days. The moisture content of 

the concrete was measured on cubes of size 0.15 x 0.15 x 0.15 m' and was about 61-7r 

(by Nvei (-, lit). This value is taken into account in temperature calculations. 
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FigUre 5.1 Illustration of Testing Arrangement [87] 
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Because of the symmetry of geometric and boundary condition only half of the cross- 

section of the column is needed for modelling. The finite element grid is shown in 

Figure 5.3, where planes of symmetry and the insulated cool side are modelled as 

perfectly insulated (q=O) surfaces. A finer finite element mesh is employed in the 

vicinity of the fire boundary since a steeper temperature gradient is to be expected 

there, and vice versa, a coarser grid is used near the centre of the column. The steel 

bars have been idealised as rectangles based on an equivalent area where the length of 

each rectangle S=0.89D, where D is the diameter of the steel bar. A total of 136 finite 

elements and 162 nodes are employed to model the problem. 

5.2.2 Results and Discussion 

The thermal properties of materials are calculated using the model discussed in 

Chapter 2. For evaluating the effect of the flame emissivities of the fire, Ff , three 

values of F-f, 0.6,0.75, and 0.9 are employed for the proving test. For the purpose of 

comparison the temperature distribution of dry concrete (w=O) are also calculated to 

see the effect of the presence of moisture. The other values of parameters of normal 

weight concrete used in this calculation are listed in Table 5.1 (the symbols in the 

Table are referenced in Chapter 3). 

Table 5.1 Values of the Parameters Used in Figures 5.4-5.6 

F- = 0.21 pj = 985.0 =4187.0 1 
CP, l 

PS = 0.9 Pd = 2400.0 hfg = 2.1991 X 1()6 

1.0 Cp, 
d, 0 =: 850.0 cy = 5.67 X 10 

0.9 ki = 0.651 

km = 0.026 

ks. = 3.3 1 

N=1.25 

kd. 
0 = 1.75 

v, = (). 

2.5 
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The results of the proving tests are shown in Figures 5.4-5-6. The predicting errors of 
FPRCBC-T at different instances of time are shown in Tables 5.2-5.4. It should be 

noted that the column to be tested had been left in an open atmosphere for 110 days 

prior to the tests commencing to allow for curing and maturity. Thus the surface of the 

column had tended to dry out while the centre had retained much of the original 

moisture. Thus the sets of measured points 1,2 on or near the surface would be 

expected to be better approximated with a model with w=O% while the sets of 

measured points, 6,5 would be expected to be better approximated with a model with 

w=6%. 
From consecutive Figures it can been seen that the effect of ef is significant on the 

temperature distribution histories of cross-section of reinforced concrete structural 

member, particularly for the regions closer to the surface exposed to fire, see curves 1, 

2,3 in Figures. It can be seen from both the sets of measured points and the prediction 

curves that the presence of moisture has a significant effect on the temperature 

histories in concrete during fire conditions. For curves I and 2 it is confin-ned that 

better prediction accuracy is achieved with w=O%. 

in the thermal analysis model, see Chapter 3, the energy transfer by mass convection 

and diffusion was neglected, therefore at temperatures below 140 'C the simultaneous 

moisture vaporisadon and mass transport caused a slight discrepancy. Figures 5.4 to 

5.6 present temperature versus time plots for varying values of ef , Tables 5.2 to 5.4 

present selected values of the percentage variation between measured temperature 

values and the modelled data. It can be seen from Table 5.2 that there is a 12.1017, (-, to 

35.45% variation in the values after 30 minutes over a series of selected points in the 

cross-section of the column (refer to Figure 5.4 (a)). The greatest deviation occurs at 

point 6, which is at the centre of the cross-section. However, after 120 minutes the 

variation is reduced to the range of 0.42% to 13.9717(. Again the greatest variation is at 

point 6. This data represents a Nvorst case situation in using of the F-f value at 0.6. In 

contrast in Table 5.3 which presciits valucs for F-f =0.75 the \'ariation of data ranges 

from 1.517c to 32.5417c at 30 minutes and from 2.59 to 8.28(7c after 120 minutes (refer 
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to Figure 5.5 (a)). This represents a close match between the simulation and 

experimental data for a F-f value which more closely reasonable actual conditions. 

Table 5.4 provides data for F-f =0.9 providing a variation in the range of 2.63% to 

30.06% at 30 minutes and 0.66% to 14.861-7c after 120 minutes (refer to Figure 5.6 

(a)). In Tables 5.3 and 5.4 the greatest variations do not occur exclusively in the 

internal elements of the model. It may be surnmarised at this stage that the model 

shows a reasonable match to the measured data if the initial material conditions and 

F-f can be specified accurately. To improve upon the accuracy of the prediction, the 

thermal properties of the material at elevated temperatures are required from further 

investigations. 
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Table 5.2 Predicted Errors of FPRCBC-T in Figure 5.4 (Ff = 0.6) 
at the Different Instances of Time. 

Figures Measured Time (min) 

Points 30 60 90 120 

1 12.10 10.54 10.25 11.58 

2 15.75 14.95 14.48 12.46 

Figure (a) 3 13.77 10.30 10.15 9.46 

(w - 6%) 4 20.23 1.87 2.77 3.44 

5 30.61 21.57 4.16 0.42 

6 35.45 19.84 20.97 13.97 

1 9.27 9.28 9.57 11.17 

Figure (b) 2 8.18 10.49 11.63 10.42 

(w = 0) 3 2.20 1.08 4.48 5.57 

4 14.59 25.17 9.31 4.19 

5 19.75 43.58 35.69 16.35 

6 33.74 15.26 44.61 9.88 

The errors are represented as a percentage variation of the measured values [87]. 
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Table 5.3 Predicted Errors of FPRCBC-T in Figure 5.5 (cf = 0.75) 
at the Different Instances of Time. 

Figures Measured Time (min) 

Points 30 60 90 120 

1 1.50 2.27 2.75 4.61 

2 5.70 7.36 7.68 5.47 

Figure (a) 3 3.91 2.29 3.12 2.59 

(w = 6%) 4 16.92 11.1 4.97 3.65 

5 27.48 18.76 13.94 8.28 

6 32.54 17.95 6.51 5.99 

1 0.75 1.24 2.20 4.27 

Figure (b) 2 1.39 3.09 4.91 3.48 

(w = 0) 3 12.40 6.72 2.40 1.23 

4 24.49 34.44 16.91 11.10 

5 14.02 53.32 44.47 23.64 

6 29.68 22.71 53.70 16.58 

The errors are represented as a percentage variation of the measured values [871. 
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Table 5.4 Predicted Errors of FPRCBC-T in Figure 5.6 (Ef = 0.9) 
at the Different Instances of Time. 

Figures Measured Time (min) 

Points 30 60 90 120 

1 7.47 4.82 3.65 1.43 

2 2.63 0.96 1.56 0.66 

Figure (a) 3 4.66 4.41 2.96 3.38 

(w = 6%) 4 16.92 19.21 11.46 9.72 

5 25.31 4.88 22.02 14.86 

6 30.06 15.98 1.27 0.51 

1 9.42 5.71 4.12 1.72 

Figure (b) 2 9.62 3.19 1.21 2.57 

(w = 0) 3 21.20 13.29 8.47 7.16 

4 33.06 42.29 23.10 17.07 

5 9.02 61.63 51.87 29.86 

6 26.04 29.12 61.43 22.25 

The errors are represented as a percentage variation of the measured values [871. 
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5.3 Structural Analysis 

In order to examine the accuracy of the proposed non-linear finite element procedure. 
it is necessary to carry out a series of proving tests. This is achieved through a 

quantitative verification of the analytical method against literature test results. 

A series of fire tests of reinforced beams were carried out at the Fire Research 

Laboratory of Portland Cement Association according to ASTM El 19 Fire and SDHI 

Fire and reported by Lin at al [100]. 

Three different beams exposed to different fire conditions are analysed using the 

programme, FPPRCM-S, and the results are compared to the test data. Also the 

predicted responses were obtained [100] using a modified computer programme 

originally developed by Becker and Bresler [7] and examined for comparative 

purposes with FPPRCM-S. 

5.3.1 The Details of Analysed Beam Specimens 

From [100] it was ascertained that the three reinforced concrete beams used were cast 

at the Construction Technology Laboratories of the Portland Cement Association. All 

beams were designed according to ACI Standard 318 [100] with a 6.1 m (20-ft) span 

and 1.83 m (6-ft) cantilever. Beams were fabricated using normal weight concrete 

(Type I Portland Cement, calcareous sand, and gravel aggregate, the maximum size of 

coarse aggregate was 25 mm) and Grade 60 reinforcing bars. All beams were 

reinforced with 8* bars at top, V bars at bottom, and 3' bars for stirrups. 

Table 5.5 and Figure 5.7 provide details of the beam specimens. Beam No. 3 was 

tested using the ASTM El 19 fire exposure, and beams No. 5 and 6 were exposured to 

a short duration high intensity (SDHI) exposure. The average furnace temperature 

measured during the ASTM and SDHI fire tests are shown in Figure 5.8. 
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Table5.5 Details of Beam Test Conditions [1001 

Beam 
No 

Cross 
section 

(MM) 

Concrete 
cover 

(MM) 

Relative 
humidity 

Specimen 
age 

(days) 

Load P 

(KN) 

Fire 
exposure 

Test 
duration 
Oir : min) 

3 534X 57 76 375 44.48 ASTM 4 03 
228 

5 534X 38 80 526 44.48 SDHI 4 03 
228 

6 534X 57 74 520 44.48 SDHI 4 03 
228 

From Figure 5.7 it is shown that the span of the beams were exposured to fire 

conditions and the cantilever of the beams were subjected to ambient condition. The 

beams were simply supported. The magnitude of superimposed loads, P, was 

determined by assuming that loads on the floor system were equal to the full 

unfactored design loads. These loads were held constant throughout the test. The 

cantilever load, PO, applied at the start of the test was determined so that the induced 

negative moment was equal to 59% of the negative nominal moment strength at the 

continuous support. PO was changing during the fire test. Figure 5.9 shows how the 

measured cantilever loads, PO, changed during the testing of the beams. 

Some test values of material properties at room temperature are given in Table 5.6 (the 

symbollses in the Table are referenced to Chapter 4): 
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Table 5.6 Measured Material Properties at Ambient condition 

Concrete Steel 

Beams 

No. 

fl, 

(MPa) 

Bar 

Designation 

Diameter 

(MM) 

fy 

(MPa) 

Ey 

3 29.65 #3 9.25 483.34 0.0028 

5 33.72 #7 22.22 481.27 0.0025 

6 34.54 #8 25.40 509.54 0.0028 

The following material properties for ambient conditions are assumed: f, = 2.0 MPa; 

v. = 0.18; cco =-2.4588 x 10-'; Ec = f, exp (1)/F-co [8]; and Esp = 1034 MPa for the 

proving test. The mechanical properties of materials at elevated temperature are 

calculated using the model discussed in Chapter 2. 

5.3.2 Results and Discussions 

In this proving test the temperature distribution of the cross-sections of the beams are 

generated by FPRCBC-T. Beam No. 3 was tested using the ASTM E 119 fire exposure, 

and beams No 5 and 6 were exposured to a short duration high intensity (SDHI) fire. 

The comparison of predicted and measured temperatures in the main reinforcement of 

beams No. 3 and 5 at testing time of 3 hr and I hr respectively are given in Table 5.7. 

There "Predicted I" is the temperature history used for the structural analysis by Lin et 

a] 1100], and "Predicted 22" is calculated using FPRCBC-T. to give a temperature input 

for this proving test. 
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Table 5.7 Comparison of Predicted and Measured Temperatures 
in Main Reinforcement 

Thermocouple Top Reinforcement B ottom Reinforcement 

layer (Fig. 5.7) 4( 'C )1 3( 'C 2( 'C I (1c) 

BeamNo. 3 (t=3hr) 

Measured 349 367 463 523 

Predicted 1 366 406 478 566 

Predicted 2 320 347 396 500 

BeamNo. 5 (t=lhr) 

Measured 206 248 316 

Predicted 1 196 210 251 397 

Predicted 2 187 195 211 326 

* Thermocouple malfunction 
Measured [100] 
Predicted I= calculated by Lin et al [100] 
Predicted 2= calculated by FPRCBC-T 

The results of comparison between measured and predicted maximum deflection of 

beanis are shown in Figures 5.10-5.12. The predicting errors of analytical models in 

Figures 5.10-5.12 at the different instances of time are shown in Tables 5.8. In these 

figures, "Predicted V were calculated by Lin et al [100] and "Predicted 2" were 

produced by the analytical model proposed in this thesis. In Figure 5.10 the data 

"Predicted 3" is produced without considering effect of steel creep. 

From Table 5.8 calculated values of the percentage variation in deflection between the 

tcsts conducted at the Portland Cement Association and the models proposed by Lin et 

al 11001 and FPPRCM-S are presented. It can be seen that at selected time intervals 

Lin ct a] obtained variations of 17.1817c to 43.117c over the 2 10 minutes test for beam 3. 
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In comparison FPPRCM-S exhibited a variation of 6.58% to 32-74%. thereby 

indicating a closer match to the measured values. For beam 5 and 6 the variation from 

Lin et al were 25.59% to 36.36% and 4.9c-k to 35.31 % respectively. In comparison 

FPPRCM-S showed a variation of 0.25% to 24.631-7r for beam 5 (with an initial error 

of 42.24% at time=O) and 1.08% to 20.99% for beam 6 (with a initial error of 29.9817c 

at time=O). In summary, it is clear that the model FPPRCM-S is able to provide a 

closer agreement to the measured values, despite an initial error occurring at the start 

of the test. In a fire simulation model it may be of more importance that the model 

provides a closer accuracy at elevated temperatures and this is clearly evident after 

210 minutes of testing in the case of beams 5 and 6. A further point to note relates to 

the inherent variability in concrete where in mix design, material quality and 

composition will often lead to variation in ambient strength and thus elasticity, which 

are within the range of 1.64 standard deviations. 

From the curve "Predicted 2" in Figure. 5.10, it can be seen that before approximately 

180 min the model provided quite good agreement with measured values. After that 

time the model appears to over predict the max]LMum deflection of the beam and 

structure rapidly undergoes failure but the trend produced appears to have the same 

shape as the measured data. 

The overprediction is caused by the creep model of the reinforced steel bar. As 

discussed in Section 2.3.8, the creep model used in this study is very sensitive to the 

experimental coefficient which is used. Since there is no exact coefficient available 

related to the main reinforced steel bar in this proving test, a set coefficient derived 

from CSA G40.12 (yield strength 350 MPa) [42] was used. The yield strength of CSA 

G40.12 is lower than the steel bars #7, #8 (481 MPa, 509 MPa) used here. Therefore, 

the predicted free creep strains were higher than the actual values, particularly when 

the temperatures of reinforced bar are higher (over 500 "C). For Beams 5 and 6 the 

stec. 1 creep strains were small because these beams were exposed to the SDHI Fire. 

wherein the bar temperatures were lower (below 400 'C). 
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Table 5.8 The Predicted Percentage Errors in Deflection between Measured 
Values and Analytical Models in Figures 5.10 - 5.12 at the Different 
Instances of Time. 

Time Beams o. (Figures) 

(min) 3 (Figure 5.10) 5 (Figure 5.11) 6 (Figur 5.12) 

Predicted I Predicted 2 Predicted 3 Predicted I Predicted 2 Predicted I Predicted 2 

0 36.42 31.85 31.85 25.59 42.24 29.84 29.98 

30 47.80 18.63 18.66 25.63 'N. 63 21.59 1.08 

60 20.99 6.58 6.58 26.40 4.75 4.90 19.95 

90 17.18 27.38 27.34 26.69 1.41 18.12 20.99 

120 27.02 18.85 18.42 34.06 8.29 25.93 14.02 

150 34.17 14.48 11.54 32.50 3.29 28.47 9.53 

180 37.95 18.12 6.57 32.54 1.56 32.43 4.80 

210 43.11 32.74 2.28 35.59 0.25 34.28 3.10 

240 19.30 1 36.36 0.95 35.31 3.42 

The errors are represented as a percentage variation of the measured values [100]. 
Predicted I= calculated by Lin et al [100]; 
Predicted 2= calculated by FPPRCM-S-, 
Predicted 3= calculated by FPPRCM-S (excluded effect of steel creep). 
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From the curve "Predicted 3" in Figure 5.10, it can be seen that for the ASTM E 119 

exposure fire after 3 hr testing time the creep of main reinforced bar is a major factor 

which influences the structural behaviour of reinforced concrete members. Therefore 

for temperatures over 500 "C the creep strain of steel reinforced bar must be taken into 

account. 

Figures 5.11-5.12 shown the comparison results of Beams 5 and 6. It can be seen that, 

over-all, the proposed model provides a fairly good agreement with measured values. 

From all three beams, the results indicated that the proposed model produced a better 

accuracy of prediction than the method of analysis used by Lin et al [ 100]. The 

example output of FPPRCM-S are shown in Appendix A. According to the calculation 

results most Gauss Points of the concrete layer fail by cracking. This infers that the 

cracking of concrete is the fundament problem to the behaviour of a reinforced 

concrete structure member in fire conditions. Therefore a more realistic modelling of 

cracking in concrete is the key matter for the non-linear finite element analysis of 

reinforced concrete member when subjected to fire conditions. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

6.1.1 Thermal Analysis 

Based on the one-dimensional theoretical heat and mass transfer model proposed by 

Sahota [I I], a two-dimensional non-linear finite element procedure was developed in 

this study to predict the temperature distribution history of the cross-section of a 

reinforced concrete structural member in fire conditions. In this procedure, the energy 

transfer by convection and mass diffusion, and the difference between the enthalpy 

and internal energy of air-vapour mixture in concrete were neglected. For evaluating 

the effect of water evaporation in concrete, three simplifying assumptions were made 

(Section 3.2.1). The thermal properties of concrete were considered as temperature 

and moisture dependent and the thermal properties of steel were temperature 

dependent. 

In the thermal analysis, performed using FPRCBC-T, the fire conditions were 

described by time -temperature curves of the fire at some distance away from the 

member. For this purpose, convection and radiation boundary conditions were used. 

The results of thermal analysis were in the form of predicted temperatures at nodal 

points and within elements at specified times. 

The validation of the proposed model was achieved through a quantitative verification 

against known experimental results [87]. Based on comparisons between the 

numerical predictions and the test results the following conclusions are made: 

(1) The model proposed in this thesis is capable of predicting the temperature 

distribution histories of cross-sections of reinforced concrete structural members 

suýjected to fire with fairly good accuracy. To improve the accuracy of the 

model, there is need for further investigation of the thermal properties of 

matenals at elevated temperatures. 
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(2) When the temperature in the concrete is below 140 OC. neglecting the eneri-Ty 

transfer by mass convection and diffusion this lead to a slight discrepancy 

between the values measured and model's predictions. 

(3) The effect of the evaporation of the moisture is significant on the temperature 

distribution histories in concrete during fire conditions, especially for high initial 

moisture content (6% by weight) which should be taken into account in the 

thermal analysis of reinforced concrete. 

(4) The temperature distribution histories in reinforced concrete are sensitive to the 

value of the flame emissivity of fire, F-f , used. It appears reasonable to use values 

of 0.75 to 0.85 for the ef * 

(5) The temperature distribution histories generated by FPRCBC-T can be used as 

temperature input for predicting the mechanical response of reinforced concrete 

structural member which are subjected to fires. 

6.1.2 Structural Analysis 

In this thesis a non-linear finite element procedure based on the "plane stress" theory 

for predicting the structural behaviour of planar reinforced concrete members 

subjected to fire was described. In this model an iterative, secant stiffness formulation 

was used to consider the complex features of structural behaviour in fire conditions. 

There were: (1) dimensional changes caused by temperature differences; (2) change in 

the mechanical properties of the material with change in temperature, (3) degradation 

ofelement by cracking or crushing; and (4) shrinkage and creep and transient strains. 

Spalling and geometric non-linearities and the various modes of failure were excluded. 

In this proposed non-linear procedure, reinforced concrete members were modelled as 

an assemblage of concrete elements and main reinforced bar elements. The concrete 

element was sub-divided into several layers and every layer was assumed to have a 

uniform temperature at any timc step. The main steel reinforcements were modelled in 

a discrete manner using the bar element and this bar element is a structural member 

capable of transmitting stresses only in the direction normal to the cross-section. The 
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shear reinforcement was induced in the properties of the concrete elements and thus 

modelled in a smeared manner. The concrete elements were modelled through the use 
of isoparametric four-node quadrilateral element and the two-point formula of Gauss 

quadrature was employed. The main steel reinforcing bars were modelled as two-point 
bar elements in conjunction with the concrete elements. 

In this study crushing and cracking of concrete were also considered by suitably 

adjusting the stiffness at each Gauss point of concrete layers. A smeared crack model 

was adopted to model the crack of the concrete, within this model the initiation of a 
cracking process at any Gauss point happens when the concrete stress reach one of the 

cracking failure surface of the concrete failure envelope. After single cracking has 

taken place, the concrete is treated as an orthotropic material with principal axes 

normal and parallel to the crack direction. The concrete paralleled to the crack 

direction is still capable of resisting either tensile or compressive forces, when it is 

subjected to tension, a pure linear elastic behaviour is assumed and when the tensile 

stress exceeds the tensile strength a second crack is formed normal to the first crack. 

At present, there is still very little data and few theoretical models available on the 

constitutive modelling of concrete under biaxial states of stress at elevated 

temperature. Therefore, in this study models at room temperature were extended to 

elevated temperatures simply by considering all the relevant parameters of the material 

as temperature dependent. For modelling concrete stiffness of integral and after 

crushing a non-linear elastic model, which is a specialised 2-D form of the actual 3-D 

model proposed by Ottosen [23] was employed. This model was extended to fire 

conditions simply by considering all the relevant parameters as temperature dependent. 

The formulation of the concrete failure envelope proposed by Barzegar-Jamshidi [211 

which was based on a slight modification of the Kupfer Lind Gerstle [22] expressions 

was adopted with the parameters considered temperature dependent. For considering 

the tension stiffening behaviour of concrete in this study the secant normal stiffness is 

determined using a bilinear tension stiffening curve suggested by Rots et al [27]. 
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In order to examine the accuracy of the proposed non-linear finite element procedure, 

a series of proving tests have been carried out. Based on the results of the proving 

tests, conclusions include the following: 

(1) The proposed method of analysis is a valid and powerful tool for the analysis of 

planer reinforced concrete members under fire conditions. 

(2) A secant stiffness approach can be as successful as the more common tangent 

stiffness approach but can provide a good numerical stability. This is very 

important for the analysis of reinforced concrete in fire conditions. The structure 

can be analysed until failure occurs. 

(3) The proposed material models are capable of capturing the dominant behaviour 

of the reinforced concrete members. However. there is still a need for the further 

investigation of the material properties at elevated temperatures particularly in 

respected of the failure envelope of concrete, the creep strain of steel 

reinforcement, material strength and stiffness to provide more realistic material 

models in conjunction with the non-linear finite element analysis model 

developed in this work for improving the accuracy of the model's predictions. 

(4) The results show that when the temperature of the main steel reinforcing bar is 

over 500 'C the creep of the main bar is a major factor to dom1nate the structural 

behaviour of the reinforced concrete members. 

(5) According to the calculated results the cracking of concrete is the fundament 

problem of reinforced concrete structural members in fire conditions. Therefore a 

more realistic model concerning the process of cracking in concrete is the key 

matter for the non-linear finite element analysis of reinforced concrete member 

subjected to fires. 

(6) The model can also be used for the calculation of the fire resistance of planer 

reinforced concrete members made with mix designs other than those 

investigated in this study if the relevant material properties are known, for 

exjImple light-weight concrete. 
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Computer programmes such as FPRCBC-T, and FPPRCM-S are intended to function 

as research tools to help explore and better understand the implicadons of fire 

environment for the design of structures. It is believed that numerical simulation 

supplemented by physical experiments, chosen judiciously, is not only a more 

economical approach to the fire problem, but will allow the important parameters to be 

isolated quickly and examined more thoroughly. Perhaps analytical studies with a 

realistic range of parameter values for material properties can be used to determine 

whether some of the parameters are of only minor importance. 

6.2 Recommendation for Further Studies 

It is clear from the conclusions to this study that a number of questions have been 

raised with reference to the behaviour of concretes at elevated temperatures and in- 

particular with respect to the failure of the material by cracking. In summary it is 

recommended that the following areas should be considered for further work: 

(1) Extensive studies to determine the effect of high temperature on material 

properties, especially of biaxially loaded concrete, and the creep strain of steel 

reinforcement should be carried out. 

(2) Explosive spalling and its influence on the behaviour of reinforced concrete 

structural members in fire should be investigated. 

(3) More experimental work is needed to assess the validity of the various 

mathematical models proposed in this dissertation. In these experiments, 

temperature and moisture distribution, stresses, strains, forces, displacements, 

cracking, crushing, and spalhng should be recorded. 

The result of the proposed analytical method should be compared with results 

fI rom actual fire events. Such comparisons can help in resolving questions related 

to the design ot'structure for fire safety. 

(5) Systematically parametric studies using the proposed analytical method should 

be carried out. These parametric studies can help the structural engineer in 

identifying, important design parmleters. 
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The proposed analytical method should be extended to included geometric non- 

linearities. 
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APPENDIX A. THE EXAMPLE OUTPUT OF FPPRCM-S 

For demonstration of output of FPPRCM-S the stresses, strains, and degradation at 

each Gauss-point of some concrete layers and some main reinforcing steel bars of 

Beam No. 3 are listed in Tables A. I-A. 8. The location of concrete layers, elements. 

main reinforcing steel bars are shown in Figure A. 1. 
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Table A. I The Example Output of Stresses, Strains, and Degradation at Each Gauss-point 

of Concrete Layers which are Located at Different Portions of Beam No. 3 (Sco 
Figure A. 1) at t=0 (Calculated by FPPRCM-S). 
E= concrete element; 
C+O = no cracking or crushing; 
C+2 = two cracks; 
0= crack angle, see Figure 2.7. 

L= layer of concrete element; 
C+l = one crack-, 
C- I= crushing; 

Element Layer Gauss Strains JE, Jxy Stresses J(T 
C 
1" 

Crack or Crush 

No. No. point Fc, x 

(10-4) 

cc, 
y 

(10-4) 

Yc, 
xy 

(10-4) 

(Tc, x 

(MPa) 

(TC, 
Y 

(Mpa) 

Tc, 
xy 

(MPa) 

Symbols 0 

(dcgrcc) 

1 -0.175 -0.293 1.119 -0.738 - 1.051 1.483 C+O 

LI 2 -0.171 - 1.289 1.655 - 1.258 -4.123 2.120 C+O 

3 0.244 -0.287 0.349 0.633 -0.799 0.471 C+O 

E1 4 0.249 -1.282 0.885 0.057 -3.908 1.146 C+O 

1 -0.175 -0.293 1.119 -0.738 - 1.051 1.483 C+O 

L2 2 -0.171 - 1.289 1.655 -1.258 -4.123 2.120 C+O 

3 0.244 -0.287 0.349 0.633 -0.799 0.471 C+O 

4 0.249 -1.282 0.885 0.057 -3.909 1.146 C+O 
--- 

1 1.711 -1.190 -3.380 -0.679 -4.194 -2.385 
C+ I - 29.095 

LI 2 1.727 -0.068 -1.670 0.382 -0.835 -0.571 
C+I - 14.284 

3 2.738 - 1.196 -2.712 -0.004 -4.051 -1.373 
C+I - 10.650 

E2 4 2.753 -0.074 -1.001 0.456 -0.262 -0.316 
C+I -1.399 

1 1.711 -1.190 -3.380 -0.679 -4.194 -2.385 
C+I 

-29.095 

L2 2 1.727 -0.068 - 1.670 0.382 -0.835 -0.571 
C+I - 14.284 

3 2.738 - 1.196 -2.712 -0.004 -4.051 - 1.373 C+I - 16.650_ 

4 2.753 -0.074 1 -1.001 1 0.456 -0.262 1 -0.316 1 
C+I - 1.198 
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Table A. I (continued) 

1 17.430 0.065 2.192 0.033 -0.020 -0.095 C+l 

LI 2 17.430 0.071 -2.537 0.003 -0.028 - 0.12-8 C+l -3.5oo 

3 14.570 0.065 2.196 0.032 -0.054 -0.090 C+ 1 4.845 

E3 4 14.570 0.071 -2.533 0.062 -0.121 0.203 C+l 
-6.188 

1 17.430 0.065 2.192 0.033 -0.020 -0.095 C+ 1 4.059 

L2 2 17.430 0.071 -2.537 0.003 -0.028 -0.128 C+l 
- 3.566 

3 14.570 0.065 2.196 0.032 -0.054 -0.090 C+l 4.845 

4 14.570 0.072 -2.533 0.062 -0.121 0.203 C+ 1 
-6.188 

1 -4.790 1.104 1.665 - 12.420 0.654 1.846 C+() 
--- 

LI 2 -4.790 1.024 -1.576 -12.500 0.440 -1.754 c+O 
--- 

3 -6.756 1.104 1.617 - 16.540 -0.283 1.672 c+O 
--- 

E4 4 -6.756 1.024 -1.625 -16.510 -0.482 -1.673 
C+o 

--- 

1 -4.790 1.104 1.665 - 12.420 0.654 1.846 c+O 
--- 

L2 2 -4.790 1.024 -1.576 -12.500 0.440 - 1.754 C+o 

3 -6.756 1.104 1.617 -16.540 -0.283 1.672 c+O 

4 -6.756 1.024 -1.625 -16.510 -0.482 - 1.673 C+o --- 

1 14.500 0.053 1.530 0.064 0.033 -0.292 C+l 4.683 

LI 2 14.500 -0.011 -1.031 0.036 -0.079 0.181 C+l 
-3.092 

3 12.950 0.053 1.490 0.007 0.043 0.068 C+l 2.851 

E5 4 12.950 -0.011 -1.071 0.089 -0.085 0.417 C+l -5.085 

1 14.500 0.053 1.530 0.064 0.033 -0.292 
C+l 4. (IS 3 

L2 14.500 -0.011 -1.031 0.036 -0.079 0.181 C+l 
-3.092 

3 12.950 0.053 1.490 0.007 0.043 0.068 C+l 2.851 

4 12.950 -0.011 1 -1.071 0.089 -0.085 0.417 C+l 
-5.085 
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Table A. I (continued) 

1 

-4.620 0.990 1.770 -12.120 0.432 1.980 C+O 

Ll 2 -4.618 0.971 - 1.479 - 12.170 0.383 -1.660 C+() --- 

3 -6.591 0.990 1.758 -16.220 -0.497 1.822 C+O --- 

E6 4 -6.590 0.971 -1.491 -16.210 -0.543 -1.545 C+O 

1 -4.620 0.990 1.770 -12.120 0.432 1.980 C+O 

L2 2 -4.618 0.971 -1.479 -12.170 0.383 -1.660 C+O --- 

3 -6.591 0.990 1.758 -16.220 -0.497 1.822 C+O --- 

4 -6.590 0.971 -1.491 -16.210 -0.543 -1.545 C+O --- 

1 -5.240 0.867 -0.796 -13.670 -0.206 -0.878 C+O 

Ll 2 -5.254 2.171 2.082 -13.600 0.214 2.133 C+l 80.959 

3 -3.497 0.871 0.000 -9.612 0.694 0.000 C+O 

E7 4 -3.511 2.174 2.878 -9.687 -0.071 2.425 C+l 76.662 

1 -5.240 0.867 -0.796 -13.670 -0.206 -0.878 C+O --- 

L2 2 -5.254 2.171 2.082 -13.600 0.214 2.133 C+l 80.959 

3 -3.497 0.871 0.000 -9.612 0.694 0.000 C+O --- 

4 -3.511 2.174 2.878 -9.687 -0.071 2.425 C+l 76.662 

1 11.680 0.184 1.734 0.579 0.651 -1.320 C+l 12.794 

Ll 2 11.680 -0.176 2.106 0.202 -0.687 -0-515 C+l 9.402 

3 11.910 0.18ý 1.518 0.232 1.092 1.308 C+, -4.90S 

E8 4 11.900 -0.177 1.890 0.030 -0.400 0.742 C+l -0.649 

1 11.680 0.184 1.734 0.579 0.651 -1.320 C+l 12.794 

L2 2 11.680 -0-176 2.106 0.202 -0.687 -0-515 C+l 9.402 

-1 
11.910 0.183 1.518 0.232 1.092 1.308 C+ I - 4.90, S) 

4 11.900 -0.177 1.890 0.030 1 -0.400 0.742 1 
C+l -0.649 
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Table A. I (continued) 

1 

-8.814 1.154 1.463 - 19.740 -0.993 1.376 C+O 

Ll 2 -8.844 -2.880 8.052 -19.540 -9.334 6.890 C+O 

3 -4.846 1.143 -0.957 -12.580 0.735 - 1.063 C+O 

E9 4 -4.873 -2.889 5.628 -13.150 -9.186 5.628 C+O 

1 -8.814 1.154 1.463 -19.740 -0.993 1.376 C+O 

L2 2 -8.844 -2.880 8.052 -19.540 -9.334 6.890 C+() 

3 -4.846 1.143 -0.957 -12.580 0.735 - 1.063 C+O 

4 -4.873 -2.889 5.628 - 13.150 -9.186 5.628 C+() 

1 12.220 -0.193 -3.175 0.271 -1.015 0.505 C+ I - 11.860 

L1 2 12.220 0.188 -2.140 1.471 0.117 2.077 C+2 - 19.498 

3 12.850 -0-191 -2.942 -0.042 -0.673 -0.634 C+l -2.604 

EIO 4 12.840 0.189 - 1.908 0.368 1.396 -1.721 C+ 1 6.136 

1 12.220 -0.193 -3-175 0.271 -1.015 0.505 C+l - 11.860 

L2 2 12.220 0.188 -2.140 1.471 0.117 2.077 C+2 - 19.498 

3 12.850 -0-191 -2.942 -0.042 -0.673 -0.634 C+ 1 -2.604 

4 12.840 0.189 -1.908 0.368 1.396 -1.721 C+l 6.136 ;: _i 
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Table A-2 The Example Output of Stresses, Strains, and Degradation at Each Gauss-point 

of Concrete Layers which are Located at Different Portions of Beam No. 3 (See 
Figure A. 1) at t=I hr (Calculated by FPPRCM-S). 
E= concrete element; L= layer of concrete element; 
C+O = no cracking or crushing; C+I one crack; 
C+2 = two cracks; C-1 crushing; 
0= crack angle, see Figure 2.7. 

Element Layer Gauss Strains fe, Jxy Stresses f(TcjxY 
Crack or Crush 

No. No. point FC, x 

(10-4) 

FICIY 

(10-4) 

Yc, 
xy 

(10-4) 

(Tc, X 

(MPa) 

(yc, y 

(MPa) 

Tc, 
xy 

(MPa) 

Symbols 0 

I - 1.686 0.286 -0.555 - 5.111 -0.056 -0.711 
C+O 

--- 

LI 2 - 1.675 1 0.228 4.854 -4.760 -3.309 4.635 C+I 45.051) 

3 2.410 -0.039 -1.486 0.741 0.453 -0.702 C+2 7.546 

E1 4 2.685 0.141 4.566 -0.638 -2.384 1.584 C+I 
29.920 

1 - 1.686 0.286 -0.555 -5.111 -0.056 -0.711 
C+O 

--- 

L2 2 -1.675 0.228 4.854 -4.760 1 -3.309 4.635 C+ 1 45.659 

3 2.410 -0.039 -1.486 0.741 0.453 -0.702 
C+2 7.546 

4 2.685 0.141 4.566 -0.638 -2.384 1.584 C+I 29.920_ 

1 -6.654 -6.290 -8.670 -2.460 -2.488 -1.559 
C+2 

-29.095 

L1 2 -6.937 -2.918 -6.317 -2.603 -1.248 -1.043 
C+2 

- 14.2 84 

3 -5.164 -7.541 0.696 -2.038 -2.881 0.098 C+2 
- 16.650 

E2 4 -5.695 -4.132 3.509 -2.219 -1.619 0.584 C+2 
-1.399 

1 -1.611 -0.838 -13.860 -3.397 -5.194 -4.552 
C+2 -29.095 

L2 2 -6.724 3.865 - 15.190 -4.344 1.214 -2.792 
C+2 - 14.284 

3 -2.485 -4.724 -4.110 -2.297 74 - 5.3 -1.553 
C+2 

- 16.650 

4 1 -2.621 1 2.208 -2.954 1 -3.435 

_ 

1 0.269 1 -0.565 1 C+2 
- 1.399 

196 



Table A. 2 (continued) 

1 

-4.391 -2.692 8.281 -1.692 -1.101 1.373 C+ 2 4.059 

L1 2 -3.946 -2.668 2.761 -1.560 -1.048 0.464 C+2 -3.566 

3 -5.045 -2.627 8.809 -1.934 -1.085 1.458 C+2 4.84-5 

E3 4 -4.525 -2.673 3.223 -1.787 -1.042 0.549 C+2 -6.188 

1 3.935 8.355 1.052 0.033 0.054 0.344 C+2 4.059 

L2 2 4.753 8.981 -4.784 -0.131 0.140 - 1.074 C+2 - 3.566 

3 -0.270 8.496 1.379 -0.216 0.103 0.564 C+2 4.845 

4 -0.047 8.825 -5.268 0.528 0.325 - 1.504 C+2 -6.11SIS 

1 -9.418 -6.365 12.220 -8.926 -4.528 3.524 C+2 72.766 

Ll 2 - 10.310 -4.091 9.462 -8.220 -4.454 1.471 C+2 99.179 

3 - 10.490 -6.485 12.420 -9.655 -4.663 3.679 C+2 72.307 

E4 4 - 10.980 -4.437 9.240 -9.025 -4.418 1.672 C+2 94.767 

1 -7.154 12.340 0.660 - 13.76 0.155 0.396 C+l 82.334 

L2 2 -6.948 13.700 -5.704 -13.75 -0.238 -1.865 
C+l 97.346 

3 -9.027 12.930 2.881 -16.900 -0.057 1.202 C+l 84.282 

4 -8.990 14.180 -3.599 -16.64 -0.086 - 1.304 C+l 95.054 

1 -4.398 -2.682 8.300 -1.690 -1.102 1.376 C+2 4.683 

Ll 2 -3.942 -2.564 2.560 -1.557 -1.009 0.430 C+2 - 3.092 

3 -5.002 -2.726 8.993 -1.933 -1.106 1.489 C+2 2.851 

E5 4 -4.581 -2.569 3.207 -1.806 -1-004 0.544 C+2 -5.095 

1 3.579 8.311 1.039 0.049 0.066 0.373 C+2 4.683 

L2 2 4.358 9.282 -4.944 -0.089 0.126 -1.114 C+2 -3.092 

-0.418 8.612 1.984 -0.444 0.063 0.568 C+2 2.851 

4 1 -0.234 1 9.336 1 -4.674 1 0.259 1 0.238 1 -1.315 
C+2 -5.085 
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Table A2 (continued) 

1 

-9.276 -6.035 12.310 -8.811 -4.281 3.439 C+2 74.11 

Ll 2 -10.140 -3.945 8.386 -8.103 -4.314 1.454 C+2 99.065 

3 -10.430 -6.080 12.080 -9.580 -4.425 3.396 C+2 75.000 

E6 4 -11.010 -4.144 8.733 -8.932 -4.310 1.516 C+2 96.660 

1 -6.907 13.790 0.820 -13.090 0.206 0.257 C+ 1 91.933 

L2 2 -6.631 14.220 -5.695 -13.150 -0.222 -1.770 C+ I 97. -'; l 

3 -8.861 14.380 2.497 - 16.320 0.000 0.951 C+l 83.824 

4 -8.718 14.740 -4.097 -16.160 -0.107 -1.403 C+ 1 95.054 

1 -6.285 -2.806 4.943 -2.412 -1.143 0.809 C+2 95.799 

Ll 2 -6.018 -3.184 1.827 -2.341 -1.250 0.328 C+2 80.959 

3 -6.807 -2.850 3.625 - 2.629 - 1.130 0.600 C+2 90.356 

E7 4 -6.758 1 -2.994 0.846 -2.599 -1.199 0.118 C+2 76.662 

1 - 3.448 7.992 -0.830 -4.350 0.006 -0.146 C+2 93.965 

L2 2 -3.868 4.301 -4.938 -4.190 0.502 -0.797 
C+2 80.959 

3 -4.257 8.410 -1.689 -5.324 -0.007 -0.349 
C+2 91.215 

4 -5.459 4.446 -6.600 -5.256 0.917 -0.827 C+2 76.662 

1 -3.442 -5.669 6.575 -2.612 -5.546 1.800 C+2 12.794 

Ll 2 -4.149 -5.249 13.140 -2.812 -5.576 3.014 C+2 9.402 

3 -1.966 -5.820 4.921 -2.070 -4.998 0.858 C+2 -4.968 

E8 4 -2.236 -6.029 11.520 -2.140 -5.330 2.276 C+2 -0.649 

1 20.190 12.780 -3.280 0.877 -0.843 - 1.790 C+2 12.794 

L2 2 20.020 10.180 4.236 -0.067 0.097 0.258 C+2 9.402 

3 24.900 12.380 -4.682 -0.111 0.149 -0.780 
C+2 -4.968 

4 24.030 10.120 2.872 1 0.048 -0.013 1 1.031 C+2 -0.649 
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Table A2 (continued) 

1 

-11.200 -5.651 6.827 -4.198 -2.154 1.210 C+2 71 - -', )I 

Ll 2 -6.574 -4.133 31.110 -4.579 -4.113 4.410 C+l 1.4 52 5 

3 -7.684 -4.330 3.232 -2.924 - 1.736 (). 522 C+2 
_ 

100.898 

E9 4 -4.237 -5.275 27.070 -3.623 -4.129 3.963 C+2 4 1). 3 15 

1 -8.862 0.286 13.290 - 12.170 - 1.862 5.091 C+l 72.078 

L2 2 -3.561 1.013 43.170 - 11.690 -8.869 10.35 C+l 53.807 

3 -5.979 -0.937 -2.787 -6.343 -0.960 -0.731) C+2 92.877 

4 -2.732 -4.578 23.90 -8.729 -8.001 S. 474 C+l 50.890 

1 -2.483 -6.147 4.740 -2.875 - 4.900 0.807 C+2 - 11.860 

Ll 2 - 1.571 -7.862 11.080 -3.383 -5.137 1.511 C+2 - 19.498 

3 - 1.614 -5.935 3.025 -1.585 -5.240 0.514 C+2 -2.604 

EIO 4 -2.330 -6.014 9.387 -1.696 -5.760 2.152 C+2 6.136 

1 20.340 8.865 -6.721 -0.178 0.208 -0.456 C+2 - 11.860 

L2 2 20.030 8.429 0.837 1.631 -1.603 1.990 C+2 - 19.498 

3 25.170 8.938 -7.003 -0.135 0.170 -1.768 C+2 - 2.604 

4 24.980 8.028 0.819 0.217 -0.184 , -0.881 C+2 6.136 
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Table A. 3 The Example Output of Stresses, Strains, and Degradation at Each Gauss-point 

of Concrete Layers which are Located at Different Portions of Beam No. 'I (Scc 
Figure A. 1) at t=2 hr (Calculated by FPPRCM-S). 
E= concrete element; L= layer of concrete element; 
C+O = no cracking or crushing; C+I one crack; 
C+2 = two cracks; C-1 crushing; 
0= crack angle, see Figure 2.7. 

Element Layer Gauss Strains JF-c I. 
" 

Stresses f(TcjY 
Crack or Crush 

No. No. point F-c'x 

(10-4) 

ec, 
y 

(10-4) 

YCIXY 

(10-4) 

(Tc, x 

(MPa) 

cTc, 
Y 

(MPa) 

T, 
xY 

(MPa) 

Symbols 0 

(dL ýLrcc) 

1 -0.949 0.032 -0.244 -3.042 -0.449 -0.323 C+O --- 

LI 2 -0.933 -3.576 2.753 -4.233 -5.965 2.968 C+I 45.695 

3 1.160 -0.431 -4.587 2.160 0.215 - 1.470 C+2 7.546 

El 4 1.536 -3.678 -0.620 0.172 -5.121 1.241 C+I 29.920 

1 - 0.949 0.032 -0.244 -3.042 -0.449 - 0.3 23 c+O --- 

L2 2 -0.933 -3.576 2.753 -4.233 -5.965 2.968 C+I 45.695 

3 1.160 -0.431 -4.587 2.160 0.215 - 1.470 C+2 7.546 

4 1.536 -3.678 -0.620 0.172 -5.121 1.241 C+I 29.920 

1 0.464 -5.409 -12.880 -1.108 -2.511 -1.697 
C+2 -29.095 

LI 2 -3.027 -0.945 -8.970 -0.998 -0.280 -1.482 
C+2 

- 14.284 

3 3.919 -8.082 -4.514 -0.004 -3.197 -0.490 
C+2 

- 16.650 

E2 4 0.284 -3.621 -0.680 0.376 -1.449 -0.126 
C+2 - 1.398 

L'-' 

1 

'? 

7.317 

-2.316 

0.811 

3.194 

-26.120 

-19.39 

-2.457 

-1.691 

-2.684 

0.557 

-2.965 

-3.372 

C+2 

C+2 

-29.095 

- 14.2S4 

3 6.312 -3.343 -13.41 -0.892 -3.000 - 1.950 C+2 -16.650 

4 1.786 1 -0.851 1-7.103 0.048 -0.632 - 1.258 C+2 - 1.398 
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Table A3 (continued) 

1 

6.580 - 1.162 6.192 -0.118 -0.493 0.871 C+2 4.051) 

Ll 2 7.780 1 -0.540 -2.279 -0.022 -0.229 -0.219 C+'? -3.566 

3 2.894 -1.360 6.390 -0.160 -0.583 0.976 C+2 4. S 4ý 

E3 4 4.118 -0.667 -1.931 -0.032 -0.292 -0.175 C+2 - 6.1 SIN 

1 15.630 9.811 3.927 -0.068 0.082 0.540 C+2 4.0 5 1) 

L2 2 17.720 11.500 -5.514 -0.094 0.110 -0.830 C+2 -3.566 

3 7.172 9.649 3.417 -0.109 0.119 0.664 C+2 4., '-, 4 5 

4 9.474 11.660 -5.181 -0.205 0.217 -0.961 C+2 - 6.188) 

1 -8.847 -5.344 11.280 -4.707 -2.441 2.350 C+2 72.766 

L1 2 -9.038 -3.111 7.521 -4.411 - 1.873 1.260 C+2 99.179 

3 - 11.170 -5.555 8.761 -5.668 -2.695 1.900 C+2 72.307 

E4 4 - 10.750 -3.716 5.995 -5.325 -2.052 0.997 C+2 94.767 

1 - 5.644 18.540 - 1.395 -9.535 0.451 -0.971 C+l S 2.3 34 

L2 2 -4.854 19.940 -12.060 -9.725 -0.547 -2.825 C+l 97.346 

3 -7.801 19.670 1.926 - 13.160 0.095 0.281 C+l S4.292 

4 -7.458 20.820 -8.906 -12.970 -0.278 -2.258 C+ 1 95.054 

1 5.283 -1.145 6.024 -0.134 -0.493 0.853 C+2 4.683 

L1 2 6.367 -0.491 -1.837 -0.017 -0.206 -0.192 C+2 -3.092 

3 2.247 -1.507 6.121 -0.089 -0.625 0.981 C+2 2.851 

E5 4 3.407 -0.655 -1.356 -0.019 -0.277 -0.127 C+2 -5.095 

1 13.930 9.756 3.647 -0.077 0.090 0.513 C+2 4.693 

L2 2 15.860 1 11.880 -4.888 -0.076 0.091 -0.784 
C+2 -3.092 

3 6.227 9.630 3.492 -0.064 0.073 0.675 C+ 2 2.951 

4 8.104 11.990 1 -4.412 1 -0.153 0.164 , -0.879 
C+2 - 5.085 
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Table A3 (continued) 

1 

-8.358 -5.510 12.280 -4.517 -2.488 2.487 C+2 74.313 

L1 2 -8.658 1 -3.242 7.681 -4.229 -1.937 1.300 C+2 99.064 

3 -10.820 -5.754 9.120 -5.540 -2.774 1.897 C+2 75.000 

E6 4 -10.540 -3.753 5.863 -5.196 -2.109 0.958 C+2 96.660 

1 -5.281 19.180 -1.239 -8.856 0.501 - 1.072 C+l 81.933 

L2 2 -4.409 20.100 -12.32 -9.046 -0.556 -2.845 
C+l 97.2 31 

3 -7.572 20.250 1.703 -12.720 0.141 0.127 C+ 1 

_ 

83.824 

4 -7.129 20.980 9.525 -12.520 -0.307 -2.407 
C+l 95.054 

1 -1.485 -1.552 6.014 -0.486 -0.495 0.997 C+2 95.799 

L1 2 -0.697 -1.443 -0.245 -0.227 -0.467 -0.040 C+2 80.959 

3 -3.238 - 1.276 5.910 -1.040 -0.413 0.981 C+2 90.356 

E7 4 -2.519 - 1.092 -0.391 -0.184 -0.352 -0.068 C+2 76.662 

1 -0.402 7.111 -0.094 -0.268 0.026 0.150 C+2 93.965 

L2 2 0.634 4.445 -6.287 -0.271 0.404 -1.230 
C+2 90.959 

3 -1.444 7.982 0.045 0.941 0.007 0.058 C+2 91.215 

4 -2.208 4.602 -8.147 -0.832 0.899 - 1.624 C+2 76.662 

1 0.186 -3.041 5.985 -0.296 -2.276 1.261 C+2 12.794 

L1 2 -0.435 -3.252 13.030 -0.615 -2.663 2.489 C+2 9.402 

1 1.732 -3.575 4.433 0.297 -2.217 0.730 C+2 -4.9oS 

E8 4 1.068 -4.219 11-190 0.224 - 2.7ýý 1.970 C+2 -0.649 

1 37.240 23.760 1 -1-987 0.991 -0.935 - 1.999 C+') 12. -, 1)4 

L2 2 36.660 19-990 6.609 -0.049 0.101 0.247 C+2 9.402 

-1 
42.890 -5 -3 

0 -4.120 0.012 0.048 -0.159 
C+2 

4 4-1.190 19.750 1 4.706 1 0.073 -0.016 1 1.519 C+2 
-O. o4() 
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Table A3 (continued) 

I 
- 15.180 -5.259 14.360 -4.449 -1.664 1190 C+2 71.391 

L1 2 -5.416 -0.398 63.320 -4.486 -5.524 5.417 C+l 5 1.4 5 -' 

3 -7.784 -3.541 11.160 -2.502 -1.089 1.852 C+2 100.898 

E9 4 5.162 4.010 67.340 -3.127 -5.513 4.570 C+2 49.115 

1 -6.446 -0.838 17.010 -5.057 -1.734 3.505 C+l 72.078 

L2 2 1.250 1 7.561 62.860 -5.810 -6.488 6.579 C+l 53.807 

3 - 4.918 -1.819 3.775 -2.588 - 1.027 0.649 C+2 92.877 

4 6.117 3.999 49.020 -3.659 -5.908 5.137 C+l 5(). S')() 

1 2.134 -4.143 1.366 0.296 - -). 521 0.112 C+2 - 11.8oo 

L1 2 2.332 -6.592 9.659 0.502 -2.775 1.666 C+2 - 19.498 

3 4.559 -3.468 0.036 0.010 -2.228 0.034 C+2 -2.604 

EIO 4 3.545 -3.682 9.421 -0.320 -2.616 1.641 C+2 6.136 

1 37.920 17.860 - 10.620 -0.158 0.210 -0.445 C+2 - 11.860 

L2 2 36.800 17.110 0.613 2.392 -2.342 2.912 C+2 - 19.498 

3 45.910 18.170 -10.730 -0.174 0.232 -2.372 C+2 -2.604 

1 14 1 45.250 16.140 1.572 0.329 1 -0.273 -1.322 C+2 6.13o 
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Table A. 4 The Example Output of Stresses, Strains, and Degradation at Each Gauss-point 
of Concrete Layers which are Located at Different Portions of Beani No. 3 (Soc 
Figure A. 1) at t=3 hr (Calculated by FPPRCM-S). 
E= concrete element; L= layer of concrete element; 
C+O = no cracking or crushing; C+1 one crack: 
C+2 = two cracks; C-I crushing; 
0= crack angle, see Figure 2.7. 

Element Layer Gauss Strains IF-cl,, 

_, 
Stresses Jac jY 

Crack or Crush 

No. No. point FC, x 

(10-4) 

Er"V 

(10-4) 

'Y 
C'. XY 

(1()-4) 

crcx 

(MPa) 

cTc, 
Y 

(MPa) 

Tc. 
-Iry 

(UPa) 

Symbols 0 

(degrec) 

1 -0.711 -0.036 -0.150 -2.339 -0.535 -0.200 C+O --- 

L1 2 -0.392 -4.309 3.031 -3.991 -6.594 1.238 C+ 1 45.659 

3 1.048 -0.466 -5.421 1.535 0.365 - 1.855 C+2 7.546 

E1 4 1.708 -4.398 - 1.324 -0.234 -5.986 0.863 C+I 29.9., '-()_ 

1 -0.711 -0.036 -0.150 -2.339 -0.535 -0.200 
C+O 

--- 

L2 2 -0.392 -4.309 3.031 -3.991 -6.594 3.238 C+ 1 45.659 

3 1.048 -0.466 -5.421 1.535 0.365 - 1.855 C+2 7.546 

4 1.708 -4.398 -1.324 -0.234 -5.986 0.863 C+I 29.920 

1 9.941 -3.048 -27.100 - 1.339 -2.410 - 1.885 C+2 - 29-095 

LI 2 5.083 0.875 -16.640 -1.057 0.058 -2.078 
C+2 - 14.284 

3 16.660 -6.213 - 17.250 -0.405 -2.573 -1.081 
C+2 - 16.650 

E2 4 11.930 -1.462 -6.654 -0.043 -0.517 -1.007 
C+2 

- 1.398 

1 17.390 1.768 -36.330 -1.744 -2.160 - 22.186 
C+2 

-29.095 

L2 2 63.260 2.009 -20.400 - 1.3223 0.169 - 2.589 C+2 - 14.284 

18-090 -3.197 -21.940 -0.847 -2.211 - 1.769 C+2 - 16.650 

4 10.270 - 1.627 -8.423 -0.058 -0.754 -1.319 
C+2 - 1.398 
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Table A4 (continued) 

1 

41.740 0.123 8.375 -0.035 - 0.025 0.404 C+2 4.059 

Ll 2 43.380 0.612 -9.616 -0.063 0.370 -0.681 C+') 
- 

3 31.460 0.003 8.255 -0-064 -0.073 0.479 C+2 4. S45 

E3 4 33.100 0.544 -9.515 -0.065 0.051 -0.381 C+2 
-0.188 

1 46.550 6.197 8.194 -0.032 0.060 0.198 C+2 4.059 

L2 2 49.790 8.783 -9.247 -0.058 0.089 -0.674 C+2 
-3.566 

3 31.540 5.958 7.374 -0.066 0.086 0.486 C+2 4.845 

4 35.120 8.823 -9.359 -0.106 0.129 -0.570 C+2 
-6.189 

1 - 12.040 -5.607 9.773 -4.506 -2.109 1.712 C+2 72.766 

Ll 2 - 11.280 -2.901 3.088 -4.231 - 1.201 0.471 C+2 99.179 

3 - 16.500 -5.644 6.934 -5.974 -2.180 1.219 C+2 72.307 

E4 4 - 15.210 -3.294 1.481 -5.585 - 1.320 2.199 C+2 94.767 

1 -8.118 15.810 -0.659 - 13.390 0.253 0.007 C+l 82.334 

L2 2 -6.828 18.850 -16.710 -12.910 -0.840 -4.157 
C+l 97.140 

3 - 10.920 18.220 6.365 - 17.500 -0.185 1.874 C+ I S4.282 

4 -10.490 20.490 -10.460 - 16.770 -0.336 -2.740 
C+l 95.054 

1 32.200 0.162 7.081 -0.031 -0.017 0.297 C+2 4.083 

Ll 2 33.160 0.483 -6.739 -0.038 0.393 -0.508 
C+2 -3.092 

3 25.200 -0.331 6.169 -0.047 -0.133 0.605 C+2 2.851 

E5 4 26.640 0.400 -6.291 -0.031 0.124 - 0.249 C+2 
-5.09 

1 36.560 6.130 6.692 -0.025 0.048 0.272 C+ 2 4.683 

1-2 2 39.190 9.109 -5.905 -0.026 0.052 -0.435 
C+2 -3.092 

3 24.940 5.610 5.562 -0.046 0.062 0.598 C+2 2.851 

4 28.070 9.133 -5.586 -0.048 1 0.068 -0-353 
C+2 

- S. (), ý, ý 
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Table A4 (continued) 

1 
-11.700 -5.254 11.000 -4.396 -1.958 1.916 C+2 74.3,13 

Ll 2 -10.920 -2.826 3.723 -4.106 -1.175 0.578 C+2 9 9.064 

3 - 16.260 -5.359 6.904 -5.903 -2.067 1.22 9 C+ " 75.000 

E6 4 -14.920 -3.162 1.449 -5.486 - 1.278 
1 

0.204 C+2 96.660 

1 -7.953 17.100 -0.264 -12.970 0.282 - 0.022 C+ 1 8 1.1) ý3 

L2 2 -6.553 19.120 -16.740 -12.480 -0.826 -4.116 C+l 
- - 

97.231 

3 -10.740 19.500 6.196 - 17.030 -0.160 1.738 C+l 83.824 

4 - 10.150 20.860 - 10.990 -16.320 -0.354 -2.832 C+l 95.054 

1 -8.108 1.989 3.844 -2.864 0.243 0.663 C+2 95.799 

L1 2 -7.301 -1.139 -1.700 -2.113 -0.311 -0.322 C+2 80.959 

3 -8.827 2.825 3.059 -3.094 0.008 0.513 C+2 90.356 

E7 4 -8.448 -8.196 -3.476 -2.480 -0.179 -0.635 C+2 76.662 

1 -8.089 6.396 0.742 -3.558 0.049 0.207 C+2 93.965 

L2 2 -8.122 -0.420 -5.985 -2.927 -0.213 -0.968 C+2 80.959 

3 -8.358 7.407 -1.294 -3.657 -0.002 -0.182 C+2 91.215 

4 -8.975 0.252 -8.897 -3.197 -0.021 - 1.448 C+2 76.662 

1 9.126 -2.445 7.934 -0.232 -1.450 0.689 C+2 12.794 

L1 2 8.763 -3.678 16.220 -0.675 -2.069 2.227 C+2 9.402 

3 1.063 -3.502 3.849 0.173 -1.613 0.893 C+2 - 4.908_ 

E8 4 9.588 -4.871 12.220 0.052 -2.263 2.056 C+2 -0.649 

1 47.060 20 22.8 

1 

0.225 1.181 - 1.124 -2.387 C+2 1 ý. 794 

L2 2 45.990 16.270 10.170 0.033 0.018 0.017 C+2 9.402 

3 53.480 -10.330 -4.146 0.116 -0.056 0.413 C+2 -4.968 

4 52.460 15.680 6.482 0.085 -0.030 1.887 C+2 -0.049 
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Table A4 (continued) 

1 -27.220 -3.051 17.410 -6.974 -0.771 2.199 C+2 7 1.3 91 

Ll 2 -14.110 10.170 88.760 -7.909 -3.994 5.681 C+l 51.4S2 

3 - 17.530 -3.528 10.360 -4.982 -0.884 1.829 C+2 100.898 

E9 4 -3.699 10.510 80.820 -5.992 -3.874 4.852 C+2 49.315 

1 -21.090 -4.581 11.960 -6.981 -1.620 1.942 C+l 72.078 

L2 2 - 13.380 10.530 66.030 -8.122 -3.658 5.490 C+l 5 1.807 

3 -15.110 -3.911 5.372 -5.260 -1.465 0.888 C+2 92.877 

4 -4.520 8.850 58.810 -5.984 -3.657 4.699 C+l 5 (). SIM 

1 11.400 -4.548 -2.376 0.203 - 2.224 0.236 C+2 - 11.860 

Ll 2 9.321 1 -6.860 6.150 1.398 -2.901 1.455 C+2 - 19.49S 

3 17.500 -4.149 -2.068 0.004 - 1.892 -0.102 C+2 -2.604 

EIO 4 15.780 -3.964 10.200 -0.220 - 1.952 1.169 C+2 6.136 

1 47.860 13.080 16.830 -0.108 0.158 -0.341 C+2 11.860 

L2 2 45.740 14.500 -1.626 3.021 -2.972 3.684 C+2 19.498 

3 59.630 13.780 15.150 -0.207 0.267 -2.810 C+2 -2. oo4 

1 14 58.410 12.790 2.440 0.448 1 -0.390 1 -1.840 1 C+2 0.136 
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Table A. 5 The Example Output of Stresses, Strains, and Degradation of Main 
Reinforcing Steel Bar Elements which are Located at Different Portions 

of Beam No. 3 (See Figure A. 1) at t=0 (Calculated by FPPRCi%I-S). 

steel bar element; 
Y+O = no yielding; 
Y+l = yield. 

Element No. Strain, Es 

(10-4) 

Stress, us 

(MPa) 

Yield 

BI 0.397 7.711 Y+O 

B2 3.136 60.920 Y+O 

B3 13.520 262.700 Y+O 

B4 12.380 240.500 Y+O 

B5 -3.401 -66.070 Y+O 

B6 11.980 220.000 Y+O 

B7 -3.767 -73.180 Y+O 

B8 13.130 241.100 Y+O 
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Table A. 6 The Example Output of Stresses, Strains, and Degradation of NI Lim 
Reinforcing Steel Bar Elements which are Located at Different Portions 

of Beam No. 3 (See Figure A. 1) at t=I hr (Calculated by FPPRCM-S). 
B= steel bar element; 
Y+O = no yielding; 
Y+I = yield. 

Element No. Strain, F-s 

(10-4) 

Stress, as 

(MPa) 

Yield 

BI 4.103 79.700 Y+O 

B2 8.498 158.000 Y+O 

B3 16.090 299.200 Y+O 

B4 15.580 289.600 Y+O 

B5 - 15.690 -291.700 Y+O 

B6 14.670 262.600 Y+O 

B7 -5.001 -97.150 Y+() 

B8 13.400 246.100 Y+O 
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Table A. 7 The Example Output of Stresses, Strains, and Degradation of Main 
Reinforcing Steel Bar Elements which are Located at Different Portions 

of Beam No. 3 (See Figure A. 1) at t=2 hr (Calculated by FPPRCM-S). 
B= steel bar element; 
Y+O = no yielding; 
Y+I = yield. 

Element No. Strain, F-s 

(10-4) 

Stress, (ys 

(MPa) 

Yield 

BI 2.433 47.260 Y+O 

B2 5.412 93.590 Y+O 

B3 13.310 230.100 Y+O 

B4 12.520 216.500 Y+O 

B5 -26.350 -386.000 Y+l 

B6 15.770 271.600 YA 

B7 -7.139 - 138.700 Y+O 

B8 13.770 252.800 Y+O 
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Table A. 8 The Example Output of Stresses, Strains, and Degradation of NIaiii 
Reinforcing Steel Bar Elements which are Located at Different Portions 

of Beam No. 3 (See Figure A. 1) at t=3 hr (Calculated by FPPRCM-S). 
B= steel bar element; 
Y+O = no yielding; 
Y+I = yield. 

Element No. Strain, F-s 

(io-4) 

Stress, as 

(MPa) 

Yield 

BI 2.398 46.580 Y+O 

B2 5.621 88.590 Y+() 

B3 12.340 194.500 Y+O 

B4 11.210 176.700 Y+O 

B5 - 14.510 -228.700 Y+l 

B6 17.550 290.800 Y+O 

B7 -6.801 -132.100 Y+O 

B8 14.150 259.900 Y+O 
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ABSTRACT 

A non-linear finite element procedure is proposed to predict the temperature 

distribution history of cross-sections of structural members, such as beams composed 

of reinforced concrete in fire conditions. In this model the effect of moisture in 

concrete has been taken into account, and the thermal properties of concrete have been 

considered as temperature and moisture dependent. In order to validate the model, a 

series ol'proving tests have been carried out through a quantitative verification of the 

model against known test results and fairly good accuracy is found. 
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