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Environmental Significance Statement 

 

There is an urgent need for approaches capable of lending insights into 

nanoparticle (NP)-induced effects in biological cells. Conventional assays such as 

those employing genotoxicity endpoints remain inconsistent. With increasing 

usage, carbon-based NPs are entering the environment and their effects either 

directly or in combination with other environmental contaminants remain to be 

understood. This study primarily exploits FTIR spectroscopy to derive signature 

fingerprints of cellular material based on chemical composition. Using 

computational algorithms to process spectral datasets, alterations post-exposure 
to C60 fullerene (C60) with or without benzo[a]pyrene (B[a]P) were investigated. 

Exposure-induced spectral data points to gene expression and oxidative damage 

alterations; this is subsequently shown using more conventional assays. Low-dose C60 

increased B[a]P-induced alterations, while alterations at high C60 concentrations 

appeared absent. This suggests that the interactions between NPs with toxic chemical 

contaminants are complex and remain to be fully understood. 
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TOC graphic 

 

Biospectroscopy signatures effects of binary mixture of C60 fullerene and 

benzo[a]pyrene in cells 
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 3 

Abstract 

C60 fullerene (C60) is a promising manufactured carbon-based nanoparticles (NPs).  With an 

increasing number of applications, it is being found in the environment. In addition, C60 is 

likely to associate with other environmental toxic contaminants. How such interactions with 

C60 can impact on the environmental fate, transport and bioavailability of toxicants remains 

unknown. Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH). Herein, two 

cell lines (fish gill or MCF-7 cells) were employed to explore the biological impacts of co-

exposure to C60 and B[a]P. Post-exposure cells were interrogated using Fourier-

transformation infrared (FTIR) microspectroscopy. By inputting spectral data into principal 

component analysis and linear discriminant analysis, data reduction allowed for visualisation 

of cell categorization and identification of wavenumber-related biomarkers corresponding to 

cellular alterations. Our results indicate that low-dose C60 increases B[a]P-induced alterations, 

while C60 at high concentrations reduces these effects. We also found that although C60 co-

exposure increases B[a]P-induced CYP1A1 induction, co-exposure seemingly attenuates the 

levels of oxidative damage induced by either agent singly. This suggests that interactions 

between environmental NPs and contaminants are complex and unpredictable. 
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 4 

Introduction 

With the rise of nanotechnology, there has been a rapid increase in the commercial use of 

nanoparticles (NPs). However, little is known regarding the fate and behaviour of engineered 

NPs in the environment, and concerns have emerged regarding their potential impact on 

human health.1, 2 Furthermore, quantitative analytical methods are required to determine 

environmental concentrations and, enable both effect and exposure assessments. Many 

methods still need optimization and development, especially for new types of NPs.3-6 There is 

an urgent need for analytical methods to adequately assess the risk of NPs. 

C60 fullerene (C60), the first manufactured NP, possesses unique physical and 

chemical properties, which makes it a candidate agent for many nanotechnological 

applications in industrial and medical fields.7-10 However, its extremely small size, unique 

conformation, large surface area, and propensity for surface modification raise the possibility 

that C60 could pose a hazard to humans and other living organisms.11 It seems that the 

cytotoxicity of C60 differs depending on the type of cells exposed and how test suspensions 

are prepared.12, 13 

Included in the debate regarding NP-induced acute toxicity, there are emerging 

concerns about their release into the environment in that NPs may not only just interfere with 

biological systems, but also may interact with other contaminants such as polycyclic aromatic 

hydrocarbons (PAHs). Consequently, NPs could affect the fate, transportation and 

bioavailability of pollutants in binary mixtures. In aquatic environments, contaminants can 

accumulate in aqueous NPs and this accumulation appears to affect the physicochemical 

property of both NP and the co-contaminant.14 Investigations show that NPs seem to be 

highly reactive in their interactions with other contaminants. Furthermore, it has been noted 

that nano-silica could facilitate the cellular uptake of metals, and induce higher levels of 
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 5 

damage than that induced by metal or nano-silica alone.15 This type of delivery mechanism is 

the so called ‘Trojan horse’ effect. In another example, it was found that nano-TiO2 enhanced 

the bioaccumulation and toxicity of copper in Daphnia magna.16 However, studies 

investigating the effects of co-contamination with carbon-based NPs seem to be less 

conclusive, although carbon nanomaterials appear to be highly interacting with chemicals in 

the environment.17-19 Single-walled carbon nanotubes were found to act as a contaminant 

carrier and enhance the accumulation of phenanthrene in the digestive track of fish.20 Another 

study suggests that co-exposure with carboxyl-functionalized single-walled carbon nanotubes 

significantly inhibits the bioactivity of adsorbed 17α-ethinylestradiol (EE2) in cultured cells.21 

Polycyclic aromatic hydrocarbons (PAHs) are a class of widespread organic 

compounds with two or more fused aromatic rings; they have a relatively low solubility in 

water, but are highly lipophilic.22 Benzo[a]pyrene (B[a]P) is a PAH that is pro-carcinogenic. 

It is a potent ligand for the cytosolic aryl hydrocarbon receptor (AhR), which may mediate 

teratogenic and carcinogenic effects of certain environmental pollutants.23 In cells, B[a]P can 

bind to AhR and activate it, or it is effectively metabolised  by several xenobiotic 

metabolizing enzymes to B[a]P-7,8-diol-9,10-epoxide (BPDE), which is the ultimate 

carcinogenic form, and generates bulky chemical-DNA adducts.24-26 

It is highly possible that carbon-based nanomaterials would interact with PAHs and be 

a co-contaminating influence in the environment. In order to understand how this kind of co-

exposure will impact on toxicity, cells were co-exposed to C60 with B[a]P. Effects in cells 

were then assessed using Fourier-transform infrared (FTIR) microspectroscopy. Such 

biospectroscopy provides a rapid, reagent-free and non-destructive method for biological 

analysis.27 Therefore, IR spectroscopy has been widely applied in biological research, for 

disease diagnosis28, stem cell characterisation29 and toxicity assessment30. The mid-IR region 

Page 6 of 37Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:N

an
o

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
5 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
L

an
ca

st
er

 o
n 

05
/0

5/
20

17
 2

2:
09

:4
7.

 

View Article Online
DOI: 10.1039/C7EN00164A

http://dx.doi.org/10.1039/c7en00164a


 6 

(4000-400 cm-1) is specific for biological application and it provides abundant chemical bond 

information in the ‘biochemical-fingerprint’ region (1800-900 cm-1), through identifiable 

peaks at specific absorption frequencies: Amide I (~1650 cm-1), Amide II (~1550 cm-1), 

Amide III (~1260 cm-1), carbohydrates (~1155 cm-1), glycogen (~1030 cm-1), lipids (~1750 

cm-1), asymmetric phosphate stretching vibrations (νasPO2
-; ~1225 cm-1), symmetric 

phosphate stretching vibrations (νsPO2
-; ~1225 cm-1) and protein phosphorylation (~970 cm-

1).31 Coupled with computational multivariate analyses, FTIR spectroscopy is a sensitive 

bioanalytical tool. 

In this study, two cell lines, including a fish gill cell line and a mammalian cell line 

were used to examine the in vitro biological effects following co-exposure to C60 and B[a]P; 

the cellular response was determined using FTIR spectroscopy. In line with previous 

investigations, three relatively low doses were employed (B[a]P exposure concentrations at 

10-6 M, 10-7 M and 10-8 M; C60 at 0.1 mg/L, 0.01 mg/L and 0.001 mg/L).32, 33 Spectral 

alterations were associated with effects on AhR-inducible CYP1A1, DNA damage inferred by 

P21WAF1/CIP1 and oxidative stress [measured by thiobarbituric acid reactive substances 

(TBARS) and levels of intracellular reactive oxygen species (ROS)]. This study aimed to 

gain insights into a binary exposure including a carbon-based NP and chemical contaminant. 

Materials and Methods 

Chemicals and carbon nanoparticles (NPs) 

All test agents were purchased from Sigma. B[a]P was HPLC-grade (>96%) in 

powder-form, while dimethyl sulfoxide (DMSO) used as solvent was GC-grade (≥99.5%). 

Bovine serum albumin (BSA), also obtained from Sigma, was ≥98% pure. C60 (from Sigma) 

had a purity >99.5% and particle size of 1 nm. It was analysed by Raman spectroscopy 

(Renishaw PLC, Gloucestershire, UK) with a 785 nm laser, and determined to be of high 
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 7 

purity. Additionally, images of C60 were taken using a scanning electron microscope (SEM) 

[JSM 5600 (JEOL)] [see Electronic Supporting Information (ESI) Figure S1]. 

B[a]P was dissolved in DMSO, and stock solutions were made at concentrations of 

10-3 M, 10-4 M and 10-5 M. C60 were dispersed in 1% BSA solution following a 15-min 

ultrasonication in an ice-water bath and stock solutions were made at concentrations of 100 

mg/L, 10 mg/L and 1 mg/L. Agglomeration could be observed in the solution due to its 

lipophilic properties. To ensure a homogeneous mixture of chemical agents, solvent or 

exposure medium, and to avoid any solvent-specific effects, stock solutions and exposure 

medium were mixed prior to application to the cells. Accordingly, as NPs and B[a]P were 

dispersed in 1% BSA solution and DMSO respectively, each experimental medium contained 

a final level of 0.1% (vol/vol) 1% BSA solution and DMSO. An experimental medium 

containing 0.1% (vol/vol) 1% BSA solution and DMSO without test agent was used as 

vehicle control. All experimental media were prepared 72 h prior to cell exposure and stored 

at 4oC, which allowed absorption equilibration of B[a]P onto C60. Mixture treatment 

compositions were as follows: Mix 1, 10-6 M B[a]P + 0.001 mg/L C60; Mix 2, 10-6 M B[a]P + 

0.01 mg/L C60; Mix 3, 10-6 M B[a]P + 0.1 mg/L C60; Mix 4, 10-7 M B[a]P + 0.1 mg/L C60; 

and, Mix 5, 10-8 M B[a]P + 0.1 mg/L C60. 

Cell culture 

Human breast cancer MCF-7 cells were cultured in Dulbecco’s modified essential 

medium (DMEM) supplemented with 10% heat-inactivated foetal bovine serum, penicillin 

(100 U/mL), and streptomycin (100 µg/mL). MCF-7 cells were maintained in a humidified 

atmosphere with 5% CO2 in air at 37oC. Gill cells for primary cultures were derived from 

gills of rainbow trout (Oncorhynchus mykiss)34. The cells were cultured with Leibovitz’s L-

15 culture media supplemented with 10% heat-inactivated foetal bovine serum, penicillin 
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 8 

(100 U/mL), and streptomycin (100 µg/mL). These gill cells were maintained without CO2 

incubation in free gas exchange with air at an optimal temperature (~18oC). These cell lines 

were routinely cultured in 75 cm2 cell culture flasks. MCF-7 cells were split twice a week, 

while gill cells were split once a week. 

Exposure protocol 

For MCF-7 cells, the same medium was used for incubation before and during 

exposure (namely exposure medium), while L15 medium was only used for gill cells prior to 

exposure, but a different medium, L15/ex, was then introduced as the experimental medium 

during exposures. L-15/ex medium was initially validated in the RTgill-w1 cell line. L15/ex 

medium contains only salts, galactose and pyruvate to provide an isotonic environment, and a 

source of energy; as such, it is fully defined35, 36. Bioavailability of test chemicals in this in 

vitro system is not influenced by a serum component. Binding of hydrophobic test chemicals 

to constituents of serum was suggested to contribute to the systematic deviation of 

mammalian cell viability versus fish acute toxicity depending on the chemicals’ octanol-

water partition coefficient (Kow) and is also a likely cause of under-estimation of fish acute 

toxicity using fish cell lines36. 

For exposure, cells were directly grown on Low-E slides (Kevley Technologies, OH, 

USA) in 45-mm culture dishes. Prior to cell seeding, Low-E slides were immersed in ethanol 

for 30 min. Following rinsing in sterile water, Low-E slides were then stored in empty culture 

dishes and dried in an incubator. Confluent cells in 75 cm2 flasks were disaggregated with 

trypsin (0.05%)/EDTA (0.02%) solution, and were immediately re-suspended in complete 

medium. Cells were then seeded to the culture dishes and allowed to attach on the slides and 

to form a cell layer on the Low-E slides. After 72 h, the original medium was removed and 

experimental medium containing test agents (or not) was added. After 24-h incubation, the 
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 9 

cells on Low-E slides were rinsed in PBS and fixed in 4% formalin in PBS for 30 min. Once 

fixed, the slides were rinsed in PBS and given a quick wash (~3 sec) in distilled water. 

Following air-drying overnight, slides were stored in a desiccator until analysis. 

Spectrochemical analysis 

All cell samples on Low-E slides were interrogated using a Bruker TENSOR 70 FTIR 

spectrometer (Bruker Optics Ltd., Germany) equipped with a HYPERION 1000 microscope 

containing a liquid nitrogen-cooled detector. Instrument parameters were set at 32 scans and 

8 cm-1 resolution. For each slide, some 20 IR spectra were acquired at different points across 

the sample. Prior to starting a new slide or after each ten spectra, a background was taken. 

Spectral data acquired from FTIR spectroscopy were processed using IRootLab 

toolbox (http://trevisanj.github.io/irootlab/) running on MATLAB r2010a (The MathWorks, 

Inc., US). IR spectra were pre-processed as follows: cut to 1800-900 cm-1 (the biochemical 

fingerprint range), rubberband baseline corrected, and normalisation to Amide I peak. 

Computational analysis using multivariate techniques included principal component analysis 

(PCA) and linear discriminant analysis (LDA), which can efficiently analyse large spectral 

datasets. Following pre-processing, PCA was applied to the spectral dataset. PCA is an 

unsupervised technique employed to reduce the dimensions of the data. Undoubtedly, PCA is 

capable of identifying some important biochemical information in the spectral data. However, 

it has less discriminating power due to the fact that it is an unsupervised procedure. In order 

to interpret such complex biochemical information, further data analysis by using supervised 

procedures such as LDA is often applied. Thus, the output derived from PCA was inputted 

into LDA37. The first ten PC factors from PCA were used for LDA since that accounted 

for >99% variance31. Multivariate analysis results were visualized either as scores plots 

and/or cluster vectors plot. In scores plots, nearness between two groups implies similarity, 
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 10 

while distance indicates dissimilarity38, 39. Cluster vectors plots from PCA-LDA help to 

reveal the biochemical alterations associated with each category in the dataset. To simplify 

the identification of the main biochemical alterations of each group, cluster vectors peak plots 

were used to indicate the top seven peaks in the cluster vectors plots. 

Quantitative real-time reverse transcriptase (RT)-PCR 

Routinely-cultured MCF-7 cells were disaggregated and re-suspended in complete 

medium (DMEM, 10% FCS) prior to seeding aliquots (5 ml, 1 × 105 cells) into 60-mm petri 

dishes40. Following 24-h incubation, cells were treated (using exposure medium as described 

above) for a further 24 h with 10-8 M B[a]P, 0.1 mg/L C60 fullerene or a combination of both; 

a vehicle control was also included. Cells were then washed twice with PBS prior to lysis and 

total RNA extraction using the Qiagen RNeasy® Kit in combination with the Qiagen RNase-

free DNase kit (QIAGEN Ltd, Crawley, UK). DNase was incorporated into the extraction 

procedure in order to remove residual DNA, e.g., pseudogene. RNA quality was routinely 

assessed in a 1.2% formaldehyde agarose gel; yield and purity were checked using a 

spectrophotometer. RNA (0.4 µg) was reverse transcribed in a final volume of 20 µl 

containing Taqman® reverse transcription reagents (Applied Biosystems, Warrington, UK): 

1 × Taqman reverse transcriptase (RT) buffer; MgCl2 (5.5 mM); oligo d(T)16 (2.5 µM); dNTP 

mix (dGTP, dCTP, dATP and dTTP; each at a concentration of 500 µM); RNase inhibitor 

(0.4 U/µl); RT (MultiScribe™) (1.25 U/µl) and RNase-free water. Reaction mixtures were 

then incubated at 25oC (10 min), 48oC (30 min) and 95oC (5 min). 

cDNA samples were stored at -20oC prior to use. Primers (Table 1) for cyclin-

dependent kinase inhibitor 1A [CDKN1A (P21WAF1/CIP1, GenBank accession no. NM_078467)] 

and CYP1A1 (GenBank accession no. BC023019) and endogenous control β-ACTIN 

(GenBank accession no. AK222925) were chosen using Primer Express software 2.0 

(Applied Biosystems) and designed so that one primer spanned an exon boundary. Specificity 
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was confirmed using the NCBI BLAST search tool. Quantitative real-time PCR was 

performed using an ABI Prism 7000 Sequence Detection System (Applied Biosystems). 

Reaction mixtures contained 1 × SYBR® Green PCR master mix (Applied Biosystems); 

forward and reverse primers (Invitrogen Life Technologies) at a concentration of 300 nM 

(P21WAF1/CIP1, CYP1A1 or β-ACTIN); for P21WAF1/CIP1 or CYP1A1 amplification 20 ng cDNA 

template or for β-ACTIN amplification 5 ng cDNA template; made to a total volume of 25 µl 

with sterile H2O. Thermal cycling parameters included activation at 95oC (10 min) followed 

by 40 cycles each of denaturation at 95oC (15 sec) and annealing/extending at 60oC (1 min). 

Each reaction was performed in triplicate and ‘no-template’ controls were included in each 

experiment. Dissociation curves were run to eliminate non-specific amplification, including 

primer dimers. In control cell populations, averaged threshold cycle values of amplified 

cDNA were in the 25-30 range for CYP1A1. 

The thiobarbituric acid (TBA) assay for lipid peroxidation 

Lipid peroxidation was measured as a function of TBA reactive substances (TBARS), 

including malondialdehyde-TBA adduct production41, 42. Routinely cultured MCF-7 cells 

were disaggregated and re-suspended in complete medium (DMEM, 10% FCS) prior to 

seeding aliquots (10 ml, 1 × 106 cells) into 75 cm2 flasks. Following 24-h incubation, cells 

were treated (using exposure medium as described above) for a further 24 h with 10-8 M 

B[a]P, 0.1 mg/L C60 fullerene or a combination of both; a vehicle control was also included. 

Cells were harvested by scraping, washing with PBS and re-suspension in deionized water 

containing 8.1% SDS, 20% acetic acid and 0.8% thiobarbituric acid. Resultant mixtures were 

incubated in a boiling water bath for 1 h. After cooling, n-butanol:pyridine mixture (15:1, 

v/v) was added and the reaction mixtures were centrifuged at 1600 g for 15 min. In decanted 

supernatants, malondialdehyde was assayed at 532 nm. TBARS concentrations were 
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 12 

expressed as nmol/mg protein, as determined using the Bradford method, using 1,1,3,3-

tetraethoxypropane as a reference standard. Results are presented as the Mean ± SD of five 

independent experiments, each performed in duplicate. 

Determination of intracellular reactive oxygen species (ROS) levels 

The fluorescent probe to oxidative damage, 2’7’-dichlorofluorescein diacetate (DCFH-DA), 

in combination with flow cytometry was employed. Routinely cultured MCF-7 cells were 

disaggregated and re-suspended in complete medium (DMEM, 10% FCS) prior to seeding 

aliquots (10 ml, 1 × 106 cells) into 75 cm2 flasks. Following 24-h incubation, cells were 

treated (using exposure medium as described above) for a further 24 h with 10-8 M B[a]P, 0.1 

mg/L C60 fullerene or a combination of both; a vehicle control was also included. Thirty min 

prior to the end of the above incubation period, DCFH-DA was added to each incubation 

mix; the underlying principle is that upon diffusion across the lipid cell membrane, 

deacetylation by intracellular esterases generates 2’7’-dichlorodihydrofluorescein (DCFH2). 

With intracellular ROS generation, DCFH2 is oxidized to 2’7’-dichlorofluorescein (DCF), a 

highly fluorescent end-product. At the end of the incubation period, cells were disagreggated 

with warm trypsin/EDTA and washed with PBS, upon which intracellular ROS levels were 

determined using a FACScan flow cytometer (Becton Dickinson) at 488 nm (excitation) and 

525 nm (emission). For each treatment, a minimum of 10,000 events were collected and 

analysed by CellQuest software. Results are presented as the Mean ± SD of five independent 

experiments, each performed in duplicate. 

Results and discussion 

Post-exposure to the test agents studied herein, cells were harvested and interrogated 

by FTIR spectroscopy. This analysis gave rise to a large spectral dataset containing 12 
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 13 

classed categories, which were labelled according to the treatments as: Control; C60 0.1 mg/L; 

C60 0.01 mg/L; C60 0.001 mg/L; B[a]P at 10-8 M; B[a]P at 10-7 M; B[a]P at 10-6 M; Mix 1 

(C60 0.001 mg/L & B[a]P at 10-6 M); Mix 2 (C60 0.01 mg/L & B[a]P at 10-6 M); Mix 3 (C60 

0.1 mg/L & B[a]P at 10-6 M); Mix 4 (C60 0.1 mg/L & B[a]P at 10-7 M); and, Mix 5 (C60 0.1 

mg/L & B[a]P at 10-8 M). Parallel sets of experiments were conducted in the MCF-7 cell and 

RTgill-w1 cell lines. Further analyses for CYP1A1 induction, lipid peroxidation and 

generation of intracellular ROS were conducted at selected concentrations in MCF-7 cells. 

As specific wavenumbers in IR spectra may be used as markers of chemical entities in 

cells, their intensity absorbance following simple pre-processing (including baseline 

correction and normalization) may be used to assess treatment-induced alterations in target 

cells. The intensity absorbance at 1400 cm-1 is used as a protein marker as it corresponds to 

C=O symmetric stretching of amino acids and 1740 cm-1 is associated with C=O stretching 

vibrations of lipids. Thus, the protein-to-lipid ratio using the intensity absorbance at these two 

vibration modes may assess cell proliferation post-exposure38. Similarly, other absorbance 

ratios are employed including: intensity absorbance ratio of 1650 cm-1 to 1084 cm-1 as ratio 

of  protein/nucleic acid (1650 cm-1 corresponding to Amide I in protein; 1084 cm-1 

corresponding to νsPO2
- for DNA/RNA)43, and intensity ratio of (996 cm-1)/(966 cm-1) used 

as RNA/DNA ratio43, 44. 

A tendency for an elevated protein-to-lipid ratio indicates that the test agents used 

give rise to active cell proliferation45. Our findings suggested that most of the treatments in 

gill cells significantly activated cell proliferation compared with the control, while in MCF-7 

cells, only exposure of Mix 4 induced significant proliferation (Figure 1a; see ESI Table S1). 

In contrast to the protein-to-lipid ratio, the protein-to-nucleic acid ratio exhibited a 

downregulation following most exposures in gill cells except for the Mix 3 (Figure 1b; see 
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 14 

ESI Table S2). Whereas, the pattern of protein-to-nucleic acid ratio in MCF-7 cells was 

complicated; only treatment of C60 0.1 mg/L, Mix 4 or Mix 5 significantly reduced protein-

to-nucleic acid levels, while it was significantly elevated by Mix 1 (Figure 1b; see ESI Table 

S2). Moreover, the ratio of RNA/DNA (Figure 1c; see ESI Table S3) exhibited by IR spectra 

suggested that in gill cells, treatment with C60 at 0.01 mg/L or 0.1 mg/L could significantly 

reduce RNA/DNA levels, which potentially indicate an inhibition in gene expression, while 

B[a]P of 10-8 M, Mix 1, Mix 4 or Mix 5 showed capability to stimulate gene expression. This 

supports the observations shown in Table 2 on effects on gene expression; whilst single agent 

(B[a]P or C60) elevated mRNA transcripts for P21WAF1/CIP1 or CYP1A1, a binary mixture 

markedly elevated the expression of these gene candidates. The changing trend of RNA/DNA 

levels in MCF-7 cells following exposure was different from that in gill cells, especially 

following C60 treatment. It was found that RNA/DNA levels in MCF-7 cells was significantly 

increased only by treatment with B[a]P at 10-7 M and 10-6 M, as well as Mix 4. 

As mid-IR spectra from multi-constituent biological samples are rich in biochemical 

information and complex, using simple intensity absorbance ratios (peak-to-peak ratio) is 

inadequate for interpretation of biological alterations46. Thus, multivariate data-analysis 

techniques were employed to help with bioinformatics extraction in spectral datasets47, 48. 

Combinations of different categories with emphasis on different scenarios to explore the post-

exposure-effects from single agent or binary treatments were examined. When such spectral 

datasets are processed by computational analysis, alterations induced by single agents or 

binary mixtures can be determined. Based on PCA-LDA, dimensional (1-, 2- or 3-D) scores 

plots are generated for visualisation using the first three LD factors, where most segregation 

among categories is observed. The first two factors are particularly displayed in 1-D scores 

plots with their corresponding loadings plots, which identify the wavenumbers responsible 

for segregation. Additionally, cluster vectors plots are applied to the dataset of binary mixture 
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exposure, so that the global alterations in cells induced by each treatment could be identified, 

compared with the control group. 

When the spectral datasets containing whole categories were inputted into PCA-LDA 

(Dataset Total), 3-D scores plots were generated for visualisation. However, it is difficult to 

identify segregation in 3-D or 2-D scores plots, with so many categories (see ESI Figure S2). 

Thus, displaying the first two LD scores in 1-D plots gives rise to a clearer interpretation of 

segregation among categories (Figure 2; see ESI Figure S3). For both LD1 and LD2 space, 

the corresponding loadings plots are displayed with the top seven wavenumbers marked. In 

LD1 space, the wavenumbers derived from the spectral dataset of gill cells ranks as: 1232 cm-

1 (DNA/RNA; vasPO2
-), 1709 cm-1 (lipid), 1664 cm-1 (Amide I), 1070 cm-1 (DNA/RNA; 

vsPO2
-), 985 cm-1 (protein phosphorylation), 1417 cm-1 (amino acid; v[COO-]), and 1556 cm-1 

(Amide II). Those derived from MCF-7 cells in LD1 space were similar to gill cells: 1101 

cm-1 (DNA/RNA, vsPO2
-), 1508 cm-1 (Amide II), 1026 cm-1 (glycogen), 1566 cm-1 (Amide II), 

983 cm-1 (protein phosphorylation), 1406 cm-1 (amino acid; v[COO-]), and 1712 cm-1 (lipid). 

The loadings plots indicate how each variance (i.e., wavenumber) contributes to the 

discrimination between the categories in the dataset. These wavenumbers correspond to 

specific chemical entities, which might be used as biomarkers in risk assessment, in which 

relative importance is identified in loadings plots. However, in LD2 space the loadings plots 

for each cell line placed emphasis on different biomarkers; most pronounced wavenumbers in 

loadings plots from gill cells were in the DNA/RNA region (~1250-1000 cm-1), while in 

MCF-7 cells they mostly appeared to be in the lipid / protein (Amide I) region (~1750-1500 

cm-1). For both cell lines, significant alterations in LD1 and LD2 space were observed 

between the exposed groups and the control in both LD1 and LD2 space, except following 

treatment with Mix 3 (see ESI Table S4). For gill cells, its corresponding Dataset Total 

indicated that in both LD1 and LD2 space, binary treatment with both high-dose of B[a]P and 
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C60 is likely to result in highly reduced effects in gill cells, while exposure to a high-dose of 

the one agent mixed with a low-dose of the other agent could greatly enhance toxicity in gill 

cells. However, when MCF-7 cells were exposed to the test agents, the response modes in the 

two LD spaces were presented in different ways. In LD1 space, MCF-7 cells following 

single-agent exposure exhibit a linear response (high response with high-dose), while in LD2 

space low-dose effects were represented with B[a]P treatment. As MCF-7 cells exposed to 

binary agents, alterations were observed but without obvious enhancement, except that of 

Mix 1 in LD1. This fits with the effects on lipid peroxidation and intracellular ROS; singly 

both B[a]P and C60 elevated these markers of oxidative stress, but in combination there is an 

apparent attenuation of this effect (Table 3). Through CYP1A1 induction, B[a]P might be 

expected to increase intracellular ROS generation. C60 is known to generate lipid 

peroxidation mediated via ROS leading to its cytotoxicity49, but is also known to be a ROS 

scavenger through its ability to bind up to six electrons42. 

The dataset of the control category compared to those from single treatment with 

either C60 or B[a]P was explored to examine for single-agent effects (Dataset C60 or Dataset 

B[a]P). When cells were exposed to C60, both gill cells and MCF-7 cells were likely to show 

a linear dose-response in the LD1 space (Figure 3). Gill cells were significantly affected by 

C60 at each dose in both LD spaces, while with MCF-7 cells only treatment of 0.1 mg/L in 

LD1 space and treatment of 0.01 mg/L in LD2 space appeared to be significant (see ESI 

Table S4). In the LD1 loadings plot derived from gill cells, the most pronounced 

wavenumbers were related to Amide I, glycogen, DNA/RNA, and lipid regions (Figure 3a, 

ESI Table S6). This is similar for MCF-7 cells in that segregation in LD1, mostly resulted 

from alterations in Amide I, lipid, Amide II and DNA/RNA (Figure 3c, see ESI Table S8). 

These spectral profiles indicate that C60 is capable of not only inducing alterations in outer 

cellular structures (lipids and proteins), but also in internal components of DNA/RNA, 
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namely genotoxicity50, 51. It is suggested that the genotoxicity of C60 is possibly caused by a 

ROS pathway52. Further work will be needed to delineate the time course of ROS generation 

and consequent cytotoxicity; it would be important to guard against missing transient effects. 

However, B[a]P treatment was likely to result in a non-linear dose-response in both 

cell lines, and in both LD spaces significant segregation was observed in the treated 

categories compared with the control category, except that of gill cells exposed to B[a]P at 

10-8 M (Figure 3b & 3d, ESI Table S4). B[a]P specifically induces alterations in DNA/RNA, 

as loadings plots in both LD1 and LD2 show obviously pronounced peaks in corresponding 

wavenumbers (Figure 3, see ESI Figure S4 and Table S6). This indicates that B[a]P is a 

genotoxic compound inducing DNA damage25, 53, which is consistent with previous studies 

from our group32. Moreover, a low-dose effect is observed in cells following B[a]P exposure. 

To gain insights into the mechanism underlying the action of binary exposure in cells, 

specific categories were combined as an associated dataset (Dataset Mix). In these datasets, 

cluster vectors plots were employed to indicate the most pronounced wavenumbers 

corresponding to alterations in each treatment category compared to control. When spectral 

data from 0.1 mg/L C60, 10-6 M B[a]P and their mixture were processed by PCA-LDA, 2-D 

and 3-D scores plots were derived for visualisation (Figure 4). For gill cells, both 2-D scores 

and cluster vectors plots show that treatment with 10-6 M B[a]P led to the most pronounced 

alterations, mostly associated with the DNA/RNA region, while C60 exerted a lower level of 

alteration (Figure 4a). However, the 1-D scores plots (see ESI) in the first two LD spaces 

indicate that co-exposure with these two treatments dramatically reduces their effects in gill 

cells, but it is still suggestive by the cluster vectors plot that slight genotoxicity was induced 

(see ESI Table S7). A similar situation occurred in MCF-7 cells (Figure 4b). Cluster vectors 

plots show that all treatments caused marked alterations in cells including lipids, protein and 
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DNA/RNA; it was found that both 0.1 mg/L C60 and 10-6 M B[a]P induced marked 

alterations in cells, while treatment with Mix 3 appears relatively limited in its effect. 

Additionally, the cluster vectors peak shows C60 induced higher alterations in protein rather 

than in DNA/RNA, while B[a]P mostly altered the DNA/RNA region (see ESI Table S8). 

However, the cluster vectors peak plot suggests that the action of co-exposure is likely to be 

limited to the lipid and protein region of MCF-7 cells. 

Additional analyses were performed to explore the differences in alterations in cells 

when the binary treatment varied (Dataset C60 mix or Dataset B[a]P mix). When gill cells 

were treated with both C60 and B[a]P, the alterations were observed to be elevated with 

decreasing C60 exposure (B[a]P at 10-6 M) (Dataset C60 mix, Figure 5a). As shown in the 

cluster vectors plot, the Mix 1 (C60 0.001 mg/L and B[a]P 10-6 M) caused the most distinct 

alterations in gill cells, and the effects seem to be a combination of both C60 and B[a]P, 

giving enhanced alterations. However, when gill cells were exposed to C60 at 0.1 mg/L with 

B[a]P at different level, the limited alterations induced by binary exposure were increased 

with B[a]P decreasing (Figure 6a). Additionally, the action of co-exposure in MCF-7 cells 

appeared to be similar with that in gill cells (Figure 5b and 6b). However, higher alterations 

in the DNA/RNA region were observed in MCF-7 cells than in gill cells, as MCF-7 cells are 

mammalian and more sensitive to genotoxicity of B[a]P. Generally, these datasets indicate 

that high-dose C60 may limit the toxicity of B[a]P. Table 3 suggests that this might be 

through attenuation of oxidative damage, although C60 may deliver more B[a]P to the cell 

resulting in elevated CYP1A1 induction (Table 2). 

In general, biological effects resulting from binary exposure are difficult to predict54. 

Particularly, when NPs encounter environmental chemical compounds, this issue become 

more intractable55, as more factors come into account56. Binary effects of C60 co-exposure 
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with other chemical compounds are controversial. It is reported that association of Hg2+ with 

C60 could increase the bioavailability of Hg2+ in zebrafish57. Similar investigations also 

determined that co-exposure with C60 may enhance the effects of organic industrial 

chemicals58. Another study in ZF-L cells that also focused on co-exposure of C60 and B[a]P 

(using one high-dose of C60 at 1.0 mg/L in co-exposure) suggests that C60 may enhance 

toxicity by increasing B[a]P intake59. Other studies draw a different conclusion. It was 

observed that association between C60 and EE2 reduced EE2 bioavailability in zebrafish60, 61. 

Additionally, a reduced histological damage induced by fluoroanthene occurred when co-

exposed with C60 under UV radiation62. Using in vivo models, susceptible target organ based 

on molecular characteristics such as lipid composition, will need to be identified.63, 64 Within 

in vitro models, other underlying mechanisms such as epigenetic alterations can be further 

investigated65. Our results suggest that in some exposure scenarios with a particular endpoint 

a synergistic response is observed (Table 2), whereas in other cases the response might be 

additive or individual agents in a binary mixture cancel out each other’s effects (Table 3). 

Dis-entangling such complex responses will likely require a systems biology-based approach 

using “omics” tools”63. Herein, the spectral data indicate that low-dose C60 may elevate B[a]P 

toxicity, while high concentration of C60 limit effects. Biospectroscopy also interprets the 

toxic action mode of such test agents even at low levels, both single and binary treatments. 

However, the mechanisms underlying the different actions from co-exposure with diverse 

combinations still requires further investigation. 
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Table 1. Primers used for quantitative real-time RT-PCR analyses 

Assay Name Sequence (5’ to >3’) 

P21WAF1/CIP1 P21WAF1/CIP1-F GAC CAG CAT GAC AGA TTT CTA CCA 

 P21WAF1/CIP1-R TTC CTG TGG GCG GAT TAG G 

CYP1A1 CYP1A1-F ACT TCA TCC CTA TTC TTC GCT ACC T 

 CYP1A1-R CGG ATG TGG CCC TTC TCA 

β-Actin β-Actin-F CCT GGC ACC CAG CAC AAT 

 β-Actin-R GCC GAT CCA CAC GGA GTA CT 

F, forward primer; R, reverse primer. 
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Table 2. mRNA transcript levels in MCF-7 cells treated with or without B[a]P in the 

presence or absence of C60 fullerene 

 

Treatment 

Relative expression levels 

P21WAF1/CIP1 CYP1A1 

Vehicle control 1 © 1 © 

0.01 M B[a]P 1.3 ± 0.3 1.9 ± 0.2 

C60 fullerene 1.9 ± 0.3 1.5 ± 0.3 

0.01 M B[a]P + 0.1 mg/L C60 fullerene 7.4 ± 1.9 21.1 ± 5.8 

©, calibrator, which for the purposes of these experiments were vehicle controls. MCF-7 cells 

in aliquots of complete medium (5 ml, 1 × 105 cells) were seeded into 60-mm Petri dishes. 

Following reverse transcription of total RNA, quantitative real-time RT-PCR was carried out. 

Results are the means ± SD of three separate experiments. Each experimental medium 

contained a final level of 0.1% (vol/vol) 1% BSA solution and DMSO. 
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Table 3. Oxidative damage in MCF-7 cells treated with or without B[a]P in the presence 

or absence of C60 fullerene 

 

Treatment 

Lipid peroxidation levels 

TBARS 

(nmol/mg 

protein) 

DCF fluorescence 

(arbitrary units) 

Vehicle control 99.1 ± 46.0 203.6 ± 33.5  

0.01 M B[a]P 143.9 ± 48.1 276.0 ± 30.3 

0.1 mg/L C60 fullerene 200.6 ± 90.0 306.1 ± 52.0 

0.01 M B[a]P + 0.1 mg/L C60 fullerene 106.14 ± 15.7 200.6 ± 35.7 

Routinely cultured MCF-7 cells were disaggregated and re-suspended in complete medium 

(DMEM, 10% FCS) prior to seeding aliquots (10 ml, 1 × 106 cells) into 75 cm2 flasks. 

Following 24-h incubation, cells were treated for a further 24 h 10-8 M B[a]P, 0.1 mg/L C60 

fullerene or a combination of both; a vehicle control was also included. Levels of lipid 

peroxidation were determined using the TBARS assay. Relative fluorescence intensity was 

quantified by flow cytometry, using DCFH-DA as a probe. Results are the means ± SD of 

five separate experiments, each performed in duplicate. Each experimental medium contained 

a final level of 0.1% (vol/vol) 1% BSA solution and DMSO 
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Figure 1 Intensity absorbance ratio derived from IR spectra of the cells: a) Ratio of protein-

to-lipid; b) Ratio of protein-to-nucleic acid; and, c) Ratio of RNA-to-DNA. 
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Figure 2 One-D scores plot in LD1 derived from PCA-LDA of spectral dataset (Dataset 

Total), with corresponding loadings plot: a) Gill cells; and, b) MCF-7 cells. 
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Figure 3 One-D scores plot in LD1 derived from PCA-LDA of spectral dataset for single 

treatment, with corresponding loadings plot. 
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Figure 4 Scores plot and cluster vector derived from PCA-LDA of spectral dataset (Dataset 

mix). a) Gill cells; and, b) MCF-7 cells.  
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Figure 5 Scores plot and cluster vectors derived from PCA-LDA of spectral dataset (Dataset 

B[a]P mix). a) Gill cells; and, b) MCF-7 cells. 
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Figure 6 Scores plot and cluster vectors derived from PCA-LDA of spectral dataset (Dataset 

C60 mix). a) Gill cells; and, b) MCF-7 cells. 
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