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Abstract One way of revealing the nature of the coronal heating mechanism is by
comparing simple theoretical one dimensional hydrostatic loop models with obser-
vations at the temperature and/or density structure along these features. The most
well-known method for dealing with comparisons like that is the χ2 approach. In
this paper we consider the restrictions imposed by this approach and present an
alternative way for making model comparisons using Bayesian statistics. In order to
quantify our beliefs we use Bayes factors and information criteria such as AIC and
BIC. Three simulated datasets are analyzed in order to validate the procedure and
assess the effects of varying error bar size. Another two datasets (Ugarte-Urra et al.,
2005; Priest et al., 2000) are re-analyzed using the method described above. In one
of these two datasets (Ugarte-Urra et al., 2005), due to the error estimates in the
observed temperature values, it is not posible to distinguish between the different
heating mechanisms. For this we suggest that both Classical and Bayesian statistics
should be applied in order to make safe assumptions about the nature of the coronal
heating mechanisms.

Keywords: Corona, Models; Corona, Structures; Heating, Coronal; Analysis, Sta-
tistical; Methods, Statistical

1. Introduction

Magnetically confined plasma loops are the fundamental building blocks of the solar
atmosphere. Whole loop structures are observed over an extensive spectral range
while extending over a large range of length-scales and dynamical time-scales. In
particular, the Solar and Heliospheric Observatory (SOHO), the Transition Region
and Coronal Explorer (TRACE) and now Hinode record loop-like features from
small-scale brightenings lasting for tens of seconds to large-scale (of the order of the
solar radius), apparently static loops that last for many hours.

Recent interest in loops has centred on the definitive determination via remote
sensing of the basic parameter values within these features. One dimensional hy-
drostatic simulations of loop plasma (e.g. Peres, 2000) produce a temperature (T )
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and density (ρ) structure along the loop that results from a balance between thermal
conduction along the field-lines, optically thin radiative loss and a predefined coronal
heating term. Generally, this profile extends from a cooler temperature at the loop
base (or footpoint) area up to a hotter temperature at the loop apex. However, it
has been demonstrated that the temperature gradient (dT

ds where s is the distance
along the loop) at each point along this profile is very dependent on where the
energy deposition preferentially occurs (e.g. Priest et al., , 2000). If the heat input
is predominantly located at the base, the temperature in the “coronal” part of the
loop will be relatively constant (i.e. dT

ds ≈ 0). In comparison, if the energy is released

near the loop apex, a significant temperature gradient (dT
ds > 0) travelling away

from the apex can result. By observing the local temperature (and/or density)
at successive spatial locations along a well-defined loop and then comparing the
resulting profile with one generated from a one-dimensional hydrostatic model, then
this could provide a means of constraining the possible preferred spatial location of
the heating within that loop structure.

Confirming the dominant energy deposition position has been more difficult than
first imagined, including for example the dataset introduced by Priest et al., (2000)
(PDS from now on) which has been interpreted by separate authors as uniform
(Priest et al., 2000), base (Aschwanden, 2001) and apex (Reale, 2002; Mackay et al.,
2000) heating. Other datasets examine the variation in density rather than temper-
ature (Ugarte-Urra et al., , 2005; UUDS from now on). In many of the above investi-
gations, the important step of model comparison between the hydrostatic simulation
and the observed plasma parameter values is undertaken by employing a weighted
chi-squared analysis. Possibly this is an adequate, “quick-look” approach to tack-
ling the model comparison. However two statistical “obstacles” present themselves
here:

1. The precision of the temperature observations may not be sufficient to discrim-
inate one heating function from another. As we shall see, substantive changes
in the nature of the heating function can result in only subtle changes in the
temperature profile of the loop.

2. The current approach (as in PDS and UUDS) for comparing one heating function
model with another is to minimize the well-known statistic:

χ2 =

n∑

i=1

(
Ti − T̂i

)2

σ2
i

(1)

where n is the number of grid points, Ti is the observed temperature at distance
si along the strand, T̂i is the theoretical prediction of the model concerning the
temperature and σi is the standard deviation of the observed temperature. The
procedure, applied to the solar coronal loop heating problem, would be to isolate
the correct heating functional form (e.g. base or apex heating with an exponential
profile) based on its capability to furnish the minimum statistic value.

There are a number of deficiencies to this procedure. First of all, for any heating
functional form, there is a continuous range of parameter values, with an infinite set
of possible parameter combinations, each of which is a candidate model. Therefore,
it is not possible to properly compare one family’s performance in fitting the data
with another (e.g. apex heating with basal heating using an exponential form),
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without resorting to selecting specific values of the parameters. Such an approach was
employed by UUDS, where a grid method of equally spaced parameter combinations
was used. Of course, the concern is that somewhere we have missed certain parameter
values between grid points which could reverse the conclusion reached in the model
comparison assessment.

Furthermore, using a procedure such as the one described above, there is no
straightforward way of telling if we have significant evidence of one heating function
being superior to another. The issue here is that the minimum χ2 statistic approach
is not well suited to model comparison problems, since it is primarily a goodness-of-fit
statistic.

Another point of interest is that the minimum χ2 statistic approach is only strictly
valid under the normal errors assumption. As with the UUDS observations, this
is often clearly not the case — the error bars may be asymmetric. This means a
minimum χ2 based assessment may not be reliable.

Finally, merely taking the model with the minimum χ2 statistic does not tell
us anything about the quality of the model. One can always improve a model fit
by adding increasingly more parameters until, at the point of nonidentifiability, the
model fit equates to all observation values exactly (“joins the dots”), thus producing
a χ2 statistic value of zero, which would be then the model of choice based on the
minimum χ2 statistic criterion. However, it is clear that what we have done in that
case is not come closer to the true picture: rather an artefactual model has been
constructed which is unlikely to reflect the true picture. This whole problem is one
of overfitting, whereby model fit is apparently improved by adding increasingly more
parameters, and is not taken into account by simply using the χ2 statistic.

The practical way round these issues is to resort to a simulation approach. In this
paper we describe the use of a Bayesian Markov chain Monte Carlo (MCMC) anal-
ysis to solar coronal loop data, which embeds hydrodynamic modelling techniques
(Walsh, Bell, and Hood, 1995; see Section 2.3) within a basic Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970). Then in Section 3, we apply our
method to three simulated datasets in order to test the efficiency of the method;
in particular we examine the artificial inflation and compression of the error bars
with subsequent inflation and compression of the, e.g., parameter credible inter-
vals. Section 4 investigates some real coronal loop datasets (PDS and UUDS) and
subsequently presents quantitatively based conclusions concerning the nature of
the heating of the loops examined. A discussion on how this work can be further
progressed can be found in Section 5.

2. Statistical Methods

2.1. General Approach

In principle, the provision of observational temperature data with distance from the
base of the loop will yield information concerning the nature of the heating function.
Our approach employs a Bayesian analysis of the data using MCMC techniques,
which are increasingly being employed upon astrophysical datasets (Adamakis, Morton-
Jones, and Walsh, 2007). The Bayesian approach incorporates prior information we
may have on model parameters we are interested in with the observational data
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(likelihood) to form the updated or posterior information we have on the parameters.
This uses Bayes’ Theorem:

π(P|T) =
L(T|P)π(P)

f(T)
(2)

for observations T and parameter space P, where L(·|·) is the likelihood function,
π(·) the prior distribution, f(·) the marginal likelihood and π(·|·) the posterior
distribution. The prior distribution may or may not reflect knowledge we may have
on a parameter. If it doesn’t we use a so-called noninformative prior.

The posterior distribution can be simulated using MCMC techniques. In our
case, we use the Metropolis-Hastings algorithm to draw parameter values for each
parameter in our model from the posterior distribution. This is not a straightforward
application of the Metropolis-Hastings algorithm however, as we need to convert
proposed heating function parameter values into model temperatures, T̂i, at each
distance, si. Using single-variable updates, the established hydrodynamic modelling
code is used, with input being the current parameter values (including the proposed

value of the parameter under consideration at a given iteration), to produce the T̂i.

The T̂i can then be used to construct the likelihood of the temperature observations,
Ti. A further complication arises because we must have physically sensible temper-
ature profiles with distance for the loop. If the T̂i is not monotonically decreasing
from the apex to the base, then we must reject this generated set of parameter
values. Thus, with k the number of parameters in the model, our approach can be
summarised as:

Step 1. For the jth parameter, with current parameter value pj , generate the pro-
posed value, p∗j , from a proposal distribution.

Step 2. Using the current set of parameter values, (p1, p2, . . . , p
∗

j , . . . , pk), call the

hydrodynamic code to generate the T̂i.

Step 3. Reject the proposal p∗j if the T̂i are not monotonically decreasing. If so retain
the current value pj and go to Step 4. Otherwise accept the new parameter value
for the parameter pj with probability

α(pj , p
∗

j ) =
π((Pk−j , p

∗

j )|T)q((Pk−j, p
∗

j ), (Pk−j , pj))

π((Pk−j, pj)|T)q((Pk−j, pj), (Pk−j , p
∗

j ))
(3)

where Pk−j = (p1, p2, . . . , pj−1, pj+1, . . . , pk) and q(·, ·) the proposal distribution
and go to Step 4.

Step 4. Move to the next parameter pj+1 and repeat the process.

We follow the same procedure for multivariate Metropolis updates, with the only
difference that instead of updating a parameter at each time, we update the whole
set of parameters, i.e instead of p∗j we have P

∗. Although single-variable Metropolis
updates seems to behave slightly better than multivariate Metropolis updates (Neal,
2003), it can be very time consuming. For this reason we have used multivariate
Metropolis updates for the examples presented in Section 3.

In this way, through thousands of iterations, the marginal posterior distribution
for each parameter is built up. This distribution can then be used in many ways
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to assess the parameter values, e.g. by drawing up 95% credible intervals. If this
whole analysis is repeated for each heating function model, then model comparison
techniques can be used to provide a quantitative assessment of the likelihood of one
model over the other (see Section 2.4).

One further point to be made is that, with this approach we could in theory cal-
culate the chi-squared statistic for each set of accepted parameter values under each
heating function model, and take the model which provides the minimum value. This
is likely to be more reliable than using the grid approach because we are naturally
gravitating stochastically around the most likely parameter values which correspond
also to the minimum chi-squared values (if the likelihood is normally distributed).
Hence we would be less likely than with the regularised, non-stochastic grid approach
to miss out on the values which would reverse our decision. However, for the reasons
laid out in Section 1, we believe these alternative diagnostics are superior.

2.2. Data Distribution

The likelihood of the data should represent the way that our observations are dis-
tributed. This can change according to the way we gather the data; for example,
this could be due to the instrument we use to gather the data or whether we have
symmetric or assymetric error bars. This must be taken into account in the analysis.

2.2.1. Asymmetric and symmetric error bars

In case the error bars are not symmetric we have to deal with non-symmetric distri-
butions. One popular right skewed distribution with positive support is the Gamma
distribution. In this case, the observations Ti, i = 1, . . . , n, will have model likelihood
function:

L(T|P) =

n∏

i=1

f(Ti|P)

=

n∏

i=1

T γi−1

i

exp(−Ti/δi)

Γ(γi)δ
γi

i

I(Ti ∈ S1)

where T = (T1, . . . , Tn), γi, δi are the parameters of the Gamma distribution, S1 is
the domain of f(·|·), P is the parameter vector and

I(Ti ∈ S1) =

{
1, if Ti ≥ 0 and Ti+1 ≤ Ti from the apex to the base.
0, otherwise.

(4)

is the indicator function of the temperature.
On the other hand, if the data we collected give symmetric error bars, we should

use a symmetric distribution. A Gaussian distribution will usually be most appro-
priate. Thus, the mode likelihood function of Ti will be:

L(T|P) =

n∏

i=1

f(Ti|P)
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=

n∏

i=1

1√
2πσi

exp

(
− (Ti − µi)

2

2σ2
i

)
I(Ti ∈ S1)

where T = (T1, . . . , Tn), µi, σi are the parameters of the Normal distribution and
the indicator function is the same as in Equation (4).

2.2.2. Interpretation of error bars

It is important to define clearly the standard deviation of the data from the error
bars using probabilistic arguments. For instance, if we gather temperature values and
we believe with some probability pri that these values lie in the range (TL,i, TU,i)
then we have:

P (TL,i ≤ Ti ≤ TU,i) = pri (5)

where (TL,i, TU,i) are the lower and upper points of the error bar for the ith grid point
respectively. The variance of the data distribution is calculated by solving Equa-
tion (5) with the acceptance that the observed Ti are the mode of that distribution.
In the case of the Normal distribution we have:

σi =
TU,i − TL,i

2Φ−1 [(1 + pri)/2]

where Φ(·) is the Cumulative Distribution Function (CDF) of the Normal distribu-
tion with mean 0 and standard deviation 1. In the special case that pri = 0.9973, i =
1, . . . , n then 2Φ−1 [(1 + pri)/2] = 6 and we get the “6σ” belief. In the case of the
Gamma distribution, Equation (5) is difficult to solve analytically, so we turn to
numerical methods, e.g. Newton-Raphson (Gelman et al., 2003). The mode of the
data distribution is calculated by the temperature values that are proposed from
the model. We can then calculate the parameters from knowledge of the mode and
variance.

2.3. Heating Function: Models and Parameters

The one-dimensional plasma equations employed in this model are (Walsh, Bell, and
Hood, 1995):

Dρ

Dt
+ ρ

∂υ

∂s
= 0 (6)

ρ
Dυ

Dt
= −∂p

∂s
+ ρg + ρν

∂2υ

∂s2
(7)

ργ

γ − 1

D

Dt

(
p

ργ

)
= κ0

∂

∂s

(
T 5/2 ∂T

∂s

)
− ρ2Q(T ) + H(s) (8)

p =
R

µ̃
ρT (9)

where D
Dt = ∂

∂t + υ.∇ is the total derivative, ρ is the density, t is the time, υ is the
velocity of the plasma, p is the pressure, g is the gravitational acceleration, ν is the
coefficient of kinematic viscosity, γ is the ratio of specific heats, κ0 = 10−11 for the
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corona, Q is the radiative loss function, H is the heat input, R is the molecular gas
constant and µ̃ = 0.6 in the ionised corona. For the radiation function we can assume
that it is of the form Q(T ) = χT θ. If we assume gravity and viscosity negligible,
normalize s, t, υ, T, ρ, p by setting s = ls, t = tct, υ = υcυ, T = TcT , ρ = ρcρ, p =
pcp and assume constant pressure along the loop (e.g. the conductive velocity is
much smaller than the sound speed), then we can rewrite Equations (6) to (9)

∂ρ

∂t
+

∂(ρυ)

∂s
= 0 (10)

∂υ

∂s
=

∂

∂s

(
T 5/2 ∂T

∂s

)
− b [Q(T ) − H(s)] (11)

ρ =
1

T
(12)

where all bars have been removed for convenience and b =
ρ2

cχcT θc
c l2

κ0T
7/2

c

. Equations (10)

to (12) are solved with the following boundary conditions:

∂T

∂s
= 0 at s = 0 (13)

T = Tfoot at s = 0.5 (14)

where s = 0 is the apex of the loop. We have employed the form of the radiative loss
function as outlined in (Hildner, 1974).

Whereas the optically thin radiation loss function can be estimated from obser-
vations, the form of the heating function still remains a mystery. In the analysis that
follows, we assume that the heating function H(s) has the following general form:

H(s) = λ exp(βs) (15)

Of course this is only one case. We can test different functions in order to see which
one best describes our data (see implications of this in Section 5). Applying Equations
(15) to (11) we get:

∂υ

∂s
=

∂

∂s

(
T 5/2 ∂T

∂s

)
− bQ(T ) + α exp(βs) (16)

where α = bλ. We have replaced bλ with α, because b and λ will be extremely high
posterior correlated.

Thus, we have a range of parameters to investigate. Firstly, there is α and β from
the heating function. β is exceptionally important because altering its value can have
a profound effect on the nature of the heating profile. For example, if it is positive
then more heat is deposited in the lower part of the loop (footpoint or basal heating).
On the other hand, if β is negtive then more heat is deposited in the upper part of
the loop (apex heating). Note that when β = 0 we have the “unique”case of uniform
heating (although see discussion on this in Section 5).

Secondly, we introduce Tfoot as an extra parameter. Ugarte-Urra et al., (2005)
highlight the sensitivity of choosing this boundary condition. Finally, in our simplified
HD equations, we assume an isobaric scenario. Thus, since pressure p remains un-
changed along the loop for a given set of parameter values, we have decided to leave its

adamakis.tex; 28/07/2008; 15:19; p.7



Adamakis et al.

value floating. The pressure will always be equal to pc. Given pc = R
µ̃ ρcTc, then if we

assume we fix Tc (106K), then ρc will be a changing value to explore. Subsequently,
varying ρc changes b which hence becomes our forth and final parameter. Please
note that we assume that the length l of the loop to be well known and thus simply
defined.

To sum up, let the parameter space be P = (b, α, β, Tfoot)
T with observed tem-

perature values T ∈ S1 (the data). The values of P lie in the region S2 ∈ (0,∞)×
(0,∞) × R × [0,∞). The restriction α > 0 is because extra heat should be added
to the system, not subtracted from it. Methods for choosing priors are discussed in
Section 2.5.

2.4. Model Comparison

In Bayesian statistics, Bayes factor is considered to be the traditional way of test-
ing two or more hypotheses in Bayesian statistics. Suppose H1, H2 are the two
hypotheses we want to test. The odds form of Bayes’s theorem is:

π(H1|T)

π(H2|T)
=

f(T|H1)

f(T|H2)

π(H1)

π(H2)
. (17)

Note that π(Hk) is the belief we have about the truth of the hypothesis Hk before
we observe the data, π(Hk|T) is what we get after we observe the data and f(T|Hk)
is the marginal density, i.e. the belief of the data after we sum over the parameter
space. The first term of the right hand side of Equation (17) is the Bayes factor.
The second term of the right hand side of Equation (17) is the prior odds of the
two hypotheses. In the absence of any prior information we may assume this to be
1 (i.e. π(H1) = π(H2) = 0.5). In that particular case Bayes factor is equal to the
posterior odds. However, if we have some prior information about the hypotheses
there is always the option to include it in the analysis.

However, it is worth mentioning here that Bayes factor tends to be more sensitive
to the choice of prior than the posterior probability of an interval (Kass, 1993;
Kass and Greenhouse, 1989) and so choice of priors becomes even more critical.
For example, if we use an improper prior (say Uniform with an infinite range) for
a parameter of interest, this will result to ill-defined Bayes factors and posterior
probabilities that prefer the simplest model, with probability one, regardless of the
information from the data. This is widely known as the Bartlett’s paradox (Bartlett,
1957; Lindley, 1957). Apart from improper priors, this might be a consequence of
using priors with a very large spread, in an effort to make our distribution non-
informative, which in turn can lead to false conclusions (Kass and Greenhouse, 1989).
Thus, in the case where there is no available prior information, the spread of the
prior should not be very large in order to have effective results with Bayes factors.
Raftery (1996) propose a way to overcome this problem using the Laplace method
for integrals. In this paper we present results from three procedures to calculate the
marginal densities, f(T|Hk). Interested readers can follow up the descriptions of
these methods in Kass and Raftery (1995) and Raftery (1996), which describe these
approaches in detail:

1. Laplace method with posterior covariance matrix.
2. Laplace estimator with robust posterior covariance matrix.
3. Monte Carlo estimation.
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In Section 3 we have also tried the harmonic mean estimator (Gelfand and Dey,
1994), but due to the fact that it suffers from infinite variance, it is far from
convergence.

An alternative way of making model comparison is by using the Akaike Infor-
mation Criterion (AIC) proposed by Akaike (1974) and the Bayesian Information
Criterion (BIC) proposed by Schwarz (1978). The former proposes to choose the
model that minimizes

AIC = −2(log maximised likelihood) + 2(number of parameters)

whereas the latter chooses the model that minimizes

BIC = −2(log maximised likelihood) + (logn)(number of parameters)

where n in this case will be the number of the observed data points. AIC tends to be
biased in favor of more complicated models, as the log-likelihood tends to increase
faster than the number of parameters. BIC tends to favor simpler models than those
chosen by AIC. In the special case that we are dealing with a symmetric likelihood
function (e.g. Gaussian distribution) maximising the likelihood function would be
like minimizng the χ2 statistic. Thus, in the following we will also employ these
tests.

2.5. Choosing Priors

A natural way to address the prior distributions for our parameters is by considering
their supports (in this case their domain). Thus, for b, α and Tfoot we would like
a distribution which supports non-negative numbers and for β a distribution which
support all the real numbers. Because of the fact that we do not have any prior infor-
mation for the parameters b, α we will use improper priors for these two paramters
(π(b, α) ∝ 1). Gamma and Normal distributions seem to be ideal for parameters
Tfoot and β respectively, i.e. β ∼ N(β1, β

2
2) and Tfoot ∼ Gamma(t1, t2), with the

parameters β1, β2, t1, t2 yet to be defined.
To avoid indeterminate Bayes factors, we decided to avoid using improper priors

for the parameter of interest β. When we start the analysis it could be that we do
not have any prior information at all. For example, the crucial parameter here is β. If
there was not any prior information, we could use for estimation purposes a Normal
prior distribution centered at 0, i.e. β1 = 0, with a big variation, e.g. β2

2 = 104. This
will make it “non-informative”, but it will lead to Bartlett’s paradox (see Section
2.4) when we want to include model comparison into our analysis. Thus, it would
be preferable to include any prior information available. For example, we set 99%
confidence on the parameter β being between −20 and 20. This means that we can
assume β1 = 0, β2 = 7.76. Using similar notions we end up with t1 = 2, t2 = 1
(which will give 95.96% for Tfoot to fall between 0 and 5 with mode at 1).

An alternative choice of prior distribution, based to the previous one, is by using
“Dual” priors, which lead to well-defined Bayes factors, and can be described as
following: choosing a Normal distribution with β1 = 0, β2 = 7.76 will give more
weight into the values of β that are closer to β1. This means that f(0)/f(20) =
27.70. So, instead of using a prior that will give more weight to certain values of
the parameter, we may want to introduce a prior which will allow to jump between
two values with equal prior probability. In that case the π(P) ∝ 1 described above
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Figure 1. (a) “Common” prior distribution for β. (b) “Dual” prior distribution for β.

seem ideal but has many problems. It seems natural to use a “Dual” prior that
combines the above two distributions and integrates to unity. For example, for the
β parameter we may say that we are 99% confident that the parameter β should
fall between −20 and 20, as above, and we want the probability density function to
be the same between −20 and 20. This will give a probability density function as
in Figure 1(b) instead of a probability density function as in Figure 1(a). “Dual”
priors lead to well-defined Bayes factors. In Sections 3 and 4 we use “Dual” priors
for parameters β and Tfoot. More specifically, for β we use a uniform distribution
between −20 and 20 and a normal distribution with β1 = 0, β2 = 7.76 for every
other value, whereas for Tfoot we use a uniform distribution between 0 and 3 and a
Gamma distribution with t1 = 2, t2 = 1 for every other value.

2.6. Implementation of the MCMC Method

In generating our posterior distribution samples, the problem of within chain auto-
correlation was found to be a significant problem. This problem means that much
larger chains are required in order to achieve a representative sample from the target
(posterior) distributions. There are several ways to deal with this problem, but we
have found the most effective way has been to use the method described by Tierney
and Mira (1999). The idea is to use more than one proposal in each step. This
means that we start with a proposed parameter value combination. If they are
accepted then move to the next step, otherwise propose another parameter value
combination. If the second set is accepted then move to the next step, otherwise
propose a third parameter value combination and so on. We can stop at any time we
like this procedure, keep the current parameter values and move to the next step.
The acceptance probability of each stage has to be adjusted in order to preserve a
stationary distribution. This method has the advantage that we can test different
proposals at each step, which can improve efficiency of mixing. We have used both
two- and three-stages in our simulation procedures. At the first stage we propose
values from an independent probability density. At the second stage (if needed) we
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propose values from a random walk probability density based on the current values.
Finally, at the third stage (again if needed) we can propose values as in the second
stage but with smaller standard deviation or from a random walk probability density
based on the rejected values from the first stage. Furthermore, in order to improve
the mixing of the chain, we reparameterize the space as our initial parameters are
highly correlated. For the reparameterization and for the independent proposal of the
first stage, we have run a pilot chain, i.e., we first run a simple Metropolis algorithm
and from the crude estimates of the parameters we get we construct the independent
proposal and choose the reparameterization scheme we will follow.

3. Testing Against Simulated Observations

In comparing the observed datasets with the HD simulation, we wish to examine the
following four hypotheses:

1. H1 : β 6= 0 — that is, heat input is not spatially uniform;
2. H2 : β = 0 — heat input is spatially uniform;
3. H3 : β > 0 — heat input is footpoint dominant;
4. H4 : β < 0 — heat input is apex dominant.

In what follows, we have generated three datasets (SDS1, SDS2 and SDS3) in order
to validate the Bayesian analysis and to explore the effects of changing the size of
the error bars. Then, in Section 4, we present the results obtained from PDS and
UUDS.

For the three simulated datasets, we have chosen values as follows: κ0 = 10−11,
θc = 1, χc = 1.97 × 1012, Tc = 1MK, ρc = 10−12kgr/m3, l = 71.25Mm (which
will give b = 1), Tfoot = 1 along with (α, β)T = (20, 0)T for SDS1, (α, β)T =

(0.68,10)T for SDS2 and (α, β)T = (100.68,−10)T for SDS3. These combinations
for parameters α and β were chosen so that the total heating input for all the
three simulated datasets would be the same. Figure 2 depicts these three heating
functions against normalized distance along half the loop. Figure 3 illustrates that
difference in thermal structure along the loop for the different values of β. The error
bars (0.2MK) were chosen so that we can distinguish between the three different
temperature profiles with 13 data points chosen. We assume that the errors between
the data and the model come from a Normal distribution and that the error bars
represent a “6σ” belief.

3.1. Simulated Dataset 1 (β = 0)

Under the hypothesis H1 we present the summary statistics in Table 1, where the
first column is the estimated mean value of each parameter, the second column is
the parameters’ joint probability density mode (the parameters’ combination that
maximise the posterior distribution), the third column is the standard deviation,
the fourth, fifth and sixth columns are the 2.5%, 50% and 97.5% quantiles, while
the final column displays the actual value used to generate the simulated dataset.
Hence, a 95% credible interval can be constructed from the 2.5% quantile to the
97.5% quantile.

From the joint mode of Table 1 we can see that all the estimates of the parameters
are fairly close to the “known” values. The only parameter that is far away from the
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Figure 2. Heating input as a function of normalized distance (apex at 0.0, base at 0.5), for
α = 0.68, β = 10 (footpoint heating — dashed line), α = 20, β = 0 (uniform heating — solid
line), α = 100.68, β = −10 (apex heating — dotted line).
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Figure 3. Temperature against normalized distance for SDS1 (uniform heating — solid line),
SDS2 (footpoint heating — dashed line) and SDS3 (apex heating — dotted line). The error
bars for all the data points are 0.2MK.
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Table 1. Summary of the posterior inference for hypothesis H1 for the
SDS1.

mean mode s.d. 2.5% 50% 97.5% actual value

b 29.83 15.05 22.77 0.98 24.62 79.03 1.00

α 24.40 21.86 4.95 15.27 24.24 34.57 20.00

β 0.15 0.16 1.17 -2.47 0.25 2.16 0.00

Tfoot 1.01 1.00 0.04 0.94 1.01 1.08 1.00

Table 2. Results for the parameter β from the SDS1 with different error
bars and actual value β = 0.

mean mode s.d. 2.5% 50% 97.5% P (β < 0)

E.B. × 4 -7.22 0.64 6.83 -19.37 -6.55 3.89 0.82

E.B. × 2 -1.18 0.35 2.95 -8.59 -0.62 3.02 0.60

E.B. 0.15 0.16 1.17 -2.47 0.25 2.16 0.41

E.B./2 0.36 0.14 0.61 -0.99 0.42 1.41 0.26

E.B./4 0.38 -0.04 0.38 -0.39 0.39 1.08 0.17

E.B./500 0.00 0.00 0.01 -0.02 0.00 0.02 0.50

given value is b. A 95% credible interval gives b between 0.98 and 79.03. Of course,
this does not imply that the Bayesian approach is inefficient. What this does mean
is that b multiplying the radiative loss component appears to have little effect on the
thermal profile. Essentially, the value of the isobaric pressure can vary greatly but
this has only a small impact on the temperature.

The dispersion of each parameter is correlated with the length of the error bars.
This means that the tighter error bars we have, the smaller the range of parameters
will be (our confidence about the observations will be projected into the parameter
space). This can be seen in Table 2, where in order to test the robustness of this
method we have used SDS1 but with various sizes of error bars and examine how the
main parameter of interest (β) will react to these changes. As expected the smaller
the error bars, the closer we get to the “true” value. This can be seen from the values
of the mean, the joint mode and the median. As the error bars are decreasing so does
the standard deviation and the length of the 95% credible intervals.

In order to test the posterior hypotheses odds we have constructed the Bayes
factors as in Section 2.4. They are computed for our initial size of error bars. Table
3 shows these odds for each of the four hypotheses. It is preferable to use more
than one estimate of the marginal density to calculate the Bayes factors. Thus,
using the Laplace method with robust posterior covariance matrix, we calculated
the odds 25.65 : 2.30 : 1.02 : 1 for the hypotheses H2 : H1 : H4 : H3 respectively.
For example, hypothesis H2 is 25.65 times more likely to occur than hypothesis
H3, whereas hypothesis H2 is 25.65/1.02 ≈ 25.15 times more likely to occur than
hypothesis H4. All of the three estimates suggest that most preferable hypothesis
is β = 0, which comes in accordance with our initial assumption. We come to the
same conclusion with Table 4, where hypothesis β = 0 is the one that minimizes the
information criteria.
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Table 3. Posterior hypotheses odds for the SDS1. Marginal
densities have been calculated from: 1: Laplace method with
posterior covariance matrix, 2: Laplace method with ro-
bust posterior covariance matrix, 3: Monte Carlo estimation
with the probability density from stage 1 as the additional
probability density.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

1 2.31 15.97 1 1.15

2 2.30 25.65 1 1.02

3 2.62 32.75 1.43 1

Table 4. Information criteria for the SDS1.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

AIC -56.53 -58.54 -56.53 -56.52

BIC -54.27 -56.84 -54.27 -54.26

3.2. Simulated Dataset 2 (β = 10)

Now consider applying the same analysis to SDS2, where this time we have a positive
value of β (β = 10).

From Table 5 we see that the initial error bars are sufficient to distinguish between
the different heating function forms. A 95% credible interval for β is between 3.63
and 11.13, whereas the probability of β being positive is one. Again we have fairly
reasonable estimates for the mean values of the parameters, apart from b for which we
can suggest reasons as with SDS1. Bayes factors (Table 6) and information criteria
(Table 7) agree and they both suggest the basal heating model (β > 0).

3.3. Simulated Dataset 3 (β = −10)

Consider now a simulated dataset with the same absolute magnitude of β as with
SDS2, but with different sign (β = −10).

The joint mode vector is (6.09,96.75,−9.22,1.00)T for parameters (b, α, β,
Tfoot)

T (see Table 8), which is close to our initial assumptions. From these summary

Table 5. Summary of the posterior inference for hypothesis H1 for the
SDS2.

mean mode s.d. 2.5% 50% 97.5% actual value

b 15.05 2.16 10.76 0.74 13.07 39.62 1.00

α 3.27 0.79 2.18 0.52 2.77 8.65 0.68

β 6.73 9.66 1.94 3.63 6.47 11.13 10.00

Tfoot 1.02 1.00 0.04 0.94 1.02 1.09 1.00
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Table 6. Posterior hypotheses odds for the SDS2. Marginal
densities have been calculated from: 1: Laplace method with
posterior covariance matrix, 2: Laplace method with ro-
bust posterior covariance matrix, 3: Monte Carlo estimation
with the probability density from stage 1 as the additional
probability density.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

1 1.26×106 29.07 7.66×105 1

2 6.65×105 50.43 6.13×105 1

3 8.85×105 88.31 3.19×105 1

Table 7. Information criteria for the SDS2.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

AIC -56.50 -35.86 -56.50 -33.81

BIC -54.24 -34.17 -54.24 -31.55

statistics the only parameter that is away from the given values is again b, for which
we can assume the same reasoning as with SDS1, whereas the probability for β being
negative this time is one. Bayes factors (Table 9) and information criteria (Table 10)
both pick the apex heating model (β < 0), within the given error bars.

4. Application of Observations

4.1. Priest et al. Dataset

The data values we have used for this example were extracted from Figure 9a of
Priest et al., (2000). In this analysis we assume that the error bars reflect high
degree of confidence. There are a number of important aspects to be kept in mind.
Firstly, the loop under investigation is very long (≈ 700 Mm) yet the hydrostatic
code we employ here ignores gravity, which really should be included. Secondly, there
are important problems with how the observational results themselves are obtained.
The structure widens as one travels from base to apex; therefore one cannot be sure
that you are “sitting” on the same loop structure as one travels along the Priest et al.,

Table 8. Summary of the posterior inference for hypothesis H1 for the SDS3.

mean mode s.d. 2.5% 50% 97.5% actual value

b 24.38 6.09 21.27 0.74 18.11 80.85 1.00

α 107.19 96.75 29.09 66.26 101.36 176.53 100.68

β -9.61 -9.22 3.80 -18.48 -9.00 -3.84 -10.00

Tfoot 1.02 1.00 0.03 0.95 1.02 1.08 1.00
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Table 9. Posterior hypotheses odds for the SDS3. Marginal
densities have been calculated from: 1: Laplace method with
posterior covariance matrix, 2: Laplace method with ro-
bust posterior covariance matrix, 3: Monte Carlo estimation
with the probability density from stage 1 as the additional
probability density.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

1 6.28 ×106 135.88 1 1.16 ×107

2 7.59 ×106 156.74 1 7.40 ×106

3 1.70 ×107 295.51 1 1.73 ×107

Table 10. Information criteria for the SDS3.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

AIC -56.50 -38.13 -35.94 -56.50

BIC -54.24 -36.43 -33.68 -54.24

chosen data points. Thirdly, other papers question how the background emission has
been extracted from the images. Thus, it could be regarded that this dataset is not
very good example for this analysis. However, much interest has been generated by
this paper and Bayesian analysis methods have never before been applied to this
dataset.

Since the only information of the data that we have are the error bars, we assume
a Normal distribution for the data with pri = 0.98, i = 1, . . . 74. The summary
statistics for the four parameters are presented in Tables 11 and 12. From Table
11 we can see that a 95% credible interval for β is between 1.58 and 3.37, which
excludes negative values. In fact the probability of β being negative is P (β < 0) = 0.
Thence, we would expect that H1 and H3 will give almost the same results. Since
there is that high belief that β > 0, it might seem pointless to construct Bayes
factors. However, for the sake of completeness, we have calculated the values which
will be useful for model comparison. Thus, according to Table 12 and using the
Monte Carlo estimation with the probability density from stage 1 of the delayed
rejection algorithm of Mira (2001) as the additional probability density, we obtain
the posterior hypotheses odds 2.13× 107 : 6.17× 106 : 390.96 : 1 for the hypotheses
H3 : H1 : H2 : H4 respectively. AIC and BIC (see Table 13) agree with the Bayes
factors estimates and suggest that H1 and H3 are the best hypotheses. Therefore,
we conclude that we have basal heating for this loop. This comes in contradiction
with the Mackay et al., (2000) conclusion for this specific example. The three fitted
curves of the mean, joint mode and median of hypotheses H1 are depicted in Figure
4.

4.2. Ugarte-Urra Dataset

Using spectral line ratio diagnostic techniques employed upon SOHO/CDS observa-
tions, Ugarte-Urra et al., (2005) determined the electron density along an off-limb
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Table 11. Summary of the posterior inference for H1 for the
PDS.

mean mode s.d. 2.5% 50% 97.5%

b 41.38 3.11 32.68 1.32 33.34 117.73

α 15.74 12.17 3.33 10.77 15.21 23.43

β 2.47 2.73 0.46 1.58 2.46 3.37

Tfoot 1.61 1.61 0.00 1.60 1.61 1.61

Table 12. Posterior hypotheses odds for the PDS. 1:
Laplace method with posterior covariance matrix, 2: Laplace
method with robust posterior covariance matrix, 3: Monte
Carlo estimation with the probability density from stage 1
as the additional probability density.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

1 4.64×106 182.51 4.47×106 1

2 3.99×106 234.04 3.72×106 1

3 6.37×106 390.96 2.13×107 1

coronal loop (see Figure 1 in Ugarte-Urra et al., , 2005 for the specific CDS observa-
tion). Those authors used a 1D hydrostatic model similar to the one utilised in this
paper to generate theoretical density profiles for comparison with the observations.
Using a minimum chi-squared analysis, they concluded that the best fit, minimum
chi-squared case resulted from a heating function that was weighted preferentially
towards the loop base (see Figure 8 in Ugarte-Urra et al., , 2005). This density
profile is reanalysed here but now the model comparison step is undertaken using
the Bayesian analysis method outlined in Section 2.4.

Since the error bars are not symmetric we assume a Gamma distribution for
the data with pri = 0.9973, i = 1 . . . 9. From the summary statistics in Table
14 we can conclude that the model prefers the negative values of β. To support
this we have calculated the probability of β being negative, i.e. P (β < 0) ≈ 0.90.
Table 15 shows the posterior hypotheses odds for each of the four hypotheses. All
of the estimates suggest that the most probable hypothesis is H4. For example,
if we use the Laplace method using the posterior covariance matrix, the posterior
hypotheses odds will be 17.06 : 13.72 : 2.13 : 1 for the hypotheses H4 : H1 : H2 :
H3 respectively. The information criteria (see Table 16) suggest the hypotheses (in
preference order): H2, H3, H4. Note that hypothesis H3 is preferable than hypothesis

Table 13. Information criteria for the PDS.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

AIC 269.50 292.15 269.50 294.44

BIC 278.71 299.07 278.71 303.66
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Figure 4. Observational temperature values and fitted temperature profiles against distance
along the loop for the PDS. The fitted temperature profiles are constructed using the mean
(solid curve), joint mode (dashed curve) and median (dotted curve) values of the parameters
taken from Table 11.

Table 14. Summary of the posterior inference for H1 for the
UUDS.

mean mode s.d. 2.5% 50% 97.5%

b 9.02 4.42 7.50 0.31 7.11 27.52

α 33.61 2.47 19.16 4.15 32.40 76.42

β -10.34 5.16 6.97 -19.85 -11.44 3.60

Tfoot 1.15 1.05 0.06 1.00 1.16 1.26

H4. This is because information criteria are focused only in the natural logarithm of

the likelihood (plus the correction factor), ignoring the parameters dispersion under

each hypothesis. Thus, this result is at odds with the conclusion reached in Ugarte-

Urra et al., (2005) as we shall discuss in the following section. If we consider only the

hypothesis that maximises the likelihood of the data, then hypothesis H3 is the best,

but when we add the correction factor (the factor that has to do with the number of

parameters) hypothesis H2 is much preferable! Figure 5 illustrates the three fitted

curves of the mean, joint mode and median of hypothesis H1 with the observed data

points and error bars.
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Table 15. Posterior hypotheses odds for the UUDS. 1:
Laplace method with posterior covariance matrix, 2: Laplace
method with robust posterior covariance matrix, 3: Monte
Carlo estimation with the probability density from stage 1
as the additional probability density.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

1 13.72 2.13 1 17.06

2 13.54 5.05 1 20.29

3 7.02 8.80 1 21.88

Table 16. Information criteria for the UUDS.

H1 : β 6= 0 H2 : β = 0 H3 : β > 0 H4 : β < 0

AIC -17.30 -18.27 -17.30 -15.79

BIC -16.51 -17.68 -16.51 -15.00
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Figure 5. Observational temperature values and fitted temperature profiles against distance
along the loop for the UUDS. The fitted temperature profiles are constructed using the mean
(solid curve), joint mode (dashed curve) and median (dotted curve) values of the parameters
taken from Table 14.
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5. Discussion and Future Work

In this paper we have presented a new method for comparing observations with
theoretical models for solar astrophysical datasets. Bayesian statistics are generally
more powerful than a χ2 test for the reasons discussed in Section 1. We have examined
the robustness of this method with simulated datasets (Section 3), and demonstrated
how this can be applied in real datasets (Section 4).

The results from our analysis of the PDS (Section 4.1) show conclusively that we
have basal heating for that loop. The combination of 74 observations and narrower
error bars compared with the UUDS mean that all diagnostic assessments strongly
and unequivocally indicate this form of heat input. However, as it has been men-
tioned earlier in this paper, different authors have found different spatial forms of the
heating function for this same loop. This is likely to occur because different analysis
techniques could give different temperature profiles that do not resemble to each
other.

The results of our stochastic analysis of the UUDS (Section 4.2) are inconclusive.
On the one hand, we have found that those techniques which use maximisation to
locate or estimate parameters (AIC or BIC) suggest a uniform heating mechanism
(β = 0). However, if we use an integral approach, e.g. Bayes factors, a negative value
of β is found.

The resolution of this contradiction is probably found in the examination of the
95% credible interval for β which straddles 0. The marginal distribution of β is
negatively skewed, allowing the mode to positive, whilst the majority of the values
are negative (the median value is negative). Essentially this is telling us is that we
cannot make a firm decision as to the heating mechanism (i.e. β negative or positive)
from the UUDS. The error bars are simply too large and/or we have insufficient
number of observations to allow us to make a heating mechanism determination
even with the methodology we have described in this paper.

This leads onto another important point: we need more than one of these diag-
nostic assessment techniques described in this paper in order to be able to make
a rounded reliable judgment on the nature of the heating mechanism. Our recom-
mendation is to use the 95% credible intervals, together with a maximisation and
integration based method. Use of say, the χ2 method alone may lead to a false
conclusion, e.g. with the UUDS we may have decided that a basal heating mechanism
is appropriate for the loop being observed, when in actual fact we can draw no
conclusions as to the mechanism.

The fact that information criteria seem to select β = 0 (uniform heating) as
the hypothesis of choice for UUDS may simply reflect a position of the error bars
being too wide in comparison with the magnitude of β, which in turn determines the
strength of basal or apex heating. Therefore, even if a loop is basally or apex heated,
the size of β may simply be too small to be “detected” by the available data, and,
rather like the null hypothesis in classical statistical testing, a conclusion of “uniform
heating” may be decided upon. Improved data may then come to a very different
conclusion on the same loop!

It is clear from the preceding discussion that the Bayesian MCMC methodology
described in this paper is a significant development in the assessment of solar coronal
loop data. Simply choosing the model paradigm which happens to furnish the min-
imum χ2 value can be problematic. In particular, this Bayesian MCMC approach
allows for a quantitative assessment of the parameters simultaneously.
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However, it must be kept in mind that this model comparison is only as good as
the analysed data to which it is applied. In determining any spatial variation in the
thermal/density structure along a loop and relating this to a model form, the main
drivers are the number of observed data points along the structure under observation
and the size of the error bar associated with each data point. Of course, it is the
case that you would want to maximise one (the number of observations obtained)
and minimise the other (to produce the smallest error bar).

Given that the spatial resolution of new (future) instrumentation are (will be)
an improvement on that considered in this paper, it is likely that the number of
data points along a structure will not be a vital issue, assuming one is dealing with
a loop of reasonable lengh (> 100Mm say). For example, the spatial resolution of
Hinode/EIS is over twice that of SOHO/CDS. Similarly, a decrease in the size of the
associated error bars should occur with greater instrument sensitivity — however,
it is possible that with greater spatial resolution, longer exposure times may be
required.

With this in mind, future work in this area will include examining the density
structure along many loop examples observed by Hinode/EIS. Also, the numerical
scheme will be extended to include gravity, relevant to longer loops.
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