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A B S T R A C T

We measured the bar pattern speed, Vp, of the SB0 galaxy NGC 1023 using the Tremaine–

Weinberg method with stellar-absorption slit spectroscopy. The morphology and kinematics

of the H I gas outside NGC 1023 suggest it suffered a tidal interaction, sometime in the past,

with one of its dwarf companions. At present, however, the optical disc is relaxed. If the disc

had been stabilized by a massive dark matter halo and formed its bar in the interaction, then

the bar would have to be slow. We found Vp ¼ 5:0 ^ 1:8 km s21 arcsec21, so that the bar ends

near its corotation radius. It is therefore rotating rapidly and must have a maximum disc.

Key words: galaxies: elliptical and lenticular, cD – galaxies: haloes – galaxies: individual:

NGC 1023 – galaxies: interactions – galaxies: kinematics and dynamics – galaxies:

photometry.

1 I N T R O D U C T I O N

Strong bars are seen in optical images of roughly 30 per cent of all

high surface brightness (HSB) disc galaxies (Sellwood &

Wilkinson 1993) and this fraction rises to 50–75 per cent in the

near IR (Knapen 1999; Knapen, Shlosman & Peletier 2000;

Eskridge et al. 2000). Understanding the structure and dynamics of

barred (SB) galaxies is, therefore, an issue of some importance.

The principal dynamical quantity for SB galaxies is the rotation

frequency/pattern speed of the bar, Vp. This is usually para-

metrized by the distance-independent ratio R ; DL/aB, where aB

is the semi-major axis of the bar and DL is the radius to the

Lagrangian point, where the gravitational and centrifugal forces

cancel out in the bar’s rest frame. (The Lagrangian radius is

therefore the generalization to strong bars of the corotation radius.)

Contopoulos (1980) argued that a self-consistent bar is possible

only ifR > 1. A bar is termed fast when 1:0 < R & 1:4, while, for

a larger value of R, a bar is said to be slow.

A variety of methods have been used to attempt measurement of

bar pattern speeds (see, for example, the review of Elmegreen

1996). Most measurements of R rely on hydrodynamical

simulations. These usually try to match the gas flow in the region

of the bar, particularly at the shocks, which works because the

location of the shocks depends on R, moving further ahead of the

bar as R increases. A bar needs to be fast for the shocks to remain

curved with their concave sides towards the bar major axis, as is

usually observed (van Albada & Sanders 1982; Athanassoula

1992). Detailed simulations of gas flows in individual galaxies also

result in fast bars; examples include: NGC 1365 ðR ¼ 1:3,

Lindblad, Lindblad & Athanassoula 1996), NGC 1300 ðR ¼ 1:3,

Lindblad & Kristen 1996), and NGC 4123 ðR ¼ 1:2, Weiner,

Sellwood & Williams 2001). Hydrodynamical simulations can also

recover R by matching morphological features in H I; some

examples are NGC 7479 ðR ¼ 1:22, Laine 1996), NGC 1073

ðR ¼ 1–1:2, England, Gottesman & Hunter 1990), NGC 3992

ðR ¼ 1, Hunter et al. 1989), and NGC 5850 ðR ¼ 1:35, Aguerri

et al. 2001).

A direct method for measuring Vp, using a tracer population

which satisfies continuity, was developed by Tremaine & Weinberg

(1984). Since gas is subject to phase changes, it is not well suited

for this application. Old stellar populations in the absence of

significant obscuration, on the other hand, are ideal for the

Tremaine–Weinberg (TW) method. This has permitted application

of the method to a small number of early type SB galaxies: NGC

936 ðR ¼ 1:4 ^ 0:3, Kent 1987 and Merrifield & Kuijken 1995),

NGC 4596 ðR ¼ 1:15þ0:38
20:23, Gerssen et al. 1999) and NGC 7079

ðR ¼ 0:9 ^ 0:15, Debattista & Williams 2001).

The observational evidence, therefore, favours fast bars. The

perturbation theory calculations of Weinberg (1985) predicted that

a fast bar would be slowed down rapidly in the presence of a

massive dark matter (DM) halo. Such slow-down has been seen in

various simulations (Sellwood 1980; Little & Carlberg 1991;

Hernquist & Weinberg 1992; Athanassoula 1996). The fully self-

consistent, high resolution N-body simulations of Debattista &

Sellwood (1998) also confirmed this prediction; however they

showed that, for a maximum disc (here taken to mean a disc which

dominates the rotation curve throughout the inner few disc

scalelengths, cf. van Albada & Sancisi 1986), a fast bar can survive

for a large fraction of a Hubble time. Subsequently, Tremaine &

Ostriker (1999) suggested that bars manage to remain fast not

because discs are maximal but rather because the inner parts of DM

haloes are flattened and rapidly rotating. However, Debattista &PE-mail: debattis@astro.unibas.ch
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Sellwood (2000) showed that rapid slow-down persists even then

unless the halo angular momentum is very large relative to that of

the disc. Thus they concluded that SB galaxies must be maximal,

and argued that the same must be true for all high surface

brightness disc galaxies.

This conclusion rests on a small number of pattern speed

measurements; in view of the fact that maximum discs are in

conflict with the predictions of cold dark matter (CDM)

cosmologies (e.g. Navarro, Frenk & White 1997), enlarging the

sample of measured pattern speeds is desirable. In this paper, we

report observations of NGC 1023, for which we applied the TW

method.

The rest of this paper is organized as follows. The TW method is

described briefly in Section 2. Then, in Section 3 we give an

overview of the previously known properties of NGC 1023. The

photometric observations, reduction and results, including aB, are

presented in Section 4, while Section 5 presents the spectroscopic

observations and results. We derive the rotation curve, corrected

for the asymmetric drift, from which we obtain DL. With these

results at hand, we then apply the TW method in Section 6. We

present our conclusions in Section 7.

2 T H E T R E M A I N E – W E I N B E R G M E T H O D

The TW method is contained in the following simple equation:

Vp sin i ¼

ð1

21

hðYÞ

ð1

21

SðX; YÞVlosðX; YÞ dX dYð1

21

hðYÞ

ð1

21

SðX;YÞX dX dY

; ð1Þ

where i is the inclination of the galaxy, Vlos is the line-of-sight

(minus systemic) velocity, S is the surface brightness, h is an

arbitrary weighting function and (X, Y) are coordinates on the sky,

centred on the galaxy, along the apparent major and minor axes of

the disc, respectively. Slit observations are equivalent to

hðYÞ / dðY 2 YslitÞ. Application of equation 1 presents three

main difficulties.

(i) Centring errors. As was already recognized by Tremaine &

Weinberg (1984), small errors in identifying either the centre or the

systemic velocity of the galaxy can significantly affect the value of

Vp obtained. Noting that most SB galaxies are nearly point-

symmetric about their centres, Tremaine & Weinberg (1984)

suggested using a weighting function which is odd in Y to counter

this problem. Merrifield & Kuijken (1995) used a different, and

somewhat better, strategy. Noting that the integrals in equation 1

represent luminosity-weighted averages, they rewrote equation 1 as

Vp sin iðX 2 XcÞ ¼ V 2 V sys; ð2Þ

where V and X are the luminosity-weighted averages relative to an

arbitrary frame, in which the galaxy centre is (Xc, Yc) and the

systemic velocity is Vsys. Plotting V against X then gives a straight

line with slope Vp sin i. With this approach, the problem of centring

errors becomes one of fixing an arbitrary reference position and

velocity frame common to all the slits, which in general is much

easier to achieve.

(ii) Small signal-to-noise ratios. V and X measure differences

across X ¼ 0 and are, therefore, susceptible to noise. This is

particularly true for V, for which the non-axisymmetric part of Vlos

is not much larger than typical measurement errors. Merrifield &

Kuijken (1995) overcame this problem by projecting their slit spectra

along the spatial direction thereby increasing the signal-to-noise

ratio of V significantly. This projection amounts to carrying out the

required velocity integral directly in photon space. The signal in X
is typically much better constrained, since bars tend to be bright.

(iii) Sensitivity to errors in the position angle of the disc. This

was first recognized by Debattista & Williams (in preparation).

They used two-dimensional Fabry–Perot absorption-line spec-

troscopy of NGC 7079 to show that small errors in the derived

position angle (PA) of the disc translate into large errors in Vp. For

example, for NGC 7079, they found that an error of as little as 58 in

the disc PA would result in an error of 100 per cent in Vp. As the

Table 1. Log of the surface
photometry observations.

Filter Date texp

(s)

B 27 Dec 2000 3 £ 900
28 Dec 2000 900

V 28 Dec 2000 4 £ 480
I 27 Dec 2000 20 £ 180

28 Dec 2000 10 £ 180

Figure 1. The B-band image (top) and B 2 I colour map (bottom) of NGC

1023. In the B-band image, the overplotted full line is the major axis

ðPA ¼ 808:2Þ, while the minor axis is indicated by the dot-dashed line. The

offset slits, parallel to the major axis and shifted by 12 arcsec to the north

and 16 arcsec to the south, are shown by dashed lines. The companion

galaxy NGC 1023A can be seen to the east, just south of the major axis. The

contour levels shows are mB ¼ 18 to 22 mag arcsec22, at unit intervals, with

the outermost contour being mB ¼ 22 mag arcsec22. The B 2 I map shows

that the strongest colour variations are associated with the bulge (which is

red) and NGC 1023A (which is blue).

66 V. P. Debattista, E. M. Corsini and J. A. L. Aguerri

q 2002 RAS, MNRAS 332, 65–77



uncertainties in published values of PA for disc galaxies are often at

the 58 level, each application of the TW method requires careful

measurement of the disc PA. Highly inclined galaxies and galaxies

in which the bar is at about 458 to the disc major axis, are less

sensitive to errors in disc PA. We note that past applications of the

TW method using slits have been to well studied galaxies

(Merrifield & Kuijken 1995; Gerssen et al. 1999), so that it is very

unlikely that large errors of this type were introduced.

In this work, we have followed the prescriptions of Merrifield &

Kuijken (1995) to deal with the centring and signal-to-noise ratio

problems. We dealt with the sensitivity to errors in disc PA by

obtaining deep surface photometry of NGC 1023 in advance of the

spectroscopy.

3 G L O B A L P R O P E RT I E S O F N G C 1 0 2 3

NGC 1023 (UGC 2154) is a highly inclined lenticular galaxy

classified as SB0 by Nilson (1973), as SB01(5) by Sandage &

Tammann (1981), and as SB02(rs) by de Vaucouleurs et al. (1991,

hereafter RC3). Its total B-band magnitude is BT ¼ 10:35 (RC3),

which, after correcting for inclination and extinction, corresponds

to M0
BT
¼ 219:96 for an adopted distance of 10.2 Mpc (Faber et al.

1997; H0 ¼ 80 km s21 Mpc21Þ.

NGC 1023 is the brightest member of the LGG 70 group (Garcia

1993). Its closest companion, designated NGC 1023A by Hart,

Davies & Johnson (1980), is a low-luminosity condensation

located near the eastern end of the major axis. The centres of the

two objects are separated by an angular distance of 2.7 arcmin

(RC3), corresponding to a projected linear distance of about 8 kpc

at 10.2 Mpc. The proximity of NGC 1023A to NGC 1023 led Arp

(1966) to include NGC 1023 in the section of his Atlas of Peculiar

Galaxies (Plate 135) devoted to E-like galaxies with nearby

fragments. NGC 1023A was recognized as an individual galaxy by

Barbon & Capaccioli (1975) and classified as Magellanic irregular

or late-type dwarf galaxy by Capaccioli, Lorenz & Afanasiev

(1986). High resolution radio observations by Sancisi et al. (1984)

found a complex structure and kinematics for the neutral hydrogen.

Most of it was shown to be outside the galaxy and consists of tails

and bridges connecting NGC 1023 to three companions, including

NGC 1023A. This morphology suggests an interaction with NGC

Figure 2. Surface brightness (top left), colour (top right), ellipticity (centre left) and PA (centre right) radial profiles of the ellipse fits to the isophotes of NGC

1023. The full, dotted and dashed lines show results for I, Vand B bands respectively. The bottom two panels show the I-band ellipticity (left) and PA (right) for

R $ 80 arcsec, which we averaged to determine the inclination and PA of the disc. The solid lines represent the average values in the range e ¼ 0:595

(corresponding to i ¼ 668:4Þ and PA ¼ 808:2.
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1023A, a conclusion also reached by Capaccioli et al. (1986).

Although it is rich in neutral hydrogen, NGC 1023 is undetected in

ionized (Pogge & Eskridge 1993; Sánchez-Portal et al. 2000) and

molecular gas (Sofue et al. 1993; Taniguchi et al. 1994), making

application of the TW method to it possible.

Surface photometry of NGC 1023 has been obtained in several

optical (e.g. Barbon & Capaccioli 1975; Kormendy 1985; Lauer

et al. 1995; Sánchez-Portal et al. 2000; Bower et al. 2001) and near-

infrared bands (Möllenhoff & Heidt 2001). Detailed stellar

kinematics have been measured by Simien & Prugniel (1997,

PA ¼ 878; 1778Þ, Neistein et al. (1999, PA ¼ 878Þ, and recently by

Bower et al. (2001, PA ¼ 08; 458; 908Þ, who inferred the presence

of a supermassive black hole of 4 £ 107 M( by three-integral,

axisymmetric modelling. Sil’chenko (1999) observed the circum-

nuclear region of NGC 1023 via two-dimensional spectroscopy,

disentangling a kinematically and chemically decoupled stellar

disc (with a radius of 80 pc). The stars of this nuclear disc have a

mean age of 7 Gyr and are substantially younger than the rest of the

galaxy, which is characterized by extremely red integrated colours

(RC3) and without global star formation (Pogge & Eskridge 1993).

4 S U R FAC E P H OT O M E T RY A N D DATA

R E D U C T I O N

4.1 Observations and reduction

We observed NGC 1023 during 2000 December 27–28 at the 1-m

Jacobus Kapteyn Telescope (JKT) located at the Roque de los

Muchachos Observatory (ORM), La Palma. The detector consisted

of a SITe2 device, with 2048 £ 2048 pixels and an image scale of

0.33 arcsec pixel21, giving an unvignetted field of view of about

10 £ 10 arcmin2. The seeing during the observing run varied from 1

to 1.5 arcsec. Table 1 gives the log of the photometric observations.

The galaxy was imaged using the Harris B, V and I bandpasses.

Deep observations were taken in all filters, reaching mI .
22 mag arcsec22 and mB . 24 mag arcsec22.

The images were reduced using standard IRAF
1 tasks. A run of

10 bias images was obtained each night, which were combined into

Figure 3. Fourier analysis of the deprojected I-band light distribution of NGC 1023. The top left panel shows the relative amplitudes of the m ¼ 1 to m ¼ 4

Fourier components, which reveals that m ¼ 2 dominates. The top right panel shows the phase angle of the m ¼ 2 Fourier component; inside R . 30 arcsec, the

system is clearly dominated by the spheroidal bulge, which deprojects into a feature along the minor axis. In the range 50 arcsec & R & 70 arcsec, u2 reaches a

minimum of ,658, but is not constant anywhere. The panel on the bottom left shows the bar/interbar intensity ratio. The dashed line indicates half of the peak

intensity (excluding the peak at R , 30 arcsec since this is an artefact of the bulge deprojection). The bottom right panel shows an alternative measure of aB,

based on the deprojected ellipticities, e 0; the sharp break in e 0 at semi-major axis .69 arcsec (indicated by the vertical dashed line) is identified as aB. In this

panel, the upper, central and lower set of points correspond to a deprojection assuming i ¼ 658:2, 668:4 and 678:6 respectively.

1
IRAF is distributed by NOAO, which is operated by AURA Inc., under

contract with the National Science Foundation.
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a single bias frame and subtracted from the object frames. The

images were flat-fielded using sky flats taken in all filters at the

beginning and end of each observing night. The sky background

level was removed by fitting a second-order polynomial to the

regions free of sources in the images.

For the photometric calibration of the galaxies, standard stars

of known magnitudes were observed. The calibration constant

includes corrections for atmospheric and Galactic extinction, and a

colour term. No attempt was made to correct for internal extinc-

tion. The atmospheric extinction was taken from the differential

aerosol extinction for the ORM (King 1985). The Galactic

extinction in the B band was taken from Schlegel, Finkbeiner &

Davis (1998). We used the Galactic extinction law from Cardelli,

Clayton & Mathis (1989) in order to get the extinction in the other

filters.

Fig. 1 shows the reduced image of the galaxy in the B band and

the B 2 I colour map image.

4.2 Isophotal analysis and bar length

We analysed the isophotal profiles of the galaxy by masking NGC

1023A and the foreground stars, then fitting ellipses using the IRAF

task ELLIPSE. We first allowed the centres of the ellipses to vary, to

test whether the optical disc is disturbed. Within the errors of the

fits, we found no evidence of a varying centre. Thus the inner disc

of NGC 1023 has had enough time to settle if it had been disturbed

in the tidal interaction suggested by the H I. The ellipse fits were

therefore repeated with the ellipse centres fixed; the resulting

azimuthally averaged surface brightness, B 2 I colour, ellipticity

and PA profiles are plotted in Fig. 2. These are in good agreement

with the surface photometry of Sánchez-Portal et al. (2000),

although our surface photometry reaches fainter surface brightness.

The PA and ellipticity profiles are similar for all bandpasses,

suggesting that there is little, or uniform, obscuration, as required

for the TW method. Furthermore, at large radii, the B 2 I profile

(see Fig. 2) is flat, which is further evidence of little obscuration.

The only structure seen in the B 2 I profile is a small gradient in

the region where the bulge and bar dominate. This gradient is in the

sense of a bulge redder than the disc, which is most likely caused

by an age difference between the bulge and disc stellar populations.

There is also a small colour gradient in the bar region, but the

colour variation is not patchy and is therefore unlikely to be caused

by dust. We fitted the PA and inclination of the disc by averaging

the I-band data at semi-major axis greater than 80 arcsec, finding

PA ¼ 808:2 ^ 08:5 and i ¼ 668:4 ^ 18:2. Application of the TW

method generally requires a PA measured to ,58 accuracy

(Debattista & Williams, in preparation); we note that the value of

the PA given in the RC3 is 878. Our value of the PA is in very good

agreement with that measured by Möllenhoff & Heidt (2001), who

found PA ¼ 798:15 in the J band, 808:42 in the H band, and 788:84

in the K band, for an average of 798:5 ^ 08:7.

We measured the disc exponential scalelength, Rd, from our

I-band surface photometry in the region outside the bar

ðR $ 80 arcsecÞ. We obtained Rd ¼ 59 arcsec, corresponding to

2.9 kpc at our assumed distance.

The most natural way to measure aB is with a Fourier analysis of

the azimuthal luminosity profile (Ohta, Masaru & Wakamatsu

1990; Aguerri et al. 2000), which we have applied here. We began

by deprojecting the I-band image of the galaxy by a flux-

conserving stretch along the minor axis by the factor 1=cos i. NGC

1023 contains a significant spheroidal bulge: the bulge-disc model

decompositions of Möllenhoff & Heidt (2001) for this galaxy have

a bulge that accounts for about 30 per cent to 50 per cent of the

near-infrared light. Since we have not attempted to subtract the

bulge, we expect that, in deprojection, it appears as a structure

elongated with the minor axis, dominating the centre of the galaxy.

We then decomposed the deprojected luminosity profile, I(R, f),

where (R, f) are plane polar coordinates in the galaxy frame, into a

Fourier series:

IðR;fÞ ¼
A0ðRÞ

2
þ
X1
m¼1

½AmðRÞ cosðmfÞ þ BmðRÞ sinðmfÞ� ð3Þ

where the coefficients are defined by

AmðRÞ ¼
1

p

ð2p

0

IðR;fÞ cosðmfÞ df ð4Þ

Figure 4. Best-fitting ellipses to the I-band isophotes (a) before and (b) after

deprojection to the NGC 1023 disc plane ði ¼ 668:4 and PA ¼ 808:2Þ. The

system has been rotated so that the disc major axis is horizontal. Bold-line

ellipses have deprojected semi-major axes of 60, 70 and 80 arcsec; the

straight lines indicate the major axes of these three ellipses.
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Table 2. Stellar kinematics of NGC 1023. These data are plotted in Fig. 5.

r v s h3 h4 r v s h3 h4

[00] [km s21] [km s21] [00] [km s21] [km s21]

25.89 497.4 ^ 16.8 164.7 ^ 18.2 0.068 ^ 0.091 20.044 ^ 0.106
Major Axis 31.20 475.4 ^ 18.1 137.7 ^ 15.5 0.063 ^ 0.136 20.072 ^ 0.128

38.25 438.6 ^ 15.5 115.9 ^ 11.8 0.082 ^ 0.127 20.067 ^ 0.107
2108.76 852.3 ^ 42.5 95.8 ^ 27.9 20.090 ^ 0.232 20.365 ^ 0.200 48.38 430.4 ^ 11.4 82.4 ^ 9.9 20.020 ^ 0.105 20.073 ^ 0.071
282.56 834.8 ^ 28.5 98.1 ^ 19.2 20.109 ^ 0.200 20.171 ^ 0.271 64.33 403.5 ^ 19.9 85.2 ^ 13.6 0.119 ^ 0.165 20.148 ^ 0.130
259.33 791.9 ^ 24.5 114.1 ^ 20.2 20.040 ^ 0.194 20.060 ^ 0.103 89.29 407.5 ^ 28.0 92.6 ^ 19.0 0.148 ^ 0.199 20.161 ^ 0.327
245.82 808.1 ^ 18.5 107.3 ^ 15.4 20.091 ^ 0.150 20.085 ^ 0.118 112.90 392.2 ^ 45.5 84.7 ^ 30.8 0.311 ^ 0.277 20.172 ^ 0.356
236.62 783.6 ^ 16.4 123.6 ^ 13.2 20.040 ^ 0.151 20.053 ^ 0.123
229.99 738.7 ^ 19.4 154.1 ^ 16.2 20.063 ^ 0.112 20.072 ^ 0.127 1200 North Offset
224.93 725.0 ^ 15.7 168.3 ^ 15.2 0.046 ^ 0.078 20.082 ^ 0.099
220.98 720.3 ^ 17.7 164.9 ^ 18.3 20.019 ^ 0.066 20.003 ^ 0.104 278.35 814.6 ^ 41.8 121.2 ^ 50.2 20.057 ^ 0.233 20.073 ^ 0.231
217.83 717.0 ^ 17.0 164.8 ^ 14.6 20.023 ^ 0.086 20.104 ^ 0.114 256.44 809.1 ^ 32.8 109.5 ^ 28.5 0.024 ^ 0.211 20.107 ^ 0.170
215.37 716.4 ^ 13.7 166.8 ^ 14.1 0.047 ^ 0.064 20.057 ^ 0.087 243.07 760.6 ^ 30.4 111.4 ^ 22.5 20.109 ^ 0.217 20.107 ^ 0.145
213.32 717.4 ^ 14.4 168.9 ^ 16.1 0.028 ^ 0.059 20.012 ^ 0.086 234.80 743.5 ^ 28.5 126.2 ^ 18.8 0.046 ^ 0.140 20.097 ^ 0.194
211.53 713.1 ^ 13.1 160.8 ^ 12.9 20.041 ^ 0.057 20.025 ^ 0.083 228.68 714.1 ^ 27.6 125.0 ^ 17.1 0.020 ^ 0.137 20.162 ^ 0.194
210.02 703.1 ^ 12.4 191.4 ^ 12.3 0.014 ^ 0.043 20.029 ^ 0.048 223.61 709.2 ^ 27.1 118.7 ^ 21.7 20.014 ^ 0.168 20.079 ^ 0.206

28.79 685.3 ^ 12.2 192.1 ^ 10.5 0.007 ^ 0.043 20.071 ^ 0.051 219.23 669.9 ^ 23.6 154.7 ^ 17.6 0.078 ^ 0.122 20.126 ^ 0.145
27.69 693.1 ^ 13.9 189.1 ^ 14.0 0.002 ^ 0.048 20.030 ^ 0.056 215.39 682.0 ^ 17.3 146.6 ^ 14.3 0.019 ^ 0.088 20.100 ^ 0.129
26.74 695.1 ^ 12.2 191.3 ^ 11.7 20.010 ^ 0.041 20.024 ^ 0.045 212.11 653.2 ^ 15.9 143.7 ^ 13.6 0.010 ^ 0.081 20.078 ^ 0.119
25.91 691.8 ^ 11.0 173.2 ^ 12.2 20.019 ^ 0.043 20.001 ^ 0.058 29.22 650.4 ^ 19.0 149.4 ^ 16.8 20.015 ^ 0.086 20.047 ^ 0.118
25.08 668.9 ^ 12.9 191.4 ^ 12.8 20.024 ^ 0.043 20.017 ^ 0.048 26.49 636.1 ^ 17.5 171.1 ^ 17.5 0.081 ^ 0.078 20.032 ^ 0.084
24.40 670.7 ^ 13.0 181.4 ^ 14.9 0.013 ^ 0.047 0.004 ^ 0.059 23.88 626.6 ^ 17.8 186.2 ^ 19.7 0.003 ^ 0.066 0.000 ^ 0.074
23.85 660.2 ^ 12.6 200.7 ^ 12.1 20.005 ^ 0.042 20.022 ^ 0.042 21.40 602.2 ^ 14.5 176.6 ^ 14.3 0.033 ^ 0.057 20.028 ^ 0.069
23.30 665.0 ^ 10.6 200.2 ^ 9.9 20.032 ^ 0.035 20.013 ^ 0.035 1.07 592.4 ^ 14.7 159.9 ^ 13.8 0.036 ^ 0.064 20.034 ^ 0.081
22.75 669.6 ^ 11.5 196.0 ^ 10.3 20.022 ^ 0.039 20.036 ^ 0.040 3.53 585.8 ^ 16.9 167.8 ^ 17.3 0.029 ^ 0.069 20.018 ^ 0.083
22.34 681.8 ^ 12.7 194.3 ^ 12.9 20.028 ^ 0.041 20.003 ^ 0.045 6.13 539.7 ^ 16.3 177.7 ^ 15.6 0.069 ^ 0.067 20.056 ^ 0.080
22.07 674.1 ^ 11.3 198.6 ^ 12.5 0.004 ^ 0.037 0.019 ^ 0.041 9.02 522.3 ^ 19.0 152.1 ^ 17.1 20.063 ^ 0.085 20.043 ^ 0.112
21.79 672.3 ^ 11.8 199.6 ^ 11.1 20.040 ^ 0.039 20.019 ^ 0.039 12.29 542.2 ^ 15.9 162.3 ^ 16.6 0.036 ^ 0.067 0.004 ^ 0.082
21.52 674.0 ^ 10.3 203.1 ^ 10.7 20.030 ^ 0.033 0.017 ^ 0.035 16.12 547.4 ^ 18.2 176.4 ^ 18.7 0.036 ^ 0.071 20.030 ^ 0.084
21.24 683.3 ^ 11.3 208.2 ^ 10.2 20.027 ^ 0.038 20.029 ^ 0.035 20.76 507.8 ^ 21.4 131.6 ^ 14.1 0.046 ^ 0.141 20.122 ^ 0.154
20.97 681.2 ^ 11.2 202.6 ^ 10.5 20.030 ^ 0.037 20.016 ^ 0.036 26.72 483.6 ^ 29.1 138.1 ^ 20.0 0.048 ^ 0.136 20.122 ^ 0.162
20.69 661.3 ^ 12.2 224.3 ^ 11.1 20.008 ^ 0.042 20.029 ^ 0.037 34.99 446.8 ^ 24.0 99.0 ^ 14.0 0.058 ^ 0.213 20.191 ^ 0.132
20.42 648.1 ^ 10.5 216.1 ^ 10.5 20.024 ^ 0.034 0.005 ^ 0.033 47.61 416.4 ^ 57.6 117.4 ^ 46.8 0.158 ^ 0.236 20.122 ^ 0.192
20.14 615.9 ^ 23.2 247.0 ^ 32.0 0.020 ^ 0.131 0.041 ^ 0.113 66.86 414.1 ^ 27.1 68.4 ^ 20.1 20.058 ^ 0.255 20.161 ^ 0.119

0.13 609.5 ^ 25.3 236.3 ^ 29.6 0.064 ^ 0.100 20.002 ^ 0.076 96.37 424.1 ^ 32.3 55.7 ^ 31.0 0.001 ^ 0.230 20.167 ^ 0.165
0.41 558.6 ^ 9.2 215.1 ^ 10.2 0.124 ^ 0.031 20.002 ^ 0.036
0.68 550.7 ^ 9.4 215.5 ^ 9.7 0.082 ^ 0.032 20.001 ^ 0.033 1600 South Offset
0.96 534.0 ^ 10.6 211.9 ^ 10.7 0.062 ^ 0.037 20.011 ^ 0.037
1.23 532.8 ^ 10.1 200.7 ^ 10.8 0.066 ^ 0.036 20.011 ^ 0.040 296.43 834.8 ^ 38.4 79.1 ^ 25.4 20.075 ^ 0.250 20.270 ^ 0.179
1.51 536.2 ^ 10.1 205.6 ^ 11.3 0.083 ^ 0.035 0.003 ^ 0.039 275.58 800.9 ^ 37.1 77.9 ^ 21.6 0.006 ^ 0.199 20.311 ^ 0.223
1.78 527.2 ^ 11.7 211.4 ^ 10.9 0.019 ^ 0.040 20.028 ^ 0.038 253.66 793.2 ^ 29.8 94.7 ^ 26.1 20.029 ^ 0.206 20.079 ^ 0.140
2.06 527.3 ^ 15.7 211.5 ^ 16.4 0.020 ^ 0.053 20.006 ^ 0.052 238.07 779.7 ^ 28.9 88.7 ^ 18.8 0.029 ^ 0.224 20.109 ^ 0.128
2.33 529.1 ^ 12.2 213.2 ^ 12.0 0.052 ^ 0.042 20.012 ^ 0.040 228.42 786.6 ^ 28.3 100.5 ^ 16.7 0.020 ^ 0.218 20.107 ^ 0.112
2.61 534.5 ^ 13.6 206.3 ^ 16.4 0.116 ^ 0.048 0.019 ^ 0.056 221.04 711.6 ^ 30.2 152.8 ^ 27.2 20.053 ^ 0.178 20.086 ^ 0.135
3.01 552.2 ^ 12.0 207.6 ^ 15.6 0.097 ^ 0.039 0.066 ^ 0.048 215.18 704.1 ^ 28.8 134.2 ^ 27.2 20.052 ^ 0.186 0.009 ^ 0.128
3.56 550.0 ^ 11.7 210.8 ^ 12.0 0.040 ^ 0.040 20.004 ^ 0.040 210.40 647.1 ^ 27.0 154.9 ^ 21.1 20.094 ^ 0.184 20.152 ^ 0.145
4.11 549.5 ^ 11.3 211.7 ^ 11.4 0.058 ^ 0.039 20.009 ^ 0.039 26.15 654.5 ^ 21.9 145.5 ^ 20.2 20.029 ^ 0.140 20.040 ^ 0.132
4.66 533.6 ^ 11.7 194.4 ^ 13.4 0.046 ^ 0.041 0.009 ^ 0.047 22.18 633.8 ^ 30.8 164.8 ^ 24.3 20.104 ^ 0.158 20.134 ^ 0.162
5.35 538.3 ^ 9.0 196.4 ^ 10.7 0.111 ^ 0.036 20.038 ^ 0.045 1.52 606.4 ^ 23.7 163.1 ^ 18.2 0.150 ^ 0.131 20.186 ^ 0.154
6.17 531.4 ^ 13.4 204.0 ^ 14.8 20.017 ^ 0.043 0.017 ^ 0.046 5.23 594.6 ^ 18.0 140.3 ^ 16.0 20.056 ^ 0.140 20.057 ^ 0.113
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and

BmðRÞ ¼
1

p

ð2p

0

IðR;fÞ sinðmfÞ df: ð5Þ

The Fourier amplitude of the mth component is defined as

ImðRÞ ¼

A0ðRÞ=2; m ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

mðRÞ þ B2
mðRÞ

q
; m – 0:

8<: ð6Þ

Fig. 3 shows the first ðm ¼ 1; 2; 3; 4Þ relative Fourier amplitudes,

Im/I0, of the I-band image as a function of R. The bar is evidenced

by a strong m ¼ 2 component. Fig. 3 also shows the bar/interbar

intensity as a function of R. The bar intensity, Ib, is defined as the

sum of the even Fourier components, I0 þ I2, while the interbar

intensity, Iib, is given by I0 2 I2 (Ohta et al. 1990; Elmegreen &

Elmegreen 1990; Aguerri et al. 2000). Ohta et al. (1990) arbitrarily

defined aB as the outer radius for which Ib/Iib ¼ 2; as Aguerri et al.

(2000) pointed out, a fixed value of Ib/Iib cannot account for the

wide variety of bar luminosities present in galaxies. Instead,

Aguerri et al. (2000) defined aB as the full width at half maximum

(FWHM) of the curve of Ib/Iib. Using this definition, but excluding

the peak in Ib/Iib resulting from the deprojected bulge, we obtain

aB ¼ 69 ^ 5 arcsec. The phase angle, u2ðRÞ ¼ tan21½A2ðRÞ/B2ðRÞ�;

of the m ¼ 2 component is shown in Fig. 3. The bulge dominates in

the inner 20 arcsec (with u2 < 908, as expected), with a transition

from bulge to bar occurring in the range 20 arcsec & R &

50 arcsec: In the region 50 arcsec & R & 70 arcsec, u2 has a

minimum, implying the bar extends to somewhere here. However,

u2 is not constant, because of the influence of the bulge and the

disc, and it cannot be used to determine aB.

A independent measure of aB was obtained by deprojecting the

ellipses which best fit the isophotes, averaging over the three

bands, and examining the deprojected ellipticity, e 0, as shown in

Fig. 3. We find a sharp break in the slope of e 0 at 69 ^ 3 arcsec,

which we identify as the end of the bar. We repeated this

experiment, deprojecting with different i and PA within the

standard errors of these quantities. The errors in PA do not

significantly change the semi-major axis at which the break occurs,

while those in i lead to changes in the break semi-major axis of

,3 arcsec. Thus, our second estimate of aB ¼ 69 ^ 4 arcsec. Fig. 4

plots the projected and deprojected ellipses, from which the change

at semi-major axis ,70 arcsec can be discerned.

Outside the inner 5 arcsec, the largest twist arising from the bar

of the isophotes away from the sky-plane major axis is only .88,

which occurs at 40 arcsec. We measured the bar’s intrinsic angle

from the major axis, cbar, in the radial range 55 to 70 arcsec,

averaged over the three bands. Owing to the contamination from

the bulge, the deprojected isophotal ellipses are not constant in this

range, so we used as the uncertainty in cbar the largest deviation

from the average. Thus we obtained cbar ¼ 102 ^ 28, so that the

bar is only some 128 from the minor axis, as can be seen in Fig. 4.

This bar orientation, together with the large inclination and strong

bulge, tend to obstruct our view of the bar. In this sense, NGC 1023

is not an ideal candidate for the TW method, and the expected

values of V and X are likely to be small, as we show in Section 6.

For this combination of inclination and cbar, Debattista (in

preparation) suggests an accuracy of ,28:5 in PA is required for

accurate measurement of Vp.T
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5 L O N G - S L I T S P E C T R O S C O P Y

5.1 Observations and data reduction

The spectroscopic observations of NGC 1023 were carried out at

the ORM in La Palma, with the 3.6-m Telescopio Nazionale

Galileo on 2001 February 1–2. The telescope mounted the Low

Resolution Spectrograph (DOLORES). The HR-V grism No. 6

with 600 groove mm21 was used in combination with the

0:7 arcsec £ 8:1 arcmin slit and the thinned and back-illuminated

Loral CCD with 2048 £ 2048 pixels of 15 £ 15mm2. The

wavelength range between 4697 and 6840 Å was covered with a

reciprocal dispersion of 1.055 Å pixel21, which guarantees an

adequate oversampling of the instrumental broadening function.

Indeed, the instrumental resolution, obtained by measuring the

width of emission lines of a comparison spectrum after the

wavelength calibration, was 3.10 Å (FWHM). This corresponds to

an instrumental dispersion s ¼ 1:32 �A (i.e. ,80 and ,60 km s21

at the blue and red edges of the spectra, respectively). The angular

sampling was 0.275 arcsec pixel21.

We obtained two 30-min spectra with the slit along the major

axis ðPA ¼ 808Þ and two offset spectra with the slit parallel to the

major axis and shifted by 12 arcsec northward and 16 arcsec

southward. The exposure time of each offset spectrum was 60 min.

During the observing run, we took spectra of the giant stars HR

2035 (G8III), HR 2429 (K1III), HR 2503 (K4III), HR 2701

(K0III), and HR 5370 (K3III) to use as templates in measuring the

stellar kinematics. At the beginning of each exposure, the slit was

positioned by acquiring with DOLORES a series of target images.

A spectrum of the comparison helium arc lamp was taken after

Figure 5. Stellar kinematics of NGC 1023. Each column shows the radial profiles of the four Gauss–Hermite moments (V, s, h3 and h4) we measured along a

given slit position. In the top panels the horizontal dashed line indicates the heliocentric systemic velocity of the NGC 1023. All velocities are plotted as

observed, without correcting for the inclination. The full data are given in Table 2.

Table 3. The values of V and X for the three
slits.

Offset X V
(arcsec) (km s21)

12 arcsec N 21.82 ^ 0.13 619.1 ^ 5.4
Major axis þ0.05 ^ 0.06 614.5 ^ 2.2
16 arcsec S þ1.90 ^ 0.25 603.7 ^ 3.0
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each target exposure to allow an accurate wavelength calibration.

The value of the seeing FWHM during the galaxy exposures ranged

between 0.7 and 1.0 arcsec as measured by fitting a two-

dimensional Gaussian to the guide star.

All the spectra were bias-subtracted, flat-field corrected, cleaned

of cosmic rays and wavelength-calibrated using standard MIDAS
2

routines. The bias level was determined from the bias frames

obtained during the observing nights to check the CCD status. The

flat-field correction was performed by means of both quartz lamp

and twilight sky spectra, which were normalized and divided into

all the spectra, to correct for pixel-to-pixel sensitivity variations

and large-scale illumination patterns arising from slit vignetting.

Cosmic rays were identified by comparing the counts in each pixel

with the local mean and standard deviation (as obtained from

Poisson statistics by taking into account the gain and read-out noise

of the detector) and then corrected by interpolating over. The

residual cosmic rays were corrected by manually editing the

spectra. The wavelength calibration was performed by means of

the MIDAS package XLONG. Each spectrum was rebinned using the

wavelength solution obtained from the corresponding arc-lamp

spectrum. We checked that the wavelength rebinning had been

done properly by measuring the difference between the measured

and predicted wavelengths (Osterbrock et al. 1996) for the

brightest night-sky emission lines in the observed spectral range.

The resulting accuracy in the wavelength calibration is ,1 km s21.

The major-axis spectra were coadded using the centre of the stellar

continuum as reference. In the resulting spectra, the contribution of

the sky was determined by interpolating along the outermost

20 arcsec at the two edges of the slit, where the galaxy light was

negligible, and then subtracted.

5.2 Stellar kinematics

We measured the stellar kinematics from the galaxy absorption

features present in the wavelength range running from

4697–5570 �A and centred on the Mg line triplet (ll 5164, 5173,

5184 Å). The spectra were rebinned along the spatial direction to

obtain a nearly constant signal-to-noise ratio larger than 20 per

resolution element (with a peak of 50 in the innermost regions of

the major axis spectrum). At the outermost radii the signal-to-noise

ratio decreases to ,10. The galaxy continuum was removed row-

by-row by fitting a fourth to sixth order polynomial.

We used the Fourier Correlation Quotient method (FCQ, Bender

1990) following the prescriptions of Bender, Saglia & Gerhard

(1994) and adopting HR 2035 as kinematical template. This

allowed us to derive, for each spectrum, the line-of-sight velocity

distribution (LOSVD) along the slit and to measure its moments,

namely the radial velocity v, the velocity dispersion s and the

values of the coefficients h3 and h4. At each radius, they have been

derived by fitting the LOSVD with a Gaussian plus third- and

fourth-order Gauss–Hermite polynomials H3 and H4, which

describe the asymmetric and symmetric deviations of the LOSVD

from a pure Gaussian profile (van der Marel & Franx 1993;

Gerhard 1993). We derived errors on the LOSVD moments from

photon statistics and CCD read-out noise, calibrating them by

Monte Carlo simulations as done by Bender et al. (1994) and

Bower et al. (2001), who have recently derived the stellar

kinematics of this galaxy along three axes (different from ours). In

general, our errors are in the range of 10–20 km s21 for v and s,

and 0:03–0:1 for h3 and h4, becoming larger for signal-to-noise

ratios lower than 20. These errors do not take into account possible

systematic effects arising from any template mismatch. The

measured stellar kinematics along the major and the offset axes are

reported in Table 2 and plotted in Fig. 5.

6 PAT T E R N S P E E D

To compute the mean position of stars, X, along the slits, we

extracted profiles from the B, V and I-band surface photometry

along the positions of the slits. The profiles in the V band (within

which the wavelength range used in the spectroscopy falls) match

very well the profiles obtained by collapsing the spectra along the

wavelength direction, confirming that the slits were placed as

intended. We used the broad-band profiles to compute X because

these are less noisy than the spectral profiles, particularly at large

radii. We therefore computed three values ofX at each slit position,

Figure 6. Galaxy spectra (thick lines), obtained by collapsing along the

spatial direction, of the major axis and the two offset positions. They are

compared with the template spectra (thin line) convolved with their

corresponding LOSVDs. Galaxy and template spectra have been

continuum-subtracted and tapered at the ends with a cosine bell function.

Table 4. Heliocentric systemic velocity based on
optical measurements.

Vsys Source
(km s21)

734 ^ 41 Mayall & de Vaucouleurs (1962)
617 ^ 19 Tonry & Davies (1981)
597 ^ 9 Schechter (1983)
608 ^ 9 Schechter (1983)
615 ^ 20 Dressler & Sandage (1983)
620 ^ 50 Capaccioli et al. (1986)
592 ^ 15 Simien & Prugniel (1997)

606 ^ 5 Weighted average of literature values
613 ^ 3 This work

2
MIDAS is developed and maintained by the European Southern

Observatory.
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XB, XV and XI. Each value of X was computed by Monte Carlo

simulation, with photon, readout and sky noise to compute the

errors. Another advantage to using the broad band surface

photometry is that it allows us to test for contamination by NGC

1023A to the integrals. Formally, the integrals in equation 1 are

over 21 # X # 1, but can be limited to 2Xmax # X # Xmax if

Xmax has reached the axisymmetric part of the disc; still larger

values of Xmax add noise only. In the case of NGC 1023, the

presence of NGC 1023A introduces some additional light at

negative X. The most severely contaminated slit is the one at

16 arcsec S, where X continues changing as ever larger values of

Xmax are used. We therefore found it useful to compare the

16 arcsec S profiles with the profiles at 16 arcsec N. For these latter

profiles, there is no further signal to X beyond Xmax ¼ 60 arcsec.

The comparison also showed that there is little or no contamination

to the 16 arcsec S slit inside Xmax , 55 arcsec. Furthermore, since

NGC 1023A is quite blue, the contamination decreases in going

from B to V, and especially to the I band. Therefore, to measureX at

16 arcsec S, we averaged the Monte Carlo results in the range

62 arcsec # Xmax # 75 arcsec ð75 arcsec # R # 85 arcsec, where

the disc is roughly axisymmetric) and then averaged over each

band. In the remaining slits, contamination by NGC 1023A in the

major axis begins at R $ 100 arcsec in all bands and is easily

avoided, while the 12 arcsec N slit has no obvious contamination.

We therefore also averaged them over 75 arcsec # R # 85 arcsec.

Because of the colour gradient in the inner ,70 arcsec (Fig. 2), the

value of X in the offset slits changes with the colour band used,

with jX I j . jXV j * jXBj. Therefore, by averaging over bands and

then taking the largest discrepancy from the average as our error

value, we are confident that we take into account any difference

between the narrow wavelength range of the spectroscopy and the

broad one of the surface photometry. The values thus obtained are

given in Table 3.

If we have successfully avoided contamination by NGC 1023A,

then we expect that, since NGC 1023 is nearly point-symmetric

about its centre, the profile extracted from the surface photometry

at Y should have a value of X roughly the negative of value for the

profile extracted at -Y. For a profile extracted from the surface

photometry at 16 arcsec N, we found X ¼ 22:31 ^ 0:15 arcsec

averaged over the three bands, which is within 2s of our value for

2X at 16 arcsec S.

To measure the luminosity-weighted line-of-sight stellar

velocity, V, for each slit position, we collapsed each bidimensional

spectrum along its spatial direction to obtain a one-dimensional

Figure 7. The pattern speed measurement for NGC 1023. The bottom three panels show the V-band profiles for the three slits (12 arcsec N, major axis and

16 arcsec S from left to right) with X indicated by the dashed vertical lines. The horizontal dotted lines indicate mV ¼ 19 mag arcsec22 and

mV ¼ 21 mag arcsec22. The three panels on the right indicate the LOSVD for the three slits (12 arcsec N, major axis and 16 arcsec S from top to bottom), with V
indicated by the dashed lines. The LOSVDs are constructed from the Gauss–Hermite moments; the three LOSVDs in each of these panels were obtained from

different wavelength ranges (here, each is renormalized to the same maximum value, for clarity). The central panel plots V againstX (solid circles); the slope of

the best-fitting straight line (indicated by the solid line) is Vp sin i ¼ 4:7 ^ 1:7 km s21 arcsec21. The open triangles and dotted line indicates the results for

using just the I band to measure X, which gives the largest values of jX j and therefore the smallest slope, Vp sin i ¼ 4:0 ^ 1:4 km s21 arcsec21.
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spectrum. The resulting spectra have been analysed with the FCQ

method using HR 2035 as template star. V is the radial velocity

derived from the LOSVD of the one-dimensional spectra (see

Fig. 6). For each slit position, the uncertainties on Vwere estimated

by measuring it in different wavelength ranges between 4910 and

5560 Å (but always including the Mg triplet). The V values we

derived along each slit are given in Table 3. We integrated the

spectral rows at Xmax ¼ 140, 100 and 80 arcsec in the major-axis,

northern and southern offset spectra, respectively. For the major-

axis and northern offset spectra we were limited by the noise,

which becomes dominant at larger radii ðS/N # 3Þ, while for the

southern offset spectrum we decided to also try Xmax ¼ 60 arcsec,

to check for contamination by NGC 1023A. We found that

different choices of Xmax do not affect our results for V. The values

of V we derived by integrating both offset spectra out to Xmax ¼

140 arcsec (after removing by linear interpolation the contribution

of foreground stars) are close to those in Table 3, although their

errors increase by factors of 1.6 and 2 along the north and south

slits, respectively. Therefore, within the errors obtained from the

varying wavelength range, there is no evidence of contamination

by NGC 1023A in V for the southern offset slit.

By performing our analysis with all the remaining template

spectra, we found that V values are not affected by template mis-

match (at least for our set of template stars). This is in agreement

with the results of Bender et al. (1994) on the determination of the

radial velocities with FCQ.

Using the data of Table 3, in Fig. 7 we plot V versus X, fitting a

straight line (using subroutine FITEXY in Numerical Recipes). The

slope of this line is Vp sin i ¼ 4:7 ^ 1:7 km s21 arcsec21, which

gives Vp ¼ 5:1 ^ 1:8 km s21 arcsec21 (corresponding to Vp ¼

104 ^ 34 km s21 kpc21 at 10.2 Mpc). We have also fitted a ‘slowest

bar’ line, using the values of XI (which are largest, and therefore

give the shallowest slope) for the 12 arcsec N and major-axis slits,

and using 2XI from 16 arcsec N for the 16 arcsec S slit, as this has

an even larger value of jXI j. The slope of this line, now ignoring

the uncertainties in X, is Vp sin i ¼ 4:0 ^ 1:4 km s21 arcsec21

ðVp ¼ 4:3 ^ 1:5 km s21 arcsec21Þ.

To then determine R, we need to measure DL, which we

approximate by the corotation radius, Rc, from the axisymmetric

approximation. Debattista (1998) found that, for strong bars in

N-body simulations, the approximation DL . Rc involves an error

of ,5 per cent. We therefore measured the rotation curve, Vc(R), of

NGC 1023. This is a two-step process: first we fitted tilted rings

(with constant PA and inclination fixed to the value obtained from

the surface photometry) to the data from all our slits, interpolating

with cubic splines where necessary. This allowed us to measure the

heliocentric systemic velocity, V sys ¼ 613 ^ 3 km s21, which is

compared to the values based on optical data available in the

literature in Table 4. By folding the major axis slit (which reaches

furthest out in R) about the origin, after subtracting out Vsys, we

obtained the stellar streaming velocities, V*(R), shown in Fig. 8.

We tested V*(R) by rotating it into the orientations of other slit

observations available in the literature. The slits we compared with

are those at PA ¼ 878 (Simien & Prugniel 1997; Neistein et al.

1999), PA ¼ 908 (Bower et al. 2001) and PA ¼ 1778 (Simien &

Prugniel 1997). Excluding the inner 2 arcsec, to avoid the effects of

different seeing and/or slit widths, we find ~x 2 & 1 in all cases

except for the PA ¼ 878 slit of Neistein et al. (1999), for which we

obtained ~x 2 ¼ 2:5 (for 27 points). Since the same PA is also

covered by a slit from Simien & Prugniel (1997), which we match

well ð ~x 2 ¼ 0:8 for 36 points), we conclude that the stellar

streaming velocity profile we obtained is reasonable and in good

agreement with previous data.

We then corrected for the asymmetric drift using the velocity

dispersion data, to recover the true circular velocity, Vc(R).

Following equation (4–33) in Binney & Tremaine (1987), and

assuming ›ðvRvzÞ=›z . 0, we can write the asymmetric drift

equation as

V2
c 2 V2

* ¼ 2s2
R

›ln r

›ln R
þ

›lns2
R

›ln R
þ 1 2

s2
f

s2
R

 !" #
: ð7Þ

The observed velocity dispersion, at a point (R, f) in the galaxy

Figure 8. The stellar velocity streaming curve, V*, derived by subtracting

Vsys, folding and deprojecting the observed velocities on the major axis. The

data from the major axis are shown as diamonds (approaching side) and

stars (receding side). The solid line and the dashed lines flanking it are our

fitted spline together with the 1s error interval. The asymmetric drift terms

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

c 2 V2

*

q
Þ are shown by the dot–dashed, dotted, and long-dashed lines

ða ¼ 0:0, 0.5, and 1.0 respectively) in the lower right corner at

R $ 70 arcsec. The corresponding circular rotation curves, Vc, are shown

in the bold lines.

Figure 9. The average value, a, (top panel) and the cos 2f component, b,

(bottom panel) of the squared observed velocity dispersions. The top panel

also indicates a 2 b. We fit straight lines to a 2 b and b at R $ 70 arcsec, as

indicated.
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frame, is given by

s2
los ¼

1
2

sin2i½ðs2
R þ s2

f þ 2s2
z cot2iÞ2 ðs2

R 2 s2
fÞ cos 2f�

; aðR;fÞ þ bðR;fÞ cos 2f: ð8Þ

where f ¼ 0 is taken to be the major axis of the disc. When the

disc is axisymmetric, a and b can only depend on R, in which case a

and b are simply the first 2 even moments in a Fourier expansion of

the line-of-sight velocity dispersion. For a disc with a flat rotation

curve, s2
f/s2

R ¼ 1=2, which then allows us to obtain s2
R from b.

However, the profile of V* we found for NGC 1023 is not

obviously flat. (Furthermore, b is more sensitive to noisy data than

is a.) In the general case, the asymmetric drift equation can be re-

written in terms of both a and b, as follows:

V2
c 2 V2

* ¼
R

sin2ið1þ a 2 cot2iÞ

a 2 b

Rd

2
›

›R
ða 2 bÞ

� �
þ

2b

sin2i
;

ð9Þ

where we have assumed that the disc density is exponential with

scalelength Rd and a ; sz/sR. Using the velocity dispersion data

from our three slits and the near minor-axis data of Simien &

Prugniel (1997), we measured a 2 b and b. We fitted splines

to interpolate between data points, and estimate errors from

Monte Carlo simulation with Gaussian noise added from the

error estimate on each point. The resulting profiles of a and b

are shown in Fig. 9. Our procedure for measuring V*(R), a

and b is valid only in the axisymmetric region outside

the bar. Therefore we only apply the asymmetric drift

correction to R , 70 arcsec; for this region, we fit straight

lines to a 2 b ¼ 2141 ð^61ÞRþ 41884 ð^562Þ km2 s22 and to

b ¼ 2319 (^39)R þ 8706 (^350) km2 s22. With these values,

we then correct the rotation curve, assuming 0:0 # a # 1:0.

(This range of a is a reasonable one: in the Solar neighbour-

hood, Dehnen & Binney (1998) found a . 0:54þ0:02
20:05, while in

NGC 488, Gerssen, Kuijken & Merrifield (1997) measured

a ¼ 0:70 ^ 0:19:Þ The resulting rotation curve is more or less

flat, with 259 & Vc;flat & 278 km s21. Adding in quadrature a

velocity uncertainty of 30 km s21, we obtain Vc;flat ¼ 270 ^

31 km s21: (For comparison, Neistein et al. 1999 found Vc ¼

250 ^ 17 km s21; we have checked that using a method similar

to their equation (8) gives similar values for Vc,flat to those

reported above.) If we extrapolate this value to smaller radii

(which, at worst, overestimates Rc and, correspondingly, R,

unless the rotation curve is dropping over range 40 arcsec &

R # 70 arcsec; which seems unlikely from Fig. 8) we find

Rc ¼ Vc;flat/Vp ¼ 53 ^ 6þ29
214 arcsec, where the first error is due

to the uncertainties in Vc,flat and the second error reflects

uncertainties in Vp. We obtain, therefore, R ¼ 0:77 ^ 0:10þ0:42
20:20

(where the first error now also includes the uncertainty in aB).

For our ‘slowest bar’ estimate of the slope, we find

R ¼ 0:91 ^ 0:12þ0:49
20:23. We have found, therefore, that the bar

in NGC 1023 is consistent with being a fast bar.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have found that the bar in NGC 1023 is fast, as are all bars

which have been measured to date. Debattista & Sellwood (1998,

2000) showed that fast bars can persist only if the disc is maximal.

Following Ostriker & Peebles (1973), it is sometimes thought that

the unbarred (SA) galaxies are stabilized by massive DM haloes.

However, massive DM haloes are not necessary for stabilizing

discs; a rapidly rising rotation curve in the inner disc, such as when

a massive bulge is present, is also able to inhibit bar formation

(Toomre 1981; Sellwood & Evans 2001). Debattista & Sellwood

(1998) argued that unbarred HSB galaxies must also be maximal

for, if HSB disc galaxies form a continuum of DM halo masses

spanning massive DM halo-stabilized SA galaxies to maximal SB

galaxies, then slow bars must also be found in the intermediate

range of halo masses. If we seek to avoid intermediate halo masses

and slow bars by postulating (for whatever reason) a bimodal DM

halo mass distribution for HSB galaxies, then we are left with the

possibility that tidal interactions can still form bars, which would

be slow (Noguchi 1987; Salo 1991; Miwa & Noguchi 1998). Thus

Debattista & Sellwood (2000) concluded that the absence of slow

bars requires that all HSB disc galaxies are maximal. However, it is

possible that no such slow bars have been found because of an

observational bias against SB systems with evidence of tidal

interactions.

We have chosen to study NGC 1023, in part, because it shows

signs of a weak interaction in its past, without being at present

significantly perturbed. The fast bar we found indicates that NGC

1023 has a maximal disc. If SA galaxies are stabilized by massive

haloes, we should find slow bars in that fraction of SB galaxies in

which the bar formed through the interaction. While it is not

possible to reach a general conclusion on the DM content of SA

galaxies based on our measurement for a single galaxy, a large

enough sample of similar SB galaxies with mild interactions in the

past will enable us to address this question.
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