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ABSTRACT

Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic
photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and
Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire
orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the
most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have
undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We
present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the
Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented
here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing
season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single
instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured
here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the
upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars
currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests
of high eccentricity migration theories.

Key words: binaries: general – techniques: radial velocities

Supporting material: machine-readable tables

1. INTRODUCTION

Heartbeat (HB) stars are an exciting class of stellar binaries
that have been discovered in large numbers only recently by the
Kepler photometric survey (e.g., Thompson et al. 2012; Beck
et al. 2014). Their name originates from the characteristic light
curve signal seen once per orbital period, induced by the close
periastron passage of a highly eccentric binary star system, a
signal whose shape resembles that of an HB in an
electrocardiogram.

The photometric signal seen at periastron results from a
combination of several processes, including tidal distortion,
heating, and Doppler boosting. In addition, many of the
systems exhibit tidally excited stellar pulsations that maintain
constant amplitude throughout the orbit. They result from near-
resonances between the multiples of the orbital frequency and
stellar oscillation modes (Cowling 1941; Zahn 1975; Kumar
et al. 1995; Burkart et al. 2012; Fuller & Lai 2012). Another
attractive quality of HB stars is that they show a photometric
signal whether or not the system shows eclipses. Therefore,

HB stars are astrophysical laboratories for the study of tidal
interactions in stellar binaries.
Since the first discoveries of HB stars in Kepler data (Welsh

et al. 2011; Thompson et al. 2012) the number of known HB
stars has substantially increased and is currently at 173 (Kirk
et al. 2016). However, the Kepler light curves alone are not
sufficient for taking advantage of the scientific opportunities
HB stars offer. We have undertaken a radial velocity (RV)
monitoring campaign of Kepler HB stars using Keck/HIRES
(Vogt et al. 1994) in order to measure their orbits. Our
observations were performed during the 2015 Kepler observing
season and we report our first results here.
We use our results to study the eccentricity–period diagram,

which is important for testing tidal circularization theory. Such a
study can only be done with a large sample of HB stars, as we
have characterized here, as opposed to a few individual systems.
We show that HB stars generally lie near the upper extreme of
the eccentricity distribution as a function of orbital period. We
infer that the lack of systems with higher eccentricity is a result
of prior orbital circularization, and that HB stars represent
systems that are likely undergoing slow tidal orbital circulariza-
tion. Therefore, circularization timescales for HB stars are likely
to be comparable to their ages, and testing this supposition with
detailed analyses of these systems will yield valuable constraints
on tidal and orbital evolution theories.
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The paper is arranged as follows. We describe the Keck/
HIRES observations, data analysis, and orbit fitting in
Section 2, and in Section 3 we describe the results. In Section 4
we discuss our results, our attempts to constrain the companion
mass, the study of the eccentricity–period relation, and some
future prospects. We conclude with a summary in Section 5.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Target Selection

We have selected our targets from the list of 173 known
Kepler HB stars, all flagged with the “HB” flag in the Kepler
eclipsing binary (EB) online catalog12 (Prša et al. 2011;
Slawson et al. 2011; Kirk et al. 2016). Although HB systems
do not necessarily show eclipses they do show a drop and/or
rise in flux during periastron passage which is reminiscent of an
eclipse, or an inverted eclipse. Therefore, many of the methods
designed to detect stellar eclipses detect also a periastron HB
signal, in addition to identification by visual inspection, leading
to their inclusion in the EB catalog.

We chose systems with an orbital period shorter than 90 days
to allow orbital phase coverage within one observing season,
and with a brightness of Kp 14.0 mag (where Kp is the Kepler
magnitude) to keep the exposure time short. In addition, using
the stellar effective temperature and surface gravity (Huber

et al. 2014) we have tried to include only main sequence stars
and avoid giant stars, as the latter were already the focus of the
work of Beck et al. (2014). Next we prioritized the systems
according to a combination of several criteria, including (1) the
stellar effective temperature, as hotter stars are more challen-
ging for RV measurements, (2) the presence of tidal pulsations
or rotational modulation (due to stellar activity) in the Kepler
light curve, making the system more interesting scientifically,
and (3) target brightness. The list of targets we observed is
given in Table 1 along with the stellar parameters from Huber
et al. (2014), including a total of 22 targets. Although we did
not analyze these light curves here we show them in
Appendix B for completeness. As can be seen in the
Appendix B figures, the relative flux variation during periastron
passage has a typical full amplitude from 10−4 to 10−3. Some
of the systems show visually identifiable tidal pulsations, with
an amplitude of up to several 10−4 in relative flux (e.g. KID
8164262). In addition, a few of the systems show eclipses
(e.g. KID 5790807). As described in detail below, for 19 targets
we measured the RV orbit and for 3 targets we did not detect a
statistically significant RV variability.

2.2. Keck/HIRES Observations and Data Analysis

The Keck/HIRES data analyzed and presented here includes
218 exposures obtained during 43 nights from May to October
2015. The access to a relatively large number of nights while

Table 1
Properties of the Heartbeat Systems and the Primary Stars for the 22 Systems Studied Here

KID Pa AHB
b Kp Teff

c glog c R1
c M1

c

(days) (ppm) (mag) (K) ( ☉R ) ( ☉M )

4659476 58.99637±3.7e−04 520 13.22 -
+6384 174

155
-
+3.97 0.13

0.24
-
+1.96 0.63

0.42
-
+1.31 0.22

0.20

5017127 20.006404±7.8e−05 410 12.51 -
+6440 175

155
-
+4.13 0.13

0.19
-
+1.58 0.38

0.35
-
+1.25 0.19

0.15

5090937 8.800693±2.4e−05 1520 11.04 -
+8092 336

224
-
+3.73 0.11

0.41
-
+3.27 1.52

0.82
-
+2.07 0.50

0.34

5790807 79.99625±5.4e−04 2470 9.95 -
+6796 88

67
-
+3.88 0.10

0.22
-
+2.49 0.73

0.39
-
+1.72 0.24

0.15

5818706 14.959941±5.1e−05 1020 11.49 -
+6375 178

162
-
+4.06 0.13

0.25
-
+1.64 0.46

0.35
-
+1.12 0.14

0.19

5877364 89.64854±6.4e−04 1450 8.88 -
+7502 313

234
-
+4.09 0.15

0.21
-
+1.76 0.44

0.49
-
+1.38 0.23

0.20

5960989 50.72153±3.0e−04 3270 12.51 -
+6471 89

77
-
+4.05 0.12

0.17
-
+1.87 0.42

0.35
-
+1.43 0.15

0.12

6370558 60.31658±3.7e−04 390 12.28 -
+6526 251

182
-
+4.02 0.18

0.26
-
+1.98 0.63

0.63
-
+1.48 0.28

0.21

6775034 10.028547±2.9e−05 1460 13.99 -
+7187 304

228
-
+4.04 0.16

0.27
-
+1.81 0.53

0.53
-
+1.30 0.19

0.23

8027591 24.27443±1.0e−04 620 11.42 -
+6279 221

199
-
+3.87 0.14

0.41
-
+2.28 0.94

0.55
-
+1.40 0.28

0.20

8164262 87.45717±6.4e−04 3030 13.36 -
+7700 316

237
-
+4.02 0.14

0.19
-
+2.11 0.58

0.53
-
+1.69 0.30

0.20

9016693 26.36803±1.2e−04 1280 11.63 -
+7262 327

201
-
+4.01 0.17

0.21
-
+2.07 0.58

0.52
-
+1.60 0.33

0.20

9965691 15.683195±5.5e−05 890 13.10 -
+6407 174

174
-
+3.89 0.12

0.27
-
+2.19 0.70

0.47
-
+1.35 0.22

0.22

9972385d 58.42211±3.5e−04 1400 11.50 -
+6313 170

170
-
+3.92 0.11

0.32
-
+1.82 0.59

0.39
-
+1.01 0.14

0.16

10334122 37.95286±2.0e−04 890 12.85 -
+6363 192

144
-
+4.334 0.143

0.088
-
+1.20 0.17

0.27
-
+1.14 0.13

0.14

11071278 55.88522±3.3e−04 1800 11.37 -
+6215 247

202
-
+3.85 0.12

0.49
-
+2.19 1.03

0.48
-
+1.23 0.28

0.19

11122789d 3.238154±5.7e−06 260 9.64 -
+7161 237

172
-
+3.82 0.10

0.42
-
+2.51 1.14

0.49
-
+1.52 0.37

0.20

11403032 7.631634±2.0e−05 1850 11.50 -
+6657 199

149
-
+3.74 0.10

0.28
-
+2.87 1.05

0.45
-
+1.65 0.36

0.20

11409673d 12.317869±3.9e−05 3820 12.88 -
+7516 82

75
-
+4.097 0.116

0.095
-
+1.88 0.24

0.35
-
+1.62 0.12

0.12

11649962 10.562737±3.1e−05 1220 11.41 -
+6756 219

151
-
+4.274 0.138

0.092
-
+1.37 0.18

0.31
-
+1.29 0.20

0.15

11923629 17.973284±6.7e−05 410 12.26 -
+6250 169

169
-
+3.93 0.11

0.33
-
+1.77 0.59

0.34
-
+0.97 0.12

0.14

12255108 9.131526±2.5e−05 2230 11.59 -
+7577 316

237
-
+4.04 0.15

0.15
-
+2.11 0.49

0.54
-
+1.79 0.29

0.18

Notes.
a Photometric period, taken from the Kepler EB catalog (Kirk et al. 2016).
b Photometric amplitude of the heartbeat signal at periastron, defined as the full flux variation, in ppm, of the phase folded and binned light curve (see Appendix B).
The typical uncertainty is a few percent.
c Parameters taken from the revised KIC (Huber et al. 2014).
d RV non-variable star.

(This table is available in machine-readable form.)

12 http://keplerEBs.villanova.edu
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using a small amount of telescope time per night was critical
for the success of this program. It allowed us to sample the
entire orbital phase of our targets, and sample the periastron
phase more intensely since it is that phase where most of the
RV variability takes place for eccentric binary systems. For
each of the systems presented here we have obtained at least 7
RV measurements, in order to fit a Keplerian orbital model that
in our case includes 5 fitted parameters, since the orbital period
is already precisely known from Kepler photometry (see more
details in Section 2.3).

We used the Keck/HIRES instrumental setup of the California
Planet Search as described in Howard et al. (2009). At the
beginning of each observing night we used a Thorium–Argon
lamp to align the spectral format to within one-half pixel of the
historical position, where one pixel represents 1.3 km s−1. This
careful setup is the first step is calculating the RVs presented
here. Each spectrum was acquired with the C2 decker (angular
size of 0.87 arcsec×14.0 arcsec), allowing for background sky
and scattered light to be removed and resulting in a resolving
power of R≈60,000. The exposure time was in the range of
0.5–5.0minutes, depending on target brightness, and the spectra
we obtained have a signal-to-noise ratio of 10–20 per pixel.

As a first step of the spectral data analysis we obtained the
wavelength solution (assigning a wavelength value for every
pixel) with a precision of 0.1 pixels using a Thorium–Argon
calibration lamp spectrum taken at the beginning of each
night’s observing. To derive the RV measurements we used the
method described in Chubak et al. (2012), using the telluric A
and B absorption bands (7594–7621Å and 6867–6884Å
respectively) due to absorption by molecular Oxygen in the
Earths atmosphere.

We chose the reference B-type star HD79439 to serve as the
telluric lines wavelength zero-point, and measure the position
of the target stars’ telluric lines relative to those of the reference
star. This zero-point offset corrects for drift in the CCD
position throughout the night and observing variables such as
non-uniform illumination of the spectral slit. We subtract this
offset from any measured shift in the position of the target
stars’ spectral lines in order to determine their true Doppler
shift.

We measure the position of the target stars’ spectral lines using
four wavelength segments rich in stellar absorption lines. Those
four segments are located at 6795–6867Å, 7067–7146Å,
7398–7489Å, and 7518–7593Å, which are adjacent to but not
overlapping with the telluric A and B bands. The four wavelength
segments of the target star are cross-correlated with a HIRES
spectrum of Vesta, which serves as a solar proxy reference
spectrum. The mean and rms of the four RV measurements serve
as the RV value and uncertainty respectively. This raw RV
measurement between the target star and Vesta is then corrected
for barycentric motion of the reference star and the target,
determined by the JPL Solar System ephemeris.13 This way, any
contributions to the RV measurement that are not due to the radial
motion of the target star relative to the reference star have been
accounted for by the telluric lines and the barycentric corrections.

Finally, each RV measurement is set to the RV scale of
Nidever et al. (2002) and Latham et al. (2002), by using an
offset determined by the observations of 110 stars in the
overlap of the samples of Chubak et al. (2012) and Nidever
et al. (2002). All 218 RV measurements are listed in

Appendix A. The method we used calculates the RVs in an
absolute scale, and the typical errors for slowly rotating stars
(with rotation periods at the level of 10 days or longer) are at
the 0.1 km s−1 level. As the majority of the HB stars observed
here have an increased rotation rate (with rotation periods at the
level of 1 day) the resulting RV errors are typically at the range
of 0.1–1.0 km s−1 (for six systems the RV precision is at the
level of a few km s−1, see Appendix A), sufficient to measure
the RV variations of the stellar components’ orbital motion.

2.3. Keplerian Orbit Fitting

We have fitted a Keplerian orbit model to the RV
measurements using the adaptive MCMC approach described
in Shporer et al. (2009). In this approach the width of the
distribution from which the step sizes are drawn is adjusted
every 104 steps, which we refer to as a minichain, in order to
keep the step’s acceptance rate at 25% (Gregory 2005; Holman
et al. 2006). This adaptive approach eliminates a possible
dependence of the fitted parameters on the width of the
distribution from which the step sizes are drawn. Each chain
consists of 100 minichains, or 106 steps total, and we ran 5
chains for each system. We then generated the posterior
probability distribution of each parameter by combining the 5
chains while ignoring the initial 20% steps of each chain. We
took the distribution median to be the best-fit value and the
values at the 84.13% and 15.87% to be the + s1 and − s1
confidence uncertainties, respectively.
The Keplerian orbital model includes six parameters, the

period P, periastron time T0, RV semi-amplitude K, system’s
center of mass RV γ (commonly referred to as RV zero point),
orbital eccentricity e, and argument of periastron ω. Since the
Kepler photometric data constrain the orbital period signifi-
cantly better than the RV measurements we adopted the
photometric orbital period value, Pphot, and its uncertainty
from the Kepler EB catalog, and used them as the mean and
width, respectively, of a Gaussian prior distribution on P. We
implemented that prior by drawing a value at random from the
Gaussian prior distribution in each step of the MCMC analysis.
Therefore, our fitted model included 5 free parameters. Those 5
parameters were fitted by 7–12 RVs per system.
When stepping through the five-dimensional parameter

space we used the parameters we cos and we sin instead
of e and ω, following, e.g., Eastman et al. (2013). We made the
parameter conversion at each step and when the chain reached a
position where e 1 we set c2 to infinity to make sure the step
was not accepted.
We set c2 to infinity also when T0 reached a position where

it was more than Pphot/2 away (in absolute value) from the
initial T0 position, so T0 was allowed to vary within a span of
Pphot, or the full orbital phase. The initial T0 position was
arbitrarily set, taken to be the predicted time of eclipse, based
on the eclipse ephemeris listed in the Kepler EB catalog (Kirk
et al. 2016), which was closest to the middle of the time period
covered by the RV measurements. For non-eclipsing systems
the Kepler EB catalog reports the time of minimum flux,
although that distinction is not important since we are using
this time only as an arbitrary starting point for T0. Therefore,
we used a uniform prior on T0 and allowed it to vary
throughout the entire orbital phase, and we did not use the
eclipse time (or time of minimum flux) to constrain the
periastron time.13 http://ssd.jpl.nasa.gov
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For some of the systems we have analyzed we noticed that
the best fit c2 value is significantly larger than the expectation
value (or the mean) of the c2 distribution for the given number
of degrees of freedom ν (which equals -n 5, for n RV
measurements and 5 fitted parameters). As this could be the
result of underestimated RV errors we have added a mechanism
to our analysis to correct for that. Once the analysis was done
we checked the distance between the best fit c2 and the
expectation value of the c2 distribution for ν degrees of
freedom. If that distance was larger than n2 2 , which is twice
the c2 standard deviation for ν degrees of freedom, we repeated
the analysis while adding in quadrature a systematic uncer-
tainty to the RV measurements uncertainties. We refer to that
systematic uncertainty as jitter, and it was set to make c2 equal
ν. Therefore, the analysis was iterated until the best fit c2 was
close enough to the expectation value.

Our analysis included also a component that tests whether a
target shows no RV variability. This was done by calculating
cnull

2 , the c2 value of a constant RV model where for each
system that constant was the RVs weighted mean. We declared
a system to have no statically significant RV variability if cnull

2

was smaller than the 99.9% of a c2 distribution with ν equal to
the number of RVs minus one.

3. RESULTS

We have obtained the Keplerian orbital solution for 19
systems. Table 2 lists the fitted orbital parameters, including the
orbital period from the Kepler EB catalog, taken as a prior in
the MCMC analysis, and the companion’s mass function,

( )f m , defined as:

( ) ( )
( )

( )
p

º
-

=
+

f m
P K e

G

M i

M M

1

2

sin
, 1

2 3
2
3 3

1 2
2

where i is the orbital plane inclination angle, and M1 and M2 are
the masses of the primary star and secondary star, respectively.
Table 3 lists a few statistics describing the fitted model,

including the fitted model c2, number of degrees of freedom
(which is simply the number of RV measurements minus five,
for the five fitted parameters), number of analysis iterations (see
Section 2.3), the RV systematic uncertainty by which the RV

Table 2
Orbital Properties of the 19 Heartbeat Systems Measured Here

KID P T0 K γ e ω f (m)
(days) [BJD-2457000] (km s−1) (km s−1) (rad) (M☉)

4659476 58.99637±3.7e−04 -
+229.552 0.097

0.096
-
+51.21 0.99

0.99
-
+17.1 1.0

1.0
-
+0.745 0.011

0.011 −2.884-
+

0.048
0.048

-
+0.243 0.017

0.018

5017127 20.006404±7.8e−05 -
+252.075 0.034

0.033
-
+41.59 0.33

0.33 −10.25-
+

0.29
0.29

-
+0.5504 0.0050

0.0050 −0.779-
+

0.022
0.022

-
+0.0868 0.0023

0.0023

5090937 8.800693±2.4e−05 -
+245.879 0.081

0.092
-
+36.34 0.40

0.42 −20.12-
+

0.28
0.28

-
+0.241 0.013

0.013 −0.470-
+

0.067
0.070

-
+0.0400 0.0016

0.0017

5790807 79.99625±5.4e−04 -
+200.708 0.058

0.053
-
+24.39 0.28

0.30 −27.39-
+

0.26
0.27

-
+0.8573 0.0031

0.0030
-
+2.728 0.026

0.026
-
+0.0164 0.00065

0.00067

5818706 14.959941±5.1e−05 -
+232.392 0.016

0.016
-
+48.16 0.26

0.26
-
+25.96 0.16

0.16
-
+0.4525 0.0039

0.0038 −1.615-
+

0.010
0.010

-
+0.1228 0.0022

0.0023

5877364 89.64854±6.4e−04 -
+237.839 0.120

0.088
-
+33.2 1.3

2.0
-
+3.87 0.20

0.19
-
+0.8875 0.0031

0.0031 −1.452-
+

0.018
0.018

-
+0.0334 0.00070

0.00080

5960989 50.72153±3.0e−04 -
+214.915 0.063

0.068
-
+39.6 1.2

1.4 −24.38-
+

0.85
0.90

-
+0.813 0.015

0.017
-
+0.661 0.059

0.058
-
+0.0645 0.0040

0.0043

6370558 60.31658±3.7e−04 -
+247.28 0.13

0.13
-
+12.97 0.22

0.53 −31.319-
+

0.107
0.098

-
+0.821 0.012

0.015 −2.475-
+

0.024
0.025

-
+0.0025 0.00013

0.00020

6775034 10.028547±2.9e−05 -
+221.759 0.051

0.064
-
+39.1 1.1

1.4
-
+11.5 1.7

1.6
-
+0.556 0.037

0.047
-
+0.213 0.054

0.061
-
+0.0356 0.0034

0.0039

8027591 24.27443±1.0e−04 -
+228.334 0.060

0.058
-
+38.83 0.72

0.74
-
+4.51 0.58

0.59
-
+0.5854 0.0083

0.0082
-
+0.502 0.033

0.034
-
+0.0785 0.0046

0.0049

8164262 87.45717±6.4e−04 -
+243.08 0.27

0.14
-
+22.9 4.7

9.5
-
+14.4 1.4

1.4
-
+0.857 0.065

0.026
-
+1.61 0.28

0.29
-
+0.0148 0.0031

0.0044

9016693 26.36803±1.2e−04 -
+268.97 0.11

0.10
-
+56.3 2.2

2.4
-
+8.3 1.0

1.1
-
+0.596 0.018

0.018
-
+1.892 0.093

0.085
-
+0.253 0.024

0.028

9965691 15.683195±5.5e−05 -
+224.082 0.013

0.013
-
+36.83 0.13

0.13 −33.53-
+

0.12
0.12

-
+0.4733 0.0032

0.0032
-
+0.7870 0.0093

0.0094
-
+0.0555 0.00057

0.00057

10334122 37.95286±2.0e−04 -
+223.79 0.48

0.60
-
+40.3 3.1

3.7 −14.3-
+

1.6
1.6

-
+0.534 0.058

0.060
-
+1.96 0.16

0.16
-
+0.155 0.028

0.031

11071278 55.88522±3.3e−04 -
+227.73 0.15

0.14
-
+38.7 4.2

7.1
-
+3.34 0.75

0.61
-
+0.755 0.013

0.015 −2.725-
+

0.035
0.034

-
+0.094 0.014

0.023

11403032 7.631634±2.0e−05 -
+229.849 0.084

0.078
-
+30.18 0.60

0.60
-
+14.74 0.40

0.40
-
+0.288 0.013

0.013 −0.556-
+

0.083
0.082

-
+0.0191 0.0011

0.0011

11649962 10.562737±3.1e−05 -
+223.4759 0.0094

0.0096
-
+65.39 0.36

0.34 −14.02-
+

0.34
0.32

-
+0.5206 0.0035

0.0035
-
+2.8229 0.0083

0.0086
-
+0.1905 0.0039

0.0041

11923629 17.973284±6.7e−05 -
+223.607 0.039

0.038
-
+35.84 0.21

0.22 −16.93-
+

0.15
0.15

-
+0.3629 0.0059

0.0058
-
+2.280 0.019

0.019
-
+0.0694 0.0012

0.0012

12255108 9.131526±2.5e−05 -
+221.060 0.110

0.086
-
+48.8 1.1

1.2 −7.15-
+

0.94
0.98

-
+0.296 0.015

0.016
-
+2.647 0.096

0.102
-
+0.0957 0.0073

0.0080

(This table is available in machine-readable form.)

Table 3
Statistical Quantities Describing the RV Keplerian Model Fits

KID c2 ν #Iter RV Jitter Res.StD
(km s−1) (km s−1)

4659476 4.7 2 2 1.9 2.2
5017127 6.3 5 2 0.63 0.40
5090937 4.8 6 1 L 0.61
5790807 4.1 7 1 L 0.21
5818706 5.1 6 1 L 0.31
5877364 10.8 5 1 L 0.38
5960989 9.9 5 1 L 2.6
6370558 3.2 2 1 L 0.042
6775034 3.1 4 2 0.99 0.57
8027591 6.5 5 2 1.0 0.71
8164262 7.1 5 2 2.4 1.4
9016693 4.8 3 2 2.3 1.7
9965691 3.6 3 1 L 0.20
10334122 2.4 2 2 3.6 3.0
11071278 5.3 3 1 L 0.23
11403032 7.1 7 2 0.89 0.78
11649962 4.1 5 1 L 0.35
11923629 4.9 3 2 0.33 0.16
12255108 10.3 6 1 L 2.4

Note. Columns include (from left to right): KIC ID, best fit c2, number of
degrees of freedom, number of fitting iterations, the additive systematic RV
uncertainty, and the RV residuals scatter.

(This table is available in machine-readable form.)
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errors were increased in quadrature (RV jitter; defined to be
zero when only a single analysis iteration was performed), and
the RV residuals scatter. Here and throughout this paper the
scatter is estimated in a robust way, using the median absolute
deviation (MAD) where the standard deviation is calculated as
1.4826×MAD (Beers et al. 1990; see also Shporer
et al. 2014). As shown in Table 3, a second analysis iteration,
where a non-zero jitter was introduced, was done for only 9 of
the 19 systems. The RV residual scatter is at the 1.0 km s−1

level, similarly to the typical jitter value (for systems where it
was introduced). This matches well the typical RV errors and
the expected precision for RVs derived using the telluric bands
method for this population of stars, which tend to rotate faster
than Sun-like stars (see Section 2.2).

In Figures 1 through 5 we present the RV curves for all 19
systems with a measured orbit. Each system is presented with
two panels. In the top panel we show the RVs versustime
(black) along with the best fit model (solid red line). In the
bottom panel we show the phase-folded RV curve (black)

along with a continuum of orbits that correspond to a s3
marginalization (red). For completeness we present in
Appendix B figures of the phase-folded RV curves overplotted
by the phase-folded Kepler light curves for all 22 systems
studied here.
We have tested our results in several ways:

1. We changed the stopping condition of the MCMC
iterations. Instead of requiring c2 to be within n2 2
from the expectation value of the c2 distribution for ν

degrees of freedom, we required it to be within n2 and
n4 2 from it, in two separate applications of our

analysis.
2. For each of the 19 systems we used the RV times and

injected an RV orbit identical to the fitted model and
applied the same analysis.

3. We repeated the entire analysis, to test the repeatability of
our results given the random component of the MCMC
analysis.

Figure 1. RV curves of KID 4659476, KID 5017127, KID 5090937, and KID 5790807. RV measurements are shown in black, including error bars that are typically
smaller than the marker size. Each system is shown in two panels: the top panel shows the RVs as a function of time and the bottom panel shows the phase-folded RV
curve with periastron at phase 0.5. The fitted Keplerian model is shown as a red solid line in the top panels, and by a s3 contour plot in the bottom panels. The title for
each plot lists (from left to right) KIC ID, Teff (K), glog , P (days), K (km s−1), and e.
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In all tests above the results were fully consistent with the
original results.

For three other targets we monitored we did not detect any
appreciable RV variability. All three were identified by
measuring a cnull

2 smaller than the 99.9% of the c2 distribution
(see Section 2.3). In fact, all three had cnull

2 smaller than 99.0%,
while all other 19 systems were above the 99.999 ( –= -100 10 3)
percentile. The three non-variable systems are listed in Table 4,
their RV measurements are included in AppendixA, and their
RV curves are plotted in AppendixB. The RV scatter of these
systems is in the range of 0.47–1.42 km s−1, which compares
well with the residuals RV scatter of the 19 systems with a fitted
Keplerian orbit (see Table 3).

4. DISCUSSION

The 19 HB stars whose RV orbits were measured here
constitute the largest sample to date where the RVs were
measured with a single instrument. Considering the orbital
period range covered here, P�90 days, this new sample
roughly doubles the number of HB stars with RV-measured
orbits (Maceroni et al. 2009; Welsh et al. 2011; Hambleton
et al. 2013, 2016; Beck et al. 2014; Hareter et al. 2014; Schmid
et al. 2015; Smullen & Kobulnicky 2015) listed in Table 6.

The stellar parameters listed in Table 1 show that our sample
contains stars hotter than the Sun, of spectral types F and A,
and effective temperatures in the range of 6200–8100 K. A
minor caveat is that these stellar parameters are taken from
Huber et al. (2014), who revised the Kepler input catalog (KIC;
Brown et al. 2011) stellar properties of stars observed by
Kepler. Therefore, these parameters might be less precise than
spectroscopically derived parameters, and could be affected by
light from the binary stellar companion and/or other stars on
the same line of sight (whether or not they are gravitationally
bounded to the HB system). Nonetheless, this characteristic of
our sample is not likely to significantly change with more
precise parameters.

The fact that HB stars tend to have relatively hot primaries
(hotter than the Sun, as noted above) is at least partially an
observational bias. Since we focus here on main sequence stars,
hotter stars are larger in radius and have lower surface gravity.
Hence they have a larger tidal distortion for the same tidal
force, leading to a larger photometric signal observed by
Kepler during periastron. This is supported by the correlation
between stellar Teff and the photometric amplitude of the HB
signal at periastron, identified by Thompson et al. (2012). It is
therefore easier to detect HB systems with hot primaries. In
addition, hot stars typically have a lower level of stellar activity
than cool stars, making it easier to detect the HB photometric
signal for hot stars. However, the sample of HB stars studied
here has been shaped by several subjective selection criteria
(see Section 2.1). Hence, this sample on its own is not

appropriate for investigating the temperature distribution or
circularization timescales of eccentric binaries.
As can be seen in Figures 1–5 and Tables 2–3, some of the

orbital solutions are of better quality than others, where the
quality is quantified by how well the fitted parameters are
constrained, the residual scatter, and the fitted model c2. In
general, the quality of the orbital solutions worsens with the
decreasing number of RVs per target and with increasing
eccentricity. The high eccentricity systems tend to have longer
periods with only 1–2 observable periastron events during the
observing season, making the observations more time critical
and difficult to schedule. Those orbits can be refined in the
future with additional RVs, especially during periastron
passage.

4.1. RV Non-variable Stars

As already noted in Section 3, three of the targets we
observed show no RV variability at the 1 km s−1 level (see
Table 4 and Appendix B). The reason for the RV non-
variability is unclear. These three targets have brightness and
stellar parameters similar to the 19 systems with measured
orbits (see Table 1). The non-variability could be the result of a
few possible scenarios, some of them similar to the false
positive scenarios of eclipsing and transiting systems (Bryson
et al. 2013; Coughlin et al. 2014; Abdul-Masih et al. 2016).
One possible scenario is a triple or higher multiplicity system

where the spectrum is dominated by lines from a bright star
with no RV variability, which may or may not be bound to the
binary HB system and is located on the same line of sight. A
more detailed study of all spectra obtained here, including
searching for additional sets of lines, is ongoing and will be
reported in a future publication.
In a similar scenario, the Kepler photometric HB signal does

not originate from the star whose RVs were monitored but from
another nearby star that is at least partially blended with the
target on Kepler’s pixels that are 4 arcsec wide. High angular
resolution imaging is needed to further study this scenario.
In a third scenario the target is a single variable star with

variability mimicking that of a HB signal. The mechanism
inducing the photometric variability can be for example stellar
pulsations, or rotation and stellar spots. High quality spectra
combined with detailed Kepler light curve analysis are required
to further study this scenario.
In fact, we have identified KID11409673 as a rapidly

oscillating peculiar A star (roAp). These strongly magnetic
stars are oblique pulsators, pulsating in high radial overtone
p-modes with their pulsation axis inclined to the rotation axis
and closely aligned to their magnetic axis (e.g., Kurtz 1982;
Holdsworth et al. 2016). We believe the 12.3 days photometric
periodicity is the rotation period, and the photometric
variability arises from a combination of stellar rotation and
persistent stellar spots. A full study of this roAp star will be
presented in a future publication.
Finally, it is possible that our RV measurements are not

sensitive enough to detect the binary companion. This could
occur if the system has a low orbital inclination or the
companion mass is small. For a system to have a stellar-mass
companion and an RV amplitude at or below the 1 km s−1

level, the orbital inclination needs to be exceptionally small,
with i1°, meaning a completely face-on configuration,
which is possible but is statistically unlikely for our sample
size. On the other hand, a low-mass companion is also unlikely

Table 4
Heartbeat Systems Showing no Radial Velocity Variability

KID P #RVs RV Mean RV Scatter
(days) (km s−1) (km s−1)

9972385 58.42 9 −0.55 0.47
11122789 3.24 20 −19.73 1.42
11409673 12.32 10 −5.44 0.88

(This table is available in machine-readable form.)
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because it will need to be below the ∼40 MJ level to avoid RV
detection, and at that mass level it is not expected to generate a
photometric HB signal at the observed amplitudes. In addition,
if the binary companion induces an RV amplitude at the level
of the RV scatter of the three non-variable systems then we
would expect that scatter to be close to the low end of the RV
amplitude distribution of the 19 systems with a fitted orbit.
However, the latter has a range of 13–65 km s−1 (see Table 2),
which seems to be distinct than the RV scatter of the non-
variable systems, of 0.5–1.4 km s−1 (see Table 4). Therefore,
this scenario is considered unlikely.

4.2. Companion Mass

For the 19 systems with a measured orbit, we calculated the
companion mass, M2, using Equation (1) that can be rearranged
into a cubic polynomial in M2:

( ) ( ) ( ) ( )- - - =iM f m M f m M M f m Msin 2 0, 23
2
3

2
2

1 2 1
2

which has only one real root. The polynomial coefficients in
Equation (2) are composed of ( )f m , which we measured
directly from the orbital solution (Table 2), M1, for which we

use the values of Huber et al. (2014, see Table 1), and sin3i. To
derive the companion mass values and uncertainties we
generated an M2 distribution by solving for the polynomial
roots for a distribution of ( )f m and M1.
To address our lack of knowledge of the orbital plane

inclination angle, and in turn of the sin3i coefficient in
Equation (2), we have chosen three approaches.
In the first approach, we assumed that =isin 13 which

corresponds to an edge-on system, providing the companion’s
minimum mass.
In the second approach, we used the median value of the

sin3i distribution, which equals 0.6495.14 Therefore, the M2

estimate derived in this approach reflects our current knowl-
edge of ( )f m and M1 and shows the likely value of M2, and the
uncertainty we can hope to achieve once the inclination angle is
estimated in the future, for example from modeling the Kepler
light curve.

Figure 2. Similar to Figure 1 for KID 5818706, KID 5877364, KID 5960989, and KID 6370558. The title for each plot lists (from left to right) KIC ID, Teff (K), glog ,
P (days), K (km s−1), and e.

14 Given the highly asymmetric nature of this distribution we chose to use the
median instead of the distribution expectation value (the mean), which equals
0.5890.
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In the third approach we used the entire sin3i distribution, so
the results are an accurate reflection of our current knowledge
of M2.

In the second and third approaches above, we have assumed
i is distributed uniformly in isin since the orbital angular
momentum axis has no preferred direction. One subtlety here is
that systems with high inclination angles have larger RV
amplitudes, hence are detected more efficiently in RV surveys
of binary stars and star-planet systems. However, HB stars
analyzed here were identified photometrically and the photo-
metric signal does not have the same dependence on inclination
angle as the RV amplitude. For example, the KOI-54 system
has a large photometric amplitude of ∼0.6% despite a face-on
configuration with = i 5.50 0.10 deg (Welsh et al. 2011).

The results of the three approaches are listed in Table 5,
where for completeness we list also ( )f m and M1. Examining
the values of M1 and M2 shows that for the majority of systems
it is likely that M2 < M1. However, for a few systems the
companion mass may be comparable to or larger than the
primary mass, although the current uncertainties are large (e.g.,
KID 4659476, KID 9016693). This raises the possibility that in
those systems the secondary is not a main sequence star

because in that case we would expect it to dominate the
spectrum. Therefore, those systems are candidates for a
compact object companion and are interesting targets for
further study. Although we should note that those systems
could have a large orbital inclination angle, where the
companion’s mass is close to the minimum mass (first approach
above), making the companion a main sequence star with mass
close to but smaller than the primary mass. This is supported by
the detection of HB systems with binary mass ratios close to
one (Smullen & Kobulnicky 2015). In such systems it might be
possible to identify in the spectrum the spectral lines of the
secondary. A detailed study of the spectra collected here,
including a systematic search for spectral lines of the
secondary, is beyond the scope of this work (and will be a
subject of a future publication) as here we focus on RV
measurements of the primary and measurement of the orbit for
a large sample of HB stars.

4.3. The Eccentricity–Period Relation

Figure 6 shows the eccentricity–period (e–P) diagram. In the
top panel we show the 19 systems whose orbit was measured

Figure 3. Similar to Figure 1 for KID 6775034, KID 8027591, KID 8164262, and KID 9016693. The title for each plot lists (from left to right) KIC ID, Teff (K), glog ,
P (days), K (km s−1), and e.
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here marked in red, and for comparison we show in gray
Kepler EBs where the eccentricity was derived through
analysis of their eclipse light curve (A. Prša et al. 2016, in
preparation). A visual examination of the figure shows that the
eccentricity of most HB systems analyzed here is close to the
high end of the eccentricity range of similar orbital period
systems. In other words, HB systems draw the envelope of the
e–P distribution. The figure also shows that our sample of 19
HB systems encompasses most of the period range across
which tidal orbital circularization takes place. This is reflected
by the wide range of eccentricity of the systems observed here
(0.2–0.9), spanning almost the entire eccentricity range.

In the bottom panel of Figure 6 we added all other HB stars
with orbits measured using RVs and with orbital periods within
200 days (Maceroni et al. 2009; Welsh et al. 2011; Hambleton
et al. 2013, 2016; Beck et al. 2014; Hareter et al. 2014; Schmid
et al. 2015; Smullen & Kobulnicky 2015). We list those
systems in Table 6. The dashed gray curves show lines of
constant orbital angular momentum with an e–P relation of

( )( )= -e P P1 0
2 3 . We plotted lines with circularization

period P0 (e.g., Mazeh 2008) of 4, 7, and 11 days. This was in

an attempt to match the envelope of the e–P distribution,
although it can be seen that no single curve can match the
envelope throughout the entire period range. This suggests that
HB systems are born with a range of angular momenta and
eventually tidally circularize to a range of periods P0, with P0

typically below 10 days for main sequence binaries. Another
possible explanation is that the population of HB systems
studied here has a wide age range, since as shown by Meibom
& Mathieu (2005) the circularization period and the shape of
the e–P distribution depends on the population age.
Longer period systems, beyond P=90 days, were not

included in our targets since we wanted to monitor the entire
orbit in one observing season. At short periods, the orbital
eccentricity grows smaller and the HB signal becomes less
concentrated near periastron and instead appears as typical
ellipsoidal modulations. Therefore, the occurrence of systems
classified as HB systems may decrease at short orbital periods,
although the classification becomes somewhat arbitrary.
Measuring the orbits of additional HB stars, and other high-

eccentricity systems, will better shape the e–P upper envelope.
Still, a close visual examination of the bottom panel of Figure 6

Figure 4. Similar to Figure 1 for KID 9965691, KID 10334122, KID 11071278, KID 11403032. The title for each plot lists (from left to right) KIC ID, Teff (K), glog ,
P (days), K (km s−1), and e.
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shows that there are several systems with eccentricity well
beyond that of similar period systems, raising the possibility
that they do not belong to the same distribution, which in turn
suggests that they could be impacted by other physical
processes in addition to tidal circularization. Those systems
include for example KID 4544587 (Hambleton et al. 2013),
some of the systems studied by Smullen & Kobulnicky (2015),
and also two of the systems studied here at P∼10 days and
e∼0.5 (KID 6775034 and KID 11649962). Possible mechan-
isms that can account for the high eccentricity of these systems
are interaction with a third body, negligible tidal circulariza-
tion, or young system age (although the latter is less likely
given the typical ages of Kepler field stars). Therefore, systems
with increased eccentricity compared to similar period systems
provide an opportunity to study these processes.

It is also worth noting that the red giant HB systems studied
by Beck et al. (2014, marked in black in Figure 6, bottom
panel) show smaller eccentricities than other HB systems at the
same period. This is likely the result of the larger radii R of red
giant stars, as the circularization timescale is proportional to
-R 5 in tidal theories with a constant lag angle or lag time. The

red giant systems also have systematically longer periods than

the HB stars we monitored with RVs, which is likely required
for these systems to have retained significant eccentricity.
However, the substantial eccentricity of these red giant HB
systems suggests that their tidal circularization timescales are
not extremely short, and we speculate that the occurrence of
these eccentric red giant systems is evidence against highly
efficient tidal dissipation in sub-giants as has been suggested by
Schlaufman & Winn (2013). A more detailed study examining
the stellar radius and semimajor axis distribution of red giant
systems is required for a firm conclusion.

4.4. Tidal Circularization

Tidal friction will act to circularize the orbits of HB stars,
although the mechanisms and timescales of tidal circularization
remain poorly understood. Pioneering works such as Zahn
(1975, 1977) have suggested that tidal friction is more efficient
in stars with convective envelopes where an effective turbulent
friction can damp the equilibrium tidal distortion. In stars
without convective envelopes, tidal dissipation can still occur
via dissipation of dynamical tides (e.g., gravity waves) in the
radiative envelope, but may be less efficient. Our sample

Figure 5. Similar to Figure 1 for KID 11649962, KID 11923629, and KID 12255108. The title for each plot lists (from left to right) KIC ID, Teff (K), glog , P (days), K
(km s−1), and e.
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contains stars on both sides of the convective/radiative
transition, and could be used to constrain or revise existing
tidal theories. In many HB stars (e.g., KID 9016693 in
Figure 10), tidally excited oscillations are present in the light
curve, and can be used to study tidal dissipation via dynamical
tides. Although a detailed investigation is beyond the scope of
this work, we examine here some basic tidal parameters for our
HB systems.

Since the HB stars’ orbital eccentricities show a strong
correlation with orbital period, we investigate the period
dependence of two other parameters that are closely related to
the tidal force acting on the primary star. The first is the
periastron distance:

( ) ( )= -a a e1 , 3peri

where a is the orbital semimajor axis. As shown in the top panel
of Figure 7, aperi does not show a correlation with period, and
has a roughly constant value of 0.080au with a scatter of
0.021au. For comparison, the mean and scatter of the semimajor
axis (not shown) are 0.26au and 0.14au, respectively.

The second parameter we investigate is the tidal force acting
on the primary star at periastron divided by the star’s surface
gravity:

( )= =
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where R1 is the primary star’s radius (see Table 1) and G the
gravitational constant. Here we used the M2 values derived
from the second approach described in Section 4.2, where in
Equation (2) ( )isin3 is replaced by the distribution median of

0.6495 (see Table 5 second column from the right). As can be
seen in the bottom panel of Figure 7 this parameter also does
not correlate with period, and the typical error bar is
comparable to the scatter. The reason for the latter is that this
ratio depends strongly on stellar parameters (M M R, ,1 2 1) which
are usually less constrained than orbital parameters. The errors
on aperi are in comparison much smaller since that parameter
depends weakly on the masses of both stars and more strongly
on the period and eccentricity.
The relatively small range of aperi and tidal forcing

amplitudes for HB stars in Figure 7 likely reflects the
sensitivity of tidal circularization timescales to the amplitude
of tidal forcing (see e.g., Zahn 1975, 1977; Hut 1981).
HB systems with smaller aperi are very rare due to short
circularization timescales. Systems with larger aperi are
abundant, but exhibit smaller photometric variations and have
not been flagged as HB systems. This is also likely to be the
cause of the somewhat narrow range in angular momentum per
unit mass (which scales as P0

1 3) of HB systems in Figure 6.
The system with the largest aperi (KID 10334122, P=

37.95 days, = a 0.131 0.015peri au) is not surprisingly also
the system with the lowest F Ftide gravity (see Figure 7), since its
lower eccentricity (compared to systems with similar period)
results in a larger aperi and a weaker tidal force. It is also not
surprising to find this system positioned below the envelope in
the e–P diagram (see Figure 6). That system has a large
uncertainty on aperi because of the large uncertainty on its
eccentricity ( = -

+e 0.534 0.058
0.060), and it has a small uncertainty on

F Ftide gravity resulting from relatively low uncertainties of M1

and R1 (see Table 1).

Table 5
Masses of the Two Stars of the Heartbeat Systems Measured Here

KID M1 f (m) M2
a M2

b M2
c

(M☉) (M☉) (M☉) (M☉) (M☉)

4659476 -
+1.31 0.22

0.20
-
+0.243 0.017

0.018
-
+1.162 0.106

0.094
-
+1.44 0.13

0.11
-
+1.45 0.27

1.76

5017127 -
+1.25 0.19

0.15
-
+0.0868 0.0023

0.0023
-
+0.692 0.060

0.047
-
+0.839 0.071

0.055
-
+0.84 0.14

0.85

5090937 -
+2.07 0.50

0.34
-
+0.0400 0.0016

0.0017
-
+0.676 0.103

0.066
-
+0.805 0.121

0.077
-
+0.81 0.15

0.66

5790807 -
+1.72 0.24

0.15
-
+0.01640 0.00065

0.00067
-
+0.426 0.038

0.024
-
+0.503 0.044

0.028
-
+0.502 0.076

0.392

5818706 -
+1.12 0.14

0.19
-
+0.1228 0.0022

0.0023
-
+0.760 0.056

0.069
-
+0.930 0.066

0.081
-
+0.95 0.17

1.02

5877364 -
+1.38 0.23

0.20
-
+0.03337 0.00070

0.00080
-
+0.492 0.049

0.043
-
+0.588 0.058

0.050
-
+0.59 0.10

0.50

5960989 -
+1.43 0.15

0.12
-
+0.0645 0.0040

0.0043
-
+0.667 0.042

0.035
-
+0.804 0.049

0.042
-
+0.81 0.13

0.76

6370558 -
+1.48 0.28

0.21
-
+0.00254 0.00013

0.00020
-
+0.195 0.025

0.018
-
+0.229 0.029

0.021
-
+0.231 0.040

0.158

6775034 -
+1.30 0.19

0.23
-
+0.0356 0.0034

0.0039
-
+0.499 0.047

0.052
-
+0.597 0.055

0.061
-
+0.61 0.11

0.52

8027591 -
+1.40 0.28

0.20
-
+0.0785 0.0046

0.0049
-
+0.715 0.083

0.059
-
+0.864 0.098

0.070
-
+0.87 0.16

0.83

8164262 -
+1.69 0.30

0.20
-
+0.0148 0.0031

0.0044
-
+0.426 0.048

0.041
-
+0.504 0.056

0.048
-
+0.512 0.090

0.392

9016693 -
+1.60 0.33

0.20
-
+0.253 0.024

0.028
-
+1.323 0.143

0.099
-
+1.63 0.17

0.12
-
+1.63 0.31

1.95

9965691 -
+1.35 0.22

0.22
-
+0.05550 0.00057

0.00057
-
+0.598 0.059

0.056
-
+0.718 0.069

0.065
-
+0.73 0.13

0.66

10334122 -
+1.14 0.13

0.14
-
+0.155 0.028

0.031
-
+0.903 0.067

0.074
-
+1.113 0.081

0.091
-
+1.13 0.21

1.30

11071278 -
+1.23 0.28

0.19
-
+0.094 0.014

0.023
-
+0.747 0.098

0.077
-
+0.909 0.115

0.093
-
+0.92 0.18

0.94

11403032 -
+1.65 0.36

0.20
-
+0.0191 0.0011

0.0011
-
+0.443 0.062

0.034
-
+0.525 0.072

0.039
-
+0.523 0.091

0.405

11649962 -
+1.29 0.20

0.15
-
+0.1905 0.0039

0.0041
-
+1.007 0.083

0.060
-
+1.240 0.098

0.071
-
+1.24 0.22

1.45

11923629 -
+0.97 0.12

0.14
-
+0.0694 0.0012

0.0012
-
+0.543 0.040

0.043
-
+0.659 0.048

0.050
-
+0.67 0.12

0.67

12255108 -
+1.79 0.29

0.18
-
+0.0957 0.0073

0.0080
-
+0.899 0.086

0.058
-
+1.086 0.100

0.069
-
+1.08 0.18

1.05

Notes. The primary mass is taken from the KIC and the secondary is estimated from the orbital properties.
a Minimum mass estimate, assuming ( ) =isin 13 meaning a completely edge on configuration with i=90°.
b Assuming the median value of ( )isin3 , of 0.6495, where i is distributed as ( )isin .
c Using the distribution of ( )isin3 , where i is distributed as ( )isin .

(This table is available in machine-readable form.)
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In Figure 8 we investigate how the two parameters
mentioned above relate to the photometric amplitude of the
HB signal during periastron (A ;HB see Table 1). The Y-axes of
the two panels in Figure 8 are the same as in Figure 7, while the
X-axis is the photometric amplitude, and the markers’ radii are
linear in the primary star Teff (See Table 1). The data in both
panels do not show a clear correlation, although AHB is
expected to increase with decreasing periastron distance and
increasing tidal force (Kumar et al. 1995; Thompson
et al. 2012). This suggests that our sample is incomplete and
suffers from observational bias, and/or, that our understanding
of AHB is incomplete. The data do show, however, that hotter
stars have larger AHB, perhaps indicating that tidal circulariza-
tion is less efficient in hotter stars in our sample, although the
cause of this correlation is presently unclear.

4.5. Higher Multiplicity Systems

Many of the HB stars examined here may be members of
triple or higher multiplicity systems. Several works (e.g.,
Duquennoy & Mayor 1991; Meibom & Mathieu 2005;
Tokovinin et al. 2006; Raghavan et al. 2010) have found that
the fraction of higher multiplicity systems among short period
and highly eccentric binaries is very high, exceeding 90% for
binaries with <P 3 days (Tokovinin et al. 2006). Indeed,
tertiary bodies may excite the orbital eccentricity of HB
progenitors via Kozai–Lidov oscillations, producing close
periastron passages and allowing them to be detected as HB
systems. Quadruple systems composed of two binaries may
also be common among HB systems, and these types of
systems have been predicted by Pejcha et al. (2013), who found

Figure 6. Orbital eccentricity vs.orbital period. In both panels the 19 HB systems with orbits measured here are shown in red, and in gray we mark Kepler EBs where
the eccentricity was derived through analysis of the eclipse light curves (from A. Prša et al. 2016, in preparation). The top panel shows how the HB stars are typically
positioned at the top envelope of the eccentricity-period distribution. In the bottom panel we add all known HB stars with orbits measured using RVs and

<P 200 days (see legend and Table 6). The dashed gray lines mark an eccentricity-period relation of ( )( )= -e P P1 0
2 3 , which is the expected functional form

assuming conservation of angular momentum. The three curves use P0 of 4, 7, and 11 days, showing that it is difficult to use a single curve to match the upper
envelope of the distribution throughout the entire period range. See Section 4.3 for further discussion.
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that HB systems formation is greatly enhanced in quadruple
systems relative to triple and binary systems.

Despite the probable multiplicity of many HB systems, we
find it unlikely that many of our Keplerian RV solutions have
been greatly affected by orbital motion induced by a third body.
A putative third body exciting the orbital eccentricity would

likely have an orbital period, P3, more than several times longer
than the HB period (depending on its mass, inclination, and
eccentricity) in order to allow long term dynamical stability
(Kiseleva et al. 1994). If a typical HB progenitor system was
born with an orbital period P 30 days before having its
orbital eccentricity excited, we expect P 1 year3 for most
third bodies, with much larger values of P3 in most cases.
Although the orbital RV amplitude induced by such a third
body can be several km s−1, we expect only a small RV change
over the ∼100 days baseline of our observations, and therefore
this motion can be safely included as a constant RV offset. We
are currently pursuing a follow-up survey on many of these HB
systems that will reveal whether any of them have tertiary
companions with orbital periods P 5 years3 .

4.6. Future Prospects

The orbits measured here comprise a relatively large sample
obtained with a single instrument, and they can facilitate
several follow-up scientific studies in addition to that of
tidal circularization and the shape of the e–P distribution
(Section 4.3). Other examples include:

1. Stars in binary systems with highly eccentric orbits are
expected to rotate near a “pseudo-synchronous” rotation
period, where the stellar rotation is synchronized with the
orbital motion close to periastron which is faster than the
mean orbital motion along the entire orbit. The pseudo-
synchronous rotation rate depends on eccentricity and
orbital period (Hut 1981). However, the pseudo-synchro-
nous rotation period also depends on the tidal prescription
adopted (e.g., constant tidal Q and constant time lag yield
different predictions). The orbital eccentricities measured
here, combined with the orbital periods, allow for a
calculation of the expected pseudo-synchronous rotation
periods for these stars. If the rotation periods can be
directly measured, for example in HB systems also
showing stellar activity, this will allow for direct tests of
tidal theories. We list in Table 7 the theoretically
predicted pseudo-synchronous rotation period Pps derived

Table 6
Known Heartbeat Systems with RV Measured Orbit with <P 200 Days

Reference Name P ea

(days)

Beck et al. (2014) KID 8912308 20.17 0.23±0.01
L KID 2697935b 21.50 0.41±0.02
L KID 8095275 23.00 0.32±0.01
L KID 2720096 26.70 0.49±0.01
L KID 9408183 49.70 0.42±0.01
L KID 5006817 94.81 0.7069±0.0002
L KID 2444348 103.50 0.48±0.01
L KID 9163796 121.30 0.69±0.01
L KID 10614012 132.13 0.71±0.01
L KID 8210370 153.50 0.70±0.01
L KID 9540226 175.43 0.39±0.01
Hambleton et al. (2013) KID 4544587 2.19 0.288±0.026
Hambleton et al. (2016) KID 3749404 20.31 0.658±0.005
Hareter et al. (2014) HD 51844 33.50 0.484±0.020
Maceroni et al. (2009) HD 174884 3.66 0.2939±0.0005
Schmid et al. (2015) KID 10080943 15.34 0.44±0.05
Smullen & Kobulnicky

(2015)c
KID 3230227 7.05 0.60±0.04

L KID 4248941 8.65 0.34±0.04
L KID 8719324 10.24 0.64±0.05
L KID 11494130 18.97 0.49±0.05
Welsh et al. (2011) KOI 54 41.81 0.8315±0.0032

Notes.
a Values and errors are as given by the relevant paper.
b See also Lillo-Box et al. (2015).
c Two other systems included in that work are not listed in the table: For KID
9899216 the orbital parameters are not well constrained, and for KID 3749404
we adopt the parameters given by Hambleton et al. (2016).

(This table is available in machine-readable form.)

Figure 7. Periastron distance (top panel; ( )= -a a e1peri ) and the tidal force acting on the primary star at periastron divided by the star’s surface gravity (bottom
panel; see Equation (4)), both as a function of orbital period (x-axis in log scale).
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using Equation (42) of Hut (1981). We also list the orbital
period and eccentricity in the same table.

2. Combining the orbital RV model parameters constrained
here (especially e and K ) with models of the Kepler HB
light curve, which constrain i, results in an improved
measurement of M2 (see Section 4.2). That will allow to
measure the tidal force acting on the primary star, and
in turn the relation between that force and the HB
photometric amplitude.

3. Measurement of the orbital inclination angle (see previous
paragraph) and the stellar spin inclination angle (when
possible) gives the sky-projection of the stellar obliquity,
which is a key parameter in understanding binary stars
formation and orbital evolution (e.g., Naoz & Fab-
rycky 2014). The stellar spin inclination angle can be
constrained by measuring the stellar rotation period (for
example from stellar activity), the sky-projected rotation
rate (from rotational broadening of spectral lines), and
stellar radius (using spectroscopy and light curve modeling).

4. The measurement of the RV orbit paves the way for a
detailed analysis of individual systems showing tidal
pulsations (e.g., Welsh et al. 2011; Burkart et al. 2012;
Fuller & Lai 2012; Hambleton et al. 2013, 2016; O’Leary
& Burkart 2014).

5. Continued RV monitoring can unveil extraneous bodies in
the system by looking for a long term RV trend. This can
be complemented by other data sets, such as spectroscopy,
high angular resolution imaging, astrometry, and searching
for pulsation phase/frequency modulation in the Kepler
data (Shibahashi & Kurtz 2012; Murphy et al. 2014).
Measuring the occurrence rate of a third object will allow
for testing formation and orbital evolution theory (e.g.,
Naoz 2016). Such a combined approach of using several
different data sets to measure the occurrence rate of a third

Figure 8. Periastron distance (top panel; ( )= -a a e1peri ) and the tidal force acting on the primary star at periastron divided by the star’s surface gravity (bottom
panel; see Equation (4)), both as a function of the full amplitude of the photometric HB signal at periastron. In both panels the markers’ radius is linear in the primary
star’s Teff (See Table 1).

Table 7
Predicted Pseudo-synchronous Stellar Rotation Period

(P ;ps Rightmost Column)

KID P e Pps

(days) (days)

4659476 58.83045±3.7e−04 -
+0.745 0.011

0.011 6.99±0.48

5017127 20.006404±7.8e−05 -
+0.5504 0.0050

0.0050 5.96±0.13

5090937 8.800693±2.4e−05 -
+0.241 0.013

0.013 6.51±0.26

5790807 79.99625±5.5e−04 -
+0.8573 0.0031

0.0030 3.84±0.12

5818706 14.959941±5.2e−05 -
+0.4525 0.0039

0.0038 6.233±0.097

5877364 89.64854±6.4e−04 -
+0.8875 0.0031

0.0031 2.99±0.12

5960989 50.72153±3.0e−04 -
+0.813 0.015

0.017 3.70±0.46

6370558 60.31658±3.7e−04 -
+0.821 0.012

0.015 4.11±0.46

6775034 10.028547±2.9e−05 -
+0.556 0.037

0.047 2.93±0.54

8027591 24.27443±1.0e−04 -
+0.5854 0.0083

0.0082 6.32±0.24

8164262 87.45717±6.4e−04 -
+0.857 0.065

0.026 4.2±1.9

9016693 26.36803±1.2e−04 -
+0.596 0.018

0.018 6.58±0.54

9965691 15.683195±5.6e−05 -
+0.4733 0.0032

0.0032 6.111±0.081

10334122 37.95286±1.9e−04 -
+0.534 0.058

0.060 12.0±3.1

11071278 55.88522±3.3e−04 -
+0.755 0.013

0.015 6.24±0.56

11403032 7.631634±2.0e−05 -
+0.288 0.013

0.013 5.05±0.22

11649962 10.562737±3.2e−05 -
+0.5206 0.0035

0.0035 3.506±0.052

11923629 17.973284±6.7e−05 -
+0.3629 0.0059

0.0058 9.77±0.21

12255108 9.131526±2.5e−05 -
+0.296 0.015

0.016 5.92±0.32

Note. The table also lists the orbital period (P) and eccentricity (e).

(This table is available in machine-readable form.)

Table 8
Radial Velocity Table

KID Time RV RV Error
[BJD-2457000] (km s−1) (km s−1)

4659476 211.105843 24.36 0.33
4659476 228.908432 −67.05 0.36
4659476 229.814142 −60.52 0.71
4659476 230.797930 −30.64 0.83
4659476 237.071357 23.80 0.80
4659476 247.033747 32.74 0.62
4659476 285.868678 −29.7 2.0

(This table is available in its entirety in machine-readable form.)
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Figure 9. The panels show the Kepler phase-folded relative flux light curve (blue; left Y-axis) and the phase-folded RV curve model (red; right Y-axis) with periastron
at phase 0.5, for KID 4659476, KID 5017127, KID 5090937, KID 5790807, KID 58181706, KID 5877364, KID 5960989, and KID 6370558. In each panel the title
lists, from left to right, the KIC ID, Teff (K), glog , P (days), K (km s−1), and e. The RV measurements are overplotted in black, including error bars although in some
panels the markers are larger than the error bars. The Kepler light curves shown here were derived by applying a running mean to the Kepler data, followed by binning
with a bin size of 0.0002 in phase.
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object has already proven successful in the study of short
period gas giant planets (Knutson et al. 2014; Ngo
et al. 2015; Piskorz et al. 2015).

5. SUMMARY

We have presented here the first results from our RV
monitoring campaign of Kepler HB stars. Our results include a

Figure 10. Same as Figure 9 for KID 6775034, KID 8027591, KID 8164262, KID 9016693, KID 9965691, KID 10334122, KID 11071278, and KID 11403032. In
each panel the title lists, from left to right, the KIC ID, Teff (K), glog , P (days), K (km s−1), and e.
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sample of 19 Kepler HB stars in the orbital period range of
7–90 days for which we derived a Keplerian orbital solution
from RV monitoring using Keck/HIRES. This is currently the
largest sample of HB stars for which an RV orbit was obtained
using a single instrument, and it roughly doubles the number of
such systems with periods up to 90 days.

We have shown that HB stars populate the upper envelope of
the e–P diagram, which is a distinguishing feature for testing

tidal circularization theories. This sample will support additional
studies that require a sample of HB systems with well measured
orbits, for example testing pseudo-synchronization theory and
examining the physics of tidally excited stellar pulsations.
We also presented three objects for which we did not detect

RV variability, and list a few possible scenarios that can
explain that observation. Those objects should be studied in
more detail in order to explain the RV non-variability.

Figure 11. Same as Figure 9 for KID 11649962, KID 11923629, and KID
12255108. In each panel the title lists, from left to right, the KIC ID, Teff (K),

glog , P (days), K (km s−1), and e.
Figure 12. Same as Figure 9 for the three RV non-variable stars, KID 9972385,
KID 11122789, and KID 11409673. The red solid line marks the RVs weighted
mean. The title of each panel lists the KIC ID, Teff (K), glog , and P (days).
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We plan to continue our RV monitoring in order to increase
the sample size by measuring the orbits of additional HB
systems, and to look for long term RV trends indicative of a
third object in the system. We will pursue the latter by
complementing the RV monitoring with spectroscopy, ima-
ging, astrometry, and examining the Kepler light curve for
modulations in the pulsation phases.

Finally, we note that the ongoing K2 mission (Howell
et al. 2014) and the future TESS mission (Ricker et al. 2014)
and PLATO mission (Rauer et al. 2014) are expected to detect
many more HB systems. For K2 and TESS, the stars are
expected to be typically brighter than Kepler HB stars and
therefore more accessible to RV monitoring. They are also
expected to have shorter orbital periods due to the shorter
temporal coverage, which is useful for studying the transition
period below which binary systems are fully circularized.
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APPENDIX A
RADIAL VELOCITY TABLE

Table 8 lists all 218 Keck/HIRES RV measurements
obtained here. The table columns include KIC ID, mid
exposure time (BJD), RV (km s−1), and RV error (km s−1).

APPENDIX B
SIMULTANEOUS LIGHT CURVE AND

RV CURVE PLOTS

Figures 9 through 12 show the phase-folded RV curve
(measurements in black, model in red) along with the phase-
folded and binned Kepler light curve (blue). Figures 9 through

11 show the 19 systems for which we fitted a Keplerian orbit
and Figure 12 shows the 3 systems for which we do not detect
RV variability. We did not analyze the Kepler data here and the
light curves are shown for completeness.
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