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Abstract  

Mitochondrial diseases have been extensively investigated over the last three decades but 

many questions regarding their underlying aetiologies remain unanswered. Mitochondrial 

dysfunction is not only responsible for a range of neurological and myopathy diseases, but is 

also considered pivotal in a broader spectrum of common diseases such as epilepsy, autism 

and bipolar disorder. These disorders are a challenge to diagnose and treat as their aetiology 

might be multifactorial. In this review, the focus is placed on potential mechanisms capable 

of introducing defects in mitochondria resulting in disease. Special attention is given to the 

influence of xenobiotics on mitochondria; environmental factors inducing mutations or 

epigenetic changes in the mitochondrial genome can alter its expression and impair the whole 

cell’s functionality. Specifically, we suggest that environmental agents can cause damage by 

generating abasic sites in mitochondrial DNA, which consequently lead to mutagenesis. 

Abasic sites are observed in DNA after spontaneous loss of a nucleic base (e.g., “apurinic 

sites” after loss of purines, adenine or guanine) or through base excision repair; if left 

unrepaired, they can produce mutagenic DNA lesions. Moreover, we describe current 

approaches for handling mitochondrial diseases, as well as available prenatal diagnostic tests 

towards eliminating these maternally-inherited diseases. Undoubtedly, more research is 

required, as current therapeutic approaches mostly employ palliative therapies rather than 

targeting primary mechanisms or prophylactic approaches. More effort is needed into further 

unravelling the relationship between xenobiotics and mitochondria as the extent of influence 

in mitochondrial pathogenesis is increasingly recognised. 

Keywords Abasic sites; Aetiology; Disease; Mitochondria; Mutations; Xenobiotics 
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Introduction to mitochondria: their role, genome and origin 

In addition to causing disease by inducing irreversible alterations to nuclear DNA, 

environmental factors can also influence other cellular components. It is now recognized that 

epigenetic influences to mitochondria can give rise to disease pathogenesis. Mitochondria are 

organelles found in every eukaryotic cell and are commonly referred to as the “powerhouse 

of the cell”, as they generate 90% of the cell’s adenosine triphosphate (ATP), which is then 

used for releasing stored energy required for maintenance of cellular integrity (1). However, 

mitochondria also have unique, discriminant roles that extend beyond their primary role as 

ATP generators; maintaining control of the cell cycle and growth, regulating cell signalling, 

cell death and cellular metabolism are some of the additional functions of mitochondria (2). 

Mitochondria are the only cell components having their own genome, other than 

nucleus. The human mitochondrial DNA (mtDNA) is a single, circular chromosome 

consisting of ~16.500 base pairs (bp) and encodes 37 genes: 13 for subunits of respiratory 

complexes, 22 for mitochondrial tRNA and 2 for rRNA (3,4). In contrast to the nuclear DNA 

(nDNA) of eukaryotic cells, packaged in chromatin (5), mtDNA is packaged into bacterial 

nucleoid-like structures called mitochondrial nucleoids, with the help of the “mitochondrial 

transcription factor A” (TFAM) (6,7). TFAM molecules have a similar role with the histones 

in the nucleus, transforming mtDNA into a more compact, U-like shape (8). However, 

research on the exact structure and size of these nucleoids is still ongoing and under a lot of 

debate (9). Each mitochondrion contains 2-10 copies of mtDNA and each mammalian cell 

contains 100-1.000 of these organelles, depending on the energy requirements of each cell 

type; thus, there are finally 1.000-10.000 copies of mtDNA within each individual cell (10). 

The replication process of the mitochondrial genome does not occur in a single 

occasion during a cell cycle, as happens with the nDNA (i.e., stringent replication); mtDNA 
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is degraded and replaced continuously through a random process called relaxed replication 

(11,12). This process can also take place in non-dividing cells, such as skeletal muscle and 

brain, leading to the replication of some chromosomes, whereas some others may not 

replicate at all; however, even if relaxed replication happens randomly, there is still control 

on the copy number, so that every cell will end up with a constant number of mtDNA 

molecules (11). The nucleus’ contribution is also critical for the mitochondria’s genome 

expression, such as replication, transcription or DNA repair, as many necessary proteins are 

encoded by nuclear genes (13). For instance, the required proteins for replication and 

transcription are polymerase gamma (pol γ) (14) and TFAM (15); both are encoded in the 

cell’s nucleus. 

For many years it was believed that pol γ replicated mtDNA via a bidirectional 

mechanism, the “strand-displacement mechanism”, where the external strand (“leading 

strand”) is unravelled replicating the two-thirds of the mtDNA in one direction; then the 

synthesis of the internal strand (“lagging strand”) follows (16). During the replication of the 

leading strand, the lagging strand was thought to be coated by proteins (17). There is now 

recent data suggesting the “bootlace mechanism” where instead of proteins in the protective 

role, there is RNA complementary to the lagging strand; this way DNA breakage is 

minimised to only a few damaged bases, which could then be replaced by using “bootlace” 

RNA as a repair template (18). The source of this RNA sequence has not yet been established 

but it is hypothesised to be either product of a primase or a transcript “threaded” directly onto 

the lagging strand (19). 

Furthermore, although mtDNA significantly resembles the bacterial genome, the 

origin of the mitochondria within a cell has been controversial for many decades. There is 

marked support for the endosymbiotic theory (20), according to which mitochondria were 

initially separate, autonomous prokaryotic organisms before they entered an amitochondriate 
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eukaryotic cell, implementing in this way oxidative mechanisms (which were not previously 

present) and forming the final structure of eukaryotic cells (21,22). On the other hand, many 

others support a different theory, which is based on the possibility that “this organelle 

originated at essentially the same time as the nuclear component of the eukaryotic cell” 

(23,24) . Overall, most of the evidence leans towards the first hypothesis. 

Mitochondria also have a distinct inheritance pattern as it is non-Mendelian, which 

means that all genetic information comes exclusively from one parent, the mother (25). 

Although both sperm and egg cells include mitochondria, the ones from the sperm (located in 

the tail of the sperm cell) are broken down immediately after fertilisation and as a result, if a 

mother harbours a mutation in her mtDNA, she is more likely to pass it down to her offspring 

(26). However, segregation of mitochondria appears to be greatly affected, not only by 

random events but also by the dynamics (fusion, fission, movement and mitophagy) of these 

organelles (4,27) and hence, there is a variance in the severity of the mutation in the 

descendants, who can eventually become heteroplasmic (different copies of mtDNA within a 

cell) or homoplasmic (uniform copies of mtDNA within a cell) for a mtDNA mutation. It is 

well-accepted that the existence of a single mutation is not enough for the development of a 

pathogenic phenotype; conversely, the mutation level has to “exceed a critical threshold”, 

before clinical features occur (10,12). After the observation that siblings from the same 

family can often have different levels of mutated mtDNA, the theory of mitochondrial 

“genetic bottleneck” came to the fore, in order to describe the restriction in the number of 

mtDNA transmitted between generations (28,29). This restriction is responsible not only for 

the variety of mutated levels between siblings, but also for the quick reversion from 

heteroplasmy to homoplasmy in just a small number of generations (30). 
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Introduction to mitochondrial diseases: occurrence and potential causes 

Even though the mitochondrial genome is considerably shorter in comparison to nDNA (3 × 

109 bp), it is still extremely important for the maintenance of stable respiratory functions of 

each individual cell, and therefore of a whole organism. Despite the smaller number of genes 

in mitochondria, the mutation rate is 10 to 16 times higher than nuclear mutations (10). In 

reality, none of the mitochondrial genes control an individual’s physical appearance (height, 

eye/hair colour, etc.), but when these contain mutations the chances of a disease occurrence 

are quite high, leading to a variety of mild or extremely severe disorders, known as 

mitochondrial diseases. Mitochondrial dysfunction can also lead to the increased production 

of reactive oxygen species (ROS), which sequentially contributes to retrograde redox 

signalling from the mitochondrion to the cytosol and nucleus; hence mitochondria can have a 

great impact on the cell’s replication and function (31,32). Recent studies have focused 

extensively on the signalling (cross-talk) between mitochondria and nucleus, and the 

importance of these “bidirectional interactions” in cellular mechanisms and responses to 

exogenous agents (such as environmental stressors), has been made clear (33,34). 

Mitochondrial disease compromises cell energy production and this can limit energy 

for the cell, affecting the function of all organs and especially those with high energy 

demands such as brain, muscle, liver, heart, kidney, etc. (Figure 1) (4,35,36). The causes of 

mitochondrial diseases may vary and result from the accumulation of different factors (12). 

Most of the disorders are often due to mutations in mtDNA or in nuclear genes that encode 

mitochondrial proteins (37). The later is the result of the majority of mitochondrial proteins 

(~900) that are encoded in the nucleus, synthesized within the cytosol and then imported into 

the mitochondria (4); thus these nuclear genes [named “nuclear-mitochondrial genes” (38)] 

can equally affect the mitochondria’s function. 
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Mutations in a stem cell’s mitochondria are also thought to be responsible for the 

initiation and recurrence of many diseases. Recently, it has been observed that accumulated 

mtDNA mutations occurring in human colonic crypt stem cells can expand and cause serious 

defects in their differentiated progeny (39-41). Colonic stem cells were chosen for pilot 

studies, as they reside at the base of the colon crypts and produce other cells that migrate 

towards the top. Ultimately, the majority of the cells within the crypt originate from these 

stem cells, which makes it easier to identify potential mutations by studying any progeny cell 

without the need of isolating individual stem cells (39). Hence, it is likely that mtDNA 

mutations in these stem cells will be easily transferred to daughter cells throughout relaxed 

replication and if they finally affect an important base in a structural or RNA gene, then they 

can cause biochemical defects as a consequence (40). Further experiments have shown that 

through fission, the mutated colonic crypts can also expand to create two mutated daughter 

crypts, which inevitably results in the spread of any mutation across the colon tissue 

throughout an individual’s lifetime (40). It is thought that probably only stem cells have the 

ability to accumulate mitochondrial mutations to a detectable proportion, as these mutations 

take many years to expand and stem cells have the sufficient life-span for that (42). However, 

it is fortunate that this spreading of mutations happens fairly slowly, as the estimated time for 

crypt fission to occur in humans can vary from 17 to 30 years (40,43). 

An additional potential cause of mitochondrial disease is the existence of defects in 

the final pathway of mitochondrial energy metabolism, i.e. oxidative phosphorylation 

(OXPHOS) (36), where increased production of mitochondrial ROS can change gene 

expression, induce cancer cell proliferation or even lead to cell apoptosis or necrosis (32). 

Mitochondrial disorders may be also attributable to dysfunction of mitochondrial proteins 

(44), inheritance (29,45), inefficiency of DNA-repair mechanisms during mtDNA replication 

(10) and various environmental influences [such as UV exposure (46), smoking, alcohol 
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consumption (47), pesticide exposure (48), use of antiretroviral drugs (49), exposure to 

industrial toxins (50) and other chemicals (51)]. 

Epigenetic changes caused by environmental factors on mtDNA, such as methylation 

and hydroxymethylation, can alter mtDNA expression and subsequently lead to further 

alterations of nuclear DNA too; the resulting modified genome is capable of causing a variety 

of diseases (52,53). In this review, we mainly focus on environmental contaminants leading 

to mitochondrial mutagenesis and also shed some light on potential mechanisms under which 

mitochondria become pathogenic. Some reviews have already been conducted on a number 

of environmental chemicals that introduce toxicity to mitochondria and their genome 

(51,54,55); however, the precise mechanisms of toxicity are not fully understood. 

Surprisingly, chemical contaminants were found to be responsible for both decreases and 

increases of mtDNA copies, which was attributed to the competing effects between ROS-

induced damage and simultaneous biogenesis respectively; moreover, many of them seem to 

cause different extents of damage in mtDNA and nDNA in a dose-related fashion (54).  

Exogenous contaminants in mitochondrial toxicity: the contradiction 

Recent evidence links pharmaceuticals or environmental pollutants to mitochondrial toxicity 

and consequently disease. As might be expected, pharmaceuticals have been better studied in 

comparison to environmental contaminants, leaving many question marks with regards to the 

latter’s mechanism and degree of influence. Specific drugs have now been identified as 

previously-undiscovered mitochondrial toxicants leading to disease; adriamycin for example, 

-an anti-cancer chemotherapy drug- has been found to affect primarily the mitochondrion by 

generating ROS and inhibiting ATP production, leading thus to cardiomyopathy (56). 

Likewise, numerous environmental contaminants, such as silver nanoparticles -used as 

bactericidal agents in water- have been repeatedly blamed for “poisoning” mitochondria. 
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Silver nanoparticles have antibacterial properties by which they disrupt bacterial cell walls 

and deposit on their membrane; considering mitochondrial similarities to bacteria, there is a 

high chance that silver nanoparticles have the exact same effects on mitochondria as well, 

causing impairment of their function (57,58). 

On the other hand, the belief that environment adversely affects mitochondria and 

their genome, has recently been questioned as it contradicts some experimental evidence 

suggesting that endogenous mechanisms have a far greater impact in mitochondria than any 

environmental contaminant. By using mtDNA sequencing they concluded that errors during 

mtDNA replication and lack of repair mechanisms are responsible for causing more 

mitochondrial mutations than any exogenous factor (59). For example, after studying lung 

cancer and melanomas, they found no evidence of the mutational signatures coming from 

tobacco smoke or ultraviolet light exposure respectively; also, in breast cancer cases, BRCA1 

and BRCA2 mutations also showed no influence on mtDNA, in contrast to the nDNA. The 

same study also supports, contrary to conventional wisdom, that most mtDNA mutations act 

as “passenger mutations” having no incredible effect on cancer development and spreading 

(59). However, even though this study incorporated a large number of subjects (1675 cancer 

biopsies across 31 tumour types), its limitation was the focus on only one disease, cancer. It 

is thus possible that this finding is valid in the presence of cancer, but invalid in other 

diseases, such as Parkinson’s disease, epilepsy, cardiovascular disease or other mitochondrial 

diseases. Uncontrollable genome proliferation, including mtDNA, is a common characteristic 

of all cancer cells and it could be a reflection of observations during sequencing. Moreover, 

the study makes clear that “the majority of the mutations were introduced from errors during 

DNA duplication”, implying that there are more mutations, even if these represent the 

minority, that could be caused by other factors. 
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It is evident that there is still a lack of conclusive evidence on whether endogenous, 

exogenous or even a combination of both, can affect mitochondrial function and in what 

extent.  

Mitochondrial heterogeneity and vulnerability 

The same environmental or pharmacological exposures can lead to different disease 

prevalence among individuals, as a result of differing genetic background (54,60). For 

instance, tobacco use and heavy alcohol consumption increase the risk of blindness in 

specific mitochondrial diseased people (47). Similarly, use of common aminoglycoside 

antibiotics can cause deafness in people with certain mtDNA mutations, even when 

prescribed in low doses, clearly showing a gene-environment interaction (61). Furthermore, 

each mitochondrion exhibits similar heterogeneity not only from tissue to tissue (e.g., heart 

mitochondria versus kidney mitochondria versus skeletal muscle mitochondria), but also 

within individual cells of the same tissue (e.g., intermyofibrillar versus subsarcolemmal 

within skeletal muscle), which renders it even harder to conclude in general assumptions; this 

variability leads consequently to different protein composition and tissue function, which 

could potentially be the reason why certain mtDNA mutations occur in certain tissues (60) 

(Figure 2). In contrast, there are numerous factors that can undoubtedly cause damage to 

mitochondria and their genome regardless of the aforementioned heterogeneity. Firstly, 

mtDNA can get adversely affected by its proximity to the electron transfer chain (29), where 

high levels of ROS are produced, as well as by its histone-free packaging (5) and 

insufficiency of repair mechanisms (10), compared to the nuclear DNA. Secondly, it is 

possible for various contaminants, such as lipophilic compounds (e.g., polycyclic aromatic 

compounds and alkylating agents), heavy metals (e.g., mercury , cadmium , lead) or even 

other organic chemicals (e.g., paraquat and 1-methyl-4-phenylpyridinium) to accumulate in 

the phospholipid membranes of mitochondria; this renders them capable of causing 
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dysfunctionality in the organelles (54). Finally, another potential reason for mitochondrial 

impairment is the contribution of cytochrome P450 systems (CYPs) in the metabolism of 

xenobiotic compounds (62). CYP enzymes interact with the initial incoming compound (e.g., 

“parent” drug) to generate its metabolites; likewise, they can bioactivate inert chemicals 

accumulated in mitochondrial membranes, such as environmental toxicants, and transform 

them to their toxic metabolite form (62,63). At the same time, however, we have to keep in 

mind that apart from their vulnerability to the above-mentioned factors, mitochondria are also 

equipped with protective mechanisms helping them to overcome severe damages or reactive 

compounds. The high copy number, dynamic processes, such as fusion and fission, 

mitophagy of heavily damaged mitochondria and proteins bound to the mtDNA, such as 

TFAM, are potentially some of the shields of mitochondria (54,64). 

Bioactivation of xenobiotics is triggered when a single chemical enters the organism, 

primarily through the routes of inhalation, ingestion or dermal absorption (65). 

Biotransformation describes the metabolic process of xenobiotics, occurs in three separate 

phases and is catalysed by a variety of different enzymes, predominantly CYPs (62,66). For 

many years, it was believed that xenobiotic metabolism solely indicated the deactivation of 

parent compounds, but it was then found that it can also cause activation of previously inert 

chemicals, producing highly reactive, electrophile molecules, i.e., bioactivation (67). These 

reactive intermediates can bind covalently to DNA, RNA or proteins and produce adducts, or 

even interact with the tissue oxygen and produce ROS, which also lead to mutations and 

damage (66,68,69). DNA adducts resulting from the reaction between the active electrophiles 

and the two purine bases, adenine and guanine, can lead to two products: a stable DNA 

adduct or a depurinating DNA adduct. When a stable adduct is formed, the electrophile 

compound remains covalently bonded to DNA, while depurinating adducts are spontaneously 

released from DNA after breakage of the glycosidic bond, creating “apurinic sites of DNA” 
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which are responsible for further mutagenesis (69). Just as these reactive electrophile might 

react with nDNA, there is a good possibility that they might also covalently bind to bases in 

mtDNA (Figure 3). 

Potential mechanism for mitochondrial mutagenesis: abasic sites in mtDNA 

Precursor CYP enzymes are coded in the nucleus and depending on their “targeting 

sequence”, which is controlled by the amino-terminal part of the peptide, they target either 

the endoplasmic reticulum (ER) or the mitochondria (62). The ones that are destined to 

become mitochondrial P450s (only 7 out of 57 genes encode mitochondrial P450s), are 

imported into the mitochondrial matrix and processed to become mature; finally, the mature 

derivatives get incorporated into the inner membrane of the mitochondrion, with their 

catalytic domain exposed to the matrix area (62). At the same time, various toxicants (70-76) 

accumulate in the phospholipid mitochondrial membranes and as a result they get easily 

bioactivated by CYP enzymes. To summarise, this is one of the proposed mechanisms for the 

activation of relatively non-reactive chemicals in mitochondria, which would lead inevitably 

to mitochondrial mutagenesis (Figure 3). An alternative hypothesis is that the 

chemical/compound is initially metabolised in the ER by microsomal P450s and then the 

resulting metabolites penetrate the mitochondrial membranes to give rise to mutations (54). 

This penetration is absolutely feasible as the outer membrane contains porins, which make it 

easily permeable to various molecules, while on the other hand, the inner membrane is less 

permeable to big molecules but still contains transporters which allow endogenous 

compounds and possibly xenobiotics to enter the matrix (77). Either way, it is likely that 

these activated toxicants will lead to abasic site formation in mtDNA. However, despite the 

current knowledge on mtDNA and its role in mutagenesis, understanding of many pathways 

remains limited and is often extrapolated from our knowledge of nuclear DNA and 

mechanisms so far. 
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Specific mitochondrial diseases 

Mitochondrial defects are responsible for a number of diseases including Kearns-Sayre 

syndrome (KSS), Pearson’s syndrome and chronic progressive external ophthalmoplegia 

(CPEO), which are all due to large-scale rearrangements of mtDNA (single deletions, 

duplications or a mixture of the two). Others are due to point mutations in mtDNA and these 

include MELAS (mitochondrial neuro-gastro-intestinal encephalomyopathy), MERRF 

(myoclonic epilepsy with ragged red fibres), NARP (neuropathy ataxia and retinitis 

pigmentosa), MILS (maternally inherited Leigh syndrome), LHON (Leber’s hereditary optic 

neuropathy), diabetes mellitus and deafness (36,78). There are also a number of 

mitochondrial diseases triggered by nuclear mutations such as dominant optic atrophy 

(mutation in OPA1), Freidreich’s ataxia (mutation in FRDA1), hereditary spastic paraplegia 

(mutation in SPG7), Leigh syndrome (mutation in both SURF1 and mtDNA ATP6), Wilson’s 

disease (ATP7B), Barth syndrome (TAZ) and many more (36,79). Other clinical pathologies 

linked with mitochondrial dysfunction include: neurodegenerative diseases such as 

Parkinson’s disease, Alzheimer’s disease and Huntington’s disease (80), and even 

schizophrenia, bipolar disorder, epilepsy, stroke, cardiovascular disease and chronic fatigue 

syndrome (81). Finally, there is also an accumulating body of evidence to support the 

involvement of mitochondria with senescence (12), cancer (82) and autism (83). Although it 

is still relatively difficult to distinguish a mitochondrial disease from symptoms alone, it is 

feasible to set up a tentative connection between specific mutations and diseases (35,84). 

In general, the prevalence of mitochondrial diseases depends on many factors, such as 

the mutation rate and inheritance pattern. mtDNA deletions are infrequently inherited from 

mother to child (mostly sporadic/de novo), less common than point mutations and therefore 

are rare. Other mtDNA and nDNA mutations are more likely to be maternally transmitted and 

cause significant disease (85,86). It is also possible that ethnic differences contribute to the 
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prevalence of mtDNA mutations. To illustrate this, different mtDNA mutation rates were 

found in two separate studies; T14484C mutation, causing LHON disease, was mainly 

observed in French-Canadian families, while A3243G mutation, causing MELAS syndrome, 

was predominant among specific subgroups of Finnish families (85). It has been hypothesized 

that this difference is due to the geographical, cultural and linguistic isolation of the Finnish 

population and the “founder effect”, which suggests that these families may share the same 

maternal lineage; in other words, have been derived from the same woman (87). 

Understanding (dys-)functionality in isolated mitochondria  

When a xenobiotic enters the human body, it not only causes mitochondrial dysfunction, but 

may also induce mutations or damage to more than one organelle or macromolecule at the 

same time. For this reason, it is of great importance to investigate mitochondria separately 

from the rest of cell, in order to determine the toxicity of chemicals solely in mitochondria 

(88). To date, there are already several approaches which can be used to explore these semi-

autonomous organelles in intact cells, in isolation or even in vivo (88,89). All of the 

techniques, with either isolated mitochondria or intact cells and living organisms have their 

strengths and weaknesses, which are given in more detail in previous reviews (54,89). 

Isolating mitochondria from the rest of the cell aids the investigation of specific 

mitochondrial processes, such as respiration, as there is no incoming interference from the 

cytosol. Diagnosing a disease only from a single defect (e.g., ATP reduction) or a type of 

mutation (e.g., deletion, point mutation, etc.) remains considerably difficult though (60). 

Many mitochondrial disorders, even when caused by the same mutation, have diverse 

pathophysiological characteristics, which makes it really hard to distinguish. For instance, 

some mtDNA mutations demonstrate high tissue-specificity, others affect different tissues 

and organs in different individuals and with differing ages of onset, depending on the 
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individuals’ genetic background, and others can cause different extents of deficiency in 

different individuals (54). Diseases caused by point mutations in mtDNA, such as LHON and 

MELAS syndromes, manifest clinically as neuropathy and myopathy/encephalopathy, 

causing mainly sight loss and stroke-like episodes respectively. Similarly, KSS and CPEO 

syndromes, both caused by deletions of mtDNA, are mostly presented as 

ataxia/neuropathy/opthalmoplegia and bilateral ptosis/opthalmoplegia respectively (36). It is 

thus obvious that not all point mutations or deletions cause the same disease severity or 

symptoms. Clinical manifestations may vary depending on the mutation load as well. During 

a study on patients with the 3243A>G mutation in the tRNALeu(UUR) gene, individuals with 

50% mutation load in their muscle cells were found with inefficient oxygen intake during 

exercise and abnormal morphology of muscle fibres, whereas when the mutation load 

exceeded 65%, they could develop diabetes mellitus and hearing loss (90). Thus, it is difficult 

to create a clear link between clinical phenotype and mtDNA mutations, apart from tentative 

clinical-correlations. Establishing the exact causes of mitochondrial pathogenesis is still 

undergoing research, with only 50% of severe mitochondrial diseases identified to date (60). 

In terms of diagnosing mitochondrial diseases clinically, there is a combination of 

tests including family history, which can be run if a mitochondrial disorder is suspected. 

Some of these tests may include examination of clinical features, sequencing of 

mtDNA/nDNA for potential mutations, muscle biopsy, blood or urine tests, brain MRI 

(magnetic resonance imaging), ophthalmology and audiology tests, spectroscopy, metabolic 

screening in cerebrospinal fluid (CSF) etc. (84,91,92). However, despite the advances in the 

field, many mitochondrial disorders are still poorly recognised and diagnosed due to their 

complexity and diversity of symptoms. It is also established that diagnosis of these diseases is 

easier in adults than in children, as the first are more likely to carry “easily defined” mtDNA 
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mutations, while the latter carry mostly nuclear DNA mutations, where the “classic” 

symptoms of a mitochondrial disease are not present (91). 

Future scope for translational research (current approaches) 

Despite establishing over twenty years ago that mitochondrial disease is responsible for a 

wide range of conditions (around 1 in 5,000 individuals is affected from these diseases), there 

are no effective treatments (60,93). Clinicians and scientists try their best to help these 

patients by relieving their symptoms and maximizing the organs’ functionality, either by 

supportive medicine and dietary supplementation or by corrective surgery, even though the 

benefits of the latter are sometimes temporary (37,94). Resistance exercise training has 

positive effects as well, as it improves oxidative capacity and induces mitochondrial 

biogenesis in skeletal muscles of individuals with mtDNA deletions (95). Due to lack of 

effective treatments it is of crucial importance, that high-risk women undergo a series of 

prenatal tests. Genetic counselling, followed by chorionic villous sampling (CVS), 

amniocentesis or preimplantation genetic diagnosis (PGD) when necessary, is provided to 

future mothers as they can get informed about the different types of mitochondrial mutations 

(e.g., deletions and point mutations of mtDNA) and the underlying risks of transmitting them 

to their descendants; thus they can then take a decision to either continue with their 

pregnancy or have a termination. Despite the advances in prenatal testing, it is still 

challenging to interpret the results due to mtDNA heteroplasmy and the complexity of these 

genetics (93). In case of high levels of heteroplasmy or homoplasmic mtDNA mutations, the 

only reproductive options are adoption, ovum donation or mitochondrial donation, which is 

described in details below (96). 

Future research in mitochondria diseases is likely to focus in four main areas: 
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 Altering the mtDNA heteroplasmy by stimulation of the satellite cells, which are 

precursors of muscle cells, able to proliferate and regenerate cells with no mutant 

mtDNA (97); or by preventing the replication of mutant mtDNA with the help of 

peptide nucleic acids (PNAs) complementary to the mutated mtDNA sequence, 

allowing thus propagation of the wild-type (98); 

 Selective elimination of mutant mtDNA by a restriction enzyme, capable of targeting 

only the undesirable-mutated sequence, without thus affecting the wild-type mtDNA 

(99) or the import of a normal tRNA for the repair of respiratory deficiencies (100); 

 Replacement of a defective protein, such as a respiratory-chain complex, with a 

similar protein from another organism could also be considered as a therapy of 

mitochondrial disorders, as it has already been effective in vitro where a yeast 

enzyme, imported in human cells, restored the activity of Complex I enzyme (96); 

 Mitochondrial donation is an additional technique for dealing mitochondrial disorders, 

as it can prevent transmittance of the mutation from mother to child, which is critical 

considering the lack of successful treatments. This method is an in vitro fertilization 

(IVF) technique, where nuclear DNA from a patient woman is transferred into an 

enucleated donor oocyte or zygote, without the “carryover” of the mutated mtDNA 

(96). However, this approach has raised many ethical concerns and is not yet widely 

accepted. 

Conclusion 

Normal mitochondrial physiology is integral to healthy wellbeing. After decades of research 

in interpreting mitochondrion function, there is currently no treatment against mitochondrial 

diseases, which reflects the complexity of dysfunction when it occurs. Environmental factors 

are now thought to be a potential aetiology to some mitochondrial diseases. Understanding 
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the extent of genotoxic and/or epigenetic influences, will enable us to move towards novel 

research techniques, develop diagnostic tests and perhaps influence lifestyle changes. 
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Fig 1: Schematic of the most-affected organs in mitochondrial diseases 
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Fig 2: Phenotypic manifestations of mitochondrial diseases 
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Fig 3: Chemical (R) penetrating a cell’s membrane; there it can get bioactivated by different enzymes 

and predominantly cytochrome P450 enzyme to form its electrophilic compound (R+), which is 

highly reactive. The toxic derivative can then interact with nuclear and mitochondrial DNA, forming 

thus apurinic sites   

 


