

Central Lancashire Online Knowledge (CLoK)

Title	Using elemental profiling to determine intrinsic markers to track the dispersal of Prostephanus truncatus, a pest of stored grain with alternative natural hosts
Туре	Article
URL	https://clok.uclan.ac.uk/15653/
DOI	https://doi.org/10.1111/eea.12459
Date	2016
Citation	Tigar, Barbara and Hursthouse, Andrew S (2016) Using elemental profiling to determine intrinsic markers to track the dispersal of Prostephanus truncatus, a pest of stored grain with alternative natural hosts. Entomologia Experimentalis et Applicata, 160 (1). pp. 83-90. ISSN 0013-8703
Creators	Tigar, Barbara and Hursthouse, Andrew S

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1111/eea.12459

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

Using elemental profiling to determine intrinsic markers to track the dispersal of Prostephanus truncatus, a pest of stored grain with alternative natural hosts

Journal:	Entomologia Experimentalis et Applicata
Manuscript ID	EEA-2015-0218.R1
Manuscript Type:	Regular Paper
Date Submitted by the Author:	28-Jan-2016
Complete List of Authors:	Tigar, Barbara; Liverpool Hope University, Health Sciences Hursthouse, Andrew; University of the West of Scotland, School of Science & Sport
Key Words:	Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP-AES, elemental screening, chemoprints, biomarkers, larger grain borer

1	Using elemental profiling to determine intrinsic markers to track the dispersal of
2	Prostephanus truncatus, a pest of stored grain with alternative natural hosts
3	Authors
4	Barbara J. Tigar
5	Andrew S. Hursthouse
6	
7	Addresses
8	School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
9	School of Science & Sport, University of the West of Scotland, Paisley Campus, Paisley PA1
10	2BE, UK
11	
12	Correspondence
13	Barbara Jane Tigar
14	School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
15	tigarb@hope.ac.uk
16	
17	Short title for running headlines
18	Elemental markers of dispersal by <i>P. truncatus</i>
19	
20	Key words
21	Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP-AES, elemental screening,
22	chemoprints, biomarkers, larger grain borer, natal origin.
23	
24	

25 Abstract

Detecting sources of insects attacking grain stores can help to develop more effective pest
management models. This study considers combinations of chemical elements as intrinsic markers
for tracing resource-use by *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) a pest of
stored maize which occurs in natural environments where alternative hosts may support reservoirs
of infestation.

P. truncatus were lab-reared on maize or field-caught in pheromone-baited flight-traps. Beetles and
 hosts were screened for multiple elements using Inductively Coupled Plasma Atomic Emission
 Spectrometry (ICP-AES). For elements above detection limits we tested relationships between
 determinations for different host plants, and for beetles according to environment where captured.

An alternative host Spondias purpurea (Linnaeus) (Anacardaceae) contained more Al, B, Ca, Cu, Fe, Mg, Si and Sr, and less P and Zn than maize. Trends for P were consistent between maize and beetles infesting maize, but reversed for Ca and Mg. Elemental profiles of beetles were associated with environment, with significantly lower Al, Ca, Cu, Cr, Fe, P, S, Si, Sr, Ti and Zn determinations in maize-reared beetles than those captured in agricultural or natural environments. Additionally, Al, Ba, K, P, Sr and Ti determinations of field beetles captured in agricultural vs natural environments were significantly different. This suggests Al, Sr and Ti as candidate markers for environment, plus other possibilities likely since elemental concentrations (except B, Ba, Ni, and P) were significantly different in comparisons of all field beetles vs maize-reared beetles.

47 We present a robust practical solution which successfully identified combinations of elemental

48 markers for remotely tracing resource-use and dispersal by *P. truncatus*. We discuss the application

49	of chemical characterisation for identifying intrinsic markers of pests, particularly species with
50	alternative hosts. We discuss how to manage the low replication and unbalanced sample sizes
51	inherent in insect elemental screening, particularly when rarer elements are potential markers.
52	
53	Introduction
54	Flight is the main dispersal mechanism of insect pests, with their establishment and spread
55	dependent upon reaching suitable environments and hosts, and whilst many species are monitored
56	for pest management purposes, their natal origin is unknown. Primary storage pests complete their
57	life cycle inside intact cereals grains where their damage goes undetected, facilitating infestation by
58	other pests (Munro, 1940). Infestation can be reduced through good hygiene and chemical or
59	physical control with the solid structure of stores forming a barrier to pests. However, most small-
60	scale tropical stores are open structure experiencing temperatures conducive to insect flight and
61	reproduction, and may suffer high levels of infestation from incoming pests (Haines, 2000).
62	This study uses multiple elemental profiles to identify intrinsic markers of dispersal of the larger
63	grain borer Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae). Such analytical approaches
64	have the potential to detect the assimilated diet of organisms, including evidence of natal diets in
65	dispersing adults, in contrast to gut content analyses which reveal recent adult diet (Borgemeister et
66	al. 1998a). This insect is native to Mesoamerica and an introduced pest of maize and dried cassava
67	in Africa (Hodges et al., 1983; Hodges et al., 1985). It is frequently monitored using traps baited with
68	synthetic analogues of its aggregation pheromone (Hodges et al., 1984) and a similar pheromone-
69	trapping system exists for the lesser grain borer, Rhyzopertha dominica (F.) (Colepotera:
70	Bostrichidae) (Williams et al., 1981). Such traps have provided insight into their distribution, activity
71	and relative abundance (Cogburn et al., 1984; Dendy et al., 1989) with both species detected in/near
72	grain stores as well as environments far from cereal production or storage (Borgemeister et al.,
73	1998a; Mahroof et al., 2010; Nansen et al., 2002; Nansen & Meikle, 2003; Rees et al., 1990; Tigar et

al., 1994). Systematic searching for *P. truncatus* around traps with high catches has rarely located
insects suggesting that they are sparsely distributed inside diverse plant structures such as twigs,
deadwood, roots and buried seeds (Nansen et al., 2004).

Most Bostrichidae are wood-borers requiring woody hosts (Lui et al., 2008) and the widespread occurrence of two bostrichid grain pests in natural environments suggests they may not depend solely upon stored grains. Evidence of *P. truncatus'* non-agricultural hosts include its occurrence in cerambycid-girdled twigs of S. purpurea (Linnaeus)(Anacardaceae) and Bursera fagariodes Engler (Burseraceae) in Mexican forests (Ramírez Martínez et al., 1994) and of Lannea nigritana (Sc. Elliot) Keay (Anacardaceae) in African forests (Borgemeister et al., 1998b), with the effects of twig-girdling thought to benefit cerambycid larvae and smaller wood-borers including P. truncatus (Calderón-Cortés et al. 2011; Forcella, 1982). Further signs of P. truncatus' host-flexibility include reproduction on Delonix negra (Bojer ex Hook) Raf. (Fabaceae), Acacia polyacanthus Willd (Fabaceae), Commiphora rostrata Engl. (Burseraceae), Commiphora balensis Engl. (Burseraceae) and Euphorbia tirucalli (Euphorbiaceae), plus boring or limited reproduction on 15 other woody species (Nang'ayo et al., 2002). It has been reared on Ficus and cassava roots and has limited reproduction on teak seeds, Tectona grandis Linn. F. (Lamiaceae) (Nansen et al., 2004). Whilst for R. dominica, alternative hosts include acorns of native North American oaks (Jia et al., 2008) with evidence of other non-grain hosts in natural habitats (Edde & Phillips, 2006). Multi-elemental loadings of biological materials are commonly used to establish origin, and nutrient

or contaminant levels in foods (Engström et al., 2004; Kelly et al., 2005) but rarely applied to insects,
although used with varying degrees of success to trace host-use and natal origin of aphids, moths
and weevils (Bowden et al., 1984; Bowden et al., 1985a; Bowden et al., 1985b; Burns et al., 1985;
Sherlock et al., 1984; Sherlock et al., 1985; 1986). More recently, Tigar & Waldron (2003) proposed
using elemental profiling to identify remote markers of *P. truncatus*, and Mahroof & Phillips (2012)
applied the technique to *R. dominica* and found specific elements were associated with cereal-

3 4 5 6 7	
4 5 6 7	
5 6 7	
6 7	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
20	
20	
21	
28	
29	
30	
31	
32	
32 33	
32 33 34	
32 33 34 35	
32 33 34 35 36	
32 33 34 35 36 37	
32 33 34 35 36 37	
32 33 34 35 36 37 38	
32 33 34 35 36 37 38 39	
32 33 34 35 36 37 38 39 40	
32 33 34 35 36 37 38 39 40 41	
32 33 34 35 36 37 38 39 40 41 42	
32 33 34 35 36 37 38 39 40 41 42 43	
32 33 34 35 36 37 38 39 40 41 42 43 44	
32 33 34 35 36 37 38 39 40 41 42 43 44 45	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	
32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49	
32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50	
32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 51	
32 33 34 35 36 37 38 30 41 42 44 45 46 47 48 95 1 52	
32 33 34 35 36 37 38 30 41 42 44 45 46 47 48 90 51 22	
32 33 35 36 37 38 30 41 42 44 45 47 48 49 51 52 55 55 55 55 55 55 55 55 55 55 55 55	
32 33 34 35 36 37 38 30 41 42 44 45 47 48 90 51 23 4 55 53 45	
32 33 34 35 36 37 38 30 41 42 44 45 47 48 49 51 52 34 55 55 55	
32 33 34 35 37 38 30 41 42 44 45 47 49 51 52 34 55 55	
32 33 34 35 37 39 40 42 44 44 46 47 49 51 52 34 55 55 57	
32 33 34 35 37 39 40 42 44 44 46 47 49 51 52 34 55 67 58	

99	consumption or agricultural environments whilst others were indicative of natural host-consumption
100	or non-agricultural environments.

- 101 This study uses ICP-AES to produce multiple elemental profiles of *P. truncatus* with the aim of
- 102 identifying patterns of elements that can distinguish between insects according to their natal host.
 - 103 We explore elemental profiles of maize and a natural host S. purpurea, and of P. truncatus reared on
 - 104 maize and collected in Mexico from agricultural areas where maize was present and natural
 - 105 vegetation far from cereal production or storage. An intrinsic method to trace resource-use and

106 origin of stored product and other pests routinely captured in biosecurity surveillance monitoring

- 107 would increase our understanding of the role of natural reservoirs as sources of infestation, and thus
- 108 help inform pest management.

109 **Materials and Methods**

110

111 Field and laboratory sampling

112

113 We collected maize grains and S. purpurea branches in Mexico, and captured P. truncatus in

114 pheromone-baited flight-traps (lures supplied by AgriSense, UK) in August, a peak period of flight

- 115 activity (Tigar et al., 1994). Traps were deployed for 48 hours to sample nearby insects based on
- 116 knowledge of their likely dispersal towards pheromone-baits (Helbig et al., 1992). Trapping
- 117 environments included arable areas where maize was grown and natural environments far from
- 118 maize production and storage, further information is given in Table 1 which characterises samples
- 119 for comparison and statistical analyses.

120

121 The laboratory-bred beetles (the maize category in Table 1) were a strain of *P. truncatus* collected in

122 Tanzania and kept in culture since the 1980s (provided by the Natural Resources Institute, University

123 of Greenwich, Chatham, Kent, UK and held under DEFRA licence at the University of West of

2 3 4	124	Scotland). Insects were kept in honey jars in an incubator at $25^{\circ}C \pm 0.5^{\circ}C$ and reared on Mexican
5 6	125	maize through two generations from egg to adult before extraction and analysis (repeated attempts
7 8	126	to rear <i>P. truncatus</i> on <i>S. purpurea</i> in the laboratory were unsuccessful). Beetles were euthanized by
9 10	127	freezing immediately after field capture or removal from laboratory cultures, and defrosted before
11 12	128	analysis.
13 14 15	129	
15 16 17 18	130	Sample preparation and ICP-AES assays
19 20	131	All materials were rinsed in ultra-pure water and dried overnight at 40°C and homogenized by
21 22	132	grinding in an agate pestle and mortar. Each <i>P. truncatus</i> determination required a bulk sample of 10
23 24	133	adults (approximately 10 mg). Insect samples were heated in a 20 minute microwave digestion
25 26	134	programme reaching 600 W and the cooled digests were made up to 5 ml with ultra-pure water. For
27 28	135	maize and S. purpurea, 0.2-0.3 g samples were mixed with 1 ml H_2O_2 and 3 ml c. HNO ₃ in a PFM
29 30 21	136	digestion bomb using the same digestion program as beetles. When cooled, the digests were made
31 32 33	137	up to 25 ml with ultra-pure water.
34 35 36	138	The digests were screened for Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr
37 38	139	in a Perkin-Elmer Optima 3000 ICP Spectrometer under default conditions (Gal et al., 2008).
39 40	140	Determinations for each analyte were means from four readings off a calibration curve, and those
41 42	141	exceeding the calibration range were diluted as required. Detection Limits (DL) were established for
43 44	142	rarer elements likely to be at low concentrations (see Table 2). We established reference samples for
45 46	143	beetles and maize which were analysed in tandem with test samples and ICP-AES elemental
47 48 49	144	standards for consistency of determination.
49 50 51	145	
52 53 54 55	146	Data Analysis

1 2

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
-+1 10
40
49
50
51
52
53
54
55
56
50
57
20
59
60

147	Multi-element loadings of <i>P. truncatus</i> were explored by classifying beetles according to site
148	characteristics and proximity to maize as described in Table 1. Firstly, we placed them into three
149	groups (maize, agriculture and natural) and compared loadings of elements between beetles in
150	these groups. Then we combined all pheromone-trapped beetles (the agriculture and natural
151	groups) into a single field class and compared their elemental loadings with those of maize-reared
152	beetles. We also identified trends in elemental loadings of maize and S. purpurea and compared
153	these with trends in <i>P. truncatus</i> according to environment of capture.

154 For ease of visual interpretation, elemental determinations were grouped into low and high 155 concentrations according to their relative values in insects and plant hosts. We used SYSTAT 13 with 156 Exact tests (Systat Software Inc., 2009) to handle unequal replication and any missing values for 157 determinations below detection limits (DL). The elemental data distributions were diverse with 158 many skewed towards very low concentrations. As no single transformation could produce normal 159 distributions of the data we performed non-parametric Kruskal Wallis (Mann-Whitney U) tests to 160 examine differences between groups, with post-hoc Dwass-Steel-Chritchlow-Fligner tests to identify 161 differences between pairs of groups. These make no assumptions about the normality of data 162 distributions and hence are unlikely to produce significant results when there are no real differences 163 between groups (Dytham, 2011).

164 Results

165 Elemental profiles and concentrations

- 166 Of the 20 elements detected Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr,
- 167 there were 14 above DL in all materials tested. Those below DL were Cr, Ni, Ti, V and Zr for maize
- 168 and wood, and V and Zr for *P. truncatus*. Na concentrations in living organisms are often controlled
- 169 by regulatory processes and are not considered further.
- 170 **Comparison of elemental profiles for host plants**

There were differences between elemental determinations of maize and wood, and results for low
and high concentrations are shown in Figures 1 and 2 respectively. The S determinations were
similar for both hosts, and apart from P and Zn which were at higher concentrations in maize than
wood, most elements appear to be at higher concentrations in wood than in maize, including Ba and
Sr which were below DLs in maize. There were significant differences for Al, B, Ca, Cu, Fe, Mg, P, Si,
Sr and Zn between wood and maize determinations (Figures 1 and 2, and Table 3).

177 Elemental profiles of *P. truncatus* grouped by environment of capture and host availability

There were differences in the concentration of some elements in P. truncatus classified by their environment of capture (agriculture, maize or natural). Figures 3 and 4 suggest that agriculture beetles contained more Al, B, Cr, Fe, Si, Ti, and Zn, and less Ni than maize or natural beetles. Whilst maize beetles appeared to have lower levels of Al, Ca, Cu, Fe, Mg, Mn, P, S, Si, Sr and Zn than either agriculture or natural beetles, with Ti below DLs. Elemental concentrations in agriculture and natural P. truncatus were similar, although agriculture beetles contained more Al, B, Cr, Fe, Si, Ti and Zn and less Ni than natural beetles. These differences were significant for Al, Ca, Cu, Cr, Fe, S, Si, Sr, Ti and Zn in a three-way KW comparison between agriculture, maize and natural groups, but not significant for B, Ba and Ni (Table 4). All pairwise comparisons between elemental determinations of maize against natural beetles, and agriculture versus maize beetles (except Ti) were significantly different at P <0.001 (Table 4). However, only Al, Ba, K, P, Sr and Ti were significantly different in a pairwise comparison between agriculture and natural beetles (Table 4).

When *P. truncatus* were grouped according to those with and without known access to maize, the new field beetle group (all beetles caught in pheromone-baited traps) showed significant differences in the concentrations of most elements with the exception of B, Ba, Ni, and P compared with maizereared beetles (Table 4).

195 Discussion

196	This study successfully demonstrates that concentrations of many chemical elements differ between
197	cereals and a natural host of a grain pest, and between insects infesting maize or collected in
198	environments where maize is present and those collected far from environments where only natural
199	hosts are available. Therefore elemental screening of pests can identify potential intrinsic markers of
200	dispersal between cereal infestations and natural reservoirs on alternative hosts. However, the
201	elemental trends in host plants and insects differed, and those able to distinguish between insects
202	reared on maize and others caught in environments without maize, were not the same as those that
203	distinguished between maize and an alternative host. For <i>P. truncatus</i> , concentrations of Al, Ca, Cu,
204	Cr, Fe, Si, Sr, Ti and Zn differed with their environment of capture, and Al, Sr and Ti were also
205	significantly different when all field beetles were compared with those infesting maize suggesting
206	their application as intrinsic markers. In addition, for the more refractory elements like Si,
207	environmental associations with resistant mineral phases (quartz) probably restrict their wider
208	biomarker application.
209	Mahroof & Phillips (2012) screened <i>R. dominca</i> and three hosts, acorns (<i>Quercus muhlenbergii</i>
210	(EngleIm)), wheat and maize, for 10 elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) and their mean
211	ICP-AES determinations of maize for elements in common with this study are similar: Fe (20, 30
212	mg/kg), K (3600, 3800 mg/kg), P (2700, 3000 mg/kg) and S (800, 1000 mg/kg) (this study and
213	Mahroof & Phillips (2012) respectively). They also found more P and Zn in maize than in a natural
214	host, but trends for Fe and Mg in maize and natural foods were reversed. They saw no difference in
215	Ca or Cu concentrations between maize and acorns, but distinguished wheat because it had more Ca
216	and Mn than either acorns or maize. We screened a wider range of elements, and in addition found
217	Pa and Sr wore above DL in a candidate alternative best but not maize, and also detected more AL
217	ba and SI were above DL in a candidate alternative nost but not malze, and also detected more Al,
217	Ca, Cu, Fe, Mg and Si, and less P and Zn in the alternative host than in maize.

219	Five elements, Ca, K, Mg, P, S and Zn, were identified as likely markers for the environment of
220	capture or known dietary history in both P. truncatus and R. dominica, with Al, B, Ba, Ca, Cu, Fe, K,
221	Mn S, Sr, Zn and Si concentrations differing between maize-reared and field-captured P. truncatus
222	suggesting they can distinguish between beetles that complete their life-cycle solely on maize from
223	those that consume natural foods or mixed diets. It would be useful to test this experimentally and
224	develop dispersal models for pests based upon unique suites of elements that vary with their natal
225	hosts, and to investigate temporal changes in the elements present in insects and plants. A limitation
226	of our study was that only one alternative host was profiled for a species which has many potential
227	host plants (Nang'ayo et al., 2002). However, if elemental profiles of insects derive from the
228	geochemistry of their environment we would expect to see chemical differences between those
229	feeding on plants growing in natural environments and those infesting crops grown in soils that
230	undergo regular cultivation and agrochemical regimes. In addition the interpretation of field-
231	captured beetles was limited by lack of successful rearing of <i>P. truncatus</i> on <i>S. purpurea</i> , although
232	other studies have also experienced negative or inconsistent results with <i>P. truncatus</i> on non-maize
233	hosts that could not be controlled (Detmers et al., 1993; Nang'ayo et al., 2002, Nansen et al., 2004).
234	S. purpurea is an appropriate model for alternative hosts as it is widely distributed in Mexico and a
235	known host of <i>P. truncatus</i> in natural vegetation (Calderón-Cortés et al., 2011).
236	A number of studies using different analytical techniques have determined multiple chemical
237	profiles of insects with the aim of tracking dispersal and movement between host plants and field
238	locations. These include Energy Dispersive X-ray Spectrometry for aphids and moths (Bowden et al.
239	1984: Bowden et al., 1985b: Sherlock et al., 1986), and IPC-AES for cotton boll weevils (Burns et al.,
240	1985) as well as <i>R. dominica</i> (Mahroof & Phillips, 2012). Technique, local geochemistry and the
241	nature of materials tested can all influence the selection of particular elements as intrinsic markers.
242	but multi-elemental screening shows potential for finding appropriate markers for each scenario. In
243	the future, with recent improved detection and sensitivity of techniques, it will be possible to
273	determine profiles for individual insects especially larger species. Also non-destructive methods like
244	determine promes for individual insects especially larger species. Also non-destructive methods like

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 24	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
<u>⊿</u> 2	
11	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52 52	
53	
54	
55	
56	
57	
52	
50	
29	
60	

Laser Ablation can allow other analyses such as DNA-sequencing or stable isotope analysis to be
completed on a single insect, increasing the data that can inform the origin of each individual. By
comparison, a bulk sample as used here may miss differences between individuals, but can give an
overall indication of assimilated diet by the population captured.

249 ICP-AES provides robust evidence for assessing intrinsic markers and identifying consistent trends in 250 host materials and the herbivores consuming them. These can be tested in controlled field and laboratory feeding trails, and incorporated into multivariate predictive models in a similar way to the 251 252 geospatial isoscape approach applied to stable isotope determinations (West et al., 2010), which can 253 reveal assimilated and natal diet in holometabolous insects which switch between C3 and C4 plant 254 hosts (Mahroof & Phillips, 2007). However, when screening for rare or trace elements which 255 naturally exist at low concentrations in organisms, the data distributions are frequently left skewed 256 and rarely conform to normal distributions, hence do not fit the assumptions of parametric 257 techniques such as Linear Discriminant Analysis and Principal Components Analysis. In this study, as 258 in many clinical trials and behavioural research, some data were based on small sample sizes or were 259 imbalanced when a determination was below DLs. We addressed these using non-parametric tests in 260 an exact inference method (Gibbons JD & Chakraborti S, 2003). Other chemical screening data of 261 insect pests show similar data distributions, often with low or unequal replication (Burns et al., 1985; 262 Peng et al., 2012), and in common with good practice in other studies we ensured consistency of 263 chemical assays by comparing samples with laboratory standards and our reference materials. 264 Nevertheless multi-elemental analyses are powerful tools for tracing dispersal of organisms 265 particularly pests which survive in natural reservoirs as well as for elucidating the sources of invading 266 organisms. Understanding the sources of pests will enable integrated pest management models to 267 respond to changes in dispersal and new risks to stored commodities and crops. Future studies of 268 pests and rare organisms will benefit from the increased accessibility of chemical screening and 269 isotopic profiling as tools for studying the movement of animal pests as well as species of

conservation concern, and for authenticating the origin of high value biological material includingfoodstuffs and organisms protected under CITIES.

272 Acknowledgements

- 273 We thank Guy Wiltshire (UWS) for ICP-AES determinations, Rick Hodges (University of Greenwich)
- 274 for P. truncatus founder cultures and our Mexican collaborators for their generous support with field
- 275 work: Miguel Najerra Rincón (CENAPROS, Morelia), Francisco Wong Corral (Universidad de Sonora),
- 276 Josué Leos Martínez and Adriana Legorreta Millàn, (Universidad de Nuevo Léon) and Dr Mario
- 277 Ramírez Martínez (Almacenadora Mercader S.A., Guadalajara). This study was funded by NERC New
- 278 Investigators Scheme Award NER/M/S/2001/00122 to Barbara Tigar. Special thanks go to Roger
- 279 McLean for support and access to facilities at UWS. We thank the three reviewers for their
- 280 comments, and suggesting areas for improvement on our manuscript.

282 References

- 283 Borgemeister C, Tchabi A & Scholz D (1998a) Trees or stores? The origin of migrating *Prostephanus*
- *truncatus* collected in different ecological habitats in southern Benin. Entomologia Experimentalis et
- 285 Applicata 87: 285-294.
- 286 Borgemeister C, Goergen G, Tchabi A, Awande S, Markham RH & Scholz D (1998b) Exploitation of a
- 287 woody host plant and cerambycid-associated volatiles as host-finding cues by the larger grain borer
- 288 (Coleoptera : Bostrichidae). Annals of the Entomological Society of America 91: 741-747.
- 289 Bowden J, Digby P & Sherlock P (1984) Studies of elemental composition as a biological marker in
- 290 insects 1. The influence of soil type and host-plant on elemental composition of Noctua pronuba (L)
- 291 (Lepidoptera, Noctuidae). Bulletin of Entomological Research 74: 207-225.
- 292 Bowden J, Sherlock P & Digby P (1985a) Studies of elemental composition as a biological marker in
- 293 insects 3. Comparison of Apterous and Alate cereal aphids, especially *Rhopalosiphum padi* (L)

1		
2 3 4	294	(Hemiptera, Aphididae), from oats and wheat, and from oats infected with or free from barley
5 6 7	295	yellow dwarf virus. Bulletin of Entomological Research 75: 477-488.
7 8 9	296	Bowden J, Sherlock P, Digby P, Fox J & Rhodes J (1985b) Studies of elemental composition as a
10 11	297	biological marker in insects 2. The elemental composition of Apterae of Rhopalosiphum padi (L) and
12 13	298	Metopolophium dirhodum (Walker) (Hemiptera, Aphididae) from different soils and host plants.
14 15 16	299	Bulletin of Entomological Research 75: 107-120.
17 18	300	Burns DW, Parsons ML, Herbaugh LL & Staten RT (1985) The migrating weevil. A challenge for ICP-
19 20 21	301	AES and chemometrics. Analytical Chemistry 57: 1048A-1052A. doi:10.1021/ac00286a001.
22 23	302	Calderón-Cortés N, Quesada M & Escalera-Vázquez LH (2011) Insects as Stem Engineers: Interactions
24 25 26	303	Mediated by the Twig-Girdler Oncideres albomarginata chamela Enhance Arthropod Diversity. PLoS
20 27 28	304	ONE 6: e19083. doi:10.1371/journal.pone.0019083.
29 30 31	305	Cogburn RR, Burkholder WE & Williams HJ (1984) Field Tests with the Aggregation Pheromone of the
32 33	306	Lesser Grain Borer (Coleoptera: Bostrichidae). Environmental Entomology 13: 162-166.
34 35 36	307	Edde, P. A., & Phillips TW. (2006) Potential host affinities for the lesser grain borer, Rhyzopertha
37 38	308	dominica (F.) (Coleoptera: Bostrichidae): behavioral responses to host odours and pheromones and
39 40 41	309	reproductive ability on non-grain hosts. Entomologia Experimentalis et Applicata. 119: 255-263.
42 43	310	Dendy J, Dobie P, Saidi J & Sherman C (1989) The design of traps for monitoring the presence of
44 45	311	Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in maize fields. Journal of Stored Products
46 47 48	312	Research 25: 187-191. doi:10.1016/0022-474x(89)90023-4.
49 50 51	313	Detmers HB, Laborius GA, Rudolph D & Schulz FA (1993) Infestation of wood by the Larger Grain
52 53	314	Borer Prostephanus truncatus (Horn) (Coleoptera, Bostrichidae). Vol. 8: Communications of the
54 55	315	Deutschen Gesellschaft Fur Allgemeine Und Angewandte Entomologie: Proceedings of the
56 57 58	316	Entomologists Meeting, pp. 803-808.

317	Dytham C (2011) Choosing and Using Statistics: A Biologist's Guide. 3rd Edition edn. Wiley-Blackwell,
318	Chichester, UK.
319	Engström E, Stenberg A, Senioukh S, Edelbro R, Baxter DC & Rodushkin I (2004) Multi-elemental
320	characterization of soft biological tissues by inductively coupled plasma-sector field mass
321	spectrometry. Analytica Chimica Acta 521: 123-135.doi:http://dx.doi.org/10.1016/j.aca.2004.06.030.
322	Gal J, Markiewicz-Patkowska J, Hursthouse A & Tatner P (2008) Metal uptake by woodlice in urban
323	soils. Ecotoxicology and environmental safety 69: 139-149. doi:10.1016/j.ecoenv.2007.01.002.
324	Gibbons JD & Chakraborti S (2003). Nonparametric Statistical Inference. 4 th edn CRC Press, Boca
325	Raton, Florida.
326	Forcella F (1982) Why twig-girdling beetles girdle twigs. Naturwissenschaften 69: 398-400.
327	Gal J, Markiewicz-Patkowska J, Hursthouse A & Tatner P (2008) Metal uptake by woodlice in urban
328	soils. Ecotoxicology and environmental safety 69: 139-149. doi:10.1016/j.ecoenv.2007.01.002.
329	Haines CP (2000) IPM for food storage in developing countries: 20th Century aspirations for the 21st
330	Century. Crop Protection 19: 825-830. doi:10.1016/s0261-2194(00)00110-1.
331	Helbig J, Laborius GA & Schulz FA (1992) Investigations on the distance of trapping activity of the
332	synthetic pheromone Trunc-call (1+2) of Prostephanus truncatus (Horn) (Col, Bostrichidae) on its
333	predator Teretriosoma nigrescens Lewis (Col, Histeridae). Journal of Applied Entomology-Zeitschrift
334	Fur Angewandte Entomologie 113: 425-429.
335	Hodges RJ, Cork A & Hall DR (1984) Aggregation pheromones for monitoring the greater grain borer
336	Prostephanus truncatus, British Crop Protection Conference, Pests and Diseases, Brighton, UK, pp
337	255-259.
338	Hodges RJ, Dunstan WR, Magazini I & Golob P (1983) An outbreak of Prostephanus truncatus (Horn)
339	(Coleoptera, Bostrichidae) in East Africa. Protection Ecology 5: 183-194.

1		
2 3 4	340	Hodges RJ, Meik J & Denton H (1985) Infestation of dried cassava (Manihot esculenta Crantz) by
5 6	341	Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Journal of Stored Products Research 21:
7 8 9	342	73-77. doi:10.1016/0022-474x(85)90024-4.
10 11	343	Jia F, Toews MD, Campbell JF & Ramaswamy SB (2008) Survival and reproduction of lesser grain
12 13	344	borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on flora associated with native habitats
14 15 16	345	in Kansas. Journal of Stored Products Research 44: 366-372. doi:10.1016/j.jspr.2008.06.001.
17 18	346	Kelly S, Heaton K & Hoogewerff J (2005) Tracing the geographical origin of food: The application of
19 20	347	multi-element and multi-isotope analysis. Trends in Food Science & Technology 16: 555-567.
21 22 23 24	348	doi:http://dx.doi.org/10.1016/j.tifs.2005.08.008.
24 25 26	349	Liu L-Y, Schoenitzer K & Yang J-T (2008) A review of the literature on the life history of Bostrichidae
27 28 29	350	(Coleoptera). Mitteilungen Muenchener Entomologischen Gesellschaft 98: 91-97.
30 31	351	Mahroof RM, Edde PA, Robertson B, Puckette JA & Phillips TW (2010) Dispersal of Rhyzopertha
32 33	352	<i>dominica</i> (Coleoptera: Bostrichidae) in Different Habitats. Environmental Entomology 39: 930-938.
34 35 36	353	doi:10.1603/EN09243.
37 38	354	R. M. Mahroof & T. W. Phillips (2007). Stable isotopes as markers to investigate host use by
39 40 41	355	Rhyzopertha dominica. Entomologia Experimentalis et Applicata. 125: 205-213.
42 43	356	Mahroof RM & Phillips TW (2012) Use of macro and trace elements as biological markers in the
44 45	357	lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae). Journal of Stored Products
46 47 48	358	Research 48: 126-131. doi:10.1016/j.jspr.2011.10.008.
49 50	359	Munro JW (1940) DSIR report on a survey of the infestation of grain. B Insects: HMSO, London, UK,
51 52 53 54 55 56	360	p. 54.

Nang'ayo FLO, Hill MG & Wright DJ (2002) Potential hosts of *Prostephanus truncatus* (Coleoptera: Bostrichidae) among native and agroforestry trees in Kenya. Bulletin of Entomological Research 92: 499-506. doi:10.1079/ber2002202. Nansen C & Meikle WG (2003) Use of pheromone-baited trap catches as indicators of occurrence of potential hosts of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in a forest in southern Benin. Advances in Stored Product Protection. 8th International Working Conference on Stored Product Protection (IWCSPP), pp 71-77. Nansen C, Meikle WG & Korie S (2002) Spatial analysis of Prostephanus truncatus (Bostrichidae:

- 369 Coleoptera) flight activity near maize stores and in different forest types in southern Benin, West
- 370 Africa. Annals of the Entomological Society of America 95: 66-74.
- 371 Nansen C, Meikle WG, Tigar B, Harding S & Tchabi A (2004) Nonagricultural hosts of *Prostephanus*
- *truncatus* (Coleoptera: Bostrichidae) in a west African forest. Annals of the Entomological Society of
- 373 America 97: 481-491. doi:Doi 10.1603/0013-8746(2004)097[0481:Nhoptc]2.0.Co;2.
- 374 Peng Q, Tang QY, Wu JL, Miao QL & Cheng JA (2012) Determining the geographic origin of the brown
- 375 planthopper, *Nilaparvata lugens*, using trace element content. Insect Science 19: 21-29.
- 376 doi:10.1111/j.1744-7917.2011.01438.x.
- 377 Ramírez Martínez M, De Alba Avila A & Ramirez Zurbia R (1994) Discovery of the Larger Grain Borer
- in a tropical deciduous forest in Mexico. Journal of Applied Entomology 118: 354-360.
- 379 Rees DP, Rodriguez R, R. & Herrera R FJ (1990) Observations on the ecology of Teretriosoma
- 380 nigrescens Lewis (Col.: Histeridae) and its prey Prostephanus truncatus (Horn)(Col.: Bostrichidae) in
- 381 the Yucatan peninsula, Mexico. Tropical Science 30: 153-165.

Entomologia Experimentalis et Applicata

2 3	382	Sherlock P, Bowden J & Digby P (1985) Studies of elemental composition as a biological marker in
4 5	383	insects 4. The influence of soil type and host-plant on elemental composition of Agrotis segetum
6 7 8	384	(Denis and Schiffermuller) (Lepidoptera, Noctuidae). Bulletin of Entomological Research 75: 675-687.
9 10 11	385	Sherlock P, Bowden J & Digby P (1986) Studies of elemental composition as a biological marker in
12 13	386	insects 5. The elemental composition of Rhopalosiphum padi (L) (Hemiptera, Aphididae) from Prunus
14 15 16	387	padus at different locatilites. Bulletin of Entomological Research 76: 621-632.
17 18 19	388	Systat Software Inc. (2009) SYSTAT 13 Exact tests-1. Systat Software Inc., Chicago, USA.
20 21	389	Tigar B & Waldron S (2003) Using new tools to track the larger grain borer, Prostephanus truncatus
22 23	390	(Horn) (Coleoptera: Bostrichidae). Advances in Stored Product Protection. 8th International Working
24 25 26	391	Conference on Stored Product Protection (IWCSPP), pp396-401.
27 28 20	392	Tigar BJ, Osborne PE, Key GE, Flores ME & Vazquez M (1994) Distribution and Abundance of
30	393	Prostephanus truncatus (Coleoptera, Bostrichidae) and Its Predator Teretriosoma nigrescens
31 32 33	394	(Coleoptera, Histeridae) in Mexico. Bulletin of Entomological Research 84: 555-565.
34 35 36	395	West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.)(2010) Isoscapes: Understanding movement,
37 38	396	pattern, and process on Earth through isotope mapping. Springer Netherlands, DOI 10.1007/978-90-
39 40 41	397	481-3354-3.
42 43	398	Williams HJ, Silverstein RM, Burkholder WE & Khorramshahi A (1981) Dominicalure 1 and 2:
44 45	399	Components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica (F.)
46 47 48	400	(Coleoptera: Bostrichidae), Journal of Chemical Ecology 7: 759-780.
49 50 51 52	401	

- 402 Table 1. Groups used to classify *P. truncatus* according to the characteristics of their collection sites
- 403 and access to maize (n = number of determinations, each consisting of bulk samples of 10 beetles

404 per determination).

Group for elemental comparison	Definition and collection-site characteristics
Maize (n=32)	Reared through two generations from egg to adult on maize
Agriculture (n=10)	Field-caught in pheromone-baited traps in open arable areas
	production, where maize was growing and approaching
	maturity
Natural (n=8)	Field-caught in pheromone-baited traps in areas of natural or
	semi-natural vegetation including dense deciduous and
	coniferous woodland, and semi-arid rangeland with sparse
	trees and shrubs. All at least 12 km from nearest dwellings,
	agriculture or maize stores
Field n=(18)	Combination of all field-caught in pheromone-baited traps
	(agriculture plus natural as defined above)

406 Table 2. ICP-AES Detection Limits (DL) for elements most likely to occur at low concentrations. These

407 were determined from the bulk reference samples of *P. truncatus* and maize (and incorporating

408 material from all sources to be analysed) and extrapolated for wood from maize.

	Detection Limit (mg/kg)			
Element	P. truncatus	Maize and wood		
Al	6	2.4		
Ва	0.2	0.06		
Cu	0.3	0.1		
Cr	0.8	0.4		
Fe	3	1.1		
Mg	1	0.4		
Mn	0.3	0.1		
Ni	2.8	1.1		
Sr	0.03	0.01		
Ti	0.2	0.06		
Zn	3.5	1.3		

- 411 Table 3. Results of pairwise comparisons between the elemental loadings of maize and wood, for
- 412 elements above DLs in both plant hosts. All comparisons assume 1 df. (Results in bold were
- 413 significantly different).

Wiann-Wnitney U statistic 2 0 0 0 5 16 44 13 47 120 74 6 120	KW statistic (X² approximation) 8.81 11.75 3.82 12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	p-value 0.003 0.001 0.051 0.001 0.001 0.356 0.007 0.449 0.001 0.419 0.021
2 2 0 0 5 16 44 13 47 120 74 6 120	(X² approximation) 8.81 11.75 3.82 12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.003 0.001 0.051 0.001 0.001 0.011 0.356 0.007 0.449 0.001 0.419
2 2 0 0 5 16 44 13 47 120 74 6 120	8.81 11.75 3.82 12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.003 0.001 0.051 0.001 0.001 0.356 0.007 0.449 0.001 0.419
2 0 0 5 16 44 13 47 120 74 6 120	11.75 3.82 12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.001 0.051 0.001 0.001 0.356 0.007 0.449 0.001 0.419
0 0 5 16 44 13 47 120 74 6 120	3.82 12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.051 0.001 0.001 0.356 0.007 0.449 0.001 0.419
0 5 16 44 13 47 120 74 6 120	12.03 11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.001 0.001 0.356 0.007 0.449 0.001 0.419
5 16 44 13 47 120 74 6 120	11.96 6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.001 0.011 0.356 0.007 0.449 0.001 0.419
16 44 13 47 120 74 6 120	6.49 0.85 7.37 0.57 12.02 0.65 9.78	0.011 0.356 0.007 0.449 0.001 0.419
44 13 47 120 74 6 120	0.85 7.37 0.57 12.02 0.65 9.78	0.356 0.007 0.449 0.001 0.419
13 47 120 74 6 120	7.37 0.57 12.02 0.65 9.78	0.007 0.449 0.001 0.419
47 120 74 6 120	0.57 12.02 0.65 9.78	0.449 0.001 0.419
120 74 6 120	12.02 0.65 9.78	0.001 0.419
74 6 120	0.65 9.78	0.419
6 120	9.78	0.001
120		0.001
	12.02	0.001

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
<u>⊿</u> ∩	
<u>40</u> ⊿1	
+ I ∕\?	
42	
40	
44 15	
40	
46	
4/	
48	
49	

415 Table 4. Kruskal Wallis three-way comparison of beetles by agriculture, maize and natural groups,

416 with post hoc Dwass-Steel-Chritchlow-Fligner pairwise comparisons between groups and Kruskal

417 Wallis two-way comparison all field-caught and maize-reared beetles. (V and Zr were below DLs.)

418 (Significant differences are in bold.)

Element	Three-way c	omparison	p-value for	Two-way			
	agriculture*m	aize*natural	Fligner Test for Pairwise Comparisons		comparison		
						field*maize	
	Kruskal-	p-value	agriculture	agriculture	maize	Kruskal-	p-
	Wallis Test		* maize	* natural	* natural	Wallis	value
	Statistic					Test	
						Statistic	
Al	27.09	<0.001	<0.001	0.007	<0.001	27.09	<0.001
В	1.35	0.51	<0.001	0.83	<0.001	0.72	0.4
Ва	0.37	0.83	<0.001	0.003	<0.001	0.34	0.56
Ca	27.59	<0.001	<0.001	0.97	<0.001	26.77	<0.001
Cr	6.27	0.044	<0.001	0.54	<0.001	5.6	0.02
Cu	14.41	0.001	<0.001	0.13	<0.001	14.35	<0.001
Fe	18.69	<0.001	<0.001	0.76	<0.001	17.68	<0.001
К	4.55	0.10	<0.001	0.004	<0.001	4.43	0.04
Mg	4.66	0.10	<0.001	0.81	<0.001	4.47	0.03
Mn	5.26	0.07	<0.001	0.56	<0.001	3.56	0.06
Ni	1.12	0.52	<0.001	0.08	<0.001	1.12	0.29
Р	16.93	<0.001	<0.001	<0.001	<0.001	1.77	0.18
S	1.94	0.38	<0.001	0.86	<0.001	16.93	<0.001
Si	9.95	0.007	<0.001	0.78	<0.001	9.69	0.002
Sr	16.56	<0.001	<0.001	<0.001	<0.001	15.51	<0.001
Ti	18.36	<0.001	0.90	<0.001	<0.001	17.86	<0.001
Zn	12.77	0.004	<0.001	0.43	<0.001	10.6	0.001

7 8

