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ABSTRACT
Background. The main goal of the present study was to explore theta and alpha event-
related desynchronization/synchronization (ERD/ERS) activity during shooting perfor-
mance.We adopted the idiosyncratic framework of themulti-action plan (MAP)model
to investigate different processing modes underpinning four types of performance. In
particular, we were interested in examining the neural activity associated with optimal-
automated (Type 1) and optimal-controlled (Type 2) performances.
Methods. Ten elite shooters (6 male and 4 female) with extensive international
experience participated in the study. ERD/ERS analysis was used to investigate cortical
dynamics during performance. A 4× 3 (performance types× time) repeated measures
analysis of variance was performed to test the differences among the four types of
performance during the three seconds preceding the shots for theta, low alpha, and
high alpha frequency bands. The dependent variables were the ERD/ERS percentages
in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across
the scalp. This analysis was conducted on 120 shots for each participant in three different
frequency bands and the individual data were then averaged.
Results.We found ERS to be mainly associated with optimal-automatic performance,
in agreement with the ‘‘neural efficiency hypothesis.’’ We also observed more ERD as
related to optimal-controlled performance in conditions of ‘‘neural adaptability’’ and
proficient use of cortical resources.
Discussion. These findings are congruent with the MAP conceptualization of four
performance states, in which unique psychophysiological states underlie distinct
performance-related experiences. From an applied point of view, our findings suggest
that the MAPmodel can be used as a framework to develop performance enhancement
strategies based on cognitive and neurofeedback techniques.

Subjects Neuroscience, Kinesiology, Psychiatry and Psychology
Keywords Attention, Performance optimization, Processing efficiency, Neural efficiency,
Performance effectiveness, Attentional control theory, EEG, Sport, ERD/ERS

INTRODUCTION
This article is based on the distinction between performance effectiveness and processing
efficiency (Eysenck & Calvo, 1992; Eysenck et al., 2007), and concerns the functioning of
athletes during different types of optimal and suboptimal performance as conceived in
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the multi-action plan (MAP) model (Bortoli et al., 2012). Performance effectiveness has
been defined as the quality of performance (e.g., the shooting scores). Processing efficiency
regards the relationship between performance effectiveness and the use of resources or
effort. According to Eysenck & Derakshan (2011), ‘‘. . .processing efficiency is high when
performance effectiveness is high and use of resources is low and it is lowwhen performance
effectiveness is low but use of resources is high’’ (p. 956). However, this definition is
not always tenable. Applied and theoretical studies observing the interaction between
performance effectiveness and processing efficiency have shown that elite athletes can
function in different modes when experiencing optimal performance (Bortoli et al., 2012;
Bertollo et al., 2013; Carson & Collins, 2016; Furley, Schweizer & Bertrams, 2015; Swann et
al., 2016). Athletes are able to attain effective performances not only when they execute
in automatic, fluent, and flow-like states, but also when they proficiently exert some
effort to cope with distressful situations. Proficient athletes, indeed, are able to achieve
performance goals or results with a high degree of certainty, minimum energy expenditure,
and minimum movement time in different states and conditions (Magill & Anderson,
2014). Proficiency is an individual’s capability of achieving a particular and complex task
by switching effectively between an automated and a more controlled execution according
to the task and situational demands.

According to this view, two qualitatively different modes of processing, namely,
automatic and controlled, have been recently proposed in the sport science field drawing on
existing theories in general psychology (see Furley, Schweizer & Bertrams, 2015). Both types
of performance are optimal, but Type 1 (fluent, automatic, and procedural) autonomous
processing would be initiated and completed in the presence of relevant triggering
conditions, whereas Type 2 (competent, regulated, and declarative) controlled processing
would rely onworkingmemory capacity to deal with novel problems, uncommon situations
or unexpected events.

Referring to the performance effectiveness and processing efficiency distinction, optimal
performance can be achieved in conditions of either efficient processing (i.e., fluent
performance and low attentional control and/or effort) or effortful processing (i.e., high
attentional control and/or effort). In others words, proficient athletes can complete the
task successfully using both efficient and effortful types of processing (Wilson, 2008). In the
sport domain, flow-like states in which athletes perform fluently are rare. Thus, athletes
need to use their proficiency, developed through a large amount of deliberate practice
(Ericsson, 2007), to maintain high performance levels and cope with distressful situations.

Behavioural studies on processing efficiency
The interplay between performance effectiveness and processing efficiency in elite
performance has been investigated using distractions theories and self-focus theories
to explain the anxiety-performance relationship (for a discussion, see Hill et al., 2010).

Among the distractions theories (Eysenck & Calvo, 1992; Eysenck et al., 2007), attentional
control theory (ACT) is concerned with attentional control in the context of anxiety and
cognitive performance (Eysenck et al., 2007). It has also been applied to themotor behaviour
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and sport field to investigate how anxiety influences attention and performance in goal-
directed motor tasks (Coombes et al., 2009). Evidence from the literature suggests that
anxiety impairs processing efficiency more than performance effectiveness (Coombes et al.,
2009). Furthermore, a high level of state anxiety can impair both processing efficiency and
motor performance (e.g., Wilson, Wood & Vine, 2009). In ACT, the crucial hypothesis is
that anxiety will typically impair processing efficiency more than performance effectiveness
(Eysenck & Derakshan, 2011). Taking a different perspective, self-focus theories (explicit
monitoring, Beilock & Carr, 2001, and reinvestment, Masters & Maxwell, 2008) centre on
the excessive reinvestment of attention on movement execution. This conscious control of
the technique through attention ‘reinvestment’ leads to eventual breakdown in performance
and/or chocking under pressure.

Recently, Carson & Collins (2016) have distinguished between positive and negative
self-foci in attention control, and argued that what and how performers direct their
attention is crucial to performance. This view concurs with the 2 × 2 conceptualization
in the MAP model (Bortoli et al., 2012), in which performance is classified in terms of
both performance level (optimal and suboptimal) and action control (automatized and
controlled), as explained in greater detail below.

Brain studies on processing efficiency
In addition to the many behavioural studies reported in the literature, which support
the hypothesis that anxiety could impair processing efficiency more than performance
effectiveness (for a review, see Eysenck et al., 2007), there are several studies that have
analysed processing efficiency by using different techniques for brain activity assessment
(Bishop, 2009; Righi, Mecacci & Viggiano, 2009; Savostyanov et al., 2009). Findings showed
that high levels of anxiety can be associated with greater brain activity compared
to low levels, even when anxiety has no impact on performance. Using the same
psychophysiological and methodological perspective, the present study focuses on the
neural efficiency hypothesis as a framework to test the relationship between performance
effectiveness and the use of resources or effort during elite performance in sport.

The neural efficiency hypothesis of psychomotor performance (see Del Percio et al.,
2008; Hatfield & Kerick, 2007) derives from studies on the relationship between brain
and intelligence, championed by Haier (Haier et al., 1988; Haier et al., 1992; Haier et al.,
2004). Efficiency occurs as a result of the disengagement of brain areas that are irrelevant
for a given task, along with the simultaneous engagement of highly task-relevant areas
(Haier et al., 1992). In fact, extant research supports the notion that EEG topographical
oscillations in the theta and alpha band are associatedwith cognitive performance (Klimesch,
1999; Klimesch, 2012). Overall, synchronization (ERS) in the theta band has been linked
to encoding of new information in the episodic memory due to a task-related power
increase, while the frontal midline theta has been associated with sustained attention
and top-down processing in precision sports (Chuang, Huang & Hung, 2013; Doppelmayr,
Finkenzeller & Sauseng, 2008; Klimesch, 1999). De-synchronization (ERD) in the lower
alpha band (i.e., 8–10 Hz) is thought to reflect general task demands and attentional
processes (i.e., vigilance, arousal), whereas desynchronization in the upper alpha band
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(i.e., 10–12 Hz) has been associated with semantic performance (Klimesch, 1999) and
task-related attention (Klimesch, 2012). Moreover, alpha ERS and ERD reflect inhibition
and the release from inhibition, respectively (Klimesch, 2012). In addition, excessive
controlled processing impairs automaticity (Masters & Maxwell, 2008), and is linked to
higher cortical activity in the attentional network, especially in the frontal midline and
parietal areas (Kao, Huang & Hung, 2013).

In the sport sciences domain, neural efficiency has been paralleled to ‘‘the most efficient
movement’’ in terms of the energy cost or work output of a given movement, and has
been defined as psychomotor efficiency (Hatfield & Kerick, 2007). High-skilled athletes
usually perform with minimal effort in comparison to novices. Noteworthy, Hatfield &
Kerick (2007) highlighted that economy of effort is a marker of superior psychomotor
performance, thereby supporting the notion that high-level performance is marked by
economy of brain activity with an inverse relationship between performance effectiveness
and resources utilization.

Additional research on the neural efficiency hypothesis has corroborated the notion
that skilled performance in self-paced sports is usually accompanied by a lower and/or
task-synchronized cortical activity (Del Percio et al., 2009a; Del Percio et al., 2009b; Del
Percio et al., 2010; Del Percio et al., 2008). For instance, Babiloni and colleagues (2010)
found greater resting alpha power in elite athletes compared to amateur athletes and
non-athletes. They concluded that athletes’ brains are more inhibited during resting
states in agreement with the neural efficiency hypothesis. Also congruent with the neural
efficiency hypothesis, findings from a study by Del Percio and colleagues (2009 and 2011)
suggest that elite athletes exhibit less alpha power reactivity than non-athletes.

Altogether, neural efficiency seems to reflect two different processes in distinguishing
elite from expert and novice athletes. ‘‘The first is a reduction in neural activity in certain
brain regions as a particular skill becomes more automated and less controlled. The second
is a reduction of activity in sensory and motor cortex, reflecting more efficient processing
made possible by less energy expenditure’’ (Callan & Naito, 2014, p. 183). Specifically,
sensorimotor rhythms (12–15 Hz) are involved in visuo-motor tasks and may represent
adaptive information processing during motor execution (Cheng et al., 2015a), sensitive to
neurofeedback intervention (Cheng et al., 2015b).

Although a number of studies support the neural efficiency hypothesis, there is emerging
evidence suggesting that this hypothesis does not fully account for elite athletes’ brain
activity in self-paced sports (Vecchio, Del Percio & Babiloni, 2012). In particular, two recent
experimental studies in golf did not lend support to the neural efficiency hypothesis. In the
first study, Babiloni and colleagues showed that alpha ERD during complex visuo-motor
integration was higher when comparing athletes with non-athletes, and best performance
with worst performance in elite athletes (Babiloni et al., 2008). In the second study, they
observed that successful putts of elite golfers were related to strong parieto-central and
parieto-frontal alpha coherence (Babiloni et al., 2011).

Of note, the neural efficiency hypothesis emerged mainly from studies comparing
experts and novices (i.e., expert-novice paradigm), and thus might not illustrate the unique
neural mechanisms associated with expert performance in sports (expert-performance

Bertollo et al. (2016), PeerJ, DOI 10.7717/peerj.2082 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.2082


approach), in the sense that it does not explain the interplay between processing efficiency
and performance effectiveness. Therefore, the unique neural mechanisms associated with
optimal and suboptimal performance states among skilled athletes remain an understudied
topic (Comani et al., 2014; Bertollo et al., 2013; Di Fronso et al., 2016). Put differently, it is
established that experts will show a greater degree of automaticity and neural efficiency
when compared to novices (Callan & Naito, 2014; Del Percio et al., 2008). However, it
remains mostly unknown whether and how neural efficiency among brain cortices is
related to different performance states among highly skilled athletes.

The MAP model
To advance the knowledge on the unique psychophysiological and behaviouralmechanisms
underlying optimal and suboptimal performance states among high-skilled athletes, Bortoli
and colleagues (2012) have developed theMAP interventionmodel. Themodel is embedded
within the IZOF framework (Hanin, 2007), and fits well with the ACT hypothesis that
anxiety will typically impair processing efficiency more than performance effectiveness.
It also concurs with dual-process theories that describe and explain the dual modes of
processing of athletes, namely, automatic and controlled (see Furley, Schweizer & Bertrams,
2015). In this view, Type 1 automatic processing allows for the fast and effortless execution
of behavioural responses, whereas Type 2 controlled processing is well equipped for dealing
with novel problems or unexpected events. Furthermore, the MAP model is rooted in a
motoric perspective, in which skill establishment is related to aspects governing motor
control. From this viewpoint, skill establishment concerns the structures/representations
of the movement and refers to the level and consistency of automaticity in the execution
of different movement components (Carson & Collins, 2016).

According to the MAP model (Bortoli et al., 2012), performance experience can be
depicted along two different axes: one represents the performance level per se, and the
other represents the amount of control over the task. According to this interaction, this
performance experience plane can be classified into four performance Types: optimal-
automatic (Type 1), optimal-controlled (Type 2), suboptimal-controlled (Type 3), and
suboptimal-automatic (Type 4; see Fig. 1). In Type 1 performance (flow condition) the
athlete is self-confident and in control of the situation, and is able to direct his or her
physical and mental energies toward the accomplishment of a task. This type of processing
is independent of available working memory capacity. The movement is effortless,
autonomous, and consistent and attentional control systems play a role of supervision. Both
performance effectiveness and processing efficiency are high. Stress, fatigue, unexpected
events, or performance issues could disrupt performance. These unfavourable conditions
can lead to Type 3 performance, typified by an excessive reinvestment in controlled
processing and an overload of working memory, which undermines movement fluidity
and automaticity (Maxwell, Masters & Eves, 2000;Oudejans et al., 2011). Both performance
effectiveness and processing efficiency are low. Finally, Type 2 performance state is
characterized by high performance effectiveness and low processing efficiency (i.e., effortful
processing and involvement of working memory; Eysenck & Derakshan, 2011), while Type
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Figure 1 The multi-action plan model.

4 performance is typified by ineffective performance, inefficient processing, and no reliance
on working memory.

Research findings on the MAP model have shown that different physiological
(e.g., skin conductance responses, breathing rate, and heart rate) and behavioural markers
(e.g., kinematic patterns) underlie the four types of performance states (Bertollo et al.,
2013; Filho et al., 2015) and focus of attention can affect performance (Bertollo et al.,
2015). There is also initial evidence that different neural patterns are associated with the
four performance types foreseen in the MAP model (Comani et al., 2014; Di Fronso et al.,
2016). Specifically, Comani et al. (2014) observed that optimal-automatic performance
(i.e., Type 1) states among shooters were characterized by lower alpha power in the
central, contralateral parietal, and occipital areas (at shot release), in agreement with
the neural efficiency hypothesis (i.e., global decrease in cortical activity). Conversely,
optimal-controlled performance (i.e., Type 2) was characterized by an increased alpha
power activity in the frontal and occipital areas.

The present study
In the present study, we aimed to further explore the neural dynamics associated with
optimal/suboptimal by controlled/automated performance states among high-skilled
athletes in accordance with the MAP model tenets. We were particularly interested in
examining the neural activity associated with optimal-automated (Type 1) and optimal-
controlled (Type 2) performances in the light of the reviewed literature on ACT theory,
neural efficiency, and dual-process theories in sport and motor performance. According
to the MAP model assumptions and previous research findings, we expected to find
different patterns of cortical activity associated with the four types of performance states.
In particular, we expected to observe more cortical synchronization in Type 1 and Type
4 performance states (see Fig. 1). This hypothesis relies on earlier findings that showed
some similar psychophysiological features underlying Type 1 and Type 4 performances
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(Bertollo et al., 2013; Di Fronso et al., 2016; Robazza et al., in press). On the other hand, we
expected to observe more cortical desynchronization associated with Type 2 and Type 3
performance states. Specifically, we expected to find the following cortical patterns:
(1) Type 1 performance: (a) greater ERS in the theta band reflecting the successful encoding

of information and the activity of the attentional network; (b) at the same time, ERS
activity in both low and high alpha band, which is an expression of the inhibition
processes (Klimesch, 2012) and neural efficiency (Del Percio et al., 2008).

(2) Type 2 performance: (a) an ERS activity similar to Type 1 performance, with more ERD
in the low and high alpha band, reflecting the two faces of inhibition, namely, selective
activation vs. blocking of information processing; (b) more selective activation related
to the attentional control exerted on the action.

(3) Type 3 performance: (a) a clear ERD pattern in the theta band, indicating specific
attention to the task at hand. Indeed, theta response over frontal regions reflects
the activation of neural networks involved in the allocation of attention related to
target stimuli: a parietal activation would occur during the processing of visuospatial
information, and a premotor cortex activation would occur during visuo-motor
processing; (b) more ERD in the low alpha band associated with higher spread
attention engaged and effort resources utilization; (c) more ERD in the areas associated
with verbal semantic processes or visuo-spatial processing.

(4) Type 4 performance: (a) a cortical activity pattern similar to Type 1 performance; (b)
a hyper-synchronization (high ERS) during the entire interval preceding execution
because of low controlled and disengaged behaviour with no reliance on working
memory. It is well known that hyper-synchronization is associated with no reliance on
working memory and a sort of loss of consciousness derived from task disengagement
(Klimesch, 2012).

METHOD
Participants
Ten elite, right-handed shooters (6 male and 4 female), with extensive experience in
international competitions (e.g., World Championships, World Cup Championships,
Olympic Games) and included in the International Shooting Sport Federation international
ranking, participated in the study. The participants ranged in age from 18 to 29 years
(M = 22.8, SD = 3.5) and had at least 10 years of experience (M = 14.5, SD = 4.0). After
being briefed on the general purpose of the study, the participants agreed to participate
and signed a written informed consent. The study was conducted in accordance with the
declaration of Helsinki and received approval from the local university ethics committee
(ref. n. 10-21/05/2015).

Procedure
The participants were asked to identify the core components of their ‘‘chain of action’’
that were essential for optimal performance. They were then asked to choose one element
(i.e., an idiosyncratic core component, such as aiming, triggering, and front sight alignment)
deemed fundamental in order to perform optimally according to the procedure developed
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by Bortoli et al. (2012). Subsequently, the participants performed a total of 120 air-pistol
shots. They were ‘‘free to relax’’ between shots and to shoot when they felt ‘‘ready to go’’
(average inter-shot interval of about 1 min). The distance between the shooter and the
target was 10 m, and the diameter of the target was 6 cm, in accordance with international
shooting competition rules (www.issf-sports.org/theissf/rules/english_rulebook.ashx). An
electronic scoring target (Hs10 Hybridscore, SIUS, Effretikon, Switzerland) was used to
(automatically) record the shooting scores. Shooting score results were initially concealed
from the athletes as we were interested in assessing their perceived accuracy. Hence, after
each shot, the athletes were asked to report their perceived shooting score (ranging from 0
to 10.9). They also reported the control level of the idiosyncratic core component of action
(from 0 to 11 on a Borg scale; for a detailed description see Bertollo et al., 2013). After this
evaluation, the actual shooting score (i.e., objective performance) of each shot was made
available to the shooter. In addition to self-evaluation, we also recorded their brain waves
using a 32-channel waveguard cap by ANT (Advanced Neuro Technology, Enshede, The
Netherlands).

EEG recordings
EEG data were continuously recorded (sampling frequency: 1024 Hz) from the 32 scalp
electrodes (active electrodes for movement compensation) positioned over the scalp
according to the 10–20 system, using an eegosportTM amplifier (ANT, Enschede,
Netherlands). EEG signalswere recordedwith common reference. The ground electrodewas
positioned between Fpz and Fz, and the electrode impedancewas kept below 10 k�. A device
based on acoustic technology (cardio-microphone and Powerlab 16/30, ADInstruments,
Australia) was used to identify the instant of shot release. It was positioned on a tripod
30 cm from the air pistol and the acoustic signals were acquired with a sampling frequency
of 1 kHz.

Performance categorization
The participant’ shooting scores and perceived control levels were used to categorize the
EEG epochs into a 2× 2matrix using themedian split technique to identify the four types of
performance as defined in the MAP model. Following this approach, shooting results from
10.2 to 10.9 (maximal possible score) were categorized as optimal, and the remaining scores
as suboptimal. Attentional control levels ≤ 4 were categorized as automatic performance
and the others as controlled performance. Therefore, the combination of shooting result
> 10.2 and control level≤4 led to a performance categorization as optimal-automatic, i.e., as
Type 1, whereas the performance was classified as optimal-controlled, i.e., Type 2 with the
combination of shooting result > 10.2 and control level > 4. When the shooting result was
<10.2 and the control level was >4, performance was considered as suboptimal-controlled,
i.e., Type 3, whereas performance was classified as suboptimal-automatic, i.e., Type 4 when
the shooting result was <10.2 and the control level was ≤4.

EEG data pre-processing
EEG data were band-pass filtered between 0.3 and 40 Hz, and segmented into single epochs
of 10 s duration. Each epoch started at −6 s and ended at +4 s with respect to shot release
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(t = 0). Data epochs were visually inspected, and those showing instrumental, ocular and
muscular artefacts were corrected using the tool available in the ASA software (Zanow
& Knosche, 2004). The data epochs showing residual artefacts were excluded from further
analysis.

ERD/ERS analysis
We were particularly interested in the relationship between attention and performance.
Thus, we ran the ERD/ERS analysis in the theta, and low and high alpha frequency bands.
To quantify the event-related changes in these frequency bands, the individual ERD/ERS
maps were calculated following the procedure proposed byZanow & Knosche (2004), where
ERD and ERS are defined, respectively, as the percent increase and decrease of signal power
as compared to the baseline. This definition is different from that proposed by Pfurtscheller
& Lopes da Silva (1999). Following the procedure proposed by Zanow & Knosche (2004),
the Hilbert transform was performed before ERD/ERS analysis. For a given frequency
band, ERD/ERS maps were calculated for an interval of interest as the percent variation of
the signal power with respect to baseline values for each EEG channel.

Given that the individual alpha frequency was similar across participants (9.9–10.1 Hz),
we considered the following frequency bands: 4–8 Hz (i.e., theta), 8–10 Hz (low alpha), and
10–12 Hz (high alpha) for analysis. Three intervals of interest, each of 1 s duration, were
considered during the 3 s preceding each shot (i.e., from −3 to 0), whereas the baseline
signal was windowed from −5 to −4 s before the shot. Periods before −5 s were not
suitable for analysis because of body movements, small adjustments of the head/trunk, and
respiration. For each participant and for each group of EEG epochs categorized according
to the types of performance foreseen in the MAP model, the baseline signals were averaged
to reduce background noise before ERD/ERS calculation. Similarly, averaged ERD/ERS
maps were obtained from the single ERD/ERS maps for each interval of interest, for each
participant and for each group of EEG epochs. Finally, for each type of performance the
individual ERD/ERSmaps were averaged across subjects to account for the cortical patterns
underlying the four MAP model types, thus obtaining average topographical maps.

Statistical analysis
The percentage of ERD/ERS individual data was exported with ASA software (ANT-Neuro)
and analysed using Statistica 10 software (Statsoft). Separated repeated measures analyses
of variance (RM-ANOVAs) for each electrode were applied to each frequency band (theta,
low alpha, and high alpha). Huynh–Feldt correction was applied (Huynh & Feldt, 1976)
when the assumption of sphericity was violated.

RESULTS
Descriptive statistics for the behavioural data for each performance type as derived from
the interaction of optimal/suboptimal and automatic/controlled performance dimensions
are summarized in Table 1.

A 4 × 3 (performance types × time) repeated measures analysis of variance (RM-
ANOVA) was performed to test the differences among the four types of performance
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Table 1 Mean and standard deviation during each performance type of shooting result and control
level on the core component of the action.

Performance type Number of shotsa Shooting results Control level on
core components

1 238 10.51 (0.12) 4.59 (0.39)
2 350 10.45 (0.12) 6.47 (0.54)
3 212 9.90 (0.19) 6.44 (0.46)
4 348 9.76 (0.24) 4.39 (0.54)

Notes.
aThe number of shots for each performance type derives from the number of trials (120) for each athlete (10) without the shots
affected by EEG artefacts.

Table 2 Significant results of the RM-ANOVAs 4× 3 (performance× time) on the ERD/ERS theta
band.

Theta ERD/ERS

Variable Electrodes Degrees of freedom F p η2
p

Performance Fpz 3,27 5.338 .005 .372
Performance FC2 3,27 4.230 .014 .320
Performance CP2 3,27 4.054 .016 .311
Performance CP6 3,27 3.222 .038 .264
Time F7 2,18 5.005 .018 .357
Time FC1 2,18 5.317 .015 .371
Time FC5 2,18 7.316 .004 .410
Time T7 2,18 7.888 .003 .467
Time Cz 2,18 4.054 .035 .311
Time CP1 2,18 8.858 .001 .496
Time CP5 2,18 3.972 .037 .306
Performance× Time Fz 6,54 2.033 .047 .204
Performance× Time CP6 6,54 2.680 .023 .229

during the three seconds preceding the shots for theta, low alpha and high alpha frequency
bands. The dependent variables were the ERD/ERS percentages in each frequency band
(i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis
was conducted on approximately 90 shots for each participant in three different frequency
bands.

Theta ERD/ERS
A series of RM-ANOVAs 4× 3 (performance× time) on the ERD/ERS theta band yielded
significant effects on performance, time, and the interaction performance by time. Only
the significant results are reported in Table 2.

Figure 2 illustrates the grand averages of the scalp topographical distributions of the
ERD/ERS amplitudes in the theta band for each performance type. The theta ERD/ERS
was mapped during three pre-shot periods: from −3 s to −2 s, from −2 s to −1 s, and
from −1 s to shot release (t = 0).
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Figure 2 Average topographical distributions of the ERD/ERS amplitudes in the theta band for each
performance type during the 3 s before shot release. The theta ERD/ERS maps were calculated for three
pre-shot periods: from−3 s to−2 s, from−2 s to−1 s, and from−1 s to shot release (t = 0). Time scale
is on the X axis. Color scale: maximum ERD and ERS are coded in red and blue, respectively. The maxi-
mal (%) value of the ERD/ERS is given at the top right side of the figure.

Given our interest in performance comparison, we performed a post-hoc analysis
for performance and performance by time interaction. Fisher post-hoc analyses for the
significant results in theta band are reported in Supplemental Information.

Low alpha ERD/ERS
A series of RM-ANOVAs 4 × 3 (performance × time) on the ERD/ERS low alpha band
yielded significant effects on performance and time. The significant results are reported in
Table 3. No differences on the performance by time interaction were found.

In Fig. 3 we plotted the grand averages of the scalp topographical distributions of the
ERD/ERS amplitudes in the low alpha frequency band for each performance type. The
low alpha ERD/ERS was mapped at three pre-shot periods: from −3 s to −2 s, from −2
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Table 3 Significant results of the RM-ANOVAs 4× 3 (performance× time) on the ERD/ERS low al-
pha band.

Low alpha ERD/ERS

Variables Electrodes Degrees of freedom F P η2
p

Performance F8 3,27 3.279 .040 .261
Performance FC2 3,27 5.105 .006 .358
Time Fp1 2,18 3.969 .048 .306
Time Fpz 2,18 4.635 .044 .340
Time F7 2,18 8.905 .002 .497
Time F3 2,18 3.767 .042 .295
Time F4 2,18 8.809 .002 .495
Time F8 2,18 3.845 .040 .299
Time FC5 2,18 8.879 .002 .497
Time FC1 2,18 4.504 .025 .334
Time T7 2,18 5.544 .028 .381
Time C3 2,18 9.101 .001 .503
Time Cz 2,18 6.124 .009 .405
Time Cp5 2,18 6.193 .008 .408
Time Cp1 2,18 10.926 .001 .548
Time Oz 2,18 5.842 .011 .394
Time O2 2,18 5.554 .013 .382

s to −1 s, and from −1 s to shot release (t = 0). Similiarly to the theta band results, we
performed the post hoc analysis for performance and performance by time interaction.
Fisher post-hoc analyses for the significant results in low alpha band are included in
Supplemental Information.

High alpha ERD/ERS
A series of RM-ANOVAs 4 × 3 (performance × time) on the ERD/ERS high alpha band
yielded significant effects on performance, time, and the performance by time interaction.
The significant results are reported in Table 4.

Figure 4 shows the grand averages of the scalp topographical distributions of the high
ERD/ERS amplitude in the alpha frequency band for each performance type. The high
alpha ERD/ERS was mapped during three pre-shot periods: from −3 s to −2 s, from −2 s
to −1 s, and from −1 s to zero time.

Similarly to the previous results, we performed a post-hoc analysis for performance and
performance by time interaction. Fisher post-hoc analyses for the significant results in the
high alpha band are included in Supplemental Information.

DISCUSSION
In the present study, we used amobile EEG device to analyse the cortical activity underlying
different types of optimal and suboptimal performance states in the framework of the MAP
model. Assessing brain activity using mobile EEG data collection enables evaluation of
neural efficiency during performance in actual settings (Park, Fairweather & Donaldson,
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Figure 3 Average topographical distributions of the ERD/ERS amplitudes in the low alpha frequency
band for each performance type during the 3 s before shot release. The low alpha ERD/ERS maps were
calculated for three pre-shot periods: from−3 s to−2 s, from−2 s to−1 s, and from−1 s to shot release
(t = 0). Time scale is on the X axis. Colour scale: maximum ERD and ERS are coded in red and blue, re-
spectively. The maximal (%) value of the ERD/ERS is given at the top right side of the figure.

2015). Our findings showed that elite athletes used different types of functioning to
achieve optimal performance, sometimes typified by effort, attentional control, and use
of resources higher than in flow-like automatic performance (Bortoli et al., 2012; Carson
& Collins, 2016; Furley, Schweizer & Bertrams, 2015). This outcome is in line with the view
that ‘‘the processing inefficiency caused by the disruption of the inhibition and shifting
functions of the central executive system does not necessarily lead to decrements in
performance effectiveness . . . by using compensatory or alternative processing strategies’’
(Wilson, 2008, p. 195). Similar behaviour has been observed when people have to cope with
affordances that are not always appropriate in a particular situation, and therefore need to
be inhibited by higher cognitive functions located in the frontal lobes (Furley, Schweizer
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Table 4 Significant results of the RM-ANOVAs 4× 3 (performance× time) within subjects on 432 the
ERD/ERS high alpha band.

High alpha ERD/ERS

Variables Electrodes Degrees of freedom F p η2
p

Performance Fp1 3,27 3.570 .026 .284
Performance F8 3,27 3.038 .046 .252
Performance P3 3,27 3.721 .023 .292
Time Fp1 2,18 5.460 .029 .378
Time Fp2 2,18 4.811 .040 .348
Time F7 2,18 4.670 .049 .342
Time F4 2,18 8.354 .002 .481
Time Fc5 2,18 8.186 .002 .476
Time Fc2 2,18 4.846 .020 .350
Time T7 2,18 4.813 .021 .348
Time C3 2,18 4.689 .022 .343
Time Cz 2,18 4.322 .029 .329
Performance× Time Fp1 6,54 2.968 .033 .248
Performance× Time Fz 6,54 2.401 .039 .211
Performance× Time F8 6,54 3.196 .009 .262
Performance× Time C3 6,54 3.473 .005 .224
Performance× Time Cp1 6,54 2.401 .039 .278

& Bertrams, 2015). In brain studies, ERD has been associated with higher involvement of
cognitive processes (in particular working memory), and reflects anticipatory attention
(Klimesch, 2012; Nussbaumer, Grabner & Stern, 2015).

In the sport science domain, there is emerging evidence suggesting that the neural
efficiency hypothesis does not fully account for elite athletes’ brain activity (Vecchio, Del
Percio & Babiloni, 2012). Vecchio and colleagues have argued that information processing
in the cognitive-motor cortical systems of elite athletes is more complex than that predicted
by the ‘‘neural efficiency’’ hypothesis. In experts, some neural networks within the cortex
might reflect the ‘‘neural efficiency’’ (e.g., default mode network and relaxation), whereas
other networks might reflect other mechanisms (e.g., task request, attentional demands, or
affective demands). In cognitive neuroscience, Poldrack (2015) recently raised doubts about
efficiency as a useful concept to explain expert performance. He proposed that the common
usage of the concept of ‘‘efficiency’’ in cognitive neuroscience is equally vacuous. In general,
the term is used to describe situations where performance appears similar but activation
is greater for one group (e.g., novices, which are usually labelled as ‘‘less efficient’’).

In discussing the brain studies associated with superior performance, we adopted the
idiosyncratic framework of theMAPmodel to test different processingmodes underpinning
different types of performance. In this framework, we hypothesized to integrate the neural
efficiency hypothesis within a broader concept, namely, the neural proficiency hypothesis
of superior performance, in which athletes’ brain waves are modulated by the individual’s
effort to maintain a high performance level by switching proficiently between Type 1 and
Type 2 performance states. Proficiency is an active and qualitative process that involves the
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Figure 4 Average topographical distributions of the ERD/ERS amplitudes in the high alpha frequency
band for each performance type during the 3 s before shot release. The high alpha ERD/ERS maps were
calculated for three pre-shot periods: from−3 s to−2 s, from−2 s to−1 s, and from−1 s to shot release
(t = 0). Time scale is on the X axis. Colour scale: maximum ERD and ERS are coded in red and blue, re-
spectively. The maximal (%) value of the ERD/ERS is given at the top right side of the figure.

interaction between the efficiency of human processing and the efficacy of the performance,
and it is not only the ratio between the input and the output of the biomechanical system
to reach the outcome. A proficient brain is the ensemble of the neural features that define
the state of being adequate or well qualified both physically and psychologically for the
task. This implies that efficient processing and inefficient processing (measured through
cortical activity) during performance are modulated by the degree of effort and by the
attentional demands of the control systems involved in the task. This is mirrored in the
neural activity found in optimal (Type 1 and Type 2) and suboptimal (Type 3 and Type
4) performance states, as found in earlier preliminary case studies with elite athletes
(Comani et al., 2014; Di Fronso et al., 2016). Our findings are also in line with a study on
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movement-related cortical activity as a function of expertise and pressure (Cooke et al.,
2014), in which a greater reduction in EEG high-alpha power during preparation for action
was deemed to reflect more resources being devoted to response programming. Indeed,
both cortical excitatory and inhibitory factors can contribute to elite skilled performance
during different types of good and poor performances. This most likely depends on the
different degree of attentional requests on the task and the high anxiety levels usually found
in competition that can undermine automaticity (Hatfield et al., 2013). In this situation,
a Type 2 processing, well equipped for dealing with novel problems, is more appropriate
(Furley, Schweizer & Bertrams, 2015).

In agreement with prior studies demonstrating that the event-related changes of the
cortical desynchronization/synchronization (ERD/ERS) can capture differences in the
brain activity of elite athletes during optimal and suboptimal performances (Comani
et al., 2014; Del Percio et al., 2009a; Del Percio et al., 2009b; Di Fronso et al., 2016). In the
present study we investigated the event-related changes of cortical activity (ERD/ERS) in
the theta and alpha bands in association with different performance states. ERS gathers
a similar state of neuronal assemblies resulting in summation of postsynaptic potentials
(synchrony) due to similarity of neuronal states. Conversely, a dissimilar state of neuronal
assemblies results in differential assignment of neurons and de-synchrony or changing
power or amplitude (ERD). These two types of brain configurations are an expression
of the two classical types of performance: good and poor (Cooke, 2013; Del Percio et al.,
2009a; Del Percio et al., 2009b; Hatfield & Kerick, 2007). In effect, the cortical patterns
displayed in Figs. 2, 3 and 4 confirm that neural desynchronization (i.e., ERD) is mainly
associated with Type 3 performance (suboptimal-controlled). However, ERS activity was
not only associated with optimal-automated performance (Type 1), but also associated
with suboptimal-automated performance (Type 4). In addition, during optimal-controlled
performance (Type 2) cortical activity showed greater ERD activity in different areas
and frequency bands compared to optimal-automated performance, contrary to the
neural efficiency hypothesis, which states that more synchronization would appear in
association with good performance. However, when we observed a more diffused and
evident ERD activity in the brain (i.e., when athletes were unable to maintain a consistent
execution associated with economy of effort), we simultaneously observed a decline toward
a suboptimal-controlled performance (Type 3). This pattern is more evident in the theta
band and it involves the right parietal areas, in agreement with the evidence that (1) theta
activity is also present at parietal sites in the high- vs. low-error condition (Arrighi et al.,
2016), and that (2) integration of visual and spatial information involves both frontal and
parietal areas (Morgan et al., 2013).

The ability to achieve performance goals with a high degree of certainty, and not only
minimum energy expenditure, is paramount for high performance in sport. Thus, athletes
need to use different strategies tomaintain or achieve good performance (Bortoli et al., 2012;
Furley, Schweizer & Bertrams, 2015; Swann et al., 2016). These strategies, that may involve
the engagement of working memory, require more effort than during optimal-automatic
performance experiences (Type 1). Processing efficiency tends to decrease during this type
of effective performance (Type 2). Indeed, Type 2 performance of our shooters was typified
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by a dissimilar state of neuronal assemblies during active task engagement, resulting in
differential assignment of neurons and desynchronized theta/alpha power. Specifically, we
found a significant desynchronization in the visuo-spatial and visuo-motor attentional
networks (Fpz Fc2 Cp2 Cp6) in the theta band during Type 3 performance, whereas
the other types of performance were still synchronized. These findings also suggest that
more sustained attention on the target associated with top-down processes was necessary
during execution (Kao, Huang & Hung, 2013; Missonnier et al., 2006). This is apparent
from the results of the performance by time interaction in which we found significant
ERD in the frontal midline theta (Fz) during the second before shot release as well as
de-synchronization in parietal areas (Cp6) two seconds before shot release, consistent with
findings from other studies (Chuang, Huang & Hung, 2013; Doppelmayr, Finkenzeller &
Sauseng, 2008; Kao, Huang & Hung, 2013).

Previous studies have found that neural networks engaged in the control of action
are dynamically reorganized depending on whether the task calls for volitional control
or is performed automatically (see Matsuzaka, Akiyama & Mushiake, 2013). Specifically,
the prefrontal cortex and anterior striatum were shown to exhibit task-related activity
modulation (i.e., synchronization) under the former but not the latter condition
(i.e., desynchronization). In other words, neural networks for movement control were
optimized, being regulated by smaller scale neural circuits. This view is in line with the
overall cortical synchronization on the task observed on Type 1 and Type 4 performances
andwith the desynchronization observed on Type 2 and Type 3 performances. In particular,
the higher ERD during Type 3 performance is evident in Fig. 2 (Theta ERD/ERS). On the
other hand, theta ERS reflected the activation of neural networks involved in allocation of
attention related to target stimuli rather than working memory (Missonnier et al., 2006).
Finally, the ERS activity of Type 4 performance can be explained with the lower level of
control of the action exerted by the participants during this type of suboptimal performance
(see Table 1).

Moreover, we can hypothesize that the ERD/ERS pattern found in Type 1 performance
is likely related to a ‘‘default mode network’’ functioning, proper to autonomous skills and
goal-relevant attentional focus when approaching shot release (Doppelmayr, Finkenzeller
& Sauseng, 2008), similar to what was found in golfers and basketball free throwers
(Chuang, Huang & Hung, 2013; Kao, Huang & Hung, 2013). Excessive reinvestment in
controlled processing undermines automaticity, and is related to higher cortical activity
in the right parietal and frontal areas (Broyd et al., 2009), which is evident during Type
3 performance. Gentili and colleagues (2011) showed that with practice humans have
the capacity to adapt their movements when challenged with novel demands or task
requirements. They found a cortical adaptation of frontal temporal and parietal regions
and a progressive idling of cortical rhythms in a learning paradigm of a visuo-motor
task (Gentili et al., 2011). They suggested that the update of motor plans in response to
incoming sensory information could be mirrored in theta band oscillation. There is also
growing evidence that theta oscillations are linked to error monitoring (Cavanagh, Cohen
& Allen, 2009; Gevins & Smith, 2000; Luu, Tucker & Makeig, 2004; Trujillo & Allen, 2007;
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Yordanova et al., 2004). Error monitoring could explain the difference we obtained in the
maps for optimal (Type 1 and 2) and suboptimal (Type 3 and 4) performance.

Findings in Alpha ERD/ERS (Figs. 3 and 4) concur with the evidence indicating
relationships between: (1) low Alpha power and general cortical arousal, and (2) high
Alpha power and task-relevant attentional processing (Babiloni et al., 2008; Hatfield et al.,
2013; Pfurtscheller & Lopes da Silva, 1999). Indeed, we observed a significant difference
among the different types of performance, particularly in FC2 site (see Supplemental
Information), with ERD patterns (+1.12%) in low Alpha band for Type 3 performance.
Thus, higher levels of general cortical arousal were associated with suboptimal performance
states. In Type 2 performance cortical activity was synchronized on the task (−2.78%).
ERS was more evident in Type 4 (−6.18%) and Type 1 performances (−9.14), indicating
a low level of arousal and a minimal conscious control typical of flow-like behaviour
(Bortoli et al., 2012; Jackson & Csikszentmihalyi, 1999). FC2 is one of the electrodes that
represent the area where attentive processes and control on core components of action
can be integrated for the control of goal-directed and stimulus-driven attention processes
(Corbetta & Shulman, 2002).

Furthermore, the increase in the neuronal predictive power for action that was observed
in the Fp1, F8, and P3 for high alpha band indicates that the optimization of neural networks
can occur qualitatively in the form of enhanced proficiency of the neuronal representation
of action. It is related to the visuo-spatial network that involves the switches between the
performance types reflected in the activity of fronto-parietal areas during a few seconds
preceding the shot release (i.e., Fpz, Fz, F8, Cp1; Matsuzaka, Akiyama & Mushiake, 2013).
Moreover, the involvement of the de-synchronization of the contralateral sensory-motor
area (i.e., C3) is an expression of the control of the right finger/hand (Pfurtscheller &
Lopes da Silva, 1999). The results are also in agreement with the findings by Sauseng and
colleagues (2005), who suggested that a shift of attention selectively modulates excitability
of the contralateral posterior parietal cortex and that this posterior modulation of alpha
activity is controlled by prefrontal regions.

In summary, the findings of the present study provided support to the construct of
neural proficiency in sport performance that underlies Type 1 and Type 2 performance
states as conceptualized in the MAP model (Bortoli et al., 2012), as well as in dual-process
theories (Furley, Schweizer & Bertrams, 2015) and ACT (see Wilson, 2008). According to
this view, neural proficiency is associated with Type 1 and Type 2 performance states, and
mirrors the behaviour of elite athletes when they use efficient or effortful processing to deal
with task demands. This is in agreement with the literature reviewed by Klimesch (2012),
who highlighted how alpha ERS and ERD reflect inhibition and release from inhibition,
respectively. On the other hand, theta ERS reflects top-down processes related to working
memory and attention (Doppelmayr, Finkenzeller & Sauseng, 2008).

From a neurophysiological perspective, successful goal-directed actions require the
individuals to flexibly adapt their behaviour to deal with performance problems or
environment changes, beyond correct action selection, planning, and execution (Ullsperger,
Danielmeier & Jocham, 2014). Performance optimization is ensured by a continuous
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monitoring of a wide network of brain areas (such as the posterior medial frontal cortex),
which detects and evaluates deviations of actual from predicted states.

In conclusion, our findings provide evidence of distinct cortical processes underlying
the four types of performance states derived from the interaction between performance
and attention control levels. However, our methodological approach did not enable us
to distinguish specific cortical networks among the four types of performance. Further
investigation using the tools of graph theory (Bullmore & Sporns, 2009) and dynamic
functional connectivity (Hutchison et al., 2013) within the framework of the MAP model,
could provide a better understanding of the functional connectivity and interactions
among default mode, dorsal and ventral attention network, sensory motor network,
and visual network, typically involved in shooting performance. The investigation of
ERD/ERS patterns after shot release could provide important information for a better
understanding of the dynamics of brain oscillations during recovery from a highly
demanding task execution.

From an applied point of view, our findings can address neurofeedback training to en-
hance performance in closed skill sports. Our findings can also help in choosing the proper
areas to apply transcranial electrical stimulation (Paulus, 2011) in order to facilitate cortical
plasticity, influencing the membrane potential of neurons and modulating spontaneous
firing rates. Indeed, during sport performance, the brain must dynamically integrate,
coordinate, and respond to internal and external stimuli across multiple time scales.
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