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The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a subor-
bital experiment designed to map magnetic fields in order to study their role in star formation processes.
BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flights
from Antarctica in 2010 and 2012. We present the next-generation BLASTPol instrument (BLAST-
TNG) that will build off the success of the previous experiment and continue its role as a unique
instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG
will make larger and deeper maps. Major improvements include a 2.5-m carbon fiber mirror that is 40%
wider than the BLASTPol mirror and ∼3000 polarization sensitive detectors. BLAST-TNG will observe
in three bands at 250, 350, and 500 µm. The telescope will serve as a pathfinder project for microwave
kinetic inductance detector (MKID) technology, as applied to feedhorn-coupled submillimeter detector
arrays. The liquid helium cooled cryostat will have a 28-day hold time and will utilize a closed-cycle
3He refrigerator to cool the detector arrays to 270 mK. This will enable a detailed mapping of more
targets with higher polarization resolution than any other submillimeter experiment to date. BLAST-
TNG will also be the first balloon-borne telescope to offer shared risk observing time to the community.
This paper outlines the motivation for the project and the instrumental design.

Keywords: Submillimeter, telescope, balloon, star formation, polarization.

1. Introduction

BLAST-TNG fills an important gap in obser-
vational abilities of modern telescope facilities.
BLAST-TNG will observe at wavelengths that are
very difficult to observe from the ground, even from
the best telescope sites in the world. It will make
maps of high extinction molecular cloud regions
where it is difficult to obtain IR polarimetry mea-
surements from background stars. Additionally, the
scale of the maps and resolution of the instrument
provide an essential connection between the all sky,
but low resolution (5′), polarimetric maps of Planck

Fig. 1. BLAST-TNG provides an essential link between Planck’s all-sky polarization maps and ALMA’s 0.01′′-resolution
polarimetry. Left: A Planck polarization map of the Aquila Rift (Planck Collaboration et al., 2014) with 1◦ polarization
resolution. Middle: The BLAST observation of the Vela molecular cloud (Netterfield et al., 2009). Right: A magnetic field map
of a proto-binary in Persues from observations with the Submillimeter Array (SMA), a precursor to ALMA (Girart et al.,
2006). By comparison, the BLAST-TNG beam at 250 µm is 22′′, which is roughly the size of the ALMA 850-µm field of view
and more than 200 times smaller in area than the Planck 850-µm beam.

and the high resolution, but small area (22′′), polari-
metric maps of ALMA (see Fig. 1). The combi-
nation of data from all three telescopes will allow
us to trace magnetic field orientation from the pre-
stellar cores into the local molecular cloud and out
into the surrounding Galactic environment. The
design of the instrument will allow us to make deep
maps of regions ranging from 0.25 to 20 square
degrees and we will be able to observe many more
star forming clouds than before.

BLAST-TNG will also target and charac-
terize galactic dust polarization that is a source
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of foreground contamination for experiments that
probe the cosmic microwave background (CMB).
Ongoing attempts to observe the polarized signal
from the CMB (BICEP2 Collaboration et al., 2014;
POLARBEAR Collaboration et al., 2014; Hanson
et al., 2013; Barkats et al., 2014) rely on precise
measurements of the polarized dust emission from
our galaxy to extract the primordial signatures
created during inflation.

BLAST-TNG continues the legacy of
BLASTPol (Fissel et al., 2010) which has shown the
effectiveness of submillimeter telescopes in making
degree-scale maps of magnetic field pseudo-vectors
from dust emission in large molecular clouds. The
telescope will feature increased spatial resolution,
a larger field of view (FOV), increased mapping
speeds, and a longer flight time. BLAST-TNG will
observe three 30% fractional bandwidths centered
on 250, 350, and 500µm, with 859, 407, and 201
pixels, having a beam FWHM of 25′′, 35′′, and
50′′, respectively. The FOV of each array will be
22′. The detectors are feedhorn-coupled MKIDs.
Polarimetry is achieved with two orthogonal polar-
ization sensitive MKIDs in each pixel along with
a stepped Achromatic Half Wave Plate (AHWP)
(Moncelsi et al., 2014) that modulates the incoming
light. The BLAST-TNG bands were chosen to be
most sensitive to thermal emission from dust grains
within molecular clouds. BLAST-TNG will fly from
Antarctica in December of 2016 as part of NASA’s
Long Duration Balloon (LDB) program.

Section 2 describes the current state of scientific
knowledge, Sec. 3 describes results obtained from
previous BLAST experiments, and Sec. 4 covers
the details of the design of BLAST-TNG and the
progress that has been made so far.

2. Scientific Motivation

In recent years, understanding of the star
formation process has advanced considerably.
However, the mechanisms that reduce the rate
of Galactic star formation are still poorly under-
stood. Observational evidence points to star for-
mation rates that are lower by up to a factor of
10 than those predicted by simple models based
on free fall gravitational collapse. Current ideas to
explain this discrepancy point to a support process
that slows the formation and evolution of pre-
stellar cores in molecular clouds. The two dom-
inant theories that strive to explain this effect focus,
respectively, on turbulent forces and magnetic

fields (McKee & Ostriker, 2007). In the case of
turbulence-controlled star formation, motion within
the clouds dissipates over dense regions before they
can reach a critical stage of collapse. Alternatively,
trapped magnetic field lines may provide significant
support against cloud collapse perpendicular to the
field lines. In this case, collapse would be more rapid
along field lines. In order to resolve the relative
importance of these two competing mechanisms,
we need information on velocity dispersions within
clouds, obtainable from spectral line data, and mag-
netic field orientation and strength, observable with
submillimeter polarimeters.

Our efforts focus on determining magnetic field
structure and correlation with molecular cloud fea-
tures. Alternative methods for measuring local
magnetic fields include Zeeman splitting, which
is restricted to extremely bright regions, and
optical extinction polarization observations, but
these are limited to regions of low column density
(Crutcher & Osei, 2010; Falgarone et al., 2008).
For large extended molecular cloud regions with
higher extinction, the most effective way to detect
magnetically aligned grains is via far-IR and sub-
millimeter polarimetry (Hildebrand et al., 2000;
Ward-Thompson et al., 2000; Li et al., 2006;
Ward-Thompson et al., 2009). Dust grains pref-
erentially align with the local magnetic field and
emit polarized light along their long axis which
is orthogonal to the local magnetic field. Submil-
limeter polarimetry of molecular clouds measures
the average polarization of light from a column
of dust. By examining the dispersion of vector
angles, combined with complementary observations
of spectral line widths to determine a velocity
dispersion in the cloud, the local magnetic field
strength can be estimated using a method pioneered
by Chandrasekhar and Fermi (Chandrasekhar &
Fermi, 1953).

The precise mechanism that aligns the dust
grains is not fully understood (Lazarian, 2007).
Dust grain theories predict different sizes, shapes,
and compositions that can have distinct effects on
the polarization spectra. Multiband polarization
measurements provide constraints for dust grain
models.

Cosmic microwave background (CMB) obser-
vations have placed a large degree of impor-
tance on probing the era of inflation by observing
the polarized signal to look for B-mode pat-
terns as evidence of primordial gravity waves
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(Smith et al., 2009). In order to measure these fluc-
tuations with a high degree of confidence, fore-
ground Galactic dust contamination must be very
well understood. Observing regions in the submil-
limeter that are being used by CMB polarization
experiments will help to constrain foreground
models, allowing for more detailed probes of
inflation.

3. Results from BLAST and
BLASTPol

The Balloon-borne Large Aperture Submillimeter
Telescope (BLAST) (Fissel et al., 2010; Pascale
et al., 2008; Marsden et al., 2008) flew from Kiruna,
Sweden, in 2005 and from McMurdo, Antarctica, in
2006. It successfully served as a pathfinder mission
for Herschel ’s(a) SPIRE instrument by flying and
testing a similar detector and focal plane design.
BLAST made a number of high profile observations,

aHerschel is an ESA space observatory with science instru-
ments provided by European-led Principal Investigator con-
sortia and with important participation from NASA.

which included a high resolution map of the Vela C
molecular cloud complex and confusion limited FIR
observations of the GOODS South region (Devlin
et al., 2009; Marsden et al., 2009; Pascale et al.,
2009; Patanchon et al., 2009; Viero et al., 2009;
Wiebe et al., 2009; Netterfield et al., 2009).

BLAST was then upgraded to become a
polarimeter by inserting polarizing grids at the
opening of the feedhorns and by adding an AHWP
to the optical configuration. BLASTPol was able
to make some of the first degree-scale polar-
ization maps of nearby star forming regions. These
maps cover multiple targets and contain thousands
of pseudo-vectors (Fissel et al., 2014, in prepa-
ration). Its flights in 2010 (Pascale et al., 2012)
and 2012 (Galitzki et al., 2014, Angilè et al.,
2014, in preparation) proved the potential of this
type of instrument to observe Galactic polar-
ization. BLAST experiments also have a history
of serving as test beds for balloon-borne tele-
scope technology that have produced significant
improvements in the field during its years in oper-
ation. An example of the type of observations

Fig. 2. (Color online) Magnetic field pseudo-vectors obtained during the BLASTPol 2010 Antarctic flight (Matthews et al.,
2014). The image is of the Lupus I star forming region with the intensity map provided by Herschel SPIRE 350-µm measure-
ments. Boxed areas denote reference regions used in deriving the polarization pseudo-vectors which are then rotated by 90◦
to show inferred magnetic field pseudo-vectors. The length of the lines indicates the degree of polarization as dictated by the
key in the upper left. Red and green pseudo-vectors show 500 and 350-µm measurements, respectively.
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obtained with these instruments is illustrated with
a magnetic field map of the Lupus I cloud in
Fig. 2.

4. Instrument

BLAST-TNG will continue the legacy of BLAST
and BLASTPol with the construction of an entirely
new instrument. The design incorporates many suc-
cessful elements from previous ballooning experi-
ments. It is based around a 2.5-m primary mirror
which provides diffraction-limited observations in
three 30% fractional bands at 250, 350, and 500µm.
The FOV has been expanded to 22′ in diameter.
This has led to a proportional increase in the size
of the optics necessitating the construction of a
new cryostat. The cryostat has been designed to
have a longer hold time of 28 days, versus the 13-
day hold time of BLASTPol. The previous cooling
system used both helium and nitrogen, however,
for BLAST-TNG we have switched to an entirely
liquid helium system that utilizes two vapor-cooled
shields to provide additional thermal isolation.
The instrument will also serve as a pathfinder
instrument for MKIDs (Day et al., 2003), which
have never been flown before. The development of
MKID arrays for astronomy is an extremely active
area of detector research, and flight testing them

will be a significant milestone. The design of the
instrument is shown in Fig. 3.

4.1. Pointing systems and electronics

A number of the BLAST-TNG pointing and elec-
tronics systems are inherited from or based off com-
ponents successfully flown previously with BLAST
and BLASTPol. We will be using many of the same
sensors to determine telescope attitude, such as the
star cameras, gyroscopes, and sun sensors (Gandilo
et al., 2014). Pointing of the telescope will use the
same strategy of a precision pointed inner frame
that moves in elevation, supported by an external
gondola that scans in azimuth. However, the com-
puter and electronics systems will undergo a major
overhaul to reduce reliance on legacy components
that are either outdated or difficult to maintain.

4.1.1. Pointing system

The pointing in azimuth is controlled by a reaction
wheel and a pivot motor. The reaction wheel is a
1.5-m diameter wheel with high angular moment
of inertia that is kept in motion by a brushless
direct drive motor. Adjusting the speed of the wheel
results in a transfer of angular momentum from
the wheel to the gondola and allows us to scan
in azimuth at typical rates of 0.05 to 0.2◦/s while

Pivot Motor 

Carbon Fiber  
Sun Shield Solar Cell  

Array 

Primary 
Mirror 

1 m Tall Emperor  
Penguin (for scale) 

Star Cameras 

ElevaƟon 
Motor 

ReacƟon 
Wheel 

Cryostat Secondary 
Mirror 

Fig. 3. The front and side views of the BLAST-TNG telescope in its flight configuration. The cryostat, mirror optics bench,
and star cameras are attached to an inner frame that moves in elevation. An extensive carbon fiber sun shield also attaches
to the inner frame to shield the optics at our closest pointing angle of 35◦ to the sun.
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observing, and slew at speeds of several degrees per
second while moving between targets. The pivot
motor, which is attached between the payload and
the flight train, can assist the reaction wheel, if its
speed begins to saturate, by transferring angular
momentum to the balloon. The pivot motor can
also independently point the telescope in azimuth
in case of reaction wheel failures, as occurred during
the 2010 flight due to a bearing malfunction in the
reaction wheel motor.

Pointing in elevation was previously accom-
plished by a direct drive brushless servo motor that
was connected to the axis of an inner frame, on
which the telescope and cryostat were mounted.
This worked in conjunction with a balance system
that periodically pumped fluid from the bottom
to the top of the inner frame to counteract the
imbalance caused by cryogens boiling off. With
the much larger cryogenics volume of BLAST-TNG
and the overall more massive structure, we have
decided to couple the direct drive motor to a Har-
monic Drive(b) gear-head with a ratio of 80:1. This
approach eliminates the need for a balance system,
which is preferred due to the complications of oper-
ating a fluid system in near vacuum conditions.

The primary absolute pointing sensors are two
bore-sight star cameras that are able to determine
the right ascension (RA) and declination (Dec)
of the instrument to <2′ during the flight and
<5′′ after post-flight reconstruction of the pointing
solution (Rex et al., 2006). Each star camera con-
tains a high-resolution (1 megapixel) integrating
CCD camera with a 200-mm f/2 lens, to image a
2◦ × 2.5◦ FOV. A stepper motor controls the focus,
to compensate for thermal variations, while another
stepper motor controls the aperture, to allow for
different exposure times depending on the scan
strategy. Each camera is connected to a PC-104
computer that uses either a “lost-in-space” algo-
rithm, that searches the entire sky for the position,
or an algorithm developed for BLAST, that incor-
porates information from the coarse sensors and
previous pointing solutions to find the new position.
The latter process is needed to reduce the time
it takes for the cameras to produce a pointing
solution. Every time the star cameras capture an
image, they send the pointing information to the
flight computers along with image data that can

bHarmonic Drive LLC: 247 Lynnfield Street, Peabody, MA
01960.

be used in the post-flight pointing reconstruction.
There are two star cameras to provide more fre-
quent pointing information as well as redundancy
should one of them fail, as occurred in the 2012
flight.

Two sets of three DSP-3000 fiber optic
gyroscopes(c) provide fast relative solutions, but
have a drift of 1′′/s. They are primarily used
to interpolate the relative pointing between star
camera solutions. There are a pair of redundant
gyroscopes aligned with each major axis, with rel-
ative offsets determined prior to flight.

BLAST-TNG will fly with additional coarse
pointing sensors (see Table 1) that serve as compli-
mentary sensors to the star cameras in case they
malfunction or experience difficulty obtaining solu-
tions. Pinhole Sun sensors use the Sun’s location in
the sky to determine pointing in azimuth and were
developed and tested in previous flights (Korotkov
et al., 2013). A magnetometer determines azimuth
pointing information by measuring the orientation
of Earth’s magnetic field. There are also two incli-
nometers that determine the tilt of the inner and
outer frames which can be used to measure the
pointing elevation. We will also be including a pre-
cision optical elevation encoder mounted between
the elevation motor gear-head and the inner frame.
We plan to use a RESOLUTE absolute rotary
encoder on RESA(d) rings which will have over 10
times the resolution of the previous encoder used.

Our philosophy with the pointing system is to
have a degree of redundancy for most of the compo-
nents in case of a critical failure. Our combination
of fine and coarse sensors allows us to achieve our
in-flight pointing requirements. During post-flight
pointing reconstruction, we have achieved accuracy

Table 1. Summary of pointing sensor parameters
(Gandilo et al., 2014).

Sensor Sample rate (Hz) Accuracy (◦)

GPS 10 0.1
Sun sensor 20 0.1
Magnetometer 100 5
Clinometer 100 0.1
Star camera 0.5 <0.001
Elevation encoder 100 <0.001

cKVH Industries, Inc.: 50 Enterprise Center, Middletown, RI
02842.
dRenishaw: 5277 Trillium Blvd, Hoffman Estates, IL 60192.
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<5′′ RMS (Gandilo et al., 2014), which is more than
adequate for our observations.

4.1.2. Electronics

Ballooning systems require interfacing numerous
pointing sensors and motors to provide effective
attitude control. The previous instrument relied
on a flight computer running a master program
that handled I/O through a PCI BLASTBus card
(Benton et al., 2014). This system was developed
by the original BLAST collaboration and has suc-
cessfully been used in a number of experiments
(Rahlin et al., 2014; Oxley et al., 2004; Swetz et al.,
2011; Ogburn et al., 2010; Staniszewski et al., 2012).
However, the BLASTBus has become impractical
to use, given that much of the expertise and
spare parts are no longer available. The BLAST-
TNG instrument will utilize a new commercial
system for applications in balloon-borne missions.
We will be using two United Electronics Indus-
tries (UEI)(e) DNA-PPC8 cubes to handle sensor
I/O, thermometry, motor control, time synchro-
nization, and other functions. The UEI cubes are
very flexible, with a variety of interchangeable cards
that can be tailored to our specific needs. We
will be using a combination of ADC, DAC, DIO,
RS-232/485 8-port serial, and timing control/GPS
cards. Each cube has an embedded PPC CPU
running Linux 3.2 with real-time extensions that
will run a custom control system written in C.
Synchronization between systems is handled by the
dedicated UEI sync interface port.

The power system is divided into two compo-
nents, one which provides power to the flight com-
puters and outer frame electronics, and another
which provides power to the detector readout
system and inner frame electronics. Each power
network will be charged by six SunCat solar
panels.(f ) At 28 V, the solar panels can provide
over 1100 W of normal incidence power and over
500 W at an incidence angle of 60 degrees. The
solar array output for each power network is routed
through a Morningstar TriStar 60 amp MPPT solar
charge controller(g) (CC), which maintains the
proper voltage to charge the batteries and can be

eUnited Electronic Industries: 27 Renmar Avenue, Walpole,
MA 02081.
fSunCat Solar, LLC: HC 1 Box 594, Elgin, AZ 85611.
gMorningstar Corporation: 8 Pheasant Run, Newtown, PA
18940.

monitored and controlled over a serial line. The
charge controller couples to two 14-volt lead-acid
batteries connected in series. The lines from the
batteries feed into a power box, which converts the
battery voltage into the various voltages required
by the instrument while also providing switching.

The pivot, reaction wheel, and elevation motors
that control the telescope pointing will utilize
Copley motor controllers(h) and are commanded via
EtherCAT, a network-based CANBus protocol. The
signal cables will be routed through two breakout
boxes (BOB) that redistribute cables from the UEI
cube cards to their respective destinations.

One UEI cube, BOB, and power box are
mounted to the inner frame along with the detector
readout and cryostat electronics, while another set
is attached to the outer frame, along with the flight
computers and hard drives. The outer frame config-
uration is shown in Fig. 4. The UEI cubes greatly
simplify the design and eliminate the need for the
BLASTBus system. All components are currently
being programmed and tested for preliminary inte-
gration with pointing sensors in summer 2014.

4.2. Cryogenics

The detector arrays nominally operate at 270 mK,
which requires a robust cooling system to reach the
required temperature and to keep the temperature
steady during normal flight operations. In order to
simplify the design and cost of the cryostat, we
are not using liquid nitrogen as an intermediate
cooling stage, but are instead using a system of
two vapor-cooled shields. These shields are cooled
by a heat exchanger that extracts the enthalpy of
the gas, as it warms from 4 K to 300 K. Prelim-
inary tests on a prototype heat exchanger suggest
efficiencies between 80% and 90%. Our cryostat
thermal models use a baseline efficiency of 80% for
the heat exchangers to calculate a hold time in
excess of 28 days. The cryostat is currently under
construction at Precision Cryogenics.(i)

The helium tank required an innovative design
to accommodate the 250 L of liquid helium while
also providing a stable mounting platform. The cold
optics box is bolted directly to the helium tank
to minimize the thermal path between the optics
and the helium bath. The cold optics box is also

hCopley Controls: 20 Dan Road, Canton, MA 02021.
iPrecision Cryogenics Systems, Inc.: 7804 Rockville Road,
Indianapolis, IN 46214.
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Fig. 4. A schematic of the electronics system on the outer frame (OF) that shows all major components and how they connect.
The hard drives are kept in a separate pressurized vessel that is connected to the computers. The pivot, reaction wheel, and
elevation motors all have separate motor controllers that receive commands over ethernet. The OF electronics are connected to
a similar system on the inner frame (IF) that runs the cryostat motors, secondary mirror actuators, and electronics associated
with the cryostat and detectors. The SIP and BiPhase are components provided by NASA for controlling their equipment and
the communications systems.

mounted to the rim of the helium tank to min-
imize the effect of the deflection of the cold plate
on the precision optics. The structure of the helium
tank is further reinforced by six feed-through tubes
that allow for easy insertion of cabling, piping, and
motor axles from the top of the cryostat to the cold
plate (Fig. 5).

For the low temperature cryogenics system, we
will reuse the helium refrigerator from BLASTPol
with only minor modifications. The system consists
of a pumped 4He pot and a 3He refrigerator. The
4He pot functions by pulling a vacuum on a small
reservoir, ∼200 mL, that is periodically filled, from
the main tank through a small capillary tube, with
flow controlled by a motorized valve. The 4He pot
cools to around 1.2 K, which serves as an interme-
diate stage for the thermal isolation of the detectors
and as part of the cycling process of the 3He refrig-
erator. The closed cycle 3He refrigerator has a small
3He reservoir that utilizes evaporative cooling to
reach temperatures around 270 mK. The vapor is
then adsorbed by a sphere of charcoal to maintain
low pressure conditions in the refrigerator. To cycle
the refrigerator, the charcoal is heated to release the

Helium Tank 

OpƟcs Box 

Cryostat 
Window 

Helium Fill Tube and Heat 
Exchanger Assembly 

66”

39”

Cold Plate 

Fig. 5. Cross section view of the BLAST-TNG cryostat. The
cryostat is cooled by liquid helium with two helium vapor
heat exchangers that cool two shields to provide thermal iso-
lation of the cold optics. The inner vapor-cooled shield is kept
at 66 K and the outer one at 190 K. The cryostat has a pre-
dicted hold time of 28 days.
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3He as vapor, which condenses on a section cooled
by the 4He pot and refills the reservoir. Each cycle
lasts 90 min and we predict we will need to cycle
every ∼40 h under maximum loading of the 270-mK
stage.

4.3. Optics

The primary and secondary mirrors of the
BLASTPol instrument were arranged in a Ritchey–
Chréitien design with a 1.8-m diameter aluminum
primary (M1) and a 40-cm diameter aluminum sec-
ondary (M2). These were originally connected by
four carbon fiber struts, but it was found before
the 2012 campaign that the support structure dis-
torted M1 where they attached to the mirror’s
edge. A new system was developed with three
equally spaced struts that attached to the inner
frame. This layout greatly reduced the stress on
M1. BLAST-TNG will have a Cassegrain configu-
ration with a 2.5-m carbon fiber reinforced polymer
(CFRP) M1 and a 52-cm diameter aluminum M2.
M1 and the three CFRP struts that support M2
are attached to a rigid CFRP optical bench that
serves as a backing structure and interface to the
gondola inner frame. The bench and both mirrors
are being developed and built by Vanguard Space
Technologies(j) through a NASA Small Business
Innovation Research (SBIR) grant. The primary

jVanguard Space Technologies: 9431 Dowdy Drive, San
Diego, CA 92126.

mirror is expected to have better than ∼10-µm
RMS surface error under operating conditions. A
conceptual image of the M1 and M2 structure is
shown in Fig. 6. The mirror is scheduled to be com-
pleted by the end of 2015.

The cold optics for BLAST-TNG will be a
larger version of what was used on BLASTPol to
accommodate the wider FOV. The cold optics will
be at 4 K and are in a modified Offner relay config-
uration (see Fig. 7). Three spherical mirrors, M3,
M4, and M5, refocus the beam from the Cassegrain
output to the detectors with an adjusted f/# such
that the beam is f/5 at the focal plane. The
M4 mirror is the Lyot stop, which under-fills the
primary mirror to 2.4 meters and has a hole in its
center to shadow the secondary mirror. A calibrator
lamp is mounted in the hole in the middle of M4
such that it evenly illuminates the entire FOV when
pulsed. The lamp was developed for the Herschel
SPIRE instrument and was specifically designed for
the calibration of submillimeter detectors (Pisano
et al., 2005). The two main improvements to the
BLASTPol design are removal of flat, beam-folding
mirrors, which allows easier access to the arrays,
and mounting all components to a single optical
bench for ease of assembly and alignment. The
optical parameters are listed in Table 2.

Prior to the light entering the cold optics, it
must pass through a series of IR blocking filters and
low pass edge filters (Ade et al., 2006), developed at
Cardiff University, that are attached to the windows

Primary Mirror (M1) 

Moun ng Flextures 

Op cal Bench 
Secondary Mirror (M2)

Fig. 6. A design concept from Vanguard Space Technologies for the primary and secondary mirror structure. The primary is
a 2.5-m diameter carbon fiber parabolic mirror while the secondary is a 52-cm diameter aluminum hyperbolic mirror that will
be actuated with respect to the primary to allow for in-flight focusing. Both mirrors attach to a backing optical bench that is
made of carbon fiber and will mount to the inner frame of the gondola.
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M1

M2 M4– Lyot Stop  

M3

M5

Focal Plane 

AHWP 

350 μm Dichroic

250 μm Dichroic

Cryostat Windows  
and Filter Mounts 

Fig. 7. Side view of the optical configuration of BLAST-TNG with a detailed view of the cold optics. The telescope is an
on-axis Cassegrain that feeds into a modified Offner relay. M3, M4, and M5 are spherical mirrors with M4 acting as the Lyot
stop for the telescope with a blackened hole that shadows the secondary mirror. Within the hole at the center of M4 is a
calibrator lamp that provides an absolute calibration during flight operations to monitor responsivity drifts in the detectors.
There are two dichroics that split the beam to the 250 and 350-µm arrays. The 250-µm dichroic is tilted at 22.5◦ to the optical
axis while the 350-µm dichroic is tilted at 30◦ to the optical axis. Only one of the three focal planes is shown. The AHWP is
inserted between the Cassegrain focus and M3.

Table 2. Summary of BLASTPol optics characteristics.

Geometrical charac. M1 M2 M3 M4 M5

Nominal shape Paraboloid Hyperboloid Sphere Sphere Sphere
Conic constant −1.0 −2.182 0.000 0.000 0.000
Radius of curvature 4.161 m 1.067 m 655.6 mm 376.5 mm 749.4 mm
Aperture ∅2.5 m ∅0.516 m ∅28 cm ∅7 cm ∅28 cm

in the cryostat shells. These serve to reduce thermal
loading on the cryostat and the detectors. The beam
is split by two low pass edge dichroic filters placed
after M5 to allow simultaneous observations in all
three bands. The observed band is further con-
strained by filters mounted to the front of the arrays
and by the feedhorn design. A measurement of the
BLASTPol bands is shown in Fig. 8. (Wiebe, 2008).

4.4. Detectors

BLAST-TNG will serve as a pathfinder instrument
with the first use of MKIDs on a balloon-borne
platform. Each feedhorn-coupled pixel will have two
orthogonally oriented detectors to simultaneously
sample both the Q and U Stokes parameters that
define linearly polarized light. The total number of
pixels will be ∼1500 with ∼3000 MKID detectors,

Fig. 8. Spectral response of all three BLASTPol bands nor-
malized to peak transmission. Measurements were made with
a Fourier Transform Spectrometer using a nitrogen source.
Some atmospheric lines are present as tests were done at sea
level with a small air gap between the cryostat and the FTS
(Wiebe, 2008).
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which is about 10 times the number of bolometric
detectors flown with BLASTPol.

MKID detectors have been identified as a
promising new technology for astronomy, with
potential applications from the submillimeter to
the X-ray. The superconducting, titanium-nitride,
MKIDs that are being designed for BLAST-TNG
use a single loop inductor and interdigitated
capacitor to form an LC circuit with a tuned
resonant frequency (Day et al., 2003). Photons
incident on the inductor, with energies greater
than the gap energy, break Cooper pairs which
causes a measurable change in the impedance of
the inductor. The inductor loop is long and narrow
to make it sensitive to a single direction of lin-
early polarized light. Dual-polarization sensitivity
is achieved by placing two orthogonal detectors in
a single feedhorn-coupled pixel. Fabrication of the
MKIDs is quite simple, with the primary circuit
done in a single layer on a silicon wafer. Crossovers
for the intersecting inductor loops are then added,
made with silicon-oxide insulators and supercon-
ducting niobium bridges. Alternative detector tech-
nologies, such as transition edge sensor (TES)
arrays, have considerably more complicated fabri-
cation processes. Additionally, thousands of MKID
signals can be multiplexed on a single feed-line,
with the number of the detectors currently limited
by the warm readout electronics technology. The
signal from the MKIDs requires a single low power
(<5mW), wide-band, silicon-germanium amplifier
that operates at 4K. These factors make the pro-
duction of large scale, dual-polarization, MKID

detector arrays achievable on the time-scale of the
BLAST-TNG project.

A precision machined aluminum feedhorn array
is placed in front of the detector wafer to couple
the light to the absorbing elements. The BLASTPol
feed array used a conical feedhorn design, similar to
the Herschel SPIRE feedhorns (Rownd et al., 2003).
However, these were not optimized for polarimetry
and have a divergence in the E and H fields
that results in an asymmetry between the polar-
ization directions. BLAST-TNG will use a modified
Potter horn design (Potter, 1963) with three steps,
which excites additional modes in the EM field and
reduces asymmetries in the polarized light, while
maintaining the 30% fractional bandwidth required
(Tan et al., 2012). They also have the advantage of
being much easier to fabricate than equivalent cor-
rugated feedhorn designs.

A seven-element feedhorn coupled detector
array has been constructed and is being tested
with a variable temperature black-body load at
the National Institute of Standards and Technology
(NIST). The tests aim to characterize the noise
performance of different detector models in order
to find the design that best meets the needs of
the instrument. Recent results demonstrate that
the current design for our detectors are photon
noise limited over the range of loading levels
expected during flight (Hubmayr et al., 2014) (see
Fig. 9). Current efforts are focused on demon-
strating detector noise below 0.01–0.1 Hz, which is
a rate determined by our scan speed across targets.
80% co-polar and <1% cross-polar absorption in

(a) (b) (c)

Fig. 9. (a) A cross section of a single pixel with the feedhorn-coupled MKID detector. (b) A schematic of the detector layout
with two single loop inductors orthogonally aligned at the end of the waveguide. Each inductor is part of an LC circuit with
a set frequency that couples to a readout line. (c) The measured noise equivalent power (NEP) of a BLAST-TNG prototype
detector as a function of radiative load at a band centered on 250 micron (Hubmayr et al., 2014). The data points are limited by
photon noise (solid line) at thermal loads above ∼1 pW, which includes our expected in-flight loading condition (7 to 17 pW).
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Fig. 10. (Color online) Left: The complete focal plane array (FPA) support structure. The feet mount to fixtures that are
attached to the optics bench. Carbon fiber rods provide thermal isolation by offsetting the FPA from the 4-K optics bench
via an intermediate 1-K stage. Right: A cross section of the structure which includes from top to bottom: bandpass filter,
feedhorn array, waveguide wafer (blue), detector wafer (green), and FPA housing.

a pixel has been predicted by running a high fre-
quency structural simulator (HFSS) on a model of
orthogonal absorbers with silicon-oxide insulated
crossovers and a quarter-wavelength deep metalized
backshort.

The focal plane array (FPA) is made of an
eight-sided polygon housing, the detector wafer,
the waveguide wafer, and the feedhorn block (see
Fig. 10). The housing has mounts for the coaxial
SMA connectors for the multiplexed feed-line,
the thermal standoffs, and for the copper heat
strap from the 3He refrigerator. The detector and
waveguide wafers are mounted using a combination
of fixed pins and pins-in-slots to constrain the
wafers in the plane of the array without causing
stress from thermal contraction between different
materials. The wafers are held against the housing
by beryllium-copper spring tabs. There is extra
space at the edge of the detector wafer to give
room for wire bonds to the feed-line that also serve
to thermally sink the detector array. The feedhorn
array attaches to the rim of the housing and is offset
from the waveguide wafer by a small gap (∼20µm).
The feedhorn block also has a mounting rim for
filters and alignment fixtures.

The whole FPA assembly is thermally isolated
by a carbon fiber structure that connects the FPA
to a fixture at 1 K, which then connects to the
4-K optics bench. The input SMA cables connect
to a directional coupler which serves to heat-sink
the cables before they go into the arrays. The

output SMA cables go directly to the cryogenic
amplifier. Thermal modeling predicts loads from the
structure, cables, and radiation to be <20 µW and
<150 µW on the 270-mK and 1-K stages, respec-
tively. Finite element analysis of the mechanical
structure predicts deflections of <5µm across the
array under typical flight stresses. The detector and
FPA designs are in an advanced stage of devel-
opment and the final flight detector arrays will be
completed by the end of 2015.

The FPAs will be shielded by an Amumetal
4K (A4K) box(k) that encompasses the cold optics,
which will significantly reduce the effect of local
magnetic field fluctations on the MKID arrays.
The box surrounds all of the cold optics to block
stray light within the 4K shield and to reduce the
quantity and size of the holes in the magnetic shield,
with the significant exceptions being the window
and feedthroughs for cabling.

4.5. Detector readout

MKIDs have the advantage of a simple cryo-
genic layout, with a single-layer detector wafer
and one coax line able to read out hundreds of
detectors. However, this shifts a large amount
of complexity to the warm readout electronics.
BLAST-TNG plans to use Reconfigurable Open

kThe MuShield Company: 9 Ricker Ave., Londonderry, NH
03053.
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Architecture Computing Hardware-2 (ROACH-2)
(Werthimer, 2011) boards developed by the
Collaboration for Astronomy Signal Processing
and Electronics Research (CASPER), coupled
with the MUSIC-developed ADC/DAC card and
intermediate-frequency (IF) board (Golwala et al.,
2012), to generate a frequency comb consisting
of all the resonant frequencies of the detectors
sampled by that system. The comb is then sent
through coax to the feed-line that runs across the
detector wafer. The modulated output frequency
comb is boosted by a SiGe amplifier, provided by P.
Mauskopf, which operates at 4 K. After leaving the
cryostat, the comb is digitized, analyzed, and com-
pared to the input comb to identify shifts in phase
of individual detectors due to impedance changes in
the inductors. The relative shifts are time-stamped
and then sent to the computer to be merged with
pointing data, which is then recorded on the hard
drives.

The central component in the readout chain
is the ROACH-2 board. The ROACH-2 consists
of a Xilinx Virtex 6 Field Programmable Gate
Array (FPGA) coupled to two ZDOK connectors,
a PowerPC CPU connected to 1-Gb Ethernet,
72-bit DDR3 RAM for slow memory access, and
4 × 36-bit wide 288-Mb QDR II+ SRAMs for fast
memory access. The ZDOKs are connected to the
ADC/DAC card and are used to send out and
read in the frequency combs. The FPGA is the
workhorse of the ROACH-2 board and performs all
the necessary digital signal processing (DSP) before
sending out the packetized phase streams to the
CPU to be sent out over the 1-Gb Ethernet to the
flight computer.

Since our MKID resonance frequencies of
700 MHz–1.25 GHz are above the operational
ADC/DAC frequency band of ∼0–500 MHz, we
require a local oscillator (LO) to convert the output
tones from the baseband of the ADC/DACs to the
resonance frequencies of the MKIDs and vice versa.
We perform these conversions via two IQ-mixers.
These mixers also allow us to stitch together both
500 MSPS ADCs into a single 500-MHz bandwidth.
IQ mixers address the problem of maximizing infor-
mation transmission in a limited bandwidth by
allowing the user to modulate both the in-phase and
quadrature components of a carrier simultaneously,
doubling the information density.

We plan to use a modified version of
the ARCONS DSP FPGA firmware. A detailed

description of their DSP firmware is found in
McHugh et al. (2012). Due to the increased logic
and bandwidth of the ROACH-2 over the previous
hardware version, we are able to naively increase
the size of DSP processes by a factor of four to
scale up to ∼2000 resonances per system. The only
other major modification to the ARCONS firmware
is the replacement of their pulse detection logic with
another layer of Digitial Down Conversion (DDC)
and we send out I and Q for each MKID at 200 Hz
continuously.

We baseline the use of four ROACH-2 boards,
one for each the 500 and 350-m arrays, and two
for the 250-m array. The warm readout electronics
will be housed in a custom designed box that will
provide EM shielding as well as heat sinking ele-
ments on the boards to the inner frame to avoid
overheating of the components. The ROACH-2 elec-
tronics will be mounted directly to the inner frame
near the cryostat to minimize the path length of the
readout SMA cables.

4.6. Polarization modulation

Polarimetry is achieved through the dual-
polarization-sensitive pixels and a stepped AHWP.
The AHWP is turned between four predefined posi-
tions (0◦, 22.5◦, 45◦, and 67.5◦) using a vacuum
stepper motor, mounted to the lid of the cryostat,
and an absolute encoder, mounted on the rim of the
AHWP rotator mechanism. The AHWP is stepped
after each full scan of a target and each target is
observed at all of the HWP positions. This enables
each detector to sample ±Q and ±U multiple times
during the mapping of a target. The AHWP used
on BLASTPol was constructed using five layers of
500-µm thick sapphire, which are glued together
by 6-µm thick layers of polyethylene (Fig. 11).
A broadband anti-reflective coating (ARC), using
an artificial dielectric, is placed on the front and
back surfaces of the AHWP. The effectiveness of
the AHWP across the BLASTPol bands was deter-
mined by measuring the nine elements of the linear
polarization Mueller matrix (Moncelsi et al., 2014).
The diagonal elements of the matrix measure the
optical and polarization efficiency and are indicative
of the high quality of the AHWP. The band-
averaged optical efficiency at 350 and 500µm is
∼1.0 and at 250µm it is ∼0.9. The polarization
efficiency is > 95% at 350 and 500µm while it is
∼80% for the 250-µm channel. The reduced perfor-
mance at the shortest wavelengths is a result of the

1440001-13

J.
 A

st
ro

n.
 I

ns
tr

um
. 2

01
4.

03
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

93
.6

1.
25

5.
87

 o
n 

05
/1

7/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

December 16, 2014 9:36 1440001

N. Galitzki et al.

10 cm 

18 cm 

Fig. 11. Left: An image of the half wave plate and rotator mechanism that was used in BLASTPol. Right: A conceptual
drawing of the new wave plate and bearing with a larger clear aperture. There are inevitably imperfections of the AHWP in
the manufacturing process that are observable as level shifts in the signal at different AHWP positions. To mitigate this we
try to place the AHWP as far from the Cassegrain focus as possible so that the beams from different pixels overlap as much
as possible on the waveplate. This minimizes the signal step but drives a larger aperture for the AHWP.

exceptionally wide bandwidth that was optimized
for the 500-µm band. Details of the construction
and testing of the AHWP and ARC can be found
in Moncelsi et al. (2014).

BLAST-TNG requires a larger aperture AHWP
which has motivated the development of alterna-
tives to the sapphire design. One such solution could
be a metal-mesh AHWP. These devices are manu-
factured using the same technology used to produce
metal-mesh filters, which are widely used in sub-
millimeter instrumentation (Ade et al., 2006). Both
air-gap (Pisano et al., 2008) and polypropylene
embedded metal-mesh AHWPs (Pisano et al., 2012)
have been realized at millimeter wavelengths and
their feasibility at THz frequencies is under study.
Embedded metal-mesh AHWPs can also be pro-
duced with diameters larger than the commercially
available sapphire plates (i.e. larger than ∼33 cm).

5. Conclusion

The BLAST-TNG telescope will be a powerful
demonstrator of a number of new technologies,
especially large diameter carbon fiber mirrors and
MKID detector arrays. It will offer an unprece-
dented look at the structure of magnetic fields in the
Galaxy and will serve to constrain models of star
formation processes, dust grains, and polarization
foregrounds. The instrument is in an advanced stage

of development and will see most of the major com-
ponents manufactured within the next year, fol-
lowed by extensive integration and testing, and
finally, a flight from Antarctica in December 2016.
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