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Introduction
In the wind turbine industry it is paramount that components 

are designed to obtain the greatest obtainable efficiency. As time 
has progressed selecting the correct materials and aerofoil shape has 
become predominant in the determination of the optimum blade 
tip-speed ratio, thus increasing a wind turbines power coefficient, 
(Cp) and overall turbine efficiency (ƞtotal). It is in the industry's best 
interest to produce high performance turbine components at the 
lowest costs, without compromising the turbines structural stability. 
Solving problems of this ilk drive wind turbine design, research and 
development forward and one such problem is the subject of this paper.

There is currently a surprising lack of computational models in 
literature, which accurately predict the deflexion and strain fields of 
wind turbine blades. However, it has proven from relatively simple 
physical tests on the blades that relatively straightforward and well 
developed underpinning theory can be used to predict the deflexion 
of wind turbine blades remarkably well [1]. This said, testing protocols 
are quite restrictive, especially for the larger expensive components. 
For such components therefore, effective computational predictive 
modeling is required to ascertain specific structural static and dynamic 
design limits; such models can be employed to virtually test any 
component in a safe and cost free environment.

The work described throughout this paper considers small scale 
wind turbines (5m blades) which are representative of those used on 
wind-turbines producing outputs of 1.5 - 50 kW; additionally these 
size of blades are ideal for validation experimentally [1,2]. Moreover 
validation of larger components becomes technically and financially 
prohibitive [3]. Whence, modeling the performance and the actual 
working limits of the blades (i.e. blades angular velocity and tip speed 
ratio) will be taken from real case studies evident in the literature [4].

Previous work

Recently [1] researchers have used the classical beam elasticity 

differential equation in order to effectively model the displacement of 
standard aerodynamic geometries. Though this work was informative 
in predicting the required displacement and hence strains fields 
remarkably well given the simplicity modeling method, these researchers 
do submit that further work is required particularly with respect 
to the use of composite materials under salient loading conditions. 
Moreover, conducting such investigations better predictions can be 
made of blade behavior when attached to the turbine. In practice it 
is generally accepted that the geometry of a blade is determined by 
the aerodynamic properties which the designer requires. The ruling 
characteristics are aerodynamic coefficients: chord, twist and thickness 
distribution. When designed blade materials are selected with the aim 
of minimizing tip deflexion, which reduces the probability of a blade/
tower collision [5]. It is also important that these components last the 
desired lifetime, around 20 years, while under accepted loads [6].

The aforementioned Whitty et al paper [1] presented closed form 
solutions to the classical beam elasticity differential equation. The 
developed analytical method was utilized to effectively model the 
displacement of standard aerodynamic geometries used for wind turbine 
blades. These models assume that the components are constructed 

*Corresponding author: Bardsley A, Energy and Power Management Research Group, 
School of Computing, Engineering and Physical Sciences, University of Central Lancashire, 
Preston, PR1 2HE, UK, Tel: +44 1772 201201; E-mail: ambardsley@uclan.ac.uk  

Whitty JPM, Energy and Power Management Research Group, School of Computing, 
Engineering and Physical Sciences, University of Central Lancashire, Preston, PR1 2HE, 
UK, E-mail: jwhitty@uclan.ac.uk

Received December 09, 2014; Accepted January 26, 2015; Published February 
04, 2015

Citation: Bardsley A, Whitty JPM, Howe J, Francis J (2015) A Review of in-situ 
Loading Conditions for MathematicalModeling of Asymmetric Wind Turbine Blades. 
J Fundam Renewable Energy Appl 5: 153. doi:10.4172/20904541.1000153

Copyright: © 2015 Bardsley A, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract

 This paper reviews generalized solutions to the classical beam moment equation for solving the deflexion and strain 
fields of composite wind turbine blades. A generalized moment functional is presented to effectively model the moment 
at any point on a blade/beam utilizing in-situ load cases. Models assume that the components are constructed from in-
plane quasi-isotropic composite materials of an overall elastic modulus of 42 GPa. Exact solutions for the displacement 
and strains for an adjusted aerofoil to that presented in the literature and compared with another defined by the 
Joukowski transform. Models without stiffening ribs resulted in deflexions of the blades which exceeded the generally 
acceptable design code criteria. Each of the models developed were rigorously validated via numerical (Runge-Kutta) 
solutions of an identical differential equation used to derive the analytical models presented. The results obtained 
from the robust design codes, written in the open source Computer Aided Software (CAS) Maxima, are shown to be 
congruent with simulations using the ANSYS commercial finite element (FE) codes as well as experimental data. One 
major implication of the theoretical treatment is that these solutions can now be used in design codes to maximize the 
strength of analogues components, used in aerospace and most notably renewable energy sectors, while significantly 
reducing their weight and hence cost. The most realistic in-situ loading conditions for a dynamic blade and stationary 
blade are presented which are shown to be unique to the blade optimal tip speed ratio, blade dimensions and wind 
speed.
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aerodynamic loading conditions, tip-speed optimization for the model 
blades considered and salient benchmarking procedures. 

Generalized moment equation derivation

The most important equation which is needed to model these 
loading cases is the second order differential equation for the 
displacement of a beam (equation (3)) [10].

2

2
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d u z M X z
dz E I

=
                                                                            (3)

The differential equation comprises of two other function which 
vary depending on, z, the distance along the blade. M (X, z), is the 
generalized moment functional, this equation will depend upon the 
loading case being modeled. These will be discussed and explained in 
the sections to follow. I (z), is the second moment of area, this function 
also depends on, z.

To our knowledge no derivation of a generalized moment 
functional for a wind-turbine blade is evident in the literature. This 
derivation requires the consideration of Figure 2 which shows a blade 
fixed at one end with general load intensity applied. Taking moments 
about the root renders:

M (X, z) = W ( ) . - M ( )- .Aζ ζ ζ ζ


                                              (4)

From the diagram (2), there are four variables, M, the moment, W, 
the force, q, the load intensity and ζ, the centroid of the section of load 
intensity to the left of z. Additional there are spacial coordinates z and 
ζ. These being respectively the distance from the root and an arbitrary 
distance to the centroid to the left of z. consider an infinitely small 
section of the load distribution, dz; the force at this point is given by:

dW = q (z). dz

The total force on the component is therefore found from the 
integral of the distribution over the whole length:

0
( ) ( ).

L
W z q z dz= ∫                                                                             (5) 

The moment equation can be derived, considering the load 
distribution acting over the infinitely small distance dz, whence the 
moment is:

( ) . dzdM q z dz z
z

 = + + 
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from in-plane quasi-isotropic composite materials, forming a blade of 
shell thickness with 5 mm, with or without a stiffening web. In these 
cases, a composite comprising of 40 layers of laminated carbon and 
glass substrate with an epoxy matrix was used, the effective modulus of 
the material being 42 GPa. The authors [1] derive an explicit solution 
for the strain and displacement fields for an elliptical shell formulation 
which is presented for the first time in the literature. This is then 
expanded to encompass the FX66-S-196 and NACA 63-621 symmetric 
aerofoil approximations. However, it has been shown that the aerofoils 
stated above are not symmetric (Figure 1). Thus this work investigates 
the effects of the asymmetry on the displacement and strain fields using 
comparable methodologies.

The experimental static testing of a composite turbine blade has 
also been carried out by a Jordanian group [2]. While focusing mainly 
on the manufacturing of the blade, it promotes a link between their 
local academic work and local industries. The works in depth look 
into the design and construction of the blade as well as a thorough 
application of static testing protocols provided valuable data in which 
to verify modeling work [1] and ultimately design codes [2].

Aerofoil selection

Since it was demonstrated that small changes in the geometry had 
negligible effect on the structural response, the original Whitty et al [1] 
aerofoil (Figure 1) used in their simulations was significantly simplified. 
The aerofoil is effectively half an ellipse forming the leading edge and a 
triangle forming the trailing edge. Following a survey of literature it was 
found that there is normally no symmetry between the top half and the 
lower half of the aerofoil, thus the Whitty et al. (adjusted) aerofoil was 
designed. These are then compared with the FX66-S-196 and NACA 
63-621 aerofoils which are plotted using discrete points obtained from 
“Airfoil Tools” [7]. Finally the Continuous NACA aerofoil is aerofoils 
constructed from the following equations, derived from the Joukowski 
transform [8]:

top
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Both equations depend on the length of chord, x, the diameter of 
the aerofoil at the furthest point, dtop and dbottom, respectively and the 
total chord length, lc. The constants A, B, C, D and E are all specific 
to the aerofoils aerodynamic properties [9]. Equations (1) and (2) are 
effectively the same equation manipulated to produce two connected 
curves at (0,0) and (0,600). These sections were plotted using the CAS 
Maxima (Figure 1).

Scope
This paper provides a review of asymmetry of particular aerofoil 

sections for the modeling of displacement and strain fields of a wind 
turbine blade in service. A generalized blade moment functional which 
can incorporate any loading condition on the blade is also reviewed. 
These are employed to define the so called generalized aerodynamic 
load equation and different benchmarking procedures are described 
which should be routinely used for verification and validation of the 
computational models used across the industry.

Methods

In this section we review mathematical and simulation methods 
which can be employed to describe standard industrial testing 
protocols. These take the form of a generalized moment functional 

Figure 1: Aerofoil cross section comparisons.
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If higher order infinitesimals are neglected:

dM = q (z). z dz

Hence, the moment at the root is found by integrating over the 
length of the blade:

0
(z) ( ).

L
M q z zdz= ∫
To make a general solution the moment equation must consider 

a changing centroid as moments are taken at points further from the 
root. It is important therefore that the moment equation be considered 
in the ζ direction. As the moment equation varies with length this 
creates a unique problem, when any load distribution is modelled the 
centroid of said load distribution will continually change the further 
along the blade moments are take. Hence, the well known expression 
for the centroid of area is employed [11].
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It is now possible to substitute all the known parameters into 
equation (4) which gives the required generalized form:

{ }0 0 0
(x, ) ( ) . ( ). ( ).

z L L
M q d q d q dζ ζ ζ ζ ζ ζ ζ ζ ζ ζ= − −∫ ∫ ∫          (6)

Where z, is the distance along the blade length from the root, the 
function X(ζ) is the load distribution function at ζ, which is the distance 
along z, from the root, at which the centroid of the load distribution 
occurs. With the displacement field now solvable, the global strain field 
is required. This takes a much simpler algebraic relationship:

( ). ( , )
. ( , )z

M z y x z
E I x z

ε =                                                                       (7)

Equation (7) is employed in the models of this work and it is 
important to note that these models will only consider cross-sectional 
variations in the strain with material properties remaining constant. 

Force Distribution Derivations

In reality there are a number of forces on a turbine blade that 
can cause deflexion. The purpose of designing an aerofoil for a wind 
turbine application is so that at relatively low wind speeds the lift force, 
produced by the aerodynamic properties of the blade, is large enough 
to overcome the drag force and the force on the blade due to gravity. 
This said, in this work the models will not consider the effect of gravity 

on the system. It is important to simulate the worst possible scenario 
when testing the blades after manufacturing; this ensures that the blade 
meets the design standards and is to for purpose. When considering tip 
deflexion the worst case scenario is to assert a point load on the blade 
at the end (i.e. furthest distance from the rotor axis). The magnitude of 
this force would be the maximum possible dictated by the particular 
standard under consideration [1,12,13], although this is usually 
unrealistic, though informative as it imposes a further factor of safety 
into the blade design process. When the blade is modeled, determining 
a suitable load is very important. The lift force, FL, can be determined 
by utilizing equation (8):

2. . . .
2

L C R
L

C L L VF ρ
=                                                                           (8)

Here CL, is the Lift coefficient, ρ, is the density of air, 1.225 kg/m3, L, 
is the Blade length, LC, is the chord length in meters which, due to the 
tapering, depends on the blade length thus:

(b b ).zr t
C rL b

L
−

= −                                                                             (9)

Where br, is the breadth at the root, and bt, is the breadth at the 
tip of the blade. The parameter z here is the changing distance along 
the blade. Finally the important function V2

R , must be explained, this 
is the relative velocity along the surface of the blade, depending upon 
the tangential wind velocity, Vt. m/s, the angular velocity of the blade, 
ɷ, the radius of the turbine, r, and the axial velocity, Vθ, equation (10):

2 2 2( .r )R tv v vθω= + −                                                                          (10)

Equation (10), can be determined from the Bernoulli momentum 
equation for a free flow stream. From equations (8) and (10) a worst 
case lift force can be determined and used in the models, the worst case 
occurring at the highest possible tangential velocity that the turbine 
could experience in its lifetime [5]. As previously indicated (Figure 2 
and equation (6) an important parameter which must be determined 
for all the models is load intensity, q(z), that is, the force per unit 
length; which is relent on equation (8).

2. . .v ( )
2

L c R L
L

C L FF z
L

ρ ω= ⇒ =

2. . .v( ) :
2

L c RC Lz ρω =

where, ω(z) is the load intensity for the particular loading case (e.g. 
PL, UDL, etc.), as indicated in Table 1.

These load distributions were developed after some key findings 
during modeling. Originally the UDL distribution was considered to 
be analogous to the stationary distribution on the blade, along with the 
RTDL which was an approximation to the dynamic load distribution. 
However, further investigation reveled that the most realistic loading 
case was that of the so called Bernoulli Dynamic Distributed Load 
(BDDL) and the special case1 of this the BDDL termed the Bernoulli 
Stationary Distributed Load BSDL. It should be noted that the Point 
Load (PL) is modeled here using the theory of distributions. That is, 
multiplication of the Dirac distribution2 thus concentrating the force at 
a point, rendering what is referred to in Table 1, as the Dirac Distributed 
Load (DDL). Figure 3, depicts the comparisons between each of the 
dierent loading cases, here application of equation (5) shows that the 
total load in each case corresponds to the, required Det Norske Veritas 
standard DNV-DS-J102, test load of 7600N. 

Whence, in that case of the DDL, equation (12), the resulting 
distribution is that of an impulse showing a zero value until the tip 

Figure 2: Starting point for the generalized moment equation.
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of the blade. These distributions (Figure 3) were all obtained using 
the parameters given in Table 2. We note here for completeness that 
unrealistically high speeds of 68 m/s and 110:4 m/s must be applied 
in order to maintain the required factor of safety as dictated by the 
standards [12,13].

Tip speed optimization

When the initial blade selection took place, the blade dimensions 
were taken directly from reference [1] and then modified to give the 
asymmetry. The blade is then designed for the optimization of the tip 
speed ratio which is the most important factor. The tip speed ratio is 
defined by:

.L
U
ωλ

∞

=
                                                                                              (18)

where ω, is the rotational speed in radians per second and U∞, is the 
free stream velocity. Typically accepted values for the tip speed ratio 
lie between 4 - 8 [5,3]. This is the classical mean of blade design (e.g as 
used in industry). From reference [4], it is shown that the optimal tip 
speed ratio for a wind turbine depends on the number of blade n, and 
can be calculated:

41.3.
n

λ Π
=

In the case utilized in this work, the turbine has 3 blades; as such 
application of this expression renders an optimum tip speed ratio of 
5.45. This tip speed ratio should be maintained at rated wind speed, 
which for the vast majority of small scale turbines is 10 m/s [3]. 
Rearrangement of equation (18) and the substitution of this expression, 
the rotational speed of the turbine at 10 m/s is 10.9 rad/s. As this work 

considers the worst case scenarios which occurs at wind speeds of 
greater than 24 m/s, when the optimal tip speed ratio is maintained the 
rotational speed of the turbine is increased by a factor of 2.6.1

Blade testing:

In static testing, the blade should be loaded to its most severe 
loading. In accordance to the Det Norske Veritas standard DNV-
DS-J102, deflexion of the blade should always be less than a specified 
upper limit in order to avoid blade contact with the tower or other 
components. The design criterion for deflexion of the blade is given by 
the following inequality [12]:

( ) i
d k

n m

fFγ
γ γ
∆

∆ ≤
−                                                                          (19)

Here, Fk is the characteristic load, ∆d is the largest tip deflection 
when passing the tower, ∆i is the smallest distance from blade tip to the 
tower or other obstacle in the unloaded condition, f is the load factor, 
ϒm is the material factor and ϒn is the consequence of failure factor. 
Typically, the load factor takes a value between 0.9 and 1.5 depending 
upon the desired situation. In the case where the blade could experience 
the most load (transportation and installation) the suggested value is 1.5 
[13]; when under favorable loads this can be as low as 0.9. According to 
the aforementioned design code the so called material safety factor is a 
product of a number of other factors in the range

(0.95 -1.3). Finally the consequence of failure factor is normally 
taken to be 1.1 [13]. Utilizing equation (19), explicit knowledge 
of Classical Lamination Theory (CLT) from composite materials 
mechanics that composites and the maximum strain failure criterion, a 
maximum tip deflexion of 10% of the blade length can be determined. 
For the blade modeled in this work therefore the design criterion was 
such that the blade could not deflect more that 420 mm under the test 
load of 7600 N.

During static testing the applied test load is greater than the 
design load to account for in influences from temperature, humidity, 
production variations and other environmental aspects during the life 
of the blade. The test load, FT, is determined as:

. .T su f kF Fγ γ=                                                                                  (20)

where, ϒsu is the blade-to-blade variation factor considered to be 1 
(worse case testing),  ϒf is the load factor and Fk is the characteristic load 
(i.e. the in-situ load). The characteristic load for this blade is ~5050N, 
rendering the aforementioned test load of ~7600N [12].

Model verification (benchmarking)

 The benchmarking case was selected to show the confidence in 
the analytical model developed by comparing the results between the 
benchmarking cases in Whitty et.al. [1], the ANSYS-FE model data, 
this comparison is shown in Figure 4. Here, the benchmarking case 
used the original symmetrical aerofoil, under a point load of 8500 N 
(Figure 4). The work described in this paper slightly underestimates 
1obtained by setting ω to zero.
2Sometimes erroneously referred to as the Dirac-delta function.

Loading 
Case Equation Peak Load 

intensity, (N/mm)
DDL (PL) ωPL(z)=P.δ (z-L)                                                (12) 7600

UDL ( )UDL ez qω =
                                                 (13) 1900

RTDL ( ) 2. .RTDL e
zz q
L

ω  =  
                                       (14)

3600

QDL
2

( ) 3. .QDL e
zz q
L

ω  =  
                                   (15)

5400

BDDL
2 2. . ( ).( ( . )( )
2

L n
B

C b z v L vz θρ ωω + −
=

           (16)
2000

BSDL
2 2. . ( ).( )( )

2
L n

s
C b z v vz θρω −

=
                       (17)

2750

Table 1: Load distributions for specific cases.

Figure 3: Comparison of loading cases.

Parameter Nomenclature Value Units
Wind Speed vn 68 m/s

Lift Coefficient CL 1 -
Rotational speed ω 26.16 rad/s

Drag Speed vθ 0.5 m/s

Table 2: Modeling parameters.
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the deflexion when compared to the original published work. This is 
due to previous work allows the chord lengths and aerofoil maximum 
height to vary independently, however the current work varies these 
parameters simultaneously in an attempt to maintain the aerodynamic 
properties of the aerofoil.

The Whitty et.al. aerofoil [1] varies the chord length and the 
height3 of the blade linearly using two separate functions which are 
independent of each other and therefore the deflexion is greater as 
the blade is modeled to be less stiff; a comparison of the maximum 
deflexion values is shown in Table 3.

The fact that the FE method over estimates the stiffness of any 
continuum system coupled with the shell element formulation 
employed in the model explains the lower predictions from the ANSYS 
software. The new analytical method predicts 13.6% greater deflexion 
than the FE model, whereas the method employed in the reference 
[1] suggests a value 22.7% greater than the FE model. These modeling 
methods suggest a displacement of 567± 89 mm4.

Using the new analytical model the maximum strain on the blade 
occurs not at the root of the blade, as originally expected, but it occurs 
at ~2250mm along the blade giving strain between about ~0.36%-
0.41% depending upon the method employed. When compared to 
the results obtained in [1] (Figure 5) then it is clear that although the 
strain is expected to occur at that position, there is also an increase 
in the maximum strain prediction. Prima-facia this is unexpected as 
the maximum displacement is now less due to the increased overall 
stiffness (Table 3). However, this may be attributed to blade not being 
in a fully strained condition as reported in the reference [1]. That is, 
up to half the span of the blade the newly developed analytical model 
is most probably stiffer than that reported previously and ispo-facto is 
more optimally strained. Accordingly CLT dictates that de-lamination 
should not occur until much larger strains are realized.

When comparing the strain fields, it is important to note, for all 
results discussed in the proceeding section, that ANSYS-FE model 
maximum strain values at the root are too high due to the Saint Venant 
edge effect and therefore a more realistic maximum strain must be 
interpolated.

Result
The following results were all obtained using the parameters 

displayed in Table 2 and Table 4, both the developed analytical and 
ANSYS-FE models used these parameters.

Displacement field results
Figure 6 shows the application of equations (13) through (16); the 

calculated deflexion of the adjusted aerofoil under the various loading 
cases (Table 1). As expected, the significant reduction in the aerofoils 
second moment of areas due to the asymmetry of the new design, 
greater deflexions are predicted by all the modeling procedures.

The maximum deflexion is observed on application of DDL, where 
the total force is distributed such that the moment is at its greatest. 
The lowest deflexion is realized using the SDL, where the centroid of 
the load distribution is closer to the rotor axis when compared to all 
others. Table 5 illustrates the maximum deflexion under each of these 
load distributions.

As the loading cases change as does the centroid of the loading 
distribution this affects the deflexion. The model predicts that the 
further along the centroid of the load distribution from the rotor axis, 
the greater the deflexion.

Strain field results

Analytical model results for the strain fields are shown in Figure 
7. As expected, the largest strains are observed on the application of a 
point load, ~0.72%. The strain due to the point load, unlike the other 
loading cases, shows that the maximum strain occurs 2250 mm from 
the root. This was expected when consulting literature on classical 
lamination [14] and previously developed tapered beam theory [1].

The maximum strain for the remainder of the loading cases all 
occur at the root (Table 6), however there is a trend, as the centroid of 
the load distribution moves further from the root of the blade the strain 
field becomes increasingly non-linear.

Tables 5 and 6 compare the strain fields which are generally 
increase with displacement fields, as expected. These results also hold 
when considering the failure over time, from [5] it is known that wind 
turbine blades tend to fail due to maximum strain which occur at the 
root. The only loading case contradicting this phenomenon at present 
is the point load but as demonstrated previously the point load is not a 
realistic in-situ loading condition.

Stiffening web

A single 5mm thick stiffening web, in the centre of the aerofoil, 
along the full length of the blade was added (Figure 8) in line with the 
literature [1,2] and current industrial practices. The analytical and 
ANSYS_FE model comparisons including the stiffening rib are shown 
in Figure 9. Application of a point load renders the maximum deflexion 
predicted is ~630 mm and 720mm respectively for the analytical and 
FE model calculations respectively.

The points in Figure 9 show the deflexion predictions from the 
ANSYS-FE UDL case and the PL case. Following this solution, in line 
with previous published work [1], the second moment of area of the 
stiffening web was increased using the analytical model such that the 
DDL deflexion field was within the design criteria of less than 10% 
deflexion, therefore reducing proportionally the delfexion the other 
loading cases considered (Figure 10).

It was found the analytical model increases the second moment of 
areas from 12.5 million mm4 to 15 million mm4 when the stiffening rib 
is included (Figure 11).

Conclusions
A mathematical method for solving the deflexion and strain fields 

of composite wind turbine blades has been reviewed. The model makes 

Figure 4: Whitty et. al geometry, displacement field comparison.
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Model Deflexion
Analytical (this work) 525 mm

Whitty et.al. 567 mm
ANSYS 462 mm

Table 3: Comparison of maximum deflexion under point load.

Figure 5: Comparison of the strain fields (a) New analytical method (b) Whitty 
et. al results.

Figure 6: Displacement fields of the NACA function Aerofoil depending on the 
various Loading cases.

Figure 7: Strain fields of the NACA function Aerofoil depending on the various 
Loading cases.

Parameter Nomenclature Value Units
Blade length L 4200 mm
Chord length at the root br 600 mm
Chord length at the tip bt 200 mm
Total Force W 7600 N
Shell thickness t 5 mm

Table 4: Model parameters.

Loading Case Maximum deflexion 
(mm) % Deflexion

BSDL 231 5.5
UDL 315 7.5

BDDL 336 8
RTDL 462 11
QDL 588 14
DDL 1008 24

Table 5: Maximum deflexions due to loading cases.

use of a generalized moment functional (equation 6) which determines 
the moment at any point on a blade or beam utilizing of a in-situ load 
cases, e.g. equation 11). The models shown use freely available, open 
source software (e.g. via Maxima website: http://maxima.sourceforge.
net/). Work is now progressing within the Computational Mechanics 
Research group at the University of Central Lancashire to allow minor 
adjustments to the code together with the use of external aerofoil 

coordinate data (from such websites as: http://airfoiltools.com). This 
development will enable the deflexion and strain fields of any type 
of aerofoil constructed from quasi-isotropic materials. This being 
indiscriminate, whether said aerofoil is for a wind turbine, commercial 
aircraft or indeed other such industrial aerodynamic component. The 
salient conclusions gained from the work depicted in this paper are as 
follows:

The asymmetric nature of the blade sections designs reduces the 
second moment of area significantly from between 20.5 - 24 million 
mm4 for the symmetrical aerofoil to between 9.5 - 12 million mm4, the 
asymmetry results in a reduction of between around 51% - 55%.

Due to the reduction of the second moment of area, the stiffness 
of the blades is reduced, rendering a higher predicted deflexion. The 

Loading Case Maximum Strain, %
BSDL ~0.25
UDL ~0.31

BDDL ~0.33
RTDL ~0.41
QDL ~0.47
DDL ~0.72

Table 6: Maximum strain values for corresponding loading cases.

3the height being the distance for the neutral axis to the outer most fibre of the 
aerofoil.
4calculated at the 95% confidence level.
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Figure 8: Bar shear web ANSYS mesh view.

Figure 9: The deflexion of the blade under various loads with a bar web.

Figure 10: Deflexion of the blade under the loading cases, with increased 
second moment of area due to shear web.

Figure 11: Second moment of area of the modelled blade with the addi-
tion of the shear web.

Loading Case Maximum deflexion, (mm) Maximum Strain, (%)
BSDL 231 ~0.25
UDL 315 ~0.31

BDDL 336 ~0.33
RTDL 462 ~0.41
QDL 588 ~0.47
DDL 1008 ~0.72

Table 7: Maximum deflexion and strain results for the asymmetric blade, under 
individual loading cases.

maximum deflexion of the asymmetrical blade and their corresponding 
maximum strain values obtained from the analytical model are seen in 
Table 7.

In general for this and the previous work [1,2] the solid formulation 
predicts greater than the shell counterparts, indicating that the shell 
formulations are stiffer, as expected.

The most realistic loading condition for a dynamic blade is that 
produced by the BDDL, equation (16). Whereas the most realistic loading 
condition for a stationary blade is that produced by the BSDL equation 
seen in equation (16). It is most important to note however, the lift force, 
equation (8), is unique to the blade. That is the lift force is unique to the 
optimal rip speed ratio, blade dimensions and wind speed.

References
1. Whitty J, Haydock T, Johnson B, Howe J (2014) On the deflexion of anisotropic 

structural composite aerodynamic components. J Wind energy, 2014:13.

2. Habali SM, Saleh IA (1999) Local design, testing and manufacturing of small 
mixed airfoil wind turbine blades of glass ®ber reinforced plastics part i - design 
of the blade and root. Energ Convers Managem 41:249-280.

3. Manwell JF, McGowan JG, Rogers AL (2009) Wind Energy Explained. Wiley, 
USA.

4. Ragheb M, Ragheb AM (2011) Wind turbines theory - the betz equation and 
optimal rotor tip speed ratio. Technical report, University of Illinois at Urbana-
Champaign. 

5. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind Energy Hand Book. 
(2nd edn.) Wiley, USA.

6. Tong W (2010) Wind Power Generation and Wind Turbine Design. WIT Press, 
Southampton, UK.

7. http://airfoiltools.com/.

8. Milne-Thomson LM (1973) Theoretical aerodynamics. (4th edn.) Dover 
Publishing, USA.

9. Hansen MOL (2008) Aerodynamic of Wind Turbines. Earthscan.

10. Gere JM, Goodno BJ (2009) Mechanics of Materials. Cengage Learning.

11. Bardsley AM (2014) On the structural analysis of fibreglass asymmetric 
aerodynamic components with in-situ loading conditions. Master's thesis, 
University of Centreal Lancashire.

12. DNV-DS-J102 (2010) Design and manufacture of wind turbine blades, offshore 
and onshore wind turbines.

13. DS/IEC/TS-61400-23 (2001) Wind turbine generator systems - part 23 - full-
scale structural testing of rotor blades.

14. Gibson RS (2011) Principles of Composite Material Mechanics. (3rd edn.) CRC 
Press, Cambridge Mass USA.

Citation: Bardsley A, Whitty JPM, Howe J, Francis J (2015) A Review 
of in-situ Loading Conditions for MathematicalModeling of Asymmetric 
Wind Turbine Blades. J Fundam Renewable Energy Appl 5: 153. 
doi:10.4172/20904541.1000153

http://dx.doi.org/10.4172/2090-4541.1000153
http://www.hindawi.com/journals/jwe/2014/987414/
http://www.hindawi.com/journals/jwe/2014/987414/
http://wenku.baidu.com/view/b8738f4c2b160b4e767fcf28
http://wenku.baidu.com/view/b8738f4c2b160b4e767fcf28
http://wenku.baidu.com/view/b8738f4c2b160b4e767fcf28
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470015004.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470015004.html
http://www.intechopen.com/books/fundamental-and-advanced-topics-in-wind-power/wind-turbines-theory-the-betz-equation-and-optimal-rotor-tip-speed-ratio
http://www.intechopen.com/books/fundamental-and-advanced-topics-in-wind-power/wind-turbines-theory-the-betz-equation-and-optimal-rotor-tip-speed-ratio
http://www.intechopen.com/books/fundamental-and-advanced-topics-in-wind-power/wind-turbines-theory-the-betz-equation-and-optimal-rotor-tip-speed-ratio
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470699752.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470699752.html
http://www.witpress.com/books/978-1-84564-205-1
http://www.witpress.com/books/978-1-84564-205-1
http://airfoiltools.com/
http://www.amazon.in/Theoretical-Aerodynamics-Dover-Aeronautical-Engineering/dp/048661980X
http://www.amazon.in/Theoretical-Aerodynamics-Dover-Aeronautical-Engineering/dp/048661980X
http://itspa.edu.mx/Estprof/doctos/1.pdf
http://kisi.deu.edu.tr/mehmet.aktas/Dersnotlari/5.pdf
http://www.uclan.ac.uk/courses/msc_pgdip_renewable_energy_engineering.php
http://www.uclan.ac.uk/courses/msc_pgdip_renewable_energy_engineering.php
http://www.uclan.ac.uk/courses/msc_pgdip_renewable_energy_engineering.php
https://exchange.dnv.com/publishing/codes/download.asp?url=2010..
https://exchange.dnv.com/publishing/codes/download.asp?url=2010..
http://www.gl-group.com/pdf/paper_WT_01_vs_61400-22_Woebbeking.pdf
http://www.gl-group.com/pdf/paper_WT_01_vs_61400-22_Woebbeking.pdf
http://www.ewp.rpi.edu/hartford/~carrok3/MDPKC/Other/References/Principles of composite materials.%28GIBSON%29..pdf
http://www.ewp.rpi.edu/hartford/~carrok3/MDPKC/Other/References/Principles of composite materials.%28GIBSON%29..pdf
http://dx.doi.org/10.4172/2090-4541.1000153

	Title
	Corresponding author
	Abstract 
	Keywords
	Introduction
	Previous work 
	Aerofoil Selection 
	Scope
	Methods
	Generalized moment equation derivation 
	Force Distribution Derivations 
	Tip speed optimization 
	Blade testing: 
	Model verification (benchmarking) 

	Result
	Displacement Field Results 
	Strain Field Results 
	Stiffening web 

	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	References

