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ABSTRACT 
 

Considering that Patello-Femoral Pain (PFP) is responsible for over 25% of all 

road cycling related injury and over 65% of injuries in the lower limb, alongside 

trauma related pain it remains the main injury affecting experienced and elite 

cyclists and is commonly treated using taping. Taping can broadly be 

categorised into ‗McConnell‘ and ‗Kinesiology type tape‘ (KTT) as these are 

seen as recognised clinical approaches in dealing with patella tracking and pain 

issues.  

 

The aim was to collect specific data to inform and develop a study into current 

taping techniques used in cycling related knee pain. An online questionnaire 

determined the techniques used by clinicians treating elite and experienced 

cyclists. Recruitment was through professional networking and the social 

network Twitter™. The questionnaire indicated a clear preference for the use of 

KTT. A specific taping technique was identified for use in a laboratory-based 

study. Respondents indicated their rationale for using tape, which included pain 

reduction, neuro-muscular adaptation, placebo and altered biomechanics. A 

subsequent study then investigated the interventions, KTT, neutral tape and no 

taping, alongside comparing asymptomatic (n=12) and symptomatic (n=8) 

cyclists. Each cyclist conducted three separate and randomised intervention 

tests at three powers (100W,200W,300W) on a static trainer. Kinematic data 

were collected using a 10-camera Oqus 3 motion analysis system. Reflective 

markers were placed on the foot, shank, thigh and pelvis using the CAST 

technique.  

 

This study showed significant differences in the knee, ankle and hip kinematics 

between cyclists with and without knee pain. The knee had increased ROM 

(coronal) in those with knee pain (p=0.005 or 18% change) whereas in the hip, 

those with knee pain had less movement (p=0.001 or 26% change). The ankle 

however had an increase in movement (transverse) in those with knee pain 

(p=0.034 or 14% change). Significant differences in hip, knee and ankle 

kinematics on the application of KTT were found, however these had no 

identifiable pattern that suggested any clinical indication. Interestingly, similar 

levels of differences were also found with the neutral taping application, which 

indicated that a specific technique might not be critical. It was also noted that 
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200 watts of power produced the most pain response during testing (33% 

change) which may have a practical application to future taping related clinical 

testing. 

 

If we are looking to establish a biomechanical change using KTT, ROM may 

indeed be reduced, however individuals had different patterns of movement, 

which did not appear to indicate a consistent or predictable effect. This may 

mean that pain reduction is more likely through a mechanism of neuromuscular 

adaptation or proprioception. It appears unclear whether a specific technique of 

application is fundamental to outcome. The hip, knee and ankle variants may 

aid clinical application when treating cycling related knee pain through 

screening and testing. This variation in movement may be linked to increased 

patello-femoral (PF)/tibio-femoral contact areas and PF stress when significant 

power is applied during cycling. The findings indicated a proximal to distal 

relationship, which is in line with current evidence and has implications to 

rehabilitation. Taping reduced pain, however it is likely that this effect is not 

what the anecdotal rhetoric presumes. If the intent is to use the tape to elicit 

specific biomechanical changes then this is difficult to substantiate and 

measure. If the expectations are purely around pain then it is likely that pain will 

be decreased using KTT, albeit short term. Further work is clearly required in 

the area of PFP and cycling. 
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ABBREVIATIONS AND DEFINITIONS  
 

ADd   Adduction 
ABd   Abduction 
AROM  Active Range of Motion 
AKP   Anterior Knee Pain  
ASIS   Anterior Superior Iliac Spine 
AKP   Anterior Knee Pain 
Biomechanics The study of the structure and function of biological 

systems such as humans, animals, plants, organs, and 
cells by means of the methods of mechanics. 

CAST Calibrated anatomical systems technique. Measurement 
technique allowing six-degrees of freedom to be measured 
at a joint, whilst reducing the relative movement of bone 
and soft tissue.  

CMP   Chondromalacia Patellae 
Effectiveness  (Clinical) Capability of producing a clinical outcome 
Efficacy (Biomechanical)  A capacity to produce a biomechanical 

change.  
EMG   Electromyography 
ER   External Rotation 
FPS   Frames per Second 
IR   Internal Rotation 
JPS   Joint Position Sense 
Kinematics The study of mechanics, which describes the motion points, 

bodies (objects) and systems of bodies (groups of objects) 
without consideration of the causes of motion. 

KTT Kinesiology type taping – Generic terminology rather than 
trade names such as Kinesio™, Rocktape™, KTTape™ etc 

MRI Magnetic Resonance Imaging 
MVIF   Maximal Voluntary Isometric Force 
NPRS   Numeric Pain Rating Scale 
PFP   Patello-femoral Pain  
PFPS   Patello-femoral Pain Syndrome 
PFJ   Patello-femoral Joint 
Power The rate at which energy is generated or consumed and 

hence is measured in units (e.g. watts) that represent 
'energy per unit time'. 

PROM  Passive Range of Motion 
PSIS   Posterior Superior Iliac Spine 
 
RCT   Radomised Controlled Study 
ROM   Range of Motion 
TFJ   Tibio-femoral Joint 
UCI   Union Cycliste Internationale 
UClan   University of Central Lancashire 
VAS   Visual Analogue Scale 
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VL   Vastus Lateralis 
VM   Vastus Medalis 
VMO   Vastus Medialis Oblique 
Watts The unit, defined as one joule per second, measures the 

rate of energy conversion or transfer. 
XYZ Refers to an order of rotations in determining the angle at a 

joint, whereby a segment is rotated first about the X axis in 
order to project onto another set of axes. 

3D Three-dimensions. Analysis of movement in three 
dimensions, allowing movement in each cardinal plane to 
be measured.  
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CHAPTER ONE – INTRODUCTION  
 

1.1 Introduction 
 

From high profile events such as the Tour de France and the Olympics it is 

noticeable that taping is used widely within elite and experienced cyclists 

suffering with cycling related patello-femoral pain. However, taping‘s capacity to 

produce a biomechanical change (biomechanical efficacy), and capability of 

producing a clinical outcome (clinical effectiveness) have not yet been 

investigated and its specific usage amongst specialist clinicians is at present 

unknown. Claims from modern tape manufacturers regarding how and why 

some taping applications work on cyclists are anecdotal at best, and clinicians 

requiring evidence-based research will find a clear gap in the knowledge 

alongside a large amount of marketing led statements from taping 

manufacturers.  

 

Cycling is becoming an increasingly more popular and effective mode of 

transport for the population, and over the past 10 years high-level competition 

has become more accessible to the masses. In 2012 the London Olympics 

elevated cycling to its highest levels in history. In addition, 2012 and 2013 

respectively produced the first and second ever British Tour de France winners, 

which further focused the nation and the world on the popularity of cycling. 

Recently, 2014 focused the world‘s eyes onto Yorkshire (UK) for the ‗Grand 

Départ‘ and initial stages of the Tour de France. The most northerly stage in the 

history of the Tour was a triumphant success as approximately two million 

people turned out to cheer on the world's best cyclists. In a ‗post 2012‘ report by 

Dr Alexander Grous (2012), over 50% of non-cyclists intended to cycle on a 

regular basis following the successes of cycling in the London Olympic year 

alone. Of these over 30% intended to either compete or ride sportives (long 
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distance organised rides). Considering that knee pain has been reported as the 

most common overuse injury in cycling (Bailey et al., 2003, Barrios, 1997, 

Callaghan, 2005a, Clarsen et al., 2010), and is often referred to as cyclist‘s 

knee (Callaghan and Jarvis, 1996, Lucia et al., 2001a), further research into its 

treatment has become increasingly important to the many clinicians now 

treating cyclists on a regular basis. Consequently, an elevated understanding of 

the biomechanical and treatment considerations involved in patello-femoral pain 

and its associated movement, could greatly improve the active prevention and 

treatment of overuse knee problems during cycling. 

 

Previous research has demonstrated that patella-taping initiates changes in 

both healthy and symptomatic subjects (Selfe et al., 2008, Aminaka and 

Gribble, 2005, McConnell, 1996), however, very little research seems to have 

been undertaken in the specific area of taping and cycling. It is possible that 

through taping there is both a biomechanical and proprioceptive reaction that 

facilitates altered muscular activation, and therefore changes in knee movement 

and joint stability (Bennell et al., 2006, Dettori and Norvell, 2006). These 

changes may alter at different power outputs and cadences as cyclists often 

choose to pedal at high cadence/high power or low cadence/high power to 

maximise forward movement depending on the situation encountered. Current 

literature suggests that different power and cadence affects cycling efficiency 

but this tells us little of the effects on the knee joint, the most common point of 

cycling problems (Faria et al., 2005a, Pierre et al., 2006, Korff et al., 2007, 

Hansen and Sjøgaard, 2007). 
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Historically, taping approaches to knee pain have been limited to McConnell 

type applications using zinc oxide style non-stretch tape (McConnell, 1996, 

McConnell, 1986, Wilson et al., 2003), however in the past ten years additional 

types of taping known as kinesiology type tape (KTT) have been introduced into 

elite sport. This tape is more malleable to the body‘s contours and also more 

sweat resistant when compared to traditional type (Briem et al., 2011). This 

predisposes it to use with cyclists, as they are often required to exercise in hot 

conditions across durations in excess of five hours. Its attractiveness is also 

highlighted by the tapes often colourful presentation and packaging. 

Manufacturers claims can however often appear anecdotal and marketing led. 

Consequently, evidence as to its clinical application, and biomechanical 

effectiveness are somewhat scarce (Mostafavifar et al., 2012). Considering its 

degree of use and high profile, the proposed work in this study could be seen 

as timely and much required from a clinical perspective. Bearing in mind the 

current research, kinesiology type taping (KTT) evidence is limited compared to 

the richness of the McConnell type taping literature available. 

 

KTT is proposed to have benefits such as stabilisation, pain reduction, 

alteration of patello-femoral movement and lifting the skin to allow enhanced 

lymphatic action (Kase et al., 1998b, Williams et al., 2012, An, 2012). Its clinical 

practice application and reasoning for use has not been fully assessed to date 

in scientific publication, and therefore the initial requirements prior to any testing 

in the biomechanical laboratory were to look at its use by specialist cycling 

clinicians compared to that of McConnell type taping. 
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The overall study, although complex in its design, execution and outcomes has 

a simple format underpinning its raison d‘être. This format can be seen from 

figure 1.1. 

 

Figure 1.1 Overall project flow format 
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1.2 Summary of chapters 
 

Chapter One - Introduction: Both a historical and a modern perspective of 

cycling are provided to give context to the outline of the research associated 

with cycling related knee pain and taping to date. The challenges related to 

investigating cycling related knee pain are described and the thesis project is 

placed within the context of current scientific knowledge. 

Chapter Two – Review of Literature:  An in-depth review of the limitations of 

existing research related to Patello-Femoral Pain (PFP), cycling related knee 

pain, taping for pain, and the measurement of kinematics in cycling.  This 

encompasses a review of relevant findings in relation to these areas with gaps 

in the knowledge base highlighted. Consideration of the overall project from a 

research literature perspective leads to the aim and objectives of the project.  

Chapter Three – Online Questionnaire: An overview of the initial study 

investigating the clinical usage of taping to treat cycling related knee pain in 

experienced and elite cyclists is given. This includes a synopsis of the 

developmental work undertaken with respect to the rationale for the online 

questionnaire and methodology used. The methodology utilised experimental 

procedures such as social media and online questionnaire tools, which are 

described and discussed. This initial study was the MPhil project and links with 

the main biomechanical study are discussed and presented, providing a natural 

progression perspective.  The study questions are presented, the results 

displayed and discussed, and a projected view towards the biomechanical 

laboratory based study of the thesis is provided. 
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Chapter Four – Biomechanical Laboratory-Based investigation: Following 

considerations from the previous study, the pilot and developmental work for the 

main study are outlined and any learning defined. Using recognised techniques 

and procedures, the methodology is described in detail. Experimental work 

using Kinesiology Type Tape (KTT) is detailed, alongside procedures and 

methods of analysis. Significant results are accompanied by short dialog where 

appropriate, highlighting notable and definitive findings. Results are described 

in the three planes across the hip, knee and ankle joints. A clinical application is 

maintained for the reader to enable interpretation towards practical use in the 

field for both the clinician and cyclist. Pain results are also reported pre, during 

and post testing to allow discussion in relation to the movement analysis results. 

Chapter Five – Discussion and Interpretation: In order to bring the entire 

project together, this chapter discusses the results from the knee, hip and ankle 

across all three-dimensional planes of reference. The pain measurement results 

are also considered alongside the clinical considerations of the findings. These 

findings are related to the biomechanical efficacy and clinical effectiveness of 

taping as well as other findings from the entire project such as proximal and 

distal rehabilitation considerations. Practical clinical application is maintained as 

a theme as to the learning outcomes of the entire study. 

Chapter Six – Conclusions and Further Work: Considerations aimed at 

cyclists, clinicians and health professionals and future developments in this 

research area are identified. This section enables the reader to succinctly 

understand the overall findings and learning from the project, thus allowing 

clinical and practical considerations to be determined. Further projected work is 

outlined.   
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CHAPTER TWO – REVIEW OF LITERATURE 
 
 
2.1 Search strategy  
 

 

Initial database searches from English language peer reviewed literature, 

without limitation on year of publication, produced no cycling specific knee pain 

taping studies (EBSCHost, Sciencedirect, PubMed, UClan e-databases, 

February 2012) using the combined key words patello-femoral pain, knee pain, 

taping, and cycling. Filtering these search terms by reducing to single and 

combinations (i.e. knee pain and taping or PFP and cycling) produced relevant 

studies (n=60), which have been reviewed in the following sections. Further and 

developmental evaluation of referencing in these studies produced the 

remainder of the literature. Subsequent searches were carried out at 

approximately six monthly intervals and any related research is included in this 

section and throughout the entire document. It is noted that the evidence base 

of this subject is growing rapidly, and whilst every effort has been made to 

include the very latest literature, it is inevitable that the most recent publications 

may have been omitted from the final thesis. Figure 2.1 summarises the search 

results and timeline representing progression with literature searching. 
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Figure 2.1   Literature search summary 
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2.2 Patello-Femoral Pain (PFP) – An Overview 
 

PFP can be a challenging pathology due to its multifactorial nature and is one of 

the most common lower limb conditions encountered in clinical practice (Wood 

et al., 2011). Not only do the etiology, diagnosis, and treatment remain thought-

provoking, but the terminology used to describe PFP can be used inconsistently 

and is often confusing for the clinician (Powers et al., 2012, Grelsamer, 2005, 

Crossley et al., 2001, Lopis and Padron, 2007). Patello-femoral pain is also 

described as Anterior Knee Pain (AKP) and has been defined by Green, (2005), 

as patella focused pain resulting from physical and biochemical changes in the 

patello-femoral joint. Although there have been varying descriptions of PFP 

over the past two decades, this description is in line with the pathophysiology 

described by Dye (2005). Those with patello-femoral pain typically have a 

degree of specific anterior knee pain that characteristically occurs with activity 

and often worsens when encountering step descent or ascent as well as 

prolonged periods of sitting (Witvrouw et al., 2005, McConnell, 1996). Knees 

can be affected either uni or bi-laterally, however consensus is generally lacking 

regarding the cause and treatment of the PFP (Fulkerson, 1994, Crossley et al., 

2001, Draper et al., 2011).  

 

Importantly, PFP has, however been distinguished from chondromalacia (CMP), 

which has been described as pathological or degenerative changes in the 

articular cartilage of the patella (Dehaven et al., 1980, Ficat et al., 1979). This 

often involves actual fraying and damage to the underlying patellar cartilage 

(Ogilvie-Harris and Jackson, 1984). Early work into CMP (Abernethy et al., 

1978, Bentley, 1970, Hvid et al., 1981) described similarities to the modern 
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definition of PFP. However the consensus in the field today indicates that CMP 

is specific to the area of degeneration rather than the recognised classifications 

of PFP. Although patello-femoral cartilage contact is implicated in PFP, there 

are many other factors than require consideration such as maltracking, muscle 

imbalance and proprioception (Amis, 2007, Boling et al., 2010, Callaghan and 

Oldham, 2004). CMP is a specific pathological entity outside of the PFP 

definition for this study. The following sections will address various factors 

related to PFP, cycling and other relevant areas (Anatomy and movement, 

nomenclature, etiology, cycling related knee pain, biomechanics and muscular 

activity, cadence, power and taping). 

2.2.1 Anatomy and movement 
 

The knee complex is commonly considered as consisting of the tibio-femoral 

joint. The joint has three main articulations; two tibio-femoral articulations 

between the lateral and medial femoral condyles and the tibial plateau, and one 

intermediate patello-femoral articulation between the patella and the femur. In 

addition, the superior tibia/fibula joint is often clinically considered in the 

function of the knee complex.  The knee joint is principally a hinge type of 

synovial joint (Amis, 2007, Grelsamer and Klein, 1998), although rotary 

movement is an important feature of a normally functioning knee. The articular 

surfaces have incongruent shapes and are notable in size and weight-bearing 

ability (Sanchis-Alfonso, 2010, Gill and O'Connor, 1996). The patella is a 

sesamoid bone, in fact the largest in the human body, within the patella tendon. 

It is multi-faceted or ridged; superior, inferior, medial and lateral. Its primary 

function is to facilitate extension and flexion of the knee. (Arendt, 2005, Staubli 

et al., 1999, Steinbruck et al., 2011, Tecklenburg et al., 2006). Considering 

cycling is a non-weight bearing activity that involves the primary movements of 
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flexion and extension of the knee (Callaghan, 2005a), the mechanisms and 

understanding of the patello-femoral joint are seen to be vital to this study. The 

Vastus Medalis (VM) has been the subject of many studies (Bennell et al., 

2010, Chen et al., 2012, Cowan et al., 2001). These have indicated its clear 

influence on, and timing imbalances within patella alignment, but to date 

agreement as to its exact influence on PFP, and even in some cases its 

anatomical presence, is not clear.  A proposed component to PFP is a 

difference in onset timing between the Vastus Medalis (VM) and Vastus 

Lateralis (VL). In a study by Powers et al., (1996), they were unable to 

reproduce any difference in timing of activation, cessation, or intensity between 

the VM and VL, while Gilleard et al., (1998) were in contrast able to show 

differences in activity. Smith et al., (2009) also found differences but postulated 

that these were most likely due to the effect pain has on EMG activity (this was 

noted in individuals with PFP). Interestingly, one of the focal points of the study 

was to see the effect taping had on VM activation. With taping, vastus medialis 

activation was shown to occur prior to vastus lateralis activation. The authors 

were unsure if the cause was through mechanical means or pain reduction. 

2.2.2 Nomenclature 
 

The term patello-femoral pain is one used to cover many different pathologies 

and its terminology and nomenclature are constantly changing and require 

classification (Grelsamer, 2005). Both Witvrouw (2005) and Merchant (1988) 

proposed specific classifications of patello-femoral disorders alongside 

Grelsamer‘s (1997, 2009), all of which suggest various connotations to the 

condition including patello-femoral pain syndrome (PFPS), patella mal-tracking, 

chrondomalacia, dysplasia, instability and subluxation. These classifications can 

importantly also be compared with a much cited model of tissue homeostasis 
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(Dye, 2005). This indicates that any symptom or condition that takes the knee 

joint complex outside its normal envelope of function or pain free operation will 

result in an inflammatory or pain related response. Dye originally suggested that 

patients with PFP are symptomatic due to abnormal loading of anatomically 

normal knee components (Dye, 1996). In reality, patients with anterior knee 

pain often lack any easily identifiable structural abnormality to account for the 

symptoms. Although a well adopted model, its clinical use can be interpreted in 

many ways and its citation across many papers indicates this. Dye‘s theory, 

albeit accepted, could be deemed somewhat generic in its approach and more 

recent work has endeavoured to explore the multitude of classifications 

encountered in PFP (Powers et al., 2012).  

 

Overload and overuse are also specific problems cited in classification of 

cycling related and patello-femoral knee pain (Bailey et al., 2003). These two 

terms have been used extensively but without a common approach. Aminaka 

and Gribble (2005) and Finestone (1993) discussed overuse whilst Cutbill 

(1997) proposed that a terminology of overload may be more appropriate. 

Because flexion of the knee increases the pressure between the patella and its 

various points of contact with the femur, patello-femoral pain syndrome is often 

classified as an overuse injury (Milgrom et al., 1996).  Cycling can produce both 

increased load (resistance) and overuse (frequency and cadence) so perhaps 

its combination with PFP could be seen to encompass both groups of 

terminology (Figure 2.2). Although the most recent research has accepted the 

presence of both overload and overuse we only seem to be at the beginning of 

understanding the differences between patello-femoral stress and force 
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(Witvrouw et al., 2014) in normal gait, let alone with the added complexity of 

cycling.  

 

 

Figure 2.2  Load/Frequency diagram 

 

Since Grelsamer‘s seminal paper regarding nomenclature of this complex 

condition (Grelsamer, 1997) there have been collaborative attempts to bring 

terminology and approaches together (Davis and Powers, 2010, Powers et al., 

2012, Witvrouw et al., 2014). Amongst the outcomes of these international 

meetings, and resultant publications, has been agreement of factors such as 

the likely sources of pain in PFP. These now seem accepted as primarily patho-

mechanics or maltracking, subchondral bone overload, shortened soft tissue 

structures and nerve changes resulting in pain.  

 

PFP terminology is generic and covers a multi-factorial collection of conditions 

(Kannus et al., 1999, Lichota, 2003). Consequently, Grelsamer (2005) 

suggested that the terminology used should be discarded and replaced with 

that which more accurately explains the pain experienced. He does not 
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however suggest what this would be. Clearly both terms (PFP and PFPS) 

remain in use from a research and clinical perspective. This study will primarily 

adopt an approach that is congruent to the PFP definitions agreed in 2014 

(Witvrouw et al.) and endeavour to use terminology that has since been 

accepted as current. 

 

2.2.3 Etiology 
  

To date there have been numerous theories proposed to explain the etiology or 

cause of patello-femoral pain. These include biomechanical maltracking, sub-

chrondral bone overload, shortened soft tissue structures, nerve changes 

resulting in pain, muscular dysfunction and overuse (Callaghan, 2005a, 

Crossley et al., 2001, Elliott and Diduch, 2001, Sanchis-Alfonso, 2010). In 

general, the available literature suggests that the etiology of patello-femoral 

pain is multi-factorial (Green, 2005, McConnell, 1996, Nijs et al., 2006, Powers, 

1998, Grelsamer, 2005, Lankhorst et al., 2012). It has been noted that these 

multiple factors incorporate soft tissue mechanical implications alongside joint 

related problems (Garth Jr, 2001).  

 

Whilst an abundance of research exists on influence of the Vastus Medialis 

Oblique (VMO) in PFP, its very existence has indeed been questioned on 

occasion (Bennett et al., 1993, Goh et al., 1995, Hubbard et al., 1998, Ono et 

al., 2005, Lieb and Perry, 1971). Postulation includes it being redefined as not 

being an independent muscle but merely differing orientation of the VM muscle 

as well as extensions of adductor magnus (Goldberg, 1991, Messier et al., 

1991, Neptune et al., 2000). A comprehensive review by Smith et al., (2009) 

concluded that the evidence base does not indicate that VMO can be activated 
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separately from VL in order to produce a positive strengthening effect. These 

findings were underpinned in a study by Bennell et al., (2010), who found no 

difference between isolation of VMO over general vastus strength work. Another 

notable discrepancy on muscle (vasti) imbalances was a study by Chester et 

al., (2008), where 20 papers and 287 participants were reviewed, finding no 

preferential enhancement of VMO over VL. 

 

Early research by McConnell (1986) speculated on the involvement of Vastus 

Medialis Oblique (VMO) fibres lacking firing onset in symptomatic individuals, 

however subsequent research by Gilleard et al., (1998), Cowan et al., (2001) 

and Christou, (2004) has identified more specific re-training implications of VMO 

involvement in PFP. Gilleard found that taping of the patello-femoral joint in the 

manner used in their study altered the timing of VMO and VL activity (VMO 

earlier than VL with tape) in subjects with PFP during step-up and step-down 

tasks. Here, it could be that the earlier activation of the VMO may alter the 

movement of the patella through its function. Cowan also looked at step up and 

step down tasks, and found that without taping the onset of VMO was before 

that of VL in both tests. Cowan subsequently used taping in another study that 

agreed with Gilleard’s and Christou’s findings that patella taping increased 

activity of VMO and decreased that of VL, thus consequently decreasing pain in 

those with PFP (Cowan et al., 2002). Physical therapy for PFP however 

continues to utilise VMO isolation exercises to treat pain. It has been widely 

thought that the VMO is responsible for medial patella tracking, due to its 

oblique fibre orientation (Hubbard et al., 1998, Gunal et al., 1992). When 

reviewing innervation, some studies in the past have proposed independent 

innervation, leading to the hypothesis that the VMO was a separate muscle 
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(Insall, 1982, Huberti and Hayes, 1984). However, subsequently these nerves 

were found to be superficial separations from the femoral nerve leading to distal 

motor units, sensory contribution from the saphenous nerve, or penetrating 

innervation for the knee capsule (Thiranagama, 1990). One could argue that 

without isolated innervation, the VMO cannot be activated independently (i.e. 

the patella can not be exclusively pulled medially). The innervation of the 

femoral nerve appears to stimulate the entire vastus medialis to contract and 

therefore extend the knee while pulling the patella medially.  

 

Boucher et al., (1992) looked at the vastus-medialis activity in patients with 

PFP. They found that the vastus medialis and vastus lateralis were not more 

active in terminal extension. However, they did find that in patients with PFP 

there was a decreased VM:VL ratio compared to the control group. These 

differences were found to be attributable to a mechanical disadvantage (greater 

Q-angle); when the Q-angle was decreased, the ratio returned to normal. This 

same difference in VM and VL ratio was also found in another study by Souza & 

Gross (1991) to be related to mechanical factors. Additionally, the authors 

discovered that isotonic quadriceps contractions elicited larger VM:VL EMG 

activity compared to isometric contractions. This may be a factor that influences 

treatment plans for patients with pathologies, such as PFP. Interestingly Ng et 

al., (2008) and Cowan et al., (2001) also reported this difference in VM and VL 

ratio with EMG activity. In fact, the authors were able to standardise the EMG 

activity with use of rehabilitation exercise and biofeedback.  Powers (1996) also 

described a difference between VM and VL activity, though this was attributed 

to patellar mal-alignment.  Figure 2.3 illustrates the variations of influence on 

the knee complex in the coronal plane. This is purely one dimensional however, 
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and does not illustrate the sagittal and transverse plane which together with the 

coronal represent the degrees of freedom of the patella-femoral joint (Richards, 

2008). 

 

 

Figure 2.3  Knee complex – Coronal. (Hosmer, F. E., 1999) 

 

The patella articulates with the patello-femoral groove in the femur. Varying 

forces operate on the patella to provide stability and maintain correct tracking. 

These forces produce stresses on the articular surfaces within the knee 

complex and combine to produce a multi-factorial pathology. A joint reaction 

force is a force within a joint in response to forces acting upon that joint. A 

combination of body-weight alongside tension from muscles around the joint 

can produce this measurable force (Koehle and Hull, 2008). These forces can 

create stresses on the articular surfaces and these stresses can be estimated 

as the joint force divided by the total joint contact area and has been measured 

from magnetic resonance (MR) images (Farrokhi et al., 2011). There is general 

acceptance that patello-femoral joint stress is influenced by a number of 
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variables, these include joint forces and the articulating anatomy of the patella 

on the femur (Besier et al., 2005, Besier et al., 2008). PFJ stress could cause 

wear on the cartilage (Fulkerson et al., 1992). However, it has been argued by 

(Biedert and Sanchis-Alfonso, 2002) that because articular cartilage is aneural it 

cannot be the cause of pain in PFP and therefore the subchondral endplate, 

which contains pain receptors, may be the source of this pain. In Farrokhi et 

al‘s., 2011 study, PF stress was measured in patients with PFP and supported 

the principle that PFP is linked to abnormal joint loading. Although findings were 

of increased PF stress in those with PFP it should be noted that patients were 

all female and that PFP is influenced by more variables functionally that in a 

controlled laboratory environment (static squatting). 

 

A general misunderstanding is that the patella only moves in a proximal and 

distal direction. In fact, it has 6 degrees of freedom of movement and is the 

most unstable joint in the lower limb (Richards, 2008). It also therefore tilts and 

rotates, hence there are differing points of contact between the undersurface of 

the patella and the femur (Koh et al., 1992), (Figure 2.4). Recurring contact at 

any of these areas, occasionally combined with misaligned tracking of the 

patella that is often not detectable by the naked eye (Freedman and Sheehan, 

2013), can be a likely symptomatic mechanism of patello-femoral pain 

(Belvedere et al., 2012, Wilson et al., 2009). The result can be a classic 

presentation of retro-patellar and peri-patellar pain (Willy et al., 2012, Kannus 

and Niittymaki, 1994, Herrington, 2008). This re-occurring contact is especially 

significant when considering the repetitive nature of cycling. 
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Figure 2.4  Patella movement (Borotikar et al., 2012) 

 

 

Consequently, one of the most widely accepted theories regarding the etiology 

of PFP suggests that the symptoms are the result of varying patello-femoral 

joint stresses due to abnormal patellar tracking, resulting in inflammatory pain 

(Fulkerson, 2002, Merchant, 1988). Some studies however, have questioned a 

simply causal connection between mal-tracking and knee pain with PFP 

patients (Arroll et al., 1997, Cutbill et al., 1997, Dye, 2005, Sanchis-Alfonso et 

al., 1999).  These mal-tracking symptoms are said to be related to abnormal 

loading of the PF joint (Dye, 2005). Recent work by Chen et al., (2010) 

investigated how to quantify the volumes and varieties of stresses involved on 

the PF contact areas through the working ROM. Chen utilised MR imaging, 3-

dimentional gait analysis (VICON) and EMG activity across the knee in both 

static and loaded dynamic variables. A model was then created combining both 

static and dynamic measurement of PFJ stresses during supine squat and 

functional movement. This was precursor work to that of Farrokhi et al., (2011) 

whose methods also used MR imaging during supine knee flexion under load, a 

3-dimentional gait analysis system (VICON) and EMG. One significant 
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difference between these studies being Chen‘s use of supine squat (open 

chain) and Farrokhi‘s use of a more functional (closed chain) squat on force 

platforms.  Although broadly in agreement that PFJ stress increases were 

predominately posterior and lateral, it should also be noted that the former 

study (Chen) utilised both male and female (healthy) participants whereas 

Farrokhi used only females (50/50 pain/healthy). The reasoning for this was not 

explained and therefore it is difficult to draw any meaningful conclusions as to 

functional outcomes across the entire PFP population. Joint stresses remain a 

factor however and a mal-tracking patella is seen as very much part of the PFP 

conundrum.  

 

If we consider effects outside of the knee complex there are both proximal and 

distal factors that can influence PFP. Proximally, internal rotation (IR) of the 

femur and consequent hip strength have been studied and are now regarded as 

important factors in PFP (Barton et al., 2012a, Bini et al., 2011, Bolgla et al., 

2008, Dolak et al., 2011, Fukuda et al., 2012, Long-Rossi and Salsich, 2010, 

Powers, 2003, Powers et al., 2012, Nakagawa et al., 2013).  In a study 

conducted by Niemuth et al., (2005) hip strength in runners with lower limb 

injuries (including PFP) was investigated. 30 injured patients (17F/13M) had 

their isometric hip strength measured using hand held 

dynamometers.  Compared to a control group (30 uninjured, 16F/14M), the 

injured runners had significantly weaker hip flexors and hip abductors on the 

injured side, while their adductors were stronger on the injured side.  The 

healthy runners displayed no side-to-side differences in muscular 

strength.  Interestingly, despite the influence of muscle strength imbalances, no 

relationship was found between the injured side and the runners‘ dominant leg. 
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A more condition and gender specific study by Ireland et al. (2003) established 

similar results.  Isometric hip strength was measured in runners with PFP again 

using hand held dynamometers (side-lying abduction) and compared with age-

matched control subjects. As with Niemuth‘s study the injured runners had 

weaker hip abductors as well as weaker hip external rotators on their injured leg 

compared to a control group.  Unfortunately, this study did not measure hip 

strength on the healthy side, neither did it assess hip flexor/adductor 

strength.  Despite this it confirmed Niemuth‘s findings. Following on from this 

study, Niemuth et al., (Cichanowski et al., 2007) published a follow-up study 

with athletes with PFP.  This used a more rigorous procedure that applied 

identity blinding of control vs. injured, six musculature movements of the hip 

(Flx/Ex/Ab/Add/IR/ER), a higher grade dynamometer than previously, utilising 

digital display and muscle contraction length and also measuring both affected 

and unaffected sides. Again, as previously reported, they revealed that the 

injured athletes had increased weakness on their affected side. They also found 

subjects to be weaker overall in measurements of five of the six major hip 

muscle groups compared to healthy runners (the missing group was adductors). 

One could argue that using hand held dynamometers has limitations in that it 

can often rely on the strength of the tester, and also that static isometric 

contractions do not effectively represent functional activity. It may also have 

been an interesting addition to measure EMG muscle activity during a functional 

step down exercise to correlate increased pain alongside altered muscle activity 

with the injured group. These studies indicate that PFP is associated with a 

weakness in hip abduction, however, they are all retrospective and one could 

argue that injury may itself cause hip weakness; the question being whether 
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people develop PFP because of weaknesses, or whether they simply get 

weaker because the pain inhibits their activities. 

 

Distally, the foot and tibia have been the focus of many studies in relation to 

PFP (Fulkerson, 2002, Levinger and Gilleard, 2007, Levinger et al., 2006, 

Powers, 2003, Salsich and Perman, 2007) although the findings appear to be 

somewhat variable. For example Reischl et al., (1999) found that peak 

pronation was not predictive of tibial and femoral rotation whereas Levinger 

found increased rear-foot movement was associated with those with PFP. 

Powers suggested that although distally, movement at the foot can be 

associated with PFP. It is also possible that this is influenced by knee valgus 

and hip movement and that the entire kinetic chain should be assessed rather 

than a focus on distal effects. Salsich and Perman expanded on this using MRI 

and found increased tibio-femoral rotation in those with PFP. In addition to tibia 

rotation, the effects of foot orthoses have been found to be influential in the 

mechanics of the knee in those with PFP (Barton et al., 2011, Barton et al., 

2010, Collins et al., 2009, Vicenzino et al., 2008, Vicenzino et al., 2010, Collins 

et al., 2007). Orthoses exact effects and mechanisms remain unclear and even 

more so when combined with physical therapy treatment (Vicenzino et al., 

2008). However, their use in cycling seems to be constantly increasing and 

consequently this is a potential area for future research in PFP. With regard to 

their use in cycling, a recent comprehensive review by Yeo and Bonnano 

(2014) found limited evidence that orthoses had any effect on lower limb 

kinematics. There have been no specific orthoses based studies and PFP in 

cyclists to date and so any claims of effectiveness of orthotic influence on PFP 

could be seen to be anecdotal or marketing led. Together with hip movement 
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outlined earlier, the variability in study findings seem to represent an approach 

of looking at the entire chain of joint movement and muscular contribution when 

treating PFP. 

 

Alongside synovial nerve endings and associated synovitis related pain (Dye, 

1983), the fat pad is also an structure that has received attention from 

researchers (Dragoo et al., 2012). Taping of the knee has been seen to affect 

(offload) the fat pad (McConnell, 2000, Ng and Cheng, 2002) and since it is 

vascular and highly innervated it is reasonable to assume that it is an 

exceedingly pain-sensitive structure within the knee (Dye, 1996, Crossley et al., 

2001). In addition to mechanical factors, ischemia or a restriction in blood 

supply caused by high inter-osseous pressure, has been suggested as a 

possible pain mechanism (Hejgaard and Arnoldi, 1984, Hejgaard and Diemer, 

1987). In agreement with the ischemia theory, Dye (Dye and Vaupel, 1994, Dye 

et al., 1999, Dye, 2005) suggested the much cited tissue homeostasis theory. 

This encompassing etiology theory takes a pain mechanism into consideration. 

It proposes that the etiology of patello-femoral pain comes from a lack of 

homeostasis in patello-femoral tissues (Dye and Vaupel, 1994, Dye, 2005, Dye 

et al., 1999). Whilst this much cited perspective accepted the multi-factorial 

nature of PFP, and gave clinicians more understanding of the potential 

mechanisms of pain, it also proactively provided a catalyst for further research 

in this area. A later version in 2005 expanded the perspective and developed 

further terms such as ‗envelope of function‘, and provided some clinical 

guidance for the priority of regaining homeostasis in the knee irrespective of the 

structures involved or the increased loading/stress on the PFJ. Even though a 

number of authors have concluded that this restriction in blood supply is the 
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possible trigger for the pain in PFP, they propose different backgrounds. Selfe 

et al., (2002), looked at the growing collection of evidence for the ischemia 

theory and concluded that there is a requirement to consider the influence of 

vascular malfunctions in PFP. To some degree, a history of overuse of the 

patello-femoral joint or an escalation in activity is reported in almost all people 

with PFP (Thomee et al., 1995, Fairbank et al., 1984). Alongside overuse, cited 

causes include historical or recent trauma (Fulkerson and Arendt, 2000). That 

said, Dye (2005) reported that most patients with PFP had very little history of 

trauma. In cycling, trauma is often reported as an initial cause of knee pain 

(Barrios, 1997, Callaghan, 2005a), yet its effect on PFP has not been 

investigated fully. Clearly the research outlined in this section underpins the 

multi-factorial nature of PFP. The following section will look at specific cycling 

related knee pain in more detail. 

 

2.3 Cycling Related Knee Pain  
 

It is likely that the increase in popularity of cycling and long distance timed non-

competitive cycling events (cycling sportives) have impacted upon the cycling 

scene in the past 5-10 years, potentially creating an increased prospect of knee 

pain incidence. It has been identified that AKP and PFP are the most likely 

injuries affecting elite cyclists, along with lower back pain (Clarsen et al., 2010). 

According to Bailey et al., (2003) and Milligan (1996) some cyclists are naturally 

pre-disposed to medial and lateral movement of the knee during the coronal 

plane pedal stroke and in addition Ruby et al., (1992b) and Wolchok (1998) also 

outlined excessive patello-femoral loading during cycling. Anatomical factors, 

such as an abnormally large Q angle, have been said to predispose cyclists to 

anterior knee pain and patellar tendonitis by disrupting the knee extensor 
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mechanism. The Q-angle influence is however largely associated with females.  

Early work by Hannaford et al., (1986) and Francis (1986) looked at the coronal 

plane kinematics and suggested that excessive movement distal to the knee 

was influential in PFP issues. This, however, was prior to the advanced 

development of modern ‗clipless‘ pedal systems that allows for more adjustment 

of medial lateral movement in this plane. Ruby et al., (1992a, 1992b, 1993) 

continued this work by looking at knee kinematics in relation to foot movement 

at the pedal. Albeit not in relation to PFP, it nevertheless was an interesting 

development in understanding the influence of coronal foot movement and its 

impact on how the knee moves during seated cycling. Ruby appeared to be 

instrumental in establishing that by increasing movement of the foot in the 

coronal plane it is possible to reduce tibio-femoral movement. When combined 

with cycling at different power levels and cadence, this excessive movement 

and associated variable forces may be affected by taping of the knee joint 

(Holmes et al., 1994, Mellion, 1991). These variables (PF forces, increased PF 

stress etc.), within the movement patterns associated with cycling, can also be 

linked to the varying classifications outlined earlier (Grelsamer, 2005) and a 

disruption of homeostasis (Dye, 2005), that of patella-maltracking, dysplasia, 

resultant inflammation and instability. The repetitive nature of cycling (Abbiss et 

al., 2009) could be seen to be highly susceptible to many of these 

classifications.  

 

Research into cycling has also increased alongside its expansion as both a 

sport and a leisure activity. It is now second to swimming in participation 

according to a (2013) Sport England study. Cycling is considered to be much 

less injury prone than running (Burke, 2003), however, it can be subject to a 
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number of overuse injuries due to its repetitive nature. Callaghan (2005b) 

reviewed the multi-faceted nature of lower limb cycling injuries, but nine years 

on from this much cited paper, there remains a relatively low number of specific 

studies investigating the effects of taping on PFP. An interesting and unique 

study by Millgan (1996) reported a significant difference (p=0.001) in 

medial/lateral (coronal plane) movement in those cyclists with PFP (n=8). This 

was compared to 12 asymptomatic cyclists. Although this contributed some 

initial understanding of what movement planes are affected with symptomatic 

cyclists with knee pain, its limitations were that it only used two dimensional 

video analysis (sagittal & coronal) and therefore complete understanding on the 

rotational movement of the knee was not comprehensive. Dettori‘s (2006) 

literature review into non traumatic cycling injuries reported knee pain as being 

present in 21-65% of cyclists during long rides, however it is unclear as to which 

classification of cyclists (i.e. elite, experienced or recreational) were indicated in 

this case. This could be seen as important as bike set up and seat height has 

been found to have a significant effect on knee forces (Bini, 2012). Recreational 

cyclists would be seen as less likely to have a recognised and accurate bike set 

up over elite and experienced cyclists. He also reported two additional studies 

(Wilber et al., 1995, Weiss, 1985) where knee injuries (non-traumatic) 

represented >50% of total injuries reported. Once again, these studies had the 

limitation in that they did not identify any particular classification of cycling 

population and so the range of cyclists could be seen as too wide to be able to 

interpret any specific groups of cyclists (such as recreational or elite) with PFP. 

Until 2011 the literature only comprised two relevant studies providing 

epidemiological data on the injuries suffered by elite road cycling racers 

(Barrios, 1997, Clarsen et al., 2010). The former comprises the injuries occuring 
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between 1983 and 1995. In an updated study (Barrios et al., 2011) traumatic 

injuries had increased two-fold whereas overuse related injuries had remained 

stable. This could be seen to be indicative of the increase in cycling as a 

popular sport and pastime but gives little insight into PFP. 

 

Bailey et al., (2003) conducted a kinematic study looking at AKP in two planes 

(Sagittal and Coronal), investigating 24 active male experienced cyclists using 

right side only markers and digital video camera recording. The cyclists used 

their own bike at a set cadence (90rpm) and fixed power (200w). Although a 

regularly referenced study, the equipment and software used did not seem to 

allow the resultant data to accurately represent joint centres compared to more 

recent three dimensional equipment and software available. Hence the shank 

angles may have been influenced by the proximal and distal contributory joints. 

This is unknown as these were not reported. It is also notable that the 

transverse plane was not examined and therefore it could be argued that an 

influential movement was not included in the results. Interestingly, this was not 

mentioned as a limitation in the study. Perhaps this is representative of the lack 

of research into this area rather than a direct denunciation of the work itself. 

Early work by Wolchok‘s et al., (1998) into cycling related knee joint mechanics 

provided valuable initial insights into patello-femoral contact areas in medial and 

lateral movement during cycling. This work built on from work by Ruby et al., 

(1992a) into knee joint loading during cycling. Wolchok‘s study looked at how 

fixed (relative to five degrees of movement from pedal) ‗clipless‘ pedals can 

affect the forces at the PFJ and found that internal rotation (IR) and coronal 

changes increase the PF contact areas and associated forces. This early work 

was however restrained to cadaver experiments. Consequently, perhaps when 



 42 

adapted to the most recent technology used to measure PFJ compressive 

forces (Farrokhi et al., 2011),  it would be interesting to repeat this work with 

symptomatic and asymptomatic cyclists. 

 

2.3.1 Cycling biomechanics, three-dimensional kinematic analyses of 
cycling, power, muscular activity and cadence 
 

The cyclist‘s riding position is influenced by many variables including: 

anthropometric measurements, strength and flexibility, muscle recruitment 

patterns and lower limb muscle length (Wishv-Roth, 2009). Pedalling technique 

is an important contributing factor to cycling performance and optimal muscle 

recruitment while cycling (Faria et al., 2005a). However, aside from the 

equipment and technique utilised, the speed at which a cyclist can propel a 

bicycle depends on how much power the cyclist applies to the pedals (Burke, 

2003). Peak power output appears to be highly correlated with cycling 

performance and in turn related to patello-femoral forces and stress (Faria et 

al., 2005a, Faria et al., 2005b). 

 

A noteworthy area of interest in cycling research has been that of muscle 

recruitment patterns. It is generally accepted that multiple muscle co-activation 

occurs throughout the pedalling action and that the degree of this co-activation 

differs in position and ability (Chapman et al., 2006, Chapman et al., 2008, 

Faria et al., 2005a, So et al., 2005). With regard to incline (slope) and posture 

(of cyclist), Duc et al., (2008) found that although different positions did not 

significantly affect the amount of muscular activity, however it did change the 

timing of (EMG) muscle activation. It should be noted that this was one of few 

studies that utilised a treadmill based ergometer system rather than a stationary 

cycle method that has traditionally been the preferred method of testing (Li and 
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Caldwell, 1998). It is clear from the abundance of work in this area that muscle 

recruitment patterns vary from individual to individual and are directly related to 

position, cadence and resistance. In Ashe et al‘s., (2003) study into the body 

position of untrained cyclists, they discuss the physiological affects of body 

position in relation to joint angles, force production and muscle length. 

However, unfortunately their results did not seem to quantify this in sufficient 

detail to examine the coronal and transverse planes of movement. 

 

Studies of cycling require accurate measurement of kinematic movement in 

order to determine differences in movement patterns. To this effect, increasing 

use of three-dimensional kinematic analyses in laboratory settings allows 

quantification of the movement characteristics; therefore, enabling justifiable 

comparison of different movement patterns. These measurements have been 

further developed from two-dimensional work undertaken by Bailey et al., 

(2003) to 3D analysis using manufacturers such as Qualisys (Qualisys Medical 

AB, Sweden) and Vicon (Vicon Motion Systems, Oxford, UK). In order to 

standardise the reporting of this area of work, The International Society of 

Biomechanics (ISB) developed a protocol in reporting joint motion built around 

the Joint Coordinate System (JCS) (Wu et al., 2002). This allowed data to be 

expressed in a clinically useful way. The JCS originally proposed by Grood and 

Suntay (1983) allows the description of the relative movement of two adjacent 

body segments about the joint centre (joint kinematics). Further developments 

of marker based systems allowed body segments to be defined in six degrees 

of freedom using the Calibrated Anatomical System Technique (CAST) which 

used anatomical markers on the palpable bony landmarks are required to be 

identified relative to the segmental or local coordinate systems (Cappozzo et al., 
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2005). A typical ‗static‘ trial with both anatomical and segmental markers allows 

the anatomical markers‘ position in the segmental coordinate system to be 

identified. Consequently, the joint centres are determined using the location of 

the segmental markers/coordinates through the appropriate software (Winter, 

2009). Previous work has determined that joint centres correlate with modern 

markers sets such as Bone-embedded anatomical frame (BAF), Intra-cortical 

pins and exo-skeleton tibio-femoral harness (Hagemeister et al., 2005, Labbe, 

2014, Andriacchi et al., 1998). It is therefore important that the location of the 

anatomical markers determining the joint centres is consistent across study 

participants and this consistency can be maximised by a single person applying 

the markers through all experiments (Leardini et al., 2005). 

 

As cycling is predominantly a lower limb movement its measurement is 

determined upon accurate modelling of joint centres for the hip, knee and ankle 

(Momeni et al., 2014, Disley, 2013). As described in the previous paragraph, 

these joint centres are derived using recognised approaches that utilise 

reflective markers on the representative anatomical areas of the body 

(Cappozzo et al., 1997, Sayers et al., 2012). Once identified, these joint 

movements can be accurately measured using software such as Visual 3D (C-

Motion Inc, Germantown, USA). Importantly, the resultant data can contain 

errors from soft tissue movement, unsuitable digitization of retro-reflective 

markers and electrical interference (Winter et al., 1974). These errors (or noise) 

require filtering out of the data in order to leave the true signal unaffected 

(Winter, 1990). This ‗noise‘ is deemed low frequency and so in order to allow 

the higher frequency (marker movements) to be accurately determined the 

fourth-order zero-lag is utilised (Yu et al., 1999). These are broadly known as 
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Butterworth filters (Sinclair et al., 2013a) and are widely used in cycling 

kinematic studies (Bini and Diefenthaeler, 2010, Dingwell et al., 2008, Sayers et 

al., 2012, Tamborindeguy and Rico Bini, 2011).  

 

Although the selection of a frequency cut-off is deemed important when filtering 

kinematic data, the efficacy of the different methods for determining the optimal 

cut-off frequency is not fully understood. Sinclair et al., (2013a) examined 

various low frequency cut-off protocols in order to determine the optimum level 

for lower limb kinematics for running tasks. 10Hz was found to be the highest 

cut-off with no evidence of noise. These results were substantiated by a 

spectral analysis of the marker trajectories using a fast-fourier transform 

(conversion of time to frequency) to examine the cumulative content of the 

signal in the frequency domain (Giakas and Baltzopoulos, 1997). Typically the 

choice of cut-off is taken as the frequency at which either 95 or 99% of the 

signal power is contained below (Sinclair., 2013). It is recognised however, that 

more distal and proximal joints are more suited difference cut-off frequencies 

(Sinclair et al., 2013a) and in fact in their (2010) study, Hanaki-Martin et al., 

used 8Hz (leg) 6Hz (pelvis) and 4Hz (trunk) for seated cycling tasks. This 

undoubtedly produced substantially more data and considering the small 

differences in variation, could be questioned as to its practical application. Due 

to previous work in seated cycling kinematics, it is therefore suggested that 

either 10 Hz or 15 Hz is the recognised frequency for cycling related kinematics 

(Bini et al., 2010c, Dingwell et al., 2008, Disley, 2013, Momeni et al., 2014, 

Sinclair et al., 2013b, Tamborindeguy and Rico Bini, 2011, Theobald et al., 

2014, Fonda et al., 2015).  
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As with cut-off rate there also appears to be consensus on sampling rate of 

data collection with cycling related three-dimensional studies. This rate is 

translated into frames per second and the studies mentioned previously all 

listed sampling rates of between 200 Hz and 250 Hz. The sampling rate 

selected is recognised as conforming to Nyquist sampling criteria, which 

indicates that the sampling rate selected should be twice that of the maximum 

frequency of the signal (Winter, 2005). Although this is not thought to be 

completely infallible (Lyons, 2004), the criteria appears fully accepted and 

utilised. While it has been noted that higher rates than 200Hz produce more 

accurate findings, the data collected are often difficult to manage (Lee, 2012). 

Sampling of at least 200 Hz is seen as desirable for lower limb movement 

(Martinez-Solis et al., 2014, McGinnis, 2013, Richards, 2008) although to date 

no specific studies have investigated cycling specific kinematics with regards to 

different sampling rates.  

 

Cycling power (watts) are produced by applying force to the pedals (Wishv-

Roth, 2009). The complete cycling pedal stroke is often divided into two 

sections (0° to 180° & 180° to 360°), down-stroke and up-stroke. This 

represents the pushing down or propulsion of the pedals/bike and the pulling up 

or recovery part of the stroke. (So et al., 2005, Holmes et al., 1994, Abbiss et 

al., 2009, Bini et al., 2010b). During the pedal cycle, the knee goes through 

approximately 75° of motion. The knee begins the power phase flexed about 

110° and extends to approximately 35° of flexion. During the initial propulsive 

phase (power stroke), the pedal is pushed downwards and thus a larger force is 

produced in comparison with the upstroke (recovery) phase (Bertucci et al., 

2005b). The quadriceps and gluteal muscle groups are the prime agonist 
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movers to generate energy to the crank arm (Duc et al., 2008, Faria et al., 

2005b). The quadriceps muscle provides most of the force in seated cycling, 

with input from the hamstring and gluteal muscles. While the knee extends, it 

also adducts because of the normal valgus angulation of the distal femoral 

condyles relative to the femoral shaft and foot motion during the power phase. 

This motion leads to medial movement of the knee during the pedal stroke while 

the knee extends (Sanner and O'Halloran, 2000, Li and Caldwell, 1998, So et 

al., 2005). 

 

Power (watts) can affect both movement and associated forces when cycling 

(Bertucci et al., 2005a). With the development and testing of more accurate 

power meters, both at the crank arm and the wheel (Hurst and Atkins, 2006, 

Duc et al., 2007, Ebert et al., 2006), we now have the ability to accurately 

measure power both inside and outside of the laboratory environment. To 

measure a specific power output there are many devices available to the cyclist. 

Power measurement can be achieved by SRM crankset (Schoberer Rad 

Messtechnik, Jüllick, Germany), Powertap rear wheel hub (Saris Cycling Group, 

Madison, USA), Stages crank (Stages Cycling, LLC 2012, Colorado, USA) or 

Garmin pedal system (Schaffhausen, Switzerland). When testing different 

cyclists it is seen as important to minimise the many variables and represent the 

individual cyclists set up (Faria et al., 2005a, Ebert et al., 2006, Burke, 2003). 

By using one of these measuring devices a cyclist can reliably and consistently 

measure force delivered to the pedals. There is limited data available on joint 

forces and power, however an ergometer based study by Kutzner et al.,  (2012) 

reported higher tibio-femoral forces and shear forces with increased power (up 

to 100w). Higher cadences produced lower forces. This study was limited by the 
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low power tested and the cyclists were not experienced or elite. Similar results 

were found in additional studies with experienced and elite cyclists 

(Strutzenberger, 2012, Bini, 2012). However the majority of studies that 

examine this area considered additional factors such as chain ring shape and 

seat height. Considering the available technology there remains no definitive 

study on joint forces in symptomatic and asymptomatic cyclists with knee pain. 

There are many muscles contributing to the pedalling cycle. These are 

predominantly bi-articular and function in different ways from the prime movers.  

Muscles such as gastrocnemius, soleus, rectus femoris and gluteus medius 

provide propulsion and also stability to the knee joint. The gluteus medius and 

associated hip musculature is one muscle group that has been well researched 

as to its contribution to PFP (Barton et al., 2012a, Green et al., 1999, Dolak et 

al., 2011, Thijs et al., 2011). Its contributory evidence to cycling however seems 

scarce and to date very little work has been done to correlate any non-cycling 

findings to cycling related PFP. 

 

The patello-femoral joint can experience forces surpassing body weight during 

cycling. At the same time the knee complex has to maintain stability throughout 

the entire pedal stroke. (Callaghan, 2005a, Ericson and Nisell, 1987). This 

stability is achieved though coordination of muscle groups and neural firing 

patterns. The forces generated at the patello-femoral joint surface are increased 

by the degree of knee flexion attained by the cyclist at the beginning of the 

propulsion (power) stroke (Callaghan, 2005a). Tracking of the patella through 

the trochlea groove of the femur is controlled by the muscles immediately 

proximal and distal to the knee complex (Salsich et al., 2001). The position of 

the patella and the muscle activity affecting its position is therefore instrumental 
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in either increasing or decreasing these forces on the cartilage surfaces of the 

femur, tibia and patella (Powers et al., 2012). To date there have been no 

studies accurately tracking the patella through the cycling motion. We are thus 

forced to consider weight bearing (WB) studies to consider cycling related knee 

pain. 

 

In cycling, cadence is the number of revolutions of the crank (pedal arm) per 

minute (Rossato et al., 2008, Nesi et al., 2005).  This is the rate at which a 

cyclist is pedalling/turning the pedals. Cadence is related to wheel speed, but is 

a distinct measurement. Factors such as resistance (gearing), weather 

conditions, fitness levels and duration of activity can affect a cyclist‘s cadence. 

There have been several studies that have measured the variability of muscle 

activity at different cadences (Lepers et al., 2001, Foss and Hallén, 2004, 

Bertucci et al., 2005b, Bini et al., 2010b). It appears accepted however that 

cadences in excess of 80 RPM are the norm for elite and experienced cyclists 

(Abbiss et al., 2009, Lucia et al., 2001b, Foss and Hallén, 2004, Mora-

Rodriguez and Aguado-Jimenez, 2006, Nesi et al., 2005). The advantages of 

higher cadences are the improved blood flow to working muscles, minimisation 

of local muscle stress and decreased PFJ forces/stress (Bailey et al., 2003, 

Baum and Li, 2003, Ettema et al., 2009, Faria et al., 2005a, Holmes et al., 

1994, Lucia et al., 2001b). 

 

2.4 Taping for Knee Pain  
 

2.4.1 Traditional taping 
 

Patellar taping is frequently used during the treatment of patello-femoral pain 

(PFP), often as part of multiple modality-based treatment protocols (Callaghan 
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et al., 2008). Taping of the PFJ is indeed a principle factor of evidence-based 

PFP rehabilitation approaches (Aminaka and Gribble, 2005, Barton et al., 

2013).  Amongst the many taping techniques and protocols in existence, one of 

the most commonly used ones is the well-recognised McConnell taping protocol 

(Crossley et al., 2001, McConnell, 1986, McConnell, 1996).  This is where 

adhesive, rigid taping is applied to the knee to affect lateral glide, tilt and 

rotation of the patella dependent on the clinical assessment (Figure 2.5 and 

2.6). McConnell (1996) produced seminal pieces of work on taping and PFP, 

and her work remains topical and clinically relevant today.  The widely accepted 

McConnell (1986) taping method has been shown to be helpful in patients with 

PFP and is supported by Bockrath et al., (1993) and Powers (1998).  Although 

its effectiveness within cycling has been questioned due to its lack of longevity 

and the repeated action of cycling on the tape (Burke, 2003), it is unclear from 

the available literature whether this form of taping is utilised in cycling related 

knee PFP. Additional taping methods used clinically and evaluated in the 

literature include untailored medially directed (figure 2.5) taping, (Keet et al., 

2007)  and inferiorly directed taping (Mason et al., 2011). Efficacy and 

effectiveness of McConnell taping appears relevant to the following areas;  

immediate pain reduction effects, (Aminaka and Gribble, 2005), chronic pain, 

(Warden et al., 2008)  patella movement (Bockrath et al., 1993, Larsen et al., 

1995), muscle activity (Gilleard et al., 1998, Salsich et al., 2002, Callaghan et 

al., 2001, Christou, 2004), gait & biomechanics (Powers et al., 1997, Selfe et 

al., 2011, Bennell et al., 2006)  and proprioception (Callaghan et al., 2008, 

Akseki et al., 2008, Callaghan et al., 2012). There have been numerous 

rigorous reviews of the literature, which provide a comprehensive legitimacy to 

its use in treatment and rehabilitation (Barton et al., 2013, Warden et al., 2008, 
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Crossley et al., 2001, Powers, 1998, Arroll et al., 1997, Callaghan and Selfe, 

2012). 

 

  

Figure 2.5  McConnell taping (medial) Figure 2.6  McConnell taping (lateral) 

 

In a well-cited review, (Crossley et al., 2001) concluded that taping may well 

affect the patella alignment, quadriceps function and joint reaction forces within 

the patello-femoral joint. Alongside this, it concluded that taping provides a 

useful treatment technique as part of rehabilitation programmes whilst at the 

same time recognising the unknown factors such as pain mechanisms, causes 

and consequences. Notably for the subject and methodology of this study, the 

review also advised that placebo or neutral taping should be further researched. 

In a recently published Cochrane review (Callaghan and Selfe, 2012) on 

patello-femoral taping, it was accepted that the currently available evidence 

from trials reporting clinically relevant outcomes is low quality, and insufficient to 

draw conclusions on the effects of taping. This was irrespective of whether used 

on its own, or as part of a treatment programme. This suggests that further 

quality studies are required that measure clinically important outcomes and 

long-term results. Thus, it seems consensus is required on the diagnosis of 

patello-femoral pain, the standardisation of outcome measurement and an 

acceptable and effective approach to patellar taping.   
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2.4.2 Kinesiology type taping 
 

Over the past ten years, new taping products such as Kinesiology type tape 

(KTT), a generic term utilised rather than trade specific (Kinesio, Rocktape, 

Theratape, KTtape etc.), have become available for clinical use.  KTT has a 

greater in-situ longevity and malleability than athletic taping (Kase et al., 

1998b). Kinesiology type tape is made of tightly woven elasticated cotton fibres, 

the glue on the back is acrylic, durable and waterproof. Hence, it is claimed, the 

tape can be worn for up to a week withstanding vigorous movement, sweat and 

total immersion in water (Williams et al., 2012). Kinesio taping (original trade 

name), is a specific technique/tape that was first established in the 1970‘s by 

Dr. Kenzo Kase (Thelen et al., 2008, Briem et al., 2011). Both the technique 

and the tape itself claimed several main effects; to affect muscular function, re-

alignment of joints to decrease pain, to improve lymphatic drainage and blood 

flow, to aid in the correction of possible articular mal-alignments and to protect 

against muscle fatigue and injury (Kase et al., 1998a). Over the last five years, 

many other manufacturers have begun to produce similar tape, consequently it 

is now referred to as kinesiology type taping (KTT) rather than using a trade 

name to avoid trade-mark issues. Some example of KTT techniques from 

various manufacturers can be seen in figure 2.7. 
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Figure 2.7  Various Kinesiology type tape techniques 

 

The malleability of KTT appears to be a useful feature when considering 

cycling. This is in part due to the repetitive nature of cycling and the requirement 

for flexibility and minimal inhibition of movement. Considering that the main 

mechanism of PFP has been identified as increased or altered PF forces and 

stress across the load bearing joint surfaces of the knee complex, it would be 

logical to consider KTT from this perspective, alongside its resultant and 

proposed pain reducing mechanisms. 

 

Studies looking at pain effects have reported an immediate reduction in pain 

(Thelen et al., 2008, Kaya et al., 2011, Paoloni et al., 2011, Tsai et al., 2010, 

Gonzalez-Iglesias et al., 2009, Freedman et al., 2014). In all but one case 

(Kaya et al., 2011), the pain relief was temporary at best and no longer-term 

measures were taken on its effects when worn and possibly more importantly, 

after removal. In one PFP related study by Akbas et al., (2011), pain was 
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indeed reduced but no more so when compared to a protocol that involved a 

recognised exercise therapy programme for PFP. A more recent study (Song et 

al., 2014) using participants with PFP utilised KTT to control femoral rotation 

during single leg squats and found that it decreased pain, albeit temporarily.  

This temporary reduction in pain is seen to be important to the management of 

cycling related knee pain however its longer-term effect clearly requires further 

research. Although pain was reduced there was no discussion around the 

proposed mechanism for the pain reduction or indeed measurement of any 

differences in rotational movement of the femur. Consequently, the short-term 

pain reduction cannot be reliably attributed to any biomechanical changes or 

force/stress reduction around the PFJ. The study interestingly also found some 

pain changes with the sham or neutral taping technique but was in female 

participants only. This may indicate some limiting factors as the female gender 

is known to have specific increased links to femoral-PFJ angles and pain, 

therefore one may have expected a more significant outcome regarding pain 

due to the KTT placement controlling femoral activity.  

 

Corporate sponsored studies into KTT regularly produce positive results around 

pain reduction and performance enhancements (Burke, 2005, Chen et al., 

2007, van den Dries, 2011), however none of these have to date used 

biomechanical investigation and these studies have numerous questions as to 

their methodologies and are often published in non peer-reviewed publications. 

This again does not underpin any proposed re-alignment of joints or joint 

force/stress effect. Those studies, openly endorsed by manufacturers, are 

notable by their lack of inclusion in credible scientific journals. This may or may 

not be due to bias. Alongside these studies there is an abundance of analysis of 
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KTT available on the internet. A recent content and quality based analysis study 

of internet based information (Beutel and Cardone, 2014) looked at websites 

containing proposed evidence of KTT. It looked at 44 websites that met the 

inclusion criteria and found, that less than 35% of them were updated on a 

regular basis and over 70% were predominantly commercially focused. 0% 

were of an academic nature. It concluded that there was a high degree of poor 

quality and often misleading information available, most of the sites being 

commercially focused. This would appear to underpin the call for higher quality 

studies into this clinically utilised technique. 

 

Additional claims of efficacy and effectiveness that are of direct relevance to 

cycling, and this study, are that of the effect on muscle function, the mechanical 

effect on joint range of movement (ROM) and in turn PF force/stress and the 

effect of joint position sense or proprioception. A recent study by Gómez-

Soriano et al., (2014) indicated a short term affect on surface EMG activity in 

the gastrocnemius muscle, yet no increase in muscle activation was found. This 

double blind, controlled trial into the effects of KTT on the gastrocnemius also 

concluded that KTT had no effect on isometric force (MVIF) and EMG activity. 

This may indicate that any perceived pain reduction was due to mechanisms 

other than direct effect on the muscle itself. In some degree of contrast to this, 

Lumbroso and Kalichman (2014) found an increased force and ROM in both the 

gastrocnemius and hamstring after the application of KTT. Both KTT techniques 

for the gastrocnemius were the same though its exact application may have 

differed in tension and position. It should also be noted that the methods of 

measuring force of the gastrocnemius differed from a dynamometer apparatus 

perspective and this study was not double blinded. Perhaps more interestingly, 
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this increase was both immediate and also after two days of wearing the tape, 

which may indicate more longevity of effect than previously reported. Lumbroso 

and Kalichman (2014) also recommended the use of sham or neutral tape in 

future studies which, when considering the more recent KTT studies appears to 

be adopted as an accepted method of testing. This has interesting connections 

to cycling as treatment options include the control of muscle activity in the vasti 

group and their effect on PFJ tracking and associated PF forces. Application of 

this protocol would perhaps indicate an area of future research into PFP with 

cyclists. A recent 2014 meta analysis of current evidence of KTT muscle 

strength effects by Csapo and Alegre (2014) looked at 19 studies of moderate 

to good methodological quality. They concluded that muscle effects have been 

numerously investigated and KTT‘s ability to facilitate muscular contraction is 

very limited.  KTT‘s effect on muscle function is an important factor when linked 

to the proposed mechanism of PFP. If muscle function can be reduced, 

increased or altered then joint stress and force may be indirectly affected. To 

date, although claims of altered muscle function (albeit short term) and joint 

alignment are claimed, KTT‘s efficacy in consistently or significantly producing 

this response is limited (Cho, 2014, Beutel and Cardone, 2014, Csapo and 

Alegre, 2014, Parreira et al., 2014a). 

 

Chen, et al., (2008) investigated the use of KTT on the biomechanics in 

subjects with PFJ pain during stair climbing.  In their study of 15 participants 

they found that kinesiology type tape resulted in decreased peak ground 

reaction forces, when compared with no tape or placebo taping, during 

ascending and descending stairs. Also there were significant differences 

between taping and no taping in vertical ground reaction forces. This suggests 



 57 

that the subjects with knee pain were avoiding knee flexion/force whilst they 

had pain, and that the kinesiology type tape reduced the pain enough for them 

to allow greater knee flexion and consequently have better force attenuation 

through the lower limb.  They also suggested that the onset of Vastus Medialis 

Oblique (VMO) activity occurred earlier with kinesiology tape. In an interesting 

study comparing McConnell and KTT by Campolo et al., (2013), it was found 

that both forms of taping seemed to reduce pain when descending steps but 

neither affected pain during full squats. Although neither function is cycling 

based, the single leg descent could be argued to be unilateral in nature and 

closer in relationship to the single leg biomechanics of cycling. Considering that 

McConnell taping has been shown to affect joint alignment and decrease pain 

(Crossley et al., 2009, Powers et al., 1997) it could be postulated that KTT 

achieves pain reduction in a similar manner. Its increased malleability, 

compared to that of McConnell, may however negate this as a direct 

mechanism on PF stress and associated forces.   

 

An additional dual modality knee based study by Murray (2001), examined the 

effects of KTT for increasing joint range of motion and increasing muscle 

strength. The study involved the application of two taping methods to the 

quadriceps muscle post anterior cruciate ligament repair. Three techniques 

were used on each participant (n = 2); no tape, athletic tape and KTT. An 

improvement was only seen on the application of KTT, where a significant 

increase in the active range of motion during knee extension with a decrease in 

knee lag was seen, as well as an increase in muscle activity seen on surface 

electromyography (EMG). Although related to this study in that it was knee 

based, its numbers were very small and neither forces nor biomechanical 
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changes were measured. Consequently, KTT‘s affect on PF joint stress and the 

associated PF forces generated were not examined or presented.  

 

A recent study by Griebert et al., (2014) found that KTT decreased medial 

loading for those suffering with medial tibial stress syndrome. This would 

indicate that KTT could indirectly affect forces about a joint and also resultant 

stress placed on a tendon. The study found that the tape reduced loading on a 

weight bearing section (medial plantar) of the kinetic chain during walking and 

so it is possible to postulate that this effect may be repeatable to a greater 

extent with a predominantly non weight bearing (NWB) activity such as cycling. 

There may indeed be a connection with the knee mechanism here and although 

it is recognised that the two areas are separate, they are in fact part of the same 

kinetic chain during the pedalling action. As with the previously discussed study 

by Lumbroso et al., (2014), Griebert et al., also used a longer time frame to 

collect data (immediate and 24hrs). Unfortunately no symptomatic related data 

were collected during the experiments.  A PFP study using KTT was undertaken 

by Aytar et al., (2011), where 24 participants were tested. Quadricep muscle 

strength was measured using an isokinetic (Cybex) dynamometer. Joint position 

sense was measured using the same dynamometer, balance was measured 

using a Kinesthetic Ability Trainer (KAT 3000) assessing static and dynamic 

stability. Pain was recorded by VAS. KTT and neutral tape were compared 

however no significant differences were reported. Although randomised and 

double blinded, this study did not have a control group and participants were all 

female. Again, this study focused on the immediate effects rather than longer 

term.  
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A small case study by Brandon (2005) reported pain reduction when using KTT 

with PFP patients. Again there was no control and no alternative comparison 

tape used.  

It has been suggested that in addition to pain relief, KTT may also affect 

proprioception (Schneider, 2000, Chang et al., 2012). Proprioception has been 

defined by Rieman and Lephart (2002) as the outcome of the processing by the 

central nervous system of afferent information from various mechanoreceptors 

about joint position, joint movement and joint force.  Further research has, on 

the contrary, shown that KTT did not improve proprioceptive response at the 

ankle with measures of reproduction of joint position sense (RJPS) in plantar 

flexion and inversion (Halseth et al., 2004). Interestingly, these KTT studies 

looking at proprioception did not use recognised isokinetic tests based on 

Passive Angle Reproduction (PAR) or Active Angle Reproduction (AAR) but 

instead used either specifically built instrumented platforms (Halseth) or 

dynamic balance trainers (Aytar). A very recent study by Hosp et al., (2014) 

looked at proprioception of the knee using a similar technique to the main 

biomechanical study in this project (Chapter four). Measuring active joint 

position sense reproduction they found an improvement with KTT but only with 

those predisposed with poor status of proprioception.  It was suggested that a 

tactile input may stimulate the cutaneous mechanoreceptors and hence 

improve performance, however the study only looked at healthy participants 

and additionally only females. There were no data produced to indicate any 

degree of longevity was sustained in performance.  

In another study using KTT, it was shown that individuals treated with tape over 

a 24-hour period exhibited mild improvements in inflammation and pain 

reduction (Gonzalez-Iglesias et al., 2009). This again, potentially shows that 
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Kinesiology tape's benefits are limited to short-term use. More recently, 

systematic reviews have been published (Kalron. A, 2013, Morris et al., 2013, 

Williams et al., 2012). All of these broadly agreed in the lack of RCT‘s, variation 

of applications, potential medical database bias, short-term outcome 

measurement, and limited clinical effectiveness. Overall they all conclude that 

there is currently insufficient evidence that supports KTTs use over other 

modalities.  

 

An interesting claim to how KTT attains its effects is by subcutaneously lifting 

(de-compressing) the skin to improve lymphatic drainage and produce positive 

pain reduction results for the top layers of fascia, as well as the much deeper 

layers (Schneider, 2000, Kase and Stockheimer, 2006). The tape is 

manufactured to produce a wrinkled (convoluted) effect when applied in a 

stretched position over the skin and claims around this ‗de-compressive‘ effect 

on the removal of pain generating chemicals produced during the inflammatory 

process appear dominant (figure 2.8).  

 

 

Figure 2.8  Pain reduction proposition (kinesio tape) 
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It proposes to use the tape‘s inbuilt construction to achieve this alongside its 

elastic nature. This claim does not appear to have been substantiated in any 

way in scientific research and, to date, this improvement of fluid movement is 

unclear. It is unclear how this mechanism would affect PF joint stress and force 

production. There have been some small studies looking at lymphatic disorders 

and KTT, however the results were also inconclusive and numbers small with 

no statistical results reported (Białoszewski et al., 2009, Tsai et al., 2009).  A 

recent study (Parreira et al., 2014b) investigated this lifting and de-compressive 

(Figure 2.8) effect on 148 participants with low back pain over a four week 

period. They found no significant differences between KTT and a neutral tape. It 

is worth noting though that from a clinical perspective, KTT alone would not be 

the only treatment applied to a patient with low back pain. This study adds 

evidence that KTT alone does not provide a significant change in pain. An 

additional assertion is that through its application directly to the skin, KTT 

stimulates the mechanoreceptors of the skin and decreases pressure on these 

receptors, thus reducing pain (Kase and Stockheimer, 2006). This is one area 

of interest in cycling related knee pain as a potential mechanism of pain 

reduction however does not appear to infer any relationship with the decrease 

in PF forces and stress required to have a significant effect on PFP. 

 

The body of evidence on taping for cycling related PFP therefore appears to 

leave important gaps in the knowledge base. From the increased appearance of 

different manufacturers of Kinesiology type tape and its use in high profile 

events, taping use in the management of knee pain in cycling seems to have 

become widespread. However its application to cycling as a specific sport has 

not been investigated fully. As cycling is repetitive in nature, therefore with injury 
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and pain, muscular restrictions may occur and cause decreases in ROM as a 

result (Burke, 2003). The application of KTT may indeed serve to correct this by 

affecting muscle function and biomechanical movement. These changes may in 

turn affect the PF forces produced and also alter the PF stress known to be a 

predominant factor in PFP (Witvrouw et al., 2014). Alternatively its effect on the 

skin and joint position sense may also be influential. Its short-term effects 

appear recognised across the available evidence. Specific to this study there is 

distinct lack of information regarding the application of KTT and its effect on PFJ 

forces/stress, knee pain, power output and hip, ankle/foot and knee range of 

motion in cyclists. Considering that PFP has been shown to have direct links to 

increased or altered joint force and stress, the evidence that KTT affects this 

mechanism is very limited, especially in cycling related PFP. Studies appear 

focused simply on pain reduction and not the direct and evidenced mechanisms 

that may produce the pain reduction (decreased PF force and stress). Thus, 

future work should consider investigating these known mechanisms further. 

Recent research has produced more comprehensive reviews of KTT and its 

proposed effects (Williams et al., 2012, Parreira et al., 2014a, Montalvo et al., 

2014, Kalron. A, 2013, Morris et al., 2012), all of which indicate limited to 

moderate evidence of clinically effective outcomes. Interestingly, De Ru (2014) 

published a direct criticism of the Parreira review (2014a) as to its inclusion of 

original techniques rather than modern progressions currently used clinically. 

De Ru also called for combining research with clinical practice rather than a 

mutually exclusive approach.  
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2.5 Aims & Objectives  
 

To investigate the biomechanical efficacy and clinical effectiveness of patello-

femoral taping in elite and experienced cyclists both with and without Patello-

femoral pain (PFP).  

Online clinician questionnaire aim 

To design and implement an online questionnaire establishing specific current 

clinical practice of taping techniques for the treatment of elite and experienced 

cyclists with patello-femoral pain. 

Questionnaire objectives 

 To communicate with a number of clinicians (n= >25) currently engaged 

in the treatment of elite and experienced cyclists with PFP  

 To design, pilot and implement an online questionnaire to determine 

current taping techniques for PFP in elite and experienced cyclists 

 To identify a specific taping technique to be used in the lab-based study 

Biomechanical investigation aim 

To investigate the biomechanical efficacy of patello-femoral taping in elite and 

experienced cyclists both with and without PFP. 

Biomechanical study objectives 

 To measure any biomechanical changes around the knee in elite and 

experienced cyclists using the previously established taping treatment 

from the online questionnaire at different power outputs 

 To measure asymptomatic cyclists and then compare these results with 

symptomatic cyclists 

 To determine any additional changes in the hip and foot that may impact 

on knee movement during cycling 
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 To determine the potential clinical impact of PF taping by examining the 

relationship between the efficacy and effectiveness of the treatments. 

 

Summary of aims and objectives 
 

A study collecting data on the current usage of taping for cycling related knee 

pain (Online questionnaire) assessed current clinical practice and determined 

the technique to be investigated. This information was in turn used to 

investigate the efficacy and effectiveness on asymptomatic and symptomatic 

cyclists (Biomechanical study). Both of these studies provide an original 

contribution to knowledge on the current usage and common treatments of 

cycling related knee pain using taping. They also aim to evidence the points of 

proposed efficacy and effectiveness of taping when used with elite and 

experienced road cyclists in both a clinical and laboratory setting. The data from 

the questionnaire informed the biomechanical laboratory study and enabled 

evaluation of a specific and clinically relevant taping as a treatment for patello-

femoral pain in cycling. By determining evidence of the current approaches and 

specific treatment techniques regarding cycling related taping, and 

consequently testing them, it is possible to provide clinically useful information 

that will enable clinicians to treat cyclists more effectively from an evidence 

based and reasoned perspective.  
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CHAPTER THREE –  Online Questionnaire  
 

Investigation into the clinical usage of taping with cycling related knee 
pain in experienced and elite cyclists 
 

3.1 Introduction 
 

To date there are no data available as to clinical use of taping for cycling related 

knee pain. This information was deemed important in order to identify an 

appropriate technique to test in any biomechanical study into taping efficacy 

and effectiveness. Figure 3.1 outlines the thought process that enabled 

development of the aim and objectives of the online questionnaire. Furthermore 

it provides an initial understanding as to the clinical rationale behind the 

progression between the questionnaire and the subsequent biomechanical 

study.  

 

 

Figure 3.1  Online questionnaire mind map 
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3.2  Rationale for Methods of Questionnaire for Clinicians Using Taping 
 

Before the proposed biomechanical study, it was recognised that it is 

predominantly unknown as to the level of use of tape within cycling. Its use is 

mainly anecdotal and often driven by marketing and media. In order to 

determine any specific taping technique to be tested, further information was 

required as to the context of if, when and why tape is used with cycling related 

knee pain. Considering the perceived scope of use across the globe it was 

determined that the best format was an online questionnaire. This allowed 

control of data, security of data and the ability to collect data systematically and 

with clarity. It also allowed instant access to the target group in the targeted 

Union Cycliste Internationale (UCI) countries. This was a natural pre-curser to 

any biomechanical study to collect base-line information on taping in cycling, 

with cycling specific clinicians using a simple format that had minimal effect on 

busy clinical workloads. 

 

3.3 Methods 
 

Ethics approval was gained prior to data collection through the University of 

Central Lancashire Faculty of Health & Social Care Ethics Committee  

(Reference number: BuSH 107). All data was stored in line with UClan 

regulations. Electronic data was stored on a password-protected computer. 

Social media communications were located within a password-protected 

system. 
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3.3.1 Online Questionnaire: Content and development  
 

The online questionnaire (see appendix 11 for full version) was developed using 

proprietary software (www.surveymonkey.com) and was selected in order to 

reach a group of clinicians from around the world but within the Union Cycliste 

Internationale (UCI). The online format of the questionnaire tool allowed the 

researcher to change question order, content and emphasis at will, and thus the 

development of the questionnaire could be facilitated and managed both cost 

effectively and quickly.  

 

3.3.2  Research population and demographics 
 

All clinicians were recruited from (UCI) Union Cycliste Internationale affiliated 

countries (n=30) due to the global nature of cycling and the equally global 

nature of social media Twitter™. This recognised and representative global 

organisation (UCI) was felt to be integral to the group of experienced and elite 

cyclists. Recruiting from the United Kingdom alone would not have reflected the 

true use of taping in cycling at this time. The UCI countries represented by the 

respondents were Great Britain, Ireland, Belgium, France, USA, Switzerland, 

Spain, Italy, Norway, Germany, Canada, Australia and New Zealand. English 

speaking clinicians were felt to be key in understanding and completion of 

accurate responses to the questionnaire. This was made clear through 

Twitter™ and other recruitment by direct reference. Table 3.1 indicates further 

demographic information on respondents. 
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Table 3.1 – Biomechanical study participants 

  Cyclists treated Gender split 

Country No. Elite Ex Pro Male Female 

GB 7 Y Y Y 5 2 

Ireland 1 Y Y N 1 0 

Belgium 4 Y Y Y 4 0 

France 1 Y N Y 1 0 

Germany 2 Y Y Y 1 1 

Italy 2 Y N Y 2 0 

Norway 1 Y Y N 0 1 

USA 4 Y Y Y 3 1 

Canada 1 Y N Y 0 1 

Australia 5 Y Y Y 4 1 

NZ 2 Y Y N 1 1 

 

 

 

3.3.3 Participant distribution 
 

Figure 3.2 overleaf outlines the participant distribution for the online 

questionnaire. 
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Figure 3.2  Participant distribution 

 

3.3.4 Participant information and communication 
 

Participant information and consent were distributed in person, online and via 

email. This information was also available in hard copy if required. All 

participant information and consent forms for the clinician online questionnaire 

are available in appendix numbers 12 to 16. Communication was facilitated 

where possible via the platform of preference for the participant. For example, if 

they were recruited via Twitter™ then a Direct Message (DM) from within that 

medium was the normal conduit for any communication.  

 

3.3.5 Sample size calculation 
 

Due to the unknown population of clinicians treating elite and experienced 

cyclists in the target group with taping, a formal sample size was unable to be 

calculated. To put this into context, the Tour de France normally has 20 teams 
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of nine riders competing. Each team will normally have one or two people who 

can tape knees. n=30 composed a representation of a cross section from this 

little researched area. The clinicians worked in private clinics (experienced 

cyclists), directly with professional teams (elite) and also with amateur teams 

and individual racers (experienced and elite cyclists). 

 

3.3.6 Data collection and analysis 
 

Data collection was from the online source of Survey Monkey™ and 

downloaded from a secure and password protected server provided. The 

information was available in both chart, pie chart, excel and pdf formats. The 

data is formatted into chart format direct from the online software and formatted 

from an excel spreadsheet. The data was analysed and presented in simple 

chart format to facilitate clinical interpretation. 

 

3.4  Pilot Questionnaire Work 
 

The questionnaire method was piloted for feedback by consulting two clinicians 

from a local cycling network.  Decisions on the category of scales to be used 

were important in order to ascertain that the clinicians remained engaged and 

were encouraged to reflect clinically rather than simply score middle ground.  

From pilot study feedback and to avoid middle ground scoring a 4-point Likert 

scale was selected. Equal point scoring was seen to ensure that the participant 

cannot simply score the average or central ground and encourages a firm 

decision either side of a specific point (Nicholls et al., 2006). For taping this was 

important in order to obtain a clear opinion of topics such as whether a 

technique was clinically effective or was felt to reduce pain for example. It 

allowed the participant to understand the clarity of their answers and in turn 
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provide clear data to evaluate. An example of this scale and related question 

can be found in figure 3.3. 

 

 

Figure 3.3  Example of online question format 

 

Follow-up informal conversations from the pilot questionnaires were undertaken 

for subtle changes in questions to ensure that the data received was in line with 

the aims and objectives. 

 

3.4.1 Further development and learning 
 

Further development of the questionnaire was undertaken over a period of one 

month and both format and content were updated during this time. Participants 

(n=5) were invited to give feedback on the outcome question areas from the 

pilot and changes were made in question order and content. The questions 

derived initially from the literature base. For example: Pain is a regular research 

topic with all taping, hence taping‘s effects on pain was a question required. 

Feedback was predominantly around terminology and outcome measurement 

specific to the field of cycling related knee pain and its treatment. It was key to 

ensure that clinicians felt that the flow of the questionnaire followed a natural 

progression. One example of this would be splitting the ‗success‘ of taping into 

two questions. Initially there was a single question as to whether taping was a 

success. From feedback an additional question exploring how clinicians 
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measure success was added to provide further clarity. Feedback was 

implemented into two further drafts until consensus from the clinicians was in 

line with the objectives and the flow of the questionnaire was felt to be 

appropriate to elicit the data required. Once achieved, the study information 

was made available through a single source access link on the author‘s 

website. The full online questionnaire (screenshots) can be found in appendix 

11. 

 

Recruitment of participants was through Purposeful Sampling via professional, 

social and personal networking with Chain Referral or Snowballing Sampling as 

well as direct messaging. Initially, five clinicians were contacted. From this a 

further four were identified through snowball and networking by email. 

Developmental recruitment using social networking media Twitter™ is outlined 

later in this section.  The inclusion criteria was as follows: 

Do you treat elite and/or experienced cyclists with patello-femoral knee pain? 

Do you use, or have you used any form of taping as a treatment technique for 

cycling related patello-femoral knee pain? 

Are you prepared to participate in a small questionnaire aimed at this target 

group and treatment? 

Participant information and all other documentation were also made fully 

accessible through the same website link. Participant information and consent 

forms are contained in appendices 13 to 15. Consent was collected in the initial 

question online for those recruited. The questionnaire was designed to gather 

basic information including consent and participant clinical usage of taping with 

knee pain, then to progress through the following outcome related question 

areas (full questionnaire questions in appendix 11). 
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3.5 Development of the Twitter™ Methodology  
 

Both personal and professional networking and the consequent snowballing 

effects from this were recognised as an ideal format to recruit participants. 

These methods were undertaken both in person and by email and produced 

some of the initial participants (n =5). However, due to the author‘s personal 

contribution to the online social network of Twitter™ it was identified that this 

method was a potentially useful additional and effective method of recruitment. 

Twitter™ is an online social networking and micro-blogging service that enables 

its users to send and read text-based posts of up to 140 characters, informally 

known as "tweets". As of June 2010, approximately 65 million tweets were 

posted each day, equaling about 750 tweets sent each second, according to 

Twitter (Garrett, 2010). The service has rapidly gained worldwide popularity, 

with more than 100 million users who, in 2012, posted 340 million tweets per 

day. Users can group posts together by topic or type by use of hashtags – 

words or phrases prefixed with a "#" sign. Similarly, the "@" sign followed by a 

username is used for mentioning or replying to other users. To repost a 

message from another Twitter user, and share it with one's own followers, the 

re-tweet function is symbolized by "RT" in the message. Followers and following 

are discretionary and can be controlled online easily. On September 7, 2011, 

Twitter announced that it had 100 million active users logging in at least once a 

month and 50 million active users every day. As of September 2013, the 

company's data showed that 200 million users send over 400 million tweets 

daily, with nearly 60% of tweets sent from mobile devices. User numbers of this 

kind enabled access to a much wider network of clinicians by ‗tweeting‘ specific 

messages and these being relayed accordingly to appropriate users. Messages 
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such as; ―Please ‗RT (re-tweet) if you know clinicians who treat cyclists with 

knee pain please ask them to consider helping my research work - 

http://tiny.cc/rzsv3‘ (link to questionnaire info).‖ were used. 

 

Initially five clinicians were identified on Twitter™ as suitable for direct 

messages (DM). Direct messaging to users was also used to ascertain that 

participants understood the context of the questionnaire and the location of the 

participant information online. Re-tweets (RT) were checked and followed up via 

the platform of Tweetdeck™ which can be used to follow live tweets, specific 

searches and users. Direct messages (DM) were also followed up. A total of 

four original (identical) tweets were sent, the participants were recruited directly 

from consequent re-tweets, snowballing and direct messages from followers. 

No additional communication was required due to the mechanism utilised. The 

flow diagram (Figure 11) illustrates the process in a simplified format. Combined 

with the initial professional network group, consequent snowballing sampling 

from this and the Twitter™ contacts the group (n=30) was felt to be 

representative of the target participants required for quality data. Most clinicians 

using Twitter™ publish their professional details and activity online via their 

profile and this can be accessed to clarify the area of specialism. All the 

clinicians operated within the field of cycling and also treated patello-femoral 

related cycling pain using taping. This process in no way compromised their 

rights as the medium of Twitter™ allows this information to be completely public 

and the participants personal information remained confidential at all times. 

 

http://tiny.cc/rzsv3


 75 

 
 

 
Figure 3.4  Twitter process (snowballing sampling and chain referral) 
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3.6 Questionnaire content: 
 

1. Consent and Understanding 

2. Taping and Cycling knee pain 

a. Which of the following do you, or have you used to treat knee pain 

in elite or experienced cyclists……… 

3. Taping application and your experiences 

a. Normally, when you apply taping to elite or experienced cyclists 

with knee pain, what are your clinical outcome goals?  

b. When applying taping techniques to elite and/or experienced 

cyclists, do you............... 

c. How often would you use taping in treating cycling related knee 

pain? 

d. When treating experienced and elite cyclists, which specific 

pathologies do you use taping for? 

4. Taping training and your experiences 

a. Have you been formally trained in the following taping techniques?  

b. Do you, or have you ever used taping as a neutral or placebo 

treatment for cycling related knee pain with experienced and elite 

cyclists? 

c. Clinically, is your taping treatment a success with regard to cycling 

related knee pain in elite and experienced cyclists? 

d. How do you measure the success of your taping treatment with 

elite and experienced cyclists with knee pain?  

5. Efficacy and Effectiveness of taping 

(Taping that produces the desired results on the knee. 

Clinical success of taping treatment in regards to cycling related knee pain). 

a. How effective do you think the following applications are in 
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treating knee pain with Elite and Experienced cyclists? 

b. Do you think taping affects cycling related knee pain in elite and 

experienced cyclists by.............. 

c. With regard to the questions around the efficacy and effectiveness 

of taping on elite and experienced cyclists, please rate how important the 

following are to you. 

6. McConnell Taping (please skip if you do not use) 

a. Why do you use McConnell taping with experienced and/or elite 

cyclists with knee pain (skip if you do not use)? 

b. Which McConnell technique do you, or have you used with 

experienced and/or elite cycling related knee pain? 

7. Kinesio Taping (please skip if you do not use) 

a. Why do you use Kinesio taping with experienced and/or elite 

cyclists with knee pain (skip if you do not use)? 

b. Which Kinesio taping technique do you, or have you used with 

experienced and/or elite cycling related knee pain?  

8. Final questions 

a. Please provide any other comments, observations or relevant 

information with regard to your treatment of experienced and/or elite 

cyclists with knee pain using taping. 

9. Information about you – CONFIDENTIAL 

This section was completed by all of the participants but was stated as 

NOT compulsory. 
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3.7 Methodology Development  
 

Initially by utilising the free service package of the Survey Monkey™ software it 

was realised that questions were limited to a specific number per questionnaire. 

Therefore two separate sections were designed to make up the completed 

questionnaire. Although this worked to some degree it was evident early on that 

even though instructions were very specific as to part two being required after 

completion of part one, participants appeared to have omitted the second 

section. Once this was noted (after five participants) it was decided to upgrade 

to the subscription service to enable one complete questionnaire to be 

undertaken. Uptake and compliance improved immediately and the five 

participants were contacted and asked to repeat the questionnaire in full. One 

participant did not complete the full questionnaire from these five.  
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3.8 Online clinician questionnaire - Results 
 

The results have been presented in chart format. The demographics and 

additional information concerning the respondents can be found in table 3.1 in 

section 3.3.2.  Response count is shown in each chart in brackets for clarity and 

interpretation. 

 

 

3.8.1  Taping techniques used 

 

 

Figure 3.5  Taping techniques used 
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3.8.2  Clinical outcome goals 
 

 

Figure 3.6  Clinical outcome goals 
 

3.8.3  Applying taping techniques  
 

 
 

Figure 3.7  Applying taping techniques 
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3.8.4  Use of tape 
 

 
 

Figure 3.8  Use of tape 

 

 

 

3.8.5  Pathologies treated 
 

 
 

Figure 3.9  Pathologies treated 
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3.8.6  Formal training 
 

 

 
 

Figure 3.10  Formal training 

 

3.8.7  Neutral/Placebo application 
 

 
 

Figure 3.11  Neutral/Placebo taping 
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3.8.8  Clinical taping success 
 

 
 

Figure 3.12  Clinical taping success 
 

 

3.8.9  Measuring success 
 

 
  

Figure 3.13  Measuring success 
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3.8.10  Taping effectiveness 
 

 

 
 

Figure 3.14  Taping effectiveness 
 

 

3.8.11  Perceived taping effects 
 

 
 

Figure 3.15 Perceived taping effects 
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3.8.12  Importance of taping effects 
 

 
 

Figure 3.16  Importance of taping effects 
 

 

3.8.13  McConnell taping use 
 

 
 

Figure 3.17  McConnell taping use 
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3.8.14  McConnell technique used 
 

 
 

Figure 3.18  McConnell technique 
 

3.8.15  Kinesio taping use 
 

 
 

Figure 3.19  Kinesio taping use 
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3.8.16  Kinesio taping technique used 
 

 
 

Figure 3.20  Kinesio taping techniques used 
 

 

 

 

3.8.17 Initial examination of results and methodology development  
 
Following the initial examination of the results of the online questionnaire 

(n=30), the respondents indicated no clear single taping technique preference 

of taping other than that of apply-test-reapply and adaptation to clinical findings. 

It was clear however that KTT tape was the favoured taping application with 

cycling related knee pain in the target group. The initial objective was to 

conduct further interviews however it was felt that this would not produce any 

deeper levels of required information relevant to the overall project. Considering 

the predominance for KTT it was decided that a further single question should 

be developed to allow the participants to choose their most utilised, or 

technique of choice with regard to KTT. The same original participants (all 

completed the final contact and personal details section) were contacted and 

subsequently completed the additional question. In hindsight, it would have 
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been more effective to include a further specific question around a single 

preferred taping technique in the original questionnaire, developing on the 

question around taping techniques used (Figure 3.20). This in turn would have 

achieved the objective identifying a specific taping technique to be used in the 

subsequent biomechanical investigation. It is interesting that even with the pilot 

questionnaire this point was not identified. The single technique question was 

consequently designed and developed. 

 

3.8.18  Preferred taping technique 
 

It should be noted that there are indeed many variations of KTT technique used 

in the treatment of cycling related knee pain. The four techniques chosen for the 

additional question were based on the answers (KTT techniques) given in the 

initial questionnaire (Section 3.8.16 and Figure 3.20). These were based initially 

on work by Kase et al., (1998a, 1998b) and developed further from work by 

Chen et al., 2008 and Campolo et al., 2013. The preferred technique identified 

was to be used in the laboratory-based study. Both Twitter™ and Tweetdeck™ 

were utilised to determine a single technique. A direct question via the Twitter™ 

method would indicate a preference from the clinicians that would determine 

which technique to test during the subsequent biomechanical study. A specific 

question was asked to provide a single answer that clearly indicated a preferred 

taping technique (KTT) with regard to cycling related knee pain (Figure 3.21 

and 3.22).  

 

Question: If you were treating a cyclist with patello-femoral knee pain and a supply of 

appropriate length Kinesiology type tape, which of the following techniques would you 

choose? 
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1. Y with reverse Y above and below the patella  

2. Simple ( ) with around the patella  

3. ( ) with additional U below the patella  

4. ( ) around patella with horizontal single strip __ across patella tendon   

 

 

 

Figure 3.21 Single question figure from questionnaire 
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Figure 3.22 Single question results 

 

 
 
 
3.9  Discussion, interpretation and projection towards the subsequent 

biomechanical study 
 

From the results it appears that there is a clear preference for Kinesiology type 

taping, both in actual usage and its clinical effectiveness. Over 82% of 

respondents indicated that they use KTT with cycling related knee pain, 

compared to 36% who use McConnell taping (Figure 3.5). Although it could be 

argued that over 30% of respondents also use McConnell taping, there are 

additional factors that should be considered when determining that KTT is 

indeed the preferred taping with cyclists. In figure 3.14, 95% of respondents felt 

that KTT was either effective or very effective as opposed to the 89% of 

respondents who considered McConnell either not effective at all or to have 

only some effect. Furthermore, in figure 3.16, when considering general taping 

effects, 67% of respondents indicated 'that it works' was a very important 
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outcome, and  27% saying this was 'important'.  In figure 3.17, of those who use 

McConnell with cycling (only 30% of total respondents) 60% of these (only 6 

from 30 total respondents in questionnaire) felt it was effective at all.  Only 30% 

of McConnell users indicated its ease of use as a benefit and only 10% 

indicated any degree of longevity. In contrast to this, figure 3.19 indicates that 

over 90% of respondents felt that KTT was effective, 83% for its ease of use 

and 76% for its longevity. Consequently it can be concluded that although over 

30% of respondents actually use McConnell, most feel that it is in fact limited in 

its effectiveness and that the additional responses (other than actual usage) are 

important in concluding which taping type to use in a cycling specific study. 

Perhaps this evidences that being trained to use a specific technique 

(predominantly clinically evidenced in ambulatory trials only) does not imply that 

it is effective in functional use. Providing this evidence from cycling specific 

clinicians contributes towards the reasoning behind testing a specific taping 

technique in the biomechanical laboratory based study. This subsequent 

investigation into the taping used in the specific field of elite and experienced 

cyclists is a natural progression from the findings from the online questionnaire 

and will provide clinical relevance for its end users regardless of its outcome. 

This relevance will be focused on whether specific taping techniques actually 

have any measurable biomechanical effect on elite and experienced cyclists 

both with and without knee pain at various resistance and powers. The 

biomechanical methodology proposed is broadly similar to that used in 

previously published studies by the author (Theobald et al., 2012, Sinclair et al., 

2013b). A simple progression diagram (Figure 3.23) outlines the process from 

the online questionnaire question through to the biomechanical study. 
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Figure 3.23  Progression from questionnaire to biomechanical study 

 

The low level of effective McConnell tape usage from the questionnaire could 

be seen to be contrary to clinical practice outside the area of cycling as 

McConnell taping is a well-evidenced technique used with knee pain (Crossley 

et al., 2009, Salsich et al., 2002, Warden et al., 2008). It could be argued that 

the lack of formal training in McConnell taping alongside the more informal 

approach of Kinesiology type taping application (Section 3.8.6 – figure 3.10) 

could lead to its low level of usage in the area of cycling. However, in the past 

few years there has been an upsurge in KTT formal training courses available 

to all therapists. The training gap appears to have been filled in this respect 

(Figure 3.10). This training is widely available and marketed online with an 

abundance of online training videos as opposed to McConnell, which seems to 

require a more formal approach and is administered by a recognised 

practitioners‘ system. The evidence however, as to ease of use, effectiveness 

and longevity of kinesiology type tape from the questionnaire study (Section 

3.8.15 – figure 3.19), based on a small but specific purposive sample of 

clinicians involved in treating elite and experienced cyclists indicates a clear 

preference for KTT. These results appear to signpost what is actually 

happening in the clinical field of cycling related knee pain and provide evidence 

that McConnell taping does not appear to be used in cycling populations or 
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work well when exposed to the repeated and high degrees of movement that 

cycling demands. 

 

Clinically the outcome goals (Section 3.8.2 - figure 3.6) from the respondents 

were broadly in line with the current thinking of classification of PFP (Powers et 

al., 2012). Pain was the highest specific percentile score at 58.3%, however, 

from a clinical perspective, 75% indicated that all the outcomes were dependent 

on clinical findings, which would represent a practical approach to the treatment 

of cycling related knee pain. The data from sections 3.8.2, 3.8.3 and 3.8.4 

emphasised a clear adaptation or apply-test-reapply approach from clinicians‘ 

focus when using taping with cyclists. This effectively signifies that the clinician 

mostly assesses each cyclist in isolation and when appropriate applies the tape, 

then subsequently tests whether it has had a positive effect on knee pain before 

re-applying if required. When considered in respect to McConnell taping, which 

has a large body of evidence, this appears to be in line with accepted clinical 

practice (Aminaka and Gribble, 2005, Herrington, 2006). That said, its 

application to kinesiology type tape and resultant outcome measures have not 

been studied to date and hence cannot be seen as fully evidenced by the 

literature at this stage. Interestingly with 75% of clinicians using various clinical 

findings (Figure 3.6) to underpin their treatment protocol, one could possibly 

question the remaining 25% on how they justify their use of taping. Taping may 

simply be used as a placebo regardless of functional outcome or merely 

because the clinicians have been trained in the application and other clinicians 

use it. The pathologies treated also represented a broad spectrum, but notably 

again were in line with the current evidence base (Witvrouw et al., 2014, 

Powers et al., 2012). This wide spectrum of use for taping with all pathologies 
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(Figure 3.9) scoring within 25% of each other, and all in excess of 50%, 

underpins the clinically focused responses in section 3.8.2 (Figure 3.6) in that 

PFP is a multi-factorial pathology that often contains more than one 

classification in functional presentation.  

 

When interpreting the two different taping techniques (KTT and McConnell) it 

was notable that clinicians felt that KTT was much more effective than 

McConnell (Section 3.8.10 – figure 3.14) and further exploration of each 

technique indicated some rationale behind this result. KTT‘s longevity scored 

76.7% compared to McConnell‘s‘ 10%, KTT was 93.3% on effectiveness over 

McConnell 60% and ease of use for KTT was 83.3% over McConnell 30% 

(Sections 3.8.13 and 3.8.15 - figure 3.17 and 3.19). In both cases around 50% 

of respondents said they use the tape simply as they are trained to use it, which 

may mean that the other 50% have a more clinical focus to use taping or may 

suggest that formal training purely guides treatment. When considered with the 

number of clinicians who used McConnell (n=10) over KTT (n=30), then these 

percentile variances are even more comprehensive in highlighting KTT as the 

taping method of choice in cycling related knee pain in the target group. 

McConnell specific clinicians appear to use the medial glide (90%) in preference 

to the other techniques indicated (Section 3.8.14 – figure 3.18). This appears in 

line with McConnell‘s early work and subsequent evidence as to its use and 

clinical application (McConnell, 1996, Gilleard et al., 1998, Crossley et al., 

2000). When questioned on specific KTT techniques used (Section 3.8.16), 

respondents appeared to utilise varying techniques during their clinical practice. 

The use of tape around the patella (68.2% - double Y above and below patella 

and ( ) around patella) would appear to reinforce the final single question 
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(Section 3.8.18 - figure 3.22) that determined a single preferred technique to 

take forward into the laboratory-based study. It is noted that there are a 

multitude of variations of all those techniques indicated and that these 

techniques also are clinician dependent regarding degree and direction of 

application. These variances are also applicable to McConnell taping and 

recognised in the evidence (McConnell, 1996, Crossley et al., 2000), which 

would support the use of a single clinician (the author) applying the tape in the 

subsequent biomechanical investigation.  

 

Taping placebo effects were mentioned in three questions (Sections 3.8.7, 

3.8.11 and 3.8.12) in order to gain different perspectives on the clinical 

importance and interpretation.  Section 3.8.7 indicates that 43.3% of those 

asked have used taping as a neutral or placebo treatment and this was 

supported in section 3.8.11 with 11 respondents from 22 indicating that placebo 

only had an effect to some degree rather than a lot (Figure 3.16). Interestingly 

in section 3.8.12 (Figure 3.16), 15 out of 30 respondents measured its 

importance as not at all important and a further 10 as only quite important which 

appears in contrast to sections 3.8.7 and 3.8.11. Taken in context each 

question has its merits from a results perspective, but clinically this could be 

seen to represent an interesting adjunct as to how taping is used to supplement 

and support clinical treatment of PFP. Sections 3.8.11 and 3.8.12 developed 

the taping effects perspective from a perception and importance viewpoint. 

Interesting to the projected biomechanical investigation‘s objectives, 11 from 22 

(50%) felt that taping provided some degree of direct biomechanical changes to 

the knee. If we are to project this study (questionnaire) towards and beyond any 

biomechanical investigation, then the development of future research from 
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reporting any changes in the biomechanics in the knee will be a worthwhile 

outcome, and will allow clinicians to make evidence based decisions.  Also 

reported in section 3.8.11 was a high perception of proprioceptive effects of 

taping, with 52.3% reporting it has a lot of effect and 47.6% reporting to some 

degree (Figure 3.15). Although difficult to measure reliably in cycling this effect 

undoubtedly will have some influence on the results of any three-dimensional 

based study regardless of any biomechanical changes reported. To date there 

does not seem to have been any cycling related proprioception studies 

undertaken and hence this is a possible area for future work.  

 

Pain was felt to have a large effect and this was reinforced in section 3.8.9 with 

how the respondents measured success. Here (Figure 3.13), a decrease in both 

VAS score (58.3%) and functional cycling pain (62.5%) were reported as key 

measurements clinically. Interestingly the cyclists‘ degree of satisfaction 

(79.2%) with the outcome (Figure 3.13) was a major success criterion. This 

subjective measurement has a direct connection with sections 3.8.8 and 3.8.12 

where success (Figure 3.12) is only sometimes (70%) and every time (30%) 

successful (no respondents reported taping as never successful) and that it 

works, is comfortable, easy to apply and reliable (Figure 3.16). Here, the results 

of the questionnaire support the selection of KTT as the tape of choice with 

cyclists and PFP as it is reported as easy to use, effective and achieving good 

longevity of use (Figure 3.19) as opposed to McConnell both reporting lower 

scores and respondents on ease of use and longevity (Figure 3.17).  

 

Sections 3.8.9, 3.8.11 and 3.8.12 outline the variation in perceived outcomes, 

success criteria and importance of effects with clinicians using taping. This 
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merely reinforces the requirement to understand the effects of taping on the 

joint involved in the action of cycling. When looking at the combination of these 

sections (Figure 3.13, 3.16, 3.16) we can see that clinicians measure success 

predominantly in the effects of taping on pain and, considering that most feel 

that KTT is very effective, this would indicate that pain reduction is often 

achieved. The literature supports this, albeit under short-term effects (Gonzalez-

Iglesias et al., 2009, Thelen et al., 2008). The importance of pain inhibition and 

direct biomechanical changes are noticeable in section 3.8.11 (Figure 3.15), 

which underpins the requirement for the biomechanical study. If we can 

understand more clearly whether taping elicits changes in the kinematics of the 

knee and other joints, we can consequently begin to understand whether any 

pain reduction experienced by cyclists is directly related to biomechanical 

changes (or not). 

 

When considering the unique contribution in the context of the subject field and 

methodologies used, the collected data from the questionnaire was not the only 

area considered. The new and potentially effective way of using the social 

networking media of Twitter™ produced a direct route to target specific 

participants and was shown to be a useful mode of recruitment. Even though 

the sample size of 30 participants could be considered relatively low, the 

purposive sampling negated a high number or responses due to the fact that 

the criteria specified both taping and clinical experience with experienced and 

elite cyclists. In fact the 30 participants represented a very specific group of 

specialist clinicians who worked with the target group (Section 3.3.2). The use 

of Twitter™ opens up access to a worldwide audience but requires careful 

management. This is made possible by selection of who can see information 
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and that they fit the required criteria outlined. It could be speculated that a 

larger or more open subject field would attract the ‗wrong kind‘ of participant 

and, due to its social nature would produce data that was not from the target 

group required. Recruitment was undertaken on Twitter™ through direct 

messaging (DM) and active monitoring of tweeting and re-tweeting (RT). The 

target groups were monitored using their publically available profiles as to 

whether they worked in the target area of cycling and physical therapy. 

Additional information was also collected to ensure target grouping was focused 

and is presented in table 3.1. Prior screening did not take place in any way and 

all participants were found to be in the target area. In turn, this requires further 

development to ensure that any degree of veto adheres to inclusion/exclusion 

criteria and does not weight or skew the results. The use of social media allows 

researchers to open up potentially fast and reliable access to target groups to 

provide quality data that can inform clinical work. Its use in the context of this 

work alongside recognised networking and recruitment was both effective and 

productive. Further work to produce recognised methods of using social media 

for research is required in order to establish its acceptance. 

 

Practical use of taping in cycling is becoming ever more present with media 

coverage. Alongside this, evidence based practice related questions as to its 

effects have become more prevalent as this exposure has increased. Cyclists 

and clinicians asking the question, ‗what does this tape do and how does it do 

it‘, cannot currently be answered with accuracy or authority due to the lack of 

good quality evidence. Progression from the online questionnaire to the 

biomechanical study is outlined in figure 3.24. 
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Figure 3.24  Progression from questionnaire to biomechanical study II 

 

From the results of the online questionnaire we can answer the question of 

which tape is preferred (KTT), clearly however, remaining questions as to its 

effectiveness and efficacy remain and can be projected to the biomechanical 

study objectives: 

 

 To measure any biomechanical changes around the knee in elite and 

experienced cyclists using the previously established taping treatment 

from the questionnaire at different power outputs. 

 To measure asymptomatic cyclists and then compare these results with 

symptomatic cyclists. 

 To determine the potential clinical impact of PF taping by examining the 

relationship between the efficacy and effectiveness of the treatments. 

 

The results of the initial questionnaire (Section 3.8.16) did not produce a clear 

kinesiology type taping technique preference to use in the 3D laboratory based 

study (Figure 3.20). The subsequent single answer question (Section 3.8.18 – 

figure 3.21, 3.22) determined this technique and thus it was projected to be 
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used in the biomechanical study. It is appreciated that there were in fact two 

techniques significantly highlighted from the four given, but for clarity it was 

decided that the predominant technique indicated from the single technique 

question (Figure 3.22) would be the technique chosen. This represented the 

majority of clinicians and considering the technique that was next in line (Figure 

3.22, n=30%), both could be considered of the same category with only a small 

difference in design and application (Figure 3.21). With hindsight the 

questionnaire could have originally been designed differently to reflect this, 

however the original objectives were reflected in the design and clear outcomes 

were initially expected. The result of the additional question enabled the 

laboratory study to be focused on a specific Kinesiology type taping technique 

and to compare this to a neutral taping technique (Selfe et al., 2011) and no 

taping.  

 

Considering that the number of clinicians using McConnell taping (Figures 3.5 

and 3.18) with cyclists is relatively low (30% of respondents), and its rationale 

for use (Figure 3.14, 3.16, 3.17,3.19) is somewhat inconclusive/ineffective 

compared to KTT, its inclusion in the ensuing biomechanical investigation would 

appear to lack validity. Although 30% of respondents using a taping type 

(McConnell) could be seen to rationalise its use, it is crucial to take into account 

that of these 30%, most feel it is of limited effect (discussed initially in this 

chapter). This effectiveness is deemed very important and KTT related 

responses not only indicate a much higher percentage usage, but also indicate 

a very high effectiveness response rate which pre-disposes KTT as clinically 

much more effective than McConnell tape with cyclists. It is important that the 

techniques used in the biomechanical study are relevant to practical application 

in the field. Alongside a KTT technique and a neutral tape the biomechanical 
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study will allow a unique opportunity to investigate how taping affects the knee 

joint in sagittal, coronal and transverse planes.  

 

The strengths of this online questionnaire revolve around the specificity of the 

target group of clinicians (respondents) and the resultant information gained as 

to perceived effects of taping and its use with cycling related knee pain in elite 

and experienced cyclists. This was designed to enable projection towards the 

subsequent biomechanical investigation and ensure that the methodology was 

targeted at the correct taping type, an appropriate taping technique and 

applicable biomechanical measurement that would produce results focused on 

the aim and objectives outlined in section 2.5. A limitation could be seen to be 

an arbitrary low number of respondents (n=30) and, at times, the ability for 

respondents to answer multiple fields in some questions. When collated, this 

produced some variation in responses and initially some lack of clarity, 

especially with the KTT technique type (Section 3.8.16 – figure 3.20). However, 

this was addressed with the subsequent single question (Section 3.8.18). In 

conclusion, the specific online questionnaire addressed its objectives in design 

and scope, informed the subsequent biomechanical study of the type of taping 

to use (KTT) and in addition reported key perceived effects and uses of taping  

(pain and biomechanical changes at the knee). 
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Key points to inform the laboratory based biomechanical study: 
 

 KTT identified as the preferred taping used with PFP in elite and 

experienced cyclists. 

 McConnell is not used extensively so therefore does not require 

inclusion. 

 Specific KTT technique to be used in the lab-based study was identified. 

 Pain, proprioception and biomechanical changes are the main perceived 

effects of taping with cyclists and PFP. 

 Placebo (neutral) taping also has a perceived effect and application and 

therefore should also be included in the biomechanical study as a 

comparison to KTT specific technique. 
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CHAPTER FOUR – Biomechanical Laboratory-Based 
Investigation 
 

To investigate the biomechanical efficacy and clinical effectiveness of 
patella taping treatments in elite and experienced cyclists with and 
without Patello-femoral Knee Pain.  
 

 
4.1 Development of Laboratory-Based Study Question 
 
The initial question was developed from a patient‘s enquiry during treatment. 

Following taping a cyclists knee, and simply stated as ‗what does this tape do 

then‘? The answer was ‗I honestly don't really know‘. The development stage of 

the study spanned a further six months of discussion and resulted in a formal 

presentation to the University. Previous work (Theobald et al., 2012, Sinclair et 

al., 2013b) provided a broad template as to how the laboratory based study 

would be undertaken and its exact development was determined through further 

testing and pilot work (Section 4.2). 

 

4.1.1 Considerations from the clinician online questionnaire 
 
The questionnaire results highlighted some outcome measures (notably pain 

and proprioception) that were not possible to measure reliably during the 

laboratory-based study. Pain was a priority outcome measure and with the 

symptomatic cyclists this was covered with a numerical pain scale 

measurement. It was noted that 30 seconds of cycling (per test - 9 in total) 

might not indicate a true reflection of pain scores as often the onset of pain 

comes with time and fatigue. Neither factors were possible to measure during 

this study due to design. Proprioception was also not possible to measure 

accurately during the biomechanical study due to the nature of the testing and 

current unavailability of reliable proprioception testing protocols whilst on a 
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static bicycle. Figure 4.1 outlines the simplified considerations from the 

qustionnaire when projecting the findings.  

 

 

Figure 4.1 Online questionnaire considerations 

 

 
4.2 Pilot study and Development of Methods  
 

In order to determine the final protocol of the biomechanical investigation, the 

following pilot study work was undertaken (Figure 4.2).  

 

 

Figure 4.2  Biomechanical study - pilot work 
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4.2.1 Introduction 
 

To establish the exact protocol for the laboratory based study testing, a pilot 

study was deemed useful in order to practice set up procedures, testing 

equipment, data capture and analysis. This learning would be projected to the 

main study to ensure smooth running, reliability and repeatability. Ethical 

approval from UClan Faculty of Health & Social Care Ethics Committee (BuSH 

107) was gained in the autumn of 2012.  

4.2.2 Participants 
 

Five healthy participants were recruited and measured in the Movement 

Analysis Laboratory at the University of Central Lancashire (UCLan) across 

three separate dates. This allowed for testing of equipment set up, software 

familiarisation, testing of taping technique/application and development 

discussions around methodology with participants and supervisors. The 

subjects were all male, which removed any gender variables that may exist 

such as supplementary issues related to PFP incidence (Boling et al., 2010).  

Pilot participants had a mean age of 34 (SD 3.53) and range of 29-38,  a mean 

mass of 76.2 kg (SD 6.26) and range of 66-82 kg.  Subsequent data analysis 

was for familiarisation purposes only and none of this original data was used in 

the main study data. Two of the pilot study participants were however re-tested 

in the main study as asymptomatic participants. The participants for the pilot 

study were elite or experienced cyclists from both the cycling community and 

university staff and conformed  to the criteria of this study (Section 4.4.3). 
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4.2.3  Methods  
 

Overview 

The methodology for the pilot testing had been broadly developed in previously 

published work by the author (Theobald et al., 2012). This work differed in that it 

used PF bracing and McConnell taping techniques at varying powers (lower 

than utilised in this study) and a single set cadence (80rpm) to investigate 

effects around only the knee, and specifically with asymptomatic cyclists. 

Measurement of power and cadence used different equipment from this 

proposed investigation, however it largely established a base-line working 

method, familiarisation of lab set up and calibration for cameras, which in turn 

required much further development during this pilot work. 

 

4.2.4 Cycle ergomentry 
 
 
The testing comprised the participants personal bike being attached to a Tacx™ 

turbo trainer (Tacx™, Wassenaar, Netherlands - figures 4.4 and 4.6), which 

allowed the rider to be studied while cycling in a static frame. Each participant 

used a standardised rear wheel to maintain continuity on static trainer 

resistance performance (Figure 4.6). Tyre pressure was checked and 

maintained at 100psi in accordance with the static trainers manufacturing 

recommendations (Tacx™, Wassenaar, Netherlands). Participants‘ personal 

bikes were used in order allow a more field based representation of the cyclist‘s 

cycling action. A single wheel skewer from the turbo trainer manufacturer was 

used during every test, this ensured a safe and stable fixation of the bike to the 

trainer frame. An associated riser block (Figure 4.4) was also used to raise the 

front wheel of the bike to the level of the rear trainer frame (Figures 4.4 and 

4.6).  
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Figure 4.3  Powertap™ wheel Figure 4.4  Tacx ™ trainer and riser 

block 

    

Figure 4.5  Garmin 510™ & mount Figure 4.6  Tacx ™ static cycling trainer 
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4.2.5 Power and cadence measurement 
 
Power and cadence were measured in watts using a Cyclops Powertap™ hub 

(Saris Ltd, Madison, USA) built onto a Mavic open pro 700c rim (Mavic SAS Ltd, 

Metz, France - figure 4.3), (Bertucci et al., 2005a, Duc et al., 2007, Hurst and 

Atkins, 2006). Power and cadence ‗on bike‘ measurement and monitoring was 

via a Garmin 510 ANT+ (Garmin Ltd, Kansas, USA). The study specific 

Garmin™ 510 sensor was fitted to the participant‘s bike using an ‗out front‘ 

clamp for the handlebars (Figure 4.5). Cadence was measured through the 

Powertap™ hub (Figure 4.3). Power testing was at 100, 200 and 300 watts to 

represent a broad range of power production for elite and experienced cyclists, 

and in line with previous research (Bini, 2012, Tamborindeguy and Rico Bini, 

2011, Bailey et al., 2003, Mora-Rodriguez and Aguado-Jimenez, 2006). Visually 

this was monitored by a 3 second average by the participant (Garmin™ 510 

sensor) to maintain constant power allowing the cyclist to assess and monitor 

accurately during the test. Cadence for the pilot work was initially fixed at 90 

revolutions per minute (rpm) using a Garmin™ 510 sensor with Powertap™ 

wheel (Mora-Rodriguez and Aguado-Jimenez, 2006) (Callaghan, 2005b). 

Further development of this cadence measurement can be found in section 4.3. 

 

Taping conditions were Kinesiology type taping application (from online 

questionnaire study), neutral taping technique (Callaghan et al., 2002, Selfe et 

al., 2008, Selfe et al., 2011) and no taping. See section 4.7 for specific 

application methods. 
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4.2.6 Movement analysis system 
 

Camera location and positioning  
 

The Movement Analysis laboratory was located in the Brook Building at The 

University of Central Lancashire, Preston, UK. The three-dimensional 

kinematics were captured using a ten-camera Oqus 3 motion capture system 

(Qualisys AB Medical, Sweden). The cameras were placed in a broad circle 

around the participant (figure 4.7). In the initial trials the camera positions were 

determined in order to be far enough away (from the bike) to capture the full 

volume of the participants‘ pelvis and lower limb movements, whilst seated on 

the bike, at the same time close enough to maximise camera resolution. 

The camera placement was developed from previous studies by the author 

(Theobald et al., 2012, Sinclair et al., 2013b) and during the pilot studies. A 

large proportion of the markers used during these studies were on the lower 

limbs of the participant. The camera height was adjusted for each participant; 

consequently lost tracking of the markers was not a significant problem. Prior to 

calibration, the cameras were positioned as close as possible to ensure minimal 

data loss during collection and improve tracking accuracy. Experimentation of 

the height variations that would produce the most reliable data took place 

across three pilot tests. From this it was determined that each individual would 

require a different camera height, depending on their bike size and personal 

height.  After each initial test the data points were checked through the 30-

second test to maximise tracking accuracy and analysis. The goal was for 100% 

capture of all markers. The daisy chain method of arranging the cameras linked 

the cameras sequentially (Figure 4.7). Each infra-red camera captures data 

when a marker lies within its field of detection. In order to track a specific 
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marker two or more cameras were required to triangulate the marker‘s 3D co-

ordinate position within the data collection area. With this set-up each marker 

could be seen by at least three cameras. Hence loss of data from any one 

camera would have a negligible effect on the data overall.  

 

 

Figure 4.7  Movement analysis camera set up (UClan) 
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Camera set-up and camera sampling frequency  
 
 

A capture frequency of 250hz was selected in line with previous studies into 

both cycling and lower limb three-dimensional movement studies (Fonda et al., 

2015, Momeni et al., 2014, Richards, 2008, Sinclair et al., 2012, Winter, 2005). 

Although the highest important frequency to measure the coronal and 

transverse planes of movement in order to capture the subtle movements in the 

coronal and transverse planes is not currently known, this sample frequency 

allows maximum possible measurement frequencies up to approximately 

165hz. At 80rpm the cyclist produced 1.33 revolutions/seconds, which in turn 

produced 333 samples per revolution. With 30 seconds of data collection time 

this produced 7,500 frames of data per test. Thus, according to the Nyquist 

sampling frequency, 250 Hz was deemed more than adequate to assess 

important movement patterns during cycling. 

 

 

The variety of reflective markers and marker clusters (figure 4.8) were placed in 

the data collection area on the saddle of the bike and surrounding floor area to 

ensure the cameras would collect data at the required height. The threshold 

values for the camera system were adjusted manually on each camera to allow 

clear visualisation of each of the markers to avoid any merging or missing 

markers. This enabled accurate tracking of the markers during the study. Any 

reflective articles or surfaces in the collection area were covered (example in 

figure 4.13, right posterior upper femur) to avoid ―ghosts‖ during data collection. 

These included items such as reflective material from cycling clothing, reflection 

from metallic sections of bike etc.  
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Figure 4.8  Reflective markers 

 

 

 

Calibrating image space  
 

To determine that the area covered during this calibration covered the 

movement volume of the pelvis and lower limb markers placed on the 

participant, the capture system and the data collection area was evaluated prior 

to testing, as per the manufacturer‘s protocol and previous studies (Theobald et 

al., 2012, Sinclair et al., 2013b, Richards, 2008, Selfe et al., 2008, Whatman et 

al., 2011). Prior to the wand movement testing a metal right-angled frame 

(length 750mm) with markers permanently attached was positioned in the data 

collection area in line with a fixed force platform to orientate the laboratory co-

ordinate system (Figure 4.11). Following this, by moving a wand of markers 

(Figure 4.11) of known length (298.1mm) through a number of movement 

patterns (straight lines, figure of eight and stirring actions - figures 4.9 and 

4.10), the movement volume was calibrated by the software. 
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Figure 4.9 Wand movement of 

calibration  

Figure 4.10  Wand movement in testing area 

 

The laboratory co-ordinate system was positioned XYZ cardan sequence in line 

with The International Society of Biomechanics (ISB) Joint Coordinate System 

(Winter, 2005, Wu et al., 2002), the positive x-direction was orientated forwards 

in front of the cyclist, the positive y-direction positioned to the left of the cyclist 

and the positive z-direction orientated upwards towards the roof in relation to 

the cyclist (Figures 4.21, 4.22 and 4.24). This co-ordinate system is in keeping 

with previous published studies (Sinclair et al., 2014, Sayers and Tweddle, 

2012). The maximum error in the calculation of the wand trajectory over 30 

seconds of data (the residual value) during any trial, and irrespective of 

movement, was 0.8mm. The software manufacturer QTM, state that a residual 

value of less than 2mm is acceptable for data collection. Consequently, the 

accuracy of the data collected in this study lies within the manufacturer‘s 

recommended limits. 
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Figure 4.11  Calibration set up and calibration wand/frame 

 

Data filtering 
 

 

In order to eliminate errors (or noise), filtering the data is required in order to 

leave the true signal unaffected (Winter, 1990). This ‗noise‘ is deemed low 

frequency and so in order to allow the higher frequency (marker movements) to 

be accurately determined the 4th order zero-lag is utilised (Yu et al., 1999). 

The kinematic data in this biomechanical study was filtered using a 4th order 10 

Hz Low-pass Butterworth digital filter cut off frequency, previously determined 

as suitable for the impact phase of movement based investigation (Sinclair et 

al., 2013a, Yu et al., 1999, Hanaki-Martin, 2010). This smoothing or filtering 

operation was undertaken in order to remove small random digitizing errors.  
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Anatomical modeling and marker sets 
 

Reflective markers were placed on the foot, shank, thigh, and pelvis based on 

the Calibrated Anatomical System Technique (Cappozzo et al., 1997). From this 

the anatomical frame was defined. See figures 4.18 to 4.23 for detailed marker 

placement and Qualisys screenshots. Kinematic data were exported to 

Visual3D (C-Motion Inc, USA).  Passive reflective markers were placed on 

participants to reconstruct the movement of the underlying bone in three-

dimensional space. The cycling model was based upon the Calibrated 

Anatomical Systems Technique (CAST) (Cappozzo et al., 1997)  whereby a 

rigid cluster of at least three non-collinear markers is used to track the 

movement of a body segment. These are referenced to the anatomical end- 

points of a segment by the means of a static calibration.  

 

 

Marker placement  
 

It was essential to test the protocol of marker placement for both longevity and 

reliability, alongside consistent visibility to the cameras. Pelvic clusters, femur 

and lower shank marker plates and movement related single markers (figure 

4.8) were secured by both double-sided tape and appropriate lengths of super-

wrap (Figures 4.12 to 4.15). 
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Figure 4.12  Anterior markers Figure 4.13  Posterior markers 

(2x PSIS and pelvic cluster indicated) 

 

 

 
 

Figure 4.14  Lower shank markers Figure 4.15 Shoe/foot markers 

 

Measuring the pelvis was important when comparing joint movements and 

therefore marker placement was crucial. Locating single dynamic placement 

markers on the Anterior Superior Iliac Spine (ASIS) proved unsuccessful as the 

action of cycling in relative hip flexion caused the markers either to become 

unsighted or drop off. Hence, during the testing, a pelvic cluster with four 

markers was used but was also initially prone to some movement, which led to 

inaccurate tracking and inter-testing reliability. This was assessed by cross-

referencing each marker set (within Qualisys™ software) when the plate 

positioning was judged to have moved by either the author or participant. 
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Adhesive markers were also placed above and below the plate to indicate any 

movement visually after each test. Subsequently a longer securing belt was 

utilised, and this longer wrap of belt provided a more secure placement, which 

made the movement more negligible. This was preferable to repeating any 

static testing and ensured that the testing process was both optimised for the 

participant and accurate with regard to measurement and analysis. Initially, to 

provide potential upper body positional mapping, acromial markers were 

included. As these proved difficult to maintain with movement inter-tests they 

were deemed surplus to requirements for this study and were abandoned as a 

useful measurement placement.  

 

A single clinician applied the markers to ensure consistency and therefore 

reducing intra-operator error (Cappozzo et al., 1997, Bini and Diefenthaeler, 

2010).    

 

Anatomical model  
 

Detailed annotated representation of these markers can be found in figures 

4.19 to 4.21. To generate the anatomical model of the markers participants 

stood in the centre of the movement area in the anatomical position (Figure 

4.16, 4.17). A static calibration was then recorded for one second. This allowed 

the computer software to produce a calculated model of the skeleton for visual 

interpretation, and define the anatomical body segments (figure 4.18). 
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Figure 4.16  Static markers Figure 4.17  Static Visual 3D 

 

 

 

 

Figure 4.18  Anterior QTM screenshot - Static 
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Post anatomical model calibration the malleoli, epicondyles, medial foot, greater 

trochanter and anterior superior iliac spine (ASIS) markers were removed 

(Figures 4.19 and 4.20). This was for two reasons. Firstly, it was likely that 

some of the medial markers would come into contact with the bike during the 

testing and, secondly, these markers were only required for the anatomical 

model.  Note: The ASIS markers were not initially removed but during pilot work 

they were either lost due to hip flexion during testing or fell off. Their removal 

did not affect data collection or the modelling process due to the use of the 

pelvic cluster. 
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Figure 4.19 Detailed posterior markers 
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Figure 4.20 Detailed anterior markers 
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Figure 4.21 Detailed shoe markers 

 

 

The resultant dynamic marker set is outlined in detailed annotated figures 4.22 

and 4.23. Each segment was defined by anatomical markers/clusters situated 

proximally and distally to the knee. The ankle/foot was defined proximally by 

lower leg/shank (tibia/fibula) cluster and distally by medial/lateral forefoot, 

superior forefoot, and calcaneus. The knee was defined proximally by the 

femoral cluster and distally by the lower leg/shank (tibia/fibula) cluster. The hip 

was defined proximally by the pelvic cluster and PSIS and distally by the 

femoral cluster.  
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Figure 4.22  Dynamic markers 
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Figure 4.23  Dynamic Visual 3D 

 

Calculation of joint angles  
 

Joint angles are defined as the orientation of one segment relative to another 

segment. Because we are working with three-dimensional space, there are a 

series of rotational transformations involved in the calculation.  Visual3D (C-

Motion Inc, USA) allows the user to choose any two segments in which to 

measure a joint angle. These do not always have to be connected. In practice, 

joint angles are calculated as the transformation from one segment (A) to 
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another segment (B) using the local coordinate system of segment B as the 

frame of reference.  Figure 4.24 is a screenshot example from Visual 3D for 

calculation of right knee angle. 

 

 

Figure 4.24  Joint angle calculation example from Visual 3D software 

 

Joint angles were calculated via Visual 3D software (C-Motion Inc, USA) using 

a Cardan ‗XYZ‘ sequence (figure 4.25), corresponding to the anatomical axes of 

motion in the sagittal, coronal and transverse planes (Winter, 2005, Wu et al., 

2002). Joint kinematics were calculated as follows: knee angles were calculated 

as the shank relative to the thigh (tibio/femoral joint) co-ordinate system, hip 

angles as the femur relative to the pelvis co-ordinate system and ankle angles 

as the foot relative to the shank co-ordinate system. This is in line with the Joint 

Coordinate System (Grood and Suntay, 1983) where X = flexion/extension, Y = 

abduction/adduction and Z = axial rotation. 
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Figure 4.25  X,Y,Z lab axis screenshot in 

Qualisys software 

 

 

Examples of joint angles for one subject in sagittal, coronal and transverse 

planes can be seen in figures 4.26 to 4.28. This illustrates the patterns of 

movement normalised from 1-101 time points for one cycle across the knee 

joint movements of flexion/extension, abduction/adduction and internal 

rotation/external rotation of the knee joint during a 30 second cycle of data 

collection.  
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Figure 4.26 - Sagittal joint angle example (mean and SD) 

 

 

 

Figure 4.27 - Coronal joint angle example (mean and SD) 
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Figure 4.28 - Transverse joint angle example (mean and SD) 

 

Dynamic testing 
 

A visual check of the data quality was undertaken of the dynamic markers 

during the first randomised test for each participant. This comprised a detailed 

examination and cross reference of markers, any ‗ghost‘ reflections during 

collection, and a run through of a complete 30 second test to ensure that all 

markers were present and visible for analysis. If the participant had to leave the 

bike or measurement area for taping or any other reason, the detailed 

examination of marker visibility was undertaken again after a 30 second 

randomised test. If any markers moved or dropped off during testing, the static 

test was repeated before dynamic testing was commenced. This only happened 

once during the entire testing process of 45 tests (data capture).  
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4.3 Pilot Study Learning and Application to Biomechanical Study 
 
From the pilot study the following were identified and applied to the main study: 

 

Cadence: This was reported difficult to maintain at precisely 90rpm. Using the 

available evidence it was decided to allow the cyclists to choose a cadence 

from 80 to 100 rpm as this is recognised to be the most efficient cadence for 

cycling performance at elite and experienced level (Abbiss et al., 2009, Bini et 

al., 2010b, Chavarren and Calbet, 1999, Rossato et al., 2008, Lucia et al., 

2001b). This allowed individual gear selection that reflected normal pedalling 

and riding conditions for each participant. A somewhat variable cadence 

allowed participants to self-select their gearing ratio as this varied with each 

personal bike set up (gearing cluster). This was felt to be a valuable addition to 

the validity of the cadence measured.  

 

Timings for set up and testing:  These were adjusted from ninety minutes to 

two hours to enable each participant to arrive, be briefed adequately, and allow 

for setting up bike and systems. 

 

Power analysis measurements: A secondary identically calibrated 

Powertap™ wheel. On one particular test, there was a complete failure in the 

calibration and output of the power device. This was resolved but not prior to 

having a timing imposition on the next participant. Arrangements were made to 

have an alternative wheel present at testing in case this scenario arose again. 

Both wheels were simultaneously calibrated at the beginning of each participant 

testing time period.  
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Alternative Garmin™ device: Following the issues of failure with the power 

device it was decided to pre-empt any problems (which did indeed happen in 

main testing) and have a secondary Garmin™ device present during all testing. 

This device was identical to the primary device and both were calibrated at the 

beginning of each participant testing time period.  

 

The importance of using participants’ own gearing and bike to increase 

face validity: To ensure that the testing was as realistic and practical to the 

participants own riding situation, it was decided to use their own rear cluster of 

gearing. This involved removing the cluster from the participant‘s bike and fitting 

it to the Powertap™ wheel. Time allowances were consequently made in the 

timings to allow for this change to the rear wheel. Using the same bike for each 

participant was felt to have been subject to difficulties in respect of the 

recognised gearing ratios uses by each cyclist. Although a single bike approach 

is repeatable and somewhat convenient, its reliability in reproducing each 

participant‘s specific cycling preferences could be questioned. 

 

Marker placement and stability of pelvic belt: Pilot testing allowed for 

practice and experience in anatomically reproducible placement of markers on 

the participants. It was felt that a double wrap velcro band allowed sufficient 

stability of the pelvic markers to ensure no movement of the markers during 

multiple tests. Once applied there was no detectable movement in this belt 

during the testing procedure. 
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ASIS marker placement: The ASIS (Anterior Superior Iliac Crest) markers (x2) 

repeatedly became dislodged, fell off or caused unreliable data analysis post 

testing. They appeared to be lost/dislodged due to the repeated nature of hip 

flexion during testing. Their removal did not affect data collection or the 

modelling process as alternative markers were sufficient to produce a pelvic 

model (pelvic cluster and PSIS x 2 – figure 4.18). 

 
Electromyography (EMG) consideration 

A considerable area of interest in cycling related research has been that of 

muscle recruitment patterns using electromyography (EMG) data from knee-

associated musculature such as VM and the quadriceps group. Consideration 

of this data collection method was undertaken by the author to establish 

whether its inclusion in the laboratory-based investigation would provide further 

valid and useful data that would underpin and positively contribute to the study. 

This work was done during the pilot phase prior to main testing. It is generally 

accepted that multiple muscle co-activation occurs throughout the pedaling 

action and that the degree of this co-activation differs in position and ability 

(Faria et al., 2005a, So et al., 2005, Chapman et al., 2006). With regard to 

incline and posture, Duc et al., (2008) found that although various positions did 

not significantly affect the muscular activity, it did change the EMG measured 

timing of the muscle activation. It should be noted that this was one of few 

studies that utilised a treadmill based ergometer system rather than the 

stationary cycle method that has traditionally been the preferred method of 

testing (Li and Caldwell, 1998, Bieuzen et al., 2007, Bini et al., 2011). It is clear 

from the abundance of work in this area that muscle recruitment patterns vary 

from individual to individual and are directly related to position, cadence and 
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resistance. Its inclusion in the main study would undoubtedly have contributed 

interesting comparison data to the 3D biomechanical work around the knee with 

the different taping techniques. However that said, the pilot work was vital in 

establishing whether the EMG sensor placement would interfere with the taping 

techniques. Should this happen then EMG could not be used. 

 

It was decided to experiment with EMG sensor placement due to the quantity of 

previous research into Vastus Medialis /Vastus Lateralis (VM/VL) activation 

(Bennell et al., 2010, Bieuzen et al., 2007, Cowan et al., 2002, Ng, 2005, Ng 

and Wong, 2009) and also the previous work undertaken with cycling and EMG 

measurement (Suzuki et al., 1982, Marsh and Martin, 1995, Ryan and Gregor, 

1992, Rouffet and Hautier, 2008, Matsuura et al., 2011). During the pilot testing 

it became apparent that the placement of the VM/VL EMG wireless transmitters 

would be directly under the KTT application. Considering the potential influence 

of KTT to skin sensitivity and possible associated muscle effects, despite the 

interesting prospects of EMG measurement, its inclusion may have a significant 

enough effect on the taping study so as to negate or significantly alter the 

results. It was therefore decided not to measure VM/VL, see Figure 4.29 for 

placement interference illustration. Although consideration was given to other 

EMG placements such as gluteus medius, its inclusion without measurement of 

the vasti group was considered unlikely to produce any clinically useful data. 

Also during testing, the placement of the gluteal medius EMG sensor became 

repeatedly dislodged. Future work with EMG and KTT would be an interesting 

development of this study. 
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Figure 4.29  KTT and potential EMG (VM) placement 

 
 
4.4  Biomechanical Laboratory-Based Study methods 
 

This section outlines the methods undertaken for the proposed investigation. 

The initial methods have been described in the pilot methods‘ section 

previously, alongside the development from that work.  

 

4.4.1  Recruitment 
 
Following ethical approval from the Faculty of Health Research Ethics 

Committee at the University of Central Lancashire (BuSH 107), recruitment was 

via local network, social network-Twitter™, an advert at the University (see 

appendix 20) and also the same advert in local bike shops and via local cycling 

clubs websites.  

 

4.4.2  Participant information and communication 
 
Participant information was given by direct email attachment, a website link 

where a direct download could be obtained, and also by printing off and posting 

direct to the participant should it have been required. All participants completed 

consent forms and verbally confirmed when arriving at the laboratory that they 
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had read and understood the information and what they were being asked to 

undertake. They were also made aware that they could stop testing at any 

point. Consent forms, participant information forms, knee pain 

inclusion/exclusion forms, study poster and risk assessment forms can be found 

in appendices 17 to 21. 

 

4.4.3  Participants 
 
Participants were recruited from within the cycling community, professional 

contacts from both the researcher‘s clinical practice and consequent networking 

process, by utilising the social network Twitter™ and poster adverts (see 

appendix 20) at the University of Central Lancashire. The work was with elite 

and experienced cyclists predominately from the North and North West areas of 

the UK. Participants were identified using British Cycling guidelines of Elite, 1, 

2, 3 and 4 category and gold/silver/bronze standard sportive cyclists (British-

Cycling, 2012). Symptomatic participants were required to complete an 

inclusion/exclusion declaration that determined the nature of their knee pain 

(see appendix 19). This pain was required to be cycling related, not associated 

with recent acute trauma, and not part of any existing and diagnosed non-

cycling related knee pathology such as CMP or other degenerative related 

pathologies. All participants were required to be included in line with the 

identified British Cycling related inclusion criteria. The recruitment process can 

be seen in a summarised diagram in figure 4.30. 

 

Prior to participation in all studies, participants were informed both verbally and 

in writing of the test procedures and verbal informed consent was obtained 

before actual testing. Participants were also familiarised with the test equipment 

and protocol before testing took place. Prior to each testing day each participant 
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completed a consent form (Appendix 18), read the participant information 

(Appendix 17) or indicated clearly they were happy to proceed without doing so. 

With symptomatic cyclists the conditions of participation were discussed in 

regard to previous pathologies and pre-existing injuries (see screening form in 

appendix 19). All participants nine individual tests (3 condition and 3 powers) 

were randomised using the website www.radomization.com prior to testing. 

There was no input or alternation from the randomisation of tests at any point 

during the study.  

 

 

 

Figure 4.30  Participant recruitment flow diagram 
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4.4.4  Participant specific data 
 

A total of 20 participants were recruited after the pilot testing phase.  

 

Table 4.1  Participant details (n=20) 
 

 

Participant information  

Group Age (Years) Height (cm) Mass (kg) Elite/Exp‘d 

Asymptomatic      

1 46 178 76 Exp’d 

2 22 183 70 Elite 

3 54 174 70 Elite 

4 42 178 66 Exp’d 

5 52 174 65 Exp’d 

6 53 180 87 Exp’d 

7 32 175 67 Elite 

8 35 178 70 Elite 

9 48 176 81 Elite 

10 32 174 69 Elite 

11 39 172 72 Exp’d 

12 26 180 71 Elite 

      

Mean 42.67 177.33 72.44 Elite 7 

SD 10.97 2.96 7.43 Exp’d 5 

       

       

Symptomatic      

1 39 180 69 Elite 

2 53 181 78 Exp’d 

3 39 172 74 Exp’d 

4 48 176 81 Elite 

5 47 178 88 Exp’d 

6 25 183 70 Elite 

7 36 175 68 Elite 

8 32 174 67 Exp’d 

      

Mean 39.88 177.38 74.38 Elite 4 

SD 9.17 3.78 7.42 Exp’d 4 
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4.4.5  Asymptomatic participants: 
 

Twelve healthy male participants, (Table 4.1) were recruited. All subjects were 

free from any pain or pathology in line with the screening form. All were in the 

target group identified using British Cycling guidelines of Elite, 1, 2, 3 and 4 

category and gold/silver/bronze standard sportive cyclists (British-Cycling, 

2012). 

 

4.4.6  Symptomatic participants: 
 

Eight male participants with cycling related knee pain, (Table 4.1) were 

recruited. Exclusion criteria were predetermined, processed and administrated 

prior to testing (Appendices 17 and 19). All participants had unilateral cycling 

related knee pain and no pre-diagnosed conditions that would exclude them 

from testing. Five participants had left side cycling related knee pain and three 

had right side cycling related knee pain. Only one participant had disclosed pain 

as lasting for longer than the previous three months. All others reported onset of 

pain as within the three months prior to testing. No participants reported any 

pain prior to warming up for testing (base line). Pain before, during and after 

each test was recorded and reported in section 4.12 (Figures 4.37 to 4.40 and 

table 4.45). All were in the target group identified using British Cycling 

guidelines of Elite, 1, 2, 3 and 4 category and gold/silver/bronze standard 

sportive cyclists (British-Cycling, 2012). 
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4.4.7  Data Protection 
 

Throughout the study all information collected was kept strictly confidential and 

in accordance with the Data Protection Act (1998). All data was coded using 

participant numbers. All identifying information was stored on a password-

protected document on a University computer and deleted at the end of the 

study. Any screening forms requiring printing were stored in a locked facility 

that only researchers have access to. The data will be kept for up to five years 

and will then be destroyed. This information will not be passed onto any third 

parties or external companies. All data is stored separately from the screening 

forms. 

 

4.5  Pain Measurement 
 
It was felt that although 30 second testing may not indicate a true reflection of 

the pain induced by cycling, it was necessary to measure pain for both 

participatory levels of pain and also as an objective measurement of whether 

any treatment (KTT or neutral taping) initiated a reduction or increase in pain 

over the testing period. The pain perception results were monitored (Figure 

4.37-4.40) during testing and also reported in the results section 4.12. A 

recognised Numeric Pain Scale (NRS) was selected for ease of use, validity, 

(Williamson and Hoggart, 2005, McCaffrey and Beebe, 1989) and adapted for 

cycling (Appendix 22). 

 
 

4.6  Pre-Testing Procedure 
 
 
Participants were given full instruction on use of the static trainer and the 

opportunity to practice on the turbo trainer in situ and warm up (prior to testing) 
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for up to ten minutes. Cadence measurement (Garmin™ 510 sensor) was 

calibrated on each bike using manufacturer‘s instructions and checked via the 

Qualisys™ software with the participant in place, over a 30 second period (at 

80-100rpm this equated to approx. 45 revolutions measured). Clarification of 

the participant‘s understanding of the required cadence, and how to interpret 

and maintain the required power using the on-bike Garmin™ 510 sensor, was 

clarified prior to testing using the 30-second cadence test described. The 

opportunity to cease testing remained throughout the procedure and could be 

initiated by either researcher or participant at any time.  

 
Any reflective sections of clothing or equipment were identified during the warm 

up and taped to minimise any ‗ghost markers‘ during data collection. All tests 

were measured for a duration of 30 seconds. Participants were allowed 

sufficient time to reach the required cadence (80-100rpm) before each test 

began. Where applicable (symptomatic), the numeric pain scale score was 

noted before, during and after each test.  

 

Upon entry to the test area, the protocol was explained and any health and 

safety considerations outlined. The appropriate bike was set up, tested and 

warm up and acclimatisation were achieved prior to testing. All participants 

were allowed sufficient time to familiarise themselves with the operation of the 

static trainer and this was monitored throughout. Once markers were placed, a 

static measurement was taken to enable joint centres to be calculated (outlined 

previously). The relevant markers were then removed prior to dynamic 

measurement through specific testing. 
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4.7  Tape Application 
 

To determine a repeatable and reliable application of the KTT the following 

methods were used:  

For the application of the KTT technique (Figure 4.32) the subject was seated 

with a relaxed knee at approx. 90º of flexion (Kase et al., 1998a, Akbas et al., 

2011). This procedure was used each time and applied by the author. For the 

KTT specific technique three lengths of KTT were cut and applied (Figure 4.31). 

 

Length one was measured at 75% of circumference of participant‘s knee at the 

joint line and across the patella. Approximately 30% of stretch was applied to 

the KTT from ‗off tape‘ (Kase et al., 1998a). 30% was subjectively attained from 

the manufacturer‘s guidelines that KTT comes ‗off tape‘ (meaning off the 

backing tape) at 15% stretch (Figure 4.31) and consequent stretch levels can 

be applied from this point. The inside of the tape did not overlap the medial 

patella (Figure 4.32). The ends (4cm x 2) were anchored with zero stretch in 

accordance with recognised guidelines (Kase et al., 1998a, Chen, 2008). All 

ends were rounded to aid application and to minimise any lifting of tape during 

testing as per manufacturers recommendations (Rocktape™, Campbell, CA, 

USA). An illustration of tape length percentiles, ends and backing tape can be 

seen in in figure 4.31.  

 

Length two was measured at 75% of circumference of participant‘s knee at the 

joint line and across the patella. Approximately 30% of stretch was applied to 

the KTT from ‗off tape‘. The ends (4cm x 2) were anchored with zero stretch in 
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accordance with guidelines. The inside of the tape did not overlap the lateral 

patella (Figure 4.32). 

 

Length three was measured at 75% of circumference of participant‘s knee at 

the joint line and across the patella. Approximately 30% of stretch was applied 

to the KTT from ‗off tape‘. The ends (4cm x 2) were anchored with zero stretch 

in accordance with guidelines. This length was applied under the inferior pole of 

the patella and around the femoral condyles (Figure 4.32). 

 

 

Figure 4.31 – KTT lengths of tape 

 

For the application of the neutral taping technique the subject was seated with a 

relaxed knee at approx. 90º of flexion, the following procedure was used during 

each test and applied by the author. 1 length of KTT was cut and applied. 

 

The neutral tape (Figure 4.31 and 4.33) was measured at 50% of circumference 

of participant‘s knee at the joint line and across the patella, which is in line with 

previous studies (Callaghan et al., 2002, Callaghan, 2012, Selfe et al., 2008). 

Zero stretch was applied KTT from ‗off tape‘ tension. The tape was placed 
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directly across the patella perpendicular to the vertical. The neutral tape 

application is pictured in figure 4.33. 

 

Both right and left side were measured during data collection. However for 

asymptomatic participants only the taped (left) side were reported (Section 

4.11). For symptomatic participants whose affected side was the right side, this 

was the side that was both taped and reported.  

 

 
 

Figure 4.32  KTT application Figure 4.33  Neutral tape application 

 
 
4.8  Methods of Analysis 
 

Joint angles were calculated using a Cardan ―XYZ‖ sequence in conjunction 

with the International Society of Biomechanics (ISB) for the lower limb (Wu et 

al., 2002, Baker, 2003), corresponding to the anatomical axis of motion in the 
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 sagittal, coronal and transverse planes (Grood and Suntay, 1983). Movement 

of each segment was defined relative to the global co-ordinate system.  All data 

was captured and processed using Qualisys Track Manager™ V.2.9 (build 

1697) and then into specialist motion analysis software (C-Motion Visual3D™ 

Version 3.79.0). This produced a dynamic visual representation and carried out 

all the calculations to formulate a report template. Report templates for the hip, 

knee and ankle/foot were produced and the resultant data were exported in 

ascii file format for import to Microsoft excel™.  

 

Data were imported into Microsoft Excel™ and reported in minimum (min), 

maximum (max) and ROM tables with full data sets for use with SPSS™ 

statistical analysis. Participants measured (taped) side was identified and 

indicated from initial testing through to reporting stage to clearly represent the 

investigation with reliability and accuracy. Kinematic patterns provided an initial 

visual perspective for all participants in each area measured and allowed any 

outlying participants that required identification (Appendix 23.1). Data from the 

Visual 3D™ software was exported to Microsoft Excel™ to extract min, max and 

ROM mean values for each participant. All statistical analyses were performed 

using SPSS™ v.22 (for mac). 

 

4.9  Statistical Analysis 
 
 
Data for conditions and powers were normally distributed. This was applied due 

to the data being measured multiple times and in addition a Shapiro-Wilk‘s test 

(p>0.05) undertaken with visual inspection of histograms, normal Q-Q plots and 

box plots showings approximate normal distribution. Skewness and kurtosis 

produced z-values between +/- 1.96. An analysis of variance (ANOVA) test was 
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performed and a 0.05 level of significance used to explore the effects of 

asymptomatic/symptomatic, condition and power regardless of each other  

(n=20). This indicated any main effects of power, condition and pain/no pain. 

Further exploration was undertaken and reported via post hoc tests ( = < 

0.05), which investigated any effects within each specific power and condition in 

the two groups separately. P-values were reported comparing the results of the 

knee, hip and ankle, across each treatment intervention (KTT, Neutral and No 

tape) at the three separate power levels (100W, 200W and 300W).  

 
 
4.10  Statistical Power and Analysis 
 

Based on previous studies (Selfe et al., 2008, Selfe et al., 2011, Theobald et al., 

2012) on the effect of knee bracing on biomechanical parameters, mean 

differences have been greater than the standard deviations for several 

biomechanical parameters, e.g. the transverse plane range of motion 2.32 

degrees with a standard deviation of 3.72 degrees. A statistical power 

calculation yields that with a 90% statistical power, and a significance level of 

5%, the sample size needs to be greater than nine to produce a result. 

Therefore with a minimum sample size of 15 we would be able to detect any 

significant changes in the biomechanical parameters. Previous work utilising a 

similar protocol and methodology has produced accepted statistical differences 

and power calculations (Selfe et al., 2008, Sinclair et al., 2014).  
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4.11  Biomechanical Study Results 
 

4.11.1  Results structure: 
 

Results are reported by joint in the following sequence 
 

1. Knee 
2. Hip 
3. Ankle 

 
For each joint results are reported sequentially for the sagittal, coronal and 
transverse planes (Figure 4.34, 4.35 and 4.36) 
 
 

   
Fig 4.34 - Sagittal plane Fig 4.35 - Coronal plane Fig 4.36 - Transverse 

plane 

 

Table 4.2 (below) represents an overview of the variables measured and 
reported in this section. 
 

Table 4.2 Overview of variables 
 

Planes Sagittal Coronal Transverse 

Joints measured Knee Hip Ankle 

Conditions 
applied 

KTT Neutral tape No tape 

Participants Asymptomatic Symptomatic  

Powers 
measured 

100W 200W 300W 

Analysis 
Descriptive 

(Min/Max/ROM) 
Analysis of 
Variance 
(ANOVA) 

Post hoc analysis 
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Only significant and notable results are presented in the following tables for 

each joint plane. Results include: Analysis of Variance and Post hoc tests 

exploring asymptomatic/symptomatic, conditions and power, all other results 

are located in the appendix. 

 
 
There are three formats of analyses within each section (knee/hip/ankle) 
 

1. Min, Max and ROM tables: 
a. Asymptomatic (n=12) - Min, Max and ROM tables: 

i. Mean values across each test are reported 
ii. Standard deviations for each test are reported 
iii. Narrative of notable trends and changes 

b. Symptomatic (n=8) - Min, Max and ROM tables: 
i. Mean values across each test are reported 
ii. Standard deviations for each test are reported  
iii. Narrative of notable trends and changes 

2. Analysis of variance (ANOVA) across all participants- n=20 
(tables presented where significant only) 
a. Sagittal plane - ROM 

i. Between conditions (KTT/Neutral tape/No tape) 
ii. Between asymptomatic and symptomatic participants 
iii. Between powers (100W/200W/300W) 

b. Coronal plane - ROM 
i. Between conditions (KTT/Neutral tape/NO tape) 
ii. Between asymptomatic and symptomatic participants 
iii. Between powers (100W/200W/300W) 

c. Transverse plane - ROM 
i. Between conditions (KTT/Neutral tape/NO tape) 
ii. Between asymptomatic and symptomatic participants 
iii. Between powers (100W/200W/300W) 

 
3. Subsequent Post hoc analysis: 

(tables presented where significant only) 
a. Asymptomatic - summary of affected conditions and powers in 

regard to statistical significant differences: 
i. ROM (SD) 
ii. Significant difference (sig) 
iii. Mean difference 

b. Symptomatic - summary of affected conditions and powers in 
regard to statistical significant differences: 

i. ROM (SD) 
ii. Significant difference (sig) 
iii. Mean difference 

 



 147 

 

4.11.2  Results 
 

KNEE results  
Table 4.3 - Asymptomatic (n=12) Sagittal plane knee kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Flexion 
(Degrees)  

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 117.69 34.54 83.15 117.63 33.74 83.88 117.77 33.12 84.65 

SD 3.98 6.79 5.54 3.89 6.61 5.45 3.55 6.54 5.47 

NEUTRAL 
TAPE  

118.16 34.82 83.34 118.18 33.96 84.22 118.32 33.09 85.23 

SD 4.21 6.83 5.38 4.38 6.89 5.03 4.54 6.66 4.84 

NO TAPE 118.41 34.77 83.64 118.52 33.64 84.87 118.28 32.12 86.16 

SD 4.80 6.69 4.95 4.71 6.87 5.20 4.68 7.02 5.78 
 

 
Table 4.4 - Asymptomatic (n=12)  Coronal plane knee kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 6.22 -0.11 6.33 5.84 -0.61 6.44 5.68 -1.09 6.77 

SD 5.76 6.10 2.60 5.45 6.06 2.91 5.43 5.79 2.52 

NEUTRAL 
TAPE  

6.18 -0.14 6.32 5.77 -1.07 6.84 5.82 -0.89 6.71 

SD 5.71 6.22 2.19 5.17 5.91 2.72 5.26 5.51 2.44 

NO TAPE 6.50 -0.42 6.92 6.14 -0.85 6.99 6.10 -0.87 6.97 

SD 5.86 6.24 2.47 5.60 6.03 3.02 5.35 5.68 2.70 
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Table 4.5 - Asymptomatic (n=12)  Transverse plane knee kinematics 

          

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 10.96 -3.46 14.42 10.73 -3.15 13.88 10.42 -3.04 13.46 

SD 5.41 4.20 7.16 4.99 4.06 6.57 4.62 4.03 6.42 

NEUTRAL 
TAPE  

11.15 -3.44 14.59 11.21 -2.67 13.89 11.09 -2.43 13.52 

SD 5.46 4.51 7.43 5.60 4.14 6.89 5.23 4.16 6.92 

NO TAPE 11.01 -3.38 14.39 11.11 -2.74 13.84 11.19 -2.87 14.05 

SD 6.54 4.20 7.36 6.17 3.97 7.19 5.45 4.31 7.53 
 

 
 

POWER: The results indicate a gradual increase in sagittal and coronal ROM (tables 4.3,4.4) as the power increases (Asymptomatic). The 

transverse ROM (table 4.5) indicates a reduction with the associated increase in power (Asymptomatic). With sagittal movement the increase in 

ROM is seen predominantly in the Min (extension). As the power increases, the degree of extension increases. In the coronal plane the 

increase in ROM is seen into the MIN (valgum) movement: as the power increases the knee moves more medially towards the bike (Valgus). 

Transverse movement produces small amounts of movement with power increase, any changes are mainly seen in external rotation. As the 

power increases the knee extends more, moves medially and also externally rotates. 

 

CONDITION: Taping appears to decrease the ROM, with the main effect being in flexion in the sagittal plane (table 4.3). In the coronal plane 

the taping reduces ROM also (table 4.4), with the main effect being in knee varus movement. Transverse plane movement is affected by very 

small amounts with internal rotation being reduced slightly by the taping conditions (table 4.5). 
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Table 4.6 - Symptomatic (n=8)  Sagittal plane knee kinematics 
 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 117.88 33.67 84.20 117.85 33.31 84.54 117.49 32.91 84.58 

SD 4.86 6.42 6.15 4.57 5.97 6.06 4.40 5.39 4.88 

NEUTRAL TAPE  118.58 34.69 83.89 117.97 33.21 84.76 118.15 32.60 85.55 

SD 5.14 6.51 6.59 5.33 6.99 6.19 5.57 6.51 5.62 

NO TAPE 118.99 34.95 84.04 118.78 33.74 85.04 118.30 32.29 86.02 

SD 5.88 7.23 6.67 5.70 7.37 6.76 5.74 6.76 6.38 

          
 

 
 

 
Table 4.7 - Symptomatic (n=8)  Coronal plane knee kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

MAX 
Varum 

(Degrees) 

MIN 
Valgum 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 7.91 -0.08 8.00 7.13 -0.28 7.41 7.15 -0.94 8.08 

SD 8.38 10.15 3.00 8.29 9.93 3.32 8.00 9.88 3.50 

NEUTRAL TAPE  8.19 0.10 8.09 7.51 -0.13 7.63 7.57 -0.80 8.37 

SD 8.33 10.20 2.72 7.69 9.64 3.24 7.54 9.54 3.66 

NO TAPE 8.64 0.41 8.23 8.14 0.61 7.53 7.54 -0.16 7.71 

SD 8.33 9.58 2.24 8.21 9.09 2.34 7.45 8.81 2.85 
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Table 4.8 - Symptomatic (n=8)  Transverse plane knee kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

MAX 
Internal R 
(Degrees) 

MIN 
External R 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 12.58 -3.75 16.33 11.81 -3.86 15.67 11.38 -3.67 15.04 

SD 7.96 6.18 8.02 7.74 6.43 7.75 7.90 6.46 7.05 

NEUTRAL TAPE  12.39 -3.34 15.73 12.33 -3.34 15.67 11.72 -3.47 15.19 

SD 8.26 6.77 8.93 8.92 6.57 8.24 8.80 6.80 8.09 

NO TAPE 12.55 -3.24 15.79 12.74 -3.68 16.42 11.71 -3.56 15.27 

SD 9.16 6.41 8.96 9.23 6.42 8.22 9.38 6.79 8.57 
 

 

POWER: In the sagittal plane (table 4.6), as with Asymptomatic cyclists, as the power increases the ROM appears to increase. However, with 

Symptomatic cyclists this increase appears less in comparison.  In the coronal plane (table 4.7) ROM indicates a slight decrease across power 

(100-300w) in knee varum. Transverse movement (table 4.8) indicates a predominant decrease in ROM from 100w to 300w with the main 

decrease being in internal rotation movement. 

 

CONDITION: As with Asymptomatic cyclists taping appears to decrease the ROM with cyclists with knee pain, again with the main effect being 

in flexion in the sagittal plane (table 4.6). In the coronal plane the taping reduces ROM also, with the main effect being in knee varus movement 

(table 4.7). As with Asymptomatic cyclists, transverse plane movement (table 4.8) is affected by similarly small amounts with internal rotation 

being reduced slightly by the taping conditions. 
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Analysis of variance (ANOVA) across all participants- n=20 
 
SAGITTAL PLANE – ROM - KNEE 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 

 
Between powers (100W/200W/300W) 
 
No significant differences 
 
 

CORONAL PLANE – ROM - KNEE 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Table 4.9 - Between Asymptomatic and Symptomatic participants 
 

  Mean ROM (º) 
Mean Diff 

(º) Sig 

Asymptomatic 6.700 -1.194* .005 

Symptomatic 7.894 1.194* .005 

 
 
Between powers (100W/200W/300W) 
 
No significant differences 

 
TRANSVERSE PLANE – ROM - KNEE 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 
 

Between powers (100W/200W/300W) 
 
No significant differences 
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Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
ASYMPTOMATIC KNEE kinematics 
 

Table 4.10 - Sagittal plane – Asymptomatic participants (n=12) – KNEE KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff  

(1) KTT & (2) No tape 200W (1) 83.88 (5.45) (2) 84.87 (5.20) 0.002 0.99 
(1) Neutral ( (2) No tape 200W (1) 84.22 (5.03) (2) 84.87 (5.20) 0.011 0.65 
(1) KTT & (2) No tape 300W (1) 84.65 (5.47) (2) 86.16 (5.78) 0.005 1.51 

(1) Neutral ( (2) No tape 300W (1) 85.23 (4.84) (2) 86.16 (5.78) 0.041 0.93 

     

Neutral tape (1) 200W & (2) 300W (1) 84.22 (5.03) (2) 85.23 (4.84) 0.002 1.01 
NO tape (1) 100W & (2) 300W (1) 83.64 (4.95) (2) 86.16 (5.78) 0.005 2.52 
NO tape (1) 200W & (2) 300W (1) 84.87 (5.20) (2) 86.16 (5.78) 0.002 1.59 

 

 
Table 4.11 - Coronal plane – Asymptomatic participants (n=12) – KNEE KINEMATICS 

 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) No tape 100W (1) 6.33 (2.60) (2) 6.92 (2.47) 0.023 0.59 
      

 
 

Table 4.12 - Transverse plane  - Asymptomatic participants (n=12) – KNEE KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) Neutral & (2) No tape 300W (1) 13.52 (6.92) (2) 14.05 (7.53) 0.033 0.53 
     

Neutral tape (1) 200W & (2) 300W (1) 13.89 (6.89) (2) 13.52 (6.92) 0.042 0.37 
      

 
 

Note: A visual comparison of significant differences across planes can be found in the appendix  
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Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
SYMPTOMATIC  Knee kinematics  
 

Table 4.13 - Sagittal plane - Symptomatic participants (n=8) - KNEE KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) Neutral tape 300W (1) 84.58 (4.88) (2) 85.55 (5.62) 0.014 0.97 

     

Neutral tape (1) 100W & (2) 300W (1) 83.89 (6.59) (2) 85.55 (5.62) 0.026 1.66 
NO tape (1) 100W & (2) 200W (1) 84.04 (6.67) (2) 85.04 (6.76) 0.016 1.00 
NO tape (1) 100W & (2) 300W (1) 84.04 (6.67) (2) 86.02 (6.38) 0.002 1.98 

 
 
 

Table 4.14 - Coronal plane - Symptomatic participants (n=8) - KNEE KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

KTT 1) 200W & (2) 300W (1) 7.41 (3.32) (2) 8.08 (3.50) 0.029 0.67 
      

 
 

Table 4.15 - Transverse plane - Symptomatic participants (n=8) - KNEE KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

NO tape (1) 200W & (2) 300W (1) 16.42 (8.22) (2) 15.27 (8.57) 0.017 1.15 
      

 

 
Note: A visual comparison of significant differences across planes can be found in the appendix  
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HIP results  
 

 

Table 4.16 - Asymptomatic (n=12)  Sagittal plane HIP kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 106.57 54.97 51.59 107.01 55.25 51.76 107.40 55.16 52.24 

SD 9.60 11.30 4.02 9.13 11.28 3.46 8.51 9.99 2.99 

NEUTRAL TAPE  107.52 55.96 51.56 107.79 55.95 51.84 107.38 54.83 52.54 

SD 8.73 10.88 4.02 8.19 9.73 2.98 7.72 9.08 3.29 

NO TAPE 106.94 55.24 51.70 107.44 54.98 52.46 108.18 54.89 53.28 

SD 9.19 10.97 3.82 8.57 10.17 3.51 7.91 9.27 2.87 

          
 

 
 

Table 4.17 - Asymptomatic (n=12)  Coronal plane HIP kinematics 

        

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD – 

(Degrees) 

ROM 
(Degrees) 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD – 

(Degrees) 

ROM 
(Degrees) 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD – 

(Degrees) 

ROM 
(Degrees) 

KT TAPE -7.53 -12.50 4.97 -7.44 -13.10 5.66 -6.86 -13.27 6.41 

SD 3.52 2.73 2.96 3.92 2.63 3.51 4.03 3.43 4.36 

NEUTRAL TAPE  -7.27 -12.97 5.70 -6.84 -13.62 6.78 -6.64 -13.72 7.08 

SD 3.08 2.89 2.82 3.37 3.09 3.69 3.75 3.48 4.31 

NO TAPE -7.29 -12.34 5.05 -6.88 -13.03 6.14 -6.28 -13.23 6.95 

SD 3.60 2.84 2.93 3.87 2.92 3.73 3.89 3.05 4.01 
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Table 4.18 - Asymptomatic (n=12)  Transverse plane HIP kinematics 
 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 9.82 -0.17 10.00 9.79 -0.54 10.33 9.88 -0.83 10.71 

SD 8.24 9.53 2.63 8.68 8.88 2.15 9.02 9.34 2.71 

NEUTRAL TAPE  10.00 0.13 9.87 9.98 -0.25 10.23 10.04 -0.99 11.03 

SD 8.63 9.72 2.19 8.38 9.07 2.48 9.49 9.21 2.56 

NO TAPE 10.26 0.25 10.00 10.31 -0.43 10.74 10.45 -0.77 11.22 

SD 9.26 9.70 2.27 9.30 9.77 2.86 9.81 9.90 2.88 
 

 
 

POWER: With the Asymptomatic Hip, as the power increases (100w to 300w) the ROM indicates an increase (table 4.16). This sagittal 

increase appears to be in hip flexion rather than extension. In the coronal plane (table 4.17), ROM increases with power with the increase 

emanating from hip adduction. In the transverse plane (table 4.18) as the power increases, there is also an increase in hip ROM. This 

movement appears equally distributed across both external and internal rotation. 

 

CONDITION: In the Asymptomatic cyclists hip, the sagittal plane (table 4.16) indicates a decrease in ROM without a clear pattern as to which 

movement (flexion/extension) is most affected. Coronal plane ROM (table 4.17) appears decreased by taping however once again without a 

clear pattern as to whether adduction or abduction is the most influenced by taping. The transverse plane (table 4.18) is largely unaffected by 

taping in the ROM results. 
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Table 4.19 - Symptomatic (n=8)  Sagittal plane HIP kinematics 

       

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

MAX 
Flexion 
(Degrees) 

MIN 
Extension 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 100.24 50.26 49.98 100.88 50.61 50.27 102.45 51.77 50.68 

SD 10.54 8.67 7.33 10.45 8.98 6.80 10.30 9.21 5.89 

NEUTRAL TAPE  102.46 51.93 50.53 102.08 51.39 50.70 103.06 51.44 51.62 

SD 11.61 10.67 6.60 12.04 10.25 5.68 11.71 9.85 6.34 

NO TAPE 101.12 50.74 50.38 101.20 50.39 50.81 102.92 51.61 51.31 

SD 11.57 9.69 6.77 10.90 8.02 6.48 12.20 8.97 6.67 

          
 

 
 

Table 4.20 - Symptomatic (n=8)  Coronal plane HIP kinematics 

          

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD – 

(Degrees) 

ROM 
(Degrees) 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD- 
(Degrees) 

ROM 
(Degrees) 

MAX 
Hip AB + 
(Degrees) 

MIN 
Hip ADD – 

(Degrees) 

ROM 
(Degrees) 

KT TAPE -3.55 -7.43 3.89 -3.63 -7.71 4.07 -3.33 -7.67 4.34 

SD 6.22 6.59 0.95 6.35 6.73 1.40 6.46 6.84 1.65 

NEUTRAL TAPE  -3.57 -7.91 4.34 -3.67 -8.41 4.74 -2.96 -8.25 5.29 

SD 5.76 6.49 1.55 5.68 6.92 1.78 6.11 7.05 1.94 

NO TAPE -4.47 -8.61 4.14 -4.36 -8.73 4.38 -3.74 -8.95 5.21 

SD 5.41 5.79 1.42 5.37 5.84 1.73 5.49 5.79 2.46 
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Table 4.21 - Symptomatic (n=8)  Transverse plane HIP kinematics 

          

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

MAX 
External R 

(Degrees) 

MIN 
Internal R 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 8.14 -1.22 9.36 8.44 -2.45 10.89 8.83 -2.82 11.66 

SD 11.55 12.45 2.86 11.50 12.23 2.59 11.90 12.40 2.15 

NEUTRAL TAPE  9.52 -0.32 9.84 8.87 -1.75 10.62 9.82 -2.00 11.82 

SD 11.43 12.38 2.26 11.28 11.42 2.09 11.99 12.09 2.20 

NO TAPE 9.64 0.32 9.32 9.97 -1.30 11.27 10.14 -1.67 11.81 

SD 12.00 11.92 2.48 12.34 12.02 2.31 12.55 12.30 2.18 
 

 

 
POWER: In the Symptomatic cyclists hip there is a general increase in sagittal ROM as the power increases, albeit less so in KTT (table 4.19). 

This is indicated by an increase in hip flexion rather than extension. In the coronal plane (table 4.20) an increase in power (100w to 300w) 

conveys an increase hip adduction and subsequent ROM. Transverse plane movement (table 4.21) increases ROM more considerably with 

power, with the main change being internal rotation. 

 

CONDITION: In the sagittal plane (table 4.19), the Symptomatic cyclists hip decreases in ROM with taping. The change here being across both 

flexion and extension. In the coronal plane (table 4.20), taping appears to decrease ROM with this decrease being in both adduction and 

abduction. Transverse plane (table 4.21) indicates only very small amounts of movement with taping across ROM. 
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Analysis of variance (ANOVA) across all participants- n=20 
 
SAGITTAL PLANE – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 

 
Between powers (100W/200W/300W) 
 
No significant differences 
 
 

CORONAL PLANE – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Table 4.22 - Between Asymptomatic and Symptomatic participants 
 

  Mean ROM (º) Mean Diff (º) Sig 

Asymptomatic 6.083 1.595* .001 

Symptomatic 4.488 -1.595* .001 

 
Table 4.23 - Between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

100W 200W -.613 .279 

300W -1.199* .035 

200W 100W .613 .279 

300W -.586 .301 

300W 100W 1.199* .035 

200W .586 .301 
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TRANSVERSE PLANE – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 

 
Table 4.24 - Between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

100W 200W -.947* .041 

300W -1.642* .000 

200W 100W .947* .041 

300W -.695 .133 

300W 100W 1.642* .000 

200W .695 .133 
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Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
ASYMPTOMATIC  HIP kinematics  
 

Table 4.25 - Sagittal plane - Asymptomatic participants (n=12) - HIP KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff  

(1) KTT & (2) No tape 200W (1) 51.76 (3.46) (2) 52.46 (3.51) 0.040 0.70 
(1) KTT ( (2) No tape 300W (1) 52.24 (2.99) (2) 53.28 (2.87) 0.018 1.04 

(1) Neutral (2) No tape 300W (1) 52.54 (3.29) (2) 53.28 (2.87) 0.026 0.74 

     

Neutral tape (1) 100W & (2) 300W (1) 51.56 (4.02) (2) 52.54 (3.29) 0.041 0.98 
Neutral tape (1) 200W & (2) 300W (1) 51.84 (2.98) (2) 52.54 (3.29) 0.006 0.70 

NO tape (1) 100W & (2) 200W (1) 51.70 (3.82) (2) 52.46 (3.51) 0.037 0.76 
NO tape (1) 100W & (2) 300W (1) 51.70 (3.82) (2) 53.28 (2.87) 0.025 1.58 

 
 

Table 4.26 - Coronal plane - Asymptomatic participants (n=12) - HIP KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) Neutral & (2) No tape 100W (1) 5.70 (2.82) (2) 5.05 (2.93) 0.051 0.65 
(1) KTT & (2) Neutral tape 200W (1) 5.66 (3.51) (2) 6.78 (3.69) 0.021 1.12 
(1) KTT & (2) Neutral tape 300W (1) 6.41 (4.36) (2) 7.08 (4.31) 0.044 0.67 

KTT (1) 100W & (2) 200W (1) 4.97 (2.96) (2) 5.66 (3.51) 0.018 0.69 
KTT (1) 100W & (2) 300W (1) 4.97 (2.96) (2) 6.41 (4.36) 0.015 1.44 

Neutral tape (1) 100W & (2) 200W (1) 5.70 (2.82) (2) 6.78 (3.69) 0.016 1.08 
NO tape 1) 100W & (2) 200W (1) 5.05 (2.93) (2) 6.14 (3.73) 0.017 1.09 
NO tape 1) 100W & (2) 300W (1) 5.05 (2.93) (2) 6.95 (4.01) 0.004 1.90 
NO tape (1) 200W & (2) 300W (1) 6.14 (3.73) (2) 6.95 (4.01) 0.008 0.81 

 
 

Table 4.27 - Transverse plane - Asymptomatic participants (n=12) - HIP KINEMATICS 
 

Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) No tape 300W (1) 10.71 (2.71) (2) 11.22 (2.88) 0.045 0.51 

 

Note: A visual comparison of significant differences across planes can be found in the appendix 
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Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
SYMPTOMATIC HIP kinematics 
 

Table 4.28 - Sagittal plane - Symptomatic participants (n=8) - HIP KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) Neutral tape 300W (1) 50.68 (5.89) (2) 51.62 (5.89) 0.016 0.94 

     

Neutral tape (1) 200W & (2) 300W (1) 50.70 (5.68) (2) 51.62 (6.34) 0.023 0.92 

 

 
Table 4.29 - Coronal plane - Symptomatic participants (n=8) - HIP KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

Neutral tape (1) 200W & (2) 300W (1) 4.74 (1.78) (2) 5.29 (1.94) 0.039 0.55 
No tape (1) 200W & (2) 300W (1) 4.38 (1.73) (2) 5.21 (2.46) 0.042 0.83 

 

 
Table 4.30 - Transverse plane - Symptomatic participants (n=8) - HIP KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

KTT (1) 100W & (2) 200W (1) 9.36 (2.86) (2) 10.89 (2.59) 0.000 1.53 
KTT (1) 100W & (2) 300W (1) 9.36 (2.86) (2) 11.66 (2.15) 0.004 2.30 

Neutral tape (1) 100W & (2) 300W (1) 9.84 (2.26) (2) 11.82 (2.20) 0.009 1.98 
Neutral tape (1) 200W & (2) 300W (1) 10.62 (2.09) (2) 11.82 (2.20 0.009 1.20 

NO tape (1) 100W & (2) 200W (1) 9.32 (2.48) (2) 11.27 (2.31) 0.001 1.95 
NO tape (1) 100W & (2) 300W (1) 9.32 (2.48) (2) 11.81 (2.18) 0.001 2.49 

      

 

 
 
Note: A visual comparison of significant differences across planes can be found in the appendix 
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ANKLE results  
 

Table 4.31 - Asymptomatic (n=12)  Sagittal plane ankle kinematics 
 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 67.85 41.97 25.88 67.09 41.21 25.87 67.32 41.32 25.99 

SD 7.41 8.59 6.56 7.62 8.84 7.03 6.20 8.56 6.36 

NEUTRAL 
TAPE  

68.11 42.19 25.93 68.47 41.98 26.49 68.62 41.71 26.91 

SD 6.27 8.36 6.10 5.52 9.15 7.86 5.02 8.88 6.07 

NO TAPE 68.18 42.08 26.10 67.64 41.89 25.75 68.49 42.24 26.25 

SD 6.19 8.16 6.08 5.80 8.61 6.42 6.51 9.03 6.65 

          
 

 

 
Table 4.32 - Asymptomatic (n=12)  Coronal plane ankle kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

KT TAPE -2.08 -7.64 5.56 -2.04 -7.94 5.90 -1.89 -8.12 6.24 

SD 4.43 4.08 1.72 4.66 4.36 1.67 4.09 4.31 1.65 

NEUTRAL 
TAPE  

-2.12 -7.52 5.40 -2.33 -8.06 5.73 -2.12 -8.23 6.11 

SD 4.70 4.31 1.78 4.38 4.26 1.85 4.66 4.49 1.79 

NO TAPE -2.40 -7.86 5.46 -2.40 -7.94 5.55 -2.06 -8.15 6.08 

SD 4.73 4.38 1.68 4.85 4.57 1.60 4.73 4.70 1.67 
 

  



 163 

 
Table 4.33 - Asymptomatic (n=12)  Transverse plane ankle kinematics 

          

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
External R + 

(Degrees) 

MIN  
Internal R – 

(Degrees) 

ROM 
(Degrees) 

MAX 
External R + 

(Degrees) 

MIN 
Internal R – 

(Degrees) 

ROM 
(Degrees) 

MAX 
External R + 

(Degrees) 

MIN 
Internal R – 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 9.87 4.84 5.03 9.92 4.76 5.17 10.00 4.82 5.18 

SD 7.40 7.07 1.98 6.99 7.02 1.97 7.14 6.82 2.00 

NEUTRAL 
TAPE  

10.15 4.59 5.56 10.50 4.95 5.54 10.02 4.62 5.39 

SD 7.17 6.91 2.04 7.31 6.92 2.42 7.17 6.83 2.34 

NO TAPE 10.52 4.53 5.98 10.17 4.51 5.65 10.16 4.43 5.73 

SD 7.33 6.45 2.29 7.29 6.70 1.97 6.79 6.55 2.17 
 

 
 

POWER: With the Asymptomatic cyclists in the sagittal plane (table 4.31) there is very little change across power (100w to 300w). Neither 

plantar-flexion or dorsi-flexion exhibit any notable changes across power. The coronal plane (table 4.32) indicates a general increase in ROM 

with a power increase. This increase appears to be across both inversion and eversion rather than from a specific movement. The transverse 

plane (table 4.33) does not indicate any notable change across either movement; external rotation or internal rotation. 

 

 

CONDITION: in Asymptomatic cyclists, with the taping conditions, the sagittal plane (table 4.31) does not indicate any notable pattern of 

movement in either movement, plantar-flexion or dorsi-flexion. In the coronal plane (table 4.32), there appears to be a general trend towards an 

increase in ROM with taping. This increase in ROM appears synonymous with a change in inversion of the ankle. Transverse plane movement 

(table 4.33) indicate a decrease in ROM with taping conditions. This decrease appears to be alongside a decrease in external rotation of the 

ankle. 
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Table 4.34 - Symptomatic (n=8)  Sagittal plane ankle kinematics 

       

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

MAX 
Dorsi-Flex 

(Degrees) 

MIN 
Plantar flex 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 71.49 43.77 27.72 71.71 43.80 27.91 70.76 43.20 27.56 

SD 7.55 9.47 9.58 5.98 9.14 10.12 4.75 9.66 8.75 

NEUTRAL 
TAPE  

70.91 43.82 27.09 71.55 43.51 28.04 70.74 43.76 26.98 

SD 6.78 9.25 9.11 3.97 10.10 10.35 4.87 9.44 9.26 

NO TAPE 71.25 43.70 27.55 70.63 43.50 27.13 71.91 44.54 27.37 

SD 6.43 9.20 9.53 5.40 9.50 10.44 4.78 10.19 9.65 

          
 

 
 

Table 4.35 - Symptomatic (n=8)  Coronal plane ankle kinematics 

      

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

MAX 
Inversion 
(Degrees) 

MIN 
Eversion 
(Degrees) 

ROM 
(Degrees) 

KT TAPE 0.49 -4.65 5.15 0.84 -4.73 5.57 1.28 -4.62 5.90 

SD 5.54 5.35 2.10 4.97 5.42 2.25 4.82 5.33 2.32 

NEUTRAL 
TAPE  

0.54 -4.32 4.86 0.86 -4.76 5.62 1.07 -4.71 5.78 

SD 5.29 5.32 2.01 4.98 5.45 2.34 5.09 5.58 2.25 

NO TAPE 0.45 -4.72 5.17 0.85 -4.73 5.58 0.65 -5.13 5.77 

SD 5.62 5.56 1.88 5.45 5.83 2.48 5.43 5.86 2.37 
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Table 4.36 - Symptomatic (n=8)  Transverse plane ankle kinematics 

 

CONDITION 

POWER 

100 W 200 W 300 W 

MAX 
External R+ 

(Degrees) 

MIN 
Internal R – 

(Degrees) 

ROM 
(Degrees) 

MAX 
External R+ 

(Degrees) 

MIN 
Internal R – 

(Degrees) 

ROM 
(Degrees) 

MAX 
External R+ 

(Degrees) 

MIN 
Internal R – 

(Degrees) 

ROM 
(Degrees) 

KT TAPE 13.51 7.39 6.12 13.31 7.42 5.88 13.58 7.31 6.28 

SD 3.42 3.56 2.27 2.69 2.98 2.17 3.08 3.25 2.58 

NEUTRAL 
TAPE  

13.36 7.21 6.15 13.48 7.18 6.30 13.39 7.03 6.37 

SD 3.07 3.42 2.65 3.56 3.87 3.21 3.36 3.74 3.09 

NO TAPE 13.34 6.97 6.37 13.17 6.73 6.44 13.29 6.89 6.40 

SD 3.27 3.83 2.81 3.22 4.21 3.05 2.89 4.05 3.16 
 

 
 

POWER: With Symptomatic cyclists in the sagittal plane (table 4.34) neither the ROM, plantar-flexion or dorsi-flexion indicate any trend 

towards change across powers. With coronal plane movement (table 4.35) across powers the ROM appears to increase from 100w to 300w. 

The main increase in ROM is into inversion rather than eversion. The transverse plane (table 4.36) does not appear to signify a change across 

powers (100w to 300w) in ROM or external/internal rotation. 

 

 

CONDITION: In the sagittal plane (Symptomatic) movement (table 4.34), no pattern of ROM movement with taping is indicated. Also neither 

plantar-flexion or dorsi-flexion are affected by power in a notable way. Coronal plane movement (table 4.35) taping also does not seem to 

indicate a trending change in ROM; inversion or eversion. Symptomatic cyclists in the transverse plane (table 4.36) appear to exhibit a 

decrease in ROM with taping. This is associated with an increase in internal rotation with taping. 

 
 



 166 

 
Analysis of variance (ANOVA) across all participants- n=20 
 
SAGITTAL PLANE – ROM - ANKLE 

 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 

 
Between powers (100W/200W/300W) 
 
No significant differences 

 
 
CORONAL PLANE – ROM - ANKLE 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
Between Asymptomatic and Symptomatic participants 
 
No significant differences 

 
 
Table 4.37 - Between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

100W 200W -.393 .277 

300W -.714* .049 

200W 100W .393 .277 

300W -.321 .373 

300W 100W .714* .049 

200W .321 .373 
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TRANSVERSE PLANE – ROM - ANKLE 
 
 
Between conditions (KTT/Neutral tape/No tape) 
 
No significant differences 

 
 
Table 4.38 - Between Asymptomatic and Symptomatic participants 
 

  
Mean ROM 

(º)  Mean Diff (º) Sig 

Asymptomatic 5.470 -.787* .034 

Symptomatic 6.257 .787* .034 

 
 
Between powers (100W/200W/300W) 
 
No significant differences 
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Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
ASYMPTOMATIC  ANKLE kinematics  
 

 
Sagittal plane - Asymptomatic participants (n=12) - ANKLE KINEMATICS 

No significant differences across conditions or powers 

 

 
Table 4.39 - Coronal plane - Asymptomatic participants (n=12) - ANKLE KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) No tape 200W (1) 5.90 (1.67) (2) 5.55 (1.60) 0.008 0.35 
 

Neutral tape (1) 100W & (2) 300W (1) 5.40 (1.78) (2) 6.11 (1.79) 0.033 0.71 
Neutral tape (1) 200W & (2) 300W (1) 5.73 (1.85) (2) 6.11 (1.79) 0.030 0.38 

NO tape (1) 100W & (2) 300W (1) 5.46 (1.68) (2) 6.08 (1.67) 0.031 0.62 
NO tape (1) 200W & (2) 300W (1) 5.55 (1.60) (2) 6.08 (1.67) 0.006 0.53 

      

 

 
Table 4.40 - Transverse plane - Asymptomatic participants (n=12) - ANKLE KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) KTT & (2) Neutral tape 100W (1) 5.03 (1.98) (2) 5.56 (2.04) 0.004 0.53 
(1) KTT & (2) NO tape 100W (1) 5.03 (1.98) (2) 5.98 (2.29) 0.001 0.95 
(1) KTT & (2) NO tape 200W (1) 5.17 (1.97) (2) 5.65 (1.97) 0.044 0.48 
(1) KTT & (2) NO tape 300W (1) 5.18 (2.00) (2) 5.73 (2.17) 0.010 0.55 

      

 
Note: A visual comparison of significant differences across planes can be found in the appendix 
  



 169 

 
Post hoc analysis: 
Summary of affected conditions and powers in regard to statistical significant differences 
 
 
SYMPTOMATIC  ANKLE kinematics  
 
 
 
 

Sagittal plane - Symptomatic participants (n=8) - ANKLE KINEMATICS 
No significant differences across conditions or powers 

 

 
Table 4.41 - Coronal plane - Symptomatic participants (n=8) - ANKLE KINEMATICS 

 
Condition Power Mean ROM in degrees (SD) sig Mean diff 

(1) Neutral & (2) NO tape 100w (1) 4.86 (2.01) (2) 5.17 (1.88) 0.035 0.31 

Neutral tape (1) 100W & (2) 200W (1) 4.86 (2.01) (2) 5.62 (2.34) 0.039 0.76 
Neutral tape (1) 100W & (2) 300W (1) 4.86 (2.01) (2) 5.78 (2.25) 0.040 0.92 

 

 

 
 

Transverse plane - Symptomatic participants (n=8) - ANKLE KINEMATICS 
No significant differences across conditions or powers 

 

 

Note: A visual comparison of significant differences across planes can be found in the appendix 
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4.12  Pain Measurement Results 
 
 

 
 

Figure 4.37  Numerical Pain Rating results from symptomatic participants (n=8) 
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Figure 4.38  Pre (NPRS) test from symptomatic participants (n=8) 
 

 
 
 

Figure 4.39  During (NPRS) test from symptomatic participants (n=8) 
 

 
 
 

Figure 4.40  Post (NPRS) test from symptomatic participants (n=8) 
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Table 4.42 – Pain (mean) scores (pre/during/post) 
 

PAIN KTT NEUT  NO Mean 

100W 2.75 2.75 3.5 3 

200W 2.5 2.75 3.75 3 

300W 3.25 2.25 3.25 2.91 

Mean 2.83 2.58 3.5  

     

 

Figures 4.37 to 4.40 indicate a small increase in pain response during the data 

collection phase of each test. This could be somewhat expected due to the 

increase in patello-femoral forces during the power production phase of testing 

with symptomatic cyclists. Pain post testing was reduced in all but two cases. 

Overall however, there was a mean reduction in pain with taping (19% KTT and 

26% neutral) (table 4.42) compared to that of no taping. This could be seen to 

be in line with the evidence base in that it is essentially short term (testing time 

frame). Interestingly table 4.45 indicates that at 200W there was a large 

percentage change (33%) between KTT (2.5) and no taping (3.75) in the mean 

pain response across pre, during and post testing. The protocol did not allow 

fatigue to become a factor and hence it is unclear whether KTT or neutral tape 

has a positive effect on knee pain after longer timescales of cycling. It should 

also be considered that the pre, during and post-test NPRS measurement could 

in fact be biased by the very nature of the testing. For example, if the 

randomisation of the tests moved from no tape at 300W to taping at 100W this 

may have a certain implication on pain from a decrease in power and placebo of 

taped knee. Alternatively the effect may reduce as the power increases. In 

summary, the mean pain scores were noticeably less with taping across the 

three measurements with a somewhat expected small increase during data 

collection power phase. 
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Note on outlier in data 

During the analysis of the results an outlier was noted in the knee kinematic 

data. When the outlier was removed the significant difference in the coronal 

plane at the knee changed to not being significant. It was noted that this change 

was minimal, restricted to the knee and more specifically the coronal plane. The 

statistics were recalculated and these data can be viewed in Appendix 21.  One 

could argue that one or two more symptomatic participants would have brought 

the results back to significance. Although the cyclist started and finished his 

coronal movement from different positions, the ROM was not majorly different 

from the remaining symptomatic participants. Another notable point with the 

outlier would be that he was the only participant to have an acute-on-chronic 

presentation due to the fact that his knee pain initial onset was 12 month‘s 

previously and had since resolved and reoccurred. This may be relevant to his 

movement patterns.  

  

Key findings from the clinician online questionnaire: 

 KTT identified as the preferred taping used with PFP in elite and 

experienced cyclists. 

 McConnell is not used so therefore does not require inclusion. 

 Specific KTT technique to be used in the laboratory-based study was 

identified. 

 Its malleability and longevity are valued highly. 

 Pain and biomechanical alterations are important goals of treatment.  

 Pain, proprioception and biomechanical changes are the main perceived 

effects of taping with cyclists and PFP. 
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Key findings from the biomechanical study: 

 Symptomatic cyclists have more movement in the coronal plane 

(valgum/varum) of the knee (instability). 

 Symptomatic cyclists have less coronal (ABduction/ADduction) 

movement in the hip. 

 Symptomatic cyclists have more ankle transverse (IR/ER) movement  

 Neutral taping elicits as many changes as the specific KTT technique 

from clinician responses (questionnaire) and therefore technique may be 

somewhat irrelevant.  

 The hip indicates more significant effects than the knee and in turn than 

the ankle, which indicates a proximal to distal pattern of changes through 

taping of the knee. 

 Regarding clinical testing, 200 and 300 watts appear to produce more 

measurable pain effects. 
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CHAPTER FIVE:  DISCUSSION & INTERPRETATION 
 
 
5.1  Interpretation and Discussion of the Biomechanical study 
 

The main focus of this project is the cyclists‘ knee and the effect of taping. The 

testing in the laboratory produced a large quantity of data for analysis and so it 

is of value to put this into some degree of context. Although clinical practice 

allows us to consider isolated joint movements, when the human body moves in 

activities such as cycling we also need to consider a wider perspective when 

interpreting the data clinically. Although the upper body is predominantly fixed, 

the lower kinetic chain is contributing towards the activity, hence while the 

results produced varying differences in isolated kinematics and ROM, the 

clinical implications should be considered and interpreted with this entire kinetic 

chain in mind. This study is the first to be carried out to explore the effect of 

taping in cycling. This forms a starting point for understanding how the cyclist 

moves and how functional movement is affected by taping, both with 

symptomatic and asymptomatic cyclists. Each of the participants had their own 

style of riding, habitual positions, gearing, musculature and history. However, 

this underpins the nature of combining scientific biomechanical data and a 

clinical perspective. The project highlights both the effectiveness and efficacy of 

taping and determines not only the biomechanical changes, but also the 

outcomes and implications from a cyclists‘ and clinicians‘ perspective  

 

The initial questionnaire of clinical practice was undertaken to gain an 

understanding of the type of tape being used for cycling related knee pain by 

clinicians working with elite and experienced cyclists. Although this has been 

discussed in Section 3.9 it is worthwhile revisiting some key outcomes. The 
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simple factor of what type of tape is being used was answered unreservedly 

from the questionnaire. Alongside this there were some interesting data that 

informed us as to why clinicians use tape in the way they do, and their 

therapeutic expectations and rationale behind its use. This not only provided 

useful data to clarify its use but also evidenced KTT as the primary tape used in 

cycling, and its underpinning reasoning. Although McConnell type taping forms 

a widely accepted treatment modality in PFP (Aminaka and Gribble, 2008, 

Crossley et al., 2001), and has been shown to improve pain in patients with 

PFP (Bockrath et al., 1993, Powers, 1998), this evidence is not linked to cycling 

directly. The questionnaire determined for the first time that KTT is the preferred 

tape for use with cycling and its longevity, ease of application and malleability 

were all found to be driving factors. Respondents to the questionnaire also 

indicated their rationale for using KTT. This included pain reduction, neuro-

muscular and proprioceptive adaptation, placebo effect and altered 

biomechanics across the kinetic chain. Pain reduction has been shown to be 

effective in both McConnell and KTT (McConnell, 1996, Chen, 2008) and the 

biomechanical investigation adds unique evidence that this is also the case with 

cycling related knee pain, albeit over a short duration and across mean 

pre/during/post results. This short duration pain reduction has also been 

evidenced, (albeit not in cycling), by Thelen et al., (2008), Kaya et al., (2011) 

and Paoloni et al., (2011). Neuro-muscular and proprioceptive adaptation has 

also been measured previously and control has been shown to be affected by 

McConnell type taping (Selfe et al., 2011) using a step descent task.  

 

If control is the consideration, then the exploration of the biomechanical 

changes with taping has added unique evidence that KTT also has effects in 

this area and this will be discussed in more detail later in this section. 
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Interestingly, the Selfe et al., (2011) study also used a neutral taping method 

similar to that used in this projects‘ biomechanical study (albeit rigid tape), 

which support the findings that there appears to be an effect on the knee when 

a simple neutral taping is used. This has not been previously shown with KTT 

and cycling. Altered biomechanics in PFP has received much attention over the 

past ten years since the onset of high-grade 3D equipment (Powers, 2003, 

Theobald et al., 2012). However, aside from Bini et al., (2012), whose work is 

notable in cycling despite not looking at PFP, the biomechanical investigation 

from this project is the only one of its kind to date to examine cycling related to 

PFP (with taping) in a biomechanical environment. The abundance of anecdotal 

and low quality online KTT evidence found by Beutel and Cardone (2014) 

illustrates the need for further investigation. This addition to the evidence base 

allows its use with cyclists to become more focused on empirical evidence.  

 

From the findings of the questionnaire, the main aim of the laboratory-based 

investigation was to determine whether tape actually changed anything 

significantly around the knee from a biomechanical perspective. This directly 

addresses the biomechanical efficacy objective around KTTs‘ use with cycling 

related knee pain. The clinical implications of these were examined alongside 

the symptomatic individuals clinical effectiveness outcomes, leading to any 

associated learning and development of effective treatment in those with cycling 

related knee pain. The following sections outline and discuss the results of the 

biomechanical investigation in more detail in the individual joints investigated, 

the knee, hip and ankle. This is intended to permit consideration of the three 

individual joints prior to considering the overall kinetic chain movement patterns 

and any associated clinical implications.   
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5.1.1 The Knee: Taping effects and variations between symptomatic and 
asymptomatic cyclists  

 

i. Taping effects 
 

Although there were statistical differences (sagittal and coronal) between tape 

and no tape in the post hoc analysis (Table 4.10, 4.11, 4.13) there were no 

consistent findings across the tests (Symptomatic and Asymptomatic) that 

indicate a single taping technique produces biomechanical changes that can be 

reliably attributed to the specific taping application method. The analysis of 

variance (Appendix 22) did not show any significant changes between taping 

conditions. This being the case, it could be conceived that how you apply the 

tape to a cyclist is somewhat irrelevant, and perhaps this explains the 

abundance of various techniques employed currently by manufacturers and 

clinicians (Beutel and Cardone, 2014). This is underpinned by evidence 

investigating different taping applications and techniques with variable and 

inconsistent findings (Anandkumar et al., 2014, Campolo et al., 2013, Chen, 

2008). The evidence appears to constantly question the exact mechanisms 

attributable to these effects. These could be due to neuromuscular and 

proprioceptive adaptation, placebo effect and consequent altered biomechanics 

across the kinetic chain. This is in line with the recent PFP research from the 

PFP consensus statements (Powers et al., 2012, Witvrouw et al., 2014). Overall 

(mixed methods), there were no changes between taping conditions (Table 

4.11, 4.14, 4.17) whereas individuals appear to respond with subtle differences 

(repeated measures). Work by Callaghan et al., (2008) and Campolo et al., 

(2013) indicated that whilst no changes were found in one task, there were 

indications of altered effects in others such as proprioception (Callaghan et al., 

2008), and squats (Campolo et al., 2013). This indicates that individuals seem 
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to have varying responses to taping and PFP and that these responses may be 

much more complex than measured biomechanical changes.  

 

The effect of tape on the knee is open to much conjecture, however from the 

results (Tables 4.3 - 4.8) it can be seen to influence control of movements such 

as flexion and extension (sagittal) and valgum/varum (coronal). Perhaps with 

flexion and extension (sagittal) this effect is more restrictive or controlling with 

the KTT condition, as the direction of tape is applied in a proximal to distal 

direction of the associated musculature (quadriceps). This is in contrast to a 

study examining KTT and quadriceps in those with PFP by Aytar et al., (2011) 

where no changes were found in joint position sense (JPS). Although Aytars‘ 

study used a different measurement method, the KTT application followed a 

similar protocol of application. Conversely, a study by Selfe et al., (2011) found 

that McConnell type taping reduced pain through changes in the coronal plane 

movement. This concurred with the laboratory-based studys‘ findings and, 

importantly, the methodology had many more similarities in design and 

application. Interestingly, in the biomechanical study, the neutral taping 

technique also produced changes and considering that the direction of tape in 

this case was opposite to that of KTT, its affect is more likely to be neuro-

muscular or proprioceptive in nature. This again, is in agreement with work by 

Selfe et al., and Callaghan et al., (2012). 

 

Supporting the controlling effect, essentially both asymptomatic and 

symptomatic cyclists have similar sagittal ROM (Table 4.3, 4.6). This may 

indicate that clinically we should not be looking to achieve an effect in this range 

of motion with taping, and perhaps any changes here are not related to the 
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knee pain but simply ROM variations alongside power changes. Alongside this, 

it should be noted that cycling offers a restricted movement based environment 

to work within, and therefore clinical changes and effects are somewhat limited 

by this. An interesting development of this theory may be to test a simple knee 

support (tubi-grip), which would perhaps also control the ROM in a similar way. 

There is no evidence in cycling specific studies using simple elastic knee 

supports, however work with knee braces have produced interesting changes in 

pain, control, proprioception and PF stress (Aktas and Baltaci, 2011, Crossley 

et al., 2001, D'Hondt N et al., 2002, Powers et al., 2004, Worrell et al., 1998). In 

a study by Finestone et al., (1993), they investigated both a rigid brace and a 

simple elastic support (similar to tubi-grip) and found that the sleeve reduced 

pain more effectively than the brace or no treatment. They did not however 

measure or record and changes in movement such as in this projects‘ 

investigation. Although both braces and elastic supports are not utilised in elite 

and experienced cycling simply because of their more restrictive effects, they 

may provide an indication of whether restriction/control affects pain and 

movement or simply movement alone. They may also provide a useful 

comparison to the effects of taping. 

 

Within the knee results there is also an interesting change in ROM 

measurement from KTT to no tape (Decrease in ROM from no tape to KTT) in 

the sagittal and transverse planes with both asymptomatic and symptomatic 

cyclists, particularly at 200 and 300 watts (Table 4.3, 4.5, 4.6, 4.8), with KTT 

having the lowest ROM, then, increasing through neutral to no taping in that 

order (for example: Table 4.3, 300W: KTT=84.65, Neutral=85.23 and 

No=86.16). Considering that all testing was randomised and cycling produces 
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very repeatable movement patterns, this is an intriguing result and perhaps 

once again reflects the controlling effect of the tape conditions. Seemingly the 

more tape applied (KTT vs. neutral) the more the controlled the effect (Sagittal 

and coronal). When considering the pain results (Figure 4.37 to 4.40) there is a 

decrease (mean across pre-during/post 30 sec tests) in pain with KTT and 

neutral taping compared to no tape, and this is reflected by a difference in ROM 

(Sagittal and coronal). Table 4.37-40 (Section 4.12) indicates this. Once again, 

this highlights the multi-faceted nature of the taping effect. The resultant 

controlling effect of the KTT application (proximal to distal) could simply be 

attributed to its directional application. However, the direction of application and 

technique of the neutral taping was very different from that of KTT and in fact 

applied at 90 degrees to KTT, across the patella itself. The controlling effects of 

this condition (McConnell type taping) has previously been shown by Selfe et 

al., (2012) and Theobald et al., (2012) to produce significant changes and these 

effects were determined to be linked to proprioception and neuromuscular 

responses. This appears to be supported by previous work indicating a 

proprioceptive effect being influential in tapings efficacy with PFP (Callaghan et 

al., 2002, Callaghan et al., 2008).  

 

ii. Asymptomatic and symptomatic cyclists  
 

The control of the knee in the coronal plane by KTT is consistent across cyclists 

with and without knee pain (Table 4.4, 4.7). Although these are only statistically 

significant in one comparison (Table 4.11), there may be a trend or pattern that 

suggests a clinically important difference between cyclists with and without knee 

pain. If we include the important finding that symptomatic cyclists‘ had 

significantly more coronal movement (P=0.005 or 17.8% difference) than 
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asymptomatic cyclists (Table 4.9) then this indication may in fact be, in its 

simplest format, that tape controls the knee sufficiently to reduce stress on the 

associated articular surfaces such as the PFJ and tibio-femoral joint (TFJ). This 

increase in symptomatic coronal kinematics has been shown previously by 

Bailey et al., (2003), however to date the comparison with asymptomatic has 

not been investigated. Work by Fulkerson et al., (1992) identified that tibio-

femoral movement in both the coronal and transverse planes influence PFJ 

movement. This influence occurs in the ROM of cycling (<90º and >30º) where 

rotation increases as the knee is extended (transverse) and adduction and 

abduction (coronal) also occurs during the power stroke (Ericson and Nisell, 

1987). With the patella in direct contact with the condyles in flexion, it acts as a 

fulcrum and thus, any increased movement in the coronal and transverse 

planes may increase the stresses encountered on the contact areas during the 

cycling action. Work by Bini et al., (2010b, 2011, 2012, 2013) and 

Tamborindeguy et al., (2011) in cycling specific studies have also indicated 

these increased tibio-femoral/patello-femoral forces and stresses encountered 

with varying knee angle and power outputs. Patello-femoral (PF) stress has also 

been shown to increase loaded functional movements by Farrokhi et al., (2011) 

and considering recent work with KTT by Chen et al., (2008) and collaborated 

PFP evidence from Powers et al., (2012) we can conclude that the findings in 

this aspect are in agreement with the current evidence.  

 

In the coronal plane (varum/valgum), asymptomatic cyclists have less ROM 

(17.8% difference) than symptomatic (Table 4.9) and this is also significant 

(p=0.005). This indicates that symptomatic cyclists are less stable and/or have 

decreased control in their movements. This corresponds with similar effects of 
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the step descent evidence with PFP (Selfe et al., 2008, Selfe et al., 2011, 

Powers et al., 2012, Richards J, 2015). This finding is important in that it has not 

been measured previously with cyclists, and also its correlation to previous work 

(albeit non-cycling) may indicate that instability, or lack of control, crosses 

functional boundaries and its treatment may also benefit from similar clinical 

modalities and approaches. This lack of control, or controlling effect, has 

previously been described by Edin (2001), as possibly being ‗due to altered 

somatosensory inflow from the knee joint‘. Both Edin and Selfe also suggested 

that this effect may be linked to ‗Type III slowly adapting afferents‘ becoming 

stimulated by varying degrees of strain around the skin of the knee, thus 

stimulating cutaneous receptors. Although not fully understood, and unable to 

be effectively measured with accuracy, these factors are undoubtedly part of the 

PFP conundrum. 

 

There was only one significant difference (post hoc) between conditions (KTT 

and neutral, 0.97º change) with the symptomatic cyclists (Table 4.13) whereas 

with asymptomatic there were four differences (KTT/No = 1.51º to 0.99º change 

and Neutral/No tape = 0.65º to 0.93º change) between both forms of taping and 

no tape across all three planes (Table 4.10). This may indicate that cyclists 

without knee pain are more sensitive to the tape on their skin and are in fact 

adapting to its presence. In turn, this may mean that those with knee pain 

appear less sensitive to movement changes because they are more 

concentrated on the pain itself. It is intriguing that those (symptomatic) with tape 

applied indicated a clear pain reduction but without significant changes in knee 

movement. Alongside this, those with knee pain have more significant 

differences (post hoc) in the coronal plane (Tables 4.13) between powers (KTT 

and no tape), hence they may be more sensitive to the power change and the 
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associated increase in muscle force produced across the PFJ contact areas. If 

we are to try to elicit a measurable change using taping, then a clearer 

understanding of whether control or pain is the driver of the symptomatic 

cyclists reaction to the tapes‘ effects is required. This has been alluded to 

earlier regarding bracing and supports. Longer duration of testing will also 

undoubtedly assist answering this question, as this will allow endurance and 

fatigue to become a factor, this has been shown to be so previously (Bailey et 

al., 2003, Milligan, 1996, Burke, 2003, Dettori et al., 2006). 

 

iii. Additional effects 
 

There may also be a neuro-muscular and proprioceptive response from the tape 

being applied to the skin (Schneider, 2000, Anandkumar et al., 2014). This 

sensory output, leading to pain reduction, was alluded to by the clinicians in the 

online questionnaire (Section 3.8.5. figure 3.9, and section 3.8.11. figure 3.15). 

Thus, by applying KTT clinically we may be affecting the available range so as 

to offload the mechanical structures involved. This may also explain why there 

are statistically significant differences in the sagittal plane between taping and 

no taping (Tables 4.10, 4.13), in particular with the higher powers and not 

coronal and transverse. The KTT may be giving information to the brain to allow 

increased control of movement by its application to the skin itself, and this may 

have an additional direct pain association/reduction. This controlling effect is 

represented by KTT having the lowest ROM in sagittal, coronal and transverse 

planes with asymptomatic cyclists (Tables 4.3-4.5). This is fundamentally the 

same in asymptomatic cyclists ROM across the three planes (Tables 4.6-4.8). 

This decreased movement through ranges may be part of a more complex 

neuromuscular effect (Merchant, 1988) or simply that pain is reduced because 
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movement is controlled. This in turn, produces a perception by the cyclist of 

more control and therefore less pain. To this effect, tape consistently decreases 

ROM (Tables 4.3-4.5) with asymptomatic cyclists. This is less so with 

symptomatic cyclists, however there remains a trend here also (Tables 4.6-4.8). 

In 2005, Aminaka and Gribble called for stronger evidence to clarify the 

definition of neuromuscular effect of patellar taping. To date this remains 

somewhat elusive and both Powers et al., (2012) and  Witvrouw et al., (2014) 

continue the call for further work in this area in their comprehensive consensus 

statements. There is little doubt that the changes around the knee found in this 

study have some degree of neuromuscular input, though to what degree this is 

happening in cycling is open to suggestion.  

 

 If the cyclist with knee pain does have a functional instability then this may 

possibly be identified, or even predicted at an early stage and any patterns 

identified then applied to preventative strategies and screening protocols. Tape 

appears to decrease ROM (stabilise) with coronal movement in asymptomatic 

cyclists (Table 4.4) but only at 100 watts. Perhaps this result would be more 

remarkable in recreational cyclists as it is a much lower power and unlikely to 

be a functional performance related power to elite and experienced cyclists 

(Wilber et al., 1995, Wanich et al., 2007).  Although not significant (p=0.146), 

symptomatic cyclists also have more movement in the knee in the transverse 

plane (Appendix 22). The combination of increased movement in both the 

coronal (1.194º or 17.7% difference) and transverse (1.676º or 11.4% 

difference) planes may indicate a torsional effect that produces altered forces 

across articular structures in the knee, and consequently pain. If taping restricts 

or changes the control of these planes of movement then its effects may be 
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explained with more clarity. These effects are undoubtedly multi-factorial, 

however, we now have a clearer idea of the differences between those cyclists 

with and without knee pain and so can perhaps apply tape with more evidence 

based clinical reasoning than previously.  

 

5.1.2 The Hip: Taping effects, proximal and distal implications and 
variations between symptomatic and asymptomatic cyclists  
 

There were 27 significant effects across all participants at the hip, 17 significant 

effects at the knee, and 12 significant effects across all participants at the ankle 

(Table 5.1). This indicates that there is a proximal to distal effect of taping on 

cyclists, which is in line with current evidence of control of the hip being an 

indicator of PFP and its treatment (Powers et al., 2012, Witvrouw et al., 2014). 

This is also supported by evidence that taping can increase control and loading 

of the knee (Derasari et al., 2010, Warden et al., 2008) and therefore PF 

contact areas (Farrokhi et al., 2011). In the most recent PFP consensus 

statement (Witvrouw et al., 2014) there is a call for more research to investigate 

the proposed proximal to distal involvement further. Recent work has identified 

a close relationship between hip function and PFP including gender specific, 

trunk mechanics, fatigue and gluteus medius activation. Both interesting and 

relevant is a more recent study by Bazett-Jones et al., (2013), whose findings 

contrasted with those changes found in this investigation in the coronal and 

transverse plane. It is worth noting that they used runners (to fatigue) and 

hence this weight bearing variant may be the predisposing factor to their 

contrasting results. 

 

Other notable recent research in the hip to knee relationship and taping is a 
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study by Hendry et al., (2014) who found that whilst rigid tape had an effect on 

both knee and hip joint forces, KTT did not. This was in agreement with Howe et 

al., (2014) but in contrast to this projects‘ biomechanical indications. This 

proximal to distal relationship may be key to understanding preventative or 

rehabilitative strategies to cycling related knee pain. As with the current 

literature around PFP, control of the hip alongside that of the knee may also 

prove to be a way forward with cycling.  This approach follows a logical format 

by its focus on a larger movement ranging joint (the hip) with larger multi 

pennant musculature adding to the controlling factors of the knee joint, and 

ending distally with two smaller joints (the ankle). When we consider the entire 

kinetic chain, this logic demands further evidence, however, in light of the 

results of this study, also demands more serious consideration and applied 

research to cycling related knee pain. 

Table 5.1 – Significant effects summary 

  Sig effects  

  
  
  
  

Sig effects  Total 

Asymptomatic hip 17 10 Symptomatic hip Hip = 27 

Asymptomatic knee  10 7 Symptomatic knee   Knee = 17 

Asymptomatic ankle 9 3 Symptomatic ankle Ankle = 12 

 

 

 

The results indicate that as the power increases (100W to 300W), the hip 

produces an increase in ROM across all planes of movement (Tables 4.16-

4.21). This would indicate that as this large group of musculature produces 

more power, the joint moves further towards its end range. This is reinforced by 

the majority of the significant differences being across powers, and not 

conditions (Tables 4.23, 4.24, 4.25, 4.26, 4.30) in the hip. Previous work by 

Bailey et al., (2003), Bini et al., (2010), Tamborindeguy et al., (2011), and 

Theobald et al., (2012) have also found variances between power and 
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kinematics, however none of these studies have looked at the hip kinematics in 

relation to its distal joints and power.  

 

Interestingly, when we look at the hip joint it appears from the results that there 

is a decrease in ROM (1.59º in coronal and 1.41º in sagittal) between 

symptomatic and asymptomatic cyclists (Tables 4.22 and appendix 22), 

symptomatic cyclists‘ having lower ROM. Coronal plane results were significant 

(p=0.001 and 26.2% change), and sagittal close to significant (p=0.060). This is 

irrespective of the condition and power as the ROM increases with power 

across all conditions, but notable in that the proximal joint to the knee (hip) 

appears to have a decreased ROM to those of asymptomatic cyclists. This may 

in fact indicate that those cyclists with, or perhaps predisposed to cycling 

related PFP have less movement in the hip, or simply that those with PFP are 

more sensitive to the knee pain and that, in turn, produced some degree of 

adaptive hip ROM pattern response. Hip contribution to the cycling action has 

been measured in previous studies (Mornieux et al., 2007, Bini et al., 2010a) 

and although a reduction in hip ROM was found, this was deemed to be fatigue 

related due to the methods used. There have been no studies measuring hip 

kinematics in relation to taping for PFP to date, and notably fatigue played no 

part in the laboratory-based investigation due to the testing time and design 

methods. In contrast to this projects‘ biomechanical findings, a study by Souza 

and Powers, (2009) found that those with PFP (female runners) had increased 

hip ROM in both coronal and transverse planes and interestingly this was 

related to a increase in muscle activity in the gluteals. Whilst this projects 

biomechanical investigation did not measure muscle activity, it remains possible 

that with cyclists the opposite is happening. 
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There is also a trend across the conditions indicating a controlling pattern at the 

hip with tape in asymptomatic cyclists (Tables 4.16-4.21). Once again, perhaps 

this control is linked to the pain decrease and sensitivity alluded to by the 

clinicians responses from the questionnaire, thus meaning that symptomatic 

cyclists (Table 4.29) have fewer changes at the hip (coronal) as they have more 

pain at the knee and are in fact more sensitive to this (pain). Asymptomatic 

cyclists may have more changes at the hip (Table 4.26) due to a response to 

the tape at the knee (control/restriction), rather than pain. It is possible that an 

increased sensitivity to knee pain (symptomatic) directs an alternative 

movement pattern to compensate (reduction in hip ROM). Conceivably related 

to the earlier suggestion that tape application technique is somewhat irrelevant, 

there were variable significant differences between conditions in the coronal 

plane across the hip (Table 4.26/4.29). These were again inconsistent and with 

no measurable pattern identifiable. As mentioned previously, the hip results 

produced the most significant effects (Table 5.1), which indicate a proximal 

control question that is in line with current research (Cichanowski et al., 2007, 

Powers et al., 2012, Witvrouw et al., 2014). The question remains as to whether 

the increase movement of the knee produces the decreased movement of the 

hip or vice versa. Future research into active and passive ROM prior to testing 

may indicate whether a relationship is in fact evident. Measuring passive range 

of movement (PROM), and active range of movement (AROM) in those with 

cycling related knee pain may indicate a pattern that can be attributed to those 

experiencing pain during cycling. Little evidence is available in measurement of 

hip ROM in those with PFP (Cibulka and Threlkeld-Watkins, 2005), however it is 

rational to assume that hip joint movement has some degree of relationship to 

PFP alongside muscle activity. In a recent study by Roach et al., (2014), a 
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significant difference was found in passive hip extension in those with PFP 

(Thomas test) although no differences were found in rotation of the hip. This 

appears in line with the findings of this study in both the sagittal and coronal 

planes, yet it is notable that to date (excluding this biomechanical investigation) 

there have been no cycling related studies investigating this issue. 

 

From a functional perspective it is interesting that with cyclists the hip in fact has 

less movement. With gait and running based studies, when the foot is fixed and 

full weight bearing, the hip would appear to be a more controllable axis to 

movement and therefore rehabilitation focus on the hip seems to produce 

positive results (Dolak et al., 2011, Thijs et al., 2011, Nakagawa et al., 2013). 

Perhaps with cycling, where the kinetic chain is not linked to full weight bearing, 

this factor is somewhat more variable, although to date there has been no 

cycling specific work in this area. Reduced ROM in the hip may indeed 

correspond with the predominance of cycling related specific knee pain over hip 

pain. However, it is also possible that cyclists with knee pain do in fact have 

stiffer hips. This requires further investigation in order to provide clarity as to 

whether there is indeed an anatomical and physiological link to why some 

cyclists may be pre-disposed to knee pain.  

 

5.1.3 The Ankle: Taping effects, proximal and distal implications and 
variations between symptomatic and asymptomatic cyclists  

 

With asymptomatic cyclists taping appears to somewhat reduce the plantar-

flexion/dorsi-flexion movement without any significant changes (Tables 4.31). 

Cyclists with knee pain conversely do not appear to follow this sagittal ROM 

pattern (Table 4.34), which may be a result of the adaptive response to the pain 
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and control of the tape from the proximal joint (knee). Studies have previously 

shown changes in ankle ROM during cycling (Peveler et al., 2012, Bini et al., 

2010a, Ruby et al., 1992b), but in contrast to this investigation these did not 

compare symptomatic and asymptomatic cyclists. To date there have been no 

studies showing the effect of KTT on the ankle ROM with cycling related knee 

pain. Bini et al., (2010) indicated an increase in dorsi-flexion and overall ROM 

with a cycling related study to exhaustion, however there were no pathologies 

or conditions involved. Other studies on ankle ROM looked at taping of the 

ankle rather than the knee (Simon et al., 2013, Briem et al., 2011, Halseth et al., 

2004).  

 

Interestingly the inversion/eversion (coronal) movement of the ankle/foot 

(asymptomatic) increases with taping of the knee (Table 4.32). Therefore, with 

asymptomatic participants as the knee ROM (coronal) decreases, the ankle/foot 

ROM (coronal) increases. This may be indicative of the principle of the floating 

cleat strategy. There are varying degrees of movement required in each 

individual during the cycling action. If taping restricts one such ROM (knee) 

then, if available (cleat float movement), the ankle may ‗take up‘ this required 

movement to facilitate less pain (Gregor and Wheeler, 1994, Burke, 2003, 

Gregersen et al., 2006, Faria et al., 2005b, Silberman et al., 2005) . Floating 

cleats are proposed to alleviate knee pain to some degree (Boyd et al., 1997, 

Paton, 2009, Ramos-Ortega et al., 2014). However the abundance of this 

research appears to be anecdotal and marketing-led with no identifiable studies 

supporting these claims. It is possible that KTT application controls the knee 

sufficiently to, in effect, direct the ankle/foot to move more to accommodate the 

ROM (coronal and transverse) required by the pedal stroke. It may be 
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interesting to direct future work into whether various cleat float systems have 

any positive or negative effect on knee ROM with taping.  

 

The significant change between cyclists with pain and those without (Table 

4.38) was that symptomatic participants had increased transverse ROM in the 

ankle (0.79º) compared to those who were asymptomatic; this was a 14.3% 

change (p=0.034). It is possible that clinically we could endeavour to identify 

this through screening based measurement. It is notable that should this merely 

be a consequence of the sensitivity to pain in the knee, the ankle/foot may 

simply be moving more in the available cleat movement to facilitate a more 

aligned/controlled knee. Although at the distal end of the kinetic chain, the ankle 

is worthy of attention. Further work should incorporate this joint due to it being 

fixed (albeit with degrees of float) to the pedal and thus being very much part of 

the drive of the pedal stroke. Different cleat systems allow varying amounts of 

float (from zero to 15 degrees) which may allow the distal part of the kinetic 

chain to effectively accommodate movement variances such as knee and hip 

coronal movements. The participants in the biomechanical study employed a 

varying degree of pedal systems, cleat position on the shoe and amounts of 

available float. These were not measured or noted other than make and model 

(Asymptomatic: 4 x Speedplay™ zero, 6 x Shimano™ SPDR, 2 x Look™ keo. 

Symptomatic: 2x Speedplay™ zero, 6 x Shimano™ SPDR). 

 

Although orthoses were not involved in this study it is worth noting that, as with 

weight bearing and gait related evidence there is increasing interest in cycling 

specific orthotics in relation to knee pain (O'Neill et al., 2011, Yeo and Bonanno, 

2014). Interesting to this study, Barton et al., (2012b) reported a relationship 
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between ankle eversion and hip adduction in those with PFP. This increase in 

eversion and hip adduction is broadly in line with the results from this project 

(Table 4.17, 4.20, 4.32, 4.35) albeit with both asymptomatic and symptomatic 

cyclists. Cycling shoes worn by elite and experienced cyclists have extremely 

rigid carbon fibre soles, and are traditionally a very tight fit with ratchet straps to 

tighten the shoes against the foot and ankle. This is considerably different from 

running shoes where the foot has more freedom for movement and therefore 

more likelihood to be affected by orthoses. To date research into multi-segment 

foot biomechanics with cyclists has been very limited (Bousie et al., 2013, 

O'Neill et al., 2011) and these are even scarcer when investigating the 

relationship with PFP.  

 

5.1.4 Pain considerations from symptomatic cyclists results 
 

 

Although it is worth noting that pain was only measured in respect to a single 

30-second test and clinical presentation is often based on much longer duration 

of cycling, the results clearly indicate more pain (across mean pre/during/post 

results) when the knee was not taped (Figure 4.37 to 4.40 and table 4.42). This 

would appear to underpin the sensory and controlling nature of the taping 

effects from the biomechanical investigation discussed earlier.  Neutral taping 

also reduced pain (across mean pre/during/post results), which in turn appears 

to reinforce that it does not appear to matter how you apply the tape, but that 

you apply it in some form or technique. Pain emanating from PFP has been 

described as ‗chronic idiopathic pain‘ (Boling et al., 2010), however the true 

source of this pain is, as yet, not completely understood (Powers et al., 2012). 

Dye‘s (2005) homeostasis theory goes some way towards accounting for the 
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cause of pain; the theory proposes that increasing loads and forces disrupt 

normal pain-free function. However the exact mechanism that taping facilitates 

to reduce pain has caused much conjecture. Taping has been shown to 

improve proprioception in those with PFP and also alter PFP kinematics 

(Derasari et al., 2010, Selfe et al., 2011). Control of the TFJ has also been 

indicated by Selfe et al., (2011). With regard to patella contact areas, taping 

also appeared to offload the structures involved, which may in turn reduce pain. 

In KTT specific studies pain reduction on the knee (albeit short term) has been 

demonstrated by Aytar et al., (2011), Anandkumar et al., 2014 and Campolo et 

al., (2013), but whether the direct mechanical offload, or additional 

neuromuscular and proprioceptive adaptation, is the root mechanism of the pain 

reduction is still predominantly unconfirmed. This project‘s laboratory-based 

investigation has added to the evidence base in that it has demonstrated the 

short-term pain reduction of KTT in both specific and neutral technique (across 

mean pre/during/post results). In fact, the results are the first to be 

demonstrated with a cycling specific PFP study to date.  

 

From the results of the online questionnaire it was clear that clinicians see pain 

reduction as a fundamental outcome measure and that they also see KTT as 

achieving this clinically. Their rationale and answers to the questionnaire also 

agreed with the current evidence in that they are unclear of the exact 

mechanism of pain reduction. Taping demonstrated a mean (across pre-

during/post tests) pain reduction (KTT by 19% and neutral by 26%) however the 

greatest amount of change was seen at 200W where there was a change of 

33% between KTT and no taping. It was noted by the participants (albeit 

informally during testing) that 100 watts power was somewhat difficult to 
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maintain and, in light of this, it may be that this power (100W) is in fact negated 

as a productive testing power to elicit a notable response in the target group of 

elite and experienced cyclists. If this is indeed the case then clinically it could be 

argued that a power of at least 200W be recommended for using the apply-test-

retest protocol indicated by clinicians online responses  (Section 3.8.3, figure 

3.7). This would appear to be in agreement with other work in cycling with the 

target group of elite and experienced cyclists (Arkesteijn et al., 2012, Bailey et 

al., 2003, Mornieux et al., 2007, Theobald et al., 2014). Although pain was 

measured, future research into cycling related knee pain and taping may require 

a more functional and longevity based approach in order to determine the 

effects of taping on pain. This work may indeed be both field and laboratory 

based.  

 

General observation on taping technique application 

The exact technique of KTT application does not appear to be critical, as neutral 

taping appears to elicit as many changes as the specific technique identified in 

the initial online questionnaire. Neutral taping had as many significant changes 

as KTT with no identifiable pattern or biomechanical regularity. It may therefore 

be an indication that, indeed, any tape application (KTT) simply controls the 

knee and/or evokes an increased sensory effect on the muscular activity 

(outlined earlier) that is one of the underpinning mechanisms to this control. 

This sensory awareness of KTT on the knee has been previously shown to 

affect both strength and pain (Anandkumar et al., 2014). If this lack of specificity 

in application is the case, then we are conceivably required to identify this prior 

to clinical application to cyclists requiring taping for knee pain. Likewise, 

perhaps manufacturers also have a degree of responsibility to communicate 
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this. Recent KTT reviews by Montalvo et al., (2014), Parreira et al., (2014) and 

Williams et al., (2012) broadly agree with this and also recommend increased 

evidence based clinical communication as to its proposed effects. Because tape 

appears to control the knee to some degree in both the sagittal and coronal 

planes (Table 4.3, 4.4, 4.6, 4.7), this indicates that pain reduction is both 

mechanical and sensory (Hosp et al., 2014, Campolo et al., 2013). The question 

could therefore be posed as to whether the tape is directly affecting the 

movement and therefore indirectly decreasing the pain, or is it purely a sensory 

perception and not mechanical at all. Both may in fact be true. The results 

indicate that changes did in fact take place due to the two taping applications 

rather than by placebo. Pain was reduced, biomechanics altered, and ROM 

decreased. In isolation, these factors may indicate a placebo effect, however 

combined they demonstrate that KTT may in fact illicit a real change in those 

with cycling related knee pain. Its specific technique of application appears 

open to much variation and is indeed questionable as to any degree of 

specificity. 

 

5.2 The clinical considerations of biomechanical efficacy vs. clinical 
effectiveness in cycling related knee pain and taping  

 

When considering the biomechanical efficacy and clinical effectiveness of 

taping it is essential to integrate and synthesise the findings of both studies. 

This is in consideration of the fact that the project journey began by determining 

whether and/or how clinicians currently use taping, and then progressed to 

investigating whether the taping actually achieved some of these proposed 

effects in a controlled laboratory setting, with both symptomatic and 

asymptomatic elite and experienced cyclists. KTT was clearly the tape of choice 
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and the proposed effects included (mean) pain reduction, biomechanical 

changes, placebo, stability, control and muscular adaptation. Although the 

investigation did not answer all the questions asked of it with complete clarity 

and determination, to be able to project the results forward into clinical learning 

we must consider how clinicians can interpret and use the information gained 

from the results, and in some way enable them to make reasoned decisions for 

evidence based practice.  

i. Symptomatic knee movement  
 

The symptomatic knee moves more (1.19°) in the coronal plane (17.8% 

change) than the asymptomatic cyclists knee (Table 4.9) and therefore this may 

be clinically relevant to its effective treatment. This increase in movement 

appears to emanate from the maximum point of the ROM (Table 4.7), which is 

in effect a varus knee movement, where the knee moves laterally, and the 

ankle/foot inverts and externally rotates at the top of the power stroke (Tables 

4.35, 4.36). This indicates that the knee moves from a more lateral position and 

moves medially, producing more torsional movement through the main power 

production of the pedal stroke. Although coronal and transverse plane 

movements with PFP participants have been investigated previously (Callaghan 

et al., 2008, Powers et al., 2012, Selfe et al., 2008, Selfe et al., 2011), these 

studies were not cycling based and so any similarities should be reflected on 

clinically with this consideration in mind. Also, although a call for further 

research into these altered mechanics has been made by comprehensive 

consensus statements, (Powers et al., 2012, Witvrouw et al., 2014), to date, 

these consensuses have not included cycling related investigation. Variations in 

coronal and transverse kinematics may be the cause of increased PF stress on 

the cartilage and associated structures (Farrochi et al., 2011, Powers et al., 
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2014, Tamborindeguy et al., 2011). Clinically this may indicate that a more genu 

varum gait predisposes the cyclist more likely to have cycling related knee pain 

or is perhaps simply related to the cycling action adopted by the participants in 

this study. If the clinician can recognise that those with more coronal and/or 

transverse knee movement are either experiencing, or likely to experience, 

knee pain, then perhaps there is a way of clinically measuring this movement. 

Modern smartphones and handheld tablet devices often used in sports injury 

clinics are currently able to capture up to 120 frames per second (FPS) and so it 

may be possible to compare the affected side to the unaffected side and 

implement an evidenced based rehabilitation protocol based on current 

knowledge for PFP (Lankhorst et al., 2013, Witvrouw et al., 2014, Boling et al., 

2006). Inter-participant measurement may, however, be symmetrical and if this 

is indeed the case, we currently only have this study‘s measurements to guide 

us from a ROM perspective. Also, it is possible that clinical accuracy may 

present a barrier. This would indicate that further work is required to enable 

clinicians to utilise a database of clinically identifiable measures that may 

indicate whether coronal and transverse movements are abnormal. If clinically 

based video capture is unable to identify any anomalies, then it may also be 

possible to use previously utilised step down and stability based tasks to identify 

any instability in the knee of the cyclist (Selfe et al., 2011, Lee et al., 2012, 

Bolgla et al., 2008).  There are clearly opportunities to contribute further to a 

knowledge base of cycling specific knee pain pathologies should a protocol be 

developed in the future. Further research is undoubtedly required to ascertain 

whether it is possible to screen actual/potential knee pain from a clinical setting 

either on or off the bike. 
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Alongside this, and projecting the results to a clinical perspective, it could be 

that if a seat is too low, cyclists with increased knee valgum/varum movement 

may be more susceptible to knee pain because the knee is directed further into 

increased flexion and potentially into more varus movement (Bini et al., 2010c, 

Tamborindeguy and Rico Bini, 2011). This would in effect direct the knee in a 

lateral to medial coronal movement across a greater ROM, creating more 

torsion and potentially more pain. Although this is very unlikely with elite and 

experienced cyclists, as their set up is likely to be within the acceptable 

boundaries (Faria et al., 2005a),  recreational cyclists may in fact often have a 

lower set up due to inexperience (Salai et al., 1999). Clinically this is a potential 

area for future research with PFP and there may in fact be some correlation 

with the target group tested in this study (biomechanical). Dissemination of this 

work through publication will aid clinical understanding in this area.   

 

ii. Proximal indications (hip) 
 

Considering that the hip is a very topical area in the evidence base as a focal 

point for rehabilitation for PFP, the symptomatic cyclists‘ hip is notable in that it 

moves less (Table 4.22) in the coronal plane (1.59° or 26.2% change). 

Therefore, with symptomatic cyclists, as they begin the pedal stroke (flexion) 

they are less abducted, and at the end of the power stroke (extension) are less 

adducted, thus giving a tighter ROM (Tables 4.20) at the hip joint. This 

effectively indicates that the hip is straighter through the power generation 

phase of the pedal stroke with the knee moving through a greater ROM from a 

lateral to medial direction. To date, research into hip kinematics with cyclists is 

limited almost exclusively to performance (Neptune and Hull, 1995, Bini et al., 

2010a) and investigations related to PFP and taping in cyclists‘ non-existent. 
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Considering the objectives of this study were to measure and determine 

changes in the knee, hip and ankle related to PFP and taping, this knowledge is 

new and unique work that adds to the currently available research in the area of 

PFP. Although there are no data around passive measurements of symptomatic 

cyclists‘ hip ROM, it remains plausible that, as with knee movement, those 

cyclist‘s either experiencing or pre-disposed to cycling related knee pain have 

tighter or stiffer hips than those asymptomatic. Again, further research is 

required to establish any link, but clinically, this may provide interesting future 

work that may prove useful in both pre-habilitation and rehabilitation work. 

Although the transverse plane knee results did not indicate a significant 

difference (appendix 22.8), the symptomatic cyclists knee had more transverse 

movement (11% change). The cyclists‘ also began the pedal stroke with more 

internal rotation than the asymptomatic cyclists (Tables 4.5, 4.8). Clinically this 

may indicate cyclists with knee pain have stiffer hips that in turn force the knee 

into more torsional movement, to allow the pedal stroke to be completed with 

the correct amount of power to overcome the resistance from the gearing. If this 

were accurate then it would indeed be clinically valuable. Screening protocols 

may possibly be devised, researched, measured and quantified, and treatment 

directed from findings as clinical outcome goals. A firm base of objective 

measures from those with cycling related knee pain would be an obvious 

development to ascertain whether significant variances exist between those 

with and those without knee pain.  

 

iii. Distal considerations (ankle) 
 

When considering the lower kinetic chain, the symptomatic cyclist‘s ankle/foot 

moves more (Table 4.38) in the transverse plane (0.79° or 14.3% change), 
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which may indeed be a biomechanical adaptation or, in fact, be indicated by the 

available active range of movement (AROM). This increased movement may be 

produced from a combination of sub-talar and talo-crural joint movement, with 

most of this movement being indicated towards external rotation at the bottom 

of the power stroke (external rotation is reduced in asymptomatic). This distal 

change‘s effect on the knee is not entirely clear due to the foot being tightly 

enclosed and fixed on a cleat that has variable adjustments. These variants 

were specific to each cyclist‘s habitual movement patterns during the cycling 

action. Previous work with distal mechanics and PFP have indicated greater 

tibial IR in those with PFP (Noehren et al., 2012), which interestingly appears to 

contrast with that of Powers et al., (2002).  Also, an increase in rear-foot 

eversion may be linked to hip adduction in those with PFP (Barton et al., 

2012b), however, in line with this biomechanical analysis, there does not seem 

to be any current evidence that substantially links distal factors with PFP 

(Noehren et al., 2013, Witvrouw et al., 2014).  

 

As with the hip, it may be possible to measure any changes in ankle ROM 

clinically, and this data in turn used to quantify whether there is indeed a 

relationship between ankle ROM and cyclists with knee pain. Clinically we may 

be able to address this increased movement with an alteration or adjustment in 

pedal/cleat type or pedal/cleat action. If symptomatic cyclists move into 

increased knee varum and the ankle/foot externally rotates further, then by 

facilitating more movement (or perhaps controlling it using cleat mechanisms 

currently available such as the Speedplay™ zero system) at the ankle we may 

be able to stabilise the knee through its ROM. The ankle in a symptomatic 

cyclist may in effect be required to move more and hence consideration of 
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available cleat movement would be justifiable as an associated clinical outcome 

strategy (Paton, 2009, Ramos Ortega et al., 2012). If the symptomatic cyclist‘s 

ankle requires more movement then this may reinforce pedal float anecdotal 

evidence, in that changes in float can often be an effective way to achieve less 

knee pain (Silberman et al., 2005, Asplund and St Pierre, 2004).  

 

The results demonstrate that the knee moves more (coronal) in symptomatic 

cyclists, also the ankle moves more (transverse), so if the ankle is free to move 

this may in effect, straighten the knee and reduce the coronal movement, thus 

making it more similar to the asymptomatic cyclist‘s data. This, alongside work 

on hip stability and mobility could be a clinical development objective. If we 

allow the ankle/foot to move more in the transverse and coronal plane it may 

allow the patella to track more effectively producing less stress on the articular 

structures, thus decreasing knee pain. It is important, however, for the clinician 

to fully understand any treatment using alterations in pedal cleat tension, float 

and positioning. Depending on experience and understanding, this may be a 

challenge to non-cycling based clinicians, and therefore further work in this 

area, to quantify the options available is required to facilitate an evidenced 

based protocol that can be disseminated as being repeatable and reliable. 

 

iv. Proximal to distal control in regard to pain 
 

It is possible that a knee with instability in the coronal plane is a knee more 

likely to be painful when cycling. This is valuable if we can clinically measure it 

and use it as a predictor to cycling related knee pain. Considering the evidence 

base indicates that control of the knee appears to emanate from the hip, then 

control of the knee from the hip may help decrease knee pain. This would be in 
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line with current research in running based and weight bearing related PFP. A 

rehabilitation programme for the hip to increase mobility and control may offer 

options to both the clinician and cyclist. If a tighter/stiffer hip is one causal factor 

in cycling related knee pain then clinically it may be that creating more 

functional (knee) movement, that is also under control during said function 

(pedaling action), will allow the knee to achieve a coronal pattern closer to that 

found in the asymptomatic cyclists. As outlined in the results discussion of the 

hip, measurement of active range of movement (AROM) and passive range of 

movement (PROM) to create a knowledge base would enable clinical decisions 

to be made with more purpose and logical rationale.   

 

From the results, taping clearly has some effect on knee pain (across mean 

pre/during/post results), but this effect does not appear to depend specifically 

on the exact technique of application of KTT. Thus, the clinical implications of 

these unique findings can be applied to good effect. Considering the abundance 

of available techniques that propose an effect on pain, clinicians may be wise to 

be attentive to proximal and distal factors together with the tape application 

itself. Alongside these implications, it seems that 200 watts produces the 

greatest effect on pain (33% change) and therefore if the clinician intends to 

apply the test/apply/retest protocol indicated by the clinicians‘ responses to the 

online questionnaire, then doing so at this power would appear justified. Modern 

methods of cycling power measurement mean that clinical testing at this power 

is both accurate and reliable (Hurst and Atkins, 2006). The biomechanical 

investigation undertaken in the project provides unique evidence that 200W 

may facilitate the most reliable effects in pain when measured clinically. 
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On reflection, it would have been interesting to measure muscular activity 

through EMG analysis. In light of the results of this project, measurement of the 

controlling hip musculature such as gluteus medius/maximus, and also the 

medial and lateral quadriceps (KTT placement allowing), may indicate a change 

in muscle activation that reflects the changes seen in ROM. This addition may 

also provide noteworthy data to help indicate which areas were functioning 

differently in symptomatic cyclists and thus provide potential rehabilitation 

indications. With the advancements of wireless EMG provision this area of 

research may be open to further work in a clinical setting. An understanding of 

which muscles may be contributing towards knee pain will allow clinical 

rehabilitation to be more focused with cyclists experiencing knee pain. Although 

EMG has limitations such as crosstalk from other muscles, determination of 

muscle on-off times and skin/fascia influence (Rouffet and Hautier, 2008, 

Albertus-Kajee et al., 2010, Egana et al., 2010) to date has been limited to 

laboratory-based work. More mobile wireless systems are now available for field 

based use and if accuracy can be achieved it would be useful to integrate 3D 

biomechanical and muscle activity data. This knowledge would undoubtedly be 

extremely useful in a rehabilitation setting.  

 

Finally, with regard to pain, inclusion of field based pain testing to investigate 

the longer term (endurance duration) pain relief of KTT would have been an 

interesting adjunct to identifying KTT‘s effects from a clinical perspective. Its 

short-term (acute) effects seem evidenced (Tsai et al., 2010, Song et al., 2014, 

Kalron. A, 2013) however, with cyclists, short term is often initial pain on the 

bike and testing in the laboratory does not appear to consider any degree of 

endurance (such as in excess of two hours). Further work on how KTT affects 
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pain over longer rides is crucial in allowing future studies to be planned and 

implemented. The treatment of cycling related knee pain from a clinical 

perspective remains a multifaceted problem. Essentially, decreasing the pain is 

a fundamental objective; however understanding the contributing factors is also 

essential in uncovering the layers of movements that may be causal to the 

repetitive nature of the issue. It is possible that development of a recognised 

pain score protocol for cycling related knee pain could aid clinical interpretation 

of this problem. Simple measurement of pain with clear parameters, that are 

cycling focused, will enable the clinician to work with the cyclist to identify 

patterns that can be addressed.  

Chapter Six: Conclusions and Further Work 
 

 
6.1  Conclusion 
 

In conclusion, based on the findings from the questionnaire we know that KTT is 

the preferred tape used with cycling related knee pain. The actual taping 

application technique however does not seem to be crucial in attaining change 

at the knee, hip or ankle joints. The study has also determined that there are 

variations between cyclists with knee pain and those without. With symptomatic 

cyclists, the knee appears less controlled in the coronal plane, the hip moves 

less (coronal) and the ankle moves more in the transverse plane. This indicates 

a proximal to distal pattern in line with the evidence base and that the contact 

areas in the PFJ and TFJ are potentially under increased stress with 

symptomatic cyclists. There are differences between the conditions and powers 

tested, however these have no identifiable pattern that pre-disposes them to 

any clinical implication. Neutral taping elicits as many changes (pain and 

biomechanical) as the specific KTT technique and therefore technique may be 
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somewhat irrelevant in the clinical setting. Regarding clinical testing, 200 watts 

appears to produce more measurable pain effects. 

 

Recollecting that biomechanical efficacy is the capacity to produce a 

biomechanical change, and clinical effectiveness being the capability of 

producing a clinical outcome, the results lead us towards further work around 

these findings and establish an evidence base to develop, both clinically and in 

the biomechanical laboratory setting. Symptomatic knees with more 

varus/valgus movement may be an identifiable clinical finding either actively or 

passively, whilst restriction in the hip joint may also be a clinical indicator. The 

increased movement in the transverse plane of the ankle indicates further 

research around cleat movement during the pedal stroke. Further work is also 

required for potentially screening cyclists with decreased hip movement and for 

those who may be predisposed to, or experiencing knee pain. This pain, which 

is seen to exist more in those (symptomatic) where no tape is applied, requires 

further research to determine its exact nature and onset, either in a more 

functional environment, or over a longer time period. This would elicit more 

fatigue related functionality, representing more realistic road specific cycling 

activity. The protocol from this study may be utilised in future experiments to 

determine additional clinical predictors and implications. 

 

Finally, it is important to 'close the circle' from initial conception to conclusion of 

this project. The initial question of 'does the tape do anything' proposed requires 

the clinician to consider the results from a pragmatic standpoint and enable 

clinical reasoning to be applied to cycling related knee pain. Taping clearly does 

something from a pain and movement perspective, however it is likely that this 
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effect is not what the anecdotal rhetoric presumes. If the intent is to use the 

tape to elicit specific biomechanical change then this is difficult to justify and 

measure, even more so clinically. If the expectations are purely around pain 

then it is likely that pain will be decreased using KTT. Determining the 

underpinning movements across the kinetic chain that are causing the PFP 

appear somewhat elusive at this point in time. 

6.2  Thesis strengths and limitations  
 
The strengths of this project lie in its logical structure, firstly to identify and 

clarify taping procedure and application, followed by a robust protocol using 

recognised biomechanical testing procedures. This logic was determined from a 

practical clinical question that underpinned the entire project, 'does tape do 

anything'.  Its entire underlying principle has a clinical background and 

application that has been specifically envisioned to allow clinicians to make 

practical decisions around taping efficacy and effectiveness when treating 

cycling related knee pain. Without this, one could argue as to its usefulness to 

the cyclist or the clinician. This rationale, although in its infancy, is designed to 

facilitate progression and development from a research perspective. This will 

notably enhance the evidence base and allow clinicians to add to this collective 

in many ways. There are multiple factors that provide unique and significant 

contributions to knowledge in the subject area, and these have been 

highlighted. To date there have been no studies done in this specific area.  

 

It should be taken into account that as with a lot of sports, cycling is 

predominantly an outdoor activity, and one which combines musculoskeletal 

movements alongside bike movement, atmospheric variances, surface changes 

and gradient disparities. All of these factors could not be considered during the 
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laboratory testing and therefore it could be argued that the true nature of cycling 

related knee pain was not measured. This is of course, not entirely achievable 

in a controlled setting. The protocol was robust, reliable and repeatable and to 

this end the findings can be relied upon as accurate within the boundaries of the 

testing environment. Although clinically the exact protocol is dependent on 

certain equipment being available, the results have been interpreted in order to 

allow their use with as much practical clinical application as possible. It should 

also be recognised that cycling related knee pain is often fatigue based and 

therefore the pain results could be seen to be somewhat limited in their 

usefulness due to the small timeframe of data collection. Because onset is not 

always immediate it may be that the results from the laboratory-based 

investigations‘ pain measurements are not entirely representative of all levels 

and degrees of cycling. Accurate measurement was however dependent on the 

protocol and methodology being repeatable and reliable. This ensured the 

biomechanical data was robust. 

 
6.3  Further work 
 
 
Although the outcomes of these studies have produced results that allow us to 

make a degree of interpretation as to their implications for cycling related knee 

pain, the entire journey of this project has also opened up additional areas of 

interest such as variances between symptomatic and asymptomatic cyclists, the 

associated kinematics of the hip and ankle, the influence of different power and 

specific KTT techniques on the knee, and their consequent opportunities for 

future work. The study is representative of a unique contribution to science in 

that it is a starting point on which other can build. Its findings have been a 

progression in understanding whether taping has any effect on the knee, both 
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with and without pain, during cycling. From the results and previous work we 

have an understanding of how asymptomatic cyclists move from a 

biomechanical perspective. The work on symptomatic cyclists with knee pain 

requires further investigation to confirm the findings and examine the variances 

in movement patterns across a larger group. The dissemination of this work to 

the scientific and clinical population has been initiated through abstract 

publication (Theobald et al., 2014b, Theobald et al., 2014a), presentation at the 

Science of Cycling Symposium at the Australian Institute of Sport in Varese, 

Italy (July 2014), two poster presentations at the 2014 World Congress of 

Cycling and both poster and oral presentation (Winner of Best Professional 

Abstract, 2014) at the 2014 Medicine of Cycling conference in Colorado 

Springs, USA. Further information on this work can be found in Appendices 1 to 

9.  

 

It may be that undertaking screening of cyclists clinically for association 

between these variances will enable us to undertake research into whether we 

can use clinically measurable differences to identify injury prediction and 

therefore possible prevention. This screening would require an adapted pain 

scoring system for cycling, and a reliable and repeatable ROM measurement 

system that allows for collection of larger group numbers. Determination of any 

variances in ROM in the hip, knee or ankle with symptomatic cyclists will inform 

further biomechanical investigations. There will undoubtedly be a requirement 

for additional field and laboratory work to look further at pain effects of KTT as it 

is clearly a factor used in its clinical rationale (online questionnaire responses). 

Endurance being a predominant factor of cycling means that this is a key area 

that requires further work alongside the more biomechanical based studies in 
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the laboratory setting. Additional investigation into the longevity of KTT‘s effects 

will add to the growing evidence base and broaden the understanding as to its 

underpinning mechanisms of achieving pain reduction.  Once this work has 

been progressed it is a logical step forward to include rehabilitation strategies to 

predict and prevent injury in more longitudinal based work. 
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Appendices 
 
Publications, presentations and invited posters by author from this and other 
related work. 
 

1 Abstract (1) published in Journal of Cycling Science 2014 
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2 Associated poster presented at the 2nd World Congress of Cycling 
Science, 2nd/3rd July 2014, Leeds Yorkshire, UK 
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3 Abstract (2) published in Journal of Cycling Science 2014 
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4 Associated poster presented at the 2nd World Congress of Cycling 
Science, 2nd/3rd July 2014, Leeds Yorkshire, UK 
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5 Abstract (1) accepted at the 2014 Medicine of Cycling Conference in 
Colorado Springs, USA  

(http://www.medicineofcycling.com/conference/) 
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6 Associated poster presented at the 2014 Medicine of Cycling 
Conference in Colorado Springs, USA  
(http://www.medicineofcycling.com/conference/) 
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7 Abstract (2) accepted at the 2014 Medicine of Cycling Conference in 
Colorado Springs, USA  
(http://www.medicineofcycling.com/conference/) 
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8 Copy of presentation slides presented during invited oral research 
presentation at the 2014 Medicine of Cycling Conference in Colorado 
Springs, USA and The Science of Cycling Symposium in Varese, 
Italy, July, 2014 

 
 (http://www.medicineofcycling.com/conference/)  
  http://www.scienceofcycling.com.au/injury-prevention-course-italy/ 
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Flyer for Science of Cycling symposium where author presented an outline of this work 
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9 Online questionnaire – exact screen shots 
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10 Online questionnaire -  Participant questionnaire: 
 

 
 
  

Information Sheet  
 

 
Title of main MPhil/PhD study:  
 
An investigation of the biomechanical efficacy and clinical effectiveness of patello-femoral taping in elite and 
experienced cyclists 
 
Aim of this questionnaire: 

 
This questionnaire aims to establish the current clinical practice of English speaking therapists in the UK, and if 
identified, the Union Cycliste Internationale (UCI) countries of taping techniques for the treatment of elite and 
experienced cyclists with patello-femoral knee pain. 
 
Objectives of MPhil Study 
1. To establish the number of therapists currently engaged the treatment of elite and experienced cyclists with 

PFKP. 
2. To design, pilot and implement a comprehensive survey to determine current taping techniques for PFKP in 

elite and experienced cyclists,  
3. To summarise how PFKP taping is currently used in clinical practice, which will inform the techniques to be 

used.  
 

This will inform the PhD phase of the overall study and allow us to establish treatment techniques to use in the 
biomechanical analysis. 
 
Who will conduct the research? 

 
Graham Theobald BSc (Hons) will be responsible for the management of the study. Graham Theobald will also 
be responsible for recruitment and data collection. 

 
What we are asking you to do: 
 
We are asking you to complete a short online questionnaire in relation to the aim of the study. The entire 
questionnaire should take no longer than 30 minutes to complete. Most of the questions are in a simple format 

but there is space for you to expand your answers depending on your personal experience in this area. After the 
questionnaire you may be asked to participate in a follow up interview, either in person (through a visit) or by 
phone – you are under no obligation to participate in an interview by completing the questionnaire. 
 
Are there any risks or benefits? 

 
There are no foreseeable risks to you by completing the questionnaire. There will be no immediate direct benefits 
for you; however the results may help to develop more a better understanding of taping in elite and experienced 

cyclists.   
 

Data storage: 
 

All data will be stored in line with UCLAN regulations. Electronic data will be stored on a password protected pc, 
on the allied health professions pc network or another secure system. All consent forms and other documents 
will be stored so that no names can be associated with them in a locked filling cabinet. Electronic data and forms 
will be kept for 5 years following the end of the project, and then destroyed.   

 

Who has approved this study? 
 
This study has been approved by the Faculty of Health Ethics Committee.  
 
Who can I contact to discuss any issues or to make a complaint?  
 
If you have any issues with the conduct of the Postgraduate student whilst taking part in this study you can 
contact Professor James Selfe at the University of Central Lancashire.   - JSelfe1@uclan.ac.uk 
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11 Online questionnaire -  Consent form 
 

 
 
  

 

 

 
 

 
 
 

Study Title: An investigation of the biomechanical efficacy and clinical effectiveness of 
patellofemoral taping in elite and experienced cyclists 

 
 

Please read all the statements below and initial each box to confirm that you have read and understood each 

item 
 

 

1. I confirm that I have read and understood the information sheet for the 

above study; I have had the opportunity to consider the information and ask 

questions and have had these answered satisfactorily. 

 
2. I understand that my participation is voluntary and that I am free to withdraw 

at any time, without giving any reason and without it affecting my legal rights. 

 
 

3. I agree to: 

 
 

Taking part in an online questionnaire 

  

My answers and comments to be used to determine 
inclusion in the interview stage of the study 

 

Allow anonomised quotes from the questionnaire to be used 
in further research, in reports, publications or for teaching purposes. 

 

 

 
-------------------------------    ------------  --------------------  

Name of participant    Date   Signature 

 
 

-------------------------------    ----------  --------------------  

Name of researcher    Date   Signature 
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12 Online questionnaire -  Covering email 
 
 

 
  

 

 
 
 
Copy of proposed covering email, including consent by acceptance of online 

survey participation. 

 
 

Dear………… 

 
Your name has been brought to my attention by …………………… in regards to a 

MPhil/PhD study that I am currently undertaking into knee pain in Elite and Experienced 

Cyclists and taping. 
 

I am looking for therapists who are, or have been, working with Elite and experienced 

cyclists with knee pain and subsequently treating them with taping as part of an overall 

treatment plan. The criteria for inclusion for the study is below, do you fit the criteria and 
would you be prepared to help me by completing a short online questionnaire? 

 

· Do you treat elite and/or experienced cyclists with knee pain? 

· Do you use, or have you used any form of taping as a treatment technique for 

cycling related knee pain? 

· Are you prepared to participate in a small questionnaire aimed at this target group 

and treatment? 
 

If you are happy to participate in the questionnaire could you please reply stating which 

email address you would like me to email the online link to. By doing so you consent to take 

part in the research as a volunteer and understand that you are free to withdraw at any 
time, without giving any reason, and without any future care or legal rights being affected. 

 

Your consent relates to the following: 
 

Taking part in an online questionnaire 

   
Your answers and comments to be used to determine 

inclusion in any potential future interview stage of the study 

 

Anonomised quotes from the questionnaire to be used 
in further research, in reports, publications or for teaching purposes. 

 

 
A copy of the participant information and overall study proposal are attached here for your 

attention. You will have opportunity to ask any questions prior to being sent the 

questionnaire link. 

 
 

Regards, 

 
 

Graham Theobald BSc (Hons), MSST 
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13. Online questionnaire -  Participant letter to introduce information 
 

 
  

Graham Theobald Page 1 26/01/2011 

 
 
 

 

 
Dear……………….. 

 

Thank you for considering participating in this MPhil/PhD study into knee pain in Elite 
and Experienced Cyclists and taping. 

 

As a therapist working with Elite and experienced cyclists with knee pain and 

subsequently treating them with taping as part of an overall treatment plan your 
experience is crucial in order to determine the PhD phase of the study and further the 

research in this area. The criteria for inclusion for the study is below, please take a 

moment to ensure you answer yes to the three points below before completing the 
questionnaire. 

 

· Do you treat elite and/or experienced cyclists with knee pain? 

· Do you use, or have you used any form of taping as a treatment technique for 
cycling related knee pain? 

· Are you prepared to participate in a small questionnaire aimed at this target 

group and treatment? 
 

This study will inform me of the current clinical application of our study subject and 

consequently from this information I expect to be able to focus a 3D biomechanical 
study that identifies some clear outcomes as to the effectiveness and efficacy of certain 

specified taping applications for knee pain and cyclists. It is possible that these results 

will enable you to make improved evidence based clinical decisions as to taping 

treatment with cyclists.  
 

All data collected, other than for direct communication purposes to each participant 

from myself, will remain anonymous throughout the study.  All data will be coded and 
only aggregated and annonymised data will be used for analysis and presented in the 

thesis and any other associated academic output. Coded annonymised data will be 

separate from any data where contact details need to be retained for communication.  
 

Once again, thank you for considering participation in the study. 

 

 
 

 

 
Regards, 

 

 

Graham Theobald 
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14. Online questionnaire -  Summary of practical ethical issues 
 

 
  

Graham Theobald Page 1 26/01/2011 

 
 
 
 
 
Summary of Practical Ethical Issues 
 
 
After reviews the ethics checklist there are no other conditions met other than that of 
using humans and their resultant data. 
 
Normally, participation in the therapist online questionnaire is accepted as informed 
consent, however a covering email will be sent prior to sending the direct link to the 
questionnaire to outline the objectives of the project and its context within the overall 
study. 
 
There are no issues with lack of capacity in participation due to the nature of the 
questionnaire. It is designed for therapists actively involved in working with 
symptomatic elite and experienced cyclists and taping. This means that there should 
be no confusion as to whether the participant is credible as if they meet the criteria for 
inclusion then they are in the target group. 
 
This simple criteria is as follows: 
Do you treat elite and/or experienced cyclists with knee pain? 
Do you use, or have you used any form of taping as a treatment technique for cycling 
related knee pain? 
Are you prepared to participate in a small questionnaire aimed at this target group and 
treatment? 
 
 
 
G Theobald, Feb, 2011  
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15. Biomechanical study -  Participant information sheet  (4 pages) 
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16. Biomechanical study - Participant consent form 
 
 

 
 
  

G. Theobald Page 1 20/03/2013 

 
 
Study Title:  An investigation of the biomechanical efficacy and clinical effectiveness of 

patello-femoral taping in elite and experienced cyclists. 
 

Principal investigator: Graham Theobald BSc (Hons) 

 

Please read all the statements below and ensure that you have read and  
understood each item. Tick box to indicate this. Also please mark either box 1 or 2  

to indicate whether you are currently experiencing cycling related knee pain. 

 
I, ………………………………………….consent to the following statements:  

 

I have read and understood the information sheet (date …………….) and I have 

had the opportunity to ask questions – Email or in person 

 

I understand that I can withdraw from the study at any time without giving a reason  

I understand that it will not be possible to withdraw my data from the study after 

final analysis has been undertaken 

 

I understand that my participation will be anonymous and any details that might 
identify me will not be included in reports, presentations 

 

I agree to my anonymised data being used within reports, presentations or other 

publications produced from the study 

 

I agree to take part in this study  

I am an Elite or Experienced cyclist and am used to regular cycling 

(British Cycling guidelines of Elite, 1, 2, 3 and 4 category and gold/silver/bronze 

standard sportive cyclists) 

 

I have no known or diagnosed medical conditions other than cycling related knee  
pain that that may affect participation in this study (e.g. Chondromalacia, meniscal tear, etc) 

 

I understand that if I have any known or unknown medical conditions, other than  

cycling related knee pain, which result in injury, the research team will not be held 
responsible. 

 

All the data produced will be treated confidentially and individually. However the 

anonymous results may be used in possible future publications. If I wish, the results 

produced will be made available to me. 

 

 

Please also mark one of the following statements: 

 

1 

 

I HAVE cycling related knee pain 
 
NOTE: If this box is initialled you will be required to complete an additional 
screening form to determine your knee pain inclusion criteria  

 

2 

 

I DO NOT have cycling related knee pain 
  

 

 
 
Name of Participant: ___________________________                     Date:_________ 

 
Signature: ____________________________ 
 

 
Name of Researcher:   Graham Theobald Date: _________ 
 

Signature: ____________________________  
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17. Biomechanical study - Cycling related knee pain inclusion/exclusion 
form 

 

 
 
  

	
	
	
Knee pain Inclusion / Exclusion form 
 
Name:                                                                  Date:               

 

Are you an experienced or elite cyclist designated one or more of the 
following categories: 
http://www.britishcycling.org.uk/road/article/roadst_Road-Categories_Classifications 

 Yes No 

British Cycling Elite   

British Cycling Cat 1   

British Cycling Cat 2   

British Cycling Cat 3   

British Cycling Cat 4   

Gold standard sportive cyclist (within 10% of fastest finisher)   

Silver standard sportive cyclist (within 30% of fastest finisher)   

Bronze standard sportive cyclist (within 60% of fastest finisher)   

 Yes No 

Do you currently have cycling related knee pain   
(if YES continue below – if NO, do not answer following questions)   

 
Knee pain related questions 

 Yes No 

Prior to considering this study, have you had a 
professionally/medically diagnosed knee problem other than 
cycling related knee pain? For example: Chondromalacia, 

Meniscal tear, ACL deficiency, MCL tear  

  

If answered yes please give further details: 

 
 

Is your pain in both knees, or just one? (please indicate ) Both One 

  
 

Please indicate in box opposite how many months your 
cycling related knee pain has been present in its current 
form. 

 

 Yes No 

Have you been diagnosed by your doctor to have  
Osteo-Arthritis of the knee? 

  

Have you had a knee pathology confirmed by an x-ray or 
MRI scan taken in the last 12 months? 

  

Have you had an intra-articular corticosteroid injection 
applied to your knee joint in the past 3-6 months? 
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18. Biomechanical study - Copy of advert for participant recruitment  
 
 

 
 
  

  

 
 

 

 

 

Are you an Experienced or Elite cyclist? 

 

What do we mean by Experienced or Elite?  

You will need to be in one of the following categories: 

 

British Cycling Elite British Cycling Cat 1 

British Cycling Cat 2 British Cycling Cat 3 

British Cycling Cat 4 Gold standard sportive cyclist (within 10% of fastest 

finisher) 

Silver standard sportive cyclist (within 30% of 

fastest finisher) 
Bronze standard sportive cyclist (within 60% of fastest 

finisher) 
http://www.britishcycling.org.uk/road/article/roadst_Road-Categories_Classifications 

 

I am doing some PhD research into the biomechanical effects of different 

treatments of knee pain in cyclists and are looking for cyclists to give an hour or so 

of their time to assist the process. 

 

Can you help? 

 

90 minutes of your time in the movement lab in Brook building 

 

ITS INTERESTING, INNOVATIVE AND YOU GET REFLECTIVE SILVER BALLS STUCK ALL OVER YOU WHILST GETTING 

A WORKOUT  !!!! 

 

Either tear off a contact form below and contact Graham by phone or text on 

07866 576411 or by email on graham@thebodyrehab.co.uk 

 
 

 

 

Cyclists wanted !! 
 

 

 
Contact details:  please tear off from bottom and contact by email or phone 

 

 
 

Cyclists wanted !! 
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19. Biomechanical study - Copy of risk assessment form  
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20. Biomechanical study - Adapted numeric pain scale  
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21. Biomechanical study  -   Results with outlier removed  
 
21.1 Kinematic patterns overlaid to illustrate outlier 
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 251 

 

Appendix 21.2: 
 

Analysis of variance (ANOVA) : Outlier removed 
 

SAGITTAL – comparison with and without outlier 
 

 
WITHOUT OUTLIER – n=19 

WITH OUTLIER – n=20 

Between conditions (KTT/Neutral tape/NO tape) 

Sagittal plane – ROM – KNEE (degrees) 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape -.286 .776 no 

NO tape -.715 .476 no 

Neutral 
tape 

KTT .286 .776 no 

NO tape -.429 .669 no 

NO tape KTT .715 .476 no 

Neutral tape .429 .669 no 
 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape -.334 no no 

NO tape -.795 no no 

Neutral 
tape 

KTT .334 no no 

NO tape -.461 no no 

NO tape KTT .795 no no 

Neutral tape .461 no N0 
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WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between Asymptomatic and Symptomatic participants 

Sagittal plane – ROM – KNEE (degrees) 

  Mean ROM Mean Diff Sig 
<0.05 
yes/no 

Asymptoma
tic 

84.350 .576 .497 no

Symptomati
c 

83.774 -.576 .497 no
 

  Mean ROM Mean Diff Sig 
<0.05 
yes/no 

Asymptom
atic 

84.350 -.385 .655 no

Symptoma
tic 

84.736 .385 .655 no
 

  

 

 
WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between powers (100w/200w/300w) 

Sagittal plane – ROM – KNEE (degrees) 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w -.854 .395 no 

300w -1.811 .072 no 

200w 100w .854 .395 no 

300w -.957 .340 no 

300w 100w 1.811 .072 no 

200w .957 .340 no 
 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w -.842 .425 no 

300w -1.659 .117 no 

200w 100w .842 .425 no 

300w -.817 .439 no 

300w 100w 1.659 .117 no 

200w .817 .439 no 
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CORONAL – comparison with and without outlier 
 

 
WITHOUT OUTLIER – n=19 

WITH OUTLIER – n=20 

Between conditions (KTT/Neutral tape/NO tape) 

Coronal plane – ROM – KNEE (degrees) 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape -.127 .783 no

NO tape -.464 .314 no

Neutral tape KTT .127 .783 no

NO tape -.337 .464 no

NO tape KTT .464 .314 no

Neutral tape .337 .464 no
 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape -.156 .764 no

NO tape -.218 .675 no

Neutral tape KTT .156 .764 no

NO tape -.062 .905 no

NO tape KTT .218 .675 no

Neutral tape .062 .905 no
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WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between Asymptomatic and Symptomatic participants 

Coronal plane – ROM – KNEE (degrees) 

  

  Mean ROM Mean Diff Sig 
<0.05 
yes/no 

Asymptomatic 6.700 -.504 .197 no

Symptomatic 7.204 .504 .197 no
 

  

  Mean ROM Mean Diff Sig 
<0.05 
yes/no 

Asymptomatic 6.700 -1.194* .005 yes

Symptomatic 7.894 1.194* .005 yes
 

  

 

 

 
WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between powers (100w/200w/300w) 

Coronal plane – ROM – KNEE (degrees) 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w .079 .864 no

300w -.063 .891 no

200w 100w -.079 .864 no

300w -.142 .758 no

300w 100w .063 .891 no

200w .142 .758 no
 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w .142 .785 no

300w -.088 .866 no

200w 100w -.142 .785 no

300w -.230 .659 no

300w 100w .088 .866 no

200w .230 .659 no
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TRANSVERSE – comparison with and without outlier 
 

 
 

WITHOUT OUTLIER – n=19 
WITH OUTLIER – n=20 

Between conditions (KTT/Neutral tape/NO tape) 

Transverse  plane – ROM – KNEE (degrees) 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape -.093 .947 no

NO tape -.330 .812 no

Neutral tape KTT .093 .947 no

NO tape -.237 .865 no

NO tape KTT .330 .812 no

Neutral tape .237 .865 no
 

Condition Mean 
Difference  Sig 

<0.05 
yes/no 

KTT Neutral tape .033 .981 no

NO tape -.163 .908 no

Neutral tape KTT -.033 .981 no

NO tape -.195 .889 no

NO tape KTT .163 .908 no

Neutral tape .195 .889 no
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WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between Asymptomatic and Symptomatic participants (degrees) 

  
Mean 
ROM Mean Diff Sig 

<0.05 
yes/no 

Asymptomatic 14.004 -2.066 .081 no

Symptomatic 16.070 2.066 .081 no
 

  
Mean 
ROM Mean Diff Sig 

<0.05 
yes/no 

Asymptomatic 14.004 -1.676 .146 no

Symptomatic 15.680 1.676 .146 no
 

  

 

 
WITHOUT OUTLIER – n=19 WITH OUTLIER – n=20 

Between powers (100w/200w/300w) 

Transverse plane – ROM – KNEE (degrees) 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w .528 .704 no

300w 1.053 .450 no

200w 100w -.528 .704 no

300w .525 .706 no

300w 100w -1.053 .450 no

200w -.525 .706 no
 

Power Mean 
Difference  Sig 

<0.05 
yes/no 

100w 200w .289 .837 no

300w .812 .564 no

200w 100w -.289 .837 no

300w .524 .710 no

300w 100w -.812 .564 no

200w -.524 .710 no
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22. Biomechanical study: Results not presented in section 4 or referred 
to in results section 
 
Statistical Analysis of variance (ANOVA) across all participants- n=20 
Sagittal plane – ROM - KNEE 
Between conditions (KTT/Neutral tape/No tape) 
 

 
Table 22.1 - Knee/sagittal between conditions (KTT/Neutral tape/NO tape) 

 

Condition 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.334 .751 no 

NO tape -.795 .451 no

Neutral tape KTT .334 .751 no

NO tape -.461 .662 no

NO tape KTT .795 .451 no

Neutral tape .461 .662 no

 

 
Between Asymptomatic and Symptomatic participants 
 

Table 22.2 - Knee/sagittal between Asymptomatic & Symptomatic participants 

 

  Mean ROM (º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 84.350 -.385 .655 no

Symptomatic 84.736 .385 .655 no

 
 
Between powers (100W/200W/300W) 
 

Table 22.3 - Knee/sagittal between powers (100W/200W/300W) 

 

Power (W) 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

100W 200W -.842 .425 no

300W -1.659 .117 no

200W 100W .842 .425 no

300W -.817 .439 no

300W 100W 1.659 .117 no

200W .817 .439 no
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Coronal plane – ROM - KNEE 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.4 - Knee/coronal between conditions (KTT/Neutral tape/NO tape) 
 

Condition Mean 
Difference (º)  Sig 

<0.05 
yes/no 

KTT Neutral tape -.156 .764 no

NO tape -.218 .675 no

Neutral tape KTT .156 .764 no

NO tape -.062 .905 no

  NO tape KTT .218 .675 no

Neutral tape .062 .905 no

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.5 - Knee/coronal between Asymptomatic & Symptomatic participants  

  Mean ROM (º) 
Mean Diff 

(º) Sig 
<0.05 
yes/no 

Asymptomatic 6.700 -1.194* .005 yes

Symptomatic 7.894 1.194* .005 yes

 
 
Between powers (100W/200W/300W) 
 

Table 22.6 - Knee/coronal between powers (100W/200W/300W) 

 

Power (W) Mean 
Difference (º)  Sig 

<0.05 
yes/no 

100W 200W .142 .785 no

300W -.088 .866 no
200W 100W -.142 .785 no

300W -.230 .659 no
300W 100W .088 .866 no

200W .230 .659 no
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Transverse plane – ROM - KNEE 
 
Between conditions (KTT/Neutral tape/No tape) 
 
 

Table 22.7 - Knee/transverse between conditions (KTT/Neutral tape/NO 
tape) 

 

Condition Mean 
Difference (º) Sig 

<0.05 
yes/no 

KTT Neutral tape .033 .981 no
NO tape -.163 .908 no

Neutral tape KTT -.033 .981 no

NO tape -.195 .889 no

NO tape KTT .163 .908 no
Neutral tape .195 .889 no

 
 

 
Between Asymptomatic and Symptomatic participants 
 
 

Table 22.8 - Knee/transverse between Asymptomatic and Symptomatic 
participants 

 

  
Mean ROM 

(º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 14.004 -1.676 .146 no

Symptomatic 15.680 1.676 .146 no
 

 

Between powers (100W/200W/300W) 
 
 

Table 22.9 - Knee/transverse between powers (100W/200W/300W) 

 

Power (W) Mean 
Difference (º) Sig 

<0.05 
yes/no 

100W 200W .289 .837 no
300W .812 .564 no

200W 100W -.289 .837 no
300W .524 .710 no

300W 100W -.812 .564 no
200W -.524 .710 no
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Statistical Post hoc analysis: Comparison of significant differences across planes – ASYMPTOMATIC – KNEE 
 

Table 22.10 - Significant differences Asymptomatic knee - Between conditions, within powers 
 

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
 KTT Neutral  

No 
tape   KTT Neutral  

No 
tape   KTT Neutral  

No 
tape 

  

KNEE 
kinematics 
Asymptomatic 
(n=12) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape  0.023       NO tape        

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape         Neutral tape       

NO tape  0.002 0.011     NO tape          NO tape        

                

300W 

KTT         KTT         KTT       

300W Neutral tape         Neutral tape         Neutral tape       

NO tape  0.005 0.041     NO tape          NO tape    0.033   

 

Table 22.11 - Transverse plane - Significant differences asymptomatic knee - Between powers, within conditions 
 

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

KNEE kinematics 
Asymptomatic 
(n=12) 

KTT 

100W         100W         100W       

KTT 200W         200W         200W       

300W         300W         300W       

                

Neutral 
tape 

100W         100W         100W       

Neutral 
tape 

200W         200W         200W       

300W   0.002     300W         300W   0.042   

                

NO tape 

100W         100W         100W       

NO 
tape 

200W         200W         200W       

300W 0.005 0.002     300W         300W       
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Comparison of significant differences across planes - SYMPTOMATIC – KNEE 
 

Table 22.12 - Significant differences Symptomatic knee - Between conditions, within powers 

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
 KTT Neutral  

No 
tape   KTT Neutral  

No 
tape   KTT Neutral  

No 
tape 

  

KNEE 
kinematics 
Symptomatic 
(n=8) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

                

300W 

KTT         KTT         KTT       

300W Neutral tape 0.014       Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

 

Table 22.13 - Significant differences Symptomatic knee - Between powers, within conditions 

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

KNEE kinematics 
Symptomatic (n=8) 

KTT 

100W         100W         100W       

KTT 200W         200W         200W       

300W         300W   0.029     300W       

                

Neutral 
tape 

100W         100W         100W       

Neutral 
tape 

200W         200W         200W       

300W 0.026       300W         300W       

                

NO tape 

100W         100W         100W       

NO 
tape 

200W 0.016       200W 0.028       200W       

300W 0.002       300W         300W   0.017   
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Statistical Analysis of variance (ANOVA) across all participants- n=20 
 
Sagittal plane – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.14 - Hip/sagittal between conditions (KTT/Neutral tape/NO tape) 
 

Condition 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.378 .679 no

NO tape -.572 .531 no

Neutral tape KTT .378 .679 no

NO tape -.194 .832 no

NO tape KTT .572 .531 no

Neutral tape .194 .832 no

 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.15 - Hip/sagittal between Asymptomatic and Symptomatic participants 
 

  Mean ROM (º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 52.108 1.410 .060 no

Symptomatic 50.698 -1.410 .060 no

 
 

 
 
Between powers (100W/200W/300W) 
 

Table 22.16 - Hip/sagittal between powers (100W/200W/300W) 
 

Power (W) 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

100W 200W -.349 .702 no

300W -.991 .278 no

200W 100W .349 .702 no

300W -.642 .482 no

300W 100W .991 .278 no

200W .642 .482 no
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Coronal plane – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.17 - Hip/coronal between conditions (KTT/Neutral tape/NO tape) 
 

Condition Mean 
Difference (º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.763 .179 no

NO tape -.420 .458 no

Neutral tape KTT .763 .179 no

NO tape .342 .545 no

NO tape KTT .420 .458 no

Neutral tape -.342 .545 no

 
 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.18 - Hip/coronal between Asymptomatic and Symptomatic participants 
  

  Mean ROM (º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 6.083 1.595* .001 yes

Symptomatic 4.488 -1.595* .001 yes

 
 

 
 
Between powers (100W/200W/300W) 
 

Table 22.19 - Hip/coronal between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

<0.05 
yes/no 

100W 200W -.613 .279 no

300W -1.199* .035 yes

200W 100W .613 .279 no

300W -.586 .301 no

300W 100W 1.199* .035 yes

200W .586 .301 no
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Transverse plane – ROM - HIP 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.20 - Hip/transverse between conditions (KTT/Neutral tape/NO tape) 
 

Condition Mean 
Difference (º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.078 .866 no

NO tape -.236 .609 no

Neutral tape KTT .078 .866 no

NO tape -.158 .732 no

NO tape KTT .236 .609 no

Neutral tape .158 .732 no

 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.21 - Hip/transverse between Asymptomatic and Symptomatic 
participants 

 

  
Mean ROM 

(º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 10.459 -.273 .469 no

Symptomatic 10.732 .273 .469 no

 
 

 
Between powers (100W/200W/300W) 
 

Table 22.22 - Hip/transverse between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

<0.05 
yes/no 

100W 200W -.947* .041 yes

300W -1.642* .000 yes

200W 100W .947* .041 yes

300W -.695 .133 no

300W 100W 1.642* .000 yes

200W .695 .133 no
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Comparison of significant differences across planes - ASYMPTOMATIC – HIP 

Table 22.23 - Significant differences Asymptomatic hip - Between conditions, within powers 

 

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
  KTT Neutral  

No 
tape     KTT Neutral  

No 
tape     KTT Neutral  

No 
tape 

  

HIP kinematics 
Asymptomatic 
(n=12) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape    0.051     NO tape        

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape 0.021       Neutral tape       

NO tape  0.040       NO tape          NO tape        

                

300W 

KTT         KTT         KTT       

300W Neutral tape         Neutral tape 0.044       Neutral tape       

NO tape  0.018 0.026     NO tape          NO tape  0.045     

 

 
Table 22.24 - Significant differences Asymptomatic hip - Between powers, within conditions 

 

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

HIP kinematics 
Asymptomatic 
(n=12) 

KTT 

100W         100W         100W       

KTT 200W         200W 0.018       200W       

300W         300W 0.015       300W       

                

Neutral 
tape 

100W         100W         100W       
Neutral 
tape 

200W         200W 0.016       200W       

300W 0.041 0.006     300W         300W       

                

NO tape 

100W         100W         100W       
NO 
tape 

200W 0.037       200W 0.017       200W       

300W 0.025       300W 0.004 0.008     300W       
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Comparison of significant differences across planes - SYMPTOMATIC – HIP 
 

Table 22.25 - Significant differences Symptomatic hip - Between conditions, within powers 

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
  KTT Neutral  

No 
tape     KTT Neutral  

No 
tape     KTT Neutral  

No 
tape 

  

HIP 
kinematics 
Symptomatic 
(n=8) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

                

300W 

KTT         KTT         KTT       

300W Neutral tape 0.016       Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

 

Table 22.26 - Significant differences Symptomatic hip - Between powers, within conditions  

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

HIP kinematics 
Symptomatic (n=8) 

KTT 

100W         100W         100W       

KTT 200W         200W         200W 0.000     

300W         300W         300W 0.004     

                

Neutral 
tape 

100W         100W         100W       
Neutral 
tape 

200W         200W         200W       

300W   0.023     300W   0.039     300W 0.009 0.009   

                

NO tape 

100W         100W         100W       
NO 
tape 

200W         200W         200W 0.001     

300W         300W   0.042     300W 0.001     
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Statistical Analysis of variance (ANOVA) across all participants- n=20 
 
Sagittal plane – ROM - ANKLE 

 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.27 - Ankle/sagittal between conditions (KTT/Neutral tape/NO tape) 
 

Condition 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.081 .956 no

NO tape .132 .929 no

Neutral tape KTT .081 .956 no

NO tape .213 .885 no

NO tape KTT -.132 .929 no

Neutral tape -.213 .885 no

 
 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.28 - Ankle/sagittal between Asymptomatic & Symptomatic participants 
 

  Mean ROM (º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 26.129 -1.353 .264 no

Symptomatic 27.482 1.353 .264 no

 
 

 
 
Between powers (100W/200W/300W) 
 

Table 22.29 - Ankle/sagittal between powers (100W/200W/300W) 
 

Power (W) 
Mean 

Difference 
(º) Sig 

<0.05 
yes/no 

100W 200W -.155 .917 no

300W -.134 .928 no

200W 100W .155 .917 no

300W .021 .989 no

300W 100W .134 .928 no

200W -.021 .989 no
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Coronal plane – ROM - ANKLE 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.30 - Ankle/coronal between conditions (KTT/Neutral tape/NO tape) 
 

Condition Mean 
Difference (º)  Sig 

<0.05 
yes/no 

KTT Neutral tape .134 .711 no

NO tape .116 .748 no

Neutral tape KTT -.134 .711 no

NO tape -.018 .960 no

NO tape KTT -.116 .748 no

Neutral tape .018 .960 no

 
 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.31 - Ankle/coronal between Asymptomatic & Symptomatic participants 
  

  Mean ROM (º) Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 5.779 .289 .327 no

Symptomatic 5.490 -.289 .327 no

 
 

 
 
 
Between powers (100W/200W/300W) 
 

Table 22.32 - Ankle/coronal between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

<0.05 
yes/no 

100W 200W -.393 .277 no

300W -.714* .049 yes

200W 100W .393 .277 no

300W -.321 .373 no

300W 100W .714* .049 yes

200W .321 .373 no
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Transverse plane – ROM - ANKLE 
 
Between conditions (KTT/Neutral tape/No tape) 
 

Table 22.33 - Ankle/ transverse between conditions (KTT/Neutral tape/NO tape) 
 

Condition Mean 
Difference (º) Sig 

<0.05 
yes/no 

KTT Neutral tape -.276 .540 no

NO tape -.487 .281 no

Neutral tape KTT .276 .540 no

NO tape -.210 .641 no

NO tape KTT .487 .281 no

Neutral tape .210 .641 no

 
 

 
 
Between Asymptomatic and Symptomatic participants 
 

Table 22.34 - Ankle/ transverse between Asymptomatic & Symptomatic 
participants 

 

  
Mean ROM 

(º)  Mean Diff (º) Sig 
<0.05 
yes/no 

Asymptomatic 5.470 -.787* .034 yes

Symptomatic 6.257 .787* .034 yes

 
 

 
 
Between powers (100W/200W/300W) 
 

Table 22.35 - Ankle/transverse between powers (100W/200W/300W) 
 

Power (W) Mean 
Difference (º) Sig 

<0.05 
yes/no 

100W 200W .036 .936 no

300W -.022 .961 no

200W 100W -.036 .936 no

300W -.058 .897 no

300W 100W .022 .961 no

200W .058 .897 no
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Comparison of significant differences across planes – ASYMPTOMATIC – ANKLE 

Table 22.36 - Significant differences Asymptomatic ankle - Between conditions, within powers  

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
  KTT Neutral  

No 
tape     KTT Neutral  

No 
tape     KTT Neutral  

No 
tape 

  

ANKLE 
kinematics 
Asymptomatic 
(n=12) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape 0.004     

NO tape          NO tape          NO tape  0.001     

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape  0.008       NO tape  0.044     

                

300W 

KTT         KTT         KTT       

300W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape  0.010     

 
Table 22.37 - Significant differences Asymptomatic ankle - Between powers, within conditions  

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

ANKLE kinematics 
Asymptomatic 
(n=12) 

KTT 

100W         100W         100W       

KTT 200W         200W         200W       

300W         300W         300W       

                

Neutral 
tape 

100W         100W         100W       
Neutral 
tape 

200W         200W         200W       

300W         300W 0.033 0.030     300W       

                

NO tape 

100W         100W         100W       
NO 
tape 

200W         200W 0.006       200W       

300W         300W 0.031       300W       
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Comparison of significant differences across planes – SYMPTOMATIC – ANKLE 

Table 22.38 - Significant differences Symptomatic ankle- Between conditions, within powers  

WITHIN 
POWER 

    SAGITTAL   CORONAL   TRANSVERSE   

  
  KTT Neutral  

No 
tape     KTT Neutral  

No 
tape     KTT Neutral  

No 
tape 

  

ANKLE 
kinematics 
Symptomatic 
(n=8) 

100W 

KTT         KTT         KTT       

100W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape    0.035     NO tape        

                

200W 

KTT         KTT         KTT       

200W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

                

300W 

KTT         KTT         KTT       

300W Neutral tape         Neutral tape         Neutral tape       

NO tape          NO tape          NO tape        

 
Table 22.39 - Significant differences Symptomatic ankle - Between powers, within conditions  

WITHIN CONDITION 
    SAGITTAL   CORONAL   TRANSVERSE   

    100W 200W 300W     100W 200W 300W     100W 200W 300W   

ANKLE kinematics 
Symptomatic (n=8) 

KTT 

100W         100W         100W       

KTT 200W         200W         200W       

300W         300W         300W       

                

Neutral 
tape 

100W         100W         100W       
Neutral 
tape 

200W         200W 0.039       200W       

300W         300W 0.040       300W       

                

NO tape 

100W         100W         100W       
NO 
tape 

200W         200W         200W       

300W         300W         300W       
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