

Central Lancashire Online Knowledge (CLoK)

Title	Letter to the editor concerning the article "Performance of gymnastics skill benefits from an external focus of attention" by Abdollahipour, Wulf, Psotta & Nieto (2015)
Туре	Article
URL	https://clok.uclan.ac.uk/12428/
DOI	https://doi.org/10.1080/02640414.2015.1098782
Date	2016
Citation	Collins, D., Carson, H.J., orcid iconORCID: 0000-0002-3785-606X and Toner, J. (2016) Letter to the editor concerning the article "Performance of gymnastics skill benefits from an external focus of attention" by Abdollahipour, Wulf, Psotta & Nieto (2015). Journal of Sports Sciences, 34 (13). pp. 1288-1292. ISSN 0264-0414
Creators	Collins, D., Carson, H.J., and Toner, J.

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1080/02640414.2015.1098782

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

1	This is a pre-proof corrected manuscript, as accepted for publication, of an article published
2	by Taylor & Francis in Journal of Sports Sciences on 29th January 2016, available online:
3	http://www.tandfonline.com/doi/citedby/10.1080/02640414.2015.1098782
4	PLEASE REFER TO THE PUBLISHED VERSION FOR CITING PURPOSES
5	
6	
7	Letter to the editor concerning the article "Performance of gymnastics skill benefits from an
8	external focus of attention" by Abdollahipour, Wulf, Psotta & Nieto (2015)
9	
10	Dave Collins ^{*1} , Howie J. Carson ¹ & John Toner ²
11	
12	¹ Institute for Coaching and Performance, University of Central Lancashire, UK
13	² Department of Sport, Health and Exercise Science, University of Hull, UK
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	*Correspondence concerning this manuscript should be addressed to Dave Collins, Institute for Coaching and Performance, University of Central Lancashire, Preston, PR1 2HE, United

27 Kingdom. E-mail: DJCollins@uclan.ac.uk.

28

Abstract

Abdollahipour, Wulf, Psotta, & Nieto (2015) recently published data in Journal of Sports 29 Sciences to show that an external focus of attention promotes superior performance effects 30 31 (gymnastics jump height and judged movement form score) when compared to internal or 32 control foci during skill execution without an implement involved. While we do not contest the veracity of findings reported, nor others that have been used to support beneficial effects 33 of an external focus of attention, in this Letter to the Editor we comment on considerable 34 methodological limitations associated with this and previous studies which, we suggest, have 35 36 resulted in serious theoretical oversights regarding the control of movement and, most crucially from our practitioner perspective, suboptimal recommendations for applied 37 coaching practice. Specifically, we discuss the lack of consideration towards translational 38 39 research in this area, the problematic nature of attentional focus cues employed, interpretation 40 of findings in relation to other applied recommendations and coherence with mechanistic underpinning and finally, the representative nature of task involved. In summary, while 41 42 (laboratory) research evidence may appear to be conclusive, we suggest that focus of attention effects are in need of more ecologically valid and rigorous testing and consideration 43 of current coaching practices *if* it is to optimally serve the applied sporting domain that it 44 purportedly aims to. 45

46

47 *Keywords*: Holistic cues, Imagery, Motor control, Sports coaching, Translational research

48

49

Letter to the editor concerning the article "Performance of gymnastics skill benefits from an external focus of attention" by Abdollahipour, Wulf, Psotta & Nieto (2015)

In a recent study, Abdollahipour, Wulf, Psotta, and Palomo Nieto (2015) aimed to 50 investigate attentional focus effects in skills that do not utilise implements (e.g., a golf club) 51 and that are evaluated on movement quality. Specifically, the task was a gymnastics vertical 52 jump with a 180-degree turn while airborne. In similar fashion to many previous studies (see 53 Wulf, 2013), the research design compared performances when participants employed 54 internal, external and control (i.e., no instruction) foci. Accordingly, support was found for 55 56 the constrained action hypothesis (Wulf, McNevin, & Shea, 2001) which underpins much (if not all) of this research group's data interpretation; results showed significantly higher 57 performance scores (i.e., fewer points deducted) and jump height when employing an 58 59 external focus of attention, with no differences between the internal and control group. As such, the authors claimed "it is now clear [emphasis added] that the attentional focus effect is 60 independent of the type of task, in addition to its generalisability across level of expertise, 61 age, dis/ability etc." (pp. 1811–1812). However, following critical reflection on several 62 factors, we believe that caution must be raised when accounting for the mechanistic 63 64 explanation for these findings and when proposing implications for applied coaching practice. In short, the conclusions drawn are not as 'clear' as the authors portray. 65

Firstly, the authors present a lack of consideration towards translational research
which encourages athletes to focus on internal cues. Instead, Abdollahipour et al. (2015)
focus discussion on theory and laboratory/fundamental research findings (e.g., Kal, van der
Kamp, & Houdijk, 2013; Land, Frank, & Schack, 2014; Wulf, Höß, & Prinz, 1998) that have
almost ubiquitously concluded that "if attention is directed towards body movements . . . skill
learning is impeded relative to instructions that direct attention to the intended movement
effect" (p. 1807). Such omission is a substantial oversight when contextualising attentional

73 focus research within representative coaching environments and the challenges it presents. In this regard, Christina (1987) stressed over 25 years ago that applied research should not in 74 fact be viewed as subordinate and dependent on theory-driven study; therefore suppressing its 75 importance and contribution to theory *building*. As he explains: 76 Some of us fail to realize that specialized knowledge can be developed solely 77 by applied research at Level 2 [theory developed for practical settings] in 78 79 places where the theory-based knowledge of Level 1 [general theory of motor control] is not adequately advanced. . . . If we are fortunate enough to develop 80 81 a new idea or hypothesis, or discover some new information from our applied research either at Level 2 or Level 3 [solution-focussed without intention of 82 theory building], its contribution to fundamental motor learning knowledge can 83 84 be evaluated by subjecting it to the rigor of controlled laboratory testing of basic research at Level 1. [There are pros and cons to the progression from 85 applied to basic research, or the other way round. However,] in this way 86 applied research can contribute to basic research. (pp. 37–38) 87 Indeed, elite-level athletes report beneficial effects from focussing on aspects of the 88 89 movement (e.g., Bernier, Trottier, Thienot, & Fournier, 2015; Carson, Collins, & 90 MacNamara, 2013; MacPherson, Collins, & Morriss, 2008; Nyberg, 2015; Orlick & 91 Partington, 1988; Robazza & Bortoli, 1998) and, sport psychologists often employ explicit 92 movement imagery techniques to enhance competitive performance (e.g., Carson, Collins, & Jones, 2014; Collins, Morriss, & Trower, 1999; Martindale & Collins, 2012; Wang & Zhang, 93 2015). Accordingly, failure to contextualise the study within current coaching/sport 94 95 psychology practices, or to explain *why* athletes' perceptions are apparently wrong, surely limits the paper's ability to serve its purpose in a purportedly applied discipline. 96

97 Furthermore, individual preferences for internal foci are clearly apparent in the literature. For example, Maurer and Munzert (2013) highlight the 'familiarity' of task 98 instructions as a factor which can influence levels of automatisation in high-level athletes. In 99 100 their study of skilled basketball players, free-throw executions were more successful when implementing individually-preferred (i.e., inter-individually different) familiar versus 101 unfamiliar foci irrespective of direction (internal or external). Moreover, 18 out of 23 players 102 103 expressed a preference for an internal self-focus (e.g., fluent leg-arm co-ordination), indicating that such attentional strategies may have become essential subroutines, or sources 104 105 of information (MacPherson, Collins, & Obhi, 2009), for achieving whole skill activation; that is, a *highly-associated* pattern of network activation or chunking (cf. Paivio, 1971, 1986). 106 107 While the issue of preference has been addressed in other attentional focus literature with 108 non-elite populations (e.g., Weiss, Reber, & Owen, 2008; Wulf, Shea, & Park, 2001), it has 109 been assessed using experimenter-determined internal or external foci and not by providing participants autonomy to select their own attentional strategies. 110

Such relevance also extends to the onset of instructed attentional focus "after the half 111 turn," where it is possible that experienced gymnasts would prepare aspects of the execution 112 prior to ground take off in airborne skills. For example in the study by Bernier et al. (2015) 113 one elite-level ice skater reported "during the approach to the jump, actually, I'm doing the 114 jump in my head: I have the same sensations in my body, and I feel like I'm doing it in my 115 116 upper body and hips [i.e., a whole body/holistic internal focus]." Once again, the internal focus condition in Abdollahipour et al. (2015) presents not only a task-irrelevant focus, but 117 has the potential to be unfamiliar in that it may conflict with useful imagery that is ordinarily 118 119 employed (cf. our comments in the previous paragraph).

120 Secondly, the nature of the instructions are problematic in their categorisation (i.e.,121 internal and external) and operationalisation of focus. The internal focus, "While airborne,

focus on the direction in which your hands are pointing after the half turn" (p. 1809), surely 122 constitutes a task-irrelevant instruction (cf. Winter & Collins, 2013). By comparison, the 123 external focus instruction, "While airborne, focus on the direction in which the tape marker is 124 pointing after the half turn" (p. 1809), is a clear outcome focus that directly facilitates the 125 task. As such, and as was the case made by Winter and Collins, the paper presents an unfair 126 comparison between an entirely irrelevant and an outcome-creating focus. This is, in fact, 127 128 not uncommon within the attentional focus literature. For example, Beilock, Bertenthal, McCoy, and Carr (2004) asked participants to focus on the putter path direction during a golf 129 130 putt, which has subsequently been found to account for only 17% of outcome variance amongst elite-level golfers (cf. Karlsen, Smith, & Nilsson, 2008). Similarly, Bell and Hardy 131 (2009) asked golfers to focus specifically on the wrist hinge angle through impact; that is, a 132 133 subcomponent at the end of a complex kinematic chain and during the fastest moment (and therefore most likely to be under higher subconscious control) during the action (cf. a 134 European Tour golfer's comments about not attending to small movement components but 135 instead to larger and grosser ones; Carson et al., 2013). Accordingly, it is hardly surprising 136 that the foci most likely to generate the required outcomes are the ones that win out. In 137 simple terms, such investigations are comparing apples with oranges. 138

Indeed, and in the absence of explicit instructions for the control condition
(participants were left to their own devices), manipulation checks or even enquiry into
participant perceptions, we are left unsure exactly what is being contrasted with what. It is
entirely possible, reflecting the inter-individual preferences discussed above, that participants
in the control condition used an almost random mix (between individuals) of internal and
external foci.

Thirdly, the authors advise that identifying an appropriate external focus might be achallenge for athletes and coaches during skill execution when an implement is not involved;

147 that is, in contrast to target-oriented sports where a clear trajectory end-point can be discerned (e.g., archery). Consequently in such practical situations, it is explained that the athlete can 148 employ a metaphor instead (cf. Wulf, Lauterbach, & Toole, 1999), which serves the same 149 *purpose* as an external focus of attention because it provides "a mental image of the 150 movement goal that the performer can try to produce without directing attention to body 151 movements per se" (p. 1812). To exemplify such metaphoric thinking, the authors draw on 152 153 the work of Guss-West and Wulf (2015) to describe how ballet dancers report the use of images to inform positions or moves, for instance "stretching like a star in all directions" 154 155 when performing an arabesque, "climbing up a corkscrew" during a pirouette or "jumping" over a lake" while performing a grand jeté. Indeed, the use of metaphor has been widely 156 encouraged amongst sport practitioners as an effective execution strategy (e.g., Overby, Hall, 157 158 & Haslam, 1998; Ruiz & Hanin, 2004). Crucially, however, we raise doubt over the mechanistic equivalence that metaphors share with an external focus of attention. According 159 to the constrained action hypothesis: 160

when attending to body movements, the performer constrains his or her motor systemby using conscious control processes that interfere with automatic control

163 mechanisms. In contrast, when attention is directed at the intended movement effect, 164 automatic-that is, unconscious, fast and reflexive-processes are utilised, with the 165 result that motor performance is enhanced (Abdollahipour et al., 2015, p. 1807)

When a metaphor is used, the athlete often reports translation of the entire visual image
(although metaphors need not only be visual) into kinaesthetic, and sometimes auditory,
sensations, or "interpretive descriptors" (Hanin & Stambulova, 2002, p. 401); thus supporting
the optimal use of multisensory information in guiding a most vivid and, crucially, personally
meaningful motor plan (cf. Ernst & Banks, 2002; Holmes & Collins, 2001). Therefore, it is
difficult to explain how a metaphor is *not* consciously controlled by drawing attention

towards the movement form in a way that holds personal meaning to the individual (i.e., what 172 the experience would be like when executed). We suggest that one rationale for using a 173 metaphor, and indeed holistic thoughts, is to consciously raise awareness towards the entire 174 movement as opposed to an individual component part. In this regard, the cue is more a 175 source of information about the holistic execution and/or sensory consequences of the 176 movement (MacPherson et al., 2009). Consequently, metaphoric/holistic thoughts serve to 177 178 enhance memory recall of a whole skill and, buffers against the onset of maladaptive cognitions during execution (Winter, MacPherson, & Collins, 2014). Indeed, focusing on 179 180 individual movement components has been shown to be almost inevitably detrimental to performance when compared to holistic rhythm-based cues (e.g., MacPherson et al., 2008; 181 Mullen & Hardy, 2010). Accordingly, the crucial factor in this debate appears to be on what 182 183 and how an internal focus is applied, and is dependent on the movement's organisation and level of establishment within an individual's long-term memory (see Carson & Collins, 184 2015). 185

Fourthly, the authors state in their final remarks that "for *sequences* [emphasis added] 186 of ballet or gymnastics moves, series of external focus cues, or metaphors, might [emphasis 187 added] be an effective way to enhance overall performance" (p. 1812). Not only does this 188 conclusion hold less strength compared to a previous comment that "it is now clear that the 189 attentional focus effect is independent of the type of task" (pp. 1811–1812), it is also 190 191 inconsistent with the experimental task demands reported. As with much of the research reported in this area (e.g., An, Wulf, & Kim, 2013; Land et al., 2014), executions do not 192 accurately represent the level of difficulty/context experienced within the performance 193 194 domain (in this case a single skill element versus a sequence of elements lasting several minutes). As such, for the sample described (i.e., "experienced gymnasts," p. 1809), the task 195 196 is undoubtedly simple enough as to be completed entirely under automated control

197 (Christensen, Sutton, & McIlwain, in press). Therefore, any request to focus attention on what is happening will almost inevitably prove disruptive. Furthermore, challenges 198 experienced during competitive performances are somewhat different to those in practice; in 199 200 fact, it has been suggested that some form of performance problem is almost inevitable during competitive trampolining/acrobatics (Hauw & Durand, 2007). According to Hauw 201 and Durand's study, "results suggest a complementary conception of performance as being 202 203 linked to the ability (a) to cope with problems surging up in the course of action and (b) to make sensible adjustments throughout its unfolding" (p. 182). Similarly to freeskiers in 204 205 Nyberg (2015), trampolinists retain an awareness of their action sequence during on-line skill execution. These thoughts may not be computationally demanding but they may serve as an 206 207 'attentional check' and are undoubtedly internal in nature. We are led towards the initial 208 challenge of asking an experienced driver to provide a commentary on his/her actions or even to respond verbally to a simple request such as "what gear are you in?" Once again, the point 209 of comparison seems somewhat loaded to generate the answer required. 210

In highlighting these concerns, we acknowledge that such issues are nothing new in 211 sport science research. For example, Goginsky and Collins (1996) showed how a series of 212 methodological decisions in the design of mental practice studies could lead to outcomes 213 supportive of one or the other of two competing paradigms at the time. Even a change in 214 control group design led to different results. We are not suggesting that this is in any way 215 216 deliberate or Machiavellian. Rather that, especially in environments which carry (or at least are supposed to carry) applied implications, a more careful and context-valid set of 217 parameters should be applied to investigative design. 218

In fact, there appears to be considerable confusion around certain aspects of focus; illustrative perhaps of the inevitable shades of grey when addressing human behaviour. In a recent response, for example, Wulf herself illustrates this confusion: 222 Clearly, elite athletes are typically acutely aware of their body movements. . . .

Adopting an external focus does not mean that the performer is not aware of her or his body movements. (How would that even be possible?) It simply means the performer is focusing on the intended movement effect – while *preparing for the execution* of a ballistic skill (e.g., throwing or hitting a ball) or *during the execution* of a continuous skill (e.g., balancing, swimming, cross-country skiing). Adopting an external focus is related to the *planning* of the movement, but has nothing to do with the processing of intrinsic feedback or bodily awareness, or lack thereof. (Wulf, 2015, p. 4)

230 Does this mean that an internal focus is/should be only associated with movement preparation? Or should we accept the first statements that performers will, of course, be 231 aware of what is happening to their body during movement execution (how could they not 232 233 be?). It seems to us that various combinations of external and internal focus (of particular types as suggested by much of the literature cited in this letter) will be appropriate, for 234 different tasks, different purposes, with different individuals at different levels and (most 235 crucially) for different purposes. Any black and white statement on whether an internal or 236 external focus is required seems, to us at least, impossible to call. Perhaps a more beneficial 237 238 direction for research would be to delineate the circumstances under which varying 239 proportions of foci would be optimal; as reflected in the approaches by Brick, MacIntyre, and 240 Campbell (2014) in endurance activity (i.e., discriminating between different types of internal 241 focus) and Carson and Collins (2011) when implementing refinements to already learnt and well-established skills (i.e., explaining that a narrow internal focus is essential to initiate the 242 refinement process). 243

In summary, we have raised several issues pertaining to the study by Abdollahipour et al. (2015). We would also, however, generally extend these to other research seeking to explore attentional focus effects. Our concern is not with the veracity of findings reported,

rather, on methodological limitations which, we suggest, have resulted in serious theoretical 247 oversights regarding the control of movement and, suboptimal recommendations for applied 248 coaching practice. Specifically, we have discussed the lack of consideration towards 249 translational research in this area, the problematic nature of attentional focus cues employed, 250 interpretation of findings in relation to other applied recommendations and coherence with 251 mechanistic underpinning and, the representative nature of task involved. While (laboratory) 252 research evidence may appear to be conclusive, our arguments suggest that focus of attention 253 effects are in need of more rigorous testing and consideration of current coaching practices *if* 254 it is to optimally serve the applied sporting domain that it purportedly aims to. 255

256

257

References

- Abdollahipour, R., Wulf, G., Psotta, R., & Palomo Nieto, M. (2015). Performance of gymnastics skill benefits from an external focus of attention. *Journal of Sports Sciences*, 33, 1807–1813. doi: 10.1080/02640414.2015.1012102
- An, J., Wulf, G., & Kim, S. (2013). Increased carry distance and X-Factor stretch in golf through an external focus of attention. *Journal of Motor Learning and Development*, *1*, 2–11.
- Beilock, S. L., Bertenthal, B. I., McCoy, A. M., & Carr, T. H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills. *Psychonomic Bulletin & Review*, *11*, 373–379. doi: 10.3758/BF03196585
- Bell, J. J., & Hardy, J. (2009). Effects of attentional focus on skilled performance in golf. Journal of Applied Sport Psychology, 21, 163–177. doi: 10.1080/10413200902795323
- Bernier, M., Trottier, C., Thienot, E., & Fournier, J. (2015). An investigation of attentional foci and their temporal patterns: A naturalistic study in expert figure skaters. *The Sport Psychologist*, Advance online publication. doi: 10.1123/tsp.2013-0076
- Brick, N., MacIntyre, T., & Campbell, M. (2014). Attentional focus in endurance activity: New paradigms and future directions. *International Review of Sport and Exercise Psychology*, 7, 106–134. doi: 10.1080/1750984X.2014.885554
- Carson, H. J., & Collins, D. (2011). Refining and regaining skills in fixation/diversification stage performers: The Five-A Model. *International Review of Sport and Exercise Psychology*, 4, 146–167. doi: 10.1080/1750984x.2011.613682

- Carson, H. J., & Collins, D. (2015). The fourth dimension: A motoric perspective on the anxiety–performance relationship. *International Review of Sport and Exercise Psychology*, Advance online publication. doi: 10.1080/1750984X.2015.1072231
- Carson, H. J., Collins, D., & Jones, B. (2014). A case study of technical change and rehabilitation: Intervention design and interdisciplinary team interaction. *International Journal of Sport Psychology*, 45, 57–78. doi: 10.7352/IJSP2014.45.057
- Carson, H. J., Collins, D., & MacNamara, Á. (2013). Systems for technical refinement in experienced performers: The case from expert-level golf. *International Journal of Golf Science*, 2, 65–85.
- Christensen, W., Sutton, J., & McIlwain, D. (in press). Cognition in skilled action: Meshed control and the varieties of skill experience. *Mind and Language*.
- Christina, R. W. (1987). Motor learning: Future lines of research. In M. J. Safrit & H. M.
 Eckert (Eds.), *The cutting edge in physical education and exercise science research* (pp. 26–41). Champaign, IL: Human Kinetics.
- Collins, D., Morriss, C., & Trower, J. (1999). Getting it back: A case study of skill recovery in an elite athlete. *The Sport Psychologist*, *13*, 288–298.
- Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. *Nature*, *415*, 429–433. doi: 10.1038/415429a
- Goginsky, A. M., & Collins, D. (1996). Research design and mental practice. *Journal of Sports Sciences, 14*, 381–392. doi: 10.1080/02640419608727725
- Guss-West, C., & Wulf, G. (2015). Attentional focus in classical ballet: Findings, a survey with professional dancers, and recommendations. *Journal of Dance Medicine & Science*, Manuscript accepted for publication.
- Hanin, Y. L., & Stambulova, N. B. (2002). Metaphoric description of performance states: An application of the IZOF model. *The Sport Psychologist*, 16, 396–415.

- Hauw, D., & Durand, M. (2007). Situated analysis of elite trampolinists' problems in competition using retrospective interviews. *Journal of Sports Sciences*, 25, 173–183. doi: 10.1080/02640410600624269
- Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. *Journal of Applied Sport Psychology*, 13, 60–83. doi: 10.1080/10413200109339004
- Kal, E. C., van der Kamp, J., & Houdijk, H. (2013). External attentional focus enhances movement automatization: A comprehensive test of the constrained action hypothesis. *Human Movement Science*, *32*, 527–539. doi: 10.1016/j.humov.2013.04.001
- Karlsen, J., Smith, G., & Nilsson, J. (2008). The stroke has only a minor influence on direction consistency in golf putting among elite players. *Journal of Sports Sciences*, 26, 243–250. doi: 10.1080/02640410701530902
- Land, W. M., Frank, C., & Schack, T. (2014). The influence of attentional focus on the development of skill representation in a complex action. *Psychology of Sport and Exercise*, 15, 30–38. doi: 10.1016/j.psychsport.2013.09.006
- MacPherson, A. C., Collins, D., & Morriss, C. (2008). Is what you think what you get?
 Optimizing mental focus for technical performance. *The Sport Psychologist*, 22, 288–303.
- MacPherson, A. C., Collins, D., & Obhi, S. S. (2009). The importance of temporal structure and rhythm for the optimum performance of motor skills: A new focus for practitioners of sport psychology. *Journal of Applied Sport Psychology, 21*, 48–61. doi: 10.1080/10413200802595930
- Martindale, A., & Collins, D. (2012). A professional judgment and decision making case study: Reflection-in-action research [Special issue]. *The Sport Psychologist*, 26, 500– 518.

Maurer, H., & Munzert, J. (2013). Influence of attentional focus on skilled motor
 performance: Performance decrement under unfamiliar focus conditions. *Human Movement Science*, 32, 730–740. doi: 10.1016/j.humov.2013.02.001

- Mullen, R., & Hardy, L. (2010). Conscious processing and the process goal paradox. *Journal* of Sport & Exercise Psychology, 32, 275–297.
- Nyberg, G. (2015). Developing a 'somatic velocimeter' the practical knowledge of freeskiers. *Qualitative Research in Sport, Exercise and Health*, 7, 109–124. doi: 10.1080/2159676X.2013.857709
- Orlick, T., & Partington, J. (1988). Mental links to excellence. *The Sport Psychologist*, 2, 105–130.
- Overby, L. Y., Hall, C., & Haslam, I. (1998). A comparison of imagery used by dance teachers, figure skating coaches, and soccer coaches. *Imagination, Cognition and Personality*, 17, 323–337. doi: 10.2190/w56x-hndf-7yhl-g0tb

Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart, and Winston.

- Paivio, A. (1986). *Mental representations: A dual-coding approach*. New York: Oxford University Press.
- Robazza, C., & Bortoli, L. (1998). Mental preparation strategies of Olympic archers during competition: An exploratory investigation. *High Ability Studies*, 9, 219–235. doi: 10.1080/1359813980090207
- Ruiz, M. C., & Hanin, Y. L. (2004). Metaphoric description and individualized emotion profiling of performance states in top karate athletes. *Journal of Applied Sport Psychology*, 16, 258–273. doi: 10.1080/10413200490498366
- Wang, J., & Zhang, L. (2015). Psychological consultations for Olympic athletes' peak performance. *Journal of Sport Psychology in Action*, 6, 59–72. doi: 10.1080/21520704.2015.1037976

- Weiss, S. M., Reber, A. S., & Owen, D. R. (2008). The locus of focus: The effect of switching from a preferred to a non-preferred focus of attention. *Journal of Sports Sciences*, 26, 1049–1057. doi: 10.1080/02640410802098874
- Winter, S., & Collins, D. (2013). Does priming really put the gloss on performance? *Journal* of Sport and Exercise Psychology, 35, 299–307.
- Winter, S., MacPherson, A. C., & Collins, D. (2014). "To think, or not to think, that is the question". Sport, Exercise, and Performance Psychology, 3, 102–115. doi: 10.1037/spy0000007
- Wulf, G. (2013). Attentional focus and motor learning: A review of 15 years. *International Review of Sport and Exercise Psychology*, 6, 77–104. doi: 10.1080/1750984x.2012.723728
- Wulf, G. (2015). Why did Tiger Woods shoot 82? A commentary on Toner and Moran (2015). *Psychology of Sport and Exercise*, Advance online publication. doi: 10.1016/j.psychsport.2015.05.006
- Wulf, G., Höß, M., & Prinz, W. (1998). Instructions for motor learning: Differential effects of internal versus external focus of attention. *Journal of Motor Behavior*, 30, 169–179. doi: 10.1080/00222899809601334
- Wulf, G., Lauterbach, B., & Toole, T. (1999). The learning advantages of an external focus of attention in golf. *Research Quarterly for Exercise and Sport*, 70, 120–126. doi: 10.1080/02701367.1999.10608029
- Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. *The Quarterly Journal of Experimental Psychology Section A*, 54, 1143–1154. doi: 10.1080/713756012

Wulf, G., Shea, C., & Park, J.-H. (2001). Attention and motor performance: Preferences for and advantages of an external focus. *Research Quarterly for Exercise and Sport*, 72, 335–344. doi: 10.1080/02701367.2001.10608970