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Abstract 

When developing motor skills there are several outcomes available to an athlete depending 

on their skill status and needs.  Whereas skill acquisition and performance literature is 

abundant, an under-researched outcome relates to the refinement of already acquired and 

well-established skills.  Contrary to current recommendations for athletes to employ an 

external focus of attention and a representative practice design, Carson and Collins’ (2011) 

Five-A Model requires an initial narrowed internal focus on the technical aspect needing 

refinement: the implication being that environments which limit external sources of 

information would be beneficial to achieving this task.  Therefore, the purpose of this paper 

was to 1) provide a literature-based explanation for why techniques counter to current 

recommendations may be (temporarily) appropriate within the skill refinement process and, 

2) provide empirical evidence for such efficacy.  Kinematic data and self-perception reports 

are provided from high-level golfers attempting to consciously initiate technical refinements 

while executing shots onto a driving range and into a close proximity net (i.e., with limited 

knowledge of results).  It was hypothesised that greater control over intended refinements 

would occur when environmental stimuli were reduced in the most unrepresentative practice 

condition (i.e., hitting into a net).  Results confirmed this, as evidenced by reduced intra-

individual movement variability for all participants’ individual refinements, despite little or 

no difference in mental effort reported.  This research offers coaches guidance when working 

with performers who may find conscious recall difficult during the skill refinement process. 

 

 Keywords:  coaching, constraints, the Five-A Model, focus of attention, intra-

individual movement variability, technical change. 
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Initiating Technical Refinements in High-Level Golfers: Evidence for Contradictory 

Procedures 

When developing motor skills there are several outcomes available depending on the 

athlete’s skill status and needs.  Undoubtedly the most researched of these are skill 

acquisition, when co-ordination and control are improved and then established with high-

level automaticity (e.g., Schmidt & Bjork, 1992; Sigrist, Rauter, Riener, & Wolf, 2013) and, 

optimising the performance of an acquired skill by exploiting the automaticity associated 

with it; for instance, when executing under conditions of high-competitive pressure (e.g., 

MacPherson, Collins, & Morriss, 2008; Mesagno & Mullane-Grant, 2010).  In contrast, an 

under-researched outcome relates to refining (i.e., making a small tweak/polish) already 

acquired and well-established skills (Carson & Collins, 2011).  Addressing this goal from a 

systematic perspective, Carson and Collins (2011) proposed the interdisciplinary and 

nonlinear Five-A Model to enable long-term permanent and pressure-resistant skill 

refinement.  Central to its’ mechanistic underpinnings is the requirement for an initial 

conscious de-automation of the technical aspect requiring refinement (hereafter termed the 

‘target variable’) within the Awareness stage.1  However, in seeking empirical evidence to 

inform optimal practice behaviour during this stage, there appears to have been little 

consideration to date.  This is unfortunate since a recent study suggests that high-level 

coaches and athletes are in need of assistance when implementing refinements, at least within 

the sport of golf (see Carson, Collins, & MacNamara, 2013).  As such, this paper focuses on 

optimising the Awareness stage in golf as an exemplar for other self-paced and closed skill 

sports. 

                                                             
1 Later stages require the athlete to release such conscious control in an attempt to return to a 

more automatic state. 
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Reflecting this lack of evidence, consider the comparatively abundant ‘focus of 

attention’ and ‘practice design’ literature.  In the former, the clear recommendation is to 

direct attention away from internal bodily cues; that is, an external focus on the movement 

effect within the environment (Wulf, 2013).  Complementing this strategy, practice design is 

encouraged to be representative of the actual performance experience; thus the external cues 

would be reliable and most informative to the organisation of an optimal motor pattern 

(Davids, 2012).  Contrary to such recommendations, however, Carson and Collins’ (2011) 

Five-A Model suggests a narrowed internal focus on the target variable during the early 

Awareness stage.  Presumably, therefore, this process would benefit by reducing the potential 

for attention towards external informational sources.  According to current applied golf 

practice solutions, this could be achieved by use of a close proximity net instead of the more 

commonly employed driving range or golf course practice conditions (Guadagnoli & 

Bertram, 2014).  Practice design in this situation would, therefore, be most unrepresentative.  

A non-transparent net eliminates environmental information pertaining to the required shot 

distance, final ball location and peak trajectory; these factors must be entirely self-

determined.  Therefore, the purpose of this paper was to 1) provide a literature-based 

explanation for why techniques counter to current recommendations may be (temporarily) 

appropriate within the process of skill refinement and, 2) provide empirical evidence for such 

efficacy. 

Part 1: Literature-based Explanation 

Although conscious de-automation may seem counterintuitive to enhancing skill, 

several researchers have supported this procedure.  For example, Oudejans, Koedijker, and 

Beek (2007) suggest that “in reshaping the imperfect automatisms it seems initially necessary 

to intentionally deautomatize movement control” (p. 41).  Referring to the allocation of 

attention, Beilock, Carr, MacMahon, and Starkes (2002) recommend that when a performer is 
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not aiming to “maximize real-time performance but instead to explicitly alter or change 

performance processes to achieve a different outcome, skill-focused attention may be 

beneficial” (p.14).  Crucially, if an athlete cannot generate and distinguish an alternative 

movement possibility (e.g., Collins, Morriss, & Trower, 1999; Hanin, Korjus, Jouste, & 

Baxter, 2002), the most likely short-term outcome is a regression back to the original, 

individually preferred and consistent kinematics (see MacPherson, Turner, & Collins, 2007) 

which may represent the antithesis of the desired target variable.  Such a characteristic of 

well-established skills is beneficial during unintentional perturbations; for instance, executing 

a golf shot from an incline whereby the skill rapidly returns to a most consistent version upon 

removal of these temporary conditions.  It is, however, problematic in the context of 

implementing long-term permanent and pressure-resistant refinement. 

Mechanistically, regressions originate from the existing memory trace’s 

strength/depth of attractor well (Bjork & Bjork, 1992; Zanone & Kelso, 1992) being 

higher/deeper relative to the intended new version and, therefore, more resistant to change 

(Carson & Collins, 2015).  According to Carson and Collins (2011), the generation and 

distinction of a new movement possibility serves to initiate a process of being able to inhibit 

the original skill and activate that of the desired.  This process would not be possible if 

control over the existing whole skill remained unchanged; kinematics would continue to 

persist.  De-automation, therefore, represents a purposeful, nay essential but temporary, 

regression in motor control (Christina & Corcos, 1988).  Accordingly, practice conditions 

that can promote high levels of conscious awareness best enable (although do not guarantee, 

since this is dependent on successful completion of previous and subsequent Five-A Model 

stages) long-term permanence of the new version of skill through the distinction it provides 

(Bar-Eli, 1991). 
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In considering the research of Glenberg, Schroeder, and Robertson (1998), executing 

golf shots into a net should be an obvious procedure for achieving de-automation.  Indeed, 

detaching oneself from external surroundings is a natural strategy employed when the 

intended goal requires high levels of reflection.  As these authors explain, “the cognitive 

system is normally ‘clamped’ to the environment.  That is, environmental constraints on 

action normally control conceptualization” (p. 651).  However, in situations that require 

difficult reflective activity (e.g., remembering an old phone number or taking a quiz) we 

naturally avert our gaze; that is, “we close our eyes or look at the sky to suppress the 

environment’s control over cognition” (p. 651)2.  Indeed, Glenberg et al. (1998) showed this 

behaviour to be consistent, functional and causally linked to better memory performance, 

with the frequency correlated with task difficulty.  Phelps, Doherty-Sneddon, and Warnock 

(2006) further explain that gaze aversion reflects “the need to concentrate on drawing 

information from memory and/or engage in on-line cognitive processing” (p. 577).  In short, 

by removing distracting stimuli, attention is more effectively focused internally towards the 

cognitive task.  Thus, within the Awareness stage, reducing the availability of visual 

information increases the reliability and, therefore relative weighting, of information that can 

be gained from kinaesthesia (Ernst & Banks, 2002); a factor that has already been identified 

as important to the awareness process (Carson, Collins, & Richards, 2014a).  Accordingly, 

following the Five-A Model’s ‘Analysis stage,’ executing into a net could temporarily ‘un-

clamp’ the cognitive system from the environment (Glenberg et al., 1998) and enable 

improved access to motor response propositions within memory. 

Within an observational learning study by Horn, Williams, Scott, and Hodges (2005), 

an aversion strategy was shown to be effective for drawing attention to kinematic features of 

                                                             
2 We wish to explicitly avoid any link here to neuro linguistic programming (Grinder & 

Bandler, 1976); in this particular context the specific gaze direction is irrelevant, only that the 

gaze is directed away from distracting environmental stimuli. 



7 
 

a motor skill.  Specifically, Horn et al. compared video, point-light demonstration and control 

groups when executing soccer chip shots without knowledge of results (KR).  Findings 

showed participants’ visual search patterns to have fewer fixations and for longer duration on 

the model’s kinematics when observing a point-light versus video display; when presented 

with less information, visual search was directed to fewer items of information.  Crucially, 

however, kinematics in both modelling groups imitated those of the model with immediate 

effect, whereas, this has not been shown to be the case in previous studies that included KR 

(e.g., Horn, Williams, & Scott, 2002).  This indicates, therefore, that removing KR can 

rapidly increase the saliency of an observed model as the primary source of information.  

When available, the influence of a model may be diminished due to the constraining effect 

that KR has on the choice of movement (the cognitive system being clamped to the 

environment; cf. Glenberg et al., 1998).  In short, the athlete does not perceive the required 

differences as quickly and so imitation is less obvious.  Notably, if the demonstration 

constituted a best attempt self-model (see Carson, Collins, & Jones, 2014), the most 

important and meaningful response propositions would be apparent and, therefore, fed 

forward into future executions (Lang, 1979). 

While Horn et al. (2005) were able to limit perceptual information by providing ear 

plugs (removing auditory outcome feedback) and a head-mounted, polymer-dispersed liquid-

crystal screen (removing visual feedback upon ball contact), the use of a practice net 

represents a more practical solution within applied golf coaching environments.  It is 

acknowledged that some feedback will be obtained from the ball’s initial starting direction 

before impacting with the net (typically ~3m away), as well as feedback from the sound at 

ball contact.  Crucially, however, the ability to direct attention towards the target variable 

without compromising whole-skill execution (i.e., via attentional cueing) is a positive aspect 

of such method.  This is in contrast to other part-practice methods (e.g., fractionation), 
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whereby the relative movement of less consciously controlled components (i.e., non-target 

variables) is not maintained, presenting a potentially negative outcome for high-level 

performers considering those components’ existing level of automaticity and effectiveness.  

While coaches might implement slow motion or static positioning drills (e.g., Toner, Nelson, 

Potrac, Gilbourne, & Marshall, 2012), we speculate that this is a heuristic response to 

experienced performers’ difficulty in regaining conscious control over usually well-

automated target variables.  As such, the performance of interest should be the full execution 

and not a drill; when possible, execution should be whole (Carson, Collins, & Jones, 2014; 

Hanin et al., 2002). 

Measuring Conscious Control in Applied Environments: Intra-individual Movement 

Variability 

Recent indexes of relative awareness state in high-level performers have been 

demonstrated using intra-individual movement variability.  Carson, Collins, et al. (2014a) 

showed support for the proposal that inter-trial kinematic variability of target variables reduce 

when consciously controlled to intentionally make a refinement.  In a study of PGA 

Professional golfers, 10 executions representing an individually preferred (i.e., natural) golf 

shot (specified by shape of ball flight) were compared to 10 non-preferred shots (i.e., the 

opposite shape of ball flight to the preferred condition).  Under the non-preferred condition, 

participants identified and reported a single kinaesthetic cue that would modify their 

technique to achieve the desired ball flight; the aim being to maintain a high level of 

awareness towards this target variable.  Furthermore, participants were regularly reminded 

(following Trials 3, 6 and 9) to apply increased attention towards their kinaesthetic feel, 

acting to avert attention away from the performance outcome and environmental information 

available at a driving range setting (e.g., the distal target).  Mental effort scores reported 

immediately following each condition reflected a notable increase as predicted.  Results 
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showed reduced variability for the target variables and increased variability for non-target 

variables; thus representing a desirable imbalance towards absolute motor control.  In 

accordance with notions put forward by the UnControlled Manifold (UCM) approach (see 

Scholz & Schöner, 1999), the authors suggested that this nonlinear pattern of change 

occurred because performers had consciously made one parameter more important, therefore 

lessening the relative importance across others.  Whereas variability levels across kinematics 

in the preferred ball flight condition could be considered as functional, the patterns produced 

within the non-preferred condition can be considered as necessarily dysfunctional.  

Importantly, however, when comparing between conditions, this method has the potential to 

provide an indication that increased conscious attention is being applied, where attention is 

being applied to (in combination with self-report) and whether one condition prompts a 

different level of attention allocated.  It is the latter of these that the following research 

primarily addresses. 

Part 2: Empirical Evidence 

The present research formed part of an applied longitudinal study examining 

individual cases of technical refinement in high-level golfers.  Extending the findings from 

Carson, Collins, et al. (2014a), we were interested in the covariance of kinematic parameters 

depending on golfers’ allocation of attention.  Notably, during this work golfers reported 

greater ease to focus on their intended full swing refinements when executing into a net as 

opposed to on a driving range.  Therefore, the aim of the present research was to determine 

whether such differences in environmental conditions resulted in lower inter-trial variability 

for consciously attended target variables.  In doing so, our motivation was to assess our 

thinking and rationalising as scientist–practitioners for a direct link between the theory and 

practice reviewed above.  Indeed, understanding the underpinning theoretical mechanism of 

‘what needs to be done and why’ (declarative knowledge) and ‘how to do it’ (procedural 
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knowledge) has been explained as a crucial factor towards developing expertise across 

different coaching scenarios and performers (Martindale & Collins, 2005).  Although hitting 

into a net is not uncommon in golf, verification of effect would seem essential to avoid 

counterproductive outcomes through incorrect or less than optimum use of the approach. 

Accordingly, this study examined executions of high-level golfers in two different 

practice environments when performing under high-awareness conditions.  Due to the clear 

applied implication desired, practice environments were represented by outdoor executions 

onto a driving range (termed ‘driving range condition’) and into a practice net (termed ‘net 

condition’) at a golf club setting (i.e., commonly available conditions).  There was no control 

group, each participant acted as their own control; data are therefore presented individually.  

It was hypothesised that the kinematic variability of target variables would be lower in the net 

versus driving range condition.  Thus, removing potential distractions from the environment 

would improve the target variables’ recall accuracy through heightened kinaesthetic feel (a 

requirement of participants’ current training). 

Method 

Participants.  Three right-handed male golfers (Participants A–C; Mage = 31.3 years, 

SD = 9.3) were recruited for this study.  Reflecting their high-skill status, playing ability 

included a member of The Professional Golfers’ Association of Great Britain and Ireland (A), 

a PGA Europro Tour playing professional (B) and an amateur golfer with a 0 handicap (C).  

Preceding data collection for the longitudinal study, participants provided informed consent.  

Ethical approval was granted from the University’s Ethics Committee prior to data collection. 

Procedure.  Following a self-conducted warm-up, participants were fitted with, and 

then calibrated in, a mobile inertial sensor motion capture suit operating at a sampling rate of 

120 Hz (Xsens MVN Biomech suit, Xsens® Technologies B.V., Netherlands), as described 

by Carson, Collins, and Richards (2014b).  Participants remained wearing the suit for the 
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entire test procedure, which consisted of a 10-full swing execution block in a randomly 

assigned net or driving range condition; followed by another 10 swings to satisfy the 

alternative condition.  All executions were performed from an artificial turf mat using 

participant’s own 7-iron and legally conforming golf balls.  In the net condition, participants 

executed at a distance of approximately 3 m away from the net, whereas executions on the 

driving range were made towards a realistically achievable and straight target 137.16 m 

(labelled as 150 yards) away.  Executions under both conditions were performed without 

other players present or onlookers nearby.  A private teaching room was used in the driving 

range condition and practice nets were temporarily closed off to other golfers.  The use of an 

artificial turf mat is common under these conditions and ensured a consistent hitting surface.  

During executions, participants focused on a single movement component (target variable), 

as per their intended technical refinement.  Identically to Carson, Collins, and Richards’ 

(2014a) study, following Trials 3, 6 and 9 of each condition, prompts were provided to 

maintain attention towards target variables and kinaesthetic feel.  These were derived 

previously as a collaborative process between each participant, their coach and first author.  

To record the intensity of focus, the Rating Scale for Mental Effort (RSME; Zijlstra, 1993) 

was employed, as described by Carson, Collins, et al. (2014a). 

Data processing and analysis.  Raw kinematic data were exported into c3d file 

format and each body segment was modelled in six degrees-of-freedom with Visual3D™ 

v4.89.0 software (C-Motion® Inc., Germantown, MD, USA).  Data were not filtered at this 

stage due to the employment of Kalman filtering within the Xsens software (Roetenberg, 

Luinge, & Slycke, 2009).  To ensure a most direct and therefore meaningful measure of 

technique, kinematic variables were defined using anatomical segment (as opposed to global) 

coordinate systems (see Brown, Selbie, & Wallace, 2013).  Employing segment coordinate 

systems countered the possibility of variability being attributed to inter-trial differences in 
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golfers’ stance position.  Furthermore, following each trial, data were examined for drift of 

the body segments in the coordinate system and the participants were recalibrated.  During 

this process, little or no drift was observed which would influence the kinematics, although 

some global drift was noticed.  Target variables were discussed with each participant and 

their coach, defined using conventional golf coaching terminology (e.g., PGA, 2010) and 

then translated into a three-dimensional segment coordinate system.  Accordingly, Participant 

A attempted a backswing change to his left elbow position in order to modify his connection 

between the arms and torso movement which is understood to improve both shot distance and 

direction; this was defined as the distal end of the left humerus relative to the sternum 

segment centre of mass in the anterior–posterior direction.  The backswing was defined by 

three automatically identified events, ‘swing onset’ as the frame when the left hand’s centre 

of gravity linear velocity crossed a threshold value of 0.2 m/s in the local medial–lateral axis 

relative to the pelvis, the ‘mid-backswing’ as the frame when the left hand crossed a 

threshold of 0.0 m relative to a predetermined position on the spine (VT12L3) in the local 

vertical axis on swing ascent and, ‘top of swing’ as the frame when the right-hand distal end 

position reached its maximum value in the global vertical axis prior to swing descent.  

Participants B and C attempted changes to target variables during their downswing; 

Participant B’s change related to the swing path which is understood to influence the initial 

shot direction.  This target variable was defined as the left-hand distal end position relative to 

the right humerus distal end position in the anterior–posterior direction.  Participant C’s 

change addressed his lateral movement of the swing centre which was defined as the 

proximal end of the left humerus relative to the pelvis centre of mass in the medial–lateral 

direction.  For these refinements, the downswing was defined between the top of swing and a 

‘bottom of swing’ event, identified as the frame when the distal end position of the right hand 

reached its minimum position in the global vertical axis on swing descent.  For graphical 
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analyses of kinematic and variability data, time between each event was normalised to 101 

points.  Variability was assessed by the standard deviation across trials of each condition at 

each point.  Positional and variability data were extracted between key events and exported to 

Microsoft Excel® 2010 for graphical plotting.  Due to the individual nature of these data and 

unknown magnitude of any meaningful differences that might occur, statistical analyses were 

inappropriate.  Instead, analysis was limited to observed differences in kinematic and 

variability measures on an intra-individual basis (Carson, Collins, et al., 2014a). 

Results 

There was little, if any, difference in the perceived amount of mental effort applied 

when executing under both conditions (inter-individual range = 0–8 scale points; Figure 1).  

For variability, however, values were consistently lower in the net compared to the driving 

range condition for all target variables (Figure 2).  Kinematic data, as measured by the mean 

position for each set of 10 trials, indicate subtle differences in kinematics for Participants A 

and C, but rather more substantial disparity in Participant B (Figure 3). 

Discussion 

This study found inter-trial movement variability differences for targeted refinement 

variables when executing golf swings in front of a net versus on a driving range, despite 

retrospective perceptions indicating very similar levels of mental effort.  According to gaze 

aversion research (Glenberg et al., 1998) and the suggestions of Carson, Collins, et al. 

(2014a), a more consistent kinematic performance can be explained by an improvement in the 

conscious memory recall of these target variables.  Furthermore, these data support those of 

Horn et al. (2005) in that limiting KR corresponded to more accurate achievement of the 

intended behaviour.  Notably, the study design was able to satisfy requests for levels of 

automaticity to be expressed in relative terms (Moors & De Houwer, 2006).  In summary, we 

interpret the findings to indicate that an increased state of intentional control (largely 
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kinaesthetic; Wertheim, 1981) over target variables was achieved when attention-competing 

environmental information was absent.  Findings therefore demonstrate support for 

environmental changes impacting on motor control processes. 

On closer inspection of Figure 2, however, it would appear that different strategies, or 

at least conceptualisations of the individual refinements, were implemented under both 

conditions.  For example, despite Participants B and C attempting downswing changes only, 

Participant B showed an almost consistent disparity throughout the back and downswings, 

whereas Participant C only showed this pattern during the downswing.  By comparison, data 

for Participant A show a distinct reduction in variability for most of the backswing, however 

with a gradually smaller difference between the two conditions as the top of swing is 

approached.  Such idiosyncrasies may be unique to each individual and/or the specific nature 

of refinement implemented.  Moreover, the finding of little to no difference in mental effort 

reported may relate to more efficient attentional use, as opposed to the same attentional 

strategy per se.  These findings lend support to the individuality of human nature (see Carson, 

Collins, et al., 2014b) and the need to investigate the skill refinement on a case study basis. 

Interpreting these findings against notions contained within the UCM concept (Scholz 

& Schöner, 1999), target variables were assigned greater importance by the central nervous 

system due to their higher consistency.  Indeed, this idea that the target variable must be 

allocated increased importance is apparent within the stage preceding the Awareness stage, 

namely Analysis.  From a psychosocial perspective, the rationale for making a refinement 

and the aspect requiring increased attention must be ‘sold’ to the athlete if one is to expect 

commitment to a long-term, or indeed any, training intervention.  In other words, if the 

athlete does not perceive the need to focus on their target variable—they do not understand 

the importance of doing so—this will likely impact negatively on the level of process 

engagement.  As such, the implication for coaches is clear, especially when attempting to de-
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automate the skill and therefore induce a suboptimal level of performance.  While much of 

the limited research into skill refinement has adhered to such recommendations (e.g., Carson, 

Collins, & Jones, 2014; Collins et al., 1999; Hanin, Malvela, & Hanina, 2004), it is not 

always addressed, or at least when it comes to empirical reporting (cf. Giblin, Farrow, Reid, 

Ball, & Abernethy, 2015). 

So, in contrast to current recommendations for representative practice environments 

(e.g., Davids, 2012), findings support the necessity for coaches to consider the intended 

practice outcome, both on a behavioural and control level (Newell, Liu, & Mayer-Kress, 

2001).  Data support the need for KR if practicing to exploit established levels of 

automaticity; as evidenced by increased levels of variance when executing in the driving 

range as opposed to net condition.  However, in circumstances requiring a deliberate and 

consciously-induced perturbation (i.e., the Awareness stage), data suggest hitting in front of a 

net to be more beneficial.  As an additional implication, future research assessing the 

optimisation of golf swing motor control should endeavour to limit testing in nets under 

laboratory conditions; something that is currently common practice within golf research (e.g., 

Langdown, Bridge, & Li, 2013) when this is used to offer a representative picture of 

participants’ (individually specific) stable technique. 

From an applied perspective there may be reluctance from coaches and athletes to de-

automate technique, due to consequent perceived negative performance outcomes.  

Reassurance is provided that this is only a temporary state of suboptimal motor control within 

a nonlinear process (see Carson & Collins, 2011), but should be considered as absolutely 

necessary.  Focus will inevitably need to change as a feature of progression (Hristovski, 

Davids, Araújo, & Button, 2006).  Of course, optimal return to competitive performance 

requires a later submission of control over the target variable and the adoption of a more 

holistic focus (MacPherson et al., 2008), coupled with a proactive step to internalise the skill 
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under conditions of high anxiety.  As such, the Awareness stage’s timing within the context 

of a competitive season is important; not least due to the potential negative impact this may 

have on an athlete’s confidence.  Indeed, it is for these reasons that coaches should address 

these potential concerns during the earlier skill acquisition process.  Teaching imagery skills 

and ensuring that an athlete is capable of regulating realistic performance expectations, for 

instance, is not only useful during times of technical refinement, but act as tools for 

overcoming performance setbacks and recovery from injury (Collins & MacNamara, 2012). 

When conducting applied research there is always a need to consider the trade-off 

between ecological validity and measurement accuracy.  As such, it is acknowledged that this 

study is not without limitation in this regard.  While the majority of kinematic research has 

employed optoelectronic camera systems (e.g., Oqus and Vicon), implementation of this 

equipment is extremely difficult at outdoor golf settings and hence our decision to employ 

inertial sensor technology.  Future research should seek to validate inertial sensor suits (e.g., 

Xsens) against the reference standard of these camera systems when utilising most current 

modelling techniques to determine accuracy during specific tasks for kinematics and 

movement variability. 

Conclusion 

 We have reported a genuine account of scientist–practitioners’ thinking to resolve a 

decision within the applied context of high-level golf coaching.  Theory and empirical 

findings were reviewed to support the removal of external environmental information during 

the Five-A Model’s Awareness stage.  The rationale being underpinned by an enhanced 

memory recall of a target variable during the movement de-automation process.  

Furthermore, we presented our rationalisation for employing an objective measure 

(movement variability) to assess this process.  In doing so, hitting into a net demonstrated 

lower levels of inter-trial variability for target variables.  Practically, this research offers 
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coaches guidance when working with golfers who might be challenged in generating 

conscious recall during the Awareness stage (Carson & Collins, 2011).  This study provides 

extended support for the underpinning principle of gaze aversion (Glenberg et al., 1998) and 

an appropriate measure to assess between practice environments.  Overall, it is hoped that 

applied sport science support will adopt similar approaches when it comes to exposing their 

decision-making; therefore ensuring services provided to their clients is grounded in reason 

and addresses individual performers’ needs.  



18 
 

References 

Bar-Eli, M. (1991). On the use of paradoxical interventions in counseling and coaching in 

sport. The Sport Psychologist, 5, 61–72.  

Beilock, S. L., Carr, T. H., MacMahon, C., & Starkes, J. L. (2002). When paying attention 

becomes counterproductive: Impact of divided versus skill-focused attention on 

novice and experienced performance of sensorimotor skills. Journal of Experimental 

Psychology: Applied, 8, 6–16. doi: 10.1037/1076-898x.8.1.6 

Bjork, R. A., & Bjork, E. L. (1992). A new theory of disuse and an old theory of stimulus 

fluctuation. In A. Healy & R. Shiffrin (Eds.), From learning processes to cognitive 

processes: Essays in honor of William K. Estes (Vol. 2, pp. 35–67). Hillsdale, NJ: 

Erlbaum.  

Brown, S. J., Selbie, W. S., & Wallace, E. S. (2013). The X-Factor: An evaluation of 

common methods used to analyse major inter-segment kinematics during the golf 

swing. Journal of Sports Sciences, 31, 1156–1163. doi: 

10.1080/02640414.2013.775474 

Carson, H. J., & Collins, D. (2011). Refining and regaining skills in fixation/diversification 

stage performers: The Five-A Model. International Review of Sport and Exercise 

Psychology, 4, 146–167. doi: 10.1080/1750984x.2011.613682 

Carson, H. J., & Collins, D. (2015). The fourth dimension: A motoric perspective on the 

anxiety–performance relationship. International Review of Sport and Exercise 

Psychology, Advance online publication. doi: 10.1080/1750984X.2015.1072231 

Carson, H. J., Collins, D., & Jones, B. (2014). A case study of technical change and 

rehabilitation: Intervention design and interdisciplinary team interaction. International 

Journal of Sport Psychology, 45, 57–78. doi: 10.7352/IJSP2014.45.057  



19 
 

Carson, H. J., Collins, D., & MacNamara, Á. (2013). Systems for technical refinement in 

experienced performers: The case from expert-level golf. International Journal of 

Golf Science, 2, 65–85.  

Carson, H. J., Collins, D., & Richards, J. (2014a). Intra-individual movement variability 

during skill transitions: A useful marker? European Journal of Sport Science, 14, 

327–336. doi: 10.1080/17461391.2013.814714 

Carson, H. J., Collins, D., & Richards, J. (2014b). “To hit, or not to hit?” Examining the 

similarity between practice and real swings in golf. International Journal of Golf 

Science, 3, 103–118. doi: 10.1123/ijgs.2014-0003 

Christina, R. W., & Corcos, D. M. (1988). Coaches guide to teaching sport skills. 

Champaign, IL: Human Kinetics. 

Collins, D., & MacNamara, Á. (2012). The rocky road to the top: Why talent needs trauma. 

Sports Medicine, 42, 907–914. doi: 10.2165/11635140 

Collins, D., Morriss, C., & Trower, J. (1999). Getting it back: A case study of skill recovery 

in an elite athlete. The Sport Psychologist, 13, 288–298.  

Davids, K. (2012). Learning design for nonlinear dynamical movement systems. The Open 

Sports Science Journal, 5, 9–16. doi: 10.2174/1875399X01205010009 

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a 

statistically optimal fashion. Nature, 415, 429–433. doi: 10.1038/415429a 

Giblin, G., Farrow, D., Reid, M., Ball, K., & Abernethy, B. (2015). Exploring the 

kinaesthetic sensitivity of skilled performers for implementing movement 

instructions. Human Movement Science, 41, 76–91. doi: 

10.1016/j.humov.2015.02.006 



20 
 

Glenberg, A. M., Schroeder, J. L., & Robertson, D. A. (1998). Averting the gaze disengages 

the environment and facilitates remembering. Memory & Cognition, 26, 651–658. doi: 

10.3758/BF03211385 

Grinder, J., & Bandler, R. (1976). The structure of magic II. Palo Alto, CA: Science and 

Behavior Books. 

Guadagnoli, M. A., & Bertram, C. P. (2014). Optimizing practice for performance under 

pressure. International Journal of Golf Science, 3, 119–127. doi: 10.1123/ijgs.2014-

0021 

Hanin, Y., Korjus, T., Jouste, P., & Baxter, P. (2002). Rapid technique correction using old 

way/new way: Two case studies with Olympic athletes. The Sport Psychologist, 16, 

79–99.  

Hanin, Y., Malvela, M., & Hanina, M. (2004). Rapid correction of start technique in an 

Olympic-level swimmer: A case study using old way/new way. Journal of Swimming 

Research, 16, 11–17.  

Horn, R. R., Williams, A. M., & Scott, M. A. (2002). Learning from demonstrations: The role 

of visual search during observational learning from video and point-light models. 

Journal of Sports Sciences, 20, 253–269. doi: 10.1080/026404102317284808 

Horn, R. R., Williams, A. M., Scott, M. A., & Hodges, N. J. (2005). Visual search and 

coordination changes in response to video and point-light demonstrations without KR. 

Journal of Motor Behavior, 37, 265–274.  

Hristovski, R., Davids, K., Araújo, D., & Button, C. (2006). How boxers decide to punch a 

target: Emergent behaviour in nonlinear dynamical systems. Journal of Sports Science 

and Medicine, 5, 60–73.  

Lang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16, 

495−512. doi: 10.1111/j.1469-8986.1979.tb01511.x 



21 
 

Langdown, B. L., Bridge, M. W., & Li, F.-X. (2013). Address position variability in golfers 

of differing skill level. International Journal of Golf Science, 2, 1–9.  

MacPherson, A. C., Collins, D., & Morriss, C. (2008). Is what you think what you get? 

Optimizing mental focus for technical performance. The Sport Psychologist, 22, 288–

303.  

MacPherson, A. C., Turner, A. P., & Collins, D. (2007). An investigation of natural cadence 

between cyclists and noncyclists. Research Quarterly for Exercise and Sport, 78, 

396–400. doi: 10.1080/02701367.2007.10599438 

Martindale, A., & Collins, D. (2005). Professional judgment and decision making: The role 

of intention for impact. The Sport Psychologist, 19, 303–317.  

Mesagno, C., & Mullane-Grant, T. (2010). A comparison of different pre-performance 

routines as possible choking interventions. Journal of Applied Sport Psychology, 22, 

343–360. doi: 10.1080/10413200.2010.491780 

Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. 

Psychological Bulletin, 132, 297–326. doi: 10.1037/0033-2909.132.2.297 

Newell, K. M., Liu, Y.-T., & Mayer-Kress, G. (2001). Time scales in motor learning and 

development. Psychological Review, 108, 57–82. doi: 10.1037/0033-295X.108.1.57 

Oudejans, R. R. D., Koedijker, J. M., & Beek, P. J. (2007). An outside view on Wulf’s 

external focus: Three recommendations. E-journal Bewegung und Training, 1, 41–42. 

www.ejournal-but.de 

PGA. (2010). Study guide: Golf coaching 1. United Kingdom: The Professional Golfers' 

Association Limited. 

Phelps, F. G., Doherty-Sneddon, G., & Warnock, H. (2006). Helping children think: Gaze 

aversion and teaching. British Journal of Developmental Psychology, 24, 577–588. 

doi: 10.1348/026151005X49872 

http://www.ejournal-but.de/


22 
 

Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens MVN: Full 6DOF human motion 

tracking using miniature inertial sensors. Technical report. Xsens Technologies B.V.   

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common 

principles in three paradigms suggest new concepts for training. Psychological 

Science, 3, 207–217. doi: 10.1111/j.1467-9280.1992.tb00029.x 

Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control 

variables for a functional task. Experimental Brain Research, 126, 289–306. doi: 

10.1007/s002210050738 

Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and 

multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 

20, 21–53. doi: 10.3758/s13423-012-0333-8 

Toner, J., Nelson, L., Potrac, P., Gilbourne, D., & Marshall, P. (2012). From ‘blame’ to 

‘shame’ in a coach–athlete relationship in golf: a tale of shared critical reflection and 

the re-storying of narrative experience. Sports Coaching Review, 1, 67–78. doi: 

10.1080/21640629.2012.704193 

Wertheim, A. H. (1981). Occipital alpha activity as a measure of retinal involvement in 

oculomotor control. Psychophysiology, 18, 432–439. doi: 10.1111/j.1469-

8986.1981.tb02476.x 

Wulf, G. (2013). Attentional focus and motor learning: A review of 15 years. International 

Review of Sport and Exercise Psychology, 6, 77–104. doi: 

10.1080/1750984x.2012.723728 

Zanone, P. G., & Kelso, J. A. S. (1992). Evolution of behavioural attractors with learning: 

Nonequilibrium phase transitions. Journal of Experimental Psychology: Human 

Perception and Performance, 18, 403–421. doi: 10.1037/0096-1523.18.2.403  



23 
 

Zijlstra, F. R. H. (1993). Efficiency in work behaviour: A design approach for modern tools. 

Delft: Delft University Press. 



24 
 

Figures 

 

Figure 1.  Mental effort ratings for executions in the net and driving range conditions.  

Ratings reflect the amount of effort directed towards individual target variables. 
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Figure 2.  Intra-individual movement variability (as measured by the standard deviation) of 

participants’ target variables at each normalised time frame. 
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Figure 3.  Kinematics of participants’ target variables at each normalised time frame. 


