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Two systems of core-shell superparamagnetic nanoparticles in the size range of 45–80 nm have been

fabricated by the coating of bare magnetite particles with either mesoporous silica or liposomes and

the loading/release of the anti-cancer drug Mitomycin C (MMC) from their surfaces has been investi-

gated. The magnetic cores of size �10 nm were produced by a co-precipitation method in aqueous so-

lution, with the silica coating containing an unstructured network of pores of size around 6 nm carried

out using a surfactant-templating approach and the liposome coating achieved by an evaporation-

immersion technique of the particles in a lipid solution. Stability measurements using a scanning col-

umn magnetometry technique indicated that the lipid-coating of the particles halts the sedimentation

otherwise apparent in <1 h for the bare magnetite to produce an ultra-stable system and thereby over-

come one of the main barriers to potential in-vivo applications. Whilst an increase in stability was also

observed in the silica-coated system, it was still unstable over a few hours and will require further

investigation. Magnetization curves of the coated systems were indicative of superparamagnetic

behavior whilst the in vitro loading and release of MMC resulted in two distinctly different outcomes

for the two systems: (i) the silica-coated particles saturated in <4 h to a loading of around 7 lg/mg of

material, releasing about 6% at a near constant rate over 48 h whilst (ii) the lipid-coated particles satu-

rated to around only 4 lg/mg over the same time period but with a subsequent rapid release rate over

the first 3 h to 27% then rising near-linearly to a value of about 45% at the 48 h mark. This gives scope

for systems’ to be tuned to the appropriate rate and load delivery as required by clinical need with fur-

ther investigations underway. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917264]

I. INTRODUCTION

The need for bio-compatible superparamagnetic particles

in the diameter, d, range (10� d� 100) nm continues to be an

important field of study for biomedical applications such as

hyperthermia, contrasting agents and bio-molecule separa-

tion.1–3 For potential applications in drug delivery, the surface

of a nanoparticle needs to satisfy a number of essential func-

tions, namely, (i) to have an acceptably low toxicity in an

aqueous suspension, (ii) to enable the drug of choice to be

bound to the surface, and (iii) to provide colloidal stability.

This last point is crucial because it ensures that the coating is

covering individual particles rather than agglomerates and

thereby maintains a high surface area and consistent particle

size of < 100 nm. The upper size limit is a key parameter, as

it allows the particle to be small enough to diffuse through the

cell membrane4 and, in conjunction with the lower limit of

d> 10 nm, prolongs circulation time in the blood by the

avoidance of the body’s reticuloendothelial system.5

In order to obtain particles that have both the necessary

superparamagnetic and surface properties, composites of a

magnetic core coated with either an organic or inorganic layer

(core-shell) are ideal candidates. Of these, iron oxide cores of

either magnetite (Fe3O4) or maghemite (c-Fe2O3) are

commonly used as they are already in an oxidized state, are

non-toxic and on the nanoscale their bulk ferrimagnetic prop-

erties reduce to that of single domain, uniaxial superparamag-

netic nanoparticles.6 In this state, the particles effectively have

no magnetic moment in zero applied field at room tempera-

ture, but respond to an external field to the extent that they

can be targeted at a site using a high gradient static field.4

Silica coatings with a mesoporous network of pores and

channels offer favorable properties for drug delivery due to their

non-toxic nature combined with a high surface area and control-

lable functionality.7 Mesopores of 3–10 nm are potentially the

best size as most drugs or biomolecules fit within that size range

and thereby overcome any diffusional restriction. Likewise, lip-

osome coatings are also good candidates with well-known drug

delivery properties and the ability to increase stability in suspen-

sion by the modification of surface charge.8,9 However, as most

investigations involve composites of size> 100 nm there is a

real need for fabrication and study in the sub 100 nm range if

diffusion through the target cell membrane is to be achieved.

In the work reported here, the fabrication and characteri-

zation of core-shell superparamagnetic nanocomposites in

the range of 45–80 nm is detailed for both lipid-coated and

mesoporous silica-coated iron oxide nanoparticles. The

effects on stability due to coating are investigated along with

and the in vitro loading and releasing of the anti-cancer drug
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II. EXPERIMENTAL DETAILS

All chemicals were purchased from Sigma-Aldrich and

used without further purification.

A. Synthesis of core-shell superparamagnetic iron
oxide nanoparticles

Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

were synthesized by co-precipitation of an aqueous solution

of ferrous and ferric chloride in the presence of ammonium

hydroxide, with full details reported elsewhere.9 Briefly,

8.46 g of FeCl2�4H2O and 22.95 g of FeCl3�6H2O was dis-

solved in 500 ml of degassed and deionized water under a

nitrogen environment. The mixture was stirred in an oil bath

at 80 �C. A volume of 50 ml of aqueous ammonium hydrox-

ide (25% w/v NH4OH) was added drop-wise to the mixture

over 30 min. The reaction was allowed to proceed for a fur-

ther 1 h. The black reaction products were collected and

washed several times in deionized water using magnetic sep-

aration. The final product had a pH� 7.

Liposome coatings were prepared by dissolving 66 mg of

SPC phospholipid and 34 mg of cholesterol in 3.96 ml of chlo-

roform in a 500 ml round bottom flask. The flask containing

the phospholipid solution was attached to a rotary evaporator

and immersed in a 41 �C water bath for 1 h. Upon evaporation

of chloroform, a thin film of lipid formed on the inner wall of

the flask. The film was hydrated with 10 ml of deionized water

and shaken manually for 10 min followed by annealing for 2 h

at room temperature. After that, 1 ml of magnetite (6.03 mg/

ml) was diluted with 0.7 ml water and added to the liposome

solution. The mixture was then placed in an ice bath under

strong ultrasonic vibration (titanium horn) for 8 min.

The mesoporous silica shell coating was fabricated on the

surface of the magnetic nanoparticles through a surfactant-

templating approach. In this method, 225 mg of core magnetite

was suspended in 300 ml of water and 45 ml of a solution con-

taining sodium hydroxide (0.22 M) and cetyltrimethylammonium

bromide (CTAB) (0.049 M) was added to the nanoparticles

while stirring, with stirring continued for a further 30 min. A sub-

sequent 3.78 g of tetraethyl orthosilicate (TEOS) was added

drop-wise to the mixture and the reaction left stirring continually

for 8 h at room temperature before adding 2 M of HCl drop-wise

to make a final solution with a pH of 7. The mixture was stirred

for an extra 30 min before being rinsed twice with 500 ml of a

1:1 mixture of deionized water and ethanol in order to remove

the surfactant from the mesopores as reported earlier10 and fol-

lowed by subsequent washing with deionized water.

B. Characterization, stability, and drug loading/release
measurements

SPION composition was determined by X-ray diffrac-

tion (XRD) using Cu Ka radiation. Nitrogen adsorption and

desorption using a Micromeritics ASAP 2010 was used to

determine the specific surface area and pore size of the silica

coatings by Brunauer-Emmett-Teller (BET) and Barrett-

Joyner-Halenda (BJH) techniques, respectively. The struc-

ture of the coating was determined by small angle X-ray

scattering (SAXS) using Cu Ka radiation.

Magnetisation measurements were carried out using an

in-house 6 kOe vibrating sample magnetometer (VSM) with

stability observations of a column of the aqueous particle sus-

pensions determined using a scanning column magnetometry

(SCM) technique. Vertically held glass tubes of internal diame-

ter 11 mm were filled to produce a column of height �100 mm,

which was then placed in the SCM. Further details of the SCM

method are given elsewhere,11 but briefly this involves driving

the column of magnetic particles down through the otherwise

empty core of a coil that forms part of a tuned resonance cir-

cuit. The introduction of magnetic material into the core causes

a change to the coil inductance and a corresponding shift in the

resonance frequency, DF, from its sample-free value of 1 MHz.

As this shift is directly proportional to the magnetic particle

concentration, a plot of DF as a function of column height gives

the complete concentration profile of the colloid. It is by record-

ing a series of these profiles over time that any sedimentation

of the suspension may be investigated.

Transmission electron microscopy (TEM) was carried out

on a JEOL JEM2000EX system at an operating voltage of

200 kV with the samples prepared from suspension by being

pipette-dropped onto a carbon-coated copper grid and allowed

to dry at room temperature prior to imaging. Particle size anal-

ysis for the lipid-coated systems was carried out by dynamic

light scattering using a Malvern Instruments Zetasizer Nano.

Loading of the MMC drug on the liposome-coated par-

ticles and the silica-coated particles was carried out using an

incubation method described in detail previously,9 except at a

temperature of 10 �C instead of 25 �C. In both cases, the

amount of MMC loading was determined by measuring the

UV absorption at 365 nm (k365 nm) at different time intervals

until saturation was reached and with the concentration values

found from comparison with a pre-established standard curve

of known MMC concentrations in water. MMC-loaded nano-

particles from each of the two types of coatings were sepa-

rated from the reaction solution by magnetic separation and

washed with deionized water prior to use in the release study.

Release of the loaded drug was carried out in a Phosphate

Buffered Saline (PBS) solution (7.1� pH� 7.2) of 1 ml added

to 4 mg of washed nanoparticles under stirring by end-over-end

rotation for up to 48 h at 37 �C. Concentration values were

again determined from UV k365 nm absorption values, but this

time from a known standard curve of MMC in PBS buffer.

III. RESULTS AND DISCUSSION

TEM micrographs show bare iron oxide cores of size

8–12 nm as can be seen in Fig. 1(a). In Fig. 1(b), micro-

graphs of the silica-coated particles show the composite di-

ameter to be around 45 nm, with multiple cores apparent in a

consistent size and shape that are fully coated. Results from

dynamic light scattering showed a mono-modal distribution

centered on 80 nm as the composite size of the lipid-coated

particles. As lipid coatings need to be hydrated in order to

estimate their in-situ composite size, the dry-sample TEM

method used for the other systems was not applicable here.

XRD measurements on the bare (uncoated) particles are

shown in part (c) of Fig. 1. These show clear peaks indicat-

ing a crystalline structure of either Magnetite (Fe3O4) or
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Maghemite (c-Fe2O3) or a mixture of the two,12 which in ei-

ther of these cases provides the superparamagnetic properties

required of these iron oxide systems.

Characterization of the silica coatings using SAXS is

given in Fig. 2(a). In the low angle range shown, it is evident

that there is a small feature between the 2h values of 1.0–1.5

degrees. Analysis using the magnitude of the Q scattering

vector can be seen in the inset of the same figure, showing

this feature to be equivalent to a size of nearly 6 nm.

However, the lack of a sharp and well defined peak is indica-

tive of a lack of order in this feature, as would be expected in

a disordered mesoporous structure, and is also consistent

with the lack of distinctive rings observed in the scattering

pattern (not shown). Further measurements on the structure

and characterization of the silica shell are shown in the nitro-

gen adsorption and desorption curves as a function of rela-

tive pressure given in Fig. 2(b). The hysteresis observed is

indicative of a porous structure, which was quantified using

BJH analysis to yield a pore size of 7 nm that compares well

with the size of approximately 6 nm determined using

SAXS. Standard BET analysis showed the surface area of

these silica coatings to be 134 m2 g�1.

Magnetic particle concentration profiles of resonance fre-

quency shift as a function of suspension column height are

shown in Fig. 3. By recording cumulative profiles of the same

colloid sample over time, any sedimentation will be apparent

due to the build-up of material at the bottom of the column.

This is indeed the case for the bare particle profiles of the main

plot, with Stokes-like sedimentation evident in less than 1 h as

indicated by the reduction in concentration throughout the top

layers and with no fall of any “sludge line” as would be

observed in hindered settling systems.13 The stability measure-

ments for the lipid-coated system are shown in the inset of Fig.

3 indicating a stable state has been achieved with no sedimenta-

tion evident at >30 h. Whilst an increase in stability to a few

hours was observed in the silica-coated suspension (not shown),

this will need to be increased if potential in vivo applications

are to be realized. However, the bio-molecule compatibility of

the mesoporous surface means that this warrants further investi-

gation and is the subject of current investigations.

Magnetization curves are shown in Fig. 4, comparing the

uncoated particles of the main plot with the silica-coated sys-

tem of the inset. Some hysteresis, albeit small, is clearly evi-

dent in the bare particle assembly, which would not normally

be expected in iron oxide particles below about 15 nm in size

as they are expected to be superparamagnetic.5 However, if

assemblies of nanoparticles are agglomerated/clustered close

enough together then the increased strength of the magnetic

dipolar interactions can cause a ferromagnetic-like state to

emerge.14 Such bigger assemblies would be consistent with

FIG. 1. TEM micrographs of (a) the uncoated iron oxide nanoparticles and

(b) the silica-coated composite. The XRD pattern of the uncoated particles

and its indices is shown in (c).

FIG. 2. The SAXS scattering intensity of (a) shows a small broad feature between 1.0 and 1.5� with the Q scattering analysis of the inset resulting in a mesopo-

rous pore size of around 6 nm for the silica-coated particles. The nitrogen adsorption/desorption curves of (b) show hysteresis and thereby indicate the porous

structure of the silica shell.

FIG. 3. SCM concentration profiles of the unstable bare magnetite suspen-

sion in the main plot and the stable lipid-coated suspension of the inset.
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the lack of stability seen in the bare system of the main SCM

plot of Fig. 3. Likewise, the similar closed loops of the silica-

coated system (inset of Fig. 4) and the lipid-coated particles

(not shown) is indicative of a superparamagnetic state and the

increase in stability observed in both coated systems.

The results of the in vitro loading and release of the anti-

cancer drug MMC are shown in Figs. 5(a) and 5(b), respec-

tively, with any error bars that are significant on this scale

estimated from the standard deviation of a minimum of three

experiments in each case. From this, it can be seen that the

silica-coated particles reached a rapid saturation loading of

around 7lg/mg of material in under 4 h, whereas after a similar

initial rise, the lipid-coated particles took over 20 h to reach

their loading limit of about 4 lg/mg. The loading effect for the

silica-coated particles was optimized by reducing the

incubation temperature from 25 �C to 10 �C with the lipid-

coated system also loaded at 10 �C for comparison. In general,

the increase in loading by a reduction of the incubation temper-

ature is consistent with the decrease in thermal energy and sub-

sequent decrease in Brownian motion that allows the drug to be

“captured” more easily at the surface. For the release study of

Fig. 5(b), the silica-coated system is at, or near, a constant

release rate after more than 25 h of around 6% and is predomi-

nantly flat over the whole time period. For the lipid-coated sys-

tem, an initially rapid rise to about 27% after the first 3 h

continues to rise at a slower, but near linear rate to reach around

45% at the 48 h point. Understanding the reasons for these dif-

ferences is highly complicated when comparing systems of two

different surfaces and requires an in-depth and systematic

investigation that is currently underway. Nevertheless, this does

indicate that there is a good deal of scope to tune the loading,

rate and drug delivery levels to those required by clinical need.

IV. CONCLUSIONS

Two systems of lipid-coated and mesoporous silica-

coated superparamagnetic core-shell nanocomposites have

been fabricated in the size range (45� d� 80) nm that is

within the limits (10� d� 100) nm required for potential

drug delivery applications. The lipid-coated system was

ultra-stable and capable of reaching in vitro MMC drug

release levels at 45% of the loaded material. The silica-

coated system did show an increase in stability compared to

that of the uncoated nanoparticles used as the core, but will

require modification to its surface properties before potential

in vivo applications can be realized. However, its disordered

mesoporous structure of pore size around 6 nm is highly

compatible with drug and bio-molecules and warrants further

study alongside the lower MMC drug release of approxi-

mately 6% of the loaded material. This gives scope for sys-

tems being tuned to the release rate and drug delivery level

as defined by clinical need and is the subject of future work.
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FIG. 4. Magnetization curves showing distinct, but small hysteresis for the

bare magnetite of the main plot and a closed loop for the silica-coated sys-

tem of the inset that is indicative of superparamagnetic behavior.

FIG. 5. The in vitro loading (a) and release (b) of the drug MMC over time.

The differences between the two systems give scope for these parameters to

be changed as required by clinical need.
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