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SUMMARY 

The work presented in this thesis is directed towards the 

investigation of the possibilities of using adaptive or learning 

processes in order to achieve a greater degree of temperature 

control in a range of furnaces which are normally used for the 

heat treatment of metals. In this investigation the author has 

limited his work to two furnaces, a medium sized furnace and 

a small sized furnace. It is argued that the methods employed 

in controlling these two furnaces may be readily applied to 

other furnaces of the same general type. 

The first objective of the work presented in this thesis was to 

produce a satisfactory mathematical model for the medium size 

furnace, check its validity by the use of analogue simulation 

techniques and finally to use the parameters elucidated from 

the work on the mathematical model to close the adaptive loop. 

Next a review of the various methods of system identification was 

carried out and particular attention was given to the problems 

associated with the long (several hours) time constants involved in 

the work on heat treatment furnaces. The difficulties involved 

when working with long time constants were resolved by making use 

of a digital controller and by the use of Z-transforins as applied 

to the furnace mathematical model. 

The closing of the adaptive loop was achieved by the use of the 

digital computer as the controller. The identification of the 

furnace parameters was achieved by a model adjustment strategy 

and by use of a continually changing index of performance dictated 



by the monitoring of the apparent changes in the furnace 

parameters. 

Finally the results obtained by controlling the furnace are given, 

which show that good temperature control has been achieved, but 

it appears that further work will need to be carried out before 

a universally acceptable control strategy can be developed. 
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CHAPTER 1 

1.1 Preliminary Remarks 

The research reported in this thesis is directed towards solving 

some of the problems associated with the adaptive control 1 ' 2 ' 3  

of an industrial stress-relieving-furnace. In the early stages 

of the investigation a medium sized furnace was studied, and 

the knowledge gained was subsequently used on a second smaller 

furnace, thereby testing, to some degree, the validity of the 

derived furnace model. The medium size furnace, rated at 21kW 

(71500 Btu/hr) is shown in figure 1.1, and the smaller furnace, 

rated at 3.6 kW (12,500 Btu/hr), is shown in figure 1.2. 

Prior to the conunencement of this research project, the type of 

furnace control, 4  used by some industrial organisations,-was 

largely dependent upon the basis that the step-response of the 

furnace was assumed to be linear. That is, the furnace temperature 

was assumed to increase, or decrease, at a fixed rate over the 

operating cycle of the process involved. This assumption was found 

to be true only if relatively short time periods were taken, for 

example times of the order of several minutes. If however,a time 

scale of the order of several hours is used, the step-response 

of the furnace is non-linear. 

In practice the step-response of the furnace depends upon many 

random and uncontrollable factors. Some of the most important 

factors are, for example: 

- 3 - 



(i) external temperature variation, 

(ii) heat storage in the load, 

(iii) the mass of the load, 

(iv) heat storage in the furnace walls, and 

(v) heat storage in the hearth, 

This occurrence of unknown and uncontrollable factors naturally 

suggests that an adaptive approach may lead to a much better 

understanding of the furnace performance and hence more accurate 

control of the furnace. Improved control of the furnace may 

result in better stress relieving and possibly be more efficient 

as far as the utilisation of energy is concerned. For the two 

furnaces used in this investigation the results in economic terms, 

i.e. in energy savings, will not be large. However, the possibility 

that better stress relieving, together with the hope that the 

techniques presented in this thesis may apply to much larger 

industrial furnaces justifies this investigation into adaptive 

control of industrial furnaces. 

In order to gain a better understanding of operating conditions 

a mathematical model of the furnace was derived. In the initial 

investigations the theoretical temperature profile of this model 

was found to be slightly in error when compared with the actual 

temperature profile for the furnace. The model was then empirically 

changed, which resulted in improved correlation between the 

measured and theoretical furnace data, see figure 2.3. The furnace 

mathematical model and its detailed derivation is discussed in 

chapter 2. 

- 4. - 
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1.2 Heat Treatment of Metals (Stress Relieving) 

The main purpose of the type of furnace dealt with in this thesis 

is to relieve the internal stresses which are produced in, for 

example, steel objects which have been 'worked' when cold. The 

stress relieving is achieved by subjecting the metal to a 

controlled heating process, this type of heating is sometimes 

called a "stress relief anneal". 5 	 - 

If a 'cold worked' material is reheated the material undergoes 

a cycle of changes in strength and toughness, and this process 

is governed by the temperature of the reheating cycle. 

Typical strength changes in high carbon steel composition 6- 

(carbon 0.74%. Manganese 0.74% and Silicon 0.14%) are shown in 

figure 1.3. After being cold drawn in wire form  the steel was 

heated to the temperatures shown, then cooled to normal room 

temperature and tested in tension up to fracture. It can be seen 

that mild reheating, providing the temperature changes are 

sufficiently slow, causes both the elastic limit and the tensile 

strength to increase, up toa certain temperature limit. 

When reheating occurs at too fast a rate, other undesirable effects 

become observable. For this reason the heat-treatment-furnace needs 

to be controlled in some measure. If the heating of the steel is 

too fast, or not uniform in some way, then regardless of its 

composition, changes in its structure will take place. 

Steel expands on heating. This expansion progresses at a uniform 

rate until a critical range is reached. In this critical range 

a marked reduction in volume occurs. This reduction in volume 



can and does cause large stresses to be set up in the steel, 

in particular this can happen when steel structures are 

welded. 

These internal stresses, if sufficiently large, can produce 

warping or even cracking of the steel. At the very least these 

internal stresses will weaken the steel and could lead to 

premature failure of a component. Also,the large temperature 

gradients produced will result in the grains, in the areas near 

to the weld, being non-uniform in size. Slow, careful, controlled 

reheating will tend to relieve any stresses produced in the steel 

and also reduce the non-uniformity in the grain size. 

Some industrial organisations (e.g. Cooperheat Ltd), produce 

furnaces which are used to relieve stresses in the steel structures 

of oil rigs in the North Sea. In an environment like the North Sea, 

premature failure of any structural component could have disastrous 

consequences, and hence heat-treatment is an essential and very 

important process. 

1.3 Adaptive Control 

This thesis is primarily concerned with the investigation of 

adaptive control and its application to the control of an industrial 

heat-treatment furnace. However, as a prelude to the discussion 

of the control problem in detail, it is worth while to briefly 

consider some of the more interesting and useful historical 

developments of control in general, and adaptive control in 

particular. 

The art of control is very old indeed, in fact probably as old 

as life itself. Man is a very good example of an adaptive control 

- 7 - 



system, that is, a system which can adjust and adapt to its 

environment. 

The control of automatic systems, in the first instance, developed 

towards empirical solutions for primarily engineering problems. 

The principle and application of feedback control, in its 

mathematical form developed as engineers attempted to understand 

the operation of automatic systems. 

1.3.1 Deterministic Processes 

The first attempts to analyse automatic systems used such classical 

methods as the Nyquist plot, Bode diagrams, Nichol's chart and 

the root locus method. This type of analysis was,in the early 

stages, often no more than trial and error, and the period which 

embraced this development of control is now often referred to as 

the 'deterministic-period'. 

It is, however, important to realise that deterministic methods 

may only be used when control systems can be predicted with 

complete certainty. Bellman and others 7 ' 8  delineate properties 

of a deterministic process as follows: 

(i) The state of the system is known at each stage of the 

process prior to the decision which has to be made at 

that stage. 

(ii) The set of possible decisions is known at each stage. 

(iii) The effect of a choice of any member of this set is known 

at each stage. 

(iv) The duration of the process is known in advance. 

a- 



(v) The criterion function is prescribed in advance. 

The five statements above define that which is generally known 

as a deterministic process. 

1.3.2 Stochastic Process 

The next stage in the continuing development of control was the 

period when engineers attempted to control processes in which 

one or more of the parameters was statistical or random in its 

nature8 . That is, the parameter could be described in mathematical 

form, and its mean and standard deviation were either known or 

could be measured. Bellman 7  superimposes various elements of 

uncertainty using the following criterion, for the properties 

of a stochastic process 9 . 

(i) An unknown initial state with a given probability 

distribution. 

(ii) A distribution of allowable sets of decisions at each 

stage of the process. 

(iii) A distribution fot the outcomes of any particular decision. 

(iv) A distribution for the duration of the process, or 

equivalently, a probability of the termination of the 

process at any stage, dependent upon the state and the 

decision made. 

(v) A distribution for the criterion function to be used to 

evaluate the sequence of decisions and states. 

Processes of the stochastic type generally present a more difficult 

control problem than those of a deterministic nature, but with 

time, the problems were analysed, and some solutions obtained. 



1.3.3 Adaptive Processes 	 - 

The stochastic process, whilst interesting and demanding in 

its self, does not present the most difficult challenge from 

a control point of view. The processes which present: a very 

demanding challenge for a control engineer c1e the type of 

process in which the parameters are varying, and possibly, 

as in the stochastic control system, some are statistical in 

their nature1012.  But unlike the stochastic system the 

exact distribution of this statistical variation is either 

unknown or at best only partially known. 

This type of process cannot easily be investigated using the 

techniques of deterministic or stochastic processes. The 

controller of this type of process will need to 'adapt' to any 

changes in the process, and hence the controller will need 

to be investigated from an adaptive view point 13,14,15.  

The problem of designing a controller which is capable of 

adjusting its parameters in order to stabilize the feedback 

control systems' characteristics, when the characteristics, or 

the parameters of the controlled plant are changing, was the 

origin of the self adaptive systen 6  

The first such reference to a self adaptive system was in 1958 

by Whitaker, Yarman and Kezer 1 . Since 1958 the number of 

papers and research publications dealing with adaptive control 

topics has probably grown at an exponential rate, and will 

probably continue to do so in the immediate future. First, 

however, it is necessary to specify more closely what is meant 

by an adaptive system. 

- 10 - 
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Fig. 1.4 Basic configuration of an adaptive system. 
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At this time, it appears that there is no generally accepted 

definition of what is meant by an adaptive system. It will, 

however, be useful as a guide line, to quote definitions 

of adaptive systems from other publications. 

According to Tsypkin18  adaption is described as follows: 

"By adaption we mean the process of changing the parameters, 

structure and possibly the controls of a system on the basis 

of information obtained during the control period so as to 

optimise, from one point of view or another, the state of a 

system when the operation conditions are either uncompletely 

defined initially or are changing". A more specific definition 

has been proposed by Landau' 3 ' 19  which is: "Au adaptive system 

measures a certain index of performance using the inputs, the 

states, and the outputs of the adjustable system. From the 

comparison of the measured index of performance and a set of 

given ones, the adaption mechanism modifies the parameters 

of the adjustable system or generates an auxiliary input in 

order to maintain the index of performance close to the set 

of given ones", see figure 1.4. This type of adaptive control 

is often referred to as a "non-scanning" or "searchiess" adaptive 

system. 

It would seem that each of the many definitions of an adaptive 

process has its own particular advantages and disadvantages 

when looked at from a general point of view. It is also probable 

that there are nearly as many definitions of adaptive processes 

as there are researchers in this area 20 . Bellman7  calls processes 

of an adaptive nature "learning processes" and as such each 

- 12 - 



individual process will have features of interest to each 

researcher, and consequently a definition to cover all types 

of adaptive or learning processes will be very difficult to 

produce. The definition which will be used in this thesis 

i 	 is that any system which is encountered n which a learning 21  

or adaptive process takes place will be called an "adaptive 

control process". 

It is clear from the definition above that at least one 

parameter of the system will vary, sometimes appreciably, with 

changes in the 'environment'. Hence it is possible to further 

classify adaptive systems according to the mechanism of adaption 

which the particular system employs 22 . Some of these categories 

are as follows: 

(i) PasBive Adaptive Systems: these are systems which 

through their design give a satisfactory performance 

despite possible wide variations in environmental 

conditions and without changes of the system parameter 

or parameters by the controller. 

(ii) Adaption of input signal: This type of system monitors 

the input signal and bases its control strategy on the 

changes it detects. This system is essentially open 

loop because the output of the system is not monitored. 

(iii) System Adaptive control: In this type of system an 

adjustment is made in its own parameters in order to 

compensate for changes in the transfer function of the 

controlled plant. In this case either one or more of 

- 13 - 



the time dependent variables could be changed or the 

transfer function as a whole could be determined and then 

changed by the controller. 

(iv) Parconeter Adaptive control : This type of control is 

achieved by adjustment of parameters such as time 

constants, system gain or other loop parameters. 

(v) Adaptive shaping of input signal: In this type of 

system the controller makes changes to the shape of 

the input signal in order to achieve the desired 

response which will be necessitated by system parameter 

changes. Adaptive shaping of the required input signal 

is sometimes computer controlled, where the input waveform 

will be based on the computed dynamic response of the 

controlled system. 

(vi) Optirrnon adaption: Sometimes called extremum adaptation. 

This system is adjusted in order to give a minimum or a 

maximum in one or more of the variables. 

It can be seen from the above classification that there are 

several different types of adaptive system, and it will be useful 

to consider which components it is generally thought must be 

present in an adaptive system. 

It is apparent from the literature which has been published in 

the area of adaptive control that there are always at least two 

parts to an adaptive system. There may in fact be more than 

two parts to a practical adaptive control system, but from a 

theoretical point of view there must be at least two. 
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The first part of any adaptive system must be identification 23 . 

This refers to the determination of the dynam Ic response of the 

process to be controlled. The second part is the actuation of 

the appropriate controlling signal which will in its turn modify 

the response of the system under control. 

The actuation part of the control process can be subdivided into 

two further classes or parts. The first part is the decision 

function, in which the adaptive controller must decide what type, 

or of what value of control signal it must generate, in order to 

satisfy the second part of the adaption process, namely, 

the control signal modification function. 

The two parts of an adaptive system as discussed above may, in 

a practical adaptive system, be inseparable, but it follows that 

in the design of an adaptive control system, these parts are 

combined with techniques developed for applications of the 

deterministic and/or stochastic type of control, thereby 

producing the logic and configuration of the desired adaptive 

control system24 ' 25 . see Fig. 1.5. 

When an adaptive controller is designed there are a number of 

problems which need to be considered in order that a reasonable 

system performance is obtained. The first problem which arises 

with an adaptive system is that with the application of an 

adaptive loop, which will probably be parameter varying, the system 

will become non-linear even if the system was originally linear. 

This non-linearity will undoubtedly increase as the system 

complexity increases. 

- 16 - 



The next difficulty arises with constraints of the available 

measuring equipment. This problem may mean that the measuring 

equipment may not be able (or it may not be permissible) to 

measure all the parameters which it is desired to measure. As 

a result the identification of the system may only be partially 

completed, and hence the system controller may have to function 

with incomplete information. 

A further problem which may arise is concerned with the time 

needed for the identification phase 26 . The adaptive controller 

will perform better if complete identification is possible. 

However, this is not always possible for a number of reasons, 

some of which have been briefly outlined above, and others which 

depend upon the identification period being as small as possible. 

A working rule-of-thumb, suggested by Davies, 27  is that the 

identification time should be comparable with the time constants 

of the system. Ideally the identification time should be much 

less than this. 

Identification of the plant should normally be achieved during 

the normal operation of the plant, and as a result any test 

disturbances should not affect the plant. Hence the plant 

should not be subjected to large test disturbances and neither 

should it be necessary for the plant to be removed from its 

normal operation. 

Another problem which needs to be considered, is the determination 

of the optimum operating condition 
28

for the plant. This 

optimum condition for the plant is very important, and is usually 

- 17 



characterised by a single number, which is often referred to 

as the 'figure of merit'. It is obviously difficult to specify 

the performance of a complex system by one number, and hence 

the selection of the performance index (figure of merit) must 

be made with great care. The figure of merit should be as 

simple as possible and should also include, if possible, a 

long term objective as well as a short term one. 

System stability is yet another problem with which the designer 

has to contend. Often,unstable systems result from poor design 

or bad decisions in the selection of the figure of merit, the 

identification method or the adaptive loops. When systems 

are in the process of being designed it may be advantageous to 

consider the system stability by utilising the stability theory 

30 of Liapunov, 29, 	by which the designer will be able to obtain 

estimates of the type of configurations allowable. 

The reason for the use of Liapunov's stability criterion is that 

as a result of using an essentially non-linear feedback system, 

the use of non-linear feedback theory often does not give adequate 

information for a complete analysis of a complex adaptive system. 

As a result, stability cannot be assumed unless Liapunov's 

criterion is obeyed. 

1.3.4 Adaptive Furnace Control 

In the previous section various adaptive systems have been 

discussed, and now it is appropriate to state why adaptive 

32 control 31, has been used in the case of a heat treatment 

furnace 33,34  

- 18 - 
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The basic step-response of the medium sized furnace (Cooperheat Ltd) 

is shown in figure 1.6. This characteristic is non-linear and 

in order to describe its variation with time, a variable time 

constant needs to be involved. Also,an unknown number of other 

disturbances will affect the furnace35 ' 36 . Some of these 

disturbances can be enumerated, but their effect on the system 

performance cannot usually be predicted in advance with any degree 

of certainty? 7 ' 38 ' 39 . For example, the mass of the load and its 

surface area will have an effect on the furnace temperature 

profile, and their influence cannot be estimated accurately. 

Similarly other changes will affect the furnace performance, 

such as ambient temperature changes - generally increasing during 

the day time with furnace use, but usually decreasing in the 

evening and at night. Further more,voltage fluctuationsidue to 

problems experienced by the Generating Boards,may also affect 

the furnace performance. 

Clearly,from the above considerations, the furnace may be described 

with a specified accuracy only over a small range of its operation. 

However in order to achieve accurate control over a relatively 

large time period some method of adaptive compensation is 

required. This is especially true if the furnace is to conform 

to a specific temperature-profile and not to just maintain a 

relatively high temperature, which has to be reached in the 

shortest possible time. 

1.4 The project discussed in this thesis 

The initial part of this investigation is concerned with the 

general area of adaptive control, and a brief review of the 

subject has been presented in this chapter. 

- 20 - 



Chapter 2 describes the layout of a 'top hat' furnace, and then 

considers the detailed derivation of the furnace mathematical 

model. 	This model is then modified to take into account various 

changes of parameters. The model is then compared with the 

actual known furnace performance, and finally analogue computer 

simulation is used to verify the mathematical model. 

Chapter 3. describes the results of investigations into various 

methods of identifying the plant (furnace). It includes 

results obtained on the analogue computer model of the furnace, 

and also includes various methods of overcoming the problems 

of the long time-constant of the type of plant under investigation. 

Chapter 4 describes the investigation of a suitable self-adaptive 

controller. This chapter also includes a detailed description 

of the type of control system which was eventually considered 

the most appropriate for control of the furnace. 

Chapter 5 describes the implemntation of the control system 

chosen in Chapter 4. Also included in this chapter are the 

results obtained both during the setting up of the adaptive 

loop as well as results of the furnace operation when controlled 

by the adaptive controller. The furnace used in this part of 

study is a different type from that used in the initial study. 

This second furnace was used in order to demonstrate that the 

type of model produced, can, with only slight modification, 

be used on various types of heat treatment furnace. 

The final chapter deals with the conclusions which have been 

drawn from the investigation, and suggestions for further work, 

which may be carried out in the same area, are included. 
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CHAPTER 2 

PLANT MODELLING 

2.1 The Furnace Layout 

Figure 2.1*shows  the detailed drawing of the medium sized 

furnace (courtesy of Cooperheat Ltd) which was used in the initial 

part of this investigation. The furnace is of a conventional 

design and is usually referred to as a 'top hat' type. The 

designation 'top hat' refers to the fact that the whole of the 

top of the furnace is removable. That is, the top and the four 

sides (forming the top hat) lift off in one piece, usually by 

the use of a small pulleysystem. 

Once the top has been removed the interior layout and load-

base are easily accessible. The outer case, or top hat, is 

constructed from cast steel and between the internal and external 

walls there is a composite layer of insulation material. The 

exact composition will vary from furnace to furnace, and is 

determined by the normal working temperature of the furnace. 

The load -base of the furnace is constructed from fire bricks, 

these being surrounded by a cast steel outer case. On the 

top of the fire bricks there is a layer of sand which, when the 

furnace is in operation, forms a seal between the upper and 

lower parts of the furnace. Detailed information regarding the 

construction materials of the furnace can be obtained from 

reference 42,and this information is used in the evaluation of 

the furnace mathematical model in section 2.2. of this chapter. 

*Fig . 2.1 is contained in a pocket at the end of this thesis. 
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This type of furnace usually uses electrical energy for its 

operation. The heating elements,covered with porcelain,are 

located in the base of the furnace, and they are set below 

the general level of the furnace base to protect them from 

accidential damage during loading and unloading operations. 

The furnace is rated at 75,000 Btu/hour (or 21kw) and is 

supplied by a normal 3-phase system. The control of the furnace, 

prior to this investigation, was achieved by interruption of 

the source of energy. That is 1  the furnace control was of the 

bang-bang type, however, as the variation of temperature 

with time will normally be non-linear in its nature over the 

operating period of the furnace (several hours), this type of 

control has only limited use. 

The measured internal furnace temperature will depend upon a 

number of variables, for example, load mass and density, external 

temperature, supply voltage and furnace and/or load heat 

storage. These variables together with the inevitables 

furnace 'lags', will result in a temperature/time curve which 

will he non-linear. As a result, simple methods of furnace control 

will in general, produce poor temperature control. 

When the furnace is allowed to function without any control, with 

the normal maximum heat input, the typical variation of temperature 

against time is shown in figure 1.6. In the time taken for this 

type of operation (no-load data) the external air temperature 

was found to have changed by 20
0
F (11 00 and the furnace walls 

and top were found to have increased in temperature by an 

average of 140
0F in a time period of between two and three hours. 
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The effect of the subsequent heat storage in the hearth and 

walls, and the change in air temperature can be allowed for 

in the derivation of the furnace mathematical model as shown 

in the following section. 

2.2 Plant Modelling 

Figure 2.1 shows the furnace upon which the 

mathematical model40 ' 41  derived in this section is based. 

This mathematical model, which describes the furnace performance, 

is based on the detailed drawing shown in figure 2.1, supplied 

by Cooperheat Ltd, and also the information supplied by 

G.R-STEIN Refactories Ltd. 42  The constants and variables used 

in this theoretical derivation are listed in Appendix 1. 

The derivation of the furnace mathematical model is as follows: 

Referring to Appendix 1 we have 

Heat loss from the 'top hat' = A 
c  U  c (Of - 9) 	 2.1 

Heat loss from the hearth = A.flUh (Sf - 9) 	 2.2 

The heat storage in the hearth can be conveniently expressed 

asa fraction of (h + hh), that is: 

Heat storage h5 = x(h + h 
h 
 ) where 0 xEl 	.....

2 . 3  

The total heat loss h T = h +h h +h 

	

c 	s 

hT = (x + l)(h + h h ) 	 2.4 

Substituting equations 2.1 and 2.2 in equation 2.4 yields: 

	

hT = 
y(t + l)(9f - 9) 
	

2.5 

where 

y = Fc'c + AhUh] - 
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Hence the total heat supplied,h, is 

h = 	[Q + (1 + x)un] d&f + liT 	 ..... 2 . 6  

Substituting equation 2.5 in equation 2.6 and rearranging 

yields: 

h 

y(x + 1) 
+a 	

8f + (Qm) + (1 +x)(Un.) d9 f  

dt .. .
2.7  

y(x + 1) 

now letting ¶ = (Qm) + (1 + x)(Un) 
y (x + 1) 

The heat input h will normally be a step function applied 

at t = 0 and 9a would be of any form but initially is assumed to 

be a non-delayed ramp function, and by taking Laplace transforms, 

equation 2.7 becomes: 

h 	+ 8a = af + t (s 9 - 	.. 2.8  

	

s(x + l)y 	s 

assuming, for convenience at this stage, that 

9fo = 0 at t = 0, then: 

+ 	h 	 2.9 

(1 + 	 s(l + rs)(x + l)y 

taking inverse Laplace transforms yields: 

= 9 r(e 	- 1) + 9 t + 	h 	[1 - et/'TJ2.10 
y(x + 1) 

The initial assumption that 9 = 0 at t = 0 is a particular 

solution of equation 2.9 for an ambient temperature of 0 
0
F. In 

general the ambient temperature will be non-zero, and a general 

solution of equation 2.9 must contain a term, say 9, to take 

into account the initial ambient temperature. 

	

Hence °f 	aT [e_ttt - 1] + Oat + 
	h 	11 - e_t't]+ 9...... 2.11 
y(x + 1) 
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The block diagram shown in Fig. 2.2 represents equation 2. 9, 

and this equation forms the basis of the mathematical model 

for the furtiace. It is possible to implement this mathematical 

model on an analogue computer. However, before analogue 

simulation is carried out, it is necessary to estimate the 

values of various parameters used in equation 2. 9, and then they 

must be verified mathematically. 

2.3 Determination of Furnace-hearth heat capacity 

2.3.1 Method 1 

The heat capacity of the furnace hearth is given by the following 

expression: 

Heat Capacity! 2  = [(tl + t 2 ) - to ] x (specific heat)x(Density)x(d) 

2 	...... 2.12. 

where t 1  and t 2  are the inner and outer hearth wall temperatures 

( °c) 

to  is the mean air temperature ( °c) 

d is the hearth depth. 

In order to calculate the heat capacity of the hearth the 

specific heat was assumed to be 1.05 kJ/kg°C (Btu/lb °F) 

and the density of the hearth material was found using the 

following method in conjunction with figure 2.1 and the 

table of densities, reference 42. 

	

Sand volume 	 = 0.0731 m 3  

	

weight 	 = 0.0731 x 2720 	 = 198 kg 

Bricks 'A' volume 	= 0.045 m3  

	

weight 	 = 0.045 x 2120 	 = 97.2 kg 

Bricks 'B' volume 	= 0.0218 m3  

	

weight 	 = 0.0218 x 2120 	 = 46.2 kg 
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Bricks 'C' volume 	= 0.343 rn3  

weight 	 = 0.343 x 630 
	

= 216.2 kg 

	

Total weight of hearth 
	

= 558.4 kg 

Average density = 558.4 = 455 kg/rn3  
1.22 

Hence the average density after allowing a reduction of 10% 

for air spaces is 409 kg/rn 3 . 

Heat capacity/2 = [(68 + 600) - 201 (1.05)(409)(0.76) 

	

1 	2 	 J 

= 102.10 kJ/rn 

Total Heat capacity of furnace hearth at 600
0
C 

= 102.10 3 .hearth area 

= 102.10. 1.61 

= 165.10 kJ or (45.8 kW - hr) 

Similarly at 9000C heat storage is 

= 246.10 kJ or (68 kW - hr) 

and at 1000 0C  heat storage is 

= 274.10 kJ or (76 kW - hr) 

2.3.2 Method 2 

Using the data listed in Appendix 3, supplied by Cooperheat Ltd, 

the heat capacity of a furnace hearth may be determined as follows: 

Total heat storage of the hearth at 

600°C is 96.10 kJ/m2  

900°C is 147.10 k.3/m2  

1000°C is 179.10 kJ/m2  

Hence total heat capacity of the furnace hearth is: 

at 6000C ; 96.10.1.61 = 154.10 kJ or 43 kW - hr 
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at 9000C ; 147.10.1.61 = 236.10 kJ or 66 kW - hr 

at 10000C ; 179.10.1.61 = 288.10 kJ or 80 kW - hr 

It may be seen from methods 1 and 2 in section 2.3.1 and 2.3.2 

respectively, that there is a reasonable agreement between the 

heat capacity values. Hence an average value for Un, in 

equation 2.7, may be arrived at by the following: 

at 6000C Un = 165.106 = 310 kJ or 86 W - hr 
600-68 

at 900
0
C Un = 246.10 = 298 kJ or 83 W - hr 

900- 77 

at 1000
0
C Un = 274.106 = 298 kJ or 83 %/ - hr 

1000-82 

Hence the average value for Un = 302 k.J or 84 W - hr. 

Now that a value has been ar±ived at for On it is possible to 

determine a value for the time constant of the furnace. From 

equation 2.7 the time constant is given by: 

= 	[m + (1 + x)(Un)] 	 2.13 
y(x + 1) 

Initially it must be assumed that: 

(i) The mass m of the load is zero. This variable will, 

of necessity, be allowed for when the adaptive loop is 

closed. 

(ii) A value must be assigned for the variable x. 

This value is determined by reference to the data 

supplied by Cooperheat Ltd, see Appendix 2, and the 

value of x will be 0.1. 
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Hence 	T = 	 + 0.11302 10 3 	 hours 
1.1 [4.36.2.12.lOb 	+ 1.61 x 2. 1 2. 1 0 

1 (68-20) 	 (68-20) 

= 1.15 hours 

This value of the time constant compares well with the value of 

time constant estimated using the actual response of the furnace. 

The time constant, however, does vary with time and the value 

produced above is only valid: after an operating period of about 

one hour. The estimated value of time constant is smaller for 

operation times of less than one hour, and larger  for operation 

times which are greater than one hour. 

2.4 Furnace Model Verification 

2.4.1 Comoarison of the Mathematical model with the furnace 

response 

In order that the mathematical model produced in the preceeding 

sections can be used in an adaptive control strategy, it is 

necessary to demonstrate that the mathematical model produced 

is a reasonable approximation to the actual furnace response. 

Figure 2.3 shows a comparison between the actual furnace response 

and the predicted response from the mathematical model of 

equation 2. 9. The time constant used for this predicted response 

is 0.8 hours, which is smaller than the theoretical value. 

However this smaller value of time constant gives a much better 

agreement with the actual furnace response at the start of the 

furnace operation. 

It should be noted that with this type of furnace there is no 

appreciable time lag at the start of the furnace operation. 
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It is thought that this is due to the placement of the heating 

elements in the heating chamber of the furnace, resulting in a 

very rapid transfer of heat energy to the furnace chamber. 

The small furnace used in the adaptive control section of this 

project, does contain a small time lag, and this time lag may 

be allowed for in the direct operation of the adaptive controller 

or by modification of the mathematical model to allow for this 

time shift. 

2.4.2 Modification of mathematical model to take into account 

a time delay 

If it is required to replace the transfer function of the furnace 

by a second function which is delayed by a time T 1 , 43  a function 

	

is required which is zero from - 	to a time (T1 ) and equal to 

f(t - T 1  ) when t is greater than T 1 . If%[f(t)] = F(s), then 

the transform of the function delayed by a time T 1  is given by 

the following: 

	

- T1 ) u (t - T1)J = Tf 	(t  - T 1 )dt 

Introducing a new dummy variable T = t - T 1  we have 

J[f(T) u (T)] = fe5(T + T1) f(T)dT 

= e_T1.5 ff(T)e -sT  dT 
0 

eTj.5 F(s) 	 2.14 

Hence the transform of a function delayed by a time T is: 

a? {f(t - T1 ) u (t - T1)J = eT15 F(s) 	 ..... 2.15 
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Rence in equation 2.15 f(t - T 
1 
 ) u (t - T 

1 
 ) is the delayed or 

time shifted function, and the term e_T15  is a time delay operator. 

2.5 Analogue Computer Simulation 

In order to subject the derived furnace mathematical to further 

tests in order to verify its validity it was thought that a 

simulation of the model, using an analogue computer,would give 

a good indication regarding the validity of the model. 

It is also useful to simulate the mathematical model on an analogue 

computer because this analogue simulation may in the future 

be used as the basis for closing the adaptive loop if a solution 

to the problem of accurate analogue integration, over a period 

of several hours, is produced. 

The analogue simulation, as shown in figure 2.4 was produced by 

reference to the basic mathematical model as derived in section 

2.2. The potentiometer settings and amplifier gain settings 

are determined by (i) the parameters defined in the basic 

equation and with reference to the particular furnace (ii) the 

ratio between the amplifier gain settings and potentiometer 

setting for the inputs h(t) and Oa(t)  were dictated by the 

maximum amplitudes of their respective inputs. (iii) Time scaling 

was used in order to make the process observable over a relatively 

short time period and to make the output consistent with the 

operation period of the analogue computer. (iv) The values of 

the variables x and y in equations 2.11 were given a value of 

0.1. This value is consistant with the data given in Appendix 2, 

which was supplied by Cooperheat Ltd., for a range of heat 

treatment furnaces. The value of 0.1 for x and y may need to be 

changed later as more work and information is gained. 
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Figure 2.5 shows the results obtained for various inputs of h(t) 

and 9(t). The detailed information regarding the various 

time delayed and triangular waveforms, is given in section 2.6. 

2.6 Analogue Computer test waveforms 

In order to adequately test the validity of the analogue computer 

simulation of the furnace mathematical model, it was necessary 

to produce a series of variable phase and time delayed waveforms 

of suitable amplitude and frequency. 

The most sophisticated function generator available which was 

compatible with the analogue computer was a Test Waveform 

Generator, variable phase function generator. However, in 

order to produce variable phase square waves and triangular 

wave forms, it was necessary to use the circuits shown in 

figures 2.6 and 2.7 

It should be noted that the output waveform for the circuit in 

figure 2.7  is an amplitude and time delay variable waveform, with 

respect to the square wave output from the circuit shown in 

figure 2.6. 

2.7 Deductions fromModel tests 

From the results reported in sections 2.4.1 and 2.5, it can 

be seen, in the opinion of the author, that the mathematical 

model of the furnace derived in section 2.2, is a valid one, 

and with a certain amount of confidence it can be used in a 

model-adjusting adaptive control strategy as described in 

Chapter 4. 



It must be remembered, however, that the model will need to 

undergo a degree of change to take into account the variations 

of the operating conditions of the furnace and also this will 

be especially true if a different furnace is used. 

It is the opinion of the author that the results presented in 

this chapter may with a degree of confidence, be extended to 

other similar types of heat treatment furnace as demonstrated 

in Chapter 4. 
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CHAPTER 3 

IDENTIFICATION 

3.1 Introduction 

4645, 
Identification 44, 
	is the procedure by which the plant, 

or system under consideration, is tested by some specific 

method, in order to determine a reliable relationship between 

the various input and output quantities, both controllable and 

random. This relationship may take several forms, but it is 

often produced in the s-domain or z-domain. In the case of the 

furnace(s) investigated in this thesis, the identification 

procedure is carried out in the time-domain, although it relies 

on the z-domain model, which in turn is based on the transfer 

function produced in the s-domain (chapter 2). 

It is often necessary to identify a system in order that the 

identifier and/or process controller can establish a reliable 

48 
mathematical model for the plant or system, 

47, so that a control 

law may be determined from the latest information available 

from the system under test. 

Once the system or plant has undergone an identification process 

it may then be possible to formulate a reliable strategy for 

4 
the control of the plant.

9  As a result of this identification 

procedure the parameter(s) of the mathematical model, which 

has been identified,may be used as a basis for the control of 

the plant or system. This identification procedure may take one 

51 
or other of several different types 

50, 	which will be dependent 

upon the type of system under consideration. 
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3.2 Random Signal Testing 

In order to design an adaptive control system, it is necessary 

to evaluate the characteristics of the system. It may be possible 

to determine the system characteristics by simulation techniques 

or by testing off-line. However, in most cases the off-line 

testing means that the lost production involved would normally 

be probibitively expensive. Thus identification should normally 

take place when the plant or furnace is on-line and also in its 

normal environment. 

A further problem is that some identification methods require 

the introduction of disturbance signals at the inputs? 2  These 

signals should be small in their amplitude so that the test 

signals do not disturb the operation of the plant, and also to 

ensure that the characteristics obtained describe a linear 

system, and not a system which has been made non-linear by 

the use of these disturbance signals. 

The use of random signal testing usually gives an estimate of 

the system's impulse response function and from this it is 

fairly simple to locate the main components of the system's 

transfer function. 

In order to show how this type of random signal testing may be 

applied to the problem of identifying the major components of 

the furnace under study, it is necessary to use the following 

mathematical relationships to justify the theoretical basis 

of this method. 
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Linear System 

h(t) 	 1 	u(t) 

Bib 	 C(s) 

Input signal 	 I 	Output system 

Fig. 3.1 Linear System 
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3.3 The Superposition or Convolution Integral 

Referring to figure 3.1 and using Laplace transforms we may 

define the following: 

of [h(t)) = H(s) 

/ [u(t)] = U(s) 

and of [h(t)] = H(s) = C(s) 	 3.1 
jfu(t)J 	7) 

The function g(t) is the inverse Laplace transform of C(s) 

and is the system's impulse response. 

Hence g(t) = 1 f 

	

C(s) e 5 td s 	 3.2 
2713 

and using the relationships shown in equation 3.1 we find that 

00 	 00 
rsw 	 r -sx U(s) = j e g(w) dw j e 	h x dx 

where w and x are dummy variables 

I-  '- s(w+x) 
U(s) = 

j J e 	g(w) h(x) dwdx 

a 

where a is the area of integration 

let w + x = t and w = 

r r  
U(s) = Jj 

e- 
st

g(T) h(t -r) ds' 

0 '  
t 

Je 
-st Jg(T) h(t -t) di ]dt 

[ 

CO 

However H(s) = JeSt h(t) dt 

u(t) = 5 g(T) h(t  -T)dT 	 3.3 
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Hence it can be seen from equation 3.3 that the output signal 

u(t) may be expressed in terms of the input signal and also 

the systems impulse response, that is, via the convolution 

integral. 

3.4 Impulse Response Identification using the Cross Correlation 

function 	 - 

The cross-correlation function may be defined when it is possible 

for one variable to influence the future value of a second 

variable. If a quantitative measure of these signals (time 

varying) is required,the relationship is denoted by the following 

cross correlation 0 	= LIift 	1 	r h(t) u(t + t)dt 	..... 3.4 hu 	T-t002T) 
-T 

It should be noted that in the particular case when h(t) = u(t) 

then the cross-correlation function reduces to the auto-correlation 

function thus auto-correlation 0hh = &.E 	
+T
j- h(t) h(t +t)dt ..... 3.5 

-' T 	2T 

-T 

In order to identify the furnace's impulse response using the 

cross-correlation function defined above it is necessary to 

extend the limits of integration used in equation 3.3 to 

This is because the impulse response must be zero for t C 0 i.e. 

before any signal is applied, and as the whole of the impulse 

response is of interest, the response will only decay to zero as 

t tends to infinity. 

Hence the convolution integral from equation 3.3 may be rewritten 

in the form 

	

U(t) = fg(A) h(t - X)dX 	 3.6 
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Fig. 3.2 0 	 (t) for a Pseudo-random noise input.hh  
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Also the cross-correlation function of equation 3.4 can now be 

expressed as 

+T 	+00 

0hu 
(t) = Lint ! 

f 
h(t) Jg(s) h(t +t - s)ds dt .....3.7 

	

T-r 	2T 

-T 	- 
 OD 

and by changing the order of integration 

(t) = f:cs 
[T~

im ! f h(t) h(t +t- s)dt] ds .....3.8 
u 	- 	 2T -T do 

+ CO 

= I g (s) 0 hh 
(t- s) ds 	 3.9 

J-co  

Hence it can be seen from equation 3.9 that if a signal with a 

known auto-correlation function has a measurable cross-correlation 

function it is possible, by deconvoluting equation 3.9 to obtain 

the required impulse response g(t). 

3.5 Identification using Pseudo-Random Noise Input 

It is possible to identify a system by using a white noise input. 

However the main disadvantage of the white noise identification 

method is. that of the length of time taken to identify the 

system. This identification time may be reduced considerably by 

using a pseudo-random noise input. 

The pseudo-random noise input would have the same type of 

auto correlation function as a white -noise input, but the signal 

would be repeated with a time period of T. That is, the function 

0hh 
(I) would have a value r2 , the mean squared value, at 

= 0, T, 2T, 3T . ...... nT and zero for any other value of T 

see figure 3.2. 
T 

	

0hh 
(t) = 1 fh(t) h(t +t)dt 	 3.10 

 - 
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The limits of integration for equation 3.10 must be 0 to T 

because these are the limits over which the function 
0hh 

 is evaluated. 

Hence at a time (t - s) later 

T 
0  hh 

(t - s) = 1 f h(t) h(t -T - s)dt 	 .....3.11 

0 

T 

0  hu (t) = (g(s) 11 	rh(s) h(t + r- s) at] ds 
j OD 	1 

and by changing the order of integration, 

T 

0hu 
(t) = 1 (h(t)I Ig (s) h(t +T-  s)Jdt 

T 
= 1 f h(t) u(t +T  )dt 	 3.12 

Hence by using pseudo-random noise, the cross-correlation function 

may be obtained to full accuracy by integration over one period 

of the noise only. 

3.6 Identification Using Pseudo-Random Binary Sequences 

The problems of using a white noise signal as a method of 

identification are well known and in practice only approximations 

to white noise may be generated in a practical situation. The 

elaborate gain control and sampling/filtering requirements to 

meet the computer specification are usually too costly or 

too complicated, and as a result, suffer from poor reliability. 

It is, however, possible to extend the concepts of the auto-

correlation and cross-correlation function and apply them to a 

form of binary signal. The type of binary signal which may 

be used for identification of a system is called a pseudo-random 

binary sequence, or a chain code. These are linear recurring 
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T = (2N - l)JT 

Fig. 3.3 Auto-correlation function for a binary maximum length sequence 

Imum 



sequences, the generation of which is discussed in great detail 

in other texts. 53,54  

The auto-correlation function of a signal h(t) for a delay T is 

shown in figure 3.3. 

If the waveform, whose auto-correlation function is as shown 

in figure 3.3, then..the equation of this function may be 

written as: 

0hh Ct) =1 fh(t) h(t + t)dt 	 3.13 

3.7 Furnace model test using a chain code correlator 

In order to determine if impulse response identification could 

be carried out using the furnace mathematical model, the chain code 

correlator55  (type CCC352 manufactured by Feedback Ltd., Sussex 

England) was used in conjunction with the analogue computer, 

the initial'ising of which was discussed in chapter 2. The 

analogue computer model of the furnace is shown in figure 2.4. 

The test on the analogue model was time scaled in order to allow 

the tests to be carried out in a reasonably short length of time. 

In contrast, the identification on the furnace, when used for 

the adaptive control of the plant, would have to be carried 

out in real time, and hence the identification time would be 

much greater. 

The tests using the chain code correlator were performed with 

the re-set function on the VIDAC analogue computer suppressed, 

and the rep-op switch in the non-operate position. The correlation 

function curves for both h(t) and &a (t) were obtained separately, 
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U(S) 

G1 (s) = 
(1 + 	+ l)y 

Fig. 3.6 Part oneof the furnace mathematical model. 

V(S) 

G 2 (s) = 	- 
(1 + TO 

Fig. 3.7 Part two of thefurnace mathematical model. 
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the output being taken at 9 (see figure 2.4) in each case. 

The results so obtained are not amplitude scaled and in order 

to produce a combined output for 9 it is necessary to perform 

some amplitude scaling. The results obtained are shown in 

figure 3.4, and 3.5; 

3.8 Derivation of Furnace impulse response from the 

mathematical model 

In order to verify the results from the chain code correlator, 

it is necessary to investigate the form of the impulse response 

using the mathematical model derived in chapter 2. Referring 

to figure 3.6 we may write: 

U(S) 	 h(s) 	 3.14 
(1+ Ts)(x+l)y 

and the impulse response is given by: 

13.15 
U(t) = £ [(1+ T s )( x+l)y] 

For the second part of the furnace model refer to figure 3.7. 

the impulse response is given by: 

V(t) =1l 
[l 	Ts)] 

	
3.16 

Hence the total impulse response is given by: 

+ 
u(t) + v(t) =L 	

1
[(l+ ts)(x+l)y 1

1 
(1+ cs) 

3.17 
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Table of comparison between impulse model and the response 

obtained from the chain code correlator 

t (hours) 
impulse response function chain code 

correlator output (Error) q f  9f (scaled) 

o 1.27 11.70 5.85 6.12 

0.1 1.12 10.34 10.35 0.01 

0.2 0.98 9.13 9.10 0.03 

0.3 0.87 8.06 8.05 0.01 

0.4 0.77 7.11 7.15 	7 0.04 

0.5 0.68 6.28 6.40 0.12 

0.6 0.60 5.54 5.70 0.16 

0.7 0.53 4.89 5.10 0.21 

0.8 0.47 4.31 4.40 0.09 

0.9 0.41 3.80 

1.0 0.36 3.36 3.50 0.14 

1.2 0.28 2.61 2.70 0.11 

1.4 0.22 2.04 2.05 0.01 

1.6 0.17 1.58 1.55 0.03 

1.8 0.13 1.23 1.25 0.02 

2.0 0.10 0.96 1.05 0.09 

2.2 0.08 0.75 

2.4 0.06 0.58 0.65 0.07 

2.6 0.05 0.45 

2.8 0.04 0.35 0.35 0.00 

3.0 0.03 0.28 

4.0 0.01 0.074 0.10 0.03 
5.0 0.00 0.018 

6.0 0.00 0.00 

Table 3.1 
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= .U'1
11

[ + (x+l)y] 1 
(1+ rs)(x+1)yJ 

= 	+ (x+l)y) 
[(x+l)y 1(8+ 1) 

Taking inverse Laplace transforms we get: 

9 = 	[(x+l)y+l]e -t/T 
f 	(x + l)y 

A = 	e U 
f 	m 

-  

1 	-t/T 	 3.18 

Now letting x = 0.1 (from Cooperheat Ltd, data Appendix 3 

and letting y = 65 (determined from the actual furnace response) 

we obtain I = 0.8 hours, as an average value. 

= 1.27 

and 9f = 1.27 e_t'08 
	

3.19 

As can be seen from table 3.1, the impulse response function 

and the output from the chain code correlator are in good 

agreement, apart from the first value,see Fig. 3.8. This is due to the 

form of the correlation function, and is a well known error. 

3.9 Plant (Furnace) Identification problems 

In the previous section it has been established that the plant 

has an average time constant of 0.8 hours, but variable from a 

minimum of 0.2 hours up to a maximum of over Li hours. This 

means that in order to identify the plant using binary maximum 

length sequences 	then the minimum time required to gain 

even partial identification will normally be between 4 and 6 

hours. If complete identification is needed then the time 

taken will be very long indeed. 
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In ordS to minimise this problem, some method of time scaling 

would be required,but this assumes that some knowledge of the 

plant has already been obtained. 57,58  

To obtain the impulse response of the plant we can assume that 

T = 10 	sec. is an appropriate value, 

and T 
	

3.20 
0 

m- 1 

where m is the number of shift registers in chain-code hardware, 

and T is the effective vanishing point of the function. 

hence 2m = 4 hours (settling time for the furnace) 

= 4.3600.1000 ms 

= log m 	e(4.3600.l000) 
log e (2) 

m = 24 or greater 

We must now assume that time scaling is possible and that the 

identification time may be reduced by some factor, say 60. 

This would mean that: 

I 	4.60240s. 
0 

Further assume that m = 64, which is the same as for the 

Feedback Ltd, chain code correlator, then from equation 3.20 

64240 

T > 4s 

This still means that identification will take up tol6s, even 

by time scaling the plant by a factor of 60. 
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The problems associated with time scaling the plant by some 

arbitrary amountniake4 rather difficult undertaking. That is 1  

in order to time scale the plant a mathematical model of 

5 
the plant must be used.

9 
 

Hence it would seem that the most appropriate method of identificatiqn 

would be not to work directly on the plant, but to work on the 

mathematical model of the plant, and to identify the plant by 

adjusting a parameter or parameters of the mathematical model. 

The error between the mathematical model and the plant could 

be monitored and a mathematical model produced whose parameters 

matched those of the plant. 

The advantages of 'identifying' via the mathematical model, in 

this manner, are that time scaling can be introduced into the 

model, and also the adaptive computer can change the parameters 

of the mathematical model as many times as it is considered 

necessary. Hence if a digital method of producing the mathematical 

model is implemented, then the problems associated with the long 

time constant of the plant will be minimised. 6°  

Once a model adjustment method has been chosen it only remains 

to choose an adjustment approach whih is suitable for the plant 

being investigated in this research project. 

3.10 Online or Parameter Adjustment System Identification 

3.10.1 General Approach 

The mean square error for the system used in figure 3.9 is 

given by: 
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e 2 (t) = 	1 	k(s) - H(s) f 0hh (s)ds 	 .3.21 
2 'cj 

where 0hh 
	

is the spectral density of the function h(t) 
+300 

and e 2(t) = 1 f F(s) - H(s) 
2 
 ds 	 ..... 3.22 

2ltj  

-joO 

where F(s) and H(s) are the Laplace transforms of f(t) and m(t) 

respectively. 

The function H(s), which is the approximate model of the plant, 

may be represented by a linear combination of functions. 

H(s) 

=

a. 9.(s) 	 3.23 

Hence H(s) may be varied by suitable adjustment of a.. 

By use of the above theory, there are at least two methods by 

which identification may be achieved, and these are discussed 

below. 

3.10.2 Method 1 

By direct implementation of equation 3.23, the model H(s) may 

be shown as in figure 3.10. This is the general approach using 

equation 3.23. However if this is to be included in a 

particular application it must be modified to include some 

method of adjusting the parameters of B. This is usually done 

by using some method of adjusting a. until the desired output is 

reached. Figure 3.11 shows a standard approach. 

By analysis of the method used in figure 3.11 it can be shown 

that there is a minimum value for the rate of change of each 
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plant 

Fig. 3.12 Block diagram of system model. 
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parameter? 7  Hence there is a minimum value for the integral 

squared error and so an optimum condition or setting for the 

mathematical model may be found. The accuracy associated with 

this mathematical model will depend upon the time available 

for its estimation. 

3.10.3 MethOd 2 

From equation 3.23 a second method of identification also 

suggests itself. This basic method is shown in figure 3.12. 

For this system the mathematical models A(s), 	B(s) and OCS) are 

polynomials of order N, which are governed by the plant 

characteristics. 

The implementation of the method 1 suggested by figure 3.12 is 

shown in figure 3.13. By analysis it can be shown that e'(t) may 

become zero either when a. 1  or b.1.,  the adjustable coefficients, 

have been adjusted to their correct values or when both a. 
3. 

and b. are zero. 
1 

In this type of model a. and b. are adjusted in an opposite 

sense to the signs of their respective gradients and at a 

rate which is proportional to those gradients. By this method 

it is possible to change the values of a i and b. along the 

path of steepest decent to their optimum values at the point of 

the minimum mean square error. 

Both these methods could be applied to the control of the 

furnace(s) under investigation in this research project, however 

the first of the two methods has the advantage of being less 

complex and also being better suited to the type of mathematical 

model developed in Chapter 2. Hence the identification scheme 

used in the first method is the scheme which will be used in 
- 65 - 



order to identify the furnace mathematical model, and for use 

in the adaptive control system. 

ai 



model 

Fig. 4.1 A basic M.R.A.C. gain adjustment system. 

Fig. 4.2 M.I.T. adaptive loop 
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CHAPTER 4 

SELF ADAPTIVE FURNACE CONTROL SYSTEM 

4.1 Introduction 

Many ingenious design rules have been extensively reported in 

the literature, especially in the areas of the design of 

continuous model reference, parameter adaptive control systems, 

see Fig. 4.1. There are basically two main approaches to the 

synthesis of this class of adaptive control system. One type 

is centred upon the production of some form of performance index 

[P.1.] and the other on a Liapunov function; the exact form 

of these classes of adaptive control systems will be discussed 

in detail in section 4.2. Both of these methods of adaptive 

control have their own particular advantages and limitations. 

Hang61 ' 62  has carried out a critical comparison of the merits 

of the various design rules which come under the above headings. 

These comparisons will be reviewed in the next section. 

4.2 Comparison of Adaptive Design Rules 

In the synthesis of model reference adaptive control systems 

the following design rules are probably the most well known: 

(i) the M.I.T. design rule 63  

(ii) the Liapunov synthesis 64  

kiiii Dressier's gradient rule 65  

(iv) Price's gradient rule 66  

(v) Monopoli I  s design rule 67  

There are several other design rules which are less well known, 

the limitations of these methods are discussed in section 4.2.6. 
- 68 - 



Fig. 4.3 Dressier's adaptive ioop. 

Fj&. 4.4 Liapunov's adaptive ioop 

as's 



4.2.1 	The M.I.T. 	Design rule 

The basic configuration of the M.I.T. design rule is shown in 

Fig. 4.2. The performance index and parameter adjustment 

technique is found as follows: 

Performance Index [.i.] = fe2 dt 
	

4.1 

and using the parameter adjustment law of steepest descent 

minimization technique we have: 

	

c = Be 	m(t) 	 4.2 

c 

and 	m(t) 	is proportional to f(t) 
k 

C 

k 	= B' e f(t) 	 4.3 

t 

where B' is the adaptive gain. 

The advantage of this method is that equation 4.2 can be easily 

implemented. However doubts about the stability of this method 

under certain conditions have been expressed by Parks 64  and James 68  

4.2.2 Liapunov Synthesis 

A successful form of the Liapunov function is that proposed by 

Gilbert et al 67 and has the form of: 

_T 	s. 
V-e 

,s
:Pe + 	(X+rk m) 2 	 4.4 

v 

where 	mBt2TPr andXk - k k cv 

AT 	' 	2>' 	2 2 v - -e Qe - 	rkv  m 	 4.5 

These result in a stable adjustment law of the form: 
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Fig. 4.5 Price's adaptive loop. 

I 1 I 	Ik 	_____ 
h(t) 	I 	 I 	y(t) 	I 	

z(s) I 	z ( s) I 	> 	i 

e(t) 

y(t) 

j 	I 	I 
B' 	

ITT 	I 

	

Ci 	 I C 	 -C 
$ 	 I 	 I 	 I 	 I 

Fig. 4.6 Monopoli's adaptive loop. 
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k = m+Ym 	 .4.6 
t 

It is interesting to note that by iettingY = 0 we have the 

64 
design rule used by Parks . Equation 4.6 for the Liapunov 

method has been reported in the literature 62 ' 69  as being predictably 

stable, but the equation requires the estimation of the complete 

state vector which is not often available. This may often 

necessitate the use of differential networks with associated 

noise problems. 

4.2.3 Dressler'e Gradient Rule 

The parameter adjustment law for the Dressler's gradient rule 6  

is: 

~kc = 	B' e h(t) 	 4.7 

This type of adaptive controller is easily implemented. It does, 

however, suffer from the disadvantage that at larger loop gains its 

damping suffers and it has stability problems similar to that 

of the MIT rule 62  

4.2.4 Price's Gradient Rule 

This is sometimes referred to as the accelerated gradient 

method 66 . The parameter adjustment law is given by: 

- 	

- 	 k 	= B' e h (t) + c d (B' e h (t)) 	 4.8 
C 	

dt 

where c = const. 

This type of control law is similar to the control law in the 

Dressler case, however there is the addition of a feed forward 

term which has the effect of improving the damping and stability 

of the system. The disadvantage of this method is that stability 
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cannot always be guaranteed. 

4.2.5 Monopoli Design Rule 

This is based on a modified Liapunov scheme 67 . The function Z(s) 

is used to produce a modified plant transfer function such that 

Z(s) C(s) is real and positive, and the Kalman-Meyer theorem is 

used to eliminate any error derivatives 63 ' 65 . Hence the parameter 

adjustment law may be written as: 

= 	B' e y(t) + h(t) d (B' e y(t)) 	..... 4.9 
dt 

where y(t) is the input signal (modified) to the plant, which 

may be obtained by passing the original input signal h(t) through 

a filter (liz(s)). It is also possible 62  to extend this 

technique to the case of a general time varying gain. 

4.2.6 Other Design Rules 

The design rules considered in section 4.2.1 to 4.2.5%are probably 

the most well known adaptive design rules. There are, however, 

several other design rules, such as those of Kokatovic, 7°  

71 	72  
Nikiforuk and Choe . These designs are not considered in 

detail here as they have been well documented in the past, but 

most importantly they are thought to possess basic weaknesses. 

These weaknesses are well documented by Hang 62  who points out 

their shortcomings. 

4.3 Furnace Adaptive Loop 

The choice of the method of closing the furnace adaptive loop 73.74.75  

is probably the most critical decision which has to be made, in 

order that precise temperature control may be achieved using 

an adaptive control system. 
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The choice of the method of identification which was discussed 

in detail in section 3.10.2 inevitably restricts the options 

available 7.! In order to close the adaptive loop with the type 

of identification system chosen, the adaptive control law initially 

used, was that ofthe Dressier's gradient rule, modified to suit 

the particular requirements and restrictions 77 ' 78  of the furnace 

control system. It was however, thought that the MIT rule may 

also be appropriate, and that when the adaptive loop was in the 

process of being closed it was envisaged that the MIT rule 

may be implemented at some later date. 

The technique used for the parameter adjustment law was of steepest 

descent minimization, in order to change the parameters of the 

mathematical model in a time scale (maximum allowable time of 

19.96 sec) which was compatible with the control law and also the 

PDP8 digital computer which is used as the process controller. 

The modification to the Dressier's Gradient rule in order to 

make it compatible with the furnace adaptive control system is 

as follows: 

Dressier's Gradient rule for adaptive control is repeated here 

again for conve,iience. 

	

) k  c = 	B' e h(t) 

	

where e = At 	 .4.10 

c = B'ath(t) 

Hence .AI = F?k = BATh(t) 
/ 	c 

Iii 	 .io 41, r i, &l,e 4;rrerence 
rnoc)et and 't-  ror LL,e planb. 

- 74 - 
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plant (furnace) 

Fig. 4.7 Part of the furnace mathematical model identification 

scheme. 
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This adaptive control law is the arrangement which is used to 

produce the reuired change in the furnace current (LI), if 

the measured furnace temperature is either lower or higher 

than that which is required by the pre-determined temperature/ 

time profile. This pre-determined temperature/time profile is 

characterised by the parameter aT. The exact method of the 

implementation of this adaptive control law is discussed in 

the following sections. 

4.4 Furnace Control System 

4.4.1 Analogue System 

The implementation of the furnace identification and adaptive 

control system may be 	either analogue or digital in its 

concept. If an analogue system can be implemented, it may 

be possible to use relatively cheap and easily obtainable circuit 

elements. In contrast, a digital implementation, would require 

a computer controlled system together with more expensive 

digital control and possibly interface circuits. 

In order to demonstrate the feasibility of an analogue adaptive 

control and identification system, only part of the furnace 

identification system will be initially implemented, that is 

the identification of the first part of the furnace mathematical 

model, as shown in figure 4.7. If this part of furnace mathematical 

model identification scheme can be implemented successfully, 

then from the experience gained during its implementation, the 

second part of the mathematical model may be included and hence 

the whole of the identification procedure may be tested. Finally 

the adaptive loop can be closed. 

The circuit details for the analogue implementation of the 
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0.1fi 

Fig. 4.8 Analogue implementation of the furnace mathematical 

model identification scheme. 
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identification scheme, for the first part of the mathematical 

model, is shown in figure 4.8. 

The relative phases of the inputs u(t) and 0(t) are arranged 

such that the output from the comparator gives u(t) - 0(t) 

which is the error signal e(t). The components used for the 

integrator time period, are determined by reference to the 

time scale used for the analogue model discussed in section 

2.4. It is however, not necessary to use 0.10 and 1 MQ 

only, as these values may be changed if it is found t be 

desirable, and providing the new integrator time period is 

within the operating limits of the identification procedure. 

The testing of the analogue identification scheme was carried 

out in the following manner. The inputs u(t) and 0(t) need 

first to be simulated. These inputs, in the adaptive control 

situatioti envisaged would be continuously varying and hence 

initially it was thought that a sine or a cosine waveform, 

offset by various dc voltages would give realistic simulated 

inputs. In practice, this type of input was found to be 

unrealistic as the phase shift introduced by the active circuit 

elements produced an inherently unstable system as soon as 

completion of the parameter adjustment loop was attempted 79 ' 80 ' 81  

A second attempt to simulate the inputs u(t) and 0(t) was to 

use variable dc voltages. This method solved the phase shift 

problems associated with the sine and cosine inputs and the 

integrator produced a measurable output signal, which was 

proportional to the product of u(t) and e(t), over the time 
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period involved. This second method did, however, have a 

serious drawback, namely that the integral function, performed 

by the use of a 741 operational amplifier, suffered from a 

serious output drift problem. This meant that if the functions 

u(t) and G(t) were the same, then the error signal e(t) should 

be, and was, zero. Hence the input to the integrator was 

obviously also zero, and the integrator output should remain 

constant. In practice the integrator output voltage either 

slowly increased or decreased under any zero or slowly 

changing inputs, and was only limited by the output reaching 

the 	15V supply voltage. This was obviously most unsuitable 

for the type of identification system envisaged. 

The problem of integrator drift could be eased by using more 

stable, but also considerably more expensive, operational 

amplifiers. However the problem of output drift would probably 

still be apparent over the operating period of the furnace 

(up to several hours). 

The problem of integrator output voltage drift is a very serious 

drawback to the implementation of an analogue identification 

and adaptive control system, but the scheme still could be used 

if an integrator was available with a stable output over the 

operating period of the furnace 82,83  

4.4.2 Implementation of an Analogue Parameter Adjustment System 

If it is assumed that the problem of integrator output drift 

may be controlled by the use of a more stable type of operational 

amplifier, it becomes necessary to demonstrate that completion 

of the parameter adjustment loop is viable, using an analogue 
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Fig. 4.9 Analogue parameter adjustment loop. 
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identification system. Completion of the parameter adjustment 

loop may be achieved in several different waSrs 84 . Two methods 

are discussed below. 

Method 1 

The output of the integrator must be used to effect an 

adjustment to the parameter(s) of the furnace mathematical 

model. It was thought that a voltage controlled resistor 

(MOSFET in this case) operated over its limited linear range, 

would present a suitable solution. The disadvantage of this 

method is that the characteristics of a MOSFET are far from 

linear and when this type of device was tested in the circuit 

shown in Figure 4.9 far too little control over the resistance 

R, could be achieved for satisfactory model adjustment performance. 

Method 2 

The parameter adjustment loop may be completed by use of a 

light dependent resistor, operated by the level of the integrator 

output voltage. This method would have the advantage of isolating 

the feedback path, in an electrical sense, but the stability of 

the circuit could still not be guaranteed unconditionally. 

In order to establish the validity of using the method of 

resistance adjustment in the parameter adjustment loop, the 

circuit of Fig. 4.9 was used, with variable dc inputs for G(t) 

and u(t), and also with an initial manual adjustment to the 

resistor R.When tested under the foregoing conditions, the 

circuit was found to be basically unstable and oscillations at 

a frequency of approximately 500 kHz were observed. The commencement 
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of oscillation was dependant upon the value of the resistor R, 

and a measure of controllability of the error signal e(t), was 

achieved before oscillations occurred. These oscillations 

however, commenced before an acceptable low level of error 

signal was achieved. 

In conclusion, the problems associated with an analogue 

implementation of the identification scheme for the furnace 

mathematical model, would seem to be very great. Hence it 

was considered, at this stage of the investigation that an 

analogue mathematical model identification scheme is not 

a practical proposition for this type of heat treatment furnace. 

In the next section a digital solution to the problem will be 

discussed. 

4.4.3 Digital Implementation of a parameter adjustment 

system 

As a result of the very serious problems encountered during 

the implementation of the parameter adjustment system using 

the analogue techniques detailed in the previous section, it 

was thought that a practical solution may be obtained by using 

a digital system of mathematical model parameter adjustment, 

in conjunction with a digital minicomputer, namely the PDP8 85 ' 86 ' 87 . 

This digital system, which will help minimise the problems 

associated with the integration function over the long furnace 

time constants, and some of the stability problems encountered 

with the analogue parameter adjustment system, involves for its 

implementation, the transformation of each part of the analogue 

system into a digital or digitized system by use of the 
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'Z transformation' method 88  

In essence the use of Z-transforms necessitates the sampling 

of the incoming signal or signals, and then performing the 

required mathematical operation on each individual digitized 

part of the signal. Hence the function of integration may 

be performed without any inherent output drift occurring, 

and it is the system designer who may decide how long the 

process computer needs to hold the output of the integrator 

function at a particular value. In practice this 'holding 

time', could be of any length, upto,but not including 

infinity. 

The z - transformation method is used to change a particular 

function expressed in terms of the Laplace operator, s, from 

the 's-domain' to the 'Z-domain'. The following notation will 

be used exclusively in this analysis of the furnace adaptive 

system. 

Ze sT 	
4.12 

and = e -sT 
	

4.13 

The function 	means that a delay of one complete sampling 

period T has occurred. That is, the function or operation 

occurs one time period later, thus it is delayed by a time T. 

The Z - transfortnation of the integral function is given by: 

I 	1°  = z 	v. (s)V 
I!l 	 4.14 

Ls  .1 in J 
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and therefore 

z 	- 	v 0  (z) __ - 	 ..... 4.15 

	

z - 1 	v. (z) in 

c(Z) =
1 

-1 
1. - Z 

[i - z'] 

V 
in  (z.) = V 0 

 (2) - V 
0 
(2) £ 1  

v(z) = v.(2) + v(Z) 	 4.16 

Now letting V.(k)T be the kth sample value of the input 

signal, where the sampling interval is T, and similarly letting 

V(k)T be the kth sample value of the outputsignal, then from 

equation 4.16 it follows that 

V 
0 	 in (k)T = V (k)T + V 

o 
 (1< - 1)T 	 ..... 4.17 

Hence for a unit-step input the output V(k)T is a ramp function, 

and the function GCZ) = Z /( Z - 1) gives the function of an 

integrator. 

A second method of showing that c(t) z/(z - 1) performs the 

function of integration is as follows 

V 	 in 
(2) = V (2.) x 	Z 	 4.18 

0 	 r-r 
It can be shown that for a unit-step input 

V in (Z)= 	
Z 

z-1 

Hence to perform the function of integration on a step input 

substitute equation 4.19 in equation 4.18 above. 

V (7) = 	Z 	Z 
0 	

= ( z-1)2 	
4.20 

Dividing Z 
2 
 by (Z-1) 

2  gives: 

v(Z) = 1 +2Z 1  + 3 Z 2  + 4Z 3  + 	
(n-1) 4.21 
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Using the notationof equation 4.17, equation 4.21 becomes: 

V (kYr = 1 + 2 (k- l)T + 3(k-2)T + 4(k - 3)r+... ...... 4.22 
0 

Hence it is seen that for a unit-step input the function 

V0 (k)T is a ramp function, and the Z transform Z/(Z-1) has 

performed the operation of integration. 

4.4.4 Z-transformation of the furnace mathematical model to 

perform the parameter adjustment function 

The furnace model in the 's-domain' together with the parameter 

adjustment scheme is shown in Fig. 4.10. In order to transform 

this scheme from the 's-domain' to the 'Z-domain' the standard 

Z transformation technique is used. 

let jS 	= 	 T 	 and a = A 
(1 + 1.1K) 

 

M1(s) = 	Is 

a+s 

and 	M1(i) 	

T] = 

	0(2) 

h (2) 

0(2) 	= 	

- e

1  
h(2) 	 -1 -aT 

iz 

p h(l) = 0(Z) - 0(2.)Z -1 e 
 -CT 

0(Z) = (Sh(Z) + 0(Z) z1e aT 

0(k)T = (Sh(k)T + 0(k-1)T e
-  aT 

Also 	M2(s) = 	a 

a+ 5 

M2 (Z) = 	Ycz 	= 	a z 

9(Z) 	z_ - aT 
a 	 e 

 

4.23 

4.24 

4.25 

.4.26 

4.27 

4.28 

4.29 



a 	 .4.30 

1 	
--1 -aT - z  

(2) -(2) Zie -aT =a 

-1 	czT (2) = a 9(2) +1(Z) Z 	e 	 4.31 

Hence YWT =a 9a(1T +1(k_l)Te aT 	 4.32 

The whole mathematical model may be found by considering the 

sum of equation 4.32 and 4.28 

w(k)T = OQc)T +?'(k)T 	 4.33 

The error signal, which is the difference between the signals 

from the model, w(k)T and the plant C(k)T, is e(k)T which is found by: 

- C(k)T = e(k)T 	 4.34 

Hence the input to the integrator is given by: 

O(k)T x e(k)T = parameter adjustment signal for 
part 1 of the model 	 4.35 

and 	)'(k)T x e(k)T = parameter adjustment signal for 
part 2 of the model 	 4.36 

4.4.5 Computer Implementation of the 2 transformed furnace 

parameter adjustment scheme89'90' 91 

In order to test the parameter adjustment scheme it is necessary 

to show that the Z-transformed furnace model gives a representative 

response when compared with the response given from the actual 

furnace under consideration. Initially the furnace used was the 

large Cooperheat Ltd, furnace. 

A computer programme was developed in order to test the validity 

of the Z-transformation model and to establish representative 
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Fig. 4.12 Graph of integral error against time for furnace model 
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values for the sampling period, T, (see equation 4.28). 

The computer programme developed in the first instance is listed 

in Appendix 4, and the results obtained using T = 0.88355 hours 

are shown in Fig. 4.11. It should be noted that the mathematical 

model compares well with the actual furnace response at the 

extreme ends of the range, the largest error occurring at 

about 2 hours after switch on. 

This error may be minimized by using a variable parameter within 

the mathematical model. This development to the programme is also 

shown in the programme listing in Appendix 4. 

The result of this adjuàtment scheme is that the programme may 

now be made to follow a preselected temperature/time profile, 

up to the maximum realisable profile of that given in Fig. 4.11. 

It is of no practical interest in producing temperature/time 

profiles outside the range indicated by Fig. 4.11, because the 

furnace could not operate beyond these limits. 

The results of trial runs of the programme given in Appendix 4 

are shown in Figs. 4.11 and 4.12. It can be seen that integral 

error produced by the programme is at its maximum at the 

commencement of the programme, and in order to keep the running 

time of the programme within reasonable limits an arbitrary, 

but limiting,minimum integral error value was selected,as can 

be seen in Fig. 4.12. It should be noted that as the programme 

runs the initial error for each iteration becomes smaller. 

This is due to the 'learning nature' of the type of parameter 

adjustment used. 
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Fig. 4.13 Circuit for the pulse control of a TRIAC using B.C.D. rate inputs. 



The next problem after the parameter adjustment scheme has 

been found to function in a satisfactory manner is to close 

the adaptive loop by using a suitable method of controlling 

the furnace current. 

4.4.6 Furnace Current Control 

The method of controlling the furnace current is by means of a 

TRIAC. The TRIAC used in this particular application is rated 

at 15A maximum. Two methods of triggering the TRIAC, and hence 

controlling the furnace current, were considered. These methods 

were (i) phase control and (ii) pulse control. 

It was considered that of the two methods available, the method 

of pulse control offered the greatest range and precision in 

control of the current flowing through it, and could also be 

made compatible with the output interface requirements associated 

with the process computer. The method of phase control on the 

other hand did not offer as good a range of current control, 

and because it was basically an analogue system it could not 

be easily interfaced with the process computer. 

Initially two methods of controlling the furnace current, using 

the pulse control method of triggering the TRIAC, were developed. 

The first method, shown in Fig. 4.13,was based on the control 

parameter being a three digit binary coded decimal number. By 

changing this control parameter, the rate at which pulses 

arrived at the gate of the TRIAC could be varied from zero out 

of 1000 pulses to 999 out of a 1000 pulses. The pulses used 

are synchronised to the a.c. mains waveform, which is derived 

from a small 6VA, 240V a.c. transformer. 
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Binary rate inputs 0 to 2047 
(M.S.B. is the sign bit) 

ABCDEF 	 ABCDEF 

ninary race inputs. 



The output (low voltage) of the transformer is then rectified 

and passed through a Schmitt triggered NAND gate in order to 

produce a square wave output with a frequency of 50 Hz. The 

second Schmitt triggered HAND is used (on the same chip) to 

produce a square wave in the required phase relationship, with 

the 240V a.c. supply, in order that the TRIAC may be triggered 

correctly. 

The 50Hz square wave is then passed to the rate multipliers 

(three connected in cascade), and conditions established at the 

three submultiple frequency output terminals 1, 2, and 3 in 

figure 4.13,aredetermined by the conditions at the input terminals 

ABCD. These inputs can vary from binary 0000 to binary 1001 

which corresponds to denary 0 to 9. The submultiple frequency 

outputs are then combined by the four NOR gates in order to 

produce correctly synchronised pulses which trigger the TRIAC. 

An alternative arrangement for this type of circuit is shown 

in Figure 4.14. In this arrangement the binary coded decimal 

inputs are replaced by a 11-bit binary rate input. This circuit 

functions in a similar manner to the circuit shown in Figure 4.13, 

but the rate input can be varied from denary 0 up to diary 2047, 

there being no submultiple frequency outputs and hence there 

is no requirement for additional gate circuits. Both the circuits 

described above may be made comp4tible with the process computer 

interface output, the binary rate multiplier giving a greater 

precision control of the TRIAC current. 

The circuits of Figures 4.13 and 4.14 produce a variation in the 

furnace (TRIAC) load current, but they do suffer from a serious 

drawback, that is, because the trigger pulses are passed to the gate 
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of the TRIACat the start of a positive going a.c input 

waveform, they can only control the furnace (TRIAC) current 

over this poéitive half cycle. Current can never flow through 

the load over the negative half cycle. 

A refinement to the drcuits of Figures 4.13 and 4.14 is 

required to enable negative going pulses to be applied to the 

gate of the TRIAC at the start of the negative going half-cycle, 

and hence give control over the furnace (TRIAC) current during 

the negative half-cycle, as well as during the positive half-cycle. 

The circuit arrangement to enable control to be also obtained 

over the negative half-cycle is shown in Figure 4.15. 

The monostable;hichthustresetin less than half of one time 

period of the 50 Hz square wave, is used to enable the output 

from the rate multiplier to be phase shifted by 900.  This 

phase shifted waveform is then used to trigger a switching 

transistor. The output from the switching transistor gives a 

negative going square wave which can be used to trigger the 

TRIAC on its negative going cycle, and the transistor circuit 

will produce a sufficiently high gate current to trigger the 

TRIAC. 

The main problem with this type of arrangement is that the 

output pulses to the gate of the TRIAC from the positive and 

negative triggering circuits are mutually incompatible, and 

hence two TRIAC's are needed if the full furnace current is 

to be controlled, i.e. one TRIAC to carry the positive half 

cycle load current, and the other to carry the negative half 

cycle of the load current. The phase relationships of the 
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Fig. 4.16 Various control circuit waveforms. 
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various waveforms are shown in Figure 4.16. 

The theoretical analysis of the current flow through the 

furnace load and hence through the TRLAC's is given below: 

The setting on the rate multipliers input terminals will 

determine the exact number of pulses reaching the TRIAC gate and 

hence the average current flowing through the furnace will be 

controllable to a high degree of precision. The average 

current flowing will be given by the following expression. 

I 	= [I] 	
n 	

4.36 ave 	j 	n + m 
max scale 
reading 

where n = number of cycles/1000 or 2048 'on' 

and 	m = number of cycles/bOO or 2048 'off' 

The reading on moving coil instrument of 'ave  was unsatisfactory 
for low values of n, and hence is not considered further. 

For the furnace current it is the r.m.s. value of current which 

will be of interest, and hence the following analysis needs 

to be considered. 

let 	1=1 m sint 	 4.37 

and 	
2 	2 	2 

3.
=  I 	sin wt 	 4.37a 

The period for n 'on-cycles' is 27in 

and the period for m 'off-cycles' is 2irm 

21TM 
1 	[ f I2sin2wtdwt+J 	2 .2 I 	sin wt dwt 

(m+n)n2L 	
m 	 m 	

] 

	

0 	 2fln 

4.38 

The second term is obviously zero, therefore 

' 	
2n 

2 	I 

	f m 	½(l-cos2wt)dwt 

(m+n)2,r  
0 

aLE 



Table of B.C.D. rate multiplier setting and r.m.s. current. 

rate output pulses/bOO rms current (Amps) 

0 0 

50 3.2 

100 4.5 

150 5.5 

200 6.4 

250 7.1 

300 7.8 

350 8.4 

400 8.9 

450 9.5 

500 9.9 

550 10.5 

600 10.9 

650 11.4 

700 11.8 

750 12.2 

800 12.6 

850 13.0 

900 13.4 

950 13.7 

999 14.1 

Table 4.1 



Table of binary rate multiplier setting and r.m.s. current. 

rate output pulses/2048 rms current (Amps) 

0 0 

32 	- 1.75 

64 2.50 

128 3.6 

192 4.4 

256 5.1 

320 5.5 

512 7.1 

704 8.3 

960 9.8 

1024 10.0 

1088 10.3 

1152 10.5 

1280 11.2 

1536 12.2 

1792 13.2 

--1920 	- 13.6 

1984 13.8 

2047 14.1 

Table 4.2 

- 100 - 



2 	2 
I = 'm 

2 (m+n) 

rms 	_ 
n 
_ 

jj4( m + Ti) 

Equation 4.39 gives the r.m.s. value of the current flowing 

through the furnace load for an input n to the rate multiplier. 

This number n can be in the range 0-999 or 0 - 2047 depending 

upon the type of control used. Readings taken during tests 

on both types of circuit are given in tables 4.1 and 4.2. The 

instrument used for the tests was an a.c. ammeter of the moving 

iron type. 

It should be noted that the readings listed in tables 4.1. and 

4.2 respectively are the r.m.s. values of the furnace load 

current, and do not produce.. a linear relationship between 

the current and pulse rate.. If a moving coil instrument was 

used, the average current against pulse rate could be plotted, 

but as the readings taken on this type of instrument proved 

unreliable they are not reproduced here. 

Trial readings of the furnace current were also made using a 

variety of different types of instruments, for example a 

true r.m.s. voltmeter and a thermal ammeter. These instruments 

proved most unsatisfactory at all low and intermediate values 

of rate inputs because the response is relatively fast for these 

types of instrument. That is, the indication on the instrument 

changes very rapidly at first, attempting to reach the maximum 

instantaneous indication and then returning to zero as soon 

as the pulse or pulses have passed. An instrument which was 

heavily damped may have helped, but since the readings taken 
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from the moving iron type of instrument proved more reliable 

than any of the others obtained, it was considered that 

the readings on the moving iron instrument would be of the 

most value. Figs. 4.17 and 4.18 respectively show the results 

obtained by varying the rate inputs. 

4.4.7 Adaptive Control Computer Programme 

The temperature against time no-load profile for the small 

(3.6 kW) heat treatment furnace, which was used to investigate 

the adaptive control strategy discussed in section 4.3, is shown 

in Figure 4.19. The demanded temperature curve is also shown 

in Figure 4.19, and it will be noted that this demanded temperature 

function is of the form of a simple ramp, having for convenience 

a maximum demanded temperature of 520
0C. This demanded temperature 

curve can, of course, be changed or modified as necessary to 

suit the individual requirements of the furnace load. 

One of the problems encountered when controlling the temperature 

of a furnace of this type, is that an inevitable time delay 

occurs in respect of the furnace response to any changes in 

the load current. This research project attempts to minimise 

this problem in two ways: 

(i) by applying the basic properties of the model reference 

adaptive control strategy to the control of the furnace 

and using the furnace mathematical model as the 

reference model, and 

(ii) by careful selection of the performance index for the 

furnace in the adaptive control programme. 

The basis of the choice of the index of performance is to use 

one of the furnace mathematical model parameters, which will give 
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Fig. 4.20 Flow diagram for complete furnace control programme 
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a measure of prediction of the ultimate temperature which the 

furnace will reach, and thus enable the control strategy to 

be based on a parameter which will give the controller an 

indication of the value of the furnace temperature at some 

time in the future. 

The mathematical model parameter which it was thought most 

appropriate to the above criterion, is the main, but variable, 

furnace time constant. This time constant will enable the 

process controller to have some knowledge of the temperature 

which the furnace will achieve with a particular set of 

conditions. Hence the controller will be able to adjust the 

load current to an extent which will take present factors 

into account. 

The FORTRAN programme which has been developed to achieve the 

adaptive control strategy described above is listed in 

Appendix 5, and the associated flow diagram is shown in 

Figure 4.20. 

The control programme functions as described below. 

The furnace temperature, measured using a thermocouple with 

an output of the order of several milli-volts, is first 

amplified using a 741 operational amplifier, and then this 

output is fed into the PDP8 computer via an analogue-to-digital 

conversion channel. The sampled input is then compared with 

the temperature value produced by the mathematical model of 

the furnace, the initial parameters having been deposited in 

the computer at the start of the prograunne, see Appendix 5. 
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If an error exists between the input temperature and the 

temperature value produced by the mathematical model, the 

programme, being self-adjusting, will correct the model 

parameters until the resultant error is reduced to an acceptable 

small value see section 4.4.5. The furnace mathematical model 

parameter (main time constant) so determined, is then compared 

with a pre-programmed parameter for this particular demanded 

temperature. This difference of parameter values then produces 

an error quantity which is then used to determine any change 

in the furnace load current which is necessary. 

The output from the PDP8 computer is in the form of a 12-bit 

binary word, which is connected to the rate-multiplier inputs, 

via a buffered digital input/output, which is compatible 

with both the TTL logic of the binary rate multipliers and the 

PDP8 computer output. 

Once the model adjustment identification procedure, and the 

change of furnace current, has been completed, the programme 

then encounters a timing function: WAIT (see Appendix 5). 

This WAIT function is determined by the limitation on this 

timing function set by the PDP8 computer, and is completed 

after 19.96 sec. The maximum time allowable in this type of 

FORTRAN programme is 20 seconds. It is, however, required to 

operate the programme over a period (T) of 3.66 minutes 

during which time k will be zero (see equation 4.33). 

This time period of 3.66 minutes is obtained by introducing 

a programming loop, and allowing the timing function, SET CLOCK 

and WAIT, to be set to 19.96 seconds and then repeating the 

timing loop 11 times (see Appendix 5). Hence the programme will 
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take 19.96 times 11 seconds for each discrete identification 

phase, during which time the current may be adjusted up to 

eleven times. The full prograunne is completed after 21 

discrete identification steps, after which the total elapsed 

time will be 76.8 minutes. 

4.4.8 On-Line Test Results 

In order to test the operation and performance of the adaptive 

control programme listed in Appendix 5, it is necessary to 

select a suitable number of desired discrete temperature values, 

which the furnace should reach at particular times in the control 

cycle. These various temperature/timing points are pre-programmed 

into the adaptive control programme, and this information is 

required to be in terms of the time constant values required for 

the furnace at these temperatures. For the test results detailed 

in this section, the demanded temperature curve is that of a 

ramp function (see Figure 4.21). The various time constants 

demanded by this type of function have been determined by the 

programme listed in Appendix 4, and may be altered as required 

by the demands of the pre-programmed temperature profile. 

The results of the operation of this basic furnace control 

system is shown in Fig. 4.21. It should, however, be noted 

that the adaptive control system described herein, does not 

automatically select the initial current, and this should thus 

be selected at the commencement of the programme. The initial 

current used was selected to be much less than the maximum 

furnace load current, thereby preventing a large increase in 

the furnace temperature while the adaptive programme identifies 
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the furnace mathematical model over the first two identification 

phases. It can be seen from the results presented in Figure 4.21 

that the adaptive control system does produce an approximately 

linear temperature4ime profile, but the deviation from the 

demanded temperature curve is significant for temperatures below 

1500C and above 2500C. It is evident from these results that 

a modification of the control strategy will be required in 

order to achieve better and more precise control of the furnace 

temperature. 

It was thought that better control of the furnace temperature 

could be achieved if two changes are introduced into the 

initial control programme. That is, it was thought that the 

error in the control programme strategy consists of two distinct 

parts: 

(i) The initial current is set too low, and hence produces 

unacceptably low initial temperatures. This problem 

may be solved be increasing the initial current. 

(ii) The adaptive controller is over compensating for the 

low temperatures at the start of the programme and this 

may result in temperatures which are too large in the 

later stages of the control programme. This problem 

may be minimised by reducing the temperatures towards 

which the controller is aiming. 	In practice this will 

mean that the target time constant and' hence the target 

temperature in each part of the control programme will 

be reduced or time shifted. The effect of this will be 

the same as introducing a time delay into the identification 

procedure (see section 2.4.2). 
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The results shown in Fig. 4.22 are the outcome of shifting 

the time constants (or reducing the temperature) of the pre-

programmed temperatures by up to two factors of 3.66 minutes, 

and also increasing the initial current by a factor of two, 

when compared with Fig. 4.21. It can be seen from Fig. 4.22 

that an acceptable control of temperature was obtained with 

the exception of the first few minutes of operation. It is 

envisaged that this initial error may be minimised by further 

increasing the initial current by a suitable factor. 

Once a satisfactory degree of temperature control has been 

achieved for normal operation, i.e. with noise' in the form 

of environmental temperature changes, it still remains to 

investigate the reaction of the furnace adaptive control 

systems when an extreme (high level disturbance),which 

is also random in its nature, is introduced into the system. 

For the furnace system, the factor which is potentially the 

most disruptive, is that of an operator opening the furnace 

door for an unspecified period. It is thought that in the 

extreme, the furnace door would not remain open for more than 

1 minute, but probably a more realistic time period is 

15 seconds or less. 

As a consequence of the above arguments, tests were carried 

out in order to determine the effects on the furnace control 

of; 

(i) first opening the furnace door for 1 minute (see 

Figure 4.24 and 

(ii) for 15 secs (see Figure 4.23). 
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Predictably the recovery time for the furnace temperature 

in the case when the furnace door was open for 1 minute is 

longer than when the door is only left open for 

15 seconds. In both cases, however, recovery of the furnace 

temperature to its pre-programmed level, takes no more than 

20 minutes in that of the worst possible case. 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

5.1 Conclusions 

The performance of the small heat treatment furnace after 

closing the adaptive loop was found to be close to that 

demanded by the control programme. It has also been 

demonstrated that when an extreme disturbance is introduced 

to the system, (i.e. that of opening the furnace door), the 

adaptive nature of the control system ensures that normal 

operation of the furnace is restored relatively quickly. 

Hence it is concluded that the adaptive control system investigated 

in this research project gives good temperature control for low-

level disturbance inputs (changes in environmental temperature) 

when used in conjunction with a small heat treatment furnace. 

5.2 Suggestions for further work 

It has been demonstrated in Chapter 4 that the control of a 

small heat treatment furnace using a model reference adaptive 

control strategy, is both viable and produces results which 

are acceptable from a heat treatment point of view. It is 

possible that the adaptive control system described herein may 

be applied to a variety of industrial furnaces, however, it 

is not assumed that the techniques presented in this thesis 

could be extended to all types of heat treatment furnaces 

operating over a wide range of temperatures. 

In order to extend the techniques to a wide variety of furnaces 

and a wide variety of temperature ranges, a more general 
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control algorithm would have to be developed, which in itself 

would have to be adaptable to accommodate different types 

of furnaces and different temperature ranges. The type of 

control algorithm envisaged would probably be developed 

and implemented using a state-space approach, which has 

been specifically excluded from this study in favour of a 

classical approach. 

The classical approach, used in this investigation of an 

adaptive system, was adopted to enable the techniques 

presented in this thesis to be readily extendable to low 

cost digital controllers once the initial work has been 

concluded, in contrast to the bulky mini-computer adaptive 

control system shown in Fig. 5.1. 

Low cost micro processors (microcomputers) are now available, 

and the control algorithm developed in this thesis may be 

readily implemented. The major expense in this type of 

project is the software development costs, and it would now 

be a relatively simple operation to convert the programme 

in Appendix 5 to an equivalent machine codelisting for a 

microprocessor controller. For example, the M6800 microprocessor, 

two M6820 peripheral interface adaptors (flA's), an AID converter, 

RAN and RaM memories and an arithmetic processor (AN 9511) can 

be programmed to perform the adaptive control operation. The 

cost of the system hardware is currently about £200, and bearing 

in mind that the cost of hardware is likely to continue being 

reduced and that the chip count is likely to be reduced, then 

quite clearly the digital adaptive controller described in 

this thesis is worth developing further for subsequent 
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implementation using a microcomputer system. 

Recent work has suggested that providing that the time 

constant of the furnace is relatively short, other methods 

of identification, of the furnace mathematical model may be 

used in order to control the furnace temperature 92 . It is also 

evident from the work discussed in Chapter 4 that further work 

may be undertaken in the various methods of closing the 

furnace adaptive loop. It is the opinion of the author that 

several of the other methods discussed in Chapter 4 would also 

be worth further investigation, and may thereby give adequate 

control of the furnace temperature. 

It is clear that the work on the adaptive control system 

described in this thesis may be extended as suggested above. 

Surely any resulting improvement in the control of furnace 

temperature will be worthwhile, and to this end the work 

described in this thesis is dedicated. 
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APPENDIX 1 

Symbol 	 Definition 	 Units 

Q specific heat of load Btu/lb°F(kJ/kg°C) 

U specific heat of hearth Btu/lb°F(kJ/kg°G) 

m mass of load lbs (kg) 

n mass of hearth lbs (kg) 

Ba ambient temperature °F ( °c) 

9 f furnace temperature 0F ( ° c) 
90 

rate of change of temperature °F/hr ( °Cfhr) 

total area of, 	'top hat' ft 2  (m2 ) 

total area of hearth ft 2  (m2 ) 

hc  heat loss from 'top hat' Btu/hr (kW) 

heat loss from hearth Btu/hr (kW) 

h heat loss due to sand seal Btu/hr (kW) 

Uc  heat loss coefficient of top hat Btu/ft 2 °F hr 

(kW/m2  °C) 

Uh heat loss coefficient of hearth Btu/ft2 °F hr 

(kW/m2  °c) 
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APPENDIX 2 

Useful data for electric furnaces courtesy of Cooperheat Ltd. 

Heat losses from walls and hearths: 

Casing temperature 	Heat loss/hour 

at 600/650
0
C 	 68

0
C (155°F) 
	

0.59 kW/m2  (190 Btu/ft 2 ) 

(1112/12020F) 

at 1000/1050 0C 	 820
C (180°F) 
	

0.81 kW/m2  (260 Btu/ft2 ) 

(1830/19220F) 

The above figures should always be multiplied by the number of 

hours to temperature. These figures are assuming the furnace 

temperature has reached its steady state. 

Staniby losses with casing temperatures as above 

at 600/650
0
C 
	

0.86 kW per sq metre per hour 

or (1112/1202
0
F) 
	

275 Stu per sq foot per hour 

at 1000/1050
0
C 
	

1.18 kW per sq metre per hour 

or (1830/1922
0
F) 
	

370 Btu per sq foot per hour 

Add 10% to the above for sand seal losses. 
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APPENDIX 3 

Heat Storage: 

Depending on heating time: Hearth 

units are kW per sq metre 

Temperature 	4hr 	6hr 	8hr 	lOhr 	12hr 	lóhr 

6000C 	 15 	18 	21 	23 	24 	25 

9000C 	 23 	28 	32 	34 	36 	39 

1000 0C 	 29 	34 	40 	43 	45 	48 

Walls 

For heat storage in the walls take 10% of heat stored in the 

hearth. 

Heat storage in the load. 

at 6000
C (1112 0F) 	0.11 kW per kg 

at 9000C (1652°F) 	0.18 kW per kg 

at 1050 0
C (1922 0F) 	0.21 kW per kg 
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APPENDIX 4 

BASIC Computer Programme. 

LIST 
1% REM MATHEMATICAL MODEL OF A COOPERHEAT FURNACE USING 
29 REM Z TRANSFORMS WITH SCALING AND MODEL ADJUSTMENT 
39 REM OF THE TINE CONSTANT 
35 REM THE TEMP INPUTS AND OUTPUTS ARE IN DEC C BUT THE PROC. 
36 REM MODEL USES DEC F FOR COMPUTATION PURPOSES 
40 PRINT "THE VALUES OF THE TIME CONSTANT TIME INCREMENT" 
50 PRINT "HEAT INPUT AND THE. FURNACE CONSTANT USED" 
60 PRINT "INITIALLY IN THIS PROGRM1ME ARE" 
70 PRINT "0. 8,0.88355 71500 6511 
80 PRINT "ALSO THE VALUE OF THETA A T(2) IS 20 DEC F" 
90 DIM T(4),I(4) 
100 DIM 0(20),G(20) 
110 DIM w(20),E(20) 
120 DIM A(20),C(20) 
130 DIN D(20),B(20) 
140 LET c(0)=0 
150 LET C(0)=0 
160 LET D(0)=0 
170 LET 0(0)=0 
175 LET w(0)=0 
180 READ T(0),T(4),T(1) 
190 READ H,C 
200 READ N 
205 LET T(2)=N*9/5 
207 READ X,Y 
210 LET R11 
220 LET R2=.6325 
230 FOR K=1 TO 20 STEP 1 
240 READ L 
250 LET GT(0)/(1+1.1*C) 
26P LET p=g*Q 
279 LET Q=EXP(-T(1)/T(p)) 
289 LET O(K)=(P+o(K- 1)*Q)*R1 
285 LET G(9)=9 
299 LET C(K)=(T(2)/T(4)+c(K_1)*Eyy(_T(1)/T(4)))+R2 
399 LET MG(K)+O(K) 
395 LET w(K)=M*5/9+29 
319 LET E(K)L-W(K) 
329 LET A(K)=E(K)*O(K) 
339 LET B(K)E(K)*G(K) 
349 LET C(K)=A(K)+C(K-1) 
359 LET D(K)=B(K)+D(K-1) 
369 LET A=INT(W(K)+.5) 
379 LET BINT(E(K)+.5) 
389 LET 1(1)=INT(C(K)+.5) 
399 LET 1(2)=INT(D(K)+.5) 
499 IF I(I))-65900 TO 559 
410 IF I(I)C7650G0 TO 550 
415 LET S=INT(T(4)*100+.5)/100 
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416 LET RINT(T(Ø)*100+.5)/100 
420 PRINT K,A,B,I(I),I(2)T(0)T(4) 
430 NEXT K 
440 DATA.8 J .8 
450 DATA.88355 
460 DATA 71500 
470 DATA 38 
480 DATA 11.1 
482 REM THE FOLLOWING DATA IS FOR THE MODEL ADJUSTMENT 
483 REM OF THE FIRST PART OF THE MODEL 
485 DATA 5.500000E - 07 
486 REM THE FOLLOWING DATA IS FOR THE MODEL ADJUSTMENT 
487 REM OF THE SECOND PART OF THE MODEL 
488 DATA 3.550000E -06 
490 REM THE FOLLOWING DATA IS FOR THE PLANT C(s) ON NO LOAD 
500 DATA 730,935,1050,1130, 1170 
510 DATA 1180,1190,1195,1200,1200 
520 DATA 1200,1200,1200,1200,1200 
530 DATA 1200,1200,1200,1200,1200 
540 STOP 
550 REM THIS PART OF THE PROGRMIME IS TO ADJUST THE MODEL 
560 REM FOR C(K) AND D(K) BOTH POSITIVE AND NEGATIVE BY 
570 REM ADJUSTING THE TIME CONSTANT 
575 LET SINT(T(4)*100+.5)1100 
576 LET RINT(T(0)*100+.5)/100 
580 PRINT A,B,I(I),I(2)RS 
590 LET T(Ø)=T(Ø)+I(I) *X 
600 LET T(4)T(4)+I(2)*Y 
610 CO TO 250 
620 END 
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APPENDIX 5 

FORTRAN Computer Programme. 

L 

	

C 	THIS PROGRAMME IDENTIFIES A MATHEMATICAL MODEL 

	

C 	OF A 3.6 KW HEAT TREATMENT FURNACE USING Z TRANSFORMS 

	

C 	WITH SCALING AND MODEL ADJUSTMENT OF THE TIME 

	

C 	CONSTANTS. THE TEMPERATURE INPUTS AND OUTPUTS 

	

C 	ARE IN DEC C, BUT THE PROGRAMME MODEL USES DEG 

	

C 	F FOR COMPUTATION PURPOSES. THE INITIAL VALUES OF 

	

C 	THE CONSTANTS USED IN THIS PROGRAMME ARE: 

	

C 	TORØ AND TOR4 0.75 HOURS, TIME (INC) 3.66 (MIN), 

	

C 	HEAT INPUT 12,300 BTU/H,FURNACE CONSTANT 49, 

	

C 	TOR3 20 DEC OR 11.1 DEG C (TOR2) 

	

C 	T(K) IS THE TIME CONSTANT OF THE REQUIRED TEMPERATURE 

	

C 	THAT IS THE DEMANDED TEMPERATURE 
DIMENSION O(20),G(20),W(20) 
DIMENSION E(20).A(20),C(20) 
DIMENSION F(20) 
DIMENSION T(20) 
o(0)=0 
G(Ø)0 
w(0)=Ø 
E(0)Ø 
A(0)0 
C(Ø)=Ø 
D(Ø)Ø 
F (0) =0 
TORØ0.01274 
TOR320.Ø 
TOR4Ø. 75 
TIME=-Ø .061 
HEAT=12300.0 
CONST=49.Ø 
X=1.6E-Ø5 

ØE-O7 
B(0)0 
R1=1.O 
R2=0. 63 25 
READ(1, 14)AMPS 

	

14 	FORMAT('ANPS'E8.2) 
READ ( 1, 15 ) FACTOR 

15 	F0RMAT(1'FACT0R'E8.2) 
T(Q)=Ø. p1274 
T(1)0,01274. 
T(2)0. Q1274 
T(3)=0. 2 1 76  
T(4). 2176 
T(5)=0.2 299 
T(6)0. 2674 
T(7)0. 2674 
T(8)=.3Ø29 
T(9)=0. 3327 
T(10)=0. 3582 
T(11)0.3582 
T(12)0. 3819 
T(13)0.4035 
T(14)0 4035 
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T(15)0.4231 
T(16)0.4418 

17 ) =0 4598 
T(18)=0.4 762 
T( 19 )=O. 49 25 
T(20)0. 5084 
TOR2TOR3*9.0/5.0 
WRITE(1,10) 

10 	FORNAT('PROGRAMME STARTS') 
CALL SETCL(2,1996) 
DO 621 K0,20 

20 	A1&FLOAT(K) 
DO 620 L1,11 
CALL ADINIT 
INwr=IADC (2) 

TEMPA= FLOAT (INPUT) 
TEMPETEMPA*0.978+20.0 
AL=FLOAT(L) 
AMINS=AX*3. 66+(AL-1 .0)*19 .96/60.0 

25 	IF(K)89,89,85 
85 	GTORO/(1 .0+1. 1*CONST) 

PHEAT*G 
Q=EXP(TIME/TORO) 
O(K)=(P+O(K-1)*Q)*R1 
SEXP(TIME/TOR4) 
G(K)(TOR2/TOR4+G(K- 1)*s)*R2 
TEMPF=G(K)+O(K)+68 .0 
TEMPOTEMPE*9. 0/5.0+32.0 
E(K)TEMPO-TEMPF 

K) =E (K) *0  (K) 
K) E (K) *0  ( K) 

C(K)A(K)*C(K-1) 
D(K)B(K)+D(K-1) 
TEMPC=(TEMPF-32. Ø)*5  0/9.0 
ITEMPTEMPC+0. 5 
F(K)E(K)*5.0/9 .0 
IE=F(K)+0.5 

290 	IF(C(K)-65.0300,400,220 
300 	IF(C(K)+65.0)220,400,400 
C 	THIS PART OF THE PROGRAMME IS TO ADJUST THE MODEL 
C 	FOR C(K) AND D(K) BOTH POSITIVE AND NEGATIVE 
C 	BY ADJUSTING THE TIME CONSTANTS 
220 	IF(K-1)260,260,280 
260 	X=8.ØE -06 
280 	IF(K-8)250,240,240 
240 	X=3.5E-06 
250 	TORg=TORO+C(K)*X 

TOR4=TOR4+D(K)*Y 
GOTO 85 

400 	IF(T(K)-TORO)401,200,402 
401 	DELTT(K)-TORO 

AMPS=AMPS+( DEL*FACTOR*TENPE) 
GO TO 89 

402 	DELT=Tog-T(K) 
ANPS=AMPS- (DELT*FACTOR*TEMPE) 

89 	IF(AMPS-2047.0)201,90,90 
90 	ANPS2047.0 
201 	IF(AMPS)95,95,200 
95 	AMPS=O.O 
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200 IAMPS=IFIX(AMPS) 
590 CALL DIOUT(IANPS) 

WRITE (l, 24)ANINS ,TEMPE 
24 FOR AT(1F8.2'M'IFS.2'C') 
610 CALL WAIT 
620 CONTINUE 
621 CONTINUE 
210 WRITE(1,215) 
215 FORMAT('PROGRA}IME ENDS') 

IMfPS=Ø 
CALL DIOUT(IANPS) 

230 STOP 
END 
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