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ABSTRACT

Context. The determination of the local standard of rest (LSR), which corresponds to the measurement of the peculiar motion of
the Sun based on the derivation of the asymmetric drift of stellar populations, is still a matter of debate. The classical value of the
tangential peculiar motion of the Sun with respect to the LSR was challenged in recent years, claiming a significantly larger value.
Aims. We present an improved Jeans analysis, which allows a better interpretation of the measured kinematics of stellar populations
in the Milky Way disc. We show that the Radial Velocity Experiment (RAVE) sample of dwarf stars is an excellent data set to derive
tighter boundary conditions to chemodynamical evolution models of the extended solar neighbourhood.
Methods. We propose an improved version of the Strömberg relation with the radial scalelengths as the only unknown. We redetermine
the asymmetric drift and the LSR for dwarf stars based on RAVE data. Additionally, we discuss the impact of adopting a different
LSR value on the individual scalelengths of the subpopulations.
Results. Binning RAVE stars in metallicity reveals a bigger asymmetric drift (corresponding to a smaller radial scalelength) for more
metal-rich populations. With the standard assumption of velocity-dispersion independent radial scalelengths in each metallicity bin,
we redetermine the LSR. The new Strömberg equation yields a joint LSR value of V� = 3.06 ± 0.68 km s−1, which is even smaller
than the classical value based on Hipparcos data. The corresponding radial scalelength increases from 1.6 kpc for the metal-rich bin
to 2.9 kpc for the metal-poor bin, with a trend of an even larger scalelength for young metal-poor stars. When adopting the recent
Schönrich value of V� = 12.24 km s−1 for the LSR, the new Strömberg equation yields much larger individual radial scalelengths of
the RAVE subpopulations, which seem unphysical in part.
Conclusions. The new Strömberg equation allows a cleaner interpretation of the kinematic data of disc stars in terms of radial
scalelengths. Lifting the LSR value by a few km s−1 compared to the classical value results in strongly increased radial scalelengths
with a trend of smaller values for larger velocity dispersions.

Key words. Galaxy: kinematics and dynamics – solar neighborhood

1. Introduction

In any dynamical model of the Milky Way, the rotation curve
(which is the circular speed vc(R) as function of distance R to
the Galactic centre) plays a fundamental role. In axisymmetric
models the mean tangential speed vc of stellar subpopulations
deviates from vc, which is quantified by the asymmetric drift Va.
Converting observed kinematic data (with respect to the Sun)

to a Galactic coordinate system requires additionally the knowl-
edge of the peculiar motion of the Sun with respect to the local
circular speed.

The asymmetric drift of a stellar population is defined as the
difference between the velocity of a hypothetical set of stars pos-
sessing perfectly circular orbits and the mean rotation velocity of
the population under consideration. The velocity of the former is
called the standard of rest. If the measurements are made at the
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solar Galactocentric radius, it is the local standard of rest (LSR).
The determination of the LSR corresponds to measuring the pe-
culiar motion (U�,V�,W�) of the Sun, where U� is the velocity
of the Sun in the direction of the Galactic centre, V� in the di-
rection of the Galactic rotation, and W� in the vertical direction.
While measuring U� and W� is relatively straightforward, V�
requires a sophisticated asymmetric drift correction for its mea-
surement, which is one goal of this paper. The asymmetric drift
Va = vc − vφ = ΔV − V� is the difference of the local circular
speed vc and the mean rotational speed vφ of the stellar popula-
tion. The asymmetric drift corresponds (traditionally with a mi-
nus sign to yield positive values for Va) to the measured mean
rotational velocity of the stellar sample corrected by the reflex
motion of the Sun.

The main problem is to disentangle the asymmetric drift Va
of each subpopulation and the peculiar motion of the Sun V�
using measured mean tangential velocities (vφ − v�) = −ΔV =
−(Va + V�). For any stellar subpopulation in dynamical equi-
librium, the Jeans equation (Eq. (2)) provides a connection of
the asymmetric drift, radial scalelengths, and properties of the
velocity dispersion ellipsoid in axisymmetric systems (Binney
& Tremaine 2008). There are two principal ways to determine
both Va and V� with the help of the Jeans equation. The direct
path would be to measure for one tracer population the radial
gradient of the volume density ν and of the radial velocity dis-
persion in the Galactic plane together with the inclination of the
velocity ellipsoid away from the Galactic plane additionally to
the local velocity ellipsoid. This approach is still very challeng-
ing due to observational biases in spatially extended stellar sam-
ples (by extinction close to the midplane, distance-dependent se-
lection biases etc.). Therefore we need to stick to the classical
approach to apply the Jeans equation to a set of subpopulations
and assume common properties or dependencies of the radial
scalelengths and the velocity ellipsoid.

On top of this basic equilibrium model, non-axisymmetric
perturbations like spiral arms may lead to a significant shift in
the local mean velocities of tracer populations (see Siebert et al.
2011a, 2012, for the first direct measurement of a gradient in
the mean radial velocity and the interpretation in terms of spiral
arms). In the present paper we focus on the discussion of the
Jeans equation in axisymmetric models.

In the classical approach the Jeans equation is applied to
local stellar samples of different (mean) age, which show in-
creasing velocity dispersion with increasing age due to the age-
velocity dispersion relation. Up to the end of the last century, the
general observation that the mean tangential velocity depends
linearly on the squared velocity dispersion for stellar popula-
tions that are not too young allowed the measurement of V� by
extrapolation to zero velocity dispersion. The corresponding re-
formulation of the Jeans equation is the famous linear Strömberg
equation (Eq. (4)). This method was also used by Dehnen &
Binney (1998) for a volume-complete sample of Hipparcos stars
to constrain the LSR. They found again that the asymmetric
drift Va depends linearly on the squared (three-dimensional) ve-
locity dispersion of a stellar population. A linear extrapolation
to zero velocity dispersion led to the LSR. The velocity of the
Sun in the direction of the Galactic rotation with respect to
the LSR appeared to be V� = 5.25 ± 0.62 km s−1. Aumer &
Binney (2009) applied a similar approach to the new reduc-
tion of the Hipparcos catalogue and obtained the same value
V� = 5.25± 0.54 km s−1, but with a smaller error bar. The linear
Strömberg relation (Binney & Tremaine 2008) adopted in this
analysis relies on the crucial assumption that the structure (radial

scalelengths and shape of the velocity dispersion ellipsoid) of the
subpopulations with different velocity dispersions are similar.

In recent years it was argued, based on very different meth-
ods, that the value of V� should be increased significantly.
Based on a sophisticated dynamical model of the extended so-
lar neighbourhood, Binney (2010) argued that the V compo-
nent of the Sun’s peculiar velocity should be revised upwards
to ≈11 km s−1. In McMillan & Binney (2010) it was shown
that V� ≈ 11 km s−1 would be more appropriate based on the
space velocities of maser sources in star-forming regions (Reid
et al. 2009). The chemodynamical model of the Milky-Way-like
galaxy of Schönrich et al. (2010) shows a non-linear depen-
dence Va(σ2

R). This implies different radial scalelengths and/or
different shapes of the velocity ellipsoid for different subpopu-
lations. Fitting the observed dependence Va(σ2

R) by predictions
of their model, they got V� = 12.24 ± 0.47 km s−1, which
is also significantly larger than the classical value. Most re-
cently Bovy et al. (2012b) derived an even larger value of V� ≈
24 km s−1 based on Apogee data and argued for an addi-
tional non-axisymmetric motion of the locally observed LSR of
10 km s−1 compared to the real circular motion.

In view of the inside-out growth of galactic discs (estab-
lished by the observed radial colour and metallicity gradients),
there is no a priori reason why stellar subpopulations with dif-
ferent velocity dispersion should have similar radial scalelengths
independent of the significance of radial migration processes
(Matteucci & Francois 1989; Chiappini & Matteuchi 2001;
Wielen et al. 1996; Schoenrich & Binney 2009a,b; Scannapieco
2011; Minchev et al. 2013). Therefore it is worthwhile to step
back and investigate the consequences of the Jeans equation in
a more general context. The fact that the peculiar motion of the
Sun (i.e. the definition of the LSR) is one and the same unique
value entering the dynamics of all stellar subpopulations already
shows that changing the observed value for V� will have a wide
range of consequences for our understanding of the structure and
evolution of the Milky Way disc.

The goal of this paper is twofold. We discuss the Jeans equa-
tion in a more general context and derive a new version of the
Strömberg equation that is useful for an improved method to
analyse the interrelation of radial scalelengths, the asymmetric
drift, and the LSR. We emphasize the impact of different choices
of LSR. Secondly, we apply the new method to the large and ho-
mogeneous sample of dwarf stars provided by the latest internal
data release (May 15th, 2012) of the RAVE (see Steinmetz et al.
2006; Zwitter et al. 2008; Siebert et al. 2011b, for the first, sec-
ond, and third data release respectively) and complement it with
other data sets. In Sect. 2 we describe the data analysis, Sect. 3
contains the Jeans analysis, in Sect. 4 our results are presented,
and Sect. 5 concludes with a discussion.

2. Data analysis

For our analysis we use several different kinematically unbi-
ased data sets. In all the cases, only stars with heliocentric dis-
tances r < 3 kpc and Galactocentric radii 7.5 kpc < R < 8.5 kpc
and with distances to the mid-plane |z| < 500 pc are selected. A
list of variables used in the paper are collected in Table 1.

Even though most stars in our samples are relatively local,
we make all computations in Galactocentric cylindrical coordi-
nates. That is why we need to fix the Galactocentre distance R0
and the circular speed v� for our computations: they influence
how velocities of distant stars are decomposed into radial and
rotational components. We adopt R0 = 8 kpc, which is consistent
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Table 1. Variables used in the paper.

Variables Definitions
Local coordinates

r distance
vr line-of-sight velocity
μ proper motion with respect to the Sun
U, V , W velocities with respect to the LSR
U�, V�, W� velocity of the Sun with respect to the LSR
ΔV v� − vφ
Va vc − vφ, asymmetric drift
V ′ Eq. (6)

Galactocentric variables
R0 Galactocentric radius of the Sun
v� velocity of the Sun around the Galactic centre
vc velocity of the LSR around the Galactic centre
vr , vφ, vz velocities in cylindrical Galactocentric coordinates
σr , σφ, σz velocity dispersions
R Galactocentric radius
z height above the Galactic plane

Radial scalelengths

RE kinetic energy scalelength
(
R−1
ν + R−1

σ

)−1

Rν scalelength of the tracer density ν
Rd scalelength of the total surface density
Rσ scalelength of σ2

R

with most observational data to date (Reid 1993; Gilessen et al.
2009). Assuming Sgr A* to reside at the centre of the Galaxy
at rest and taking μl,A∗ = 6.37 ± 0.02 mas yr−1 for its proper
motion in the Galactic plane (Reid & Brunthaler 2005), we find
the rotation velocity of the Sun to be v� = 241.6 km s−1 in a
Galactocentric coordinate system. This velocity consists of the
circular velocity in the solar neighbourhood vc (of the LSR) and
the peculiar velocity of the Sun with respect to the LSR V�, so
that v� = vc + V�. For the radial and vertical components of the
LSR, we assume U� = 9.96 km s−1 and W� = 7.07 km s−1 from
Aumer & Binney (2009).

Any radial or vertical gradient of the mean velocity and ve-
locity dispersions may influence the determination of the cor-
responding values at the solar position. Linear trends cancel out
for symmetric samples with respect to the solar position, but spa-
tially asymmetric samples can result in shifts of mean velocity
and velocity dispersions. Additionally, spatial gradients of the
mean velocities result in an overestimation of the velocity disper-
sions due to the shifted mean values at the individual positions of
the stars. For example, for the tangential velocity dispersion σφ
we find

σ2
φ =

(
vφ − vφ

)2 −
(
δvφ

)2 −
(
δvφ

)2
. (1)

Here vφ is the tangential velocity of the stars, vφ the sample mean,
δvφ is the root mean square (rms) value of the difference of the
mean tangential velocity at the individual positions of the stars
to the sample mean, and δvφ is the rms of the propagated indi-
vidual measurement errors. In our analysis we do not take the
described effects into account but discuss the potential impact
on our results.

Despite the RAVE sample being the biggest one, supple-
menting it with other samples provides an important consistency
check as all samples have different selection criteria and biases,
different sources of distance measurements, and are differently
divided into subsamples with different kinematics.

Fig. 1. CMD of the full RAVE sample based on Zwitter distances.
Surface gravity log g is colour-coded and the lines show the selected
dwarf stars.

2.1. RAVE data

For the upcoming fourth data release the stellar parameter
pipeline to derive effective temperature, surface gravity, and
metallicity was improved significantly. The latest internal data
release is based on the new stellar parameter pipeline and con-
tains 402 721 stars. Internally, there are two independent cata-
logues of distances available. The first is based on isochrone
fitting in the colour-magnitude diagram (CMD; Zwitter et al.
2010), which contains 383 387 stars in the updated version. The
second method is based on a Bayesian analysis of the stellar pa-
rameters (Burnett et al. 2011) and contains 201 670 stars. For
these stars line of sight velocities vr, proper motions μ, temper-
atures Teff, surface gravities log g, and metallicities [M/H] are
measured. The J and K colours are taken from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006).

For our analysis we selected stars with absolute distance er-
rors Δr/r ≤ 0.3, proper motion errors Δμ ≤ 10 mas yr−1, ra-
dial velocity errors Δvr ≤ 3 km s−1, Galactic latitudes |b| ≥
20◦. The CMD of the selected stars is shown in Fig. 1 with
colour-coded log g. Furthermore, we selected only stars that
meet the criterion 0.75 < K − 4(J − K) < 2.75 (see Fig. 1),
primarily to exclude subgiants and giants. Finally, a total num-
ber N = 68 670 stars remain.

To obtain subsamples with different kinematics, the stars are
binned according to their J−K colours. These subsamples show
a clear systematic trend with colour in the mean tangential ve-
locity ΔV and in the radial velocity dispersion σR (see Fig. 2).
We find a larger velocity dispersion with decreasing metallic-
ity, as expected. But in contrast to the general expectation, the
corresponding asymmetric drift is decreasing with decreasing
metallicity, meaning faster rotation of lower metallicity pop-
ulations. This inverted trend is more pronounced in the bluer
colour bins with a younger mean age of the subpopulations. A
similar trend was already observed in the thin disc sample of
G dwarfs from the Sloan Extension for Galactic Understanding
and Exploration (SEGUE; Lee et al. 2011b; Liu & van de Ven
2012) and for the younger population in the Geneva-Copenhagen
Survey (Loebman et al. 2011).

We do not attempt to separate thin and thick disc stars, but
due to the vertical limitation |z| ≤ 500 pc the thin disc is ex-
pected to dominate. Instead, we split the samples in the colour
bins further into three metallicity bins, −0.5 < [M/H] < −0.2,
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Fig. 2. Measured mean tangential velocity ΔV (full circles) and radial
velocity dispersion σR (crosses) of the RAVE sample based on Zwitter
distances as functions of J − K colour.

−0.2 < [M/H] < 0, and 0 < [M/H] < 0.2. Even though the
absolute calibration of the RAVE metallicity is not completely
settled (Boeche et al. 2011), the metallicity [M/H] from the
RAVE pipeline can be used as a relative indicator of the true
metallicity. The subsample properties are collected in Table 2.
The total number of stars in this colour and metallicity range is
N = 63 978, with 44%, 47%, and 9% falling into the low, mid-
dle, and high metallicity bin respectively.

From Table 2 we see that different bins probe slightly differ-
ent volumes, with bluer bins (which correspond to brighter stars)
extending farther both in radial and vertical directions. Due to
the asymmetry of the RAVE sample, the mean radius R differs
from R0 = 8 kpc and the mean height z differs from 0, with the
difference also being larger for bluer bins. These small variations
and offset have no significant impact on the derivation of the
kinematic properties at the solar position. It is important to men-
tion that the volume occupied by a subsample does not strongly
depend on its metallicity and that the metal-poor stars are on av-
erage about 30% farther away from the Sun than the metal-rich
stars only for the reddest bin.

To take full advantage of the stellar parameter estimation
in RAVE, we measure the shape of the velocity ellipsoid. In
Fig. 3 the upper panel shows the squared ratio of the velocity
dispersions in the rotational and radial directions, σ2

φ/σ
2
R. There

is a trend with velocity dispersion (which is discussed more in
Sect. 5) but no significant differences for different metallicities.
In the epicyclic approximation, the ratio is connected to the local
rotation curve by σ2

φ/σ
2
R = κ

2/4Ω2 ∼ 0.46 for standard values
(Binney & Tremaine 2008), where κ is the epicyclic frequency in
the solar neighbourhood and Ω is the orbital frequency. The ob-
served deviations may be due to spiral structure of the Galactic
disc at the low-velocity-dispersion end and to the non-harmonic
motion with respect to the guiding centre of stars with larger ec-
centricity at the high-velocity-dispersion end. In the lower panel
of Fig. 3 the ratio σ2

z /σ
2
R is presented. We can see that the ratio is

bigger for bigger velocity dispersions and for lower metallicities.
In both panels the mean values, which are used in the standard
analysis in Sect. 4.1, are shown as horizontal lines.

The radial and vertical components of the LSR from the
RAVE data are U� = 8.74 ± 0.13 km s−1 and W� = 7.57 ±
0.07 km s−1. They are in reasonable agreement with U� =
9.96 ± 0.33 km s−1 and W� = 7.07 ± 0.34 km s−1 from Aumer
& Binney (2009). The discrepancy of order of 1 km s−1 does not

make a big difference in computations of velocity dispersions as
it is only added to the velocity dispersion quadratically.

2.2. Other samples

We used four other independent kinematically unbiased samples
of dwarfs for comparison and to check the consistency of the
RAVE sample with older determinations of the asymmetric drift.

1. A large independent homogeneous sample consists of F- and
G-dwarfs from (SEGUE; Yanny et al. 2009) of the Sloan
Digital Sky Survey (SDSS). Stellar parameters, including vr,
metallicities [Fe/H] and alpha-abundances [α/Fe] are com-
puted by Lee et al. (2011a). We start with the G-dwarf sam-
ple used in Lee et al. (2011b), where proper motions μ and
distances r were added. For our analysis we only selected
stars with a signal-to-noise ratio S/N > 30 and logg > 4.2
in the local volume described above. For calculations of the
propagation of errors, uncertainties of Δr = 0.3r and Δvr =
4 km s−1 are assumed. With these criteria we got a total of
N = 1190 stars. The majority of stars in the sample be-
long to a narrow colour range 0.48 < g − r < 0.55, which
makes studying kinematics as a function of colour virtually
impossible.

2. The sample of SEGUE M-dwarfs is taken from West et al.
(2011). It includes SDSS photometry, vr, μ, T , log g, and
photometric distances r. Here only stars with distances r <
700 pc were selected to avoid possible velocity biases of
more distant stars (Bochanski et al. 2011). We selected stars
with errors Δμ < 10 mas yr−1. Errors Δr = 0.3r and
Δvr = 4 km s−1 were assumed. The resulting number of stars
is N = 30814.

3. The Hipparcos sample is restricted to completeness lim-
its in V magnitude bins and supplemented by the Catalogue
of Nearby Stars (CNS4) to have a better representation of
the faint end of the main sequence, as discussed in Just &
Jahreiß (2010), with a total of N = 2176 stars. The stars
have Johnson B and V photometry, vr, μ, and parallaxes. The
sample is binned according to absolute magnitude in V .

4. The last data set is a sample of McCormick K and
M dwarfs with stellar ages determined by atmosphere activi-
ties (Vyssotsky 1963). It contains 516 stars with reliable dis-
tances and space velocity components. The sample is binned
in stellar age.

3. Jeans analysis

The asymmetric drift is governed by the Jeans equation (Binney
& Tremaine 2008),

v2c − vφ2
= σ2

φ − σ2
R − σ2

RR
∂ ln (νσ2

R)

∂R
− R
∂(vRvz)
∂z
, (2)

with tracer density ν and covariance vRvz. Roughly speaking,
it expresses dynamical equilibrium in an axisymmetric system
within a volume element in a cylindrical coordinate system.
The left-hand side represents the difference of the gravitational
force in the Galactic potential and the centrifugal force, while
the terms on the right-hand side represent dynamical pressure
and shear forces acting on the surfaces of the volume. There are
two crucial assumptions for the validity of Eq. (2), namely ax-
isymmetry of the system and dynamical equilibrium of the stel-
lar population under consideration. The former assumption can
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Table 2. Properties of the RAVE sample.

J − K range [M/H] range N J − K [M/H] R (kpc) z (pc) dR (pc) dz (pc)
(–0.5, –0.2) 265 0.18 –0.29 7.94 –166 164 234

(0.1, 0.2) (–0.2, 0) 737 0.17 –0.10 7.93 –120 160 231
(0, 0.2) 379 0.16 0.06 7.92 –113 181 236

(–0.5, –0.2) 6105 0.27 –0.31 7.94 –146 139 226
(0.2, 0.3) (–0.2, 0) 9808 0.26 –0.11 7.93 –133 149 220

(0, 0.2) 3324 0.27 0.05 7.92 –141 160 233

(–0.5, –0.2) 6393 0.34 –0.30 7.92 –120 136 211
(0.3, 0.4) (–0.2, 0) 13917 0.34 –0.10 7.93 –122 136 210

(0, 0.2) 9787 0.35 0.07 7.93 –133 134 212

(–0.5, –0.2) 955 0.44 –0.30 7.94 –71 95 140
(0.4, 0.5) (–0.2, 0) 3260 0.44 –0.09 7.94 –82 104 158

(0, 0.2) 4155 0.44 0.08 7.94 –97 110 173

(–0.5, –0.2) 1331 0.66 –0.30 7.98 –36 42 67
(0.5, 0.9) (–0.2, 0) 3049 0.64 –0.09 7.97 –41 51 80

(0, 0.2) 2593 0.62 0.07 7.97 –47 59 93

Notes. Columns 1 and 2 give the colour and metallicity bins, Col. 3 the number of stars in the bins, Cols. 4 to 7 the mean values in colour,
metallicity, Galactocentric distance, and vertical position respectively. Columns 8 and 9 are the mean radial and vertical distance to the Sun.
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Fig. 3. Properties of the velocity ellipsoid from the RAVE data. The
squared axis ratios of the velocity ellipsoid σ2
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2
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2
R as a func-

tion of J − K are plotted. The mean values are marked by horizontal
lines.

be broken by a spiral density wave, while the latter can be vio-
lated for young populations, whose mean age is smaller than the
epicyclic period.

In Eq. (2) the radial gradient term can be parameterised by
the local radial scalelength RE of (νσ2

R) via R−1
E = ∂ ln (νσ2

R)/∂R.
It is a composition of the radial scalelength Rν of the tracer
density ν and Rσ of the radial velocity dispersion σ2

R related
by R−1

E = R−1
ν + R−1

σ .
The vertical gradient of the covariance vRvz in Eq. (2)

measures the orientation of the principal axes of the veloc-
ity ellipsoid above and below the Galactic plane. We use the
parametrisation R∂(vRvz)/∂z = η

(
σ2

R − σ2
z

)
; η = 0 corresponds

to a horizontal orientation of the principal axes and η = 1 to a
spherical orientation.

Finally, we replace vc and vφ by v�, V�, and ΔV and evaluate
Eq. (2) at the solar position R = R0. Re-arranging the terms and
dividing by 2v� we find

Va = vc − vφ = ΔV − V� (3)

=
ΔV2 − V2�

2v�
+
σ2

R

2v�

⎛⎜⎜⎜⎜⎜⎝ R0

RE
− 1 − η

⎡⎢⎢⎢⎢⎣1 − σ
2
z

σ2
R

⎤⎥⎥⎥⎥⎦ + σ
2
φ

σ2
R

⎞⎟⎟⎟⎟⎟⎠ ·
This is the non-linear equation for the asymmetric drift Va as
function of σ2

R for a set of stellar subpopulations. It connects the
measured mean tangential velocity −ΔV = vφ − v� of a subpop-
ulation with respect to the Sun and the peculiar motion of the
Sun V�. There are two types of non-linearity on the right-hand
side of Eq. (3). The two quadratic terms ΔV2 and V2� yield a
small correction to the asymmetric drift with increasing signif-
icance of the first one with increasing velocity dispersion (e.g.
for the thick disc). This correction can easily be taken into ac-
count. The second non-linearity is more crucial and occurs from
a possible variation of the radial scalelength and the shape and
orientation of the velocity ellipsoid for the different subpopula-
tions introducing an additional dependence of the last bracket in
Eq. (3) on σR.

Since the thickness of a stellar tracer population depends on
the total surface density and the vertical velocity dispersion, a ra-
dially independent constant thickness requires a constant shape
of the velocity dispersion ellipsoid to find Rσ = Rd, the scale-
length of the total surface density. In the simplest case, where
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the radial scalelength of the tracer population Rν is the same, i.e.
Rd = Rν = Rσ, we get Rν = 2RE in the asymmetric drift Eq. (3).

The impact of the orientation of the velocity ellipsoid via η in
the Jeans equation is twofold. Since σz < σR, a spherical orien-
tation (η = 1) results in a smaller asymmetric drift compared to
a horizontal orientation with η = 0. On the other hand, a stellar
population with a measured asymmetric drift Va requires a larger
radial scalelength RE for η = 1 to fulfill the Jeans equation. For
definiteness we adopt η = 1 (supported observationally and the-
oretically by Siebert et al. 2008; Binney & McMillan 2010) in
the plots and interpretation of data, if necessary.

3.1. The linear Strömberg relation

In the standard application the quadratic terms ΔV2 and V2� in
Eq. (3) are neglected and we find Strömberg’s equation

ΔV = V� +
σ2

R

k

k = 2v�

⎛⎜⎜⎜⎜⎜⎝ R0

RE
− 1 − η

⎡⎢⎢⎢⎢⎣1 − σ
2
z

σ2
R

⎤⎥⎥⎥⎥⎦ + σ
2
φ

σ2
R

⎞⎟⎟⎟⎟⎟⎠
−1

· (4)

The inverse slope k depends on the radial scalelength RE and
shape and orientation of the velocity dispersion ellipsoid of the
subpopulations with density ν. If we assume that the shape and
orientation of the velocity ellipsoids are the same, i.e.σ2

R ∝ σ2
φ ∝

σ2
z and same η, and that the radial scalelength is the same for all

subpopulations, then k is the same for all subpopulations and
thus independent of σR. With these assumptions we end up with
the classical linear Strömberg relation, which we discuss in more
detail in Sect. 4.1.

3.2. A new Strömberg relation

Since we have measurements of the shape of the velocity ellip-
soid for each subsample, it is useful to separate observables and
unknowns in the non-linear asymmetric drift Eq. (3) by rewrit-
ing it as

V ′ = V� − V2�
2v�
+
σ2

R

k′
(5)

with

V ′ ≡ ΔV +
σ2

R + η(σ
2
R − σ2

z ) − σ2
φ − ΔV2

2v�
, (6)

k′ = v�
(
2RE

R0

)
· (7)

The new quantity V ′ contains corrections arising from the
shape and orientation of the velocity ellipsoid and the quadratic
term ΔV2. The quadratic V2� term on the right-hand side of
Eq. (5) decreases the zero point V ′(σR = 0) with respect to the
value of V� by 1–2%. The new parameter k′ depends only on the
radial scalelength RE of the stellar subpopulations. In the new
form of the Strömberg relation we need to assume only equal ra-
dial scalelengths for a linear fit to the data to determine the pecu-
liar motion of the sun V� by the zero point and RE via the inverse
slope k′. In general, the scalelength RE could be also a function
of σR, thus implying a dependence of k′ on σR in Eq. (5). It is
discussed in detail in Sect. 4.3.
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Fig. 4. Asymmetric drift for different data sets. The two black circles
on the ΔV axis correspond to the different LSRs with V� = 5.25 km s−1

from Aumer & Binney (2009) and V� = 12.24 km s−1 from Schönrich
et al. (2010) respectively. The grey line gives the best fit to the data
points for RAVE dwarfs. It corresponds to the LSR V� = −1.04 km s−1

and the scalelength of the disc Rd = 1.65 kpc.

4. Results

We discuss first the application of the linear Strömberg relation
on the RAVE data in comparison with the other data sets. In
a second step we repeat the analysis with the RAVE data split
into the metallicity bins and then apply the new Strömberg rela-
tion. In the third step we investigate in a more general frame the
determination of the LSR and the radial scalelengths. Finally,
we discuss a very simple toy model, which can reproduce our
findings.

4.1. Standard analysis

In Fig. 4 we see that the linear Strömberg relation (Eq. (4)) with
constant slope k−1 is poorly applicable to the RAVE data: the
data points are not following the same straight line. The for-
mal best fit to the RAVE data (grey line in Fig. 4) gives the
LSR V� = −1.0 ± 2.1 km s−1, which is not consistent with
V� = 5.25 ± 0.54 km s−1 obtained by Aumer & Binney (2009)
by a similar linear fit to Hipparcos data. The corresponding slope
k = 58 km s−1 is bigger than the classical value. An application
of Eq. (4) with the mean ratios of the squared velocity disper-
sions (σ2

φ/σ
2
R = 0.42 and σ2

z/σ
2
R = 0.24, see Fig. 3) results in a

short radial scalelength of Rd = 2RE = 1.65 ± 0.16 kpc.
The SEGUE G dwarfs allow us to get only one significant

point in the plot, and this point is consistent with the trend ob-
tained from RAVE, while SEGUE M dwarfs seem to be off the
trend. The M dwarf sample may suffer from biases in the dis-
tance determination. The local stars from the Hipparcos, CNS4,
and McCormick samples are also generally consistent with the
best-fitting line for RAVE, except for the two dynamically cold-
est bins. This feature, which was already observed by Dehnen
& Binney (1998), could be explained by the fact that the young
stars have not yet reached dynamical equilibrium.

Overall, the SEGUE G dwarfs and the Hipparcos data sup-
port the slope k−1 determined by the RAVE data but with much
larger scatter. The McCormick stars, the SEGUE M dwarfs, and
the CNS4 data suggest a much smaller slope and larger LSR
value, which would be inconsistent with the RAVE sample but
support the large LSR value claimed by Schönrich et al. (2010).
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The increase of the observed Va (or equivalently ΔV) in Fig. 4
for the smallest velocity dispersions is inconsistent even with the
model by Schönrich et al. (2010), suggesting non-equilibrium of
the young subpopulation.

4.2. Metallicity dependence

Iin the Hipparcos sample a non-linear trend of the asymmetric
drift with increasing velocity dispersion has already been ob-
served. This is a sign that the radial scalelength is different for
different subpopulations. Numerical models of Milky-Way-like
galaxies also predict a systematic variation of the asymmetric
drift with age and/or metallicity (e.g. Schönrich et al. 2010;
Loebman et al. 2011). Schoenrich & Binney (2009a,b) have
shown that radial mixing leads to a slight increase of the ra-
dial scalelength with increasing age. In Lee et al. (2011b) it was
shown for the SEGUE G dwarf sample that the asymmetric drift
in the thin disc decreases with decreasing metallicity in contrast
to the naive expectation of local evolution models. Bovy et al.
(2012a) also used the full SEGUE G dwarf sample (dominated
by stars with |z| > 500 pc) to derive radial scalelengths of mono-
abundance subpopulations. They found a significantly smaller
radial scalelength for thick disc stars compared to thin disc stars,
with a hint of decreasing scalelength with increasing metallicity
inside the thin disc.

The RAVE sample in Fig. 4 also shows a systematic non-
linear trend, which may be due to a varying mixture of dif-
ferent populations with different scalelengths. Binning stars of
the RAVE sample in metallicities allow us to see more interest-
ing features in the behaviour of the asymmetric drift. Figure 2
shows that there is a systematic trend in both the velocity dis-
persion and the asymmetric drift with metallicity, which is in
part due to the bluer colour of more metal-poor stars. In the top
panel of Fig. 5 we plot the mean rotational velocity ΔV versus
its squared radial velocity dispersion σ2

R for the three different
metallicity bins, −0.5 < [M/H] < −0.2, −0.2 < [M/H] < 0,
and 0 < [M/H] < 0.2. We see that stars at different metallicities
demonstrate different asymmetric drifts, with more metal-poor
stars having smaller asymmetric drifts and thus larger rotational
velocities. For comparison the RAVE data from Fig. 4 are re-
plotted in grey to demonstrate that the non-linearity is partly re-
solved by the separation into metallicity bins.

The common LSR V� and the three inverse slopes k for each
metallicity bin are the free parameters for a joint linear fit of the
asymmetric drift Eq. (4). In the top panel of Fig. 5 the best joint
linear fit is shown. We find for the LSR V� = 2.52±0.80 km s−1,
which is consistent with the estimate from Fig. 4. The radial
scalelengths of the three metallicity components can be esti-
mated from the inverse slopes k by inserting the mean ratios
of the squared velocity dispersions (σ2

φ/σ
2
R = 0.41, 0.40, 0.42

and σ2
z /σ

2
R = 0.28, 0.23, 0.22, for the low, intermediate, and

high metallicity sample respectively). The radial scalelengths are
2.73 ± 0.17, 1.97 ± 0.10, and 1.50 ± 0.05 kpc with increas-
ing metallicity, assuming Rν = Rσ. The decreasing radial scale-
length with increasing metallicity corresponds to a negative ra-
dial metallicity gradient because the fraction of metal-poor stars
increases with increasing radius.

Now we relax the assumption of similar velocity dispersion
ellipsoids of the different colour-metallicity bins and apply the
new Strömberg relation derived in Eq. (5). In the bottom panel
of Fig. 5, V ′ as function of σ2

R is plotted. All data points are
shifted up by a few km s−1, but the general picture does not
change. The inverse slopes k′ of the joint linear regression are
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Fig. 5. The asymmetric drift for the RAVE dwarfs separated into three
metallicity bins: −0.5 < [M/H] < −0.2, −0.2 < [M/H] < 0, and 0 <
[M/H] < 0.2. The two black circles on the y-axis correspond to the
LSR from Aumer & Binney (2009) and from Schönrich et al. (2010).
The full lines show the best joint linear fit. Top: using Eq. (4). Bottom:
using Eq. (5). The RAVE data without metallicity split of Fig. 4 are
replotted with grey points.

now a direct measure of the radial scalelengths of the stellar
populations in the different metallicity bins. We find for the LSR
V� = 3.06 ± 0.68 km s−1 slightly larger than the previous value.
The radial scalelengths of the disc are 2.91 ± 0.16, 2.11 ± 0.09,
and 1.61 ± 0.05 kpc with increasing metallicity. The systemati-
cally larger radial scalelengths in the new analysis (bottom panel
of Fig. 5) are mostly due to the shift of the LSR. The similar-
ity of the classical and new analysis demonstrates the small im-
pact of the velocity ellipsoid compared to the radial scalelength
term in the asymmetric drift equation. Adopting a horizontal ori-
entation of the velocity dispersion ellipsoid η = 0 in Eq. (4)
yields slightly larger scalelengths of 3.11 ± 0.23, 2.18 ± 0.12,
and 1.62 ± 0.23 kpc respectively.

We can use these radial scalelengths to estimate the metal-
licity gradient in the disc. We assume the disc to consist of three
populations, whose densities are described by exponentials with
the corresponding scalelengths. Their metallicities are assumed
to be −0.35, −0.1, and 0.1, which are median metallicities of the
adopted bins. Relative weights of the populations at the solar ra-
dius are taken proportional to the total number of stars in the cor-
responding bins (see Table 2). We get a shallow radial metallicity
gradient of −0.016±0.002 dex kpc−1. To reproduce the observed
metallicity gradient of −0.051 ± 0.005 dex kpc−1 (Coşkunoğlu
et al. 2012), a much larger range of radial scalelengths or
metallicities is required.
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Fig. 6. Same data for the low-metallicity bin as in the bottom panel of
Fig. 5. The two black circles on the y-axis correspond to the LSR from
Aumer & Binney (2009) and from Schönrich et al. (2010). The full and
dashed lines indicate for some subsamples the individual slopes and
their dependence on the adopted LSR values, which are proportional to
the inverse radial scalelengths.

4.3. The LSR and radial scalelengths

In the previous analysis, we still adopted the same radial scale-
length in each metallicity bin independent of the colour J − K
and thus of the velocity dispersion. If we also relax this assump-
tion, as suggested in the literature mentioned in Sect. 4.2, then
it is no longer possible to determine the LSR (i.e.V�) by a linear
extrapolation to σ2

R = 0. For any extrapolation we would need a
prediction of the dependence V ′(σ2

R), e.g. from a model.
Instead we may adopt a value for V� and derive individual

radial scalelengths RE(ν) for each data point by determining the
parameter k′(ν). The parameter k′(ν) corresponds to the inverse
slope of the line connecting the data point with the zero point
of Eq. (5). This is demonstrated in Fig. 6 for a few data points
and the LSR of Aumer & Binney (2009, full black lines) com-
pared to that of Schönrich et al. (2010, dashed black lines). The
connecting lines are no longer linear fits to data but a visualiza-
tion of k′(ν) from the application of Eq. (5) to each data point.
Lifting the LSR value results in larger k′(ν) (smaller slopes) for
all subsamples, leading to larger radial scalelengths from Eq. (7).

Figure 7 shows the variation of the radial scalelength as a
function of colour J −K for the different metallicity bins, adopt-
ing the best-fit value for the solar motion V� = 3.06 km s−1. For
the higher metallicity bins, the data are consistent with a con-
stant radial scalelength for all stars along the main sequence. In
the low-metallicity bin a significant decline of Rd with the mean
age of the stars is obvious in the sense of larger radial scalelength
for the young metal-poor subpopulation.

The left-hand panels of Fig. 8 show the inverse radial scale-
lengths for all RAVE subpopulations adopting the best fit LSR
V� = 3.06 km s−1 (top panel), and the LSR of Aumer & Binney
(2009) (middle panel) and Schönrich et al. (2010) (lower panel),
with colour-coded metallicity. The right-hand panels show the
corresponding radial scalelengths Rν = Rσ. Since the LSR of
Schönrich et al. (2010) is larger than some V ′ values, nega-
tive values corresponding to a radially increasing density appear.
More precisely, the scalelength RE of νσ2

R becomes negative,
meaning an increasing radial energy density with increasing dis-
tance to the Galactic centre (see Eq. (3)). This is physically pos-
sible, for example, for metal-poor stars if the younger population
born at larger radii dominates over the older stars born further in.
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Fig. 7. Radial scalelengths corresponding to the best fit in different bins,
calculated for the LSR V� = 3.06 km s−1. Horizontal dashed lines rep-
resent the radial scalelengths used in the best fit in the lower panel of
Fig. 5.

We observe in both cases that the radial scalelengths are sys-
tematically larger for smaller metallicity. But the trend in each
metallicity bin as a function of σ2

R depends sensitively on the
adopted value for the LSR.

4.4. A simple model

There is a dynamical connection between radial gradients in the
disc and the asymmetric drift due to the epicyclic motion of stars
on non-circular orbits. Stars with guiding radii further in show
a smaller tangential velocity in the solar neighbourhood because
of the vertical component of angular momentum conservation.
A negative radial density gradient results in a larger fraction of
stars coming from the inner part of the disc compared to the outer
part. Therefore the mean tangential velocity is smaller than the
local circular velocity, corresponding to a positive asymmetric
drift, and the distribution in vφ is skewed. Additionally, with in-
creasing radial velocity dispersion the average distance to the
guiding radius of stars in the solar neighbourhood increases,
leading to an increasing asymmetric drift with increasing σR. As
a second effect, a negative radial gradient in σR further increases
the asymmetric drift and the skewness.

If there is a negative metallicity gradient in the Milky Way
disc (e.g. as found by Coşkunoğlu et al. 2012, also using RAVE
dwarfs), then a higher fraction of metal-rich stars observed in the
solar neighbourhood is expected to possess guiding radii smaller
than R0. It means that we are observing a larger asymmetric drift
for these stars compared to more metal-poor stars at the sameσR.
In terms of Eq. (4) it means that metal-rich stars are more cen-
trally concentrated and have a smaller disc scalelength Rν, while
metal-poor stars have a bigger scalelength Rν. Any mixing pro-
cess (by the epicyclic motion, radial migration due to orbit dif-
fusion, or resonant scattering) tends to smear out gradients and
increase the local scatter.

We demonstrate that a simple evolutionary model of the ex-
tended solar neighbourhood combining the metal enrichment
and a radial metallicity gradient can reproduce a decreasing ra-
dial scalelength with increasing metallicity consistent with the
observed asymmetric drift. We adopt SFR(R, t) ∝ exp(−R/Rd)
and constant in time t, the age velocity dispersion relation AVR
with σ2

R ∝ t exp(−R/Rσ), and metal enrichment [M/H](R, τ) =
const. + Mττ + MRR ± Δ[M/H] linear in age τ and in radius and
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Fig. 8. Left panels: inverse radial scalelengths for all subpopulations adopting the LSR V� = 3.06 km s−1 (best fit in the lower panel of Fig. 5, top
panel), 5.25 km s−1 (Aumer & Binney 2009, middle panel), and 12.24 km s−1 (Schönrich et al. 2010, lower panel) with colour-coded metallicity.
Right panels: radial scalelengths for the same data. For the Schönrich value of the LSR (lower panel), the absolute values |Rν| are plotted in
logarithmic scale with negative values marked as crosses.

allowing for a metallicity scatter. With Monte Carlo realisations
for each parameter set, we calculate the asymmetric drift and
velocity dispersion for each age-metallicity bin. The result of
the best-fitting parameter set with (Rd,Rσ,Mτ,MR,Δ[M/H]) =
(1.8 kpc, 1.5 kpc, 0.04 dex Gyr−1, –0.07 dex kpc−1, 0.18 dex) is
shown in Fig. 9. Even though this plot is not enough to tightly
constrain all free parameters of the model, it is educating to see
how easily the observed metallicity trend can emerge.

5. Discussion

The extended, kinematically unbiased catalogue of RAVE stars
provides a very good tool to analyse stellar dynamics in the solar
neighbourhood and to study the asymmetric drift. We analysed
dwarf stars selected by a colour-dependent magnitude cut. The
observed dependence of the asymmetric drift velocity Va on the
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Fig. 9. Model predictions of a simple disc evolution model compared to
the RAVE data shown in Fig. 8.
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squared radial velocity dispersion σ2
R is substantially non-linear,

and the linear Strömberg relation fails to give a reasonable ap-
proximation of the data. A somewhat similar analysis of the
RAVE data was performed by Coşkunoğlu et al. (2011). The
authors used a kinematically selected sample of stars with pho-
tometric distances to determine the velocity of the Sun with re-
spect to the neighbouring stars. The mean velocity of the Sun
of about 13 km s−1 with respect to the local stars determined by
Coşkunoğlu et al. (2011) is consistent with the mean ΔV for the
RAVE stars in Fig. 4. However, Coşkunoğlu et al. (2011) could
not decompose this velocity into the peculiar velocity of the Sun
with respect to the LSR and the asymmetric drift, which is the
velocity of the LSR with respect to the mean velocity of stars in
their sample. Therefore they did not derive V� but only (V�+Va),
in contrast to their suggestion.

When splitting the RAVE sample into three metallicity bins,
the non-linearity of the asymmetric drift is reduced in each
metallicity bin and a joint best linear fit confirms the low pe-
culiar velocity of the Sun V� = 2.52 ± 0.80 km s−1. The slopes
of the asymmetric drift yield radial scalelengths of 2.73 ± 0.17,
1.97±0.10, and 1.50±0.05 kpc with increasing metallicity using
the average values for the velocity dispersion shape.

For modern large samples like RAVE and SDSS/SEGUE,
space velocities are available by combining the survey data with
distance estimates and proper motion catalogues. Therefore the
velocity dispersion ellipsoid is available for each stellar subsam-
ple, and we propose to rearrange the Jeans equation in such a
way that all measured contributions are combined on the left-
hand side to V ′. This leads to an improved asymmetric drift
equation (Eq. (5)). In this new Strömberg equation, the only un-
known is the radial scalelength RE of νσ2

R, which determines
the slope of V ′ as function of σ2

R. This new equation allows a
cleaner investigation of the interrelation of radial scalelengths
and the adopted (or determined) LSR (i.e. the peculiar motion of
the Sun V�).

We applied the new Strömberg equation to the RAVE data
split in the metallicity bins. The best joint linear fit gives a value
V� = 3.06 ± 0.68 km s−1 for the LSR. The radial scalelengths
are 2.91 ± 0.16, 2.11 ± 0.09, and 1.61 ± 0.05 kpc respectively
for the metallicities [M/H] = –0.35, –0.1, and +0.1 dex in the
disc. Adopting a horizontal orientation of the velocity ellipsoids
above and below the midplane yield 10–20 percent larger scale-
lengths. The small differences of the new and old Strömberg
equations show that the contribution of the velocity ellipsoid
terms to the asymmetric drift are less significant, the overall
trend of the asymmetric drift is dominated by the disc scale-
lengths and variations of it. The radial scalelength of the disc is
smaller for higher metallicities, implying a more centrally con-
centrated distribution of metal-rich stars. The dependence of the
asymmetric drift on metallicity can serve as a good constraint
for chemodynamical models of the Milky Way and for the ef-
fect of radial migration on the stellar dynamics and abundance
distribution in the solar neighbourhood.

If the radial scalelengths of the subpopulations are different
for different velocity dispersions, the new Strömberg equation
Eq. (5) is still applicable, but now the inverse slope k′ is no
longer constant but depends on the squared velocity disper-
sion σ2

R of the subpopulation. The thus observed or theoreti-
cally predicted asymmetric drift and velocity dispersions serve
us as a measure of k′ on the right-hand side of Eq. (5), corre-
sponding to the inverse radial scalelength RE of νσ2

R if the pe-
culiar motion of the Sun V� is known. In addition to the overall
trend of larger radial scalelengths for lower metallicities, we find
within the metal-poor bin a trend of decreasing scalelength with

increasing velocity dispersion. This can be a hint of an increas-
ing contribution of thick disc stars combined with a small thick
disc radial scalelength. Alternatively, it is the contribution of a
young metal-poor subpopulation of the thin disc with large ra-
dial scalelength (Fig. 7). The inverted trend of faster rotation for
more metal-poor stars, at least in the younger thin disc, as ob-
served in Lee et al. (2011b), Liu & van de Ven (2012), Loebman
et al. (2011), can be dynamically understood by the rule: lower
metallicity→ larger velocity dispersion and larger radial scale-
length→ smaller asymmetric drift→ faster mean rotation. The
chemodynamical model by Schönrich et al. (2010) probably can
be interpreted in these terms. Each point of the non-linear depen-
dence Va(σ2

R) from Schönrich et al. (2010) should correspond by
Eq. (5) via its own k′ to the radial scalelength RE . Therefore,
the dependence Va(σ2

R) from Schönrich et al. (2010) can be
interpreted as an increase of Rν and/or Rσ with the velocity
dispersion σR of the subpopulations. We have shown that elevat-
ing V� to 12 km s−1 results in significantly increased radial scale-
lengths, which are even negative for some low-metallicity bins.
The physical interpretation of an increasing pressure νσ2

R with
radius is questionable. A second effect of a larger LSR value is
a systematic trend of decreasing scalelength with increasing ve-
locity dispersion. This is counterintuitive to the impact of radial
migration, which should flatten radial gradients with increasing
age and velocity dispersion.

Another possible explanation for the discrepancies in the de-
termination of the LSR are non-axisymmetric features. A local
spiral wave perturbation, which could influence the stellar dy-
namics in the solar neighbourhood, can account for an offset
of ≈6 km s−1 (Siebert et al. 2012). It would break the axisymme-
try of the gravitational potential required by Eq. (2), thus mak-
ing all further analysis inapplicable. The dynamically coldest
subpopulations of stars are the most susceptible to small grav-
itational perturbations, while dynamically hotter subpopulations
are less affected by them. Thus a Jeans analysis could break
down for small σ2

R while still being a good approximation for
big σ2

R. This would apply to the bluest bins of the Hipparcos
sample and also to the maser measurements of star-forming re-
gions. There is still no precise model to correct for these effects
in the solar neighbourhood.

From the slope of the asymmetric drift dependence on the
radial velocity dispersion, we can estimate the radial scale-
length RE of νσ2

R in the Galactic disc. With R−1
E = R−1

ν + R−1
σ

and the standard assumption Rσ = Rν, we get Rν ranging from
2.9 kpc to 1.6 kpc. If Rσ is significantly larger than Rν, as as-
sumed by Bienaymé (1999), then Rν can be smaller than our
estimate by up to a factor of two, falling well below 2 kpc.

The orientation of the velocity ellipsoid measured by the ver-
tical gradient of vRvz has a minor impact on the radial scale-
length. With η → 0 (horizontal orientation), the scalelength RE
would increase by less than 20%. The new Stömberg relation
(see Eq. (5)) shows that a re-determination of the velocity ellip-
soid has, in general, a small effect on the determination of the
LSR and the radial scalelengths.

Based on the large data sample of RAVE dwarfs, we have
demonstrated that the Jeans equation is problematic for the
determination of both the LSR (i.e. the tangential peculiar mo-
tion of the Sun V�) and the radial scalelengths of the stellar
populations simultaneously. The extrapolation to the asymmet-
ric drift value at σR = 0 depends sensitively on the sample se-
lection and on additional assumptions. On the other hand, the
Jeans equation provides a sensitive tool to test Milky Way mod-
els on their dynamical consistency. The LSR value cannot be
adjusted independently because any variation has a large impact
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on the radial scalelengths of all stellar populations in dynamical
equilibrium. Dynamically, the radial scalelength RE of the radial
energy density νσ2

R is relevant, and its split into the scalelengths
of the density and of the velocity dispersion needs further infor-
mation, such as the vertical thickness in combination with the
shape of the velocity dispersion ellipsoid.

Acknowledgements. O.G. acknowledges funding by International Max Planck
Research School for Astronomy & Cosmic Physics at the University of
Heidelberg. This work was supported by Sonderforschungsbereich SFB 881
“The Milky Way System” (subproject A6) of the German Research
Foundation (DFG). Funding for RAVE has been provided by: the Australian
Astronomical Observatory; the Leibniz-Institut für Astrophysik Potsdam (AIP);
the Australian National University; the Australian Research Council; the French
National Research Agency; the German Research Foundation (SPP 1177 and
SFB 881); the European Research Council (ERC-StG 240271 Galactica); the
Istituto Nazionale di Astrofisica at Padova; The Johns Hopkins University; the
National Science Foundation of the USA (AST-0908326); the W. M. Keck
foundation; the Macquarie University; the Netherlands Research School for
Astronomy; the Natural Sciences and Engineering Research Council of Canada;
the Slovenian Research Agency; the Swiss National Science Foundation; the
Science & Technology Facilities Council of the UK; Opticon; Strasbourg
Observatory; and the Universities of Groningen, Heidelberg, and Sydney. The
RAVE web site is at http://www.rave-survey.org. Funding for SDSS-I and
SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, the US Department of Energy, the
National Aeronautics and Space Administration, the Japanese Monbukagakusho,
the Max Planck Society, and the Higher Education Funding Council for England.
The SDSS Web Site is http://www.sdss.org/. The authors are very grateful
to Young-Sun Lee and Timothy C. Beers for providing their SEGUE data sample
for our analysis and for fruitful discussions, as well as to Hartmuth Jahreiß for
providing us with results of his analysis of the local stellar samples. We thank the
anonymous referee for valuable comments and the language editor for improving
the English language.

References

Aumer, M., & Binney, J. 2009, MNRAS, 397, 1286
Bienaymé, O. 1999, A&A, 341, 86
Binney, J. 2010, MNRAS, 401, 2318
Binney, J., & McMillan, P. 2010, MNRAS, 413, 1889

Binney, J., & Tremaine, S. 2008, Galactic Dynamics (Princeton: University
Press)

Boeche, C., Siebert, A., Williams, M., et al. 2011, AJ, 142, 193
Bochanski, J. J., Hawley, S. L., & West, A. A. 2011, AJ, 141, 98
Bovy, J., Rix, H.-W., Liu, C., et al. 2012a, ApJ, 753, 148
Bovy, J., Allende Prieto, C., Beers, T., et al. 2012b, ApJ, 759, 131
Burnett, B., Binney, J., Sharma, S., et al. 2011, A&A, 532, A113
Chiappini C., Matteucci F., & Romano D. 2001, ApJ, 554, 1044
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